WO2020189713A1 - Vapor chamber and method for manufacturing vapor chamber - Google Patents

Vapor chamber and method for manufacturing vapor chamber Download PDF

Info

Publication number
WO2020189713A1
WO2020189713A1 PCT/JP2020/011948 JP2020011948W WO2020189713A1 WO 2020189713 A1 WO2020189713 A1 WO 2020189713A1 JP 2020011948 W JP2020011948 W JP 2020011948W WO 2020189713 A1 WO2020189713 A1 WO 2020189713A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
bonding
top plate
base material
bottom plate
Prior art date
Application number
PCT/JP2020/011948
Other languages
French (fr)
Japanese (ja)
Inventor
川原 洋司
横山 雄一
祐士 齋藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020189713A1 publication Critical patent/WO2020189713A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the present invention relates to a vapor chamber and a method for manufacturing a vapor chamber.
  • the present application claims priority based on Japanese Patent Application No. 2019-051182 filed in Japan on March 19, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 a vapor chamber having a structure in which a working fluid and a porous wick body are sealed inside a container has been known.
  • the container is composed of a top plate and a bottom plate joined together. Brazing is generally used as a method of joining the top plate and the bottom plate.
  • the molten brazing material may flow into the container and block the pores of the wick body.
  • the pores of the wick body are closed, the flow of the working fluid of the liquid phase inside the wick body is hindered, which leads to a decrease in the heat transport performance of the vapor chamber.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a vapor chamber in which deterioration of heat transport performance is suppressed.
  • the vapor chamber according to the first aspect of the present invention has a top plate having an upper plate portion and a lower plate portion facing the upper plate portion, and holds a container together with the top plate. It comprises a bottom plate, a joining sheet sandwiched between the top plate and the bottom plate, and a working fluid and a wick body enclosed inside the container, and the joining sheet is a base material layer.
  • An upper bonding material layer provided on the upper surface of the base material layer and adhered to the top plate by diffusion bonding, and a lower bonding material provided on the lower surface of the base material layer and adhered to the bottom plate by diffusion bonding. It has a layer and.
  • the top plate and the bottom plate are joined by diffusion-bonding the upper bonding material layer and the lower bonding material layer of the bonding sheet to the top plate and the bottom plate, respectively.
  • the top plate, the bottom plate, and the base material layer may be formed of copper, and the upper bonding material layer and the lower bonding material layer may be formed of silver.
  • the temperature and the compressive force at the time of diffusion bonding can be lowered as compared with, for example, the diffusion bonding between coppers.
  • a bonded sheet can be easily obtained, and the thickness of the upper bonding material layer and the lower bonding material layer can be made uniform, so that the diffusion bonding is reliable. You can improve your sex.
  • the vapor chamber of the above aspect further includes pillars enclosed inside the container, and the pillars are provided on the second base material layer and the upper surface of the second base material layer by diffusion bonding.
  • the thickness of the second base material layer may be larger than the thickness of the base material layer.
  • the pillars are also fixed to the upper plate portion and the lower plate portion by diffusion bonding. it can. Furthermore, since the pillars are fixed to the container by diffusion bonding, it is possible to suppress the deterioration of heat transport performance due to the brazing material closing the pores of the wick body, as compared with the case where the pillars are fixed by brazing, for example. it can.
  • the vapor chamber of the above embodiment is further provided with a pillar formed inside the container and integrally formed with either the bottom plate or the top plate, and the pillar is provided by the joining sheet. It may be joined to any one of the bottom plate and the top plate.
  • the structure of the vapor chamber can be simplified and the cost can be reduced. Further, not only the side wall portion of the container but also the pillars located inside the container are joined to the top plate or the bottom plate, so that the strength of the container can be improved.
  • joint sheet may be in close contact with the lower surface of the upper plate portion, and a vertical gap may be formed between the wick body and the joint sheet.
  • the method for manufacturing a vapor chamber according to a second aspect of the present invention includes a base material layer, an upper bonding material layer provided on the upper surface of the base material layer, and a lower bonding material provided on the lower surface of the base material layer.
  • the intermediate unit is put into the furnace with the top plate and the bottom plate temporarily fixed by resistance welding. Therefore, it is possible to prevent the relative positions of the top plate and the bottom plate from shifting during diffusion bonding, and the top plate and bottom plate can be diffusion-bonded easily and with high accuracy.
  • the top plate and the bottom plate are formed of copper, and silver plating is applied to both surfaces of a copper roll material serving as a base material layer.
  • the upper bonding material layer and the lower bonding material layer are formed, and after silver plating is applied to both surfaces of the roll material, the bonding sheet may be obtained by cutting the roll material.
  • the thickness can be made uniform and the reliability of diffusion bonding can be improved.
  • the top plate and bottom plate are bonded by diffusion bonding of silver and copper, for example, compared to diffusion bonding between copper, the temperature of the furnace when the intermediate unit is put into the furnace and the addition to the intermediate unit are added. The compression force can be lowered. Further, by adopting a process such as "cutting the roll material after silver plating on both sides of the roll material", a bonded sheet in which the silver plating layer is not formed on the side surface (cut surface) can be obtained.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. is a perspective view which shows the intermediate unit in the manufacturing method of the vapor chamber which concerns on this embodiment.
  • the vapor chamber 1 includes a top plate 10, a bottom plate 20, and a joining sheet 30.
  • the top plate 10 and the bottom plate 20 are joined by a joining sheet 30 to form a container C.
  • the joining sheet 30 is sandwiched between the top plate 10 and the bottom plate 20.
  • a vertical direction In the present specification, the direction in which the top plate 10 and the bottom plate 20 face each other is referred to as a vertical direction. Further, viewing from the vertical direction is called a plan view, and a sectional view orthogonal to the vertical direction is called a plan sectional view. One direction orthogonal to the vertical direction is called the horizontal direction, and the direction orthogonal to both the vertical direction and the horizontal direction is called the front-rear direction.
  • a working fluid (not shown) is sealed inside the container C.
  • the vapor chamber 1 is a heat transport element that utilizes the latent heat of the working fluid.
  • the working fluid is a well-known heat transport medium capable of changing the phase, and undergoes a phase change between a liquid phase and a gas phase in the container C.
  • water pure water
  • alcohol alcohol
  • ammonia or the like can be adopted as the working fluid.
  • Container C is a closed hollow container, and is formed in a flat shape in which the dimensions in the left-right direction and the front-rear direction are larger than the dimensions in the vertical direction.
  • the thickness of the container C is, for example, about 0.3 mm to 3 mm.
  • the container C is formed in a substantially rectangular shape in a plan view.
  • the container C is provided with an evaporation unit H for evaporating the working fluid of the liquid phase and a condensing unit H for condensing the evaporated working fluid.
  • the evaporation portion H is set at the corner of the container C.
  • the evaporation section H is a region that receives heat from a heat source.
  • the evaporation unit H may receive heat not only from the same region as the outer shape of the heat source but also from a region one size larger than the outer shape.
  • the condensing portion is a region other than the evaporation portion H inside the container C.
  • the heat source include electronic components of electronic devices, for example, a CPU (Central Processing Unit) and the like.
  • the wick body 40 and the pillar 50 are enclosed inside the container C.
  • the wick body 40 has a large number of pores that exert a capillary force on the working fluid of the liquid phase.
  • the wick body 40 is formed of, for example, a mesh in which a plurality of fine lines are woven in a grid pattern.
  • a copper material having a high thermal conductivity can be preferably used as the thin wire forming the wick 3.
  • This thin line has a diameter of, for example, several tens of ⁇ m to one hundred and several tens of ⁇ m.
  • a material other than the mesh may be used as the wick body 40.
  • the wick body 40 has an outer frame portion 41 formed in a rectangular frame shape in a plan sectional view, and inner portions 42 and 43 provided inside the outer frame portion 41.
  • the outer frame portion 41 extends along the peripheral wall of the container C (upper side wall portion 12 portion or lower side wall portion 22 described later).
  • the inner portion 42 includes a straight portion 42a extending in the front-rear direction from the side of the outer frame portion 41 farthest from the evaporation portion H, and a bent portion 42b extending in the left-right direction from the end of the straight portion 42a on the evaporation portion H side. have.
  • the inner portion 43 includes a straight portion 43a extending in the front-rear direction from the side of the outer frame portion 41 farthest from the evaporation portion H, and a bent portion 43b extending in the left-right direction from the end of the straight portion 43a on the evaporation portion H side. have.
  • the portion between the outer frame portion 41 and the inner portion 42, the portion between the inner portion 42 and the inner portion 43, and the portion between the inner portion 43 and the outer frame portion 41 functions as a vapor flow path of the working fluid of the gas phase. To do. Further, in the present embodiment, a gap is also provided between the outer frame portion 41 and the peripheral wall of the container C, and the gap also functions as a steam flow path.
  • a plurality of pillars 50 are provided inside the container C.
  • the pillars 50 are arranged between the outer frame portion 41 and the inner portion 42, between the inner portion 42 and the inner portion 43, and between the inner portion 43 and the outer frame portion 41, respectively.
  • the pillar 50 extends linearly along the front-rear direction.
  • the shape, arrangement, number, and the like of the wick body 40 and the pillar 50 can be changed as appropriate.
  • the vapor chamber 1 does not have to include the pillar 50.
  • the inside of the pores of the wick body 40 is impregnated with the working fluid of the liquid phase. Therefore, in the evaporation unit H, the working fluid of the liquid phase that has received the heat evaporates and separates from the evaporation unit H through the above-mentioned vapor flow path. As the distance from the evaporation section H increases, the working fluid in the gas phase loses heat to the container C, the temperature drops, and the fluid condenses. The condensed working fluid flows again toward the evaporation portion H by the capillary force of the wick body 40. By the above action, the vapor chamber 1 can disperse heat from the evaporation unit H to cool the heat source.
  • the top plate 10 and the bottom plate 20 are, for example, copper, copper alloy, aluminum, aluminum alloy, iron, stainless steel, a composite material of copper and stainless steel (Cu-SUS), and a composite material in which stainless steel is sandwiched between copper (Cu-SUS-). It can be formed from Cu), a composite material of nickel and stainless steel (Ni-SUS), a composite material of stainless steel sandwiched between nickel (Ni-SUS-Ni), and the like.
  • the top plate 10 has an upper plate portion 11 and an upper side wall portion 12 extending downward from the outer peripheral edge of the upper plate portion 11.
  • the upper plate portion 11 is formed in the shape of a rectangular plate extending in the front-rear direction and the left-right direction.
  • the bottom plate 20 has a lower plate portion 21 and a lower side wall portion 22 extending upward from the outer peripheral edge of the lower plate portion 21.
  • the lower plate portion 21 is formed in the shape of a rectangular plate extending in the front-rear direction and the left-right direction.
  • the upper plate portion 11 and the lower plate portion 21 face each other in the vertical direction and extend in a plane orthogonal to the vertical direction.
  • the upper plate portion 11 and the lower plate portion 21 have a rectangular plate shape
  • the upper side wall portion 12 and the lower side wall portion 22 are formed in a rectangular frame shape.
  • the upper side wall portion 12 and the lower side wall portion 22 face each other in the vertical direction, and form a peripheral wall portion of the container C.
  • the joining sheet 30 is sandwiched between the upper side wall portion 12 and the lower side wall portion 22.
