WO2020189849A1 - 인공지능 프로그램 기반 이물선별장치 - Google Patents

인공지능 프로그램 기반 이물선별장치 Download PDF

Info

Publication number
WO2020189849A1
WO2020189849A1 PCT/KR2019/007144 KR2019007144W WO2020189849A1 WO 2020189849 A1 WO2020189849 A1 WO 2020189849A1 KR 2019007144 W KR2019007144 W KR 2019007144W WO 2020189849 A1 WO2020189849 A1 WO 2020189849A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pellets
artificial intelligence
intelligence program
foreign object
Prior art date
Application number
PCT/KR2019/007144
Other languages
English (en)
French (fr)
Inventor
박용재
Original Assignee
(주)싸이젠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)싸이젠텍 filed Critical (주)싸이젠텍
Publication of WO2020189849A1 publication Critical patent/WO2020189849A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • the determination unit is machine-learned with images of pre-labeled individual abnormal pellets having a foreign object, a different color, or an anomaly. Abnormal pellets can be identified.
  • the determination unit is machine-learned with images of pre-labeled individual pellets having different shapes of shadows, excluding the shadows, and the normal pellets and the abnormality Pellets can be identified.
  • the photographing unit comprises: a light source for irradiating light to the object to be selected; And a light source control unit that adjusts the intensity of the light or the direction of light irradiation when the shadow is identified by the determination unit.
  • a blower for pumping air to the surface of the chute on which the object to be sorted is disposed may further include.
  • the injection nozzle for injecting compressed air and a nozzle control unit for operating the injection nozzle when the abnormal pellet is determined, and the blood that is dropped and discharged. It may further include a pellet sorting unit for injecting the compressed air to a portion of the sorted material containing the abnormal pellets.
  • the supply unit comprises: a hopper temporarily storing the to-be-selected object; A roller brush array in which a plurality of rotating roller brushes are arranged adjacent to each other in one direction toward the conveying part under the outlet of the hopper, and transports in the one direction while washing the to-be-selected object discharged from the hopper; A supply plate in the shape of a perforated plate disposed between the roller brush array and the transfer unit to receive the item to be selected and supply it to the transfer unit, and having a plurality of through holes; A plurality of through-holes having a height of 1 to 1.5 times the height of the pellets and having a width of 1 to 1.5 times the width of the pellets are formed in a porous plate shape spaced apart along the width direction, and the supply plate Pellet dispersion plate installed on one side of the; An air injection unit for injecting air through the through hole of the supply plate; And a supply plate vibrating unit that vibrates the supply
  • the transfer unit a rotating plate for receiving the to-be-selected object to one surface, while rotating to transport the to-be-selected object along a circumferential direction; And a driver for rotating the rotating plate.
  • the rotating plate is formed of a transparent member, and the camera may be vertically arranged to face one side and the other side of the rotating plate.
  • the transfer unit may further include a rotating plate vibration unit that vibrates the rotating plate.
  • an image of a moving pellet is acquired, and the image is automatically analyzed by applying an artificial intelligence technology employing an artificial neural network, thereby containing a foreign object, or having a different color and/or Deformed pellets can be quickly and accurately sorted out in large quantities on site.
  • FIG. 1 is a block diagram showing an artificial intelligence program-based foreign object sorting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an image processing process of an area extracting unit shown in FIG. 1.
  • FIG. 3 is a schematic diagram illustrating an image processing process of a discriminating unit and an information output unit shown in FIG. 1.
  • FIG. 4 is a block diagram showing an artificial intelligence program-based foreign object sorting apparatus according to another embodiment of the present invention.
  • FIG. 5 is a side view schematically showing an artificial intelligence program-based foreign object sorting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing an artificial intelligence program-based foreign object sorting apparatus according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing an artificial intelligence program-based foreign object sorting apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an image processing process of the region extracting unit 60 shown in FIG. 3 is a schematic diagram showing an image processing process of the determination unit 70 and the information output unit 80 shown in FIG. 1.
  • the artificial intelligence program-based foreign object sorting apparatus includes: a supply unit 10 for supplying an object to be selected 1 including a plurality of pellets; A transfer unit 20 for receiving the item to be selected 1 and transferring it by a predetermined distance; A photographing unit 30 for acquiring an original image 2, including at least one camera for photographing the transported object 1; A transmission unit 40 for converting the acquired original image 2 into a preset size and transmitting the converted image 3; A receiving unit 50 for receiving the converted image 3; In the received transformed image 3, a first feature map is obtained using a first convolutional neural network (CNN), and a region proposal network (RPN) is added to the first feature map.
  • CNN convolutional neural network
  • RPN region proposal network
  • the present invention relates to a foreign matter sorting apparatus for sorting abnormal pellets such as contaminated pellets or deformed pellets, colored or colored pellets, etc. containing foreign matters such as black spots.
  • Pellets which are solid particles of synthetic resin representing petrochemicals, are used as raw materials for various products such as films, pipes, and automobile interior materials, so the quality and impurity management of the produced pellets is very important. Even if you analyze the pellets produced through the same manufacturing process, among the pellets, black, yellow, red, or other color-bearing different-colored pellets, long, twin, snake skin, etc. Many pellets containing foreign matter are mixed.
  • a pellet sorting device that sorts standardized and standardized pellets through a mesh having a plurality of perforations, but such a conventional sorting device sorts pellets depending on the shape and size of the mesh, so the sophistication of sorting decreases, such as black spots.
  • an artificial intelligence program-based foreign matter sorting device according to the present invention was devised. .
  • the artificial intelligence program-based foreign object sorting device is mainly used to sort out the pellets of different colors and/or variants into abnormal pellets, but the abnormal pellets are not necessarily limited to the pellets of different colors/deformities, and impurities other than the pellets It is also applied to removal and can be used for quality control and impurity control processes after pellet manufacturing.
  • the artificial intelligence program-based foreign object sorting apparatus includes a supply unit 10, a transfer unit 20, a photographing unit 30, a transmission unit 40, a reception unit 50, an area extraction unit 60, and a discrimination. It includes a unit 70, and an information output unit 80.
  • the supply unit 10 is a means for supplying the to-be-selected object 1 provided from the outside to the transfer unit 20. Pellets and impurities are mixed in the object to be selected (1), and in the pellets, normal pellets having a normal color and shape and abnormal pellets having a different color, mold or foreign matter are mixed.
  • the transfer unit 20 is a means for receiving the item to be selected 1 from the supply unit 10 and transferring it to a predetermined path.
  • the photographing unit 30 photographs the to-be-selected object 1 transferred through the transfer unit 20 using at least one camera.
  • the original image 2 obtained in this way is used as data for pellet selection.
  • the original image 2 includes a plurality of pellet images. A configuration implementing the supply unit 10, the transfer unit 20, and the photographing unit 30 will be described later.
  • the transmission unit 40 generates a converted image 3 by converting the original image 2 obtained by the photographing unit 30 into a preset size. At this time, the size of the converted image 3 is set to a size that can be processed by the area extracting unit 60 to be described later. When the converted image 3 is generated, the converted image 3 is transmitted to the receiving unit 50.
  • the receiving unit 50 is a device that receives the converted image 3 from the transmitting unit 40, and is connected to the transmitting unit 40 through a wired or wireless communication interface.
  • the received converted image 3 is provided to the area extracting unit 60.
  • the region extracting unit 60 identifies a region of interest (RoI) containing pellets from the converted image 3 and an uninterested region containing impurities other than pellets and backgrounds.
  • a first feature map is obtained using a first convolutional neural network (CNN) for the transformed image 3, and a region proposal network is added to the first feature map. network, RPN) to extract a region of interest.
  • the region extracting unit 60 performs a bounding box detection function on the input converted image 3 to generate a bounding box for a region in which normal and abnormal individual pellets exist, Detect the pellet class.
  • the region extracting unit 60 may be machine-learned with images of individual pellets that are previously labeled for each color and shape, and thus identify the region of interest. Since the individual pellets are mixed with normal pellets having a uniform size and abnormal pellets of different sizes, the sizes of the regions of interest surrounding the pellets are very diverse, and the individual boundary area boxes also vary in size. Accordingly, the region extracting unit 60 extracts the boundary region box image, adjusts the image to an appropriate size, and then performs classification of the pellet through a pretrained filter bank. In this case, the number of classes may increase or decrease according to the type of abnormal pellet.
