WO2020189858A1 - 디스플레이용 백라이트 장치 - Google Patents

디스플레이용 백라이트 장치 Download PDF

Info

Publication number
WO2020189858A1
WO2020189858A1 PCT/KR2019/009182 KR2019009182W WO2020189858A1 WO 2020189858 A1 WO2020189858 A1 WO 2020189858A1 KR 2019009182 W KR2019009182 W KR 2019009182W WO 2020189858 A1 WO2020189858 A1 WO 2020189858A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
backlight device
reflective
light source
Prior art date
Application number
PCT/KR2019/009182
Other languages
English (en)
French (fr)
Inventor
김기정
Original Assignee
희성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성전자 주식회사 filed Critical 희성전자 주식회사
Publication of WO2020189858A1 publication Critical patent/WO2020189858A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present invention relates to a backlight device for a display.
  • a display device is a device that receives and displays an image signal, and includes a TV or a monitor, and is a liquid crystal display device (LCD) and an organic light emitting device (OLED) as a means for displaying an image.
  • LCD liquid crystal display device
  • OLED organic light emitting device
  • Emitting Display plasma display device
  • PDP Plasma Display Panel
  • the LCD further includes a backlight unit of a surface light source in addition to the liquid crystal panel, and the backlight unit uniformly supplies a high-intensity light source to the liquid crystal panel, thereby realizing an image.
  • the backlight unit refers to a surface lighting device for realizing an image of a display device such as an LCD, and is classified into a direct lighting type or an edge lighting type according to a position where a light source is disposed.
  • a light source of the backlight unit a light emitting diode (hereinafter referred to as'LED') having advantages such as small size, low power consumption, and high reliability is mainly used.
  • FIG. 1 is a cross-sectional view showing a main configuration of a conventional direct-type backlight device.
  • a plurality of LED elements 12 are mounted on a substrate 11, a light transmitting member 13 is disposed on an upper portion spaced apart from the LED element 12, and a light transmitting member 13 ), a reflective pattern 14 is formed at a position corresponding to the LED element 12.
  • the reflective pattern 14 may be formed by printing reflective materials of various materials on the light-transmitting member 13 or patterning the surface of the light-transmitting member 13 to have a reflective function.
  • a diffusion lens 15 is disposed coupled to the substrate 11.
  • the light-transmitting member 13 may be made of a transparent material having a refractive index of about 1.65
  • the diffusion lens 15 may be made of a transparent material having a refractive index of about 1.5.
  • the backlight device having the configuration as described above, light of a point light source emitted from the LED element 12 is first diffused while passing through the diffusion lens 15, and is emitted upward through the light transmitting member 13.
  • light emitted from the LED element 12 in an upward direction close to the vertical is reflected downward by the reflection pattern 14, and the light reflected downward is reflected upward by the reflection sheet 16 again.
  • the light emitted from the LED element 12 is emitted upward through the light transmitting member 13 in the process of repeating reflection in the vertical direction, and the backlight device provides light of a surface light source having a uniform luminance as a whole.
  • an air layer (A) is intervened between the LED element 12 and the light transmitting member 13, and the light emitted from the LED element 12 passes through regions of different materials having different refractive indices. It is emitted while doing.
  • the light of the LED element 12 passes through a different material having a different refractive index, total reflection occurs according to a difference in refractive index at the interface. This total reflection causes light loss, thereby reducing light extraction efficiency.
  • the first air having a refractive index (n1) of about 1.8
  • the first air having a refractive index (n) of about 1.0.
  • a layer (A) a diffusion lens (15) having a refractive index (n2) of about 1.5
  • the second air layer (A) having a refractive index (n) of about 1.0.
  • the conventional backlight device passes through a plurality of interfaces where different materials having different refractive indices meet, light loss due to total reflection occurs at the interface between the high-refractive-index material and the low-refractive-index material, thereby limiting the light extraction efficiency. There is a problem to indicate.
  • the present invention has been proposed to solve the above problems, and by removing the air layer along the path of light emitted from the LED device, total reflection and light loss occurring in the process of passing through different materials having different refractive indexes are minimized. Accordingly, it is an object to provide a backlight device for a display capable of improving light extraction efficiency.
  • the backlight device of the present invention for achieving the above object includes a light source module that emits light upward by mounting a plurality of light sources on a substrate, and is coupled to the substrate while sealing the light source to extract light from the light source.
  • a first light guide made of a transparent material to be transmitted, a plurality of reflection patterns formed on an upper surface of the first light guide at a position corresponding to the position of the light source to reflect light of a vertical component of the light source in an oblique direction, and the substrate
  • a reflective sheet interposed between the first light guide and reflects the light reflected from the reflective pattern to emit light to the upper surface of the light guide.
  • the backlight device of the present invention may further include a second light guide portion formed on an upper surface of the first light guide portion while covering the reflective pattern.
  • the first light guide is made of a transparent material having a refractive index smaller than that of the light source.
  • the reflective pattern is configured to form a three-dimensional shape having a reflective surface of an inclined structure to reflect light of a vertical component in an oblique direction.
  • the reflective pattern is formed by filling or coating the intaglio cavity on the upper surface of the first light guide part.
  • the reflection pattern is formed in a 3D three-dimensional structure, the process of reflecting light emitted from the LED device is minimized to reduce light loss, thereby improving light extraction efficiency.
  • FIG. 1 is a cross-sectional view showing the main configuration of a conventional direct-type backlight device
  • FIG. 2 is a cross-sectional view showing a backlight device according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing a backlight device according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a backlight device according to a third embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a backlight device according to a first embodiment of the present invention.
  • the backlight device of the first embodiment is a light source module 100 on which a plurality of LED elements 120 are mounted on the substrate 110, while sealing the LED element 120 is predetermined on the substrate 110. And a light guide part 200 formed to a thickness of, a reflective sheet 300 interposed between the substrate 110 and the light guide part 200, and a reflective pattern 400 formed on an upper surface of the light guide part 200. Further, although not shown, the backlight device further includes an optical sheet disposed on the light guide unit 200, and a liquid crystal panel is disposed on the optical sheet to configure a display device.
  • the backlight unit having the above configuration, light from the point light source emitted from the LED element 120 is diffused and scattered while passing through the inside of the light guide unit 200, and is reflected downward by the upper reflection pattern 400, and again While repeating the process of being reflected by the reflective sheet 300, the entire light is converted into a uniform surface light source, and is emitted to the light exit surface 200a of the upper surface of the light guide part 200.