  • the joint sheet 30 is formed in a rectangular frame shape in a plan view, similarly to the upper side wall portion 12 and the lower side wall portion 22.
  • the bonding sheet 30 has a base material layer 31, an upper bonding material layer 32 provided on the upper surface of the base material layer 31, and a lower bonding material layer 33 provided on the lower surface of the base material layer 31. There is.
  • the thickness of the base material layer 31 is, for example, about 0.05 to 0.1 mm. Copper or the like can be used as the base material layer 31.
  • the thickness of the upper bonding material layer 32 and the lower bonding material layer 33 is, for example, about 1 to 10 ⁇ m. As the upper bonding material layer 32 and the lower bonding material layer 33, silver or the like can be used.
  • the joining sheet 30 can be formed by, for example, silver-plating both sides of a copper plate roll and cutting it into a predetermined shape by machining.
  • the upper bonding material layer 32 is in contact with the lower surface of the upper side wall portion 12 and is in close contact with the upper side wall portion 12 by diffusion bonding.
  • the lower bonding material layer 33 is in contact with the upper surface of the lower side wall portion 22 and is in close contact with the lower side wall portion 22 by diffusion bonding.
  • the pillar 50 is also fixed to the container C by diffusion bonding. More specifically, the pillars 50 are formed on the second base material layer 51, the second upper bonding material layer 52 provided on the upper surface of the second base material layer 51, and the lower surface of the second base material layer 51. It has a second lower bonding material layer 53 provided.
  • the second upper bonding material layer 52 is in contact with the upper plate portion 11 of the top plate 10 and is in close contact with the upper plate portion 11 by diffusion bonding.
  • the second lower bonding material layer 53 is in contact with the lower plate portion 21 of the bottom plate 20 and is in close contact with the lower plate portion 21 by diffusion bonding. With this configuration, the pillar 50 is fixed to the top plate 10 and the bottom plate 20.
  • the thickness of the second base material layer 51 is larger than the thickness of the base material layer 31 of the bonding sheet 30.
  • the material of the second base material layer 51 may be the same as or different from the material of the base material layer 31 of the bonding sheet 30.
  • the materials of the second upper bonding material layer 52 and the second lower bonding material layer 53 may be the same as or different from the materials of the upper bonding material layer 32 and the lower bonding material layer 33 of the bonding sheet 30. You may be.
  • the vapor chamber 1 of the present embodiment includes a joining sheet 30 sandwiched between the top plate 10 and the bottom plate 20.
  • the bonding sheet 30 is provided on the base material layer 31, the upper bonding material layer 32 provided on the upper surface of the base material layer 31 and adhered to the top plate 10 by diffusion bonding, and the lower surface of the base material layer 31 for diffusion bonding. It has a lower bonding material layer 33 that is in close contact with the bottom plate 20.
  • the top plate 10, the bottom plate 20, and the base material layer 31 may be formed of copper, and the upper bonding material layer 32 and the lower bonding material layer 33 may be formed of silver.
  • the temperature and compressive force at the time of diffusion bonding can be lowered as compared with, for example, diffusion bonding between coppers.
  • the bonding sheet 30 can be easily obtained, and the thickness of the upper bonding material layer 32 and the lower bonding material layer 33 can be made uniform, so that the bonding is performed. Can increase the reliability of.
  • the base material layer 31 when the base material layer 31 is also formed of silver, that is, when the entire bonding sheet 30 is formed of silver, the base material layer 31 may also be melted during diffusion bonding, and uniform bonding may not be possible. is there.
  • the base material layer 31 by forming the base material layer 31 with a material having a melting point higher than that of the bonding material layers 32 and 33, it is possible to prevent the base material layer 31 from melting as described above.
  • the vapor chamber 1 further includes a pillar 50 enclosed inside the container C.
  • the pillars 50 are a second base material layer 51, a second upper base material layer 52 provided on the upper surface of the second base material layer 51 and adhered to the upper plate portion 11 by diffusion bonding, and a second base material layer 52. It has a second lower bonding material layer 53 provided on the lower surface of the base material layer 51 and adhered to the lower plate portion 21 by diffusion bonding, and the thickness of the second base material layer 51 is the thickness of the base material layer 31. Larger than the thickness.
  • the pillar 50 Since the thickness of the second base material layer 51 of the pillar 50 enclosed inside the container C is larger than the thickness of the base material layer 31 of the bonding sheet 30, the pillar 50 is also subjected to diffusion bonding to the upper plate portion. It can be fixed to 11 and the lower plate portion 21. Further, since the pillar 50 is fixed to the container C by diffusion bonding, the heat transport performance is deteriorated due to the brazing material closing the pores of the wick body 40 as compared with the case where the pillar 50 is fixed by brazing, for example. It can be suppressed.
  • the bonding sheet 30 can be obtained by forming a coating film of the bonding material on both surfaces of the roll material to be the base material layer 31 by a method such as plating, sputtering, or vapor deposition, and cutting this film by machining.
  • a copper roll material having a thickness of 0.05 to 0.1 mm is used as the base material layer 31, and the upper bonding material layer 32 and the lower bonding material layer 33 are formed by applying silver plating treatment to both surfaces of the roll material. It may be formed.
  • the machining for example, press working using a mold or punching may be used.
  • the pillar 50 can also be obtained by the same method as the joining sheet 30. That is, the pillar 50 can be obtained by forming a coating film of the bonding material on both surfaces of the roll material serving as the second base material layer 51 and machining this film.
  • Point P1 shown in FIG. 5 indicates a joining point when the top plate 10 and the bottom plate 20 are joined by resistance welding.
  • the joint points P1 are set at two corners located on the diagonal line of the container C in a plan view. By joining the two corners in this way, the relative positions of the top plate 10 and the bottom plate 20 in the intermediate unit U can be stabilized.
  • the position and number of the joint points P1 may be changed as appropriate. For example, three or more joint points P1 may be provided, such as setting joint points P1 at each of the four corners of the container C.
  • Point P2 shown in FIG. 5 indicates a joining point when the pillar 50 and the container C are joined by resistance welding.
  • the joint points P2 are set at positions corresponding to both ends of each pillar 50 in the longitudinal direction.
  • the position and number of the joint points P2 may be changed as appropriate.
  • one joint point P2 may be provided at the center of each pillar 50 in the longitudinal direction.
  • the intermediate unit U is put into the furnace with the compression force in the vertical direction applied to the container C.
  • the compressive force can be applied, for example, by placing a weight on the container C.
  • the upper bonding material layer 32 and the top plate 10 of the bonding sheet 30, and the lower bonding material layer 33 and the bottom plate 20 are diffusively bonded.
  • the second upper bonding material layer 52 and the top plate 10 of the pillar 50, and the second lower bonding material layer 53 and the bottom plate 20 are also diffusion-bonded.
  • the gap between the top plate 10 and the bottom plate 20 is sealed by the joining sheet 30.
  • the vapor chamber 1 is obtained by enclosing the working fluid inside the container C from a filling hole (not shown) provided in advance in the top plate 10 or the bottom plate 20 and closing the filling hole.
  • the step of sealing the working fluid inside the container C may be performed in a vacuum state. Alternatively, after the working fluid is sealed inside the container C at atmospheric pressure, the air inside the container C may be sucked and degassed.
  • the method for manufacturing the vapor chamber 1 of the present embodiment includes a step of preparing the joining sheet 30, a step of sandwiching the joining sheet 30 between the top plate 10 and the bottom plate 20, and a top by resistance welding.
  • Each has a step of diffusion welding.
  • the upper bonding material layer 32 and the lower bonding material layer 33 are formed by silver-plating both sides of the copper roll material to be the base material layer 31, the upper bonding material layer 32 and the lower bonding material are formed.
  • the thickness of the layer 33 can be made uniform, and the reliability of diffusion bonding can be improved.
  • the top plate 10 and the bottom plate 20 are formed of copper, the top plate 10 and the bottom plate 20 are joined by diffusion bonding of silver and copper, so that the case of diffusion bonding between copper and copper is compared with the case of, for example. , The temperature of the furnace when the intermediate unit U is put into the furnace and the compressive force applied to the intermediate unit U can be lowered.
  • the joint sheet 30 in which the silver plating layer is not formed on the side surface (cut surface) can be obtained. If there is a silver-plated layer on the side surface of the joining sheet 30, not only does the silver-plated layer not contribute to the diffusion bonding between the top plate 10 and the bottom plate 20 and the joining sheet 30, but the extra silver-plated layer is the container C. There is a possibility that the performance of the vapor chamber 1 will be deteriorated by entering the inside.
  • the top plate 10, the bottom plate 20, and the second base material layer 51 may be formed of copper, and the second upper bonding material layer 52 and the second lower bonding material layer 53 may be formed of silver. ..
  • the pillar 50 and the container C are joined by diffusion bonding of silver and copper, and the temperature and compressive force when the intermediate unit U is put into the furnace are lowered as compared with the diffusion bonding between copper. be able to.
  • the top plate 10 has an upper side wall portion 12 and the bottom plate 20 has a lower side wall portion 22.
  • a configuration without the upper side wall portion 12 or the lower side wall portion 22 may be adopted.
  • the lower side wall portion 22 may be joined to the upper plate portion 11 of the top plate 10 via the joining sheet 30.
  • the peripheral wall of the container C is composed of only the lower side wall portion 22.
  • the bottom plate 20 may not have the lower side wall portion 22, and the upper side wall portion 12 may be joined to the lower plate portion 21 via the joining sheet 30.
  • the pillar 50 is integrally formed with the bottom plate 20, and the upper surface of the lower side wall portion 22 and the upper surface of the pillar 50 are located at the same position in the vertical direction. Then, the pillar 50 and the upper plate portion 11 are joined by the joining sheet 30.
  • the pillar 50 may be integrally formed with the top plate 10, and the pillar 50 and the lower plate portion 21 may be joined by a joining sheet 30.
  • the joining sheet 30 is brought into close contact with the lower surface of the upper plate portion 11, and the upper surface of the lower side wall portion 22 and the upper surface of the pillar 50 are joined to the top plate 10 by one joining sheet 30. May be good. Further, a vertical gap may be provided between the outer frame portion 41 and the inner portion 42 of the wick body 40 and the joining sheet 30. In this case, when the top plate 10 and the bottom plate 20 are joined using the joining sheet 30, the material constituting the upper joining material layer 32 or the lower joining material layer 33 adheres to or soaks into the wick body 40. Can be suppressed. In addition, in FIG. 7, the joining sheet 30 may be in close contact with a part of the lower surface of the upper plate portion 11, or may be in close contact with the entire lower surface.
  • the base material layer 31 and the bonding material layers 32 and 33 are formed of the same material, the base material layer 31 may also be melted during diffusion bonding, and uniform bonding may not be possible. is there.
  • the base material layer 31 by forming the base material layer 31 with a material having a melting point higher than that of the bonding material layers 32 and 33, it is possible to prevent the base material layer 31 from melting as described above.
  • the manufacturing method of the vapor chamber 1 may be appropriately changed.
  • the vapor chamber 1 may be manufactured by putting each member in a furnace in a aligned state without adopting the step of obtaining the intermediate unit U.
  • the bonding material layers 32 and 33 are formed by plating or the like, and the bonding material layer is formed on the side surface of the base material layer 31. May be formed.
  • Vapor chamber 10 Top plate 11 ... Upper plate part 20 ... Bottom plate 21 ... Lower plate part 30 ... Bonding sheet 31 ... Base material layer 32 ... Upper bonding material layer 33 ... Lower bonding material layer 40 ... Wick body 50 ... Pillar 51 ... 2nd base material layer 52 ... 2nd upper bonding material layer 53 ... 2nd lower bonding material layer C ... Container U ... Intermediate unit