  • Faster R-CNN uses RPN instead of Selective Search for Region Proposal, generates a feature map through'feature extraction' of CNN, and convolutions it in a slide-window method. (convolutional) to generate vectors. Through this, a score of k candidates for k candidates (probability of being an object, probability of not being an object) and k coordinates for a bounding box are generated, and a region of interest (RoI) is generated based on this. do.
  • the object detection is finally completed by applying Fully-Connected layers for'classification' of CNN to the obtained RoI Layer result.
  • Each region-of-interest image 4 finally extracted by the region extracting unit 60 as having individual pellets is input to the determination unit 70.
  • the determination unit 70 analyzes the inputted region of interest image 4 to determine normal and abnormal pellets.
  • a second convolutional neural network is used.
  • a convolutional neural network is a kind of artificial neural network. After generating a convolutional layer by extracting a feature map from an input image through a filter and applying a ReLu function to the feature map, sub-sampling the extracted features is performed to create a pooling layer. And recognize the image by applying Fully-Connected layers.
  • the discrimination unit 70 is machine-learned with images of pre-labeled individual abnormal pellets having foreign matter, different colors, or irregularities, and determines whether the pellets in the region of interest image 4 are normal. can do.
  • the shadow of the normal pellet can be recognized as an abnormal pellet by recognizing the shape or color of the pellet, and machine learning is performed with images of previously labeled individual pellets having different shapes of shadow, excluding the shadow and whether it is normal. Can be determined.
  • the information output unit 80 collectively outputs the results of the region extraction unit 60 and the determination unit 70.
  • the output result data may display an ROI in the original image 2 and may include information on individual pellets P1 to P7.
  • the information on the abnormal pellet may be the type and/or color of the foreign matter contained, the shape and/or size of the pellet, and the like.
  • the information output unit 80 may be implemented as a computing device or a display capable of processing information.
  • an original image including a plurality of pellet images is obtained, and the image is automatically individually pelleted by applying artificial intelligence technology employing an artificial neural network. After partitioning into images, each pellet image can be analyzed to quickly and precisely sort out a large amount of pellets that contain foreign substances or have different colors and/or different shapes in the field.
  • FIG. 4 is a block diagram showing an artificial intelligence program-based foreign object sorting apparatus according to another embodiment of the present invention.
  • the artificial intelligence program-based foreign object selection apparatus may further include a feedback unit 90.
  • the feedback unit 90 When an error is found in the result data output from the information output unit 80, the feedback unit 90 generates error correction data, and generates an error in the machine learning data of the region extraction unit 60 or the determination unit 70. Reflect the correction data.
  • the error of the result data can be determined by the user checking the result data, and if it is determined as an error, the result is unchanged, and error correction data can be generated by inputting information on the corresponding pellet. Since the error correction data generated in this way is reflected in the machine learning data, errors can be reduced when selecting pellets in the future.
  • the feedback unit 90 may be implemented through a computing device that processes information by software.
  • FIGS. 5 and 6 are side views schematically showing an artificial intelligence program-based foreign object sorting apparatus according to an embodiment of the present invention.
  • the supply unit 10 includes a hopper 11, a roller brush array 12, a supply plate 13, a pellet distribution plate 14, an air injection unit 15, and a supply plate vibration unit 16. ) Can be realized.
  • the hopper 11 is a container capable of accommodating the item to be sorted 1, has an outlet at the bottom, temporarily stores the item to be sorted 1, and discharges it downward.
  • the outlet may be provided with a cover for opening and closing it, the cover may be operated by an actuator, and all or part of the outlet may be opened.
  • the roller brush array 12 has a structure in which a plurality of roller brushes 12a are arranged adjacent to each other in one direction toward the chute 21 or the rotating plate 25 (see FIG. 6) of the transfer unit 20. It is placed under the outlet.
  • each roller brush (12a) is formed in a form in which a brush (12ab) is disposed on the outer periphery of the rotating cylindrical body (12aa), and each rotation axis is arranged side by side along the one direction. Accordingly, the object to be selected 1 discharged from the hopper 11 is transported toward the chute 21 or the rotating plate 25 (see FIG. 6) while being washed by the roller brush 12a. Accordingly, impurities such as dust contained in the object to be selected 1 are primarily removed.
  • the pellet distribution plate 14 is formed in a porous plate shape, and is installed on one surface of the supply plate 13.
  • a plurality of through holes 14a penetrating in the thickness direction of the pellet distribution plate 14 are formed to be spaced apart from each other along the width direction of the pellet distribution plate 14 so that the pellets can pass through.
  • the height of the through hole 14a is in the range of 1 to 1.5 times the height of one pellet
  • the width is in the range of 1 to 1.5 times the width of one pellet. Therefore, since only one pellet passes through one through hole 14a, the pellets are dispersed apart from each other while passing through the pellet distribution plate 14.
  • the air injection unit 15 injects air through the through hole 13a of the supply plate 13. Accordingly, impurities in the object to be selected 1 are secondarily removed while passing through the supply plate 13.
  • the air injection unit 15 may be a blower fan, a compressor, a blower, or the like.
  • the supply plate vibrating unit 16 is a device that vibrates the supply plate 13, and when the supply plate 13 is vibrated by this, transport of the to-be-selected 1 and secondary removal of impurities are made easier.
  • the discrimination unit 70 improves the discrimination accuracy of abnormal pellets.
  • the supply unit 10 according to the present invention can be implemented in any structure simply by supplying the to-be-selected object 1 to the chute 21 or the rotating plate 25 (see FIG. 6). The scope of the present invention should not be limited.
  • the transfer unit 20 may include a chute 21 that provides a moving path of the object 1 to be selected.
  • the chute 21 receives the to-be-selected object 1 from the supply unit 10, transfers it from one end to the other end, and then drops and discharges it downward through the other end.
  • This chute 21 is a transfer pipe type having a passage through which the object to be selected 1 is transported, and the object to be selected 1 is located on the side, such as a half-pipe or a hollow pipe shape with an open top. Side walls can be provided to prevent falling or scattering.
  • the to-be-selected 1 supplied from the supply unit 10 is supplied to the inside of the chute 21 through an inlet separately provided at one end or top of the open chute 21 or on the top of the chute 21, and on the bottom surface thereof. It is disposed, and the bottom surface is preferably formed to be flat so that the object to be selected 1 spreads in one layer, and an inclined portion (not shown) may be additionally provided.
  • the inclined portion is a portion in which all or part of the bottom surface of the chute 21 is inclined, and the object to be selected 1 slides along the chute 21 by the inclined portion.
  • the conveying unit 20 is a chute vibrating unit that vibrates the chute 21 so that the object to be selected 1 can be effectively transferred and the object to be selected 1 is evenly spread on the bottom surface of the chute 21 (23) can be equipped.
  • the vibration applied thereby acts as a driving force for transport of the to-be-selected object 1, and at the same time causes a movement that causes the pellets stacked on the chute 21 to be spread thinly in one layer.
  • the photographing unit 30 includes a light source 33, which is an illumination device that irradiates light to the object to be selected, in addition to the camera 31 disposed outside the chute 21, and It may additionally include a light source control unit 35 to adjust the intensity or light irradiation direction.
  • the light source control unit 35 controls the light source 33 so that a shadow does not occur when a shadow of the pellet is identified by the determination unit 70.
  • FIG. 6 is a perspective view schematically showing an artificial intelligence program-based foreign object sorting apparatus according to another embodiment of the present invention, and the transfer unit 20, the photographing unit 30, and the pellet sorting unit 100 described with reference to FIG. 5 One embodiment and another embodiment are shown. Accordingly, a description will be omitted or briefly described for the details of the transfer unit 20 ′, the photographing unit 30 ′, and the pellet sorting unit 100 ′ according to the present embodiment, which overlap with the above-described contents.
  • the conveying unit 20' is a means for providing a moving path of the object to be selected 1, and includes a rotating plate 25.
  • the rotating plate 25 rotates around the center of the plate and receives the object to be selected 1 through one of the plate surfaces. Accordingly, the object to be selected 1 supplied to one side is transported along the circumferential direction by the rotation of the rotating plate 25.
  • the nozzle control unit 107 is a means for controlling the operation of the nozzle 105, and induces a compressed air injection or suction operation of the nozzle 105 when abnormal pellets are determined by the determination unit 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은 이물선별장치에 관한 것으로서, 펠렛의 이미지를 획득하고 인공지능을 통해 그 이미지를 분석하여 이색(異色) 및/또는 이형(異形)의 펠렛 등을 선별한다.