  • the LED module 100 is a light source of a backlight device, and a plurality of LED elements 120 are mounted on a substrate 110 at predetermined intervals in a horizontal, vertical, diagonal, or arbitrary direction.
  • the substrate 110 is printed with a predetermined circuit, and the LED device 120 is configured as a top view device that emits light upward. The light emitted from each LED element 120 is incident into the light guide part 200.
  • the light guide part 200 extracts light from the LED device 120 while sealing the LED device 120, diffuses the extracted light to the entire area of the light guide part 200, and induces it to be emitted to the upper surface.
  • the light guide part 200 is integrated with the light source module 100 through a process such as injection molding, dispensing molding, or hot melt molding using the light source module 100 as an insert. It can be formed as Therefore, the light emitted from the LED element 120 is directly incident on the light guide 200 without passing through the air layer, thereby preventing light loss due to a difference in refractive index.
  • the light guide part 200 is made of a material having high transparency to minimize light loss inside, for example, Glass, Sapphire, PMMA, PUA, PET, PI, PO, PVC, PC, PE, PP, PS, Si, SiOx, Al, Al2Ox, ZnO, POE, EVA, may be composed of a transparent material containing any one or more of epoxy (x is an arbitrary natural number).
  • the light guide part 200 is made of a transparent material having a refractive index less than that of the LED element 120, and the light guide part 200 of the present embodiment is configured to have a refractive index of 1.33 to 1.7.
  • the reflective sheet 300 is disposed between the substrate 110 and the light guide 200, that is, on the upper surface of the substrate 110, and reflects the light reflected downward from the reflective pattern 400 back upward to the light guide 200 It is to be emitted to the light exit surface (200a) of the upper surface.
  • the reflective sheet 300 may be formed by bonding a sheet or film having a high reflectivity to the upper surface of the substrate 110 or coating a material having a high reflectivity on the upper surface of the substrate 110.
  • the reflective pattern 400 blocks a hot spot by a point light source from the upper side of the LED element 120 and reflects the light emitted from the LED element 120 to the vertical upper side to reflect the entire area of the light guide unit 200.
  • the reflective pattern 400 is formed on the upper surface of the light guide part 200 at a position corresponding to the position of the LED element 120. That is, the reflective pattern 400 is formed to be positioned vertically above the LED element 120 at a position corresponding to each LED element 120 in a 1:1 manner, and horizontal, vertical, diagonal on the upper surface of the light guide unit 200 Alternatively, a plurality of them are formed at predetermined intervals in any direction.
  • the reflective pattern 400 may be formed by coating a material having a high reflectance on the upper surface of the light guide part 200.
  • the light reflective material constituting the reflective pattern 400 may include any one or more of Ag, Tio2, ZnO, Si, SiO2, Al2O3, and Al.
  • the light emitted from the LED element 120 is directly incident to the light guide 200 without passing through the air layer (see'A' in FIG. 1), and between the LED element 120 and the air layer. There is no light loss due to the difference in refractive index of.
  • the backlight device of the present invention can improve the extraction efficiency of light emitted from the LED element 120.
  • FIG 3 is a cross-sectional view showing a backlight device according to a second embodiment of the present invention.
  • a first light guide part 210 and a first light guide part form a reflective pattern 400 on an upper surface while the light guide part 200 seals the LED element 120.
  • It is composed of a second light guide unit 220 that protects the reflection pattern 400 on the upper surface, and the light source module 100 and the reflection sheet 300 have the same configuration as in the first embodiment.
  • the first light guide part 210 extracts light from the LED device 120 while sealing the LED device 120, and first diffuses the extracted light to the entire area of the first light guide part 210 and then emits it to the top surface. To induce.
  • the first light guide unit 210 may be integrally formed with the light source module 100 by a process such as injection molding using the light source module 100 as an insert, dispensing molding, or hot melt molding. Therefore, the light emitted from the LED device 120 is directly incident on the first light guide unit 210 without passing through the air layer, thereby preventing light loss in the air layer due to the difference in refractive index.
  • the first light guide part 210 is made of a transparent material having a refractive index less than that of the LED element 120, and the first light guide part 210 of the present embodiment has a refractive index of 1.33 to 1.7.
  • the second light guide part 220 has a predetermined thickness on the top surface of the first light guide part 210 and is integrally formed with the first light guide part 210.
  • the second light guide unit 220 seals and protects the reflective pattern 400, and secondly diffuses the light passing through the first light guide unit 210 and proceeding upward to a more uniform light emitting surface 200a of the upper surface. Let light emit.
  • the first light guide part 210 and the second light guide part 220 are made of a material having high transparency, for example, Glass, Sapphire, PMMA, PUA, PET, PI, PO, PVC, PC, PE, PP, PS, Si, SiOx, Al, Al2Ox, ZnO, POE, EVA, may be composed of a transparent material containing any one or more of epoxy (x is an arbitrary natural number).
  • FIG. 4 is a cross-sectional view showing a backlight device according to a third embodiment of the present invention.
  • a reflective pattern 400 forms a three-dimensional structure, and the light source module 100, the light guide part 200, and the reflective sheet 300 are the first embodiment or the first embodiment. It has the same configuration as in the second embodiment.
  • the reflection pattern 400 reflects light emitted from the LED device 120 vertically upward to the side so that it is uniformly distributed over the entire area of the light guide unit 200.
  • the reflective pattern 400 forms a three-dimensional shape of a 3D structure and has a reflective surface 410 having an inclined structure.
  • the reflective pattern 400 preferably has an inverted cone shape in a longitudinal section.
  • the inverse cone shape refers to a shape whose diameter is relatively narrowed toward the lower side so that light can be reflected in the lateral oblique direction, and the vertex angle may form a round shape having a predetermined curvature, and includes a hemispherical shape or a semi-elliptic shape.
  • the reflective pattern 400 may have various shapes such as circular, quadrangular, and polygonal cross-sections.
  • the reflective pattern 400 may be formed by filling a light reflective material in a cavity in which the upper surface of the light guide part 200 is concavely engraved.
  • the reflective pattern 400 may be formed by filling all areas inside the cavity with a light reflecting material or coating along the cavity surface.
  • the backlight device having the three-dimensional reflective pattern 400 minimizes the process of reflecting light emitted from the LED element 120 to the vertical upper side to emit light, thereby minimizing light loss occurring in the reflection process.
  • the backlight device according to the present exemplary embodiment does not exhibit light loss due to reflection even when the thickness is reduced, it is advantageous for slimming the backlight device and can exhibit high brightness.
  • the LED element 120 and the reflective pattern 400 may have an interval of 0.05mm to 20mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 디스플레이용 백라이트 장치에 관한 것으로, 기판 상에 다수의 광원이 실장되어 상부로 빛을 출사하는 광원 모듈, 상기 광원을 밀봉하면서 상기 기판에 결합되어 상기 광원의 빛을 추출하여 투과시키는 투명 소재의 제 1 도광부, 상기 광원의 위치에 대응하는 위치에서 상기 제 1 도광부 상면에 형성되어 상기 광원의 수직 성분의 빛을 경사 방향으로 반사시키는 다수의 반사 패턴, 및, 상기 기판과 상기 제 1 도광부 사이에 개입되어 상기 반사 패턴에서 반사되는 빛을 반사시켜 상기 도광부 상면으로 출사시키는 반사시트를 포함하는 것을 특징으로 한다.

