WO2020189451A1 - Antenna device, electronic device, window glass, and movable body - Google Patents

Antenna device, electronic device, window glass, and movable body Download PDF

Info

Publication number
WO2020189451A1
WO2020189451A1 PCT/JP2020/010635 JP2020010635W WO2020189451A1 WO 2020189451 A1 WO2020189451 A1 WO 2020189451A1 JP 2020010635 W JP2020010635 W JP 2020010635W WO 2020189451 A1 WO2020189451 A1 WO 2020189451A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna device
antenna
liquid crystal
crystal layer
Prior art date
Application number
PCT/JP2020/010635
Other languages
French (fr)
Japanese (ja)
Inventor
強 陳
佐藤 弘康
加賀谷 修
稔貴 佐山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021507244A priority Critical patent/JPWO2020189451A1/ja
Publication of WO2020189451A1 publication Critical patent/WO2020189451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • This disclosure relates to antenna devices, electronic devices, windowpanes, and moving objects.
  • a phased array antenna that controls the radiation pattern (directivity) of the entire antenna by controlling the phase of each excitation signal of a plurality of arranged antenna elements via a phase shifter.
  • phase shifter is provided for each of the plurality of antenna elements, it is difficult to reduce the cost and simplify the structure.
  • the present invention aims to reduce the cost and simplify the structure of the phased array antenna.
  • An antenna device is provided that includes a connection that is electrically connected to the power supply line and is electrically connectable to a DC power source.
  • FIG. 5 is a schematic view showing a vehicle as an example of a moving body in which the antenna device according to the first embodiment is provided on a window glass in a top view. It is the schematic which shows the other mounting example of the antenna device by 1st Embodiment. It is a schematic explanatory drawing of the structure of the communication device including the antenna device by 2nd Embodiment of this invention. It is a schematic explanatory drawing of the structure of the communication device including the antenna device according to 3rd Embodiment of this invention. It is a figure which shows the modification of the 3rd Embodiment.
  • FIG. 1 is a plan view schematically showing an antenna device 40 according to the first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 1 shows three orthogonal axes (x-axis, y-axis, and z-axis).
  • the z-axis direction may be referred to as the “vertical direction”, but the direction of the antenna device 40 is not limited.
  • the antenna device 40 includes a first substrate 46, a second substrate 48, and a liquid crystal layer 49.
  • the first substrate 46, the second substrate 48, and the liquid crystal layer 49 form a laminated structure in such a manner that the liquid crystal layer 49 is sandwiched between the first substrate 46 and the second substrate 48.
  • the first substrate 46 is formed of, for example, a glass substrate.
  • the thickness of the first substrate 46 is preferably 0.2 mm or more and 1 mm or less.
  • the antenna device 40 can be made thinner. Therefore, if the thickness of the antenna device 40 is the same, the thickness (region) of the liquid crystal layer 49 can be increased by the amount that the first substrate 46 is thin. As the thickness of the liquid crystal layer 49 increases, the amount of change in the dielectric constant can be increased (the function of the power supply line 42 on the liquid crystal layer 49 as a phase shifter described later can be enhanced). , Advantageous.
  • the thickness of the liquid crystal layer 49 is preferably 0.1 ⁇ m or more, particularly preferably 1 ⁇ m or more, and preferably ⁇ g / 5 or less, particularly ⁇ g / 10 or less.
  • the change in the dielectric constant of the liquid crystal layer 49 will be described later.
  • the Tan ⁇ of the first substrate is preferably 0.01 or less, and the relative permittivity is preferably 2 to 10.
  • a plurality of antenna elements 41 and a feeding line 42 are formed on the first substrate 46.
  • the plurality of antenna elements 41 and the feeding line 42 may be formed in any manner, or may be integrally formed.
  • the plurality of antenna elements 41 and the feeding line 42 are formed on the surface of the first substrate 46 on the liquid crystal layer 49 side.
  • a plurality of antenna elements 41 are arranged at equal intervals in the x-axis direction, and the feeding line 42 extends parallel to the x-axis direction.
  • the plurality of antenna elements 41 is four, but may be any number of two or more.
  • the plurality of antenna elements 41 and the feeding line 42 are preferably transparent.
  • transparent means a state in which the transmittance of visible light is 50% or more, but preferably the transmittance of visible light is 60% or more, and more preferably visible light.
  • the transmittance of is 70% or more.
  • the antenna device 40 can be provided even in a place where relatively high transparency and translucency are required, in a manner that does not significantly impair the transparency and translucency. Further, since the transparency is high, the size is not restricted easily, and the number of antenna elements 41 can be easily increased. As a result, the antenna opening area can be increased and the antenna performance can be improved.
  • the plurality of antenna elements 41 and the feeding line 42 for example, a conductor made of oxides such as tin oxide-doped indium oxide (ITO) and tin oxide, or a conductor made of multiple layers such as Low-E can be used.
  • Low-E is an abbreviation for Low Emissivity, in which a conductive transparent oxide film and a silver film having a film thickness of about 10 nm are sandwiched between dielectric layers to have low reflectance in the visible region and high reflectance in the infrared region. Those coated with a silver multilayer film are known.
  • the thickness of the plurality of antenna elements 41 and the feeding line 42 is not particularly limited, but is 0.002 mm to 0.020 mm as an example.
  • the conductivity of the antenna element 41 preferably has a sheet resistance of 10 ⁇ / sq or less, more preferably 1 ⁇ / sq or less, and most preferably 0.1 ⁇ / sq or less. .. Further, the conductivity of the feeding line 42 is preferably such that the sheet resistance is 10 ⁇ / sq or less, more preferably 1 ⁇ / sq or less, and 0.1 ⁇ / sq or less in terms of performance. Most preferred.
  • each of the plurality of antenna elements 41 is arbitrary, but may be adapted according to the frequency band to be used. Further, the shape of each of the plurality of antenna elements 41 is rectangular in FIG. 1, but may be another shape such as a circle.
  • Each of the plurality of antenna elements 41 may be formed in a mesh shape. By forming each of the plurality of antenna elements 41 in a mesh shape, the transparency and translucency of the antenna element 41 can be enhanced.
  • the material of the mesh is preferably copper or silver in terms of conductivity and transparency.
  • the mesh When each of the plurality of antenna elements 41 is formed in a mesh shape, the mesh may be square or rhombic. When forming the mesh mesh into a square shape, the mesh mesh is preferably square. If the mesh has square eyes, the design is good. Further, a random shape by a self-organizing method may be used. Moire can be prevented by making it a random shape.
  • the line width of the mesh is preferably 5 to 30 ⁇ m, more preferably 6 to 15 ⁇ m.
  • the line spacing of the mesh is preferably 50 to 500 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the feeding line 42 may also be formed in a mesh shape like each of the plurality of antenna elements 41.
  • One end of the power supply line 42 is branched and connected to each of the plurality of antenna elements 41, and the other end is electrically connected to the connection terminal 30.
  • the distance (electrical length) between the connection terminal 30 and the antenna element 41 along the feeding line 42 is different for each of the plurality of antenna elements 41.
  • the feeding line 42 extends parallel to the x-axis direction up to the position where it branches into each of the plurality of antenna elements 41, but meanders in the y-axis direction in order to increase the difference in electrical length. However, it may extend in the x-axis direction.
  • the second substrate 48 is formed of, for example, a glass substrate, like the first substrate 46.
  • the second substrate 48 may have substantially the same configuration as the first substrate 46.
  • a ground conductor 43 is formed on the second substrate 48.
  • the ground conductor 43 is formed on the surface of the second substrate 48 on the liquid crystal layer 49 side.
  • the ground conductor 43 may be formed over the entire second substrate 48, or may be formed in a range that faces the feeding line 42 (and the plurality of antenna elements 41) in the vertical direction.
  • the ground conductor 43 is preferably transparent.
  • the antenna device 40 can be provided even in a place where relatively high transparency and translucency are required, in a manner that does not significantly impair the transparency and translucency.
  • ground conductor 43 similarly to the plurality of antenna elements 41 described above, for example, a conductor made of oxides such as tin oxide-doped indium oxide (ITO) and tin oxide, and a conductor made of multiple layers such as Low-E can be used. ..
  • the ground conductor 43 may be formed in a so-called solid pattern, but is preferably formed in a mesh shape. By forming the ground conductor 43 in a mesh shape, the transparency and translucency of the ground conductor 43 can be enhanced.
  • the mesh material is preferably copper in terms of conductivity and transparency.
  • the mesh may be square or rhombic as in the case of each of the plurality of antenna elements 41.
  • the liquid crystal layer 49 is provided between the first substrate 46 and the second substrate 48.
  • the liquid crystal layer 49 is a dielectric anisotropy type. Details of the liquid crystal layer 49 will be described later.
  • FIG. 4 is a schematic explanatory view showing an example of the configuration of the communication device 1 including the antenna device 40 according to the present embodiment. Note that the x-axis, y-axis, and z-axis shown in FIG. 4 should be considered only for the arrangement of the plurality of antenna elements 41.
  • the antenna device 40 includes connection portions 32 and 33 as external connection terminals in addition to the connection terminal 30 shown in FIG.
  • the connection unit 32 can be electrically connected to the voltage variable circuit 54, and the connection unit 33 can be electrically connected to the ground. Further, the connection terminal 30 can be electrically connected to the RF (Radio Frequency) circuit unit 523.
  • RF Radio Frequency
  • the antenna device 40 can function as an element of the communication device 1 by being electrically connected to the RF circuit unit 523, the voltage variable circuit 54, and the like. That is, in the communication device 1 shown in FIG. 4, the connection terminal 30 is electrically connected to the RF circuit unit 523, and the power supply line 42 is electrically connected to the voltage variable circuit 54 via the connection unit 32. The conductor 43 is electrically connected to the ground via the connecting portion 33.
  • the voltage variable circuit 54 generates a variable DC voltage.
  • the DC voltage is applied between the feeding line 42 and the ground conductor 43 via the connecting portions 32 and 33. As a result, the DC voltage from the voltage variable circuit 54 is applied to the liquid crystal layer 49.
  • the connecting portion 32 is connected to the feeding line 42 by wiring, but may be connected to any one of the plurality of antenna elements 41 by wiring. As described above, as long as the connecting portion 32 is electrically connected to the feeding line 42, the wiring from the connecting portion 32 may be formed in any manner.
  • the RF circuit unit 523 performs transmission processing for generating radio signals (RF signals) to be transmitted from a plurality of antenna elements 41 via the feeding line 42, and reception processing for the radio signals received by the antenna device 40. Further details of the RF circuit unit 523 will be described later.
  • the voltage variable circuit 54 functions as a variable DC power supply, and a variable DC voltage can be applied to the liquid crystal layer 49 of the antenna device 40.
  • a variable DC voltage can be applied to the liquid crystal layer 49 of the antenna device 40.
  • the dielectric constant of the liquid crystal layer 49 changes.
  • the directivity of the antenna device 40 can be changed. This principle will be described in detail later.
  • the antenna device 40 is used for the communication device 1, but the present invention is not limited to this.
  • the antenna device 40 may be used in a radar device (for example, a millimeter wave radar device).
  • FIGS. 5A and 5B are explanatory views of the principle of changing the dielectric constant of the liquid crystal layer 49, and the liquid crystal layer 49 is shown very schematically in a cross-sectional view.
  • the voltage variable circuit 54 is illustrated as a variable DC power supply.
  • the orientation direction of the liquid crystal molecules of the liquid crystal layer 49 changes according to the magnitude of the applied DC voltage.
  • the magnitude of the applied DC voltage is zero
  • the longitudinal direction of the liquid crystal molecule 491 is parallel to the x-axis direction.
  • the dielectric constant of the liquid crystal felt by the high frequency is the dielectric constant ⁇ r2 in the minor axis direction.
  • Vmax for example, the maximum value that can be applied
  • the dielectric constant of the liquid crystal felt by the high frequency is the dielectric constant ⁇ r1 in the long axis direction.
  • the liquid crystal layer 49 has a characteristic that the dielectric constant ⁇ r1 in the long axis direction and the dielectric constant ⁇ r2 in the minor axis direction are different, that is, anisotropy. Therefore, the dielectric constant of the liquid crystal layer 49 changes according to the magnitude of the applied DC voltage.
  • the liquid crystal layer 49 When the magnitude of the applied DC voltage is larger than 0 and smaller than the predetermined value Vmax, the liquid crystal layer 49 has a dielectric constant ⁇ r2 in the minor axis direction and a dielectric constant in the major axis direction, depending on the arrangement direction of the liquid crystal molecules. It shows a different dielectric constant from any of the dielectric constants ⁇ r1. Therefore, the dielectric constant of the liquid crystal layer 49 can be changed in multiple steps by changing the magnitude of the DC voltage applied to the liquid crystal layer 49 in multiple steps.
  • the thickness of the antenna device 40 (dimension in the z-axis direction) is large. It is disadvantageous in that it increases.
  • the power supply line 42 on the liquid crystal layer 49 functions as a phase shifter (hereinafter, also referred to as “phase shifter function”). Can be given. Then, in the present embodiment, by giving the feeding line 42 on the liquid crystal layer 49 a phase shifter function, the antenna device 40 can function as a phased array antenna (phase scanning antenna) without using the phase shifter. it can.
  • FIG. 6A is an explanatory diagram of the basic principle of the phased array antenna.
  • three orthogonal axes x1 axis, y1 axis, and z1 axis are shown.
  • each of the antennas 41-1 to 41-4 is provided so that the contributions from all the antennas 41-1 to 41-4 are in phase.
  • ⁇ n ⁇ k 0 ⁇ n ⁇ d ⁇ sin ⁇ Will be.
  • k 0 2 ⁇ / ⁇ (wave number in free space)
  • d is the distance between the antennas 41-1 to 41-4 (distance along the x1 axis).
  • a phase shifter is generally used in the conventional phased array antenna.
  • a phase shifter 90 is provided between the distribution / synthesis circuit and the antennas 41-1 to 41-4 (that is, in the middle of the feeding line).
  • the excitation phase ⁇ n becomes the liquid crystal layer 49. It can be controlled by the applied DC voltage (and its dielectric constant). Specifically, as described above, when the DC voltage applied to the liquid crystal layer 49 is changed, the dielectric constant of the liquid crystal layer 49 changes accordingly. When the dielectric constant of the liquid crystal layer 49 changes, the excitation phase ⁇ n changes. This is because the wavelength and the delay time when the high frequency travels on the high frequency transmission line change according to the dielectric constant of the dielectric material (in this example, the liquid crystal layer 49) constituting the high frequency transmission line.
  • the excitation phase ⁇ n in the antennas 41-1 to 41-4 is changed by changing the wavelength without changing the distance d between the antennas 41-1 to 41-4.
  • the power feeding line 42 on the liquid crystal layer 49 can have a function as a phase shifter in the high frequency transmission line (that is, the above-mentioned phase shifter function).
  • the phase shifter 90 required for the conventional phased array antenna as shown in FIG. 6B becomes unnecessary, and the cost can be reduced and the structure can be simplified.
  • FIG. 7 is a schematic view showing an example of the configuration of the electronic device U1. Note that FIG. 7 also shows the base station BS and the like in association with the electronic device U1.
  • the electronic device U1 is arbitrary as long as it has a communication function, and may be, for example, a smartphone, a tablet terminal, a wearable terminal, a game device, or the like. Further, the electronic device U1 does not have to be a portable device, and may be a stationary device.
  • the electronic device U1 includes a processing device 50 in addition to the antenna device 40 described above.
  • the electronic device U1 is realized by a configuration including the communication device 1 shown in FIG.
  • the processing device 50 includes a microcomputer 51 (hereinafter referred to as “MICOM 51”) (an example of a control unit), a communication circuit unit 52, and a voltage variable circuit 54. Further, the communication circuit unit 52 includes a baseband circuit unit 522 and an RF circuit unit 523.
  • MICOM 51 an example of a control unit
  • the communication circuit unit 52 includes a baseband circuit unit 522 and an RF circuit unit 523.
  • the MICOM 51 performs various communication processes via the communication circuit unit 52, and controls the magnitude of the DC voltage applied to the antenna device 40 via the voltage variable circuit 54.
  • the MICOM 51 controls the directivity of the antenna device 40 by controlling the magnitude of the DC voltage applied to the antenna device 40 via the voltage variable circuit 54. This directivity control will be described later with reference to FIG.
  • the communication circuit unit 52 communicates with the external user terminal U2 from the antenna device 40 via the base station BS or the like.
  • the communication handled by the communication circuit unit 52 is arbitrary, such as voice communication and data communication.
  • the baseband circuit unit 522 performs a process of mutually converting an IP packet and a baseband signal.
  • the RF circuit unit 523 performs D / A (Digital-to-Analog) conversion, modulation, frequency conversion, power amplification, and the like on the baseband signal received from the baseband circuit unit 522 from the antenna device 40. Generates a radio signal (RF signal) to be transmitted. Further, the RF circuit unit 523 generates a baseband signal by performing frequency conversion, A / D (Analog to Digital) conversion, demodulation, etc. on the radio signal received by the antenna device 40, and the baseband circuit unit. Give to 522.
  • the voltage variable circuit 54 includes a DC power supply generator 541 (an example of a DC power supply) that generates a DC power supply voltage.