Description

인공지능 프로그램 기반 이물선별장치
본 발명은 인공지능 프로그램 기반 이물선별장치에 관한 것으로, 보다 상세하게는 흑점 등과 같은 이물을 보유하는 오염 펠렛(pellet)이나 이형의 펠렛, 유색 또는 착색 펠렛 등을 인공신경망을 이용해 선별하여 제거하는 장치에 관한 것이다.
석유화학을 대표하는 합성수지의 고체입자인 펠렛(pellet)은 필름, 파이프, 자동차 내장재 등과 같이 다양한 분야에서 광범위하게 사용되고 있다. 이러한 원료물질인 펠렛은 최종제품의 품질에 중대한 영향을 미치기 때문에 품질관리와 불순물관리가 매우 중요하다. 특히 제조 공정에서 black, yellow, red, 기타 색상 등과 같은 예기치 않은 이색(異色)의 이물입자 및 long, twin, snake skin 등과 같은 이형(異形)의 이물입자가 발생하므로 이러한 이물입자를 선별하여 제거할 필요가 있다.
종래 합성수지 사출성형 원료인 펠렛을 생산하는 경우, 정밀을 요하는 합성수지 사출물을 제조할 수 있도록 규격화되고 정형화된 펠렛만을 선별할 수 있는 펠렛 선별장치를 사용하였다. 이러한 펠렛 선별장치는 압출기로부터 펠렛이 형성되어 토출라인을 통해 호퍼로 공급되도록 하고, 호퍼의 하부에 그물망을 설치하여, 규격화되고 정형화된 펠렛만을 선별하도록 설계되었다.
그러나 그물망과 같은 스크린을 이용한 선별방법은 그물망의 형상 및 크기에 의존하여 펠렛을 선별하므로 선별의 정교함이 떨어진다. 또한, 흑점 등과 같은 이색을 함유하거나, 투명펠렛, 불투명펠렛, 및 착색펠렛 등을 선별하는 것이 불가능하여 추가적인 방법으로 펠렛을 측정하여야 하는 등 다양한 펠렛에 대한 정확한 선별방법으로는 부적합한 측면이 있다.
이에 종래 펠렛 선별장치의 문제점을 해결하기 위한 방안이 절실히 요구되고 있는 상황이다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 펠렛의 이미지를 획득하고 인공지능을 통해 그 이미지를 분석하여 이색(異色) 및/또는 이형(異形)의 펠렛 등을 선별하는 이물선별장치를 제공하는 데 있다.
본 발명에 따른 인공지능 프로그램 기반 이물선별장치는 다수의 펠렛(pellet)을 포함하는 피선별물을 공급하는 공급부; 상기 피선별물을 공급받아 소정의 거리만큼 이송시키는 이송부; 이송되는 상기 피선별물을 촬영하는 적어도 하나 이상의 카메라를 포함하여, 원본이미지를 획득하는 촬영부; 획득된 상기 원본이미지를 기설정된 크기로 변환하여, 변환이미지를 송신하는 송신부; 상기 변환이미지를 수신하는 수신부; 수신된 상기 변환이미지에, 제1 합성곱 신경망(convolutional neural network, CNN)을 사용하여 제1 특징 맵(feature map)을 획득하고, 상기 제1 특징 맵에 영역 제안 네트워크(region proposal network, RPN)을 적용하여 상기 변환이미지에서 상기 펠렛을 포함하는 관심 영역을 추출하는 영역추출부; 추출된 상기 관심 영역 이미지에, 제2 합성곱 신경망을 사용하여 정상 펠렛과 비정상 펠렛을 판별하는 판별부; 및 상기 원본이미지에 상기 관심 영역을 표시하고, 상기 비정상 펠렛에 대한 정보를 통합하여 출력하는 정보출력부;를 포함한다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 영역추출부는, 색채 및 형태별로 기 레이블링(labeling) 된 개별 펠렛의 이미지로 기계학습(machine learning) 되어, 상기 관심 영역을 식별할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 판별부는, 이물(異物), 이색(異色) 또는 이형(異形)을 갖는 기 레이블링 된 개별 비정상 펠렛의 이미지로 기계학습되어, 상기 비정상 펠렛을 판별할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 판별부는, 서로 다른 형태의 그림자를 갖는 기 레이블링 된 개별 펠렛의 이미지로 기계학습되어, 상기 그림자를 배제하고 상기 정상 펠렛과 상기 비정상 펠렛을 판별할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 촬영부는, 상기 피선별물에 광(light)을 조사하는 광원; 및 상기 판별부에서 상기 그림자를 식별한 경우에, 상기 광의 세기 또는 광조사 방향을 조절하는 광원제어부;를 더 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 정보출력부에서 출력된 결과 데이터에 오류가 발견된 경우에, 오류 정정 데이터를 생성하고, 상기 영역추출부 또는 상기 판별부의 기계학습 데이터에 상기 오류 정정 데이터를 반영하는 피드백부;를 더 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 이송부는, 상기 피선별물을 공급받아 이송시킨 후에 하방을 낙하 배출하는 슈트(chute)를 포함
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 피선별물이 배치되는 상기 슈트의 표면으로 공기를 압송하는 송풍기;를 더 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 압축공기를 분사하는 분사노즐, 및 상기 비정상 펠렛이 판별된 경우에 상기 분사노즐을 작동시키는 노즐제어부를 포함하고, 낙하 배출되는 상기 피선별물 중 상기 비정상 펠렛이 포함된 일부에 대해 상기 압축공기를 분사하는 펠렛 선별부;를 더 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 공급부는, 상기 피선별물을 임시 저장하는 호퍼; 회전하는 다수의 롤러브러쉬가 상기 호퍼의 배출구 아래에, 상기 이송부를 향하는 일방향으로 인접 배열되어, 상기 호퍼로부터 배출되는 상기 피선별물을 세척하면서 상기 일방향으로 수송하는 롤러브러쉬 어레이; 상기 롤러브로쉬 어레이와 상기 이송부 사이에 배치되어, 일면으로 상기 피선별물을 전달받아 상기 이송부로 공급하며, 다수의 관통홀이 구비된 다공판 형상의 공급판; 상기 펠렛의 높이의 1 ~ 1.5배의 높이를 갖고, 상기 펠렛의 너비의 1 ~ 1.5배의 너비를 갖도록 관통된 다수의 관통홀이 너비 방향을 따라 이격 형성된 다공판 형상으로 형성되고, 상기 공급판의 일면에 입설되는 펠렛 분산판; 상기 공급판의 관통홀을 통해 공기를 분사하는 공기분사부; 및 상기 공급판을 진동시키는 공급판 진동부;를 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 이송부는, 일면으로 상기 피선별물을 공급받고, 회전하면서 원주방향을 따라 상기 피선별물을 이송시키는 회전판; 및 상기 회전판을 회전시키는 구동기;를 포함할 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 회전판은, 투명 부재로 형성되고, 상기 카메라는, 상기 회전판의 일면 및 타면을 향하도록 상하 배열될 수 있다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치에 있어서, 상기 이송부는, 상기 회전판을 진동시키는 회전판 진동부;를 더 포함할 수 있다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따르면, 이동하는 펠렛의 이미지를 획득하고 그 이미지를 인공신경망을 채용한 인공지능 기술을 적용하여 자동으로 그 이미지를 분석함으로써, 이물(異物)을 함유하거나, 이색(異色) 및/또는 이형(異形)의 펠렛 등을 현장에서 대량으로 신속하고 정확하게 선별할 수 있다.