Abstract

This vapor chamber is provided with: a top plate; a bottom plate that constitutes a container together with the top plate; a bonding sheet sandwiched between the top plate and the bottom plate; and a working fluid and a wick body which are sealed inside the container. The bonding sheet has a substrate layer, an upper bonding material layer closely attached to the top plate by diffusion bonding, and a lower bonding material layer closely attached to the bottom plate by diffusion bonding.

Description

ベーパーチャンバーおよびベーパーチャンバーの製造方法How to manufacture vapor chamber and vapor chamber
 本発明は、ベーパーチャンバーおよびベーパーチャンバーの製造方法に関する。
 本願は、2019年3月19日に、日本に出願された特願2019-051182号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vapor chamber and a method for manufacturing a vapor chamber.
The present application claims priority based on Japanese Patent Application No. 2019-051182 filed in Japan on March 19, 2019, the contents of which are incorporated herein by reference.
 従来から、特許文献1に示されるように、コンテナの内部に作動流体および多孔質のウィック体が封入された構成のベーパーチャンバーが知られている。コンテナはトッププレートとボトムプレートとが接合されることで構成されている。トッププレートとボトムプレートとを接合する方法としては、ロウ付けが一般的に用いられている。 Conventionally, as shown in Patent Document 1, a vapor chamber having a structure in which a working fluid and a porous wick body are sealed inside a container has been known. The container is composed of a top plate and a bottom plate joined together. Brazing is generally used as a method of joining the top plate and the bottom plate.
日本国特開2017-3160号公報Japanese Patent Application Laid-Open No. 2017-3160
 ロウ付けによってトッププレートとボトムプレートとを接合した場合、溶融したロウ材がコンテナ内部に流入し、ウィック体の細孔を塞いでしまう場合がある。ウィック体の細孔が塞がれると、ウィック体の内部における液相の作動流体の流動が阻害されるため、ベーパーチャンバーの熱輸送性能の低下につながる。 When the top plate and bottom plate are joined by brazing, the molten brazing material may flow into the container and block the pores of the wick body. When the pores of the wick body are closed, the flow of the working fluid of the liquid phase inside the wick body is hindered, which leads to a decrease in the heat transport performance of the vapor chamber.
 本発明はこのような事情を考慮してなされ、熱輸送性能の低下を抑制したベーパーチャンバーを提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a vapor chamber in which deterioration of heat transport performance is suppressed.
 上記課題を解決するために、本発明の第1の態様に係るベーパーチャンバーは、上板部を有するトッププレートと、前記上板部に対向する下板部を有し、前記トッププレートとともにコンテナを構成するボトムプレートと、前記トッププレートと前記ボトムプレートとの間で挟まれた接合シートと、前記コンテナの内部に封入された作動流体およびウィック体と、を備え、前記接合シートは、基材層と、前記基材層の上面に設けられて拡散接合により前記トッププレートに密着した上側接合材層と、前記基材層の下面に設けられて拡散接合により前記ボトムプレートに密着した下側接合材層と、を有する。 In order to solve the above problems, the vapor chamber according to the first aspect of the present invention has a top plate having an upper plate portion and a lower plate portion facing the upper plate portion, and holds a container together with the top plate. It comprises a bottom plate, a joining sheet sandwiched between the top plate and the bottom plate, and a working fluid and a wick body enclosed inside the container, and the joining sheet is a base material layer. An upper bonding material layer provided on the upper surface of the base material layer and adhered to the top plate by diffusion bonding, and a lower bonding material provided on the lower surface of the base material layer and adhered to the bottom plate by diffusion bonding. It has a layer and.
 上記態様によれば、接合シートの上側接合材層および下側接合材層がトッププレートおよびボトムプレートにそれぞれ拡散接合することで、トッププレートとボトムプレートとが接合されている。これにより、従来のようにロウ付けを用いる場合と比較して、ロウ材がウィック体の細孔を塞ぐことによる熱輸送性能の低下を抑制することができる。 According to the above aspect, the top plate and the bottom plate are joined by diffusion-bonding the upper bonding material layer and the lower bonding material layer of the bonding sheet to the top plate and the bottom plate, respectively. As a result, it is possible to suppress a decrease in heat transport performance due to the brazing material closing the pores of the wick body, as compared with the case where brazing is used as in the conventional case.
 ここで、前記トッププレート、前記ボトムプレート、および前記基材層は銅により形成され、前記上側接合材層および前記下側接合材層は銀により形成されていてもよい。 Here, the top plate, the bottom plate, and the base material layer may be formed of copper, and the upper bonding material layer and the lower bonding material layer may be formed of silver.
 この場合、銀と銅との拡散接合によりトッププレートとボトムプレートとが接合されるため、例えば銅同士の拡散接合と比較して、拡散接合時の温度および圧縮力を低くすることができる。また、例えば銅シートの両面に銀メッキを施すことで容易に接合シートが得られ、上側接合材層および下側接合材層の厚さを均一にすることが可能であるため、拡散接合の信頼性を高めることができる。 In this case, since the top plate and the bottom plate are bonded by the diffusion bonding of silver and copper, the temperature and the compressive force at the time of diffusion bonding can be lowered as compared with, for example, the diffusion bonding between coppers. Further, for example, by plating both sides of the copper sheet with silver, a bonded sheet can be easily obtained, and the thickness of the upper bonding material layer and the lower bonding material layer can be made uniform, so that the diffusion bonding is reliable. You can improve your sex.
 また、上記態様のベーパーチャンバーは、前記コンテナの内部に封入されたピラーをさらに備え、前記ピラーは、第2の基材層と、前記第2の基材層の上面に設けられて拡散接合により前記上板部に密着した第2の上側接合材層と、前記第2の基材層の下面に設けられて拡散接合により前記下板部に密着した第2の下側接合材層と、を有し、前記第2の基材層の厚みは、前記基材層の厚みより大きくてもよい。 Further, the vapor chamber of the above aspect further includes pillars enclosed inside the container, and the pillars are provided on the second base material layer and the upper surface of the second base material layer by diffusion bonding. A second upper bonding material layer that is in close contact with the upper plate portion and a second lower bonding material layer that is provided on the lower surface of the second base material layer and is in close contact with the lower plate portion by diffusion bonding. The thickness of the second base material layer may be larger than the thickness of the base material layer.
 この場合、コンテナの内部に封入されたピラーが有する第2の基材層の厚みが、接合シートの基材層の厚みより大きいことで、ピラーも拡散接合によって上板部および下板部に固定できる。さらに、拡散接合によってピラーがコンテナに固定されるため、例えばロウ付けによってピラーを固定する場合と比較して、ロウ材がウィック体の細孔を塞ぐことによる熱輸送性能の低下を抑制することができる。 In this case, since the thickness of the second base material layer of the pillars enclosed inside the container is larger than the thickness of the base material layer of the bonding sheet, the pillars are also fixed to the upper plate portion and the lower plate portion by diffusion bonding. it can. Furthermore, since the pillars are fixed to the container by diffusion bonding, it is possible to suppress the deterioration of heat transport performance due to the brazing material closing the pores of the wick body, as compared with the case where the pillars are fixed by brazing, for example. it can.
 また、上記態様のベーパーチャンバーは、前記コンテナの内部に位置し、前記ボトムプレートおよび前記トッププレートのうちいずれか一方と一体に形成されたピラーをさらに備え、前記ピラーは、前記接合シートによって、前記ボトムプレートおよび前記トッププレートのうちいずれか他方に接合されていてもよい。 Further, the vapor chamber of the above embodiment is further provided with a pillar formed inside the container and integrally formed with either the bottom plate or the top plate, and the pillar is provided by the joining sheet. It may be joined to any one of the bottom plate and the top plate.
 この場合、ピラーをトッププレートまたはボトムプレートと一体に形成することで、ベーパーチャンバーの構造を簡略化してコストダウンを図ることができる。また、コンテナの側壁部分だけでなく、コンテナの内部に位置するピラーもトッププレートまたはボトムプレートに接合されることで、コンテナの強度を向上させることができる。 In this case, by forming the pillar integrally with the top plate or bottom plate, the structure of the vapor chamber can be simplified and the cost can be reduced. Further, not only the side wall portion of the container but also the pillars located inside the container are joined to the top plate or the bottom plate, so that the strength of the container can be improved.
 また、前記接合シートは、前記上板部の下面に密着し、前記ウィック体と前記接合シートとの間に、上下方向の隙間が形成されていてもよい。 Further, the joint sheet may be in close contact with the lower surface of the upper plate portion, and a vertical gap may be formed between the wick body and the joint sheet.
 この場合、接合シートを用いてトッププレートとボトムプレートとを接合する際に、上側接合材層または下側接合材層を構成する材質がウィック体に付着したり染み込んだりすることを抑制できる。 In this case, when the top plate and the bottom plate are joined using the joining sheet, it is possible to prevent the material constituting the upper joining material layer or the lower joining material layer from adhering to or permeating into the wick body.
 本発明の第2の態様に係るベーパーチャンバーの製造方法は、基材層、前記基材層の上面に設けられた上側接合材層、および前記基材層の下面に設けられた下側接合材層を有する接合シートを用意する工程と、トッププレートとボトムプレートとの間に前記接合シートを挟む工程と、抵抗溶接により前記トッププレートと前記ボトムプレートとを固定して中間ユニットを得る工程と、前記中間ユニットを炉に入れて、前記上側接合材層および前記トッププレート、並びに前記下側接合材層および前記ボトムプレートをそれぞれ拡散接合させる工程と、を有する。 The method for manufacturing a vapor chamber according to a second aspect of the present invention includes a base material layer, an upper bonding material layer provided on the upper surface of the base material layer, and a lower bonding material provided on the lower surface of the base material layer. A step of preparing a joining sheet having a layer, a step of sandwiching the joining sheet between the top plate and the bottom plate, and a step of fixing the top plate and the bottom plate by resistance welding to obtain an intermediate unit. It has a step of putting the intermediate unit into a furnace and diffusing and joining the upper bonding material layer and the top plate, and the lower bonding material layer and the bottom plate, respectively.
 上記態様の製造方法では、抵抗溶接によってトッププレートとボトムプレートとが仮止めされた状態で、中間ユニットを炉に入れる。このため、拡散接合の際にトッププレートおよびボトムプレートの相対的な位置がずれることが抑制され、容易かつ高精度にトッププレートとボトムプレートとを拡散接合することができる。 In the manufacturing method of the above aspect, the intermediate unit is put into the furnace with the top plate and the bottom plate temporarily fixed by resistance welding. Therefore, it is possible to prevent the relative positions of the top plate and the bottom plate from shifting during diffusion bonding, and the top plate and bottom plate can be diffusion-bonded easily and with high accuracy.
 また、上記第2の態様に係るベーパーチャンバーの製造方法において、前記トッププレートおよび前記ボトムプレートは銅により形成され、前記基材層となる銅のロール材の両面に銀メッキを施すことで、前記上側接合材層および前記下側接合材層が形成され、前記ロール材の両面に銀メッキを施した後、前記ロール材を切断することで前記接合シートを得てもよい。 Further, in the method for manufacturing a vapor chamber according to the second aspect, the top plate and the bottom plate are formed of copper, and silver plating is applied to both surfaces of a copper roll material serving as a base material layer. The upper bonding material layer and the lower bonding material layer are formed, and after silver plating is applied to both surfaces of the roll material, the bonding sheet may be obtained by cutting the roll material.
 この場合、上側接合材層および下側接合材層を銀メッキにより形成することで、厚さを均一にして拡散接合の信頼性を高めることができる。また、銀と銅との拡散接合によりトッププレートとボトムプレートとが接合されるため、例えば銅同士の拡散接合と比較して、中間ユニットを炉に入れる際の炉の温度や、中間ユニットに加える圧縮力を低くすることができる。さらに、ロール材の両面に銀メッキを施した後、ロール材を切断する」といった工程を採用することで、側面(切断面)に銀メッキ層が形成されていない接合シートが得られる。仮に接合シートの側面に銀メッキ層がある場合、当該銀メッキ層はトッププレートおよびボトムプレートと接合シートとの拡散接合に寄与しないだけでなく、その余分な銀メッキ層がコンテナ内に進入することでベーパーチャンバーの性能が低下する可能性がある。これに対して、ロール材の両面に銀メッキを施した後でロール材を切断することで、接合シートの側面の余分な銀メッキ層に起因するベーパーチャンバーの性能低下を抑制することが可能となる。 In this case, by forming the upper bonding material layer and the lower bonding material layer by silver plating, the thickness can be made uniform and the reliability of diffusion bonding can be improved. In addition, since the top plate and bottom plate are bonded by diffusion bonding of silver and copper, for example, compared to diffusion bonding between copper, the temperature of the furnace when the intermediate unit is put into the furnace and the addition to the intermediate unit are added. The compression force can be lowered. Further, by adopting a process such as "cutting the roll material after silver plating on both sides of the roll material", a bonded sheet in which the silver plating layer is not formed on the side surface (cut surface) can be obtained. If there is a silver-plated layer on the side surface of the joining sheet, not only does the silver-plated layer not contribute to the diffusion bonding between the top plate and bottom plate and the joining sheet, but also the extra silver-plated layer enters the container. May reduce the performance of the vapor chamber. On the other hand, by cutting the roll material after silver-plating both sides of the roll material, it is possible to suppress the deterioration of the vapor chamber performance due to the extra silver-plated layer on the side surface of the joint sheet. Become.