  • the DC power supply generation unit 541 generates a variable DC voltage based on the DC power supply voltage.
  • the DC power supply voltage may be generated based on an external AC power supply or a DC power supply.
  • the voltage variable circuit 54 may generate a variable DC voltage by dividing the DC power supply voltage in various modes by using a plurality of types of resistors.
  • the DC voltage generated in this way is applied to the feeding line 42 via the connection portion 32 (see FIG. 4) as described above. As a result, a DC voltage is applied between the feeding line 42 and the ground conductor 43, that is, to the liquid crystal layer 49.
  • FIG. 8 is an explanatory diagram of directivity control, and is a diagram showing an example of map data used for directivity control.
  • the magnitude of the DC voltage applied to the liquid crystal layer 49 of the antenna device 40 (in FIG. 8, “V1”, “V2”, etc. in the column of the title “voltage”) is the directivity (FIG. 8). In, it is associated with “ ⁇ 1", “ ⁇ 2”, etc.) in the column of the title " ⁇ ”.
  • the parameter ⁇ corresponds to ⁇ described with reference to FIG. 6A and represents the directivity of the antenna device 40.
  • the x1, y1, and z1 axes (see FIG. 6A) with respect to the electronic device U1 are appropriately set.
  • the directivity of the antenna device 40 is “ ⁇ 1” and the magnitude of the DC voltage is “V2”.
  • the relationship between the magnitude of the DC voltage and the directivity of the antenna device 40 is defined, such that the directivity of the antenna device 40 becomes “ ⁇ 2”.
  • the relationship between the magnitude of the DC voltage and the directivity of the antenna device 40 may be based on a test or the like.
  • the map data shown in FIG. 8 may be stored in advance in the memory (not shown) of MICOM 51.
  • the MICOM 51 determines the magnitude of the DC voltage according to the target value of the directivity based on the map data, and controls the voltage variable circuit 54 so that the determined magnitude of the DC voltage is realized. Then, the directivity of the antenna device 40 is controlled to be the target value.
  • the directivity of the communication of the electronic device U1 can be changed by electronic control. That is, according to the present embodiment, it is possible to dynamically control the directivity of the antenna device 40 according to, for example, the position of the base station BS, and in this case, it is possible to realize the same effect as beamforming. It is possible.
  • FIG. 9 is a schematic view showing the appearance of an example of the electronic device U1 including the antenna device 40 of the present embodiment. Note that FIG. 9 shows a part of the internal structure of the electronic device U1 (a part related to the antenna device 40) in a perspective view.
  • FIG. 10 is a cross-sectional view taken along the line CC of FIG.
  • the antenna device 40 is built in an end portion of the electronic device U1 (for example, a frame area adjacent to the display panel, for example, an upper side portion) in a manner adjacent to the liquid crystal display unit 70 of the electronic device U1.
  • the electronic device U1 includes an antenna device 40, a liquid crystal display unit 70, a control board 79, and the like in a housing including a front side case 60 and a side case 61.
  • the surface side case 60 may be a transparent plate material such as glass.
  • the control board 79 may realize a processing device for controlling the liquid crystal display unit 70 and the processing device 50 described above.
  • the liquid crystal display unit 70 includes a polarizing plate 71, a touch panel 72, a glass substrate 73, a liquid crystal layer 74, a glass substrate 75, and a polarizing plate 76. Further, the liquid crystal layer 74 is provided with electrode layers 74A and 74B for driving the liquid crystal layer 74.
  • the electrode layer 74A includes a plurality of pixel electrodes, a thin film transistor connected to a gate line and a source line, and the like.
  • the electrode layer 74B is a common electrode formed of a transparent electrode material such as ITO.
  • the liquid crystal display unit 70 may also include a color filter or the like, but these illustrations are omitted. Further, the backlight which may be provided behind the liquid crystal display unit 70 is not shown.
  • the arrangement of the touch panel 72 is not limited to the so-called on-cell type as shown in the figure, and may be an out-sel type or an in-cell type.
  • the liquid crystal layer 74 of the liquid crystal display unit 70 and the liquid crystal layer 49 of the antenna device 40 are separate in FIG. 10, they may be integrated (shared). In this case, the ground conductor 43 and the electrode layer 74B may also be integrated (shared). In this case, the antenna device 40 can be established by utilizing the structure of the liquid crystal display unit 70 in the electronic device U1, and an efficient structure can be realized.
  • the electronic device U1 has a liquid crystal display unit 70 including a liquid crystal layer 74 that can be shared with the liquid crystal layer 49 of the antenna device 40, but the present invention is not limited to this.
  • the electronic device U1 may have a display unit of another type such as an organic EL (Electro-luminescence) display unit instead of the liquid crystal display unit 70.
  • FIG. 11 is a schematic view showing a vehicle 100 as an example of a moving body in which the antenna device 40 of the present embodiment is provided on a window glass in a top view.
  • the antenna device 40 of the present embodiment has a windshield (windshield glass) 110 on the front side of the vehicle 100, a right rear glass 120 on the right rear side of the vehicle 100, and a rear side of the vehicle 100. It is provided on a certain rear glass 130 and a left rear glass 140 on the left rear side of the vehicle 100, respectively.
  • the antenna device 40 is not the windshield 110, the right rear glass 120, the rear glass 130, and the left rear glass 140, respectively, and the antenna device 40 is the windshield 110, the right rear glass 120, the rear glass 130, and the left rear glass. It may be provided in only one of 140, or may be provided in another window glass (for example, a window glass for a sunroof).
  • the antenna device 40 may be electrically connected to an ECU (Electronic Control Unit) (not shown) in the vehicle 100 via the connection terminal 30.
  • the ECU may have the same configuration as the processing device 50 shown in FIG.
  • the antenna device 40 can be mounted on the vehicle 100 by using the window glass of the vehicle 100.
  • the antenna device 40 can be formed in such a manner that the antenna element 41, the feeding line 42, and the like are transparent. Therefore, even when the antenna device 40 is arranged on the window glass, the transparency and translucency of the arranged region can be improved. Does not significantly impair.
  • the antenna device 40 is attached to the window glass of the vehicle 100, but is attached to another part of the vehicle 100 (for example, inside a resin door such as a bumper or a rear door). May be good.
  • the antenna device 40 is provided in the vehicle 100 in the form of a car, but in a vehicle in another form (for example, a motorcycle) or a railroad vehicle such as a ship, a construction machine, an aircraft, or a train. It may be provided on other moving bodies such as. In this case as well, the antenna device 40 may be provided on the window glass that the moving body can have, or may be provided at a place other than the window glass.
  • the antenna device 40 is provided on the window glass of a moving body such as the vehicle 100, but the present invention is not limited to this.
  • the antenna device 40 may be provided on the window glass of a fixed object such as the window glass of a building. In this case, the antenna device 40 may function as an antenna for the base station.
  • FIG. 12 is a schematic view showing another mounting example of the antenna device 40 of the present embodiment.
  • the antenna device 40 of the present embodiment may be provided on the inner mirror 80 of the vehicle.
  • the antenna device 40 may be externally attached to or incorporated in the inner mirror 80.
  • the antenna device 40 may be provided in such a manner that radio waves can be transmitted and received from the back side (front side of the vehicle) of the inner mirror 80.
  • the inner mirror 80 may be a mirror capable of antiglare control.
  • the inner mirror 80 includes an electronic mirror layer (not shown) for changing the reflectance with respect to external light, and the electronic mirror layer includes a liquid crystal layer. Therefore, in this case, the liquid crystal layer 49, the first substrate 46, the second substrate 48, and the like of the antenna device 40 may be shared with the liquid crystal layer of the inner mirror 80 and the substrate for the electrodes. In this case, the antenna device 40 can be established by utilizing the structure of the mirror layer of the inner mirror 80, and an efficient structure can be realized.
  • the antenna device 40 is provided in the indoor inner mirror 80 in FIG. 12, it may be provided in another mirror such as a door mirror outside the vehicle. Also in this case, for example, when the door mirror is an electronic mirror, the liquid crystal layer 49, the first substrate 46, the second substrate 48, etc. of the antenna device 40 may be shared with the liquid crystal layer of the door mirror and the substrate for the electrodes. ..
  • the following excellent effects are particularly exhibited.
  • the power feeding line 42 on the liquid crystal layer 49 can have a function as a phase shifter (phase shifter function) in the high frequency transmission line, so that the phase shifter can be provided.
  • the need to provide is reduced. Therefore, the function as a phased array antenna can be realized even with a configuration without a phase shifter as shown in FIG. In this way, according to the present embodiment, it is possible to reduce the cost and simplify the structure of the phased array antenna.
  • a thin glass substrate for example, a glass substrate having a thickness of 1 mm or less
  • the antenna device 40 It becomes easy to reduce the thickness of the liquid crystal layer 49 and increase the thickness of the liquid crystal layer 49 without changing the thickness of the antenna device 40.
  • the antenna device 40 of the present embodiment it is possible to transparently configure the plurality of antenna elements 41, the feeding line 42, and the ground conductor 43.
  • the transparency of the portion where the antenna device 40 is provided is transparent.
  • the antenna device 40 can be arranged without significantly impairing the lightness and the transparency. Therefore, for example, the antenna device 40 can be provided on a member such as a window glass that requires relatively high transparency and translucency.
  • the antenna device 40 of the present embodiment can function as an in-vehicle antenna by being provided on a moving body such as a vehicle. Since the antenna device 40 can control the directivity as described above, when it is provided on the moving body, it can also be controlled to change the directivity according to the movement of the moving body.
  • the antenna device 40 of the present embodiment has a structure in which the liquid crystal layer 49 is sandwiched between the first substrate 46 and the second substrate 48, another device having the same structure (for example, the liquid crystal display unit 70, etc.) can be used.
  • the liquid crystal display unit 70 etc.
  • FIG. 13 is a schematic explanatory view of the configuration of the communication device 1A including the antenna device 402 according to the second embodiment.
  • components that may be the same as those in the first embodiment described above may be designated by the same reference numerals and description thereof may be omitted.
  • the x-axis, y-axis, and z-axis shown in FIG. 13 should be considered only for the arrangement of the plurality of antenna elements 41.
  • the antenna device 402 according to the present embodiment is provided with a plurality of antenna elements 41 and a feeding line 42 in addition to the plurality of antenna elements 41 and the feeding line 42 with respect to the antenna device 40 according to the first embodiment described above. Mainly different. That is, the antenna device 402 according to the present embodiment is substantially configured to include two sets of a plurality of antenna elements 41 and a feeding line 42.
  • the series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the lower side of FIG. 13 is also referred to as a “first series”, and the plurality of antenna elements 41 and the feeding line 42 on the upper side of FIG.
  • the series related to the set of is also referred to as a "second series”.
  • the plurality of antenna elements 41 and the feeding line 42 of the second series may be formed on the first substrate 46 (see FIG. 2 and the like) together with the plurality of antenna elements 41 and the feeding line 42 of the first series.
  • the ground conductor 43 may be formed on the second substrate 48 (see FIG. 2 and the like) in a manner shared with respect to the first series and the second series.
  • the plurality of antenna elements 41 of the second series are provided so as to be offset in the y-axis direction with respect to the plurality of antenna elements 41 of the first series.
  • the plurality of antenna elements 41 of the second series are not offset in the x-axis direction with respect to the plurality of antenna elements 41 of the first series, but they may be provided offset. ..
  • the power supply line 42 of the second series is electrically connected to the RF circuit unit 523A via the connection terminal 30.
  • the RF circuit unit 523A may be the same as the RF circuit unit 523 according to the first embodiment described above, except that the RF circuit unit 523A is electrically connected to the two series. In the present embodiment, it is assumed that the high frequency phases generated at the first series connection terminal 30 and the second series connection terminal 30 are the same.
  • the power supply line 42 of the second series is electrically connected to the voltage variable circuit 54A via the connection portion 32.
  • the voltage variable circuit 54A is different from the voltage variable circuit 54, but the configuration itself may be the same as that of the voltage variable circuit 54.
  • the feeding lines 42 of the first series and the second series are provided with each other.
  • DC voltage can be applied independently.
  • the dielectric constants of the liquid crystal layers 49 of the first series and the second series can be controlled independently of each other, and as a result, the delay time in each of the high frequency transmission lines of the first series and the second series can be controlled.
  • the excitation phases of the first-series and second-series antenna elements 41 can be made different.
  • the common voltage variable circuit 54 may be electrically connected to the respective feeding lines 42 of the first series and the second series.
  • two sets (two series) of the plurality of antenna elements 41 and the feeding line 42 are provided, but three or more sets may be provided.
  • FIG. 14 is a schematic explanatory view of the configuration of the communication device 1B including the antenna device 403 according to the third embodiment.
  • components that may be the same as those in the first embodiment described above may be designated by the same reference numerals and description thereof may be omitted.
  • the x-axis, y-axis, and z-axis shown in FIG. 14 should be considered only for the arrangement of the plurality of antenna elements 41.
  • the antenna device 403 according to the present embodiment is provided with a plurality of antenna elements 41 and a feeding line 42 in addition to the plurality of antenna elements 41 and the feeding line 42 with respect to the antenna device 40 according to the first embodiment described above. Mainly different. That is, the antenna device 403 according to the present embodiment is substantially configured to include two sets of a plurality of antenna elements 41 and a feeding line 42.
  • the series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the lower side of FIG. 14 is also referred to as a “first series”, and is referred to in FIG.
  • the series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the upper side is also referred to as a "second series”.
  • the plurality of antenna elements 41 and the feeding line 42 of the second series may be formed on the first substrate 46 (see FIG. 2 and the like) together with the plurality of antenna elements 41 and the feeding line 42 of the first series.
  • the ground conductor 43 may be formed on the second substrate 48 (see FIG. 2 and the like) in a manner shared with respect to the first series and the second series.
  • the plurality of antenna elements 41 of the second series are provided so as to be offset in the y-axis direction with respect to the plurality of antenna elements 41 of the first series.
  • the plurality of antenna elements 41 of the second series are not offset in the x-axis direction with respect to the plurality of antenna elements 41 of the first series, but they may be provided offset. ..
  • the power supply line 42 of the second series is electrically connected to the RF circuit unit 523A via the connection terminal 30.
  • the RF circuit unit 523A may be the same as the RF circuit unit 523 according to the first embodiment described above, except that the RF circuit unit 523A is electrically connected to the two series.
  • the power supply line 42 of the second series is electrically connected to the voltage variable circuit 54B via the connection portion 32.
  • the phase shifter 90 is provided on each of the first-series and second-series power supply lines 42. Therefore, the phases of the high frequencies generated at the connection terminals 30 of the first series and the connection terminals 30 of the second series can be shifted in any manner.
  • the voltage variable circuit 54 and the voltage variable circuit 54B are provided, DC voltages can be applied to the feeding lines 42 of the first series and the second series independently of each other. This makes it possible to control the dielectric constants of the liquid crystal layers 49 of the first series and the second series independently of each other.
  • the phase shifter 90 is provided on each of the feeding lines 42 of the first series and the second series, the dielectric constant of the liquid crystal layer 49 is commonly changed in each of the first series and the second series.
  • the phase difference between the first series and the second series can be set by the phase shifter 90.
  • two-dimensional scanning becomes possible by changing the amount of phase shift by the phase shifter 90 while changing the dielectric constant of the liquid crystal layer 49.
  • phase shifter 90 is provided, the two-dimensional scanning is performed while reducing the number of phase shifters as compared with the case where the phase shifter is provided for each antenna element 41 (see FIG. 6B). It can be possible.
  • two sets (two series) of the plurality of antenna elements 41 and the feeding line 42 are provided, but three or more sets may be provided.
  • phase shifter 90 is provided in each of the first series and the second series, but the phase shifter 90 may be provided in only one of them.
  • the voltage variable circuit 54 and the voltage variable circuit 54B are separately provided, but the present invention is not limited to this.
  • the voltage variable circuit 54 may be shared with respect to the first series and the second series as in the communication device 1C according to the modification shown in FIG. In this case, the effect of reducing the number of parts can be obtained.
  • only one connection unit 32 may be shared by the first series and the second series.