도 1은 본 발명의 일실시예에 따른 인공지능 프로그램 기반 이물선별장치를 도시한 구성도이다.
도 2는 도 1에 도시된 영역추출부의 이미지 처리 과정을 도시한 개략도이다.
도 3은 도 1에 도시된 판별부 및 정보출력부의 이미지 처리 과정을 도시한 개략도이다.
도 4는 본 발명의 다른 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 도시한 구성도이다.
도 5는 본 발명의 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 개략적으로 도시한 측면도이다.
도 6은 본 발명의 다른 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 개략적으로 도시한 사시도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 인공지능 프로그램 기반 이물선별장치를 도시한 구성도이고, 도 2는 도 1에 도시된 영역추출부(60)의 이미지 처리 과정을 도시한 개략도이며, 도 3은 도 1에 도시된 판별부(70) 및 정보출력부(80)의 이미지 처리 과정을 도시한 개략도이다.
도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 인공지능 프로그램 기반 이물선별장치는, 다수의 펠렛(pellet)을 포함하는 피선별물(1)을 공급하는 공급부(10); 피선별물(1)을 공급받아 소정의 거리만큼 이송시키는 이송부(20); 이송되는 피선별물(1)을 촬영하는 적어도 하나 이상의 카메라를 포함하여, 원본이미지(2)를 획득하는 촬영부(30); 획득된 원본이미지(2)를 기설정된 크기로 변환하여, 변환이미지(3)를 송신하는 송신부(40); 변환이미지(3)를 수신하는 수신부(50); 수신된 변환이미지(3)에, 제1 합성곱 신경망(convolutional neural network, CNN)을 사용하여 제1 특징 맵(feature map)을 획득하고, 제1 특징 맵에 영역 제안 네트워크(region proposal network, RPN)을 적용하여 변환이미지(3)에서 펠렛을 포함하는 관심 영역을 추출하는 영역추출부(60); 추출된 관심 영역 이미지(4)에, 제2 합성곱 신경망을 사용하여 정상 펠렛과 비정상 펠렛을 판별하는 판별부(70); 및 원본이미지(2)에 관심 영역을 표시하고, 비정상 펠렛에 대한 정보를 통합하여 출력하는 정보출력부(80);를 포함한다.
본 발명은 흑점 등과 같은 이물을 보유하는 오염 펠렛(pellet)이나 이형의 펠렛, 유색 또는 착색 펠렛 등과 같은 비정상 펠렛을 선별하는 이물선별장치에 관한 것이다. 석유화학을 대표하는 합성수지의 고체입자인 펠렛(pellet)은 필름, 파이프, 자동차 내장재 등과 같이 다양한 제품의 원료물질로 사용되고 있는바, 생산된 펠렛의 품질 및 불순물 관리가 매우 중요하다. 동일한 제조 공정을 통해 생산된 펠렛을 분석해보더라도 펠렛 중에는 black, yellow, red, 기타 색상을 보유한 이색(異色)의 펠렛이나, long, twin, snake skin 등과 같은 이형(異形)의 펠렛, 그리고 흑점 등과 같은 이물(異物)을 함유한 펠렛들이 다수 섞여 있다. 이에 다수의 천공이 형성된 그물망을 통해 규격화되고 정형화된 펠렛을 선별하는 펠렛 선별장치가 개발되었으나, 이러한 종래 선별장치는 그물망의 형상 및 크기에 의존하여 펠렛을 선별하므로 선별의 정교함이 떨어지고, 흑점 등과 같은 이색을 함유하거나, 투명펠렛, 불투명펠렛, 및 착색펠렛 등을 선별하는 것이 불가능한 문제가 발생하는바, 이러한 종래 펠렛 선별장치의 문제점을 해소하고자 본 발명에 따른 인공지능 프로그램 기반 이물선별장치가 고안되었다.
한편, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치는 주로 이색 및/또는 이형의 펠렛을 비정상 펠렛으로 선별하는데 사용되지만, 반드시 비정상 펠렛이 이색/이형의 펠렛에 한정되는 것은 아니고, 펠렛 이외의 불순물 제거에도 적용되어 펠렛 제조 후의 품질관리 및 불순물관리 공정에 사용될 수도 있다.
구체적으로, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치는, 공급부(10), 이송부(20), 촬영부(30), 송신부(40), 수신부(50), 영역추출부(60), 판별부(70), 및 정보출력부(80)를 포함한다.
공급부(10)는 외부에서 제공되는 피선별물(1)을 이송부(20)로 공급하는 수단이다. 피선별물(1)에는 펠렛과 불순물이 혼합되어 있고, 펠렛 중에는 정상적인 색상 및 형태를 가진 정상 펠렛과 이색, 이형 또는 이물을 가진 비정상 펠렛이 섞여 있다.
이송부(20)는 공급부(10)로부터 피선별물(1)을 공급받아 소정의 경로로 이송시키는 수단이다.
촬영부(30)는 적어도 하나 이상의 카메라를 이용해, 이송부(20)를 통해 이송되는 피선별물(1)을 촬영한다. 이렇게 획득된 원본이미지(2)는 펠렛 선별을 위한 데이터로 활용된다. 이때, 원본이미지(2)에는 다수의 펠렛 이미지가 포함된다. 상기 공급부(10), 이송부(20), 및 촬영부(30)를 구현하는 구성에 대해서는 후술한다.
송신부(40)는 촬영부(30)에서 획득된 원본이미지(2)를 기설정된 크기로 변환하여 변환이미지(3)를 생성한다. 이때, 변환이미지(3)의 크기는 후술하는 영역추출부(60)에서 처리 가능한 크기로 설정된다. 변환이미지(3)가 생성되면, 수신부(50)로 그 변환이미지(3)를 송신한다.
수신부(50)는 송신부(40)로부터 변환이미지(3)를 수신하는 장치로서, 유무선 통신 인터페이스를 통해 송신부(40)와 연결된다. 수신된 변환이미지(3)는 영역추출부(60)에 제공된다.
영역추출부(60)는 변환이미지(3)에서 펠렛이 포함된 관심 영역(Region of Interest, RoI)과, 펠렛 이외의 불순물 및 배경 등이 포함된 비관심 영역을 식별한다. 도 2를 참고로, 변환이미지(3)에 제1 합성곱 신경망(convolutional neural network, CNN)을 사용하여 제1 특징 맵(feature map)을 획득하고, 제1 특징 맵에 영역 제안 네트워크(region proposal network, RPN)을 적용하여 관심 영역을 추출한다. 영역추출부(60)는 입력된 변환이미지(3)에 경계영역 박스 검출(bounding box detection) 기능을 수행하여 정상 및 비정상 개별 펠렛이 존재하는 영역에 대한 경계영역 박스(bounding box)를 생성하고, 펠렛 클래스를 검출한다. 여기서, 영역추출부(60)는 색채 및 형태별로 기 레이블링(labeling) 된 개별 펠렛들의 이미지로 기계학습(machine learning) 되어, 관심 영역을 식별할 수 있다. 개별 펠렛은 일률적인 크기를 갖는 정상 펠렛과 크기가 다른 비정상 펠렛이 혼재되어 있으므로, 펠렛을 둘러싸는 관심 영역의 크기가 매우 다양하여, 개별 경계영역 박스 또한 크기가 다양하다. 이에 영역추출부(60)는 경계영역 박스 이미지를 추출, 적절한 크기로 조정한 후 기훈련된 필터 뱅크(filter bank)를 통해 펠렛의 클래스 분류(classification)를 수행한다. 이때, 클래스의 수는 비정상 펠렛의 종류에 따라 증감될 수 있다.