Description

디스플레이용 백라이트 장치
본 발명은 디스플레이용 백라이트 장치에 관한 것이다.
일반적으로 디스플레이 장치는 영상 신호를 전달받아 표시하는 장치로, TV나 모니터 등이 이에 속하며, 영상을 표시하기 위한 수단으로 액정표시장치(LCD : Liquid Crystal Display Device), 유기발광장치(OLED : Organic Light Emitting Display), 플라즈마표시장치(PDP : Plasma Display Panel) 등 다양한 장치가 이용되고 있다.
LCD는 다른 표시장치와는 달리 그 자체에서 빛을 발하지 못하여, 고품질의 화상을 실현하기 위해서는 반드시 별도의 외부 광원을 필요로 한다. 따라서 LCD는 액정패널 외에 면광원의 백라이트 유닛을 더 포함하여, 백라이트 유닛이 액정패널로 고휘도의 광원을 균일하게 공급함으로써 화상을 구현하게 된다. 이와 같이 백라이트 유닛은 LCD와 같은 디스플레이 장치의 화상을 실현하기 위한 면조명 장치를 말하며, 광원이 배치되는 위치에 따라 직하형(Direct Lighting type) 또는 측면형(Edge Lighting type) 백라이트 유닛으로 구분된다. 백라이트 유닛의 광원으로는 소형, 저소비 전력, 고신뢰성 등의 장점을 갖는 발광다이오드(Light Emitting Diode, 이하 'LED'라 함)가 주로 이용되고 있다.
도 1은 종래의 직하형 백라이트 장치의 주요 구성을 나타낸 단면도이다.
도시된 바와 같이, 직하형 백라이트 장치는 기판(11) 상에 다수의 LED 소자(12)가 실장되고, LED 소자(12)와 이격되는 상부에 투광 부재(13)가 배치되며, 투광 부재(13)의 하면에는 LED 소자(12)에 대응하는 위치에 반사 패턴(14)이 형성된다. 반사 패턴(14)은 다양한 소재의 반사 물질이 투광 부재(13)에 인쇄되어 형성되거나, 투광 부재(13) 표면이 반사 기능을 갖도록 패터닝 되어 형성될 수 있다. 또한, LED 소자(12)의 상부에는 확산 렌즈(15)가 기판(11)에 결합되어 배치된다.
여기서 투광 부재(13)는 약 1.65의 굴절율을 갖는 투명 소재로 구성되고, 확산 렌즈(15)는 약 1.5의 굴절율을 갖는 투명 소재로 구성될 수 있다.
상기와 같은 구성의 백라이트 장치는 LED 소자(12)에서 출사되는 점광원의 빛이 확산 렌즈(15)를 통과하면서 1차 확산되고, 투광 부재(13)를 통과하여 상측으로 출사된다. 또한, LED 소자(12)에서 수직에 가까운 상측 방향으로 출사되는 빛은 반사 패턴(14)에 의하여 하측으로 반사되고, 하측으로 반사된 빛은 다시 반사시트(16)에 의하여 상측으로 반사된다. 따라서 LED 소자(12)에서 출사된 빛은 상하측 방향으로 반사를 반복하는 과정에서 투광 부재(13)를 통하여 상측으로 출사되고, 백라이트 장치는 전체적으로 균일한 휘도를 갖는 면광원의 빛을 제공한다.
한편, 종래의 백라이트 장치는 LED 소자(12)와 투광 부재(13) 사이에 에어층(A)이 개입되고, LED 소자(12)에서 출사되는 빛이 서로 다른 굴절율을 갖는 이종 소재의 영역을 통과하면서 출사된다. LED 소자(12)의 빛은 굴절율을 달리하는 이종 소재를 통과할 때, 그 경계면에서 굴절율 차이에 따른 전반사가 발생한다. 이러한 전반사는 광 손실을 초래하여 광 추출 효율을 저하시킨다.
즉, 종래의 백라이트 장치에 있어서 빛의 진행 경로를 구체적으로 살펴보면, 빛은 약 1.8의 굴절율(n1)을 갖는 LED 소자(12)에서 출사된 후, 약 1.0의 굴절율(n)을 갖는 제 1 에어층(A), 약 1.5의 굴절율(n2)을 갖는 확산 렌즈(15), 약 1.0의 굴절율(n)을 갖는 제 2 에어층(A), 약 1.65의 굴절율(n3)을 갖는 투광 부재(13) 및 약 1.0의 굴절율(n)을 갖는 제 2 에어층(A)으로 순차적으로 진행한다. 