Abstract

The purpose of the present invention is to reduce the cost of a phased array antenna and make the structure thereof simple. Disclosed is an antenna device including: a first substrate; a second substrate opposed to the first substrate; a liquid crystal layer provided between the first substrate and the second substrate; a power supply line formed on the first substrate so as to overlap the liquid crystal layer as viewed in a direction orthogonal to the first substrate; a plurality of antenna elements that are formed on the first substrate and that are electrically connected to the power supply line; a ground conductor formed on the second substrate; and a connecting section that is electrically connected to the power supply line and that can be electrically connected to a DC power supply.

Description

アンテナ装置、電子機器、窓ガラス、及び移動体Antenna devices, electronics, windowpanes, and moving objects
 本開示は、アンテナ装置、電子機器、窓ガラス、及び移動体に関する。 This disclosure relates to antenna devices, electronic devices, windowpanes, and moving objects.
 配列された複数のアンテナ素子のそれぞれの励起信号の位相を移相器を介して制御することで、アンテナ全体の放射パターン(指向性)を制御するフェーズドアレイアンテナが知られている。 A phased array antenna is known that controls the radiation pattern (directivity) of the entire antenna by controlling the phase of each excitation signal of a plurality of arranged antenna elements via a phase shifter.
国際公開第2018/225824号パンフレットInternational Publication No. 2018/225824 Pamphlet
 しかしながら、上記のような従来技術では、複数のアンテナ素子のそれぞれに対して移相器が設けられるので、コストの低減や構造の簡素化を図ることが難しい。 However, in the conventional technology as described above, since the phase shifter is provided for each of the plurality of antenna elements, it is difficult to reduce the cost and simplify the structure.
 そこで、1つの側面では、本発明は、フェーズドアレイアンテナに関してコストの低減や構造の簡素化を図ることを目的とする。 Therefore, on one aspect, the present invention aims to reduce the cost and simplify the structure of the phased array antenna.
 1つの側面では、第1基板と、
 前記第1基板に垂直な方向で前記第1基板に対向する第2基板と、
 前記第1基板と前記第2基板との間に設けられる液晶層と、
 前記第1基板に垂直な方向に視て前記液晶層に重なる態様で前記第1基板に形成される給電線路と、
 前記第1基板に形成され、前記給電線路に電気的に接続される複数のアンテナ素子と、 前記第2基板に形成される地導体と、
 前記給電線路に電気的に接続され、直流電源に電気的に接続可能な接続部とを含む、アンテナ装置が提供される。
On one side, the first substrate and
A second substrate facing the first substrate in a direction perpendicular to the first substrate, and
A liquid crystal layer provided between the first substrate and the second substrate,
A feeding line formed on the first substrate in a manner perpendicular to the first substrate and overlapping the liquid crystal layer.
A plurality of antenna elements formed on the first substrate and electrically connected to the feeding line, and a ground conductor formed on the second substrate.
An antenna device is provided that includes a connection that is electrically connected to the power supply line and is electrically connectable to a DC power source.
 1つの側面では、本発明によれば、フェーズドアレイアンテナに関してコストの低減や構造の簡素化を図ることが可能となる。 On one side, according to the present invention, it is possible to reduce the cost and simplify the structure of the phased array antenna.
本発明の第1実施形態によるアンテナ装置を概略的に示す平面図である。It is a top view which shows typically the antenna device by 1st Embodiment of this invention. 図1のラインA-Aに沿った断面図である。It is sectional drawing which follows the line AA of FIG. 図1のラインB-Bに沿った断面図である。It is sectional drawing which follows the line BB of FIG. 第1実施形態によるアンテナ装置を含む通信装置の構成の概略的な説明図である。It is a schematic explanatory drawing of the structure of the communication device including the antenna device by 1st Embodiment. 液晶層の誘電率の変化原理の説明図である。It is explanatory drawing of the change principle of the dielectric constant of a liquid crystal layer. 液晶層の誘電率の変化原理の説明図である。It is explanatory drawing of the change principle of the dielectric constant of a liquid crystal layer. フェーズドアレイアンテナの基本原理の説明図である。It is explanatory drawing of the basic principle of a phased array antenna. 従来のフェーズドアレイアンテナの説明図である。It is explanatory drawing of the conventional phased array antenna. 本発明による電子機器の構成の一例を示す概略図である。It is the schematic which shows an example of the structure of the electronic device by this invention. 本発明による指向性制御の説明図である。It is explanatory drawing of the directivity control by this invention. 第1実施形態によるアンテナ装置を備える電子機器の一例の外観を示す概略図である。It is the schematic which shows the appearance of an example of the electronic device provided with the antenna device by 1st Embodiment. 図9のラインC-Cに沿った断面図である。It is sectional drawing along the line CC of FIG. 第1実施形態によるアンテナ装置が窓ガラスに設けられる移動体の一例としての車両を上面視で示す概略図である。FIG. 5 is a schematic view showing a vehicle as an example of a moving body in which the antenna device according to the first embodiment is provided on a window glass in a top view. 第1実施形態によるアンテナ装置の他の搭載例を示す概略図である。It is the schematic which shows the other mounting example of the antenna device by 1st Embodiment. 本発明の第2実施形態によるアンテナ装置を含む通信装置の構成の概略的な説明図である。It is a schematic explanatory drawing of the structure of the communication device including the antenna device by 2nd Embodiment of this invention. 本発明の第3実施形態によるアンテナ装置を含む通信装置の構成の概略的な説明図である。It is a schematic explanatory drawing of the structure of the communication device including the antenna device according to 3rd Embodiment of this invention. 第3実施形態の変形例を示す図である。It is a figure which shows the modification of the 3rd Embodiment.
 以下、添付図面を参照しながら各実施形態について詳細に説明する。なお、添付図面では、見易さのために、複数存在する同一属性の部位には、一部のみしか参照符号が付されていない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the attached drawings. In the attached drawings, for the sake of readability, only a part of a plurality of parts having the same attribute may have reference numerals.
 [第1実施形態]
 図1は、本発明の第1実施形態によるアンテナ装置40を概略的に示す平面図であり、図2は、図1のラインA-Aに沿った断面図である。図3は、図1のラインB-Bに沿った断面図である。図1には、直交する3軸(x軸、y軸、及びz軸)が示される。以下では、説明の都合上、z軸方向を「上下方向」と称する場合があるが、アンテナ装置40の向きを限定するものではない。
[First Embodiment]
FIG. 1 is a plan view schematically showing an antenna device 40 according to the first embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. FIG. 3 is a cross-sectional view taken along the line BB of FIG. FIG. 1 shows three orthogonal axes (x-axis, y-axis, and z-axis). Hereinafter, for convenience of explanation, the z-axis direction may be referred to as the “vertical direction”, but the direction of the antenna device 40 is not limited.
 アンテナ装置40は、図1から図3に示すように、第1基板46と、第2基板48と、液晶層49とを含む。第1基板46、第2基板48、及び液晶層49は、第1基板46と第2基板48の間に液晶層49が挟まれる態様で積層構造を形成する。 As shown in FIGS. 1 to 3, the antenna device 40 includes a first substrate 46, a second substrate 48, and a liquid crystal layer 49. The first substrate 46, the second substrate 48, and the liquid crystal layer 49 form a laminated structure in such a manner that the liquid crystal layer 49 is sandwiched between the first substrate 46 and the second substrate 48.
 第1基板46は、例えばガラス基板により形成される。第1基板46は、好ましくは、厚さが0.2mm以上1mm以下である。これにより、アンテナ装置40の薄型を図ることができる。従って、アンテナ装置40の厚みが同じであれば、第1基板46が薄い分だけ液晶層49の厚み(領域)を増やすことができる。液晶層49の厚みは、大きいほど誘電率の変化量を大きくすることができる点(液晶層49上の給電線路42に持たせる後述の移相器としての機能、を高めることができる点)で、有利である。液晶層49の厚みは、0.1μm以上、特に1μm以上が好ましく、λg/5以下、特にλg/10以下であることが好ましい。ここで、λgは、導体が形成される基材の誘電性や透磁性による波長短縮率をkとすると、それらの影響を考慮した実効的な波長であり、真空中における波長λ0を用いて、例えばλg=k・λ0として表すことができる。なお、液晶層49の誘電率の変化については後述する。また、アンテナ性能の点で、第1基板のTanδは0.01以下であることが好ましく、比誘電率は2~10であることが好ましい。 The first substrate 46 is formed of, for example, a glass substrate. The thickness of the first substrate 46 is preferably 0.2 mm or more and 1 mm or less. As a result, the antenna device 40 can be made thinner. Therefore, if the thickness of the antenna device 40 is the same, the thickness (region) of the liquid crystal layer 49 can be increased by the amount that the first substrate 46 is thin. As the thickness of the liquid crystal layer 49 increases, the amount of change in the dielectric constant can be increased (the function of the power supply line 42 on the liquid crystal layer 49 as a phase shifter described later can be enhanced). , Advantageous. The thickness of the liquid crystal layer 49 is preferably 0.1 μm or more, particularly preferably 1 μm or more, and preferably λg / 5 or less, particularly λg / 10 or less. Here, λg is an effective wavelength in consideration of the influence of the wavelength shortening rate due to the dielectric property and magnetic permeability of the base material on which the conductor is formed as k, and the wavelength λ0 in vacuum is used. For example, it can be expressed as λg = k · λ0. The change in the dielectric constant of the liquid crystal layer 49 will be described later. Further, in terms of antenna performance, the Tan δ of the first substrate is preferably 0.01 or less, and the relative permittivity is preferably 2 to 10.
 第1基板46には、複数のアンテナ素子41と、給電線路42とが形成される。複数のアンテナ素子41及び給電線路42は、任意の態様で形成されてよく、一体的に形成されてもよい。複数のアンテナ素子41及び給電線路42は、第1基板46における液晶層49側の表面に形成される。 A plurality of antenna elements 41 and a feeding line 42 are formed on the first substrate 46. The plurality of antenna elements 41 and the feeding line 42 may be formed in any manner, or may be integrally formed. The plurality of antenna elements 41 and the feeding line 42 are formed on the surface of the first substrate 46 on the liquid crystal layer 49 side.
 図1に示す例では、複数のアンテナ素子41は、x軸方向に等間隔に配列され、給電線路42は、x軸方向に平行に延在する。なお、図1に示す例では、複数のアンテナ素子41は、4つであるが、2つ以上の任意の数であってよい。 In the example shown in FIG. 1, a plurality of antenna elements 41 are arranged at equal intervals in the x-axis direction, and the feeding line 42 extends parallel to the x-axis direction. In the example shown in FIG. 1, the plurality of antenna elements 41 is four, but may be any number of two or more.
 複数のアンテナ素子41及び給電線路42は、好ましくは、透明である。なお、本明細書において、「透明」とは、可視光の透過率が50%以上である状態であるが、好ましくは、可視光の透過率が60%以上であり、より好ましくは、可視光の透過率が70%以上である。この場合、例えば比較的高い透視性及び透光性が必要な箇所に対しても、当該透視性及び透光性を大きく損なわない態様でアンテナ装置40を設けることができる。また、透視性が高いことでサイズの制約を受けにくく、アンテナ素子41の数を増やすことが容易となる。その結果、アンテナ開口面積を大きくし、アンテナ性能を向上させることができる。 The plurality of antenna elements 41 and the feeding line 42 are preferably transparent. In the present specification, "transparent" means a state in which the transmittance of visible light is 50% or more, but preferably the transmittance of visible light is 60% or more, and more preferably visible light. The transmittance of is 70% or more. In this case, for example, the antenna device 40 can be provided even in a place where relatively high transparency and translucency are required, in a manner that does not significantly impair the transparency and translucency. Further, since the transparency is high, the size is not restricted easily, and the number of antenna elements 41 can be easily increased. As a result, the antenna opening area can be increased and the antenna performance can be improved.
 複数のアンテナ素子41及び給電線路42としては、例えば酸化スズドープ酸化インジウム(ITO)、酸化スズなどの酸化物からなる導電体やLow-Eのような多層からなる導電体を使用できる。Low-Eとは、Low Emissivityの略であり、導電性の透明酸化膜や、膜厚約10nmの銀膜を誘電体層で挟み、可視域で低反射率、赤外域で高反射率とした銀多層膜をコートしたものが知られている。複数のアンテナ素子41及び給電線路42の厚さは、特に限定されるものではないが、一例として0.002mm~0.020mmである。なお、複数のアンテナ素子41及び給電線路42の厚さが0.020mm以下であれば、エッチング等によるパターニングがしやすくなる。アンテナ素子41の導電性は、性能の点で、シート抵抗が、10Ω/sq以下であることが好ましく、1Ω/sq以下であることがより好ましく、0.1Ω/sq以下であることが最も好ましい。また、給電線路42の導電性は、性能の点で、シート抵抗が、10Ω/sq以下であることが好ましく、1Ω/sq以下であることがより好ましく、0.1Ω/sq以下であることが最も好ましい。 As the plurality of antenna elements 41 and the feeding line 42, for example, a conductor made of oxides such as tin oxide-doped indium oxide (ITO) and tin oxide, or a conductor made of multiple layers such as Low-E can be used. Low-E is an abbreviation for Low Emissivity, in which a conductive transparent oxide film and a silver film having a film thickness of about 10 nm are sandwiched between dielectric layers to have low reflectance in the visible region and high reflectance in the infrared region. Those coated with a silver multilayer film are known. The thickness of the plurality of antenna elements 41 and the feeding line 42 is not particularly limited, but is 0.002 mm to 0.020 mm as an example. If the thickness of the plurality of antenna elements 41 and the feeding line 42 is 0.020 mm or less, patterning by etching or the like becomes easy. In terms of performance, the conductivity of the antenna element 41 preferably has a sheet resistance of 10 Ω / sq or less, more preferably 1 Ω / sq or less, and most preferably 0.1 Ω / sq or less. .. Further, the conductivity of the feeding line 42 is preferably such that the sheet resistance is 10 Ω / sq or less, more preferably 1 Ω / sq or less, and 0.1 Ω / sq or less in terms of performance. Most preferred.
 複数のアンテナ素子41のそれぞれのサイズは、任意であるが、利用する周波数帯に応じて適合されてよい。また、複数のアンテナ素子41のそれぞれの形状は、図1では、矩形であるが、円形等のような他の形状であってもよい。 The size of each of the plurality of antenna elements 41 is arbitrary, but may be adapted according to the frequency band to be used. Further, the shape of each of the plurality of antenna elements 41 is rectangular in FIG. 1, but may be another shape such as a circle.
 複数のアンテナ素子41は、それぞれ、メッシュ状に形成されてもよい。複数のアンテナ素子41のそれぞれをメッシュ状に形成することにより、アンテナ素子41の透視性及び透光性を高めることができる。メッシュの材料は、銅や銀であることが導電性能と透明性の点で好ましい。 Each of the plurality of antenna elements 41 may be formed in a mesh shape. By forming each of the plurality of antenna elements 41 in a mesh shape, the transparency and translucency of the antenna element 41 can be enhanced. The material of the mesh is preferably copper or silver in terms of conductivity and transparency.
 複数のアンテナ素子41のそれぞれがメッシュ状に形成される場合、メッシュの目は方形であってもよく、菱形であってもよい。メッシュの目を方形に形成する場合、メッシュの目は正方形であることが好ましい。メッシュの目が正方形であれば、意匠性が良い。また、自己組織化法によるランダム形状でもよい。ランダム形状にすることでモアレを防ぐことができる。メッシュの線幅は、5~30μmが好ましく、6~15μmがより好ましい。メッシュの線間隔は、50~500μmが好ましく、100~300μmがより好ましい。 When each of the plurality of antenna elements 41 is formed in a mesh shape, the mesh may be square or rhombic. When forming the mesh mesh into a square shape, the mesh mesh is preferably square. If the mesh has square eyes, the design is good. Further, a random shape by a self-organizing method may be used. Moire can be prevented by making it a random shape. The line width of the mesh is preferably 5 to 30 μm, more preferably 6 to 15 μm. The line spacing of the mesh is preferably 50 to 500 μm, more preferably 100 to 300 μm.
 また、給電線路42についても、複数のアンテナ素子41のそれぞれと同様に、メッシュ状に形成されてもよい。 Further, the feeding line 42 may also be formed in a mesh shape like each of the plurality of antenna elements 41.
 給電線路42は、一端側が分岐して複数のアンテナ素子41のそれぞれに接続されるとともに、他端が接続端子30に電気的に接続される。 One end of the power supply line 42 is branched and connected to each of the plurality of antenna elements 41, and the other end is electrically connected to the connection terminal 30.
 ここで、接続端子30とアンテナ素子41との間の給電線路42に沿った距離(電気長)は、複数のアンテナ素子41のそれぞれごとに異なる。図1では、給電線路42は、複数のアンテナ素子41のそれぞれに分岐する位置までは、x軸方向に平行に延在するが、電気長の差を増加させるために、y軸方向に蛇行しながらx軸方向に延在してもよい。 Here, the distance (electrical length) between the connection terminal 30 and the antenna element 41 along the feeding line 42 is different for each of the plurality of antenna elements 41. In FIG. 1, the feeding line 42 extends parallel to the x-axis direction up to the position where it branches into each of the plurality of antenna elements 41, but meanders in the y-axis direction in order to increase the difference in electrical length. However, it may extend in the x-axis direction.
 第2基板48は、第1基板46と同様、例えばガラス基板により形成される。なお、第2基板48は、第1基板46と実質的に同じ構成であってよい。 The second substrate 48 is formed of, for example, a glass substrate, like the first substrate 46. The second substrate 48 may have substantially the same configuration as the first substrate 46.
 第2基板48には、地導体43が形成される。地導体43は、第2基板48における液晶層49側の表面に形成される。地導体43は、第2基板48の全体にわたり形成されてもよいし、給電線路42(及び複数のアンテナ素子41)に対して上下方向で対向する範囲に対して形成されてもよい。 A ground conductor 43 is formed on the second substrate 48. The ground conductor 43 is formed on the surface of the second substrate 48 on the liquid crystal layer 49 side. The ground conductor 43 may be formed over the entire second substrate 48, or may be formed in a range that faces the feeding line 42 (and the plurality of antenna elements 41) in the vertical direction.
 地導体43は、好ましくは、透明である。この場合、例えば比較的高い透視性及び透光性が必要な箇所に対しても、当該透視性及び透光性を大きく損なわない態様でアンテナ装置40を設けることができる。 The ground conductor 43 is preferably transparent. In this case, for example, the antenna device 40 can be provided even in a place where relatively high transparency and translucency are required, in a manner that does not significantly impair the transparency and translucency.
 地導体43としては、上述した複数のアンテナ素子41と同様、例えば酸化スズドープ酸化インジウム(ITO)、酸化スズなどの酸化物からなる導電体やLow-Eのような多層からなる導電体を使用できる。 As the ground conductor 43, similarly to the plurality of antenna elements 41 described above, for example, a conductor made of oxides such as tin oxide-doped indium oxide (ITO) and tin oxide, and a conductor made of multiple layers such as Low-E can be used. ..