전술한 처리는 Faster R-CNN을 채용하여 구현할 수 있다. Faster R-CNN은 영역 제안(Region Proposal)을 위해 Selective Search 대신 RPN을 사용하고 CNN의 '특징 추출'을 통해 특징 맵(feature map)을 생성하고, 이를 슬라이드 윈도우(Slide-window) 방식으로 합성곱(convolutional) 하여 벡터들을 생성한다. 이를 통해 k개의 후보에 대한 k개의 후보의 점수(객체일 확률, 객체가 아닐 확률)와, 경계영역 박스(Bounding Box)를 위한 k개의 좌표를 생성하고, 이를 기반으로 관심 영역(RoI)을 생성한다. 이렇게 얻어진 RoI Layer 결과에 대하여 CNN의 ‘분류’를 위한 Fully-Connected layer들을 적용함으로써 최종적으로 물체의 검출을 완료하게 된다.
영역추출부(60)에 의해 최종적으로 개별 펠렛이 존재하는 것으로 추출된 각각의 관심 영역 이미지(4)는 판별부(70)에 입력된다.
도 3에 도시된 바와 같이, 판별부(70)는 입력된 상기 관심 영역 이미지(4)를 분석하여 정상 펠렛과 비정상 펠렛을 판별한다. 이때, 제2 합성곱 신경망이 사용된다. 합성곱 신경망은 인공 신경망의 일종으로, 필터를 통해 입력 이미지로부터 특징 맵을 추출하고 특징 맵에 ReLu 함수 등을 적용하여 Convolutional layer를 생성한 후에, 추출된 특징들에 대해 Sub sampling을 수행하여 pooling layer를 획득하고, Fully-Connected layer들을 적용함으로써 이미지를 인식한다. 여기서, 판별부(70)는 이물(異物), 이색(異色) 또는 이형(異形)을 갖는 기 레이블링 된 개별 비정상 펠렛의 이미지로 기계학습되어, 관심 영역 이미지(4)의 펠렛의 정상 여부를 판별할 수 있다. 이때, 정상 펠렛의 그림자를 펠렛의 형태 내지 색채로 인식하여 비정상 펠렛으로 판별할 수 있는바, 서로 다른 형태의 그림자를 갖는 기 레이블링 된 개별 펠렛의 이미지로 기계학습되어, 상기 그림자를 배제하고 정상 여부를 판별할 수 있다.
정보출력부(80)는 영역추출부(60) 및 판별부(70)의 결과를 통합 출력한다. 이때, 출력된 결과 데이터는 원본이미지(2)에 관심 영역을 표시하고, 개별 펠렛(P1 ~ P7)에 대한 정보를 수록할 수 있다. 여기서, 비정상 펠렛에 대한 정보는 함유된 이물의 종류 및/또는 색체, 펠렛의 형태 및/또는 크기 등일 수 있다. 정보출력부(80)는 정보 처리가 가능한 컴퓨팅 장치, 디스플레이 등으로 구현될 수 있다.
종합적으로 본 발명의 일실시예에 따른 인공지능 프로그램 기반 이물선별장치에 따르면, 다수의 펠렛 이미지가 포함된 원본이미지를 획득하고 그 이미지를 인공신경망을 채용한 인공지능 기술을 적용하여 자동으로 개별 펠렛 이미지로 구획 분류한 후에, 각각의 펠렛 이미지를 분석하여 이물(異物)을 함유하거나, 이색(異色) 및/또는 이형(異形)의 펠렛 등을 현장에서 대량으로 신속하고 정교하게 선별할 수 있다.
도 4는 본 발명의 다른 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 도시한 구성도이다.
도 4에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 인공지능 프로그램 기반 이물선별장치는 피드백부(90)를 더 포함할 수 있다.
피드백부(90)는 정보출력부(80)에서 출력된 결과 데이터에 오류가 발견된 경우에, 오류 정정 데이터를 생성하고, 영역추출부(60) 또는 판별부(70)의 기계학습 데이터에 오류 정정 데이터를 반영한다. 상기 결과 데이터의 오류는 사용자가 결과 데이터를 확인하여 판단할 수 있으며, 오류로 판단되면 결과에 부동의하고, 해당 펠렛의 정보를 입력하여 오류 정정 데이터를 생성할 수 있다. 이렇게 생성된 오류 정정 데이터는 기계학습 데이터에 반영되기 때문에 향후 펠렛 선별 시에 오류를 감소시킬 수 있다. 피드백부(90)는 소프트웨어에 의해 정보를 처리하는 컴퓨팅 장치를 통해 구현될 수 있다.
이하에서는 도 5 및 도 6을 참조로, 공급부(10), 이송부(20), 및 촬영부(30) 등에 대한 하드웨어적인 구성에 대해 구체적으로 설명한다. 도 5는 본 발명의 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 개략적으로 도시한 측면도이다.
일실시예에 따른 공급부(10)는, 호퍼(11), 롤러브러쉬 어레이(12), 공급판(13), 펠렛 분산판(14), 공기분사부(15), 및 공급판 진동부(16)로 실현될 수 있다.
호퍼(11)는 피선별물(1)을 수용할 수 있는 용기로서, 하부에 배출구를 구비하여, 일시적으로 피선별물(1)을 저장하였다가 하방으로 배출한다. 배출구에는 이를 개폐하는 덮개가 구비될 수 있고, 그 덮개는 엑추에이터에 의해 작동될 수 있으며, 배출구 전부 또는 일부 영역을 개방할 수 있다.
롤러브러쉬 어레이(12)는 다수의 롤러브러쉬(12a)가 이송부(20)의 슈트(21, chute) 또는 회전판(25, 도 6 참조)을 향하는 일방향으로 인접 배열된 구조로, 호퍼(11)의 배출구 아래에 배치된다. 여기서, 각각의 롤러브러쉬(12a)는 회전하는 원통형 본체(12aa)의 외주연에 브러쉬(12ab)가 배치된 형태로 형성되고, 각각의 회전축이 상기 일방향을 따라 나란하게 배열된다. 따라서, 호퍼(11)로부터 배출된 피선별물(1)은 롤러브러쉬(12a)에 의해 세척되면서 슈트(21) 또는 회전판(25, 도 6 참조)을 향해 수송된다. 따라서, 피선별물(1)에 함유된 먼지 등과 같은 불순물이 1차적으로 제거된다.
공급판(13)은 두께 방향으로 관통된 다수의 관통홀(13a)을 구비하는 다공판 형상으로 형성되고, 길이(너비) 방향으로 롤러브러쉬 어레이(12)와 슈트(21) 또는 롤러브러쉬 어레이(12)와 회전판(25, 도 6 참조) 사이에 배치된다. 이때, 공급판(13)의 일단이, 슈트(21) 또는 회전판(25, 도 6 참조)과 가장 가까운 가장자리의 롤러브러쉬(12a)의 아래에 배치되거나, 또는 그 롤러브러쉬(12a)의 브러쉬(12ab)와 맞닿아, 롤러브러쉬 어레이(12)로부터 피선별물(1)을 전달받아 슈트(21) 또는 회전판(25, 도 6 참조)으로 공급한다. 공급판(13)은 롤러브러쉬 어레이(12)와, 슈트(21) 또는 회전판(25, 도 6 참조) 사이의 높이차에 따라 경사지게 배치될 수도 있다. 한편, 공급판(13)의 일면을 따라 피선별물(1)이 이동하기 때문에, 그 일면과 타면을 관통하는 관통홀(13a)의 크기는 펠렛이 빠지지 않을 정도로 개방되고, 그 관통홀(13a)을 통해서는 타면에서 일면 방향으로 공기가 분사된다.