 本発明の上記態様によれば、熱輸送性能の低下を抑制したベーパーチャンバーを提供することができる。 According to the above aspect of the present invention, it is possible to provide a vapor chamber in which deterioration of heat transport performance is suppressed.
本実施形態に係るベーパーチャンバーの斜視図である。It is a perspective view of the vapor chamber which concerns on this embodiment. 図1のベーパーチャンバーの平断面図である。It is a plan sectional view of the vapor chamber of FIG. 図2のIII-III断面矢視図である。FIG. 2 is a cross-sectional view taken along the line III-III in FIG. 図1のベーパーチャンバーの分解斜視図である。It is an exploded perspective view of the vapor chamber of FIG. 本実施形態に係るベーパーチャンバーの製造方法における中間ユニットを示す斜視図である。It is a perspective view which shows the intermediate unit in the manufacturing method of the vapor chamber which concerns on this embodiment. 本実施形態の第1の変形例に係るベーパーチャンバーの断面図である。It is sectional drawing of the vapor chamber which concerns on 1st modification of this embodiment. 本実施形態の第2の変形例に係るベーパーチャンバーの断面図である。It is sectional drawing of the vapor chamber which concerns on the 2nd modification of this embodiment.
 以下、本実施形態のベーパーチャンバーについて図面に基づいて説明する。
 図1に示すように、ベーパーチャンバー1は、トッププレート10と、ボトムプレート20と、接合シート30とを備えている。トッププレート10およびボトムプレート20は、接合シート30によって接合されることで、コンテナCを構成している。接合シート30は、トッププレート10とボトムプレート20との間に挟まれている。
Hereinafter, the vapor chamber of the present embodiment will be described with reference to the drawings.
As shown in FIG. 1, the vapor chamber 1 includes a top plate 10, a bottom plate 20, and a joining sheet 30. The top plate 10 and the bottom plate 20 are joined by a joining sheet 30 to form a container C. The joining sheet 30 is sandwiched between the top plate 10 and the bottom plate 20.
(方向定義)
 本明細書では、トッププレート10とボトムプレート20とが対向する方向を上下方向という。また、上下方向から見ることを平面視といい、上下方向に直交する断面図を平断面図という。上下方向に直交する一方向を左右方向といい、上下方向および左右方向の双方に直交する方向を前後方向という。
(Direction definition)
In the present specification, the direction in which the top plate 10 and the bottom plate 20 face each other is referred to as a vertical direction. Further, viewing from the vertical direction is called a plan view, and a sectional view orthogonal to the vertical direction is called a plan sectional view. One direction orthogonal to the vertical direction is called the horizontal direction, and the direction orthogonal to both the vertical direction and the horizontal direction is called the front-rear direction.
 コンテナCの内部には、不図示の作動流体が封入されている。ベーパーチャンバー1は、作動流体の潜熱を利用する熱輸送素子である。作動流体は、相変化が可能な周知の熱輸送媒体であって、コンテナC内で液相と気相とに相変化する。例えば、作動流体として、水(純水)やアルコールやアンモニア等を採用できる。 A working fluid (not shown) is sealed inside the container C. The vapor chamber 1 is a heat transport element that utilizes the latent heat of the working fluid. The working fluid is a well-known heat transport medium capable of changing the phase, and undergoes a phase change between a liquid phase and a gas phase in the container C. For example, water (pure water), alcohol, ammonia, or the like can be adopted as the working fluid.
 コンテナCは、密閉された中空容器であり、左右方向および前後方向の寸法が、上下方向の寸法よりも大きい扁平形状に形成されている。コンテナCの厚みは、例えば、0.3mm~3mm程である。また、コンテナCは、平面視で略長方形状に形成されている。コンテナCには、液相の作動流体を蒸発させる蒸発部Hと、蒸発した作動流体を凝縮させる凝縮部とが設定されている。図2の例では、蒸発部HがコンテナCの隅部に設定されている。 Container C is a closed hollow container, and is formed in a flat shape in which the dimensions in the left-right direction and the front-rear direction are larger than the dimensions in the vertical direction. The thickness of the container C is, for example, about 0.3 mm to 3 mm. Further, the container C is formed in a substantially rectangular shape in a plan view. The container C is provided with an evaporation unit H for evaporating the working fluid of the liquid phase and a condensing unit H for condensing the evaporated working fluid. In the example of FIG. 2, the evaporation portion H is set at the corner of the container C.
 蒸発部Hは、熱源から熱を受ける領域である。なお、蒸発部Hは、熱源の外形と同じ領域からだけでなく、その外形よりも一回り大きな領域からも熱を受けることがある。一方、凝縮部とは、コンテナCの内部における蒸発部H以外の領域である。なお、熱源としては、電子機器の電子部品、例えば、CPU(Central Processing Unit)等が挙げられる。 The evaporation section H is a region that receives heat from a heat source. The evaporation unit H may receive heat not only from the same region as the outer shape of the heat source but also from a region one size larger than the outer shape. On the other hand, the condensing portion is a region other than the evaporation portion H inside the container C. Examples of the heat source include electronic components of electronic devices, for example, a CPU (Central Processing Unit) and the like.
 図2に示すように、コンテナCの内部には、ウィック体40およびピラー50が封入されている。
 ウィック体40は、液相の作動流体に対して毛細管力を作用させる多数の細孔を有している。ウィック体40は、例えば、複数の細線を格子状に編み込んだメッシュから形成されている。ウィック3を形成する細線としては、例えば、熱伝導率が高い銅材を好適に用いることができる。この細線は、例えば、直径が数十μm~百数十数μmである。なお、メッシュ以外の材料をウィック体40として用いてもよい。
As shown in FIG. 2, the wick body 40 and the pillar 50 are enclosed inside the container C.
The wick body 40 has a large number of pores that exert a capillary force on the working fluid of the liquid phase. The wick body 40 is formed of, for example, a mesh in which a plurality of fine lines are woven in a grid pattern. As the thin wire forming the wick 3, for example, a copper material having a high thermal conductivity can be preferably used. This thin line has a diameter of, for example, several tens of μm to one hundred and several tens of μm. A material other than the mesh may be used as the wick body 40.
 ウィック体40は、平断面視で矩形の枠状に形成された外枠部41と、外枠部41の内側に設けられた内側部42、43と、を有している。外枠部41は、コンテナCの周壁(後述する上側壁12部または下側壁部22)に沿って延びている。内側部42は、外枠部41のうち蒸発部Hから最も離れた辺から前後方向に延びる直線部42aと、直線部42aの蒸発部H側の端部から左右方向に延びる折れ曲がり部42bと、を有している。内側部43は、外枠部41のうち蒸発部Hから最も離れた辺から前後方向に延びる直線部43aと、直線部43aの蒸発部H側の端部から左右方向に延びる折れ曲がり部43bと、を有している。 The wick body 40 has an outer frame portion 41 formed in a rectangular frame shape in a plan sectional view, and inner portions 42 and 43 provided inside the outer frame portion 41. The outer frame portion 41 extends along the peripheral wall of the container C (upper side wall portion 12 portion or lower side wall portion 22 described later). The inner portion 42 includes a straight portion 42a extending in the front-rear direction from the side of the outer frame portion 41 farthest from the evaporation portion H, and a bent portion 42b extending in the left-right direction from the end of the straight portion 42a on the evaporation portion H side. have. The inner portion 43 includes a straight portion 43a extending in the front-rear direction from the side of the outer frame portion 41 farthest from the evaporation portion H, and a bent portion 43b extending in the left-right direction from the end of the straight portion 43a on the evaporation portion H side. have.
 外枠部41と内側部42との間、内側部42と内側部43との間、および内側部43と外枠部41との間の部分は、気相の作動流体の蒸気流路として機能する。また、本実施形態では外枠部41とコンテナCの周壁との間にも隙間が設けられており、当該隙間も蒸気流路として機能する。 The portion between the outer frame portion 41 and the inner portion 42, the portion between the inner portion 42 and the inner portion 43, and the portion between the inner portion 43 and the outer frame portion 41 functions as a vapor flow path of the working fluid of the gas phase. To do. Further, in the present embodiment, a gap is also provided between the outer frame portion 41 and the peripheral wall of the container C, and the gap also functions as a steam flow path.
 本実施系形態では、コンテナCの内部に複数のピラー50が設けられている。ピラー50は、外枠部41と内側部42との間、内側部42と内側部43との間、および内側部43と外枠部41との間に、それぞれ配置されている。ピラー50は、前後方向に沿って直線状に延びている。
 なお、ウィック体40およびピラー50の形状、配置、数などは適宜変更可能である。また、ベーパーチャンバー1はピラー50を備えていなくてもよい。
In this embodiment, a plurality of pillars 50 are provided inside the container C. The pillars 50 are arranged between the outer frame portion 41 and the inner portion 42, between the inner portion 42 and the inner portion 43, and between the inner portion 43 and the outer frame portion 41, respectively. The pillar 50 extends linearly along the front-rear direction.
The shape, arrangement, number, and the like of the wick body 40 and the pillar 50 can be changed as appropriate. Further, the vapor chamber 1 does not have to include the pillar 50.
 ウィック体40が有する細孔の内側には、液相の作動流体が含浸している。このため蒸発部Hでは、熱を受け取った液相の作動流体が蒸発し、上記した蒸気流路を通って蒸発部Hから離れていく。蒸発部Hから離れるに従って、気相の作動流体はコンテナCに熱を奪われて温度が低下し、凝縮する。凝縮した作動流体はウィック体40の毛細管力によって、再び蒸発部Hに向けて流動する。以上の作用により、ベーパーチャンバー1は蒸発部Hから熱を分散させて、熱源を冷却することができる。 The inside of the pores of the wick body 40 is impregnated with the working fluid of the liquid phase. Therefore, in the evaporation unit H, the working fluid of the liquid phase that has received the heat evaporates and separates from the evaporation unit H through the above-mentioned vapor flow path. As the distance from the evaporation section H increases, the working fluid in the gas phase loses heat to the container C, the temperature drops, and the fluid condenses. The condensed working fluid flows again toward the evaporation portion H by the capillary force of the wick body 40. By the above action, the vapor chamber 1 can disperse heat from the evaporation unit H to cool the heat source.
 トッププレート10およびボトムプレート20は、例えば、銅、銅合金、アルミ、アルミ合金、鉄、ステンレス、銅とステンレスの複合材(Cu-SUS)、銅でステンレスを挟み込んだ複合材(Cu-SUS-Cu)、ニッケルとステンレスの複合材(Ni-SUS)、ニッケルでステンレスを挟み込んだ複合材(Ni-SUS-Ni)等から形成することができる。 The top plate 10 and the bottom plate 20 are, for example, copper, copper alloy, aluminum, aluminum alloy, iron, stainless steel, a composite material of copper and stainless steel (Cu-SUS), and a composite material in which stainless steel is sandwiched between copper (Cu-SUS-). It can be formed from Cu), a composite material of nickel and stainless steel (Ni-SUS), a composite material of stainless steel sandwiched between nickel (Ni-SUS-Ni), and the like.
 図3および図4に示すように、トッププレート10は、上板部11と、上板部11の外周縁から下方に向けて延びる上側壁部12と、を有している。上板部11は、前後方向および左右方向に延びる長方形の板状に形成されている。ボトムプレート20は、下板部21と、下板部21の外周縁から上方に延びる下側壁部22と、を有している。下板部21は、前後方向および左右方向に延びる長方形の板状に形成されている。上板部11および下板部21は、上下方向で互いに対向するとともに、上下方向に直交する平面内に延びている。 As shown in FIGS. 3 and 4, the top plate 10 has an upper plate portion 11 and an upper side wall portion 12 extending downward from the outer peripheral edge of the upper plate portion 11. The upper plate portion 11 is formed in the shape of a rectangular plate extending in the front-rear direction and the left-right direction. The bottom plate 20 has a lower plate portion 21 and a lower side wall portion 22 extending upward from the outer peripheral edge of the lower plate portion 21. The lower plate portion 21 is formed in the shape of a rectangular plate extending in the front-rear direction and the left-right direction. The upper plate portion 11 and the lower plate portion 21 face each other in the vertical direction and extend in a plane orthogonal to the vertical direction.
 本実施形態では上板部11および下板部21が長方形の板状であるため、上側壁部12および下側壁部22は長方形の枠状に形成されている。上側壁部12および下側壁部22は、上下方向で互いに対向しており、コンテナCの周壁部を形成している。 In the present embodiment, since the upper plate portion 11 and the lower plate portion 21 have a rectangular plate shape, the upper side wall portion 12 and the lower side wall portion 22 are formed in a rectangular frame shape. The upper side wall portion 12 and the lower side wall portion 22 face each other in the vertical direction, and form a peripheral wall portion of the container C.
 そして本実施形態では、上側壁部12と下側壁部22との間に接合シート30が挟まれている。接合シート30は、上側壁部12および下側壁部22と同様に、平面視で長方形の枠状に形成されている。接合シート30は、基材層31と、基材層31の上面に設けられた上側接合材層32と、基材層31の下面に設けられた下側接合材層33と、を有している。 Then, in the present embodiment, the joining sheet 30 is sandwiched between the upper side wall portion 12 and the lower side wall portion 22. The joint sheet 30 is formed in a rectangular frame shape in a plan view, similarly to the upper side wall portion 12 and the lower side wall portion 22. The bonding sheet 30 has a base material layer 31, an upper bonding material layer 32 provided on the upper surface of the base material layer 31, and a lower bonding material layer 33 provided on the lower surface of the base material layer 31. There is.