 地導体43は、いわゆるベタパターンで形成されてもよいが、好ましくは、メッシュ状に形成される。地導体43をメッシュ状に形成することにより、地導体43の透視性及び透光性を高めることができる。メッシュの材料は、銅であることが導電性能と透明性の点で好ましい。 The ground conductor 43 may be formed in a so-called solid pattern, but is preferably formed in a mesh shape. By forming the ground conductor 43 in a mesh shape, the transparency and translucency of the ground conductor 43 can be enhanced. The mesh material is preferably copper in terms of conductivity and transparency.
 地導体43がメッシュ状に形成される場合、複数のアンテナ素子41のそれぞれの場合と同様、メッシュの目は方形であってもよく、菱形であってもよい。 When the ground conductor 43 is formed in a mesh shape, the mesh may be square or rhombic as in the case of each of the plurality of antenna elements 41.
 液晶層49は、第1基板46と第2基板48の間に設けられる。液晶層49は、誘電異方性型である。液晶層49の詳細は、後述する。 The liquid crystal layer 49 is provided between the first substrate 46 and the second substrate 48. The liquid crystal layer 49 is a dielectric anisotropy type. Details of the liquid crystal layer 49 will be described later.
 図4は、本実施形態によるアンテナ装置40を含む通信装置1の構成の一例を示す概略的な説明図である。なお、図4に示すx軸、y軸、及びz軸は、複数のアンテナ素子41の配列に関してのみ考慮されたい。 FIG. 4 is a schematic explanatory view showing an example of the configuration of the communication device 1 including the antenna device 40 according to the present embodiment. Note that the x-axis, y-axis, and z-axis shown in FIG. 4 should be considered only for the arrangement of the plurality of antenna elements 41.
 図4に示すように、アンテナ装置40は、外部接続端子として、図1に示した接続端子30に加えて、接続部32、33を含む。接続部32は、電圧可変回路54に電気的に接続可能であり、接続部33は、グランドに電気的に接続可能である。また、接続端子30は、RF(Radio Frequency)回路部523に電気的に接続可能である。 As shown in FIG. 4, the antenna device 40 includes connection portions 32 and 33 as external connection terminals in addition to the connection terminal 30 shown in FIG. The connection unit 32 can be electrically connected to the voltage variable circuit 54, and the connection unit 33 can be electrically connected to the ground. Further, the connection terminal 30 can be electrically connected to the RF (Radio Frequency) circuit unit 523.
 このようにして、アンテナ装置40は、RF回路部523や電圧可変回路54等に電気的に接続されることで、通信装置1の一要素として機能することができる。すなわち、図4に示す通信装置1では、接続端子30は、RF回路部523に電気的に接続され、給電線路42は、接続部32を介して電圧可変回路54に電気的に接続され、地導体43は、接続部33を介してグランドに電気的に接続される。 In this way, the antenna device 40 can function as an element of the communication device 1 by being electrically connected to the RF circuit unit 523, the voltage variable circuit 54, and the like. That is, in the communication device 1 shown in FIG. 4, the connection terminal 30 is electrically connected to the RF circuit unit 523, and the power supply line 42 is electrically connected to the voltage variable circuit 54 via the connection unit 32. The conductor 43 is electrically connected to the ground via the connecting portion 33.
 電圧可変回路54は、可変の直流電圧を生成する。直流電圧は、接続部32、33を介して給電線路42及び地導体43の間に印加される。この結果、液晶層49に電圧可変回路54からの直流電圧が印加される。 The voltage variable circuit 54 generates a variable DC voltage. The DC voltage is applied between the feeding line 42 and the ground conductor 43 via the connecting portions 32 and 33. As a result, the DC voltage from the voltage variable circuit 54 is applied to the liquid crystal layer 49.
 なお、図4に示す例では、接続部32は、給電線路42に配線により接続されているが、複数のアンテナ素子41のうちの、任意の1つに配線により接続されてもよい。このように、接続部32は、給電線路42に電気的に接続される限り、接続部32からの配線は任意の態様で形成されてもよい。 In the example shown in FIG. 4, the connecting portion 32 is connected to the feeding line 42 by wiring, but may be connected to any one of the plurality of antenna elements 41 by wiring. As described above, as long as the connecting portion 32 is electrically connected to the feeding line 42, the wiring from the connecting portion 32 may be formed in any manner.
 RF回路部523は、給電線路42を介して複数のアンテナ素子41から送信すべき無線信号(RF信号)を生成する送信処理や、アンテナ装置40により受信した無線信号に対して受信処理を行う。RF回路部523の更なる詳細は、後述する。 The RF circuit unit 523 performs transmission processing for generating radio signals (RF signals) to be transmitted from a plurality of antenna elements 41 via the feeding line 42, and reception processing for the radio signals received by the antenna device 40. Further details of the RF circuit unit 523 will be described later.
 図4に示す通信装置1によれば、電圧可変回路54が可変直流電源として機能し、アンテナ装置40の液晶層49に、可変の直流電圧の印加が可能である。液晶層49に印加される直流電圧の大きさが変化すると、液晶層49の誘電率が変化する。これにより、アンテナ装置40の指向性を変化させることができる。この原理については、後に詳説する。 According to the communication device 1 shown in FIG. 4, the voltage variable circuit 54 functions as a variable DC power supply, and a variable DC voltage can be applied to the liquid crystal layer 49 of the antenna device 40. When the magnitude of the DC voltage applied to the liquid crystal layer 49 changes, the dielectric constant of the liquid crystal layer 49 changes. As a result, the directivity of the antenna device 40 can be changed. This principle will be described in detail later.
 なお、図4に示す例では、アンテナ装置40は通信装置1に利用されているが、これに限られない。アンテナ装置40は、レーダ装置(例えばミリ波レーダ装置)に利用されてもよい。 In the example shown in FIG. 4, the antenna device 40 is used for the communication device 1, but the present invention is not limited to this. The antenna device 40 may be used in a radar device (for example, a millimeter wave radar device).
 図5A及び図5Bは、液晶層49の誘電率の変化原理の説明図であり、液晶層49が断面視で非常に模式的に示される。図5A及び図5Bには、電圧可変回路54が可変直流電源として図示されている。 5A and 5B are explanatory views of the principle of changing the dielectric constant of the liquid crystal layer 49, and the liquid crystal layer 49 is shown very schematically in a cross-sectional view. In FIGS. 5A and 5B, the voltage variable circuit 54 is illustrated as a variable DC power supply.
 図5A及び図5Bに示すように、液晶層49は、印加される直流電圧の大きさに応じて液晶分子の配向方向が変化する。具体的には、図5Aに示すように、印加される直流電圧の大きさがゼロであるとき、液晶分子491の長手方向は、x軸方向に平行となる。この場合、高周波が感じる液晶の誘電率は、短軸方向の誘電率εr2となる。他方、図5Bに示すように、印加される直流電圧の大きさが、0よりも有意に大きい所定値Vmax(例えば印加可能な最大値)であるとき、液晶分子491の長手方向は、z軸方向に平行となる。この場合、高周波が感じる液晶の誘電率は、長軸方向の誘電率εr1となる。本実施形態では、液晶層49は、長軸方向の誘電率εr1と短軸方向の誘電率εr2とが異なる特性、すなわち異方性を有する。このため、印加される直流電圧の大きさに応じて液晶層49の誘電率が変化する。 As shown in FIGS. 5A and 5B, the orientation direction of the liquid crystal molecules of the liquid crystal layer 49 changes according to the magnitude of the applied DC voltage. Specifically, as shown in FIG. 5A, when the magnitude of the applied DC voltage is zero, the longitudinal direction of the liquid crystal molecule 491 is parallel to the x-axis direction. In this case, the dielectric constant of the liquid crystal felt by the high frequency is the dielectric constant εr2 in the minor axis direction. On the other hand, as shown in FIG. 5B, when the magnitude of the applied DC voltage is a predetermined value Vmax (for example, the maximum value that can be applied) significantly larger than 0, the longitudinal direction of the liquid crystal molecule 491 is the z-axis. It becomes parallel to the direction. In this case, the dielectric constant of the liquid crystal felt by the high frequency is the dielectric constant εr1 in the long axis direction. In the present embodiment, the liquid crystal layer 49 has a characteristic that the dielectric constant εr1 in the long axis direction and the dielectric constant εr2 in the minor axis direction are different, that is, anisotropy. Therefore, the dielectric constant of the liquid crystal layer 49 changes according to the magnitude of the applied DC voltage.
 なお、印加される直流電圧の大きさが0よりも大きく所定値Vmaxよりも小さい場合は、液晶層49は、液晶分子の配列方向に応じて、短軸方向の誘電率εr2と長軸方向の誘電率εr1のいずれとも異なる誘電率を示す。従って、液晶層49に印加される直流電圧の大きさを多段階に変化させることで、液晶層49の誘電率を多段階に変化させることができる。 When the magnitude of the applied DC voltage is larger than 0 and smaller than the predetermined value Vmax, the liquid crystal layer 49 has a dielectric constant εr2 in the minor axis direction and a dielectric constant in the major axis direction, depending on the arrangement direction of the liquid crystal molecules. It shows a different dielectric constant from any of the dielectric constants εr1. Therefore, the dielectric constant of the liquid crystal layer 49 can be changed in multiple steps by changing the magnitude of the DC voltage applied to the liquid crystal layer 49 in multiple steps.
 なお、液晶層49の厚みが大きいほど、直流電圧が印加された際の液晶層49の誘電率の変化を大きくできる点で有利であるが、アンテナ装置40の厚み(z軸方向の寸法)が増加する点で不利である。 The larger the thickness of the liquid crystal layer 49, the more advantageous it is that the change in the dielectric constant of the liquid crystal layer 49 when a DC voltage is applied can be increased. However, the thickness of the antenna device 40 (dimension in the z-axis direction) is large. It is disadvantageous in that it increases.
 本実施形態では、このような液晶層49の誘電率の異方性を利用して、液晶層49上の給電線路42に移相器としての機能(以下、「移相器機能」とも称する)を持たせることができる。そして、本実施形態では、液晶層49上の給電線路42に移相器機能を持たせることで、移相器を用いずにアンテナ装置40をフェーズドアレイアンテナ(位相走査アンテナ)として機能させることができる。 In the present embodiment, utilizing the anisotropy of the dielectric constant of the liquid crystal layer 49, the power supply line 42 on the liquid crystal layer 49 functions as a phase shifter (hereinafter, also referred to as “phase shifter function”). Can be given. Then, in the present embodiment, by giving the feeding line 42 on the liquid crystal layer 49 a phase shifter function, the antenna device 40 can function as a phased array antenna (phase scanning antenna) without using the phase shifter. it can.
 図6Aは、フェーズドアレイアンテナの基本原理の説明図である。図6Aでは、直交する3軸(x1軸、y1軸、及びz1軸)が示される。 FIG. 6A is an explanatory diagram of the basic principle of the phased array antenna. In FIG. 6A, three orthogonal axes (x1 axis, y1 axis, and z1 axis) are shown.
 図6Aでは、4つのアンテナ41-1~41-4がx1軸に沿って等間隔に(距離dのピッチで)配置されている。一般的に知られているように、指向性を表すベクトルRの角度θで、すべてのアンテナ41-1~41-4からの寄与が同相になるようにアンテナ41-1~41-4のそれぞれを励振する場合には、n番目(n=1,2,3,4)の素子の励振位相φnは、
φn=―k×n×d×sinθ
となる。
ここで、k=2π/λ(自由空間での波数)であり、dは、アンテナ41-1~41-4間の距離(x1軸に沿った距離)である。
In FIG. 6A, four antennas 41-1 to 41-4 are arranged at equal intervals (at a pitch of distance d) along the x1 axis. As is generally known, at the angle θ of the vector R representing directivity, each of the antennas 41-1 to 41-4 is provided so that the contributions from all the antennas 41-1 to 41-4 are in phase. When the excitation phase φn of the nth (n = 1, 2, 3, 4) element is excited,
φn = −k 0 × n × d × sin θ
Will be.
Here, k 0 = 2π / λ (wave number in free space), and d is the distance between the antennas 41-1 to 41-4 (distance along the x1 axis).
 この場合、励振位相φnを変化させることができれば、指向性を表す角度θが変化するので、アンテナ41-1~41-4の指向性が変化することが分かる。 In this case, if the excitation phase φn can be changed, the angle θ representing the directivity changes, so that it can be seen that the directivity of the antennas 41-1 to 41-4 changes.
 この点、励振位相φnを変化させるための構成として、従来のフェーズドアレイアンテナでは、移相器が用いられるのが一般的である。例えば、図6Bに示す従来のフェーズドアレイアンテナでは、分配/合成回路とアンテナ41-1~41-4のそれぞれの間(すなわち給電線路の途中)に移相器90が設けられる。 In this respect, as a configuration for changing the excitation phase φn, a phase shifter is generally used in the conventional phased array antenna. For example, in the conventional phased array antenna shown in FIG. 6B, a phase shifter 90 is provided between the distribution / synthesis circuit and the antennas 41-1 to 41-4 (that is, in the middle of the feeding line).
 これに対して、本実施形態では、図6Aの4つのアンテナ41-1~41-4を、図1に示した4つのアンテナ素子41のそれぞれにあてはめると、励振位相φnは、液晶層49に印加される直流電圧(及びそれによる誘電率)により制御できる。具体的には、上述のように、液晶層49に印加される直流電圧を変化させると、それに応じて液晶層49の誘電率が変化する。液晶層49の誘電率が変化すると、励振位相φnが変化する。これは、高周波が高周波伝送線路を進む際の波長及び遅延時間は、高周波伝送線路を構成する誘電体(本例では、液晶層49)の誘電率に応じて変化するためである。つまり、アンテナ41-1~41-4間の距離dを変えない状態で波長を変化させることにより、アンテナ41-1~41-4における励振位相φnを変化させている。なお、誘電率が大きくなるほど、高周波の伝搬速度が遅くなり、その分だけ波長は短くなる。 On the other hand, in the present embodiment, when the four antennas 41-1 to 41-4 of FIG. 6A are applied to each of the four antenna elements 41 shown in FIG. 1, the excitation phase φn becomes the liquid crystal layer 49. It can be controlled by the applied DC voltage (and its dielectric constant). Specifically, as described above, when the DC voltage applied to the liquid crystal layer 49 is changed, the dielectric constant of the liquid crystal layer 49 changes accordingly. When the dielectric constant of the liquid crystal layer 49 changes, the excitation phase φn changes. This is because the wavelength and the delay time when the high frequency travels on the high frequency transmission line change according to the dielectric constant of the dielectric material (in this example, the liquid crystal layer 49) constituting the high frequency transmission line. That is, the excitation phase φn in the antennas 41-1 to 41-4 is changed by changing the wavelength without changing the distance d between the antennas 41-1 to 41-4. The larger the dielectric constant, the slower the propagation speed of high frequencies, and the shorter the wavelength.
 このようにして、励振位相φnが変化すると、指向性を表す角度θが変化するので、4つのアンテナ素子41の指向性、つまりアンテナ装置40の指向性が変化することになる。これにより、本実施形態では、液晶層49上の給電線路42に、高周波伝送線路における移相器としての機能(すなわち上述した移相器機能)を持たせることができる。この結果、図6Bに示すような従来のフェーズドアレイアンテナで必要とされた移相器90が不要となり、コストの低減や構造の簡素化を図ることが可能となる。 In this way, when the excitation phase φn changes, the angle θ representing the directivity changes, so that the directivity of the four antenna elements 41, that is, the directivity of the antenna device 40 changes. Thereby, in the present embodiment, the power feeding line 42 on the liquid crystal layer 49 can have a function as a phase shifter in the high frequency transmission line (that is, the above-mentioned phase shifter function). As a result, the phase shifter 90 required for the conventional phased array antenna as shown in FIG. 6B becomes unnecessary, and the cost can be reduced and the structure can be simplified.
 なお、図6Aでは、原理の説明上、一例として、x1z1面内での指向性について説明したが、y1z1面内での指向性についても同様である。 Note that, in FIG. 6A, the directivity in the x1z1 plane has been described as an example for explaining the principle, but the same applies to the directivity in the y1z1 plane.
 次に、図7及び図8を参照して、本実施形態のアンテナ装置40を備える電子機器U1について説明する。 Next, the electronic device U1 provided with the antenna device 40 of the present embodiment will be described with reference to FIGS. 7 and 8.
 図7は、電子機器U1の構成の一例を示す概略図である。なお、図7には、電子機器U1に関連付けて、基地局BS等が併せて示される。 FIG. 7 is a schematic view showing an example of the configuration of the electronic device U1. Note that FIG. 7 also shows the base station BS and the like in association with the electronic device U1.
 電子機器U1は、通信機能を有する限り、任意であり、例えばスマートフォンやタブレット端末、ウエアラブル端末、ゲーム機器等であってよい。また、電子機器U1は、携帯型でなくてもよく、据え置き型の機器であってもよい。 The electronic device U1 is arbitrary as long as it has a communication function, and may be, for example, a smartphone, a tablet terminal, a wearable terminal, a game device, or the like. Further, the electronic device U1 does not have to be a portable device, and may be a stationary device.
 電子機器U1は、図7に示すように、上述したアンテナ装置40に加えて、処理装置50を含む。なお、電子機器U1は、図4に示した通信装置1を含む構成で実現される。 As shown in FIG. 7, the electronic device U1 includes a processing device 50 in addition to the antenna device 40 described above. The electronic device U1 is realized by a configuration including the communication device 1 shown in FIG.
 処理装置50は、図7に示すように、マイクロコンピュータ51(以下、「MICOM51」と称する)(制御部の一例)と、通信回路部52と、電圧可変回路54とを含む。また、通信回路部52は、ベースバンド回路部522と、RF回路部523とを含む。 As shown in FIG. 7, the processing device 50 includes a microcomputer 51 (hereinafter referred to as “MICOM 51”) (an example of a control unit), a communication circuit unit 52, and a voltage variable circuit 54. Further, the communication circuit unit 52 includes a baseband circuit unit 522 and an RF circuit unit 523.
 MICOM51は、通信回路部52を介して各種通信処理を行うとともに、電圧可変回路54を介してアンテナ装置40に印加する直流電圧の大きさを制御する。 The MICOM 51 performs various communication processes via the communication circuit unit 52, and controls the magnitude of the DC voltage applied to the antenna device 40 via the voltage variable circuit 54.
 特に、本実施形態では、MICOM51は、電圧可変回路54を介してアンテナ装置40に印加する直流電圧の大きさを制御することで、アンテナ装置40の指向性を制御する。
この指向性制御については、図8を参照して後述する。
In particular, in the present embodiment, the MICOM 51 controls the directivity of the antenna device 40 by controlling the magnitude of the DC voltage applied to the antenna device 40 via the voltage variable circuit 54.
This directivity control will be described later with reference to FIG.
 通信回路部52は、アンテナ装置40から基地局BS等を介して外部のユーザ端末U2と通信する。なお、通信回路部52で取り扱う通信は、音声通信やデータ通信など任意である。 The communication circuit unit 52 communicates with the external user terminal U2 from the antenna device 40 via the base station BS or the like. The communication handled by the communication circuit unit 52 is arbitrary, such as voice communication and data communication.
 ベースバンド回路部522は、IPパケットとベースバンド信号とを相互に変換する処理を行う。 The baseband circuit unit 522 performs a process of mutually converting an IP packet and a baseband signal.