따라서, 종래의 백라이트 장치는 굴절율을 달리하는 이종 소재가 만나는 다수의 경계면을 통과하므로, 고굴절율 소재와 저굴절율 소재가 이어지는 경계면에서 전반사에 의한 광 손실이 발생하고, 결국, 광 추출 효율에 한계를 나타내는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, LED 소자에서 출사되는 빛의 경로를 따라 에어층을 제거함으로써, 굴절율을 달리하는 이종 소재를 통과하는 과정에서 나타나는 전반사 및 광 손실을 최소로 하여 광 추출 효율을 향상시킬 수 있는 디스플레이용 백라이트 장치를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명의 백라이트 장치는, 기판 상에 다수의 광원이 실장되어 상부로 빛을 출사하는 광원 모듈, 상기 광원을 밀봉하면서 상기 기판에 결합되어 상기 광원의 빛을 추출하여 투과시키는 투명 소재의 제 1 도광부, 상기 광원의 위치에 대응하는 위치에서 상기 제 1 도광부 상면에 형성되어 상기 광원의 수직 성분의 빛을 경사 방향으로 반사시키는 다수의 반사 패턴, 및, 상기 기판과 상기 제 1 도광부 사이에 개입되어 상기 반사 패턴에서 반사되는 빛을 반사시켜 상기 도광부 상면으로 출사시키는 반사시트를 포함하는 것을 특징으로 한다.
또한, 본 발명의 백라이트 장치는, 상기 반사 패턴을 덮으면서 상기 제 1 도광부 상면에 형성되는 제 2 도광부를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 있어서, 상기 제 1 도광부는, 상기 광원의 굴절율보다 작은 굴절율을 갖는 투명 소재로 구성되는 것을 특징으로 한다.
또한, 본 발명에 있어서 상기 반사 패턴은, 경사 구조의 반사면을 갖는 입체 형상을 이루어 수직 성분의 빛을 경사 방향으로 반사시키도록 구성되는 것을 특징으로 한다.
또한, 본 발명에 있어서 상기 반사 패턴은 상기 제 1 도광부 상면의 음각 캐비티에 충진되거나 코팅되어 형성되는 것을 특징으로 한다.
상기와 같은 구성의 도광부가 LED 소자를 밀봉하여 빛의 경로를 따라 에어층이 형성되지 않음으로써, 굴절율을 달리하는 이종 소재를 통과하는 과정에서 나타나는 빛의 전반사와 광 손실을 최소로 하여 광 추출 효율이 향상된다.
또한, 본 발명은 반사 패턴이 3D 입체 구조로 형성되어, LED 소자에서 출사되는 빛이 반사되는 과정을 최소로 하여 광 손실을 줄임으로써, 광 추출 효율이 향상된다.
도 1은 종래의 직하형 백라이트 장치의 주요 구성을 나타낸 단면도,
도 2는 본 발명의 제 1 실시예에 따른 백라이트 장치를 나타낸 단면도,
도 3은 본 발명의 제 2 실시예에 따른 백라이트 장치를 나타낸 단면도,
도 4는 본 발명의 제 3 실시예에 따른 백라이트 장치를 나타낸 단면도.
본 발명과 본 발명의 실시에 의해 달성되는 기술적 과제는 다음에서 설명하는 바람직한 실시예들에 의해 명확해질 것이다. 이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 살펴보기로 한다.
후술되는, 본 실시예의 차이는 상호 배타적이지 않은 사항으로 이해되어야 한다. 즉 본 발명의 기술 사상 및 범위를 벗어나지 않으면서, 기재되어 있는 특정 형상, 구조 및 특성은, 일 실시예에 관련하여 다른 실시예로 구현될 수 있으며, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 변경될 수 있음이 이해되어야 하며, 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이, 면적 및 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다. 본 실시예의 설명에 있어서, 제 1, 제 2, 내, 외, 상, 하 등과 같은 표현은 서로 상대적인 순서나 위치, 방향 등을 나타내는 것으로 그 기술적 의미가 반드시 사전적 의미에 구속되지는 않는다.
도 2는 본 발명의 제 1 실시예에 따른 백라이트 장치를 나타낸 단면도이다.
도 2를 참조하면, 제 1 실시예의 백라이트 장치는 기판(110) 상에 다수의 LED 소자(120)가 실장되는 광원 모듈(100), LED 소자(120)를 밀봉하면서 기판(110) 상에 소정의 두께로 형성되는 도광부(200), 기판(110)과 도광부(200) 사이에 개입되는 반사시트(300) 및 도광부(200) 상면에 형성되는 반사 패턴(400)을 포함한다. 또한, 도시되지는 않았지만, 백라이트 장치는 도광부(200) 상부에 배치되는 광학시트를 더 포함하고, 광학시트 상부에 액정패널이 배치되어 디스플레이 장치를 구성한다.
상기와 같은 구성의 백라이트 유닛은 LED 소자(120)에서 출사되는 점광원의 빛이 도광부(200) 내부를 통과하면서 확산 및 산란되고, 상부의 반사 패턴(400)에 의하여 하측으로 반사되며, 다시 반사시트(300)에서 반사되는 과정을 반복하면서 전체적으로 균일한 면광원의 빛으로 전환되어 도광부(200) 상면의 출광면(200a)으로 출사된다.