펠렛 분산판(14)은 다공판 형상으로 형성되고, 공급판(13)의 일면에 입설된다. 여기서, 펠렛 분산판(14)의 두께 방향으로 관통된 다수의 관통홀(14a)은, 펠렛이 통과할 수 있도록, 펠렛 분산판(14)의 너비 방향을 따라 서로 이격되어 형성된다. 이때, 그 관통홀(14a)의 높이는 1개의 펠렛 높이의 1 ~ 1.5배 범위로, 그 너비는 1개의 펠렛 너비의 1 ~ 1.5배 범위로 형성된다. 따라서, 1개의 관통홀(14a)을 통해서는 1개의 펠렛만 통과되기 때문에, 펠렛 분산판(14)을 통과하면서 펠렛들은 서로 이격 분산된다.
공기분사부(15)는 공급판(13)의 관통홀(13a)을 통해 공기를 분사한다. 따라서, 공급판(13)을 지나면서 피선별물(1)의 불순물이 2차적으로 제거된다. 이러한 공기분사부(15)는 송풍팬, 컴프레서, 블로어 등을 사용할 수 있다.
공급판 진동부(16)는 공급판(13)을 진동시키는 장치로서, 이에 의해 공급판(13)이 진동되면, 피선별물(1)의 수송 및 불순물에 대한 2차 제거가 더욱 용이해진다.
결론적으로, 상기 공급부(10)에 의하면, 피선별물(1)에 혼재된 불순물을 제거함으로써, 판별부(70)에서의 비정상 펠렛의 판별 정확도를 향상시킨다. 여기서, 본 발명에 따른 공급부(10)는 피선별물(1)을 슈트(21) 또는 회전판(25, 도 6 참조)에 공급하기만 하면 어떠한 구조로도 구현될 수 있으므로, 반드시 상기 구성에 의해 본 발명의 권리범위가 제한되어서는 안된다.
일실시예에 따른 이송부(20)는 피선별물(1)의 이동 경로를 제공하는 슈트(chute, 21)를 구비할 수 있다. 여기서, 슈트(21)는 공급부(10)로부터 피선별물(1)을 공급받아 일단에서부터 타단을 향하는 방향으로 이송시킨 후에 타단을 통해 하방으로 낙하 배출한다. 이러한 슈트(21)는 피선별물(1)이 이송되는 통로를 구비한 이송관 형태로서, 상부가 개방된 하프파이프(half-pipe) 또는 중공관 형상 등과 같이 측방에 피선별물(1)이 낙하하거나 비산하지 않도록 측벽을 구비할 수 있다. 공급부(10)에서 공급되는 피선별물(1)은 개방된 슈트(21)의 일단이나 상부 또는 슈트(21)의 상부에 별도로 제공된 유입구를 통해 슈트(21) 내부로 공급되고, 그 바닥면에 배치되는데, 바닥면은 피선별물(1)이 한 겹으로 펼쳐지도록, 평평하게 형성되는 것이 바람직하고, 추가적으로 경사부(도시되지 않음)가 마련될 수 있다. 경사부는 슈트(21)의 바닥면 중 전체 또는 일부가 경사진 부분으로서, 그 경사부에 의해 피선별물(1)이 슈트(21)를 따라 활강하면서 이동하게 된다.
한편, 이송부(20)는, 효과적인 피선별물(1)의 이송이 가능하고, 슈트(21)의 바닥면에 피선별물(1)이 골고루 펴지도록, 슈트(21)를 진동시키는 슈트 진동부(23)가 장착될 수 있다. 이에 의해 인가되는 진동은 피선별물(1)의 이송을 위한 추진력으로 작용하고, 동시에 슈트(21) 상에서 적층된 펠렛이 한 겹으로 얇게 펴지게 하는 움직임을 야기한다.
일실시예에 따른 촬영부(30)는 슈트(21)의 외측에 배치되는 카메라(31) 이외에, 피선별물(1)에 광(light)을 조사하는 조명장치인 광원(33), 및 광의 세기 또는 광조사 방향을 조절하는 광원제어부(35)를 추가적으로 포함할 수 있다. 여기서, 광원제어부(35)는 판별부(70)에서 펠렛의 그림자를 식별한 경우에, 그림자가 생기지 않도록 광원(33)을 제어한다.
또한, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치는 펠렛 선별부(100)를 더 포함할 수 있다. 구체적으로, 펠렛 선별부(100)는 압축공기를 분사하는 분사노즐(101), 및 분사노즐(101)의 작동을 제어하는 노즐제어부(103)로 구현되는데, 판별부(70)에서 비정상 펠렛이 판별된 경우에 이송부(20)에서 낙하 배출되는 피선별물(1) 중 비정상 펠렛이 포함된 일부에 대해서 압축공기가 분사되도록, 노즐제어부(103)가 분사노즐(101)을 작동시킨다.
한편, 본 발명에 따른 인공지능 프로그램 기반 이물선별장치는 송풍기(110)를 더 포함할 수 있다. 여기서, 송풍기(110)는 송풍팬, 컴프레서, 블로어 등과 같이 공기를 압송하는 장치로서, 피선별물(1)이 배치되는 슈트(21)의 표면으로 공기를 압송하여, 먼지 등의 불순물을 제거한다.
도 6은 본 발명의 다른 실시예에 따른 인공지능 프로그램 기반 이물선별장치를 개략적으로 도시한 사시도로서, 도 5를 참고로 설명한 이송부(20), 촬영부(30), 및 펠렛 선별부(100)의 일실시예와 다른 실시예를 도시한다. 이에 본 실시예에 따른 이송부(20'), 촬영부(30'), 및 펠렛 선별부(100')에 관한 내용 중 전술한 내용과 중복되는 사항에 대해서는 설명을 생략하거나 간단히 기술한다.
다른 실시예에 따른 이송부(20')는 피선별물(1)의 이동 경로를 제공하는 수단으로서, 회전판(25)을 구비한다. 회전판(25)은 중심부를 축으로 회전하고, 판면 중 일면으로 피선별물(1)을 공급받는다. 따라서, 일면으로 공급된 피선별물(1)은 회전판(25)의 회전에 의해 원주방향을 따라 이송된다.
회전판(25)의 회전은 구동기(27)에 의해 생성된 구동력에 의한다. 여기서, 간단한 구동기(27)의 일례는 모터일 수 있지만, 구동기(27)가 반드시 모터에 한정되는 것은 아니고, 회전판(25)을 회전시킬 수 있는 공지의 모든 수단을 포함할 수 있다.
한편, 회전판(25)은 회전하는 동안에 진동을 할 수도 있다. 여기서, 회전판(25)의 진동은 구동기(27)에서 발생하는 진동에 의해 자연스럽게 발생할 수 있지만, 별도로 회전판 진동부(29)를 구비함으로써 회전판(25)을 진동시킬 수도 있다.
본 실시예에 따른 촬영부(30')에 있어서는, 카메라(31)가 회전판(25)의 일면 및 타면을 향하도록 적어도 하나 이상씩 상하 배열되어, 회전판(25) 상에 놓인 피선별물(1)을 상하 방향에서 촬영할 수 있다. 이때, 회전판(25)은 유리 등과 같은 투명 부재로 형성될 수 있다. 여기서도, 각각의 카메라(31) 주변에 전술한 광원(33) 및 광원제어부(35)를 더 포함할 수 있다.
본 실시예에 따른 펠렛 선별부(100')는 노즐(105), 및 노즐제어부(107)를 포함할 수 있다. 여기서, 노즐(105)은 압축공기를 분사하여 비정상 펠렛을 포함하는 피선별물(1)의 일부를 비산시키거나, 또는 비정상 펠렛을 포함하는 피선별물(1)의 일부를 흡입하도록 구현될 수 있다. 이때, 노즐(105)은 회전판(25)에서 이동하는 피선별물(1)을 향하도록 배치되거나, 회전판(25)보다 아래에서 낙하하는 피선별물(1)을 향하도록 배치될 수 있다.
노즐제어부(107)는 노즐(105)의 작동을 제어하는 수단으로서, 판별부(70)에서 비정상 펠렛이 판별된 경우에 노즐(105)의 압축공기 분사 또는 흡입 작동을 유도한다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
본 발명에 따른 인공지능 프로그램 기반 이물선별장치는 이동하는 펠렛의 이미지를 획득하고 그 이미지를 인공신경망을 채용한 인공지능 기술을 적용하여 자동으로 그 이미지를 분석함으로써 펠렛을 현장에서 신속하고 정확하게 선별할 수 있으므로 산업상 이용가능성이 인정된다.