 RF回路部523は、ベースバンド回路部522から受信したベースバンド信号に対して、D/A(Digital-to-Analog)変換や、変調、周波数変換、電力増幅等を行うことでアンテナ装置40から送信すべき無線信号(RF信号)を生成する。また、RF回路部523は、アンテナ装置40により受信した無線信号に対して、周波数変換、A/D(Analog to Digital)変換、復調等を行うことでベースバンド信号を生成し、ベースバンド回路部522に与える。 The RF circuit unit 523 performs D / A (Digital-to-Analog) conversion, modulation, frequency conversion, power amplification, and the like on the baseband signal received from the baseband circuit unit 522 from the antenna device 40. Generates a radio signal (RF signal) to be transmitted. Further, the RF circuit unit 523 generates a baseband signal by performing frequency conversion, A / D (Analog to Digital) conversion, demodulation, etc. on the radio signal received by the antenna device 40, and the baseband circuit unit. Give to 522.
 電圧可変回路54は、直流の電源電圧を生成する直流電源生成部541(直流電源の一例)を含む。直流電源生成部541は、直流の電源電圧に基づいて、可変の直流電圧を生成する。この場合、直流の電源電圧は、外部の交流電源又は直流電源に基づいて生成されてもよい。例えば、電圧可変回路54は、複数種類の抵抗を用いて、直流の電源電圧を多様な態様で分圧することで、可変の直流電圧を生成してもよい。このようにして生成される直流電圧は、上述のように、接続部32(図4参照)を介して給電線路42に印加される。これにより、直流電圧が、給電線路42と地導体43との間、すなわち液晶層49に印加される。 The voltage variable circuit 54 includes a DC power supply generator 541 (an example of a DC power supply) that generates a DC power supply voltage. The DC power supply generation unit 541 generates a variable DC voltage based on the DC power supply voltage. In this case, the DC power supply voltage may be generated based on an external AC power supply or a DC power supply. For example, the voltage variable circuit 54 may generate a variable DC voltage by dividing the DC power supply voltage in various modes by using a plurality of types of resistors. The DC voltage generated in this way is applied to the feeding line 42 via the connection portion 32 (see FIG. 4) as described above. As a result, a DC voltage is applied between the feeding line 42 and the ground conductor 43, that is, to the liquid crystal layer 49.
 図8は、指向性制御の説明図であり、指向性制御に用いるマップデータの一例を示す図である。図8のマップデータでは、アンテナ装置40の液晶層49に印加する直流電圧の大きさ(図8では、表題“電圧”の欄の“V1”、“V2”等)が、指向性(図8では、表題“θ”の欄の“θ1”、“θ2”等)に対応付けられている。 FIG. 8 is an explanatory diagram of directivity control, and is a diagram showing an example of map data used for directivity control. In the map data of FIG. 8, the magnitude of the DC voltage applied to the liquid crystal layer 49 of the antenna device 40 (in FIG. 8, “V1”, “V2”, etc. in the column of the title “voltage”) is the directivity (FIG. 8). In, it is associated with "θ1", "θ2", etc.) in the column of the title "θ".
 パラメータθは、図6Aで説明したθに対応し、アンテナ装置40の指向性を表す。なお、電子機器U1に対するx1、y1、z1軸(図6A参照)は適宜設定される。図8の場合、例えばアンテナ装置40の液晶層49に印加する直流電圧の大きさが“V1”のときは、アンテナ装置40の指向性が“θ1”となり、直流電圧の大きさが“V2”のときは、アンテナ装置40の指向性が“θ2”となるといった具合に、直流電圧の大きさとアンテナ装置40の指向性との関係が規定される。なお、直流電圧の大きさとアンテナ装置40の指向性との関係は、試験等に基づくものであってよい。 The parameter θ corresponds to θ described with reference to FIG. 6A and represents the directivity of the antenna device 40. The x1, y1, and z1 axes (see FIG. 6A) with respect to the electronic device U1 are appropriately set. In the case of FIG. 8, for example, when the magnitude of the DC voltage applied to the liquid crystal layer 49 of the antenna device 40 is “V1”, the directivity of the antenna device 40 is “θ1” and the magnitude of the DC voltage is “V2”. In this case, the relationship between the magnitude of the DC voltage and the directivity of the antenna device 40 is defined, such that the directivity of the antenna device 40 becomes “θ2”. The relationship between the magnitude of the DC voltage and the directivity of the antenna device 40 may be based on a test or the like.
 図8に示すマップデータは、MICOM51のメモリ(図示せず)に予め記憶されてよい。この場合、MICOM51は、マップデータに基づいて、指向性の目標値に応じた直流電圧の大きさを決定し、決定した直流電圧の大きさが実現されるように電圧可変回路54を制御することで、アンテナ装置40の指向性が当該目標値になるように制御する。 The map data shown in FIG. 8 may be stored in advance in the memory (not shown) of MICOM 51. In this case, the MICOM 51 determines the magnitude of the DC voltage according to the target value of the directivity based on the map data, and controls the voltage variable circuit 54 so that the determined magnitude of the DC voltage is realized. Then, the directivity of the antenna device 40 is controlled to be the target value.
 このようにして、本実施形態では、アンテナ装置40を電子機器U1に組み込むことで、電子機器U1の通信の指向性を電子制御により可変させることができる。すなわち、本実施形態によれば、例えば基地局BSの位置等に応じてアンテナ装置40の指向性を動的に制御することも可能となり、この場合、ビームフォーミングと同様の効果を実現することも可能である。 In this way, in the present embodiment, by incorporating the antenna device 40 into the electronic device U1, the directivity of the communication of the electronic device U1 can be changed by electronic control. That is, according to the present embodiment, it is possible to dynamically control the directivity of the antenna device 40 according to, for example, the position of the base station BS, and in this case, it is possible to realize the same effect as beamforming. It is possible.
 次に、図9及び図10を参照して、電子機器U1に対する本実施形態のアンテナ装置40の実装例について説明する。 Next, an example of mounting the antenna device 40 of the present embodiment on the electronic device U1 will be described with reference to FIGS. 9 and 10.
 図9は、本実施形態のアンテナ装置40を備える電子機器U1の一例の外観を示す概略図である。なお、図9では、電子機器U1の内部構造の一部(アンテナ装置40に関連する部分)を透視図で示している。図10は、図9のラインC-Cに沿った断面図である。 FIG. 9 is a schematic view showing the appearance of an example of the electronic device U1 including the antenna device 40 of the present embodiment. Note that FIG. 9 shows a part of the internal structure of the electronic device U1 (a part related to the antenna device 40) in a perspective view. FIG. 10 is a cross-sectional view taken along the line CC of FIG.
 図9では、アンテナ装置40は、電子機器U1の液晶表示ユニット70に隣り合う態様で、電子機器U1の端部(例えば表示パネルに隣接する額縁領域、例えば上辺部)に内蔵される。 In FIG. 9, the antenna device 40 is built in an end portion of the electronic device U1 (for example, a frame area adjacent to the display panel, for example, an upper side portion) in a manner adjacent to the liquid crystal display unit 70 of the electronic device U1.
 具体的には、電子機器U1は、表面側ケース60と側部ケース61とを含む筐体内に、アンテナ装置40、液晶表示ユニット70、制御基板79等を含む。なお、表面側ケース60は、例えばガラスのような透明な板材であってよい。制御基板79は、液晶表示ユニット70を制御するための処理装置と、上述した処理装置50とを実現してよい。 Specifically, the electronic device U1 includes an antenna device 40, a liquid crystal display unit 70, a control board 79, and the like in a housing including a front side case 60 and a side case 61. The surface side case 60 may be a transparent plate material such as glass. The control board 79 may realize a processing device for controlling the liquid crystal display unit 70 and the processing device 50 described above.
 図10に示すとおり、液晶表示ユニット70は、偏光板71と、タッチパネル72と、ガラス基板73と、液晶層74と、ガラス基板75と、偏光板76とを備える。また、液晶層74には、液晶層74を駆動するための電極層74A、74Bが設けられる。例えば、電極層74Aは、複数の画素電極や、ゲート線及びソース線に接続される薄膜トランジスタ等を備える。電極層74Bは、ITO等の透明電極材料により形成される共通電極である。なお、液晶表示ユニット70は、その他、カラーフィルタ等を備えてよいが、これらの図示は省略される。また、液晶表示ユニット70の背後に設けられてよいバックライトについても図示が省略されている。なお、タッチパネル72の配置は、図示のようないわゆるオンセルタイプに限られず、アウトセルタイプやインセルタイプであってもよい。 As shown in FIG. 10, the liquid crystal display unit 70 includes a polarizing plate 71, a touch panel 72, a glass substrate 73, a liquid crystal layer 74, a glass substrate 75, and a polarizing plate 76. Further, the liquid crystal layer 74 is provided with electrode layers 74A and 74B for driving the liquid crystal layer 74. For example, the electrode layer 74A includes a plurality of pixel electrodes, a thin film transistor connected to a gate line and a source line, and the like. The electrode layer 74B is a common electrode formed of a transparent electrode material such as ITO. The liquid crystal display unit 70 may also include a color filter or the like, but these illustrations are omitted. Further, the backlight which may be provided behind the liquid crystal display unit 70 is not shown. The arrangement of the touch panel 72 is not limited to the so-called on-cell type as shown in the figure, and may be an out-sel type or an in-cell type.
 なお、図10では、液晶表示ユニット70の液晶層74と、アンテナ装置40の液晶層49は、別であるが、一体化(共用)されてもよい。この場合、地導体43と電極層74Bについても、一体化(共用)されてもよい。この場合、電子機器U1内の液晶表示ユニット70の構造を利用してアンテナ装置40を成立させることができ、効率的な構造を実現できる。 Although the liquid crystal layer 74 of the liquid crystal display unit 70 and the liquid crystal layer 49 of the antenna device 40 are separate in FIG. 10, they may be integrated (shared). In this case, the ground conductor 43 and the electrode layer 74B may also be integrated (shared). In this case, the antenna device 40 can be established by utilizing the structure of the liquid crystal display unit 70 in the electronic device U1, and an efficient structure can be realized.
 また、図10では、電子機器U1は、アンテナ装置40の液晶層49と共用されうる液晶層74を備える液晶表示ユニット70を有しているが、これに限られない。例えば、電子機器U1は、液晶表示ユニット70に代えて、有機EL(Electro-Luminescence)ディスプレイユニット等のような、他の方式の表示ユニットを有してもよい。 Further, in FIG. 10, the electronic device U1 has a liquid crystal display unit 70 including a liquid crystal layer 74 that can be shared with the liquid crystal layer 49 of the antenna device 40, but the present invention is not limited to this. For example, the electronic device U1 may have a display unit of another type such as an organic EL (Electro-luminescence) display unit instead of the liquid crystal display unit 70.
 次に、図11を参照して、本実施形態のアンテナ装置40を備える窓ガラスについて説明する。 Next, the window glass provided with the antenna device 40 of the present embodiment will be described with reference to FIG.
 図11は、本実施形態のアンテナ装置40が窓ガラスに設けられる移動体の一例としての車両100を上面視で示す概略図である。 FIG. 11 is a schematic view showing a vehicle 100 as an example of a moving body in which the antenna device 40 of the present embodiment is provided on a window glass in a top view.
 本実施形態のアンテナ装置40は、図11に示すように、車両100の前側にあるフロントガラス(ウインドシールドガラス)110と、車両100の右リア側にある右リアガラス120、車両100の後側にあるリアガラス130と、車両100の左リア側にある左リアガラス140とにそれぞれ設けられる。 As shown in FIG. 11, the antenna device 40 of the present embodiment has a windshield (windshield glass) 110 on the front side of the vehicle 100, a right rear glass 120 on the right rear side of the vehicle 100, and a rear side of the vehicle 100. It is provided on a certain rear glass 130 and a left rear glass 140 on the left rear side of the vehicle 100, respectively.
 なお、変形例では、アンテナ装置40は、フロントガラス110、右リアガラス120、リアガラス130、及び左リアガラス140のそれぞれではなく、アンテナ装置40は、フロントガラス110、右リアガラス120、リアガラス130、及び左リアガラス140のうちの、一つにのみ設けられてもよいし、他の窓ガラス(例えばサンルーフ用の窓ガラス)に設けられてもよい。 In the modified example, the antenna device 40 is not the windshield 110, the right rear glass 120, the rear glass 130, and the left rear glass 140, respectively, and the antenna device 40 is the windshield 110, the right rear glass 120, the rear glass 130, and the left rear glass. It may be provided in only one of 140, or may be provided in another window glass (for example, a window glass for a sunroof).
 図11に示す例では、アンテナ装置40は、接続端子30を介して車両100内のECU(Electronic Control Unit)(図示せず)に電気的に接続されてよい。この場合、ECUが、図7に示した処理装置50と同様の構成を有すればよい。 In the example shown in FIG. 11, the antenna device 40 may be electrically connected to an ECU (Electronic Control Unit) (not shown) in the vehicle 100 via the connection terminal 30. In this case, the ECU may have the same configuration as the processing device 50 shown in FIG.
 図11に示す例によれば、車両100の窓ガラスを利用してアンテナ装置40を車両100に搭載できる。アンテナ装置40は、上述のように、アンテナ素子41や給電線路42等が透明である態様で形成できるので、窓ガラスに配置された場合でも、当該配置された領域の透視性及び透光性を大きく損なわない。 According to the example shown in FIG. 11, the antenna device 40 can be mounted on the vehicle 100 by using the window glass of the vehicle 100. As described above, the antenna device 40 can be formed in such a manner that the antenna element 41, the feeding line 42, and the like are transparent. Therefore, even when the antenna device 40 is arranged on the window glass, the transparency and translucency of the arranged region can be improved. Does not significantly impair.
 なお、図11に示す例では、アンテナ装置40は、車両100の窓ガラスに取り付けられているが、車両100の他の箇所(例えばバンパやリアドアのような樹脂製のドア内)に取り付けられてもよい。 In the example shown in FIG. 11, the antenna device 40 is attached to the window glass of the vehicle 100, but is attached to another part of the vehicle 100 (for example, inside a resin door such as a bumper or a rear door). May be good.
 また、図11に示す例では、アンテナ装置40は、車の形態の車両100に設けられるが、他の形態(例えば自動二輪車)の車両や、船舶、建設機械、航空機、電車等の鉄道車両のような、他の移動体に設けられてもよい。この場合も、アンテナ装置40は、移動体が備えうる窓ガラスに設けられてもよいし、窓ガラス以外の箇所に設けられてもよい。 Further, in the example shown in FIG. 11, the antenna device 40 is provided in the vehicle 100 in the form of a car, but in a vehicle in another form (for example, a motorcycle) or a railroad vehicle such as a ship, a construction machine, an aircraft, or a train. It may be provided on other moving bodies such as. In this case as well, the antenna device 40 may be provided on the window glass that the moving body can have, or may be provided at a place other than the window glass.
 また、図11に示す例では、アンテナ装置40は、車両100のような移動体の窓ガラスに設けられるが、これに限られない。例えば、アンテナ装置40は、建物の窓ガラスのような、固定物の窓ガラスに設けられてもよい。この場合、アンテナ装置40は、基地局用のアンテナとして機能してもよい。 Further, in the example shown in FIG. 11, the antenna device 40 is provided on the window glass of a moving body such as the vehicle 100, but the present invention is not limited to this. For example, the antenna device 40 may be provided on the window glass of a fixed object such as the window glass of a building. In this case, the antenna device 40 may function as an antenna for the base station.
 図12は、本実施形態のアンテナ装置40の他の搭載例を示す概略図である。 FIG. 12 is a schematic view showing another mounting example of the antenna device 40 of the present embodiment.
 本実施形態のアンテナ装置40は、図12に示すように、車両のインナミラー80に設けられてもよい。この場合、アンテナ装置40は、インナミラー80に外付けされてもよいし、内蔵されてもよい。また、アンテナ装置40は、インナミラー80の裏側(車両前側)から電波の送受が可能な態様で設けられてもよい。 As shown in FIG. 12, the antenna device 40 of the present embodiment may be provided on the inner mirror 80 of the vehicle. In this case, the antenna device 40 may be externally attached to or incorporated in the inner mirror 80. Further, the antenna device 40 may be provided in such a manner that radio waves can be transmitted and received from the back side (front side of the vehicle) of the inner mirror 80.
 インナミラー80は、防眩制御が可能なミラーであってもよい。この場合、インナミラー80は、外光に対する反射率を変化させるための電子ミラー層(図示せず)を備え、当該電子ミラー層は、液晶層を含む。従って、この場合、アンテナ装置40の液晶層49、第1基板46、第2基板48等は、インナミラー80の液晶層や電極用の基板と共用化されてもよい。この場合、インナミラー80のミラー層の構造を利用してアンテナ装置40を成立させることができ、効率的な構造を実現できる。 The inner mirror 80 may be a mirror capable of antiglare control. In this case, the inner mirror 80 includes an electronic mirror layer (not shown) for changing the reflectance with respect to external light, and the electronic mirror layer includes a liquid crystal layer. Therefore, in this case, the liquid crystal layer 49, the first substrate 46, the second substrate 48, and the like of the antenna device 40 may be shared with the liquid crystal layer of the inner mirror 80 and the substrate for the electrodes. In this case, the antenna device 40 can be established by utilizing the structure of the mirror layer of the inner mirror 80, and an efficient structure can be realized.
 なお、図12では、アンテナ装置40は、室内のインナミラー80に設けられるが、車両の室外のドアミラーのような、他のミラーに設けられてもよい。この場合も、例えばドアミラーが電子ミラーである場合は、アンテナ装置40の液晶層49、第1基板46、第2基板48等は、ドアミラーの液晶層や電極用の基板と共用化されてもよい。 Although the antenna device 40 is provided in the indoor inner mirror 80 in FIG. 12, it may be provided in another mirror such as a door mirror outside the vehicle. Also in this case, for example, when the door mirror is an electronic mirror, the liquid crystal layer 49, the first substrate 46, the second substrate 48, etc. of the antenna device 40 may be shared with the liquid crystal layer of the door mirror and the substrate for the electrodes. ..
 以上説明した本実施形態のアンテナ装置40によれば、とりわけ、以下のような優れた効果が奏される。 According to the antenna device 40 of the present embodiment described above, the following excellent effects are particularly exhibited.
 まず、本実施形態のアンテナ装置40によれば、液晶層49上の給電線路42に、高周波伝送線路における移相器としての機能(移相器機能)を持たせることができるので、移相器を設ける必要性が低減される。従って、図4に示すような移相器を備えない構成によっても、フェーズドアレイアンテナとしての機能を実現できる。このようにして、本実施形態によれば、フェーズドアレイアンテナに関してコストの低減や構造の簡素化を図ることが可能となる。 First, according to the antenna device 40 of the present embodiment, the power feeding line 42 on the liquid crystal layer 49 can have a function as a phase shifter (phase shifter function) in the high frequency transmission line, so that the phase shifter can be provided. The need to provide is reduced. Therefore, the function as a phased array antenna can be realized even with a configuration without a phase shifter as shown in FIG. In this way, according to the present embodiment, it is possible to reduce the cost and simplify the structure of the phased array antenna.
 また、本実施形態のアンテナ装置40によれば、第1基板46及び第2基板48として、薄いガラス基板(例えば厚さが1mm以下のガラス基板)を用いることができ、この場合、アンテナ装置40の厚みを低減することや、アンテナ装置40の厚みを変更することなく液晶層49の厚みを増加することが容易となる。 Further, according to the antenna device 40 of the present embodiment, a thin glass substrate (for example, a glass substrate having a thickness of 1 mm or less) can be used as the first substrate 46 and the second substrate 48. In this case, the antenna device 40 It becomes easy to reduce the thickness of the liquid crystal layer 49 and increase the thickness of the liquid crystal layer 49 without changing the thickness of the antenna device 40.