 基材層31の厚みは、例えば0.05~0.1mm程度である。基材層31としては、銅などを用いることができる。上側接合材層32および下側接合材層33の厚みは、例えば1~10μm程度である。上側接合材層32および下側接合材層33としては、銀などを用いることができる。接合シート30は、例えば銅板ロールの両面に銀メッキを施し、機械加工により所定の形状に切り出すことで形成することができる。 The thickness of the base material layer 31 is, for example, about 0.05 to 0.1 mm. Copper or the like can be used as the base material layer 31. The thickness of the upper bonding material layer 32 and the lower bonding material layer 33 is, for example, about 1 to 10 μm. As the upper bonding material layer 32 and the lower bonding material layer 33, silver or the like can be used. The joining sheet 30 can be formed by, for example, silver-plating both sides of a copper plate roll and cutting it into a predetermined shape by machining.
 上側接合材層32は、上側壁部12の下面に接するとともに、上側壁部12に拡散接合により密着している。下側接合材層33は、下側壁部22の上面に接するとともに、下側壁部22に拡散接合により密着している。この構成により、接合シート30はトッププレート10とボトムプレート20とを接合するとともに、コンテナCの内部を密封している。 The upper bonding material layer 32 is in contact with the lower surface of the upper side wall portion 12 and is in close contact with the upper side wall portion 12 by diffusion bonding. The lower bonding material layer 33 is in contact with the upper surface of the lower side wall portion 22 and is in close contact with the lower side wall portion 22 by diffusion bonding. With this configuration, the joining sheet 30 joins the top plate 10 and the bottom plate 20 and seals the inside of the container C.
 また、本実施形態では、ピラー50についても、拡散接合によってコンテナCに固定されている。より詳しくは、ピラー50は、第2の基材層51と、第2の基材層51の上面に設けられた第2の上側接合材層52と、第2の基材層51の下面に設けられた第2の下側接合材層53と、を有している。第2の上側接合材層52は、トッププレート10の上板部11に接するとともに、上板部11に拡散接合により密着している。第2の下側接合材層53は、ボトムプレート20の下板部21に接するとともに、下板部21に拡散接合により密着している。この構成により、ピラー50は、トッププレート10およびボトムプレート20に固定されている。 Further, in the present embodiment, the pillar 50 is also fixed to the container C by diffusion bonding. More specifically, the pillars 50 are formed on the second base material layer 51, the second upper bonding material layer 52 provided on the upper surface of the second base material layer 51, and the lower surface of the second base material layer 51. It has a second lower bonding material layer 53 provided. The second upper bonding material layer 52 is in contact with the upper plate portion 11 of the top plate 10 and is in close contact with the upper plate portion 11 by diffusion bonding. The second lower bonding material layer 53 is in contact with the lower plate portion 21 of the bottom plate 20 and is in close contact with the lower plate portion 21 by diffusion bonding. With this configuration, the pillar 50 is fixed to the top plate 10 and the bottom plate 20.
 第2の基材層51の厚みは、接合シート30の基材層31の厚みよりも大きい。第2の基材層51の材質は、接合シート30の基材層31の材質と同じであっても良いし、異なっていてもよい。第2の上側接合材層52および第2の下側接合材層53の材質は、接合シート30の上側接合材層32および下側接合材層33の材質と同じであってもよいし、異なっていてもよい。 The thickness of the second base material layer 51 is larger than the thickness of the base material layer 31 of the bonding sheet 30. The material of the second base material layer 51 may be the same as or different from the material of the base material layer 31 of the bonding sheet 30. The materials of the second upper bonding material layer 52 and the second lower bonding material layer 53 may be the same as or different from the materials of the upper bonding material layer 32 and the lower bonding material layer 33 of the bonding sheet 30. You may be.
 以上説明したように、本実施形態のベーパーチャンバー1は、トッププレート10とボトムプレート20との間で挟まれた接合シート30を備えている。そして接合シート30は、基材層31と、基材層31の上面に設けられて拡散接合によりトッププレート10に密着した上側接合材層32と、基材層31の下面に設けられて拡散接合によりボトムプレート20に密着した下側接合材層33と、を有する。この構成により、従来のようにロウ付けを用いてトッププレート10とボトムプレート20とを接合する場合と比較して、ロウ材がウィック体40の細孔を塞ぐことによる熱輸送性能の低下を抑制することができる。 As described above, the vapor chamber 1 of the present embodiment includes a joining sheet 30 sandwiched between the top plate 10 and the bottom plate 20. The bonding sheet 30 is provided on the base material layer 31, the upper bonding material layer 32 provided on the upper surface of the base material layer 31 and adhered to the top plate 10 by diffusion bonding, and the lower surface of the base material layer 31 for diffusion bonding. It has a lower bonding material layer 33 that is in close contact with the bottom plate 20. With this configuration, as compared with the case where the top plate 10 and the bottom plate 20 are joined by brazing as in the conventional case, the deterioration of the heat transport performance due to the brazing material blocking the pores of the wick body 40 is suppressed. can do.
 また、トッププレート10、ボトムプレート20、および基材層31は銅により形成され、上側接合材層32および下側接合材層33は銀により形成されていてもよい。この場合、銀と銅との拡散によりトッププレート10とボトムプレート20とが接合されるため、例えば銅同士の拡散接合と比較して、拡散接合時の温度および圧縮力を低くすることができる。また、例えば銅シートの両面に銀メッキを施すことで容易に接合シート30が得られ、上側接合材層32および下側接合材層33の厚さを均一にすることが可能であるため、接合の信頼性を高めることができる。なお、例えば基材層31も銀で形成した場合、すなわち接合シート30の全体を銀で形成した場合には、拡散接合時に、基材層31も溶けてしまい、均一に接合ができない可能性がある。これに対して、基材層31を接合材層32、33よりも融点の高い材質で形成することで、上記のように基材層31が溶けてしまうことを抑制できる。 Further, the top plate 10, the bottom plate 20, and the base material layer 31 may be formed of copper, and the upper bonding material layer 32 and the lower bonding material layer 33 may be formed of silver. In this case, since the top plate 10 and the bottom plate 20 are bonded by diffusion of silver and copper, the temperature and compressive force at the time of diffusion bonding can be lowered as compared with, for example, diffusion bonding between coppers. Further, for example, by plating both sides of the copper sheet with silver, the bonding sheet 30 can be easily obtained, and the thickness of the upper bonding material layer 32 and the lower bonding material layer 33 can be made uniform, so that the bonding is performed. Can increase the reliability of. For example, when the base material layer 31 is also formed of silver, that is, when the entire bonding sheet 30 is formed of silver, the base material layer 31 may also be melted during diffusion bonding, and uniform bonding may not be possible. is there. On the other hand, by forming the base material layer 31 with a material having a melting point higher than that of the bonding material layers 32 and 33, it is possible to prevent the base material layer 31 from melting as described above.
 また、ベーパーチャンバー1は、コンテナCの内部に封入されたピラー50をさらに備えている。そしてピラー50は、第2の基材層51と、第2の基材層51の上面に設けられて拡散接合により上板部11に密着した第2の上側接合材層52と、第2の基材層51の下面に設けられて拡散接合により下板部21に密着した第2の下側接合材層53と、を有し、第2の基材層51の厚みが基材層31の厚みより大きい。このようにコンテナCの内部に封入されたピラー50が有する第2の基材層51の厚みが、接合シート30の基材層31の厚みより大きいことで、ピラー50も拡散接合によって上板部11および下板部21に固定できる。さらに、拡散接合によってピラー50がコンテナCに固定されるため、例えばロウ付けによってピラー50を固定する場合と比較して、ロウ材がウィック体40の細孔を塞ぐことによる熱輸送性能の低下を抑制することができる。 Further, the vapor chamber 1 further includes a pillar 50 enclosed inside the container C. The pillars 50 are a second base material layer 51, a second upper base material layer 52 provided on the upper surface of the second base material layer 51 and adhered to the upper plate portion 11 by diffusion bonding, and a second base material layer 52. It has a second lower bonding material layer 53 provided on the lower surface of the base material layer 51 and adhered to the lower plate portion 21 by diffusion bonding, and the thickness of the second base material layer 51 is the thickness of the base material layer 31. Larger than the thickness. Since the thickness of the second base material layer 51 of the pillar 50 enclosed inside the container C is larger than the thickness of the base material layer 31 of the bonding sheet 30, the pillar 50 is also subjected to diffusion bonding to the upper plate portion. It can be fixed to 11 and the lower plate portion 21. Further, since the pillar 50 is fixed to the container C by diffusion bonding, the heat transport performance is deteriorated due to the brazing material closing the pores of the wick body 40 as compared with the case where the pillar 50 is fixed by brazing, for example. It can be suppressed.
(ベーパーチャンバーの製造方法)
 次に、以上のような構成のベーパーチャンバー1を製造する方法の一例について説明する。
(Manufacturing method of vapor chamber)
Next, an example of a method for manufacturing the vapor chamber 1 having the above configuration will be described.
 まず、図4に示すように、各構成部材を用意する。接合シート30については、基材層31となるロール材の両面に、メッキ、スパッタリング、蒸着などの方法で接合材の被膜を形成し、これを機械加工により切断することで得ることができる。例えば、基材層31として厚さ0.05~0.1mmの銅のロール材を用い、当該ロール材の両面に銀メッキ処理を施すことで上側接合材層32および下側接合材層33を形成してもよい。機械加工として、例えば型を用いたプレス加工や打ち抜き加工などを用いてもよい。 First, each component is prepared as shown in FIG. The bonding sheet 30 can be obtained by forming a coating film of the bonding material on both surfaces of the roll material to be the base material layer 31 by a method such as plating, sputtering, or vapor deposition, and cutting this film by machining. For example, a copper roll material having a thickness of 0.05 to 0.1 mm is used as the base material layer 31, and the upper bonding material layer 32 and the lower bonding material layer 33 are formed by applying silver plating treatment to both surfaces of the roll material. It may be formed. As the machining, for example, press working using a mold or punching may be used.
 ピラー50についても、接合シート30と同様の方法により得ることができる。すなわち、第2の基材層51となるロール材の両面に、接合材の被膜を形成し、これを機械加工することでピラー50が得られる。 The pillar 50 can also be obtained by the same method as the joining sheet 30. That is, the pillar 50 can be obtained by forming a coating film of the bonding material on both surfaces of the roll material serving as the second base material layer 51 and machining this film.
 次に、上板部11と下板部21との間にウィック体40およびピラー50を配置するとともに、上側壁部12と下側壁部22との間に接合シート30を挟む。
 次に、図5に示すような中間ユニットUを得る。図5に示す点P1は、トッププレート10とボトムプレート20とを抵抗溶接によって接合する際の接合点を示している。接合点P1は、平面視でコンテナCの対角線上に位置する2つの角部に設定されている。このように2つの角部を接合することで、中間ユニットUにおけるトッププレート10とボトムプレート20との相対的な位置を安定させることができる。なお、接合点P1の位置および数は適宜変更してもよい。例えば、コンテナCの4つの角部にそれぞれ接合点P1を設定するなど、3つ以上の接合点P1を設けてもよい。
Next, the wick body 40 and the pillar 50 are arranged between the upper plate portion 11 and the lower plate portion 21, and the joining sheet 30 is sandwiched between the upper side wall portion 12 and the lower side wall portion 22.
Next, an intermediate unit U as shown in FIG. 5 is obtained. Point P1 shown in FIG. 5 indicates a joining point when the top plate 10 and the bottom plate 20 are joined by resistance welding. The joint points P1 are set at two corners located on the diagonal line of the container C in a plan view. By joining the two corners in this way, the relative positions of the top plate 10 and the bottom plate 20 in the intermediate unit U can be stabilized. The position and number of the joint points P1 may be changed as appropriate. For example, three or more joint points P1 may be provided, such as setting joint points P1 at each of the four corners of the container C.
 図5に示す点P2は、ピラー50とコンテナCとを抵抗溶接によって接合する際の接合点を示している。接合点P2は、各ピラー50の長手方向の両端部に対応する位置に設定されている。このようにピラー50とコンテナCとを接合することで、中間ユニットUにおけるコンテナCとピラー50との相対的な位置を安定させることができる。なお、接合点P2の位置および数は適宜変更してもよい。例えば、各ピラー50の長手方向の中央部に1つずつ接合点P2を設けてもよい。 Point P2 shown in FIG. 5 indicates a joining point when the pillar 50 and the container C are joined by resistance welding. The joint points P2 are set at positions corresponding to both ends of each pillar 50 in the longitudinal direction. By joining the pillar 50 and the container C in this way, the relative positions of the container C and the pillar 50 in the intermediate unit U can be stabilized. The position and number of the joint points P2 may be changed as appropriate. For example, one joint point P2 may be provided at the center of each pillar 50 in the longitudinal direction.