Claims (13)

  1. 다수의 펠렛(pellet)을 포함하는 피선별물을 공급하는 공급부;
    상기 피선별물을 공급받아 소정의 거리만큼 이송시키는 이송부;
    이송되는 상기 피선별물을 촬영하는 적어도 하나 이상의 카메라를 포함하여, 원본이미지를 획득하는 촬영부;
    획득된 상기 원본이미지를 기설정된 크기로 변환하여, 변환이미지를 송신하는 송신부;
    상기 변환이미지를 수신하는 수신부;
    수신된 상기 변환이미지에, 제1 합성곱 신경망(convolutional neural network, CNN)을 사용하여 제1 특징 맵(feature map)을 획득하고, 상기 제1 특징 맵에 영역 제안 네트워크(region proposal network, RPN)을 적용하여 상기 변환이미지에서 상기 펠렛을 포함하는 관심 영역을 추출하는 영역추출부;
    추출된 상기 관심 영역 이미지에, 제2 합성곱 신경망을 사용하여 정상 펠렛과 비정상 펠렛을 판별하는 판별부; 및
    상기 원본이미지에 상기 관심 영역을 표시하고, 상기 비정상 펠렛에 대한 정보를 통합하여 출력하는 정보출력부;를 포함하는 인공지능 프로그램 기반 이물선별장치.
  2. 청구항 1에 있어서,
    상기 영역추출부는, 색채 및 형태별로 기 레이블링(labeling) 된 개별 펠렛의 이미지로 기계학습(machine learning) 되어, 상기 관심 영역을 식별하는 인공지능 프로그램 기반 이물선별장치.
  3. 청구항 1에 있어서,
    상기 판별부는, 이물(異物), 이색(異色) 또는 이형(異形)을 갖는 기 레이블링 된 개별 비정상 펠렛의 이미지로 기계학습되어, 상기 비정상 펠렛을 판별하는 인공지능 프로그램 기반 이물선별장치.
  4. 청구항 1에 있어서,
    상기 판별부는, 서로 다른 형태의 그림자를 갖는 기 레이블링 된 개별 펠렛의 이미지로 기계학습되어, 상기 그림자를 배제하고 상기 정상 펠렛과 상기 비정상 펠렛을 판별하는 인공지능 프로그램 기반 이물선별장치.
  5. 청구항 4에 있어서,
    상기 촬영부는,
    상기 피선별물에 광(light)을 조사하는 광원; 및
    상기 판별부에서 상기 그림자를 식별한 경우에, 상기 광의 세기 또는 광조사 방향을 조절하는 광원제어부;를 더 포함하는 인공지능 프로그램 기반 이물선별장치.
  6. 청구항 1에 있어서,
    상기 정보출력부에서 출력된 결과 데이터에 오류가 발견된 경우에, 오류 정정 데이터를 생성하고, 상기 영역추출부 또는 상기 판별부의 기계학습 데이터에 상기 오류 정정 데이터를 반영하는 피드백부;를 더 포함하는 인공지능 프로그램 기반 이물선별장치.
  7. 청구항 1에 있어서,
    상기 이송부는,
    상기 피선별물을 공급받아 이송시킨 후에 하방을 낙하 배출하는 슈트(chute)를 포함하는 인공지능 프로그램 기반 이물선별장치.
  8. 청구항 7에 있어서,
    상기 피선별물이 배치되는 상기 슈트의 표면으로 공기를 압송하는 송풍기;를 더 포함하는 인공지능 프로그램 기반 이물선별장치.
  9. 청구항 7에 있어서,
    압축공기를 분사하는 분사노즐, 및 상기 비정상 펠렛이 판별된 경우에 상기 분사노즐을 작동시키는 노즐제어부를 포함하고, 낙하 배출되는 상기 피선별물 중 상기 비정상 펠렛이 포함된 일부에 대해 상기 압축공기를 분사하는 펠렛 선별부;를 더 포함하는 인공지능 프로그램 기반 이물선별장치.
  10. 청구항 1에 있어서,
    상기 공급부는,
    상기 피선별물을 임시 저장하는 호퍼;
    회전하는 다수의 롤러브러쉬가 상기 호퍼의 배출구 아래에, 상기 이송부를 향하는 일방향으로 인접 배열되어, 상기 호퍼로부터 배출되는 상기 피선별물을 세척하면서 상기 일방향으로 수송하는 롤러브러쉬 어레이;
    상기 롤러브로쉬 어레이와 상기 이송부 사이에 배치되어, 일면으로 상기 피선별물을 전달받아 상기 이송부로 공급하며, 다수의 관통홀이 구비된 다공판 형상의 공급판;
    상기 펠렛의 높이의 1 ~ 1.5배의 높이를 갖고, 상기 펠렛의 너비의 1 ~ 1.5배의 너비를 갖도록 관통된 다수의 관통홀이 너비 방향을 따라 이격 형성된 다공판 형상으로 형성되고, 상기 공급판의 일면에 입설되는 펠렛 분산판;
    상기 공급판의 관통홀을 통해 공기를 분사하는 공기분사부; 및
    상기 공급판을 진동시키는 공급판 진동부;를 포함하는 인공지능 프로그램 기반 이물선별장치.
  11. 청구항 1에 있어서,
    상기 이송부는,
    일면으로 상기 피선별물을 공급받고, 회전하면서 원주방향을 따라 상기 피선별물을 이송시키는 회전판; 및
    상기 회전판을 회전시키는 구동기;를 포함하는 인공지능 프로그램 기반 이물선별장치.
  12. 청구항 11에 있어서,
    상기 회전판은, 투명 부재로 형성되고,
    상기 카메라는, 상기 회전판의 일면 및 타면을 향하도록 상하 배열되는 인공지능 프로그램 기반 이물선별장치.
  13. 청구항 11에 있어서,
    상기 이송부는,
    상기 회전판을 진동시키는 회전판 진동부;를 더 포함하는 인공지능 프로그램 기반 이물선별장치.
PCT/KR2019/007144 2019-03-21 2019-06-13 인공지능 프로그램 기반 이물선별장치 WO2020189849A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190032284A KR102009757B1 (ko) 2019-03-21 2019-03-21 인공지능 프로그램 기반 이물선별장치
KR10-2019-0032284 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020189849A1 true WO2020189849A1 (ko) 2020-09-24