 また、本実施形態のアンテナ装置40によれば、複数のアンテナ素子41、給電線路42、及び地導体43を透明に構成することが可能であり、この場合、アンテナ装置40が設けられる箇所の透光性や透視性を大きく阻害することなく、アンテナ装置40を配置することが可能となる。このため、例えば、アンテナ装置40は、窓ガラスのような比較的高い透視性や透光性が求められる部材にも設けることが可能となる。 Further, according to the antenna device 40 of the present embodiment, it is possible to transparently configure the plurality of antenna elements 41, the feeding line 42, and the ground conductor 43. In this case, the transparency of the portion where the antenna device 40 is provided is transparent. The antenna device 40 can be arranged without significantly impairing the lightness and the transparency. Therefore, for example, the antenna device 40 can be provided on a member such as a window glass that requires relatively high transparency and translucency.
 また、本実施形態のアンテナ装置40によれば、車両のような移動体に設けられることで、車載アンテナとして機能できる。アンテナ装置40は、上述したように指向性の制御が可能となるので、移動体に設けられる場合は、移動体の移動に応じて指向性を変化させる等の制御も可能となる。 Further, according to the antenna device 40 of the present embodiment, it can function as an in-vehicle antenna by being provided on a moving body such as a vehicle. Since the antenna device 40 can control the directivity as described above, when it is provided on the moving body, it can also be controlled to change the directivity according to the movement of the moving body.
 また、本実施形態のアンテナ装置40によれば、液晶層49を第1基板46及び第2基板48で挟む構造を有するので、同様の構造を有する他のデバイス(例えば液晶表示ユニット70等)を内蔵する電子機器に搭載した場合に、構造の一部を共用化することも可能となる。この結果、部品点数等を低減し、効率的な構造を実現することも可能となる。 Further, since the antenna device 40 of the present embodiment has a structure in which the liquid crystal layer 49 is sandwiched between the first substrate 46 and the second substrate 48, another device having the same structure (for example, the liquid crystal display unit 70, etc.) can be used. When mounted on a built-in electronic device, it is possible to share a part of the structure. As a result, it is possible to reduce the number of parts and the like and realize an efficient structure.
 [第2実施形態]
 図13は、第2実施形態によるアンテナ装置402を含む通信装置1Aの構成の概略的な説明図である。本実施形態において、上述した第1実施形態と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。なお、図13に示すx軸、y軸、及びz軸は、複数のアンテナ素子41の配列に関してのみ考慮されたい。
[Second Embodiment]
FIG. 13 is a schematic explanatory view of the configuration of the communication device 1A including the antenna device 402 according to the second embodiment. In the present embodiment, components that may be the same as those in the first embodiment described above may be designated by the same reference numerals and description thereof may be omitted. Note that the x-axis, y-axis, and z-axis shown in FIG. 13 should be considered only for the arrangement of the plurality of antenna elements 41.
 本実施形態によるアンテナ装置402は、上述した第1実施形態によるアンテナ装置40に対して、複数のアンテナ素子41及び給電線路42に加えて、複数のアンテナ素子41及び給電線路42を更に備える点が主に異なる。すなわち、本実施形態によるアンテナ装置402は、実質的には、複数のアンテナ素子41及び給電線路42を、2組備えた構成となる。 The antenna device 402 according to the present embodiment is provided with a plurality of antenna elements 41 and a feeding line 42 in addition to the plurality of antenna elements 41 and the feeding line 42 with respect to the antenna device 40 according to the first embodiment described above. Mainly different. That is, the antenna device 402 according to the present embodiment is substantially configured to include two sets of a plurality of antenna elements 41 and a feeding line 42.
 以下では、説明上、図13の下側の複数のアンテナ素子41及び給電線路42の組に係る系列を、「第1系列」とも称し、図13の上側の複数のアンテナ素子41及び給電線路42の組に係る系列を、「第2系列」とも称する。 Hereinafter, for the sake of explanation, the series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the lower side of FIG. 13 is also referred to as a “first series”, and the plurality of antenna elements 41 and the feeding line 42 on the upper side of FIG. The series related to the set of is also referred to as a "second series".
 第2系列の複数のアンテナ素子41及び給電線路42は、第1系列の複数のアンテナ素子41及び給電線路42とともに、第1基板46(図2等参照)に形成されてよい。この場合、地導体43は、第1系列及び第2系列に対して共用される態様で、第2基板48(図2等参照)に形成されてよい。 The plurality of antenna elements 41 and the feeding line 42 of the second series may be formed on the first substrate 46 (see FIG. 2 and the like) together with the plurality of antenna elements 41 and the feeding line 42 of the first series. In this case, the ground conductor 43 may be formed on the second substrate 48 (see FIG. 2 and the like) in a manner shared with respect to the first series and the second series.
 第2系列の複数のアンテナ素子41は、図13に示すように、第1系列の複数のアンテナ素子41に対してy軸方向にオフセットして設けられる。なお、第2系列の複数のアンテナ素子41は、図13に示すように、第1系列の複数のアンテナ素子41に対してx軸方向にオフセットしていないが、オフセットして設けられてもよい。 As shown in FIG. 13, the plurality of antenna elements 41 of the second series are provided so as to be offset in the y-axis direction with respect to the plurality of antenna elements 41 of the first series. As shown in FIG. 13, the plurality of antenna elements 41 of the second series are not offset in the x-axis direction with respect to the plurality of antenna elements 41 of the first series, but they may be provided offset. ..
 第2系列の給電線路42は、接続端子30を介してRF回路部523Aに電気的に接続される。なお、RF回路部523Aは、2系列に電気的に接続される点以外は、上述した第1実施形態によるRF回路部523と同じであってよい。なお、本実施形態では、第1系列の接続端子30及び第2系列の接続端子30でそれぞれ生じる高周波の位相は、同じであるものとする。 The power supply line 42 of the second series is electrically connected to the RF circuit unit 523A via the connection terminal 30. The RF circuit unit 523A may be the same as the RF circuit unit 523 according to the first embodiment described above, except that the RF circuit unit 523A is electrically connected to the two series. In the present embodiment, it is assumed that the high frequency phases generated at the first series connection terminal 30 and the second series connection terminal 30 are the same.
 第2系列の給電線路42は、接続部32を介して電圧可変回路54Aに電気的に接続される。なお、電圧可変回路54Aは、電圧可変回路54と別であるが、構成自体は、電圧可変回路54と同じであってよい。 The power supply line 42 of the second series is electrically connected to the voltage variable circuit 54A via the connection portion 32. The voltage variable circuit 54A is different from the voltage variable circuit 54, but the configuration itself may be the same as that of the voltage variable circuit 54.
 本実施形態によっても、上述した第1実施形態と同様の効果が奏される。 The same effect as that of the above-described first embodiment is also obtained by this embodiment.
 また、本実施形態では、第1系列と第2系列とには、別々の電圧可変回路54及び電圧可変回路54Aが設けられるので、第1系列及び第2系列のそれぞれの給電線路42に、互いに独立に直流電圧が印加可能である。これにより、第1系列及び第2系列のそれぞれの液晶層49の誘電率を互いに独立に制御することが可能となり、この結果、第1系列及び第2系列のそれぞれの高周波伝送線路における遅延時間を異ならせ、第1系列及び第2系列のそれぞれのアンテナ素子41における励振位相を異ならせることができる。ただし、変形例では、第1系列及び第2系列のそれぞれの給電線路42に、共通の電圧可変回路54が電気的に接続されてもよい。 Further, in the present embodiment, since the first series and the second series are provided with separate voltage variable circuits 54 and voltage variable circuits 54A, the feeding lines 42 of the first series and the second series are provided with each other. DC voltage can be applied independently. As a result, the dielectric constants of the liquid crystal layers 49 of the first series and the second series can be controlled independently of each other, and as a result, the delay time in each of the high frequency transmission lines of the first series and the second series can be controlled. The excitation phases of the first-series and second-series antenna elements 41 can be made different. However, in the modified example, the common voltage variable circuit 54 may be electrically connected to the respective feeding lines 42 of the first series and the second series.
 なお、本実施形態では、複数のアンテナ素子41及び給電線路42が2組(2系列)設けられたが、3組以上設けられてもよい。 In the present embodiment, two sets (two series) of the plurality of antenna elements 41 and the feeding line 42 are provided, but three or more sets may be provided.
 [第3実施形態]
 図14は、第3実施形態によるアンテナ装置403を含む通信装置1Bの構成の概略的な説明図である。本実施形態において、上述した第1実施形態と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。なお、図14に示すx軸、y軸、及びz軸は、複数のアンテナ素子41の配列に関してのみ考慮されたい。
[Third Embodiment]
FIG. 14 is a schematic explanatory view of the configuration of the communication device 1B including the antenna device 403 according to the third embodiment. In the present embodiment, components that may be the same as those in the first embodiment described above may be designated by the same reference numerals and description thereof may be omitted. Note that the x-axis, y-axis, and z-axis shown in FIG. 14 should be considered only for the arrangement of the plurality of antenna elements 41.
 本実施形態によるアンテナ装置403は、上述した第1実施形態によるアンテナ装置40に対して、複数のアンテナ素子41及び給電線路42に加えて、複数のアンテナ素子41及び給電線路42を更に備える点が主に異なる。すなわち、本実施形態によるアンテナ装置403は、実質的には、複数のアンテナ素子41及び給電線路42を、2組備えた構成となる。 The antenna device 403 according to the present embodiment is provided with a plurality of antenna elements 41 and a feeding line 42 in addition to the plurality of antenna elements 41 and the feeding line 42 with respect to the antenna device 40 according to the first embodiment described above. Mainly different. That is, the antenna device 403 according to the present embodiment is substantially configured to include two sets of a plurality of antenna elements 41 and a feeding line 42.
 以下では、上述した第2実施形態の場合と同様、説明上、図14の下側の複数のアンテナ素子41及び給電線路42の組に係る系列を、「第1系列」とも称し、図14の上側の複数のアンテナ素子41及び給電線路42の組に係る系列を、「第2系列」とも称する。 In the following, as in the case of the second embodiment described above, for the sake of explanation, the series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the lower side of FIG. 14 is also referred to as a “first series”, and is referred to in FIG. The series related to the set of the plurality of antenna elements 41 and the feeding line 42 on the upper side is also referred to as a "second series".
 第2系列の複数のアンテナ素子41及び給電線路42は、第1系列の複数のアンテナ素子41及び給電線路42とともに、第1基板46(図2等参照)に形成されてよい。この場合、地導体43は、第1系列及び第2系列に対して共用される態様で、第2基板48(図2等参照)に形成されてよい。 The plurality of antenna elements 41 and the feeding line 42 of the second series may be formed on the first substrate 46 (see FIG. 2 and the like) together with the plurality of antenna elements 41 and the feeding line 42 of the first series. In this case, the ground conductor 43 may be formed on the second substrate 48 (see FIG. 2 and the like) in a manner shared with respect to the first series and the second series.
 第2系列の複数のアンテナ素子41は、図14に示すように、第1系列の複数のアンテナ素子41に対してy軸方向にオフセットして設けられる。なお、第2系列の複数のアンテナ素子41は、図14に示すように、第1系列の複数のアンテナ素子41に対してx軸方向にオフセットしていないが、オフセットして設けられてもよい。 As shown in FIG. 14, the plurality of antenna elements 41 of the second series are provided so as to be offset in the y-axis direction with respect to the plurality of antenna elements 41 of the first series. As shown in FIG. 14, the plurality of antenna elements 41 of the second series are not offset in the x-axis direction with respect to the plurality of antenna elements 41 of the first series, but they may be provided offset. ..
 第2系列の給電線路42は、接続端子30を介してRF回路部523Aに電気的に接続される。なお、RF回路部523Aは、2系列に電気的に接続される点以外は、上述した第1実施形態によるRF回路部523と同じであってよい。 The power supply line 42 of the second series is electrically connected to the RF circuit unit 523A via the connection terminal 30. The RF circuit unit 523A may be the same as the RF circuit unit 523 according to the first embodiment described above, except that the RF circuit unit 523A is electrically connected to the two series.
 また、第2系列の給電線路42は、接続部32を介して電圧可変回路54Bに電気的に接続される。 Further, the power supply line 42 of the second series is electrically connected to the voltage variable circuit 54B via the connection portion 32.
 本実施形態では、第1系列及び第2系列の給電線路42のそれぞれに、移相器90が設けられる。従って、第1系列の接続端子30及び第2系列の接続端子30でそれぞれ生じる高周波の位相を任意の態様でずらすことができる。 In the present embodiment, the phase shifter 90 is provided on each of the first-series and second-series power supply lines 42. Therefore, the phases of the high frequencies generated at the connection terminals 30 of the first series and the connection terminals 30 of the second series can be shifted in any manner.
 本実施形態によっても、上述した第1実施形態と同様の効果が奏される。 The same effect as that of the above-described first embodiment is also obtained by this embodiment.
 また、本実施形態では、電圧可変回路54及び電圧可変回路54Bが設けられるので、第1系列及び第2系列のそれぞれの給電線路42に、互いに独立に直流電圧が印加可能である。これにより、第1系列及び第2系列のそれぞれの液晶層49の誘電率を互いに独立に制御することが可能となる。 Further, in the present embodiment, since the voltage variable circuit 54 and the voltage variable circuit 54B are provided, DC voltages can be applied to the feeding lines 42 of the first series and the second series independently of each other. This makes it possible to control the dielectric constants of the liquid crystal layers 49 of the first series and the second series independently of each other.
 また、本実施形態では、第1系列及び第2系列のそれぞれの給電線路42に移相器90が設けられるので、第1系列及び第2系列のそれぞれにおいて液晶層49の誘電率を共通に変化させつつ、移相器90により第1系列及び第2系列の間での位相差を設定できる。これにより、液晶層49の誘電率を変化させつつ、移相器90による移相量を変化させることで、2次元走査が可能となる。 Further, in the present embodiment, since the phase shifter 90 is provided on each of the feeding lines 42 of the first series and the second series, the dielectric constant of the liquid crystal layer 49 is commonly changed in each of the first series and the second series. The phase difference between the first series and the second series can be set by the phase shifter 90. As a result, two-dimensional scanning becomes possible by changing the amount of phase shift by the phase shifter 90 while changing the dielectric constant of the liquid crystal layer 49.
 なお、本実施形態では、移相器90が設けられるものの、アンテナ素子41ごとに移相器を設ける場合に比べて(図6B参照)、移相器の数を低減しつつ、2次元走査を可能とすることができる。 In this embodiment, although the phase shifter 90 is provided, the two-dimensional scanning is performed while reducing the number of phase shifters as compared with the case where the phase shifter is provided for each antenna element 41 (see FIG. 6B). It can be possible.
 なお、本実施形態では、複数のアンテナ素子41及び給電線路42が2組(2系列)設けられたが、3組以上設けられてもよい。 In the present embodiment, two sets (two series) of the plurality of antenna elements 41 and the feeding line 42 are provided, but three or more sets may be provided.
 また、本実施形態では、第1系列と第2系列のそれぞれに移相器90が設けられるが、一方のみに移相器90が設けられてもよい。 Further, in the present embodiment, the phase shifter 90 is provided in each of the first series and the second series, but the phase shifter 90 may be provided in only one of them.
 また、本実施形態では、電圧可変回路54及び電圧可変回路54Bが別に設けられるが、これに限られない。例えば、図15に示す変形例による通信装置1Cのように、電圧可変回路54は、第1系列及び第2系列に対して共用されてもよい。この場合、部品点数を低減できる等の効果が得られる。また、図15に示す変形例による通信装置1Cの場合、接続部32が、1つだけで第1系列と第2系列とで共用されてもよい。 Further, in the present embodiment, the voltage variable circuit 54 and the voltage variable circuit 54B are separately provided, but the present invention is not limited to this. For example, the voltage variable circuit 54 may be shared with respect to the first series and the second series as in the communication device 1C according to the modification shown in FIG. In this case, the effect of reducing the number of parts can be obtained. Further, in the case of the communication device 1C according to the modified example shown in FIG. 15, only one connection unit 32 may be shared by the first series and the second series.
 以上、各実施形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施形態の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope described in the claims. It is also possible to combine all or a plurality of the components of the above-described embodiment.
1、1A、1B、1C 通信装置
30 接続端子
32 接続部
33 接続部
40、402、403 アンテナ装置
41 アンテナ素子
42 給電線路
43 地導体
46 第1基板
48 第2基板
49 液晶層
50 処理装置
51 MICOM
52 通信回路部
54、54A、54B 電圧可変回路
60 表面側ケース
61 側部ケース
70 液晶表示ユニット
71 偏光板
72 タッチパネル
73 ガラス基板
74 液晶層
74A 電極層
74B 電極層
75 ガラス基板
76 偏光板
79 制御基板
80 インナミラー
90 移相器
 2019年3月15日に出願された日本国特願2019-048038号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1, 1A, 1B, 1C Communication device 30 Connection terminal 32 Connection part 33 Connection part 40, 402, 403 Antenna device 41 Antenna element 42 Power supply line 43 Ground conductor 46 First board 48 Second board 49 Liquid crystal layer 50 Processing device 51 MICOM
52 Communication circuit unit 54, 54A, 54B Voltage variable circuit 60 Surface side case 61 Side case 70 Liquid crystal display unit 71 Polarizing plate 72 Touch panel 73 Glass substrate 74 Liquid crystal layer 74A Electrode layer 74B Electrode layer 75 Glass substrate 76 Polarizing plate 79 Control substrate 80 Inner Mirror 90 Phase-shifting device The entire contents of the specification, scope of patent claims, drawings and abstract of Japanese Patent Application No. 2019-048038 filed on March 15, 2019 are cited here, and the present invention is made. It is incorporated as a disclosure of the specification.