 次に、コンテナCに対して上下方向の圧縮力を加えた状態で、中間ユニットUを炉に入れる。圧縮力は、例えば錘をコンテナCの上に載せることで加えることができる。このように圧縮力を加えた状態で加熱することで、接合シート30の上側接合材層32とトッププレート10、および下側接合材層33とボトムプレート20が拡散接合される。このとき、ピラー50の第2の上側接合材層52とトッププレート10、および第2の下側接合材層53とボトムプレート20も拡散接合される。 Next, the intermediate unit U is put into the furnace with the compression force in the vertical direction applied to the container C. The compressive force can be applied, for example, by placing a weight on the container C. By heating with the compressive force applied in this way, the upper bonding material layer 32 and the top plate 10 of the bonding sheet 30, and the lower bonding material layer 33 and the bottom plate 20 are diffusively bonded. At this time, the second upper bonding material layer 52 and the top plate 10 of the pillar 50, and the second lower bonding material layer 53 and the bottom plate 20 are also diffusion-bonded.
 上記工程により、トッププレート10とボトムプレート20との間の隙間が接合シート30により密封される。この状態で、トッププレート10またはボトムプレート20に予め設けられた不図示の充填用穴から作動流体をコンテナCの内部に封入し、充填用穴を塞ぐことで、ベーパーチャンバー1が得られる。なお、作動流体をコンテナCの内部に封入する工程は、真空状態で行ってもよい。あるいは、大気圧で作動流体をコンテナCの内部に封入した後、コンテナC内の空気を吸引して脱気してもよい。 By the above process, the gap between the top plate 10 and the bottom plate 20 is sealed by the joining sheet 30. In this state, the vapor chamber 1 is obtained by enclosing the working fluid inside the container C from a filling hole (not shown) provided in advance in the top plate 10 or the bottom plate 20 and closing the filling hole. The step of sealing the working fluid inside the container C may be performed in a vacuum state. Alternatively, after the working fluid is sealed inside the container C at atmospheric pressure, the air inside the container C may be sucked and degassed.
 以上説明したように、本実施形態のベーパーチャンバー1の製造方法は、接合シート30を用意する工程と、トッププレート10とボトムプレート20との間に接合シート30を挟む工程と、抵抗溶接によりトッププレート10とボトムプレート20とを固定して中間ユニットUを得る工程と、中間ユニットUを炉に入れて、上側接合材層32およびトッププレート10、並びに下側接合材層33およびボトムプレート20をそれぞれ拡散接合させる工程と、を有する。 As described above, the method for manufacturing the vapor chamber 1 of the present embodiment includes a step of preparing the joining sheet 30, a step of sandwiching the joining sheet 30 between the top plate 10 and the bottom plate 20, and a top by resistance welding. The step of fixing the plate 10 and the bottom plate 20 to obtain the intermediate unit U, and putting the intermediate unit U into the furnace to form the upper bonding material layer 32 and the top plate 10, and the lower bonding material layer 33 and the bottom plate 20. Each has a step of diffusion welding.
 このように、抵抗溶接によってトッププレート10とボトムプレート20とが仮止めされた状態で、中間ユニットUを炉に入れることで、拡散接合の際にトッププレート10およびボトムプレート20の相対的な位置がずれることが抑制され、容易かつ高精度にトッププレート10とボトムプレート20とを接合することができる。 In this way, by putting the intermediate unit U into the furnace with the top plate 10 and the bottom plate 20 temporarily fixed by resistance welding, the relative positions of the top plate 10 and the bottom plate 20 at the time of diffusion joining are performed. It is possible to prevent the top plate 10 and the bottom plate 20 from being displaced easily and with high accuracy.
 また、基材層31となる銅のロール材の両面に銀メッキを施すことで上側接合材層32および下側接合材層33を形成した場合には、上側接合材層32および下側接合材層33の厚さを均一になり、拡散接合の信頼性を高めることができる。さらに、トッププレート10およびボトムプレート20を銅により形成した場合には、銀と銅の拡散接合によりトッププレート10とボトムプレート20が接合されるため、例えば銅同士の拡散接合の場合と比較して、中間ユニットUを炉に入れる際の炉の温度や、中間ユニットUに加える圧縮力を低くすることができる。 Further, when the upper bonding material layer 32 and the lower bonding material layer 33 are formed by silver-plating both sides of the copper roll material to be the base material layer 31, the upper bonding material layer 32 and the lower bonding material are formed. The thickness of the layer 33 can be made uniform, and the reliability of diffusion bonding can be improved. Further, when the top plate 10 and the bottom plate 20 are formed of copper, the top plate 10 and the bottom plate 20 are joined by diffusion bonding of silver and copper, so that the case of diffusion bonding between copper and copper is compared with the case of, for example. , The temperature of the furnace when the intermediate unit U is put into the furnace and the compressive force applied to the intermediate unit U can be lowered.
 また、ロール材の両面に銀メッキを施した後、ロール材を切断する工程を採用した場合には、側面(切断面)に銀メッキ層が形成されていない接合シート30が得られる。仮に接合シート30の側面に銀メッキ層がある場合、当該銀メッキ層はトッププレート10およびボトムプレート20と接合シート30との拡散接合に寄与しないだけでなく、その余分な銀メッキ層がコンテナC内に進入することでベーパーチャンバー1の性能が低下する可能性がある。これに対して、ロール材の両面に銀メッキを施した後でロール材を切断することで、接合シート30の側面の余分な銀メッキ層に起因するベーパーチャンバー1の性能低下を抑制することが可能となる。 Further, when the step of cutting the roll material after silver plating on both sides of the roll material is adopted, the joint sheet 30 in which the silver plating layer is not formed on the side surface (cut surface) can be obtained. If there is a silver-plated layer on the side surface of the joining sheet 30, not only does the silver-plated layer not contribute to the diffusion bonding between the top plate 10 and the bottom plate 20 and the joining sheet 30, but the extra silver-plated layer is the container C. There is a possibility that the performance of the vapor chamber 1 will be deteriorated by entering the inside. On the other hand, by cutting the roll material after silver-plating both sides of the roll material, it is possible to suppress the deterioration of the performance of the vapor chamber 1 due to the extra silver-plated layer on the side surface of the joining sheet 30. It will be possible.
 また、トッププレート10、ボトムプレート20、および第2の基材層51を銅により形成し、第2の上側接合材層52および第2の下側接合材層53を銀により形成してもよい。この場合も、ピラー50とコンテナCとが銀と銅の拡散接合により接合されることとなり、銅同士の拡散接合と比較して、中間ユニットUを炉に入れる際の温度や圧縮力を低くすることができる。 Further, the top plate 10, the bottom plate 20, and the second base material layer 51 may be formed of copper, and the second upper bonding material layer 52 and the second lower bonding material layer 53 may be formed of silver. .. In this case as well, the pillar 50 and the container C are joined by diffusion bonding of silver and copper, and the temperature and compressive force when the intermediate unit U is put into the furnace are lowered as compared with the diffusion bonding between copper. be able to.
 なお、本発明の技術的範囲は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前記実施形態では、トッププレート10が上側壁部12を有し、ボトムプレート20が下側壁部22を有していた。しかしながら、上側壁部12または下側壁部22が無い構成を採用してもよい。例えば、図6に示すように、トッププレート10が上側壁部12を有していない場合、下側壁部22が接合シート30を介してトッププレート10の上板部11に接合されていてもよい。この場合、コンテナCの周壁は下側壁部22のみによって構成される。逆に、ボトムプレート20が下側壁部22を有しておらず、上側壁部12が接合シート30を介して下板部21に接合された構成を採用してもよい。 For example, in the above embodiment, the top plate 10 has an upper side wall portion 12 and the bottom plate 20 has a lower side wall portion 22. However, a configuration without the upper side wall portion 12 or the lower side wall portion 22 may be adopted. For example, as shown in FIG. 6, when the top plate 10 does not have the upper side wall portion 12, the lower side wall portion 22 may be joined to the upper plate portion 11 of the top plate 10 via the joining sheet 30. .. In this case, the peripheral wall of the container C is composed of only the lower side wall portion 22. On the contrary, the bottom plate 20 may not have the lower side wall portion 22, and the upper side wall portion 12 may be joined to the lower plate portion 21 via the joining sheet 30.
 また、図6では、ピラー50がボトムプレート20と一体に形成されており、下側壁部22の上面とピラー50の上面とが、上下方向において同じ位置に位置している。そして、ピラー50と上板部11とが、接合シート30によって接合されている。なお、ピラー50をトッププレート10と一体に形成し、ピラー50と下板部21とを接合シート30によって接合してもよい。このように、ピラー50をボトムプレート20およびトッププレート10のうちいずれか一方と一体に形成することで、ベーパーチャンバー1の構造を簡略化してコストダウンを図ることができる。また、コンテナCの側壁部分だけでなく、コンテナCの内部に位置するピラー50もトッププレート10またはボトムプレート20に接合されることで、コンテナCの強度を向上させることができる。 Further, in FIG. 6, the pillar 50 is integrally formed with the bottom plate 20, and the upper surface of the lower side wall portion 22 and the upper surface of the pillar 50 are located at the same position in the vertical direction. Then, the pillar 50 and the upper plate portion 11 are joined by the joining sheet 30. The pillar 50 may be integrally formed with the top plate 10, and the pillar 50 and the lower plate portion 21 may be joined by a joining sheet 30. By forming the pillar 50 integrally with either the bottom plate 20 or the top plate 10 in this way, the structure of the vapor chamber 1 can be simplified and the cost can be reduced. Further, not only the side wall portion of the container C but also the pillar 50 located inside the container C can be joined to the top plate 10 or the bottom plate 20 to improve the strength of the container C.
 また、図7に示すように、上板部11の下面に接合シート30を密着させて、下側壁部22の上面およびピラー50の上面を、1つの接合シート30によってトッププレート10に接合させてもよい。さらに、ウィック体40の外枠部41および内側部42と、接合シート30と、の間に上下方向の隙間を設けてもよい。この場合、接合シート30を用いてトッププレート10とボトムプレート20とを接合する際に、上側接合材層32または下側接合材層33を構成する材質が、ウィック体40に付着したり染み込んだりすることを抑制できる。なお、図7において接合シート30は上板部11の下面の一部に密着していてもよいし、下面全体に密着していてもよい。 Further, as shown in FIG. 7, the joining sheet 30 is brought into close contact with the lower surface of the upper plate portion 11, and the upper surface of the lower side wall portion 22 and the upper surface of the pillar 50 are joined to the top plate 10 by one joining sheet 30. May be good. Further, a vertical gap may be provided between the outer frame portion 41 and the inner portion 42 of the wick body 40 and the joining sheet 30. In this case, when the top plate 10 and the bottom plate 20 are joined using the joining sheet 30, the material constituting the upper joining material layer 32 or the lower joining material layer 33 adheres to or soaks into the wick body 40. Can be suppressed. In addition, in FIG. 7, the joining sheet 30 may be in close contact with a part of the lower surface of the upper plate portion 11, or may be in close contact with the entire lower surface.
 また、図7の形態では、仮に基材層31と接合材層32、33とが同じ材質で形成されている場合、拡散接合時に基材層31も溶けてしまい、均一に接合できない可能性がある。これに対して、基材層31を接合材層32、33よりも融点の高い材質で形成することで、上記のように基材層31が溶けてしまうことを抑制できる。 Further, in the form of FIG. 7, if the base material layer 31 and the bonding material layers 32 and 33 are formed of the same material, the base material layer 31 may also be melted during diffusion bonding, and uniform bonding may not be possible. is there. On the other hand, by forming the base material layer 31 with a material having a melting point higher than that of the bonding material layers 32 and 33, it is possible to prevent the base material layer 31 from melting as described above.
 また、ベーパーチャンバー1の製造方法を適宜変更してもよい。例えば、中間ユニットUを得る工程を採用せず、各部材を位置合わせした状態で炉に入れてベーパーチャンバー1を製造してもよい。
 また、基材層31となる材料をプレス加工や打ち抜き加工等を施して所定の形状に成形した後、メッキなどにより接合材層32、33を形成し、基材層31の側面に接合材層が形成されるようにしてもよい。
Further, the manufacturing method of the vapor chamber 1 may be appropriately changed. For example, the vapor chamber 1 may be manufactured by putting each member in a furnace in a aligned state without adopting the step of obtaining the intermediate unit U.
Further, after the material to be the base material layer 31 is pressed or punched to form a predetermined shape, the bonding material layers 32 and 33 are formed by plating or the like, and the bonding material layer is formed on the side surface of the base material layer 31. May be formed.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to replace the constituent elements in the above-described embodiment with well-known constituent elements as appropriate without departing from the spirit of the present invention, and the above-described embodiments and modifications may be appropriately combined.
 1…ベーパーチャンバー 10…トッププレート 11…上板部 20…ボトムプレート 21…下板部 30…接合シート 31…基材層 32…上側接合材層 33…下側接合材層 40…ウィック体 50…ピラー 51…第2の基材層 52…第2の上側接合材層 53…第2の下側接合材層 C…コンテナ U…中間ユニット 1 ... Vapor chamber 10 ... Top plate 11 ... Upper plate part 20 ... Bottom plate 21 ... Lower plate part 30 ... Bonding sheet 31 ... Base material layer 32 ... Upper bonding material layer 33 ... Lower bonding material layer 40 ... Wick body 50 ... Pillar 51 ... 2nd base material layer 52 ... 2nd upper bonding material layer 53 ... 2nd lower bonding material layer C ... Container U ... Intermediate unit