구체적으로 살펴보면, LED 모듈(100)은 백라이트 장치의 광원으로, 기판(110) 상에 LED 소자(120)가 가로, 세로, 대각선 또는 임의의 방향으로 소정 간격을 이루면서 다수개 실장된다. 기판(110)은 소정의 회로가 인쇄되고, LED 소자(120)는 상측으로 빛을 발하는 탑 뷰(top view) 방식의 소자로 구성된다. 각 LED 소자(120)에서 출사되는 빛은 도광부(200) 내부로 입사된다.
도광부(200)는 LED 소자(120)를 밀봉하면서 LED 소자(120)의 빛을 추출하고, 추출한 빛을 도광부(200)의 전체 영역으로 확산시킨 후 상면으로 출사되도록 유도한다. 도광부(200)는 광원 모듈(100)을 인서트 물로 하는 사출 성형(injection molding)이나, 디스펜싱 몰딩(dispensing molding) 또는 핫 멜트 몰딩(hot melt molding) 등의 공정으로 광원 모듈(100)과 일체형으로 형성될 수 있다. 따라서 LED 소자(120)에서 출사되는 빛은 에어층을 거치지 않고 도광부(200)로 직접 입사됨으로써, 굴절율 차이에 따른 광 손실을 방지할 수 있다.
또한, 도광부(200)는 내부에서 광 손실을 최소로 하도록 고투명도를 갖는 소재로 구성되며, 일 예로, Glass, Sapphire, PMMA, PUA, PET, PI, PO, PVC, PC, PE, PP, PS, Si, SiOx, Al, Al2Ox, ZnO, POE, EVA, 에폭시 중 어느 하나 이상을 포함하는 투명 소재로 구성될 수 있다(x는 임의의 자연수). 또한, 도광부(200)는 LED 소자(120)의 굴절율보다 작은 굴절율을 갖는 투명 소재로 구성되며, 본 실시예의 도광부(200)는 1.33 내지 1.7의 굴절율을 갖도록 구성된다.
반사시트(300)는 기판(110)과 도광부(200) 사이 즉, 기판(110) 상면에 배치되며, 반사 패턴(400)에서 하측으로 반사되는 빛을 다시 상측으로 반사시켜 도광부(200) 상면의 출광면(200a)으로 출사되도록 한다. 반사시트(300)는 고반사율을 갖는 시트 또는 필름이 기판(110) 상면에 결합되거나 고반사율을 갖는 물질이 기판(110) 상면에 코팅되어 형성될 수도 있다.
반사 패턴(400)은 LED 소자(120) 상측에서 점광원에 의한 핫 스팟(hot spot)을 차단하고, LED 소자(120)에서 수직 상측으로 출사되는 빛을 반사시켜 도광부(200)의 전체 영역에서 균일한 휘도의 빛이 출사되도록 한다. 반사 패턴(400)은 LED 소자(120)의 위치에 대응하는 위치에서 도광부(200) 상면에 형성된다. 즉, 반사 패턴(400)은 각 LED 소자(120)와 1:1로 대응하는 위치에서 LED 소자(120)의 수직 상부에 위치하도록 형성되며, 도광부(200)의 상면에서 가로, 세로, 대각선 또는 임의 방향으로 소정 간격을 이루면서 다수개 형성된다.
반사 패턴(400)은 고반사율을 갖는 물질이 도광부(200) 상면에 코팅되어 형성될 수 있다. 반사 패턴(400)을 구성하는 광 반사 물질은 Ag, Tio2, ZnO, Si, SiO2, Al2O3, Al 중 어느 하나 이상을 포함할 수 있다.
상기와 같은 구성의 본 발명은 LED 소자(120)에서 출사되는 빛이 에어층(도 1의 'A' 참고)을 통하지 않고 직접 도광부(200)로 입사되어 LED 소자(120)와 에어층 사이의 굴절율 차이에 따른 광 손실이 나타나지 않는다. 또한, 도광부(200)로 입사된 빛이 반사 패턴(400)에 의하여 반사되는 과정에서 도광부(200)와 에어층(도 1의 'A')을 통하지 않고 직접 반사시트(300)에 반사되어 도광부(200)와 에어층 사이에서도 굴절율 차이에 따른 광 손실이 나타나지 않는다. 따라서 본 발명의 백라이트 장치는 LED 소자(120)에서 출사된 빛의 추출 효율을 향상시킬 수 있다.
도 3은 본 발명의 제 2 실시예에 따른 백라이트 장치를 나타낸 단면도이다.
도 3을 참조하면, 제 2 실시예의 백라이트 장치는 도광부(200)가 LED 소자(120)를 밀봉하면서 상면에 반사 패턴(400)을 형성하는 제 1 도광부(210)와, 제 1 도광부(210) 상면에서 반사 패턴(400)을 보호하는 제 2 도광부(220)로 구성되고, 광원 모듈(100)과 반사시트(300)는 제 1 실시예와 동일한 구성을 이룬다.