Claims (12)

  1.  第1基板と、
     前記第1基板に垂直な方向で前記第1基板に対向する第2基板と、
     前記第1基板と前記第2基板との間に設けられる液晶層と、
     前記第1基板に垂直な方向に視て前記液晶層に重なる態様で前記第1基板に形成される給電線路と、
     前記第1基板に形成され、前記給電線路に電気的に接続される複数のアンテナ素子と、 前記第2基板に形成される地導体と、
     前記給電線路に電気的に接続され、直流電源に電気的に接続可能な接続部とを含む、アンテナ装置。
    1st board and
    A second substrate facing the first substrate in a direction perpendicular to the first substrate, and
    A liquid crystal layer provided between the first substrate and the second substrate,
    A feeding line formed on the first substrate in a manner perpendicular to the first substrate and overlapping the liquid crystal layer.
    A plurality of antenna elements formed on the first substrate and electrically connected to the feeding line, and a ground conductor formed on the second substrate.
    An antenna device including a connection that is electrically connected to the power supply line and can be electrically connected to a DC power source.
  2.  前記第1基板及び前記第2基板は、それぞれ、厚さが1mm以下のガラス基板である、請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein each of the first substrate and the second substrate is a glass substrate having a thickness of 1 mm or less.
  3.  前記複数のアンテナ素子及び前記給電線路は、2組以上設けられる、請求項1又は2に記載のアンテナ装置。 The antenna device according to claim 1 or 2, wherein two or more sets of the plurality of antenna elements and the feeding line are provided.
  4.  異なる組の前記複数のアンテナ素子及び前記給電線路には、互いに独立に直流電圧が印加可能である、請求項3に記載のアンテナ装置。 The antenna device according to claim 3, wherein a DC voltage can be independently applied to the plurality of antenna elements and the feeding line of different sets.
  5.  異なる組の前記複数のアンテナ素子及び前記給電線路には、共通の直流電圧が印加可能である、請求項3に記載のアンテナ装置。 The antenna device according to claim 3, wherein a common DC voltage can be applied to the plurality of antenna elements and the feeding line of different sets.
  6.  前記複数のアンテナ素子は、可視光の透過率が50%以上である複数の導電体により形成される、請求項1~5のうちのいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 5, wherein the plurality of antenna elements are formed of a plurality of conductors having a visible light transmittance of 50% or more.
  7.  前記複数のアンテナ素子のそれぞれは、メッシュ状に形成される、請求項6に記載のアンテナ装置。 The antenna device according to claim 6, wherein each of the plurality of antenna elements is formed in a mesh shape.
  8.  前記給電線路は、可視光の透過率が50%以上である、請求項1~7のうちのいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 7, wherein the feeding line has a visible light transmittance of 50% or more.
  9.  請求項1~8のうちのいずれか1項に記載のアンテナ装置を備える電子機器。 An electronic device including the antenna device according to any one of claims 1 to 8.
  10.  前記液晶層に前記接続部を介して印加される直流電圧を制御する制御部を更に備える、請求項9に記載の電子機器。 The electronic device according to claim 9, further comprising a control unit that controls a DC voltage applied to the liquid crystal layer via the connection unit.
  11.  請求項1~8のうちのいずれか1項に記載のアンテナ装置を備える窓ガラス。 A window glass provided with the antenna device according to any one of claims 1 to 8.
  12.  請求項1~8のうちのいずれか1項に記載のアンテナ装置と、
     前記アンテナ装置が設けられる窓ガラスと、
     前記液晶層に前記接続部を介して印加される直流電圧を制御する制御部とを含む、移動体。
    The antenna device according to any one of claims 1 to 8.
    The window glass on which the antenna device is provided and
    A moving body including a control unit that controls a DC voltage applied to the liquid crystal layer via the connection unit.
PCT/JP2020/010635 2019-03-15 2020-03-11 Antenna device, electronic device, window glass, and movable body WO2020189451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507244A JPWO2020189451A1 (en) 2019-03-15 2020-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048038 2019-03-15
JP2019-048038 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189451A1 true WO2020189451A1 (en) 2020-09-24