Claims (7)

  1.  上板部を有するトッププレートと、
     前記上板部に対向する下板部を有し、前記トッププレートとともにコンテナを構成するボトムプレートと、
     前記トッププレートと前記ボトムプレートとの間で挟まれた接合シートと、
     前記コンテナの内部に封入された作動流体およびウィック体と、を備え、
     前記接合シートは、基材層と、前記基材層の上面に設けられて拡散接合により前記トッププレートに密着した上側接合材層と、前記基材層の下面に設けられて拡散接合により前記ボトムプレートに密着した下側接合材層と、を有する、ベーパーチャンバー。
    A top plate with a top plate and
    A bottom plate having a lower plate portion facing the upper plate portion and forming a container together with the top plate,
    A bonding sheet sandwiched between the top plate and the bottom plate,
    A working fluid and a wick body enclosed inside the container.
    The bonding sheet includes a base material layer, an upper bonding material layer provided on the upper surface of the base material layer and adhered to the top plate by diffusion bonding, and the bottom surface provided on the lower surface of the base material layer by diffusion bonding. A vapor chamber having a lower bonding material layer in close contact with the plate.
  2.  前記トッププレート、前記ボトムプレート、および前記基材層は銅により形成され、
     前記上側接合材層および前記下側接合材層は銀により形成されている、請求項1に記載のベーパーチャンバー。
    The top plate, the bottom plate, and the substrate layer are made of copper.
    The vapor chamber according to claim 1, wherein the upper bonding material layer and the lower bonding material layer are formed of silver.
  3.  前記コンテナの内部に封入されたピラーをさらに備え、
     前記ピラーは、第2の基材層と、前記第2の基材層の上面に設けられて拡散接合により前記上板部に密着した第2の上側接合材層と、前記第2の基材層の下面に設けられて拡散接合により前記下板部に密着した第2の下側接合材層と、を有し、
     前記第2の基材層の厚みは、前記基材層の厚みより大きい、請求項1または2に記載のベーパーチャンバー。
    Further provided with pillars enclosed inside the container
    The pillars are a second base material layer, a second upper base material layer provided on the upper surface of the second base material layer and adhered to the upper plate portion by diffusion bonding, and the second base material. It has a second lower bonding material layer provided on the lower surface of the layer and adhered to the lower plate portion by diffusion bonding.
    The vapor chamber according to claim 1 or 2, wherein the thickness of the second base material layer is larger than the thickness of the base material layer.
  4.  前記コンテナの内部に位置し、前記ボトムプレートおよび前記トッププレートのうちいずれか一方と一体に形成されたピラーをさらに備え、
     前記ピラーは、前記接合シートによって、前記ボトムプレートおよび前記トッププレートのうちいずれか他方に接合されている、請求項1または2に記載のベーパーチャンバー。
    Further comprising pillars located inside the container and integrally formed with either the bottom plate or the top plate.
    The vapor chamber according to claim 1 or 2, wherein the pillars are joined to either one of the bottom plate and the top plate by the joining sheet.
  5.  前記接合シートは、前記上板部の下面に密着し、
     前記ウィック体と前記接合シートとの間に、上下方向の隙間が形成されている、請求項1から4のいずれか1項に記載のベーパーチャンバー。
    The joint sheet is in close contact with the lower surface of the upper plate portion.
    The vapor chamber according to any one of claims 1 to 4, wherein a vertical gap is formed between the wick body and the joining sheet.
  6.  基材層、前記基材層の上面に設けられた上側接合材層、および前記基材層の下面に設けられた下側接合材層を有する接合シートを用意する工程と、
     トッププレートとボトムプレートとの間に前記接合シートを挟む工程と、
     抵抗溶接により前記トッププレートと前記ボトムプレートとを固定して中間ユニットを得る工程と、
     前記中間ユニットを炉に入れて、前記上側接合材層および前記トッププレート、並びに前記下側接合材層および前記ボトムプレートをそれぞれ拡散接合させる工程と、を有する、ベーパーチャンバーの製造方法。
    A step of preparing a bonding sheet having a base material layer, an upper bonding material layer provided on the upper surface of the base material layer, and a lower bonding material layer provided on the lower surface of the base material layer.
    The process of sandwiching the joint sheet between the top plate and the bottom plate,
    The process of fixing the top plate and the bottom plate by resistance welding to obtain an intermediate unit,
    A method for manufacturing a vapor chamber, comprising a step of putting the intermediate unit into a furnace and diffusing the upper bonding material layer and the top plate, and the lower bonding material layer and the bottom plate, respectively.
  7.  前記トッププレートおよび前記ボトムプレートは銅により形成され、
     前記基材層となる銅のロール材の両面に銀メッキを施すことで、前記上側接合材層および前記下側接合材層が形成され、
     前記ロール材の両面に銀メッキを施した後、前記ロール材を切断することで前記接合シートを得る、請求項6に記載のベーパーチャンバーの製造方法。
    The top plate and the bottom plate are made of copper
    By applying silver plating to both sides of the copper roll material to be the base material layer, the upper bonding material layer and the lower bonding material layer are formed.
    The method for manufacturing a vapor chamber according to claim 6, wherein the joint sheet is obtained by silver-plating both sides of the roll material and then cutting the roll material.
PCT/JP2020/011948 2019-03-19 2020-03-18 Vapor chamber and method for manufacturing vapor chamber WO2020189713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-051182 2019-03-19
JP2019051182 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189713A1 true WO2020189713A1 (en) 2020-09-24