제 1 도광부(210)는 LED 소자(120)를 밀봉하면서 LED 소자(120)의 빛을 추출하고, 추출한 빛을 제 1 도광부(210)의 전체 영역으로 1차 확산시킨 후 상면으로 출사되도록 유도한다. 제 1 도광부(210)는 광원 모듈(100)을 인서트 물로 하는 사출 성형이나, 디스펜싱 몰딩 또는 핫 멜트 몰딩(hot melt molding) 등의 공정으로 광원 모듈(100)과 일체형으로 형성될 수 있다. 따라서 LED 소자(120)에서 출사되는 빛은 에어층을 거치지 않고 직접 제 1 도광부(210)로 입사됨으로써, 굴절율 차이에 따른 에어층에서의 광 손실을 방지한다.
또한, 제 1 도광부(210)는 LED 소자(120)의 굴절율보다 작은 굴절율을 갖는 투명 소재로 구성되며, 본 실시예의 제 1 도광부(210)는 1.33 내지 1.7의 굴절율을 갖는다.
제 2 도광부(220)는 제 1 도광부(210) 상면에서 소정의 두께를 가지면서 제 1 도광부(210)와 일체로 형성된다. 제 2 도광부(220)는 반사 패턴(400)을 밀봉하여 보호하면서, 제 1 도광부(210)를 통과하여 상측으로 진행하는 빛을 2차 확산시켜 상면의 출광면(200a)으로 더욱 균일한 빛이 출사되도록 한다.
제 1 도광부(210) 및 제 2 도광부(220)는 고투명도를 갖는 소재로 구성되며, 일 예로, Glass, Sapphire, PMMA, PUA, PET, PI, PO, PVC, PC, PE, PP, PS, Si, SiOx, Al, Al2Ox, ZnO, POE, EVA, 에폭시 중 어느 하나 이상을 포함하는 투명 소재로 구성될 수 있다(x는 임의의 자연수).
도 4는 본 발명의 제 3 실시예에 따른 백라이트 장치를 나타낸 단면도이다.
도 4를 참조하면, 제 3 실시예에 따른 백라이트 장치는 반사 패턴(400)이 입체 구조를 이루고, 광원 모듈(100), 도광부(200) 및 반사시트(300)는 제 1 실시예 또는 제 2 실시예와 동일한 구성을 이룬다.
본 실시예의 반사 패턴(400)은 LED 소자(120)에서 수직 상측으로 출사되는 빛을 측면으로 반사시켜 도광부(200)의 전체 영역에 균일하게 분포되도록 한다. 반사 패턴(400)은 3D 구조의 입체 형상을 이루고, 경사 구조의 반사면(410)을 가진다. 이를 위한 반사 패턴(400)은 종단면이 역원뿔 형상을 이루는 것이 바람직하다. 여기서 역원뿔 형상이란 빛이 측면 경사 방향으로 반사될 수 있도록 하측으로 갈수록 상대적으로 직경이 좁아지는 형상을 말하고, 꼭지각은 소정의 곡률을 갖는 라운드 형상을 이룰 수 있으며, 반구형 또는 반타원형을 포함한다. 또한, 반사 패턴(400)은 횡단면이 원형, 사각형, 다각형 등 다양한 형상을 이룰 수 있다.
이러한 반사 패턴(400)은 도광부(200) 상면이 오목하게 음각된 캐비티(cavity) 내에 광반사 물질이 충진되어 형성될 수 있다. 반사 패턴(400)은, 캐비티 내부의 모든 영역에 광 반사 물질이 충진되거나, 캐비티 표면을 따라 코팅되어 형성될 수 있다.
입체 구조의 반사 패턴(400)을 갖는 백라이트 장치는 LED 소자(120)에서 수직 상측으로 출사되는 빛(L1)이 반사 패턴(400)의 반사면(410)에서 경사 방향으로 반사된 후(L2) 반사시트(300)에서 다시 반사되어 반사 패턴(400) 사이의 출광면(200a)으로 출사된다(L3). 따라서 본 실시예의 백라이트 장치는 LED 소자(120)에서 수직 상측으로 출사되는 빛이 반사되는 과정을 최소로 하여 출사되도록 함으로써, 반사 과정에서 나타나는 광 손실을 최소로 한다.
또한, 본 실시예의 백라이트 장치는 두께가 얇아지더라도 반사에 의한 광 손실이 나타나지 않으므로, 백라이트 장치의 슬림화에 유리하면서 높은 휘도를 나타낼 수 있다. 본 실시예의 백라이트 장치는 LED 소자(120)와 반사 패턴(400)은 0.05mm 내지 20mm의 간격을 이룰 수 있다.
이상 설명한 바와 같이 본 발명의 예시적인 실시예가 도시되어 설명되었지만, 다양한 변형과 다른 실시예가 본 분야의 숙련된 기술자들에 의해 행해질 수 있을 것이다. 이러한 변형과 다른 실시예들은 첨부된 청구범위에 모두 고려되고 포함되어 본 발명의 진정한 취지 및 범위를 벗어나지 않는다 할 것이다.