Family

ID=67624691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007144 WO2020189849A1 (ko) 2019-03-21 2019-06-13 인공지능 프로그램 기반 이물선별장치

Country Status (2)

Country Link
KR (1) KR102009757B1 (ko)
WO (1) WO2020189849A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598025A (zh) * 2022-12-13 2023-01-13 四川亿欣新材料有限公司(Cn) 图像处理方法及使用该方法的碳酸钙粉质检系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113222826A (zh) * 2020-01-21 2021-08-06 深圳富泰宏精密工业有限公司 文档阴影去除方法及装置
CN111468430B (zh) * 2020-04-17 2022-06-21 无锡雪浪数制科技有限公司 一种基于深度视觉的煤矸石分离方法
KR102288872B1 (ko) 2020-09-02 2021-08-20 (주)에프피에이 펠릿 자동 검사 및 선별 시스템
KR102308082B1 (ko) 2020-11-06 2021-10-05 (주)에프피에이 다단조색 제어를 이용하는 펠릿 불량 검사 시스템 및 그의 제어 방법
KR102451758B1 (ko) * 2020-12-14 2022-10-05 재단법인대구경북과학기술원 이물질 선별 방법 및 장치
CN112837311A (zh) * 2021-03-02 2021-05-25 苏州零样本智能科技有限公司 一种基于深度学习的聚乙烯颗粒缺陷检测识别系统及方法
KR102479030B1 (ko) 2021-03-30 2022-12-20 (주)에프피에이 딥러닝 기반의 다단 조색 제어를 통한 검사 장치 및 방법
KR102479033B1 (ko) 2021-03-30 2022-12-20 (주)에프피에이 주파수 및 진동 제어를 이용한 펠릿 자동 선별 장치 및 방법
KR20220148646A (ko) 2021-04-29 2022-11-07 한국전력공사 Cnn을 위한 측정 데이터 패터닝 방법 및 부분방전 판정 방법
KR102334707B1 (ko) * 2021-07-19 2021-12-02 박용재 펠렛 분석용 조명시스템 및 이를 포함하는 이물선별장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114980A (ja) * 1997-06-17 1999-01-12 Izumi Prod Co 電気かみそり
KR20140145163A (ko) * 2012-03-27 2014-12-22 가부시끼가이샤 사따께 광학식 입상물 선별기
KR101873169B1 (ko) * 2017-10-26 2018-06-29 한국항공우주연구원 관측 영상에 대한 실시간 훈련 및 객체 탐지하는 통합 모듈 장치 및 방법
KR101891515B1 (ko) * 2018-04-06 2018-08-27 (주)싸이젠텍 이물선별장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889518B2 (ja) * 1995-10-18 1999-05-10 山口県 押し出し造粒品の高速品質評価方式
KR200317316Y1 (ko) 2003-03-19 2003-06-25 주식회사 서영 사출성형 원료인 펠레트의 선별장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114980A (ja) * 1997-06-17 1999-01-12 Izumi Prod Co 電気かみそり
KR20140145163A (ko) * 2012-03-27 2014-12-22 가부시끼가이샤 사따께 광학식 입상물 선별기
KR101873169B1 (ko) * 2017-10-26 2018-06-29 한국항공우주연구원 관측 영상에 대한 실시간 훈련 및 객체 탐지하는 통합 모듈 장치 및 방법
KR101891515B1 (ko) * 2018-04-06 2018-08-27 (주)싸이젠텍 이물선별장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIFENG DAI: "R-FCN: Object Detection via Region-based Fully Convolutional Networks", 30TH CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS (NIPS 2016, 20 May 2016 (2016-05-20), Barcelona, Spain, XP055568136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598025A (zh) * 2022-12-13 2023-01-13 四川亿欣新材料有限公司(Cn) 图像处理方法及使用该方法的碳酸钙粉质检系统
CN115598025B (zh) * 2022-12-13 2023-03-10 四川亿欣新材料有限公司 图像处理方法及使用该方法的碳酸钙粉质检系统

Also Published As

Publication number Publication date
KR102009757B1 (ko) 2019-08-12

Similar Documents

Publication Publication Date Title
WO2020189849A1 (ko) 인공지능 프로그램 기반 이물선별장치
JP6503346B2 (ja) バルク材料仕分け装置およびバルク材料仕分け方法
US5150307A (en) Computer-controlled system and method for sorting plastic items
US4946046A (en) Apparatus for sorting seeds according to color
Bonifazi et al. Hyperspectral imaging applied to the waste recycling sector
EP0554850A2 (en) Method and apparatus for classifying and separation of plastic containers
CN1102222A (zh) 加工过程中纺织材料的薄网的探测、测量和控制
JP2001145855A (ja) 粒状物選別方法及び粒状物選別装置
TW201442790A (zh) 光學式粒狀物選別機
AU2005305581A1 (en) An apparatus for and method of sorting objects using reflectance spectroscopy
CN206395010U (zh) 自动数粒装瓶机
US20220414861A1 (en) Product inspection system and method
JPH11197609A (ja) 廃棄瓶の仕分装置
KR101891515B1 (ko) 이물선별장치
CN105710043A (zh) 一种纽扣分选的方法及系统
WO2020190169A1 (ru) Способ сортировки объектов по их цветовым характеристикам
CN210614407U (zh) 一种基于多相机组合识别不同尺寸物料的分选系统
WO2021256789A1 (ko) 캡슐검사시스템 및 방법.
KR100528403B1 (ko) 플라스틱 자동 분류장치 및 자동 분류방법
WO2022097904A1 (ko) 다단조색 제어를 이용하는 펠릿 불량 검사 시스템 및 그의 제어 방법
WO2023054780A1 (ko) 재활용 폐기물 선별장치
WO2023080385A1 (ko) 테라헤르츠 기술과 초분광 기술을 적용한 다기능 복합 이물질 검사 장치
CN113731836B (zh) 一种基于深度学习的城市固体废弃物在线分选系统
WO2022050579A1 (ko) 펠릿 자동 검사 및 선별 시스템
TWI829366B (zh) 原料粒度分析系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919804

Country of ref document: EP

Kind code of ref document: A1