Family

ID=72520213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011948 WO2020189713A1 (en) 2019-03-19 2020-03-18 Vapor chamber and method for manufacturing vapor chamber

Country Status (1)

Country Link
WO (1) WO2020189713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254828A1 (en) * 2021-06-04 2022-12-08 ポーライト株式会社 Manufacturing method and heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140435A (en) * 2004-11-11 2006-06-01 Taiwan Microloops Corp Bendable heat spreader with wire mesh-based microstructure and method of manufacturing same
JP2011086753A (en) * 2009-10-15 2011-04-28 Sony Corp Heat transferring device and electronic equipment
JP2016223673A (en) * 2015-05-29 2016-12-28 株式会社フジクラ Thermal diffusion plate
JP2017003160A (en) * 2015-06-08 2017-01-05 株式会社フジクラ Thin plate heat pipe type thermal diffusion plate
WO2017138639A1 (en) * 2016-02-12 2017-08-17 国立大学法人大阪大学 Jointing material, method for producing jointing material, and method for manufacturing joint structure
JP2019039662A (en) * 2017-08-24 2019-03-14 大日本印刷株式会社 Wick sheet for vapor chamber, vapor chamber, and method for producing vapor chamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140435A (en) * 2004-11-11 2006-06-01 Taiwan Microloops Corp Bendable heat spreader with wire mesh-based microstructure and method of manufacturing same
JP2011086753A (en) * 2009-10-15 2011-04-28 Sony Corp Heat transferring device and electronic equipment
JP2016223673A (en) * 2015-05-29 2016-12-28 株式会社フジクラ Thermal diffusion plate
JP2017003160A (en) * 2015-06-08 2017-01-05 株式会社フジクラ Thin plate heat pipe type thermal diffusion plate
WO2017138639A1 (en) * 2016-02-12 2017-08-17 国立大学法人大阪大学 Jointing material, method for producing jointing material, and method for manufacturing joint structure
JP2019039662A (en) * 2017-08-24 2019-03-14 大日本印刷株式会社 Wick sheet for vapor chamber, vapor chamber, and method for producing vapor chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254828A1 (en) * 2021-06-04 2022-12-08 ポーライト株式会社 Manufacturing method and heat exchanger

Similar Documents

Publication Publication Date Title
KR102442311B1 (en) Vapor chamber, electronic device, metal sheet for vapor chamber and manufacturing method of vapor chamber
JP7369360B2 (en) Wick sheet for vapor chamber, vapor chamber and vapor chamber manufacturing method
JP6233125B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
JP6803015B1 (en) Manufacturing method of vapor chamber, electronic equipment, metal sheet for vapor chamber and vapor chamber
JP7396435B2 (en) Vapor chamber and vapor chamber mounting board
CN113366631A (en) Evaporation chamber, electronic device, and sheet for evaporation chamber
JP2004238672A (en) Method for manufacturing plate-type heat pipe
JP6216838B1 (en) Heat dissipation module and manufacturing method thereof
WO2019088301A1 (en) Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber
US20210180876A1 (en) Vapor chamber
JP2023021254A (en) vapor chamber
WO2020189713A1 (en) Vapor chamber and method for manufacturing vapor chamber
JP2023052355A (en) Vapor chamber, sheet for vapor chamber, and method for manufacturing vapor chamber
JP7148889B2 (en) metal sheets for vapor chambers, electronics and vapor chambers
WO2020100533A1 (en) Vapor chamber
JP7371796B2 (en) Vapor chamber and mobile terminal
JP2021067370A (en) Loop type heat pipe and method of manufacturing the same
WO2020100378A1 (en) Vapor chamber
JP2018076978A (en) Loop heat pipe and electronic device
WO2022059517A1 (en) Vapor chamber
JP2021014936A (en) Vapor chamber and method of manufacturing the same
JP2021143809A (en) Vapor chamber and electronic device
CN112665430A (en) Thin type temperature-equalizing plate and manufacturing method thereof
JP7452615B2 (en) Vapor chambers, electronic equipment, and sheets for vapor chambers
JP7244375B2 (en) vapor chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773361

Country of ref document: EP

Kind code of ref document: A1