Claims (5)

  1. 기판 상에 다수의 광원이 실장되어 상부로 빛을 출사하는 광원 모듈;
    상기 광원을 밀봉하면서 상기 기판에 결합되어 상기 광원의 빛을 추출하여 투과시키는 투명 소재의 제 1 도광부;
    상기 광원의 위치에 대응하는 위치에서 상기 제 1 도광부 상면에 형성되어 상기 광원의 수직 성분의 빛을 경사 방향으로 반사시키는 다수의 반사 패턴; 및
    상기 기판과 상기 제 1 도광부 사이에 개입되어 상기 반사 패턴에서 반사되는 빛을 반사시켜 상기 도광부 상면으로 출사시키는 반사시트;를 포함하는 것을 특징으로 하는 디스플레이용 백라이트 장치.
  2. 제 1 항에 있어서,
    상기 반사 패턴을 덮으면서 상기 제 1 도광부 상면에 형성되는 제 2 도광부를 더 포함하는 것을 특징으로 하는 디스플레이용 백라이트 장치.
  3. 제 1 항에 있어서, 상기 제 1 도광부는,
    상기 광원의 굴절율보다 작은 굴절율을 갖는 투명 소재로 구성되는 것을 특징으로 하는 디스플레이용 백라이트 장치.
  4. 제 1 항에 있어서, 상기 반사 패턴은,
    경사 구조의 반사면을 갖는 입체 형상을 이루어 수직 성분의 빛을 경사 방향으로 반사시키도록 구성되는 것을 특징으로 하는 디스플레이용 백라이트 장치.
  5. 제 4 항에 있어서, 상기 반사 패턴은,
    상기 제 1 도광부 상면의 음각 캐비티에 충진되거나 코팅되어 형성되는 것을 특징으로 하는 디스플레이용 백라이트 장치.
PCT/KR2019/009182 2019-03-20 2019-07-24 디스플레이용 백라이트 장치 WO2020189858A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190031946A KR20200113062A (ko) 2019-03-20 2019-03-20 디스플레이용 백라이트 장치
KR10-2019-0031946 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189858A1 true WO2020189858A1 (ko) 2020-09-24