Family

ID=72520337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010635 WO2020189451A1 (en) 2019-03-15 2020-03-11 Antenna device, electronic device, window glass, and movable body

Country Status (2)

Country Link
JP (1) JPWO2020189451A1 (en)
WO (1) WO2020189451A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374317B2 (en) * 2019-05-29 2022-06-28 Hon Hai Precision Industry Co., Ltd. Antenna array and liquid crystal display using the same
WO2024029170A1 (en) * 2022-08-01 2024-02-08 株式会社ジャパンディスプレイ Method for testing radio wave reflecting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341027A (en) * 1999-05-27 2000-12-08 Nippon Hoso Kyokai <Nhk> Patch antenna system
JP2008294822A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Antenna assembly
JP2009534974A (en) * 2006-04-24 2009-09-24 ケンブリッジ・エンタープライズ・リミテッド Liquid crystal device
JP2011066610A (en) * 2009-09-16 2011-03-31 Dainippon Printing Co Ltd Transparent antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341027A (en) * 1999-05-27 2000-12-08 Nippon Hoso Kyokai <Nhk> Patch antenna system
JP2009534974A (en) * 2006-04-24 2009-09-24 ケンブリッジ・エンタープライズ・リミテッド Liquid crystal device
JP2008294822A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Antenna assembly
JP2011066610A (en) * 2009-09-16 2011-03-31 Dainippon Printing Co Ltd Transparent antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374317B2 (en) * 2019-05-29 2022-06-28 Hon Hai Precision Industry Co., Ltd. Antenna array and liquid crystal display using the same
WO2024029170A1 (en) * 2022-08-01 2024-02-08 株式会社ジャパンディスプレイ Method for testing radio wave reflecting device

Also Published As

Publication number Publication date
JPWO2020189451A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US11728569B2 (en) Electronic devices with dielectric resonator antennas
JP7162403B2 (en) Electronic device with probe-fed dielectric resonator antenna
TWI672859B (en) Variable dielectric constant antenna having split ground electrode
KR102368374B1 (en) Liquid crystal phase shifter, operating method thereof, liquid crystal antenna, and communication device
CN106684551B (en) A kind of phase-shifting unit, antenna array, display panel and display device
WO2020189451A1 (en) Antenna device, electronic device, window glass, and movable body
CN109921190B (en) Signal conditioner, antenna device and manufacturing method
JP6743486B2 (en) Vehicle window glass
CN1973452A (en) Digital broadcast receiving antenna apparatus and movable body incorporating the same
TWI523046B (en) Conductor construction, transparent elements and electronic equipment
EP3910740A1 (en) Wireless communication device
CN111564692A (en) Electronic device
WO2022045084A1 (en) Transparent antenna and display module
Park et al. Circuit-on-display: A flexible, invisible hybrid electromagnetic sensor concept
WO2022170497A1 (en) Array antenna module and manufacturing method therefor, and phased array antenna system
JP5782023B2 (en) Wireless communication device
WO2014141993A1 (en) Phase shifter and antenna system
EP2629358B1 (en) Phase shifter and antenna
CN111047969A (en) Display panel and display device
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
EP4187714A1 (en) Antenna and electronic device including same
JP6478397B2 (en) Phased array antenna
CN111273470A (en) Liquid crystal phase shifter and electronic device
US11909101B2 (en) Electronic devices with bent dielectric resonator antennas
US20240106128A1 (en) Multi-Layer Dielectric Resonator Antennas with Parasitic Elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774364

Country of ref document: EP

Kind code of ref document: A1