Family

ID=72521035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009182 WO2020189858A1 (ko) 2019-03-20 2019-07-24 디스플레이용 백라이트 장치

Country Status (4)

Country Link
KR (1) KR20200113062A (ko)
CN (1) CN111722436A (ko)
TW (1) TW202036123A (ko)
WO (1) WO2020189858A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326202A (zh) * 2020-09-29 2022-04-12 华为技术有限公司 光调节器件、背光模组、液晶显示模组及终端

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765554B (zh) * 2021-02-01 2022-05-21 云光科技股份有限公司 背光裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816677A (en) * 1905-03-01 1998-10-06 Canon Kabushiki Kaisha Backlight device for display apparatus
KR20030081975A (ko) * 2002-04-15 2003-10-22 삼성전자주식회사 광공급장치 및 이를 이용한 액정표시장치
KR20060031518A (ko) * 2004-10-08 2006-04-12 삼성전기주식회사 Lcd 백라이트 장치
KR101484466B1 (ko) * 2014-06-20 2015-01-20 문승호 휘도 및 휘도의 균일도를 향상시킨 직하형 면광원 장치
US20160139326A1 (en) * 2014-11-19 2016-05-19 Samsung Electronics Co., Ltd. Backlight unit, display device comprising the same and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071358A (ko) * 2001-03-06 2002-09-12 주식회사 광운디스플레이기술 도광판 혼용 직하형 백라이트
CN100437276C (zh) * 2005-08-05 2008-11-26 鸿富锦精密工业(深圳)有限公司 直下式背光模组及液晶显示装置
CN101126866B (zh) * 2006-08-17 2010-12-29 奇美电子股份有限公司 直下式背光模块及包含该背光模块的液晶显示装置
CN101359122B (zh) * 2007-08-03 2011-05-04 清华大学 背光模组
KR20170066974A (ko) 2015-12-07 2017-06-15 삼성전자주식회사 광 확산판 및 이를 포함하는 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816677A (en) * 1905-03-01 1998-10-06 Canon Kabushiki Kaisha Backlight device for display apparatus
KR20030081975A (ko) * 2002-04-15 2003-10-22 삼성전자주식회사 광공급장치 및 이를 이용한 액정표시장치
KR20060031518A (ko) * 2004-10-08 2006-04-12 삼성전기주식회사 Lcd 백라이트 장치
KR101484466B1 (ko) * 2014-06-20 2015-01-20 문승호 휘도 및 휘도의 균일도를 향상시킨 직하형 면광원 장치
US20160139326A1 (en) * 2014-11-19 2016-05-19 Samsung Electronics Co., Ltd. Backlight unit, display device comprising the same and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326202A (zh) * 2020-09-29 2022-04-12 华为技术有限公司 光调节器件、背光模组、液晶显示模组及终端

Also Published As

Publication number Publication date
KR20200113062A (ko) 2020-10-06
CN111722436A (zh) 2020-09-29
TW202036123A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020189857A1 (ko) 디스플레이용 백라이트 장치
CN101206346B (zh) 光模块
CN101308224B (zh) 背光模组及其光学板
US7758229B2 (en) Light source assembly and backlight module having the same
RU2669497C2 (ru) Остекление, содержащее прозрачный экран
WO2014014134A1 (ko) 디스플레이 장치
RU2624598C2 (ru) Устройство подсветки
CN102696063A (zh) 光导向指示牌基底
JP6535339B2 (ja) コントラストを改善した表示装置
WO2020189858A1 (ko) 디스플레이용 백라이트 장치
WO2020222358A1 (ko) 광 경로 제어 기능을 갖는 확산판 및 백라이트 장치
WO2013002596A2 (en) Optical plate and illuminating member using the same
WO2015119435A1 (ko) 조명 장치
CN103115283A (zh) 背光单元、使用其的显示器以及包括其的照明系统
WO2013180519A1 (ko) 조명 장치
WO2020222359A1 (ko) 백라이트 장치용 면광원 모듈
JP2019021488A (ja) 照明装置および液晶表示装置
WO2017095170A1 (ko) 조명장치 및 이를 포함하는 차량용 램프
CN210776108U (zh) 一种用于电视机背光模组的透镜
TWI746103B (zh) 前光模組及其反射式顯示裝置
WO2017111460A1 (ko) 조명 장치
WO2013060053A1 (zh) 背光模组及液晶显示器
CN102889508A (zh) 背光单元和使用该背光单元的显示装置
KR101992362B1 (ko) 라이트 유닛 및 그를 이용한 조명 시스템
CN220626814U (zh) 一种带有柔色挡板的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920071

Country of ref document: EP

Kind code of ref document: A1