JP2011066610A - Transparent antenna - Google Patents

Transparent antenna Download PDF

Info

Publication number
JP2011066610A
JP2011066610A JP2009214515A JP2009214515A JP2011066610A JP 2011066610 A JP2011066610 A JP 2011066610A JP 2009214515 A JP2009214515 A JP 2009214515A JP 2009214515 A JP2009214515 A JP 2009214515A JP 2011066610 A JP2011066610 A JP 2011066610A
Authority
JP
Japan
Prior art keywords
layer
transparent
antenna
conductor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214515A
Other languages
Japanese (ja)
Other versions
JP5447813B2 (en
Inventor
Takehiro Yamashita
雄大 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009214515A priority Critical patent/JP5447813B2/en
Publication of JP2011066610A publication Critical patent/JP2011066610A/en
Application granted granted Critical
Publication of JP5447813B2 publication Critical patent/JP5447813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent antenna with an antenna pattern other than a conventional transparent ITO film, as a conductive layer itself, wherein both sufficient conductivity and transparency are highly achieved when using the conventional ITO film, although the ITO film has had difficulty in achieving them, and to thus achieve application to various uses for a display window of a mobile phone, an automotive window, or the like. <P>SOLUTION: The transparent antenna 10 has the antenna pattern 2 formed on a transparent base 1, and the antenna pattern includes a conductor part 3a as a formation part of an opaque conductor layer and a meshed conductor mesh layer 3 having many openings 3b as non-formation parts. Further, an adhesive layer or the like may be formed on the surface of the transparent base on the opposite side from the antenna pattern formation side or on the surface on the antenna pattern formation side. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は透明性を有する透明アンテナに関し、特にアンテナパターンの透明性と導電性を両立できる透明アンテナに関する。   The present invention relates to a transparent antenna having transparency, and more particularly to a transparent antenna that can achieve both transparency and conductivity of an antenna pattern.

現在、テレビ電波やFM電波等の各種電波を受信する為の、或いはカーナビゲーションシステムの普及に伴いGPS(global positioning system)衛星等の位置座標情報の電波を受信する為の透明アンテナとして、自動車のフロントガラスに貼り付けるフィルムアンテナが知られている。フィルムアンテナは、視界を妨げない様に、通常、透明ポリエステルフィルム等に、金属箔、導電ペーストでアンテナパターンを形成して、一応はフィルムアンテナ全体としては透明性を確保したアンテナである。ただ、アンテナパターンを構成する金属箔、導電ペースト等の導電体はそれ自体が不透明であり、視界を大幅に妨げるものではないが、アンテナパターン自体は見えるものである。一方、アンテナパターンに導電体それ自体が透明であるITO(インジウム錫酸化物)膜を用いた透明アンテナも提案されている(特許文献1、特許文献2)。   Currently, as a transparent antenna for receiving various radio waves such as TV radio waves and FM radio waves, or for receiving radio waves of position coordinate information such as GPS (global positioning system) satellites with the spread of car navigation systems, A film antenna attached to a windshield is known. A film antenna is an antenna in which an antenna pattern is usually formed on a transparent polyester film or the like with a metal foil or a conductive paste so as not to obstruct the field of view. However, conductors such as a metal foil and a conductive paste constituting the antenna pattern are opaque per se and do not significantly disturb the field of view, but the antenna pattern itself can be seen. On the other hand, a transparent antenna using an ITO (indium tin oxide) film whose conductor is transparent as an antenna pattern has also been proposed (Patent Documents 1 and 2).

特開昭63−198401号公報JP-A 63-198401 特開平02−082701号公報Japanese Patent Laid-Open No. 02/082701

しかし、従来の金属や導電ペーストなど不透明な導電体パターンによる透明アンテナは、導電性はよいが、アンテナパターンが見えるので、近くで見る用途、例えば携帯電話の表示窓への適用は、表示を視認する際に邪魔になり、適用できなかった。この点でアンテナパターンにITO膜を用いれば、導電体自体が透明であるので、表示の妨げにはならない。しかし、ITO膜は導電性が劣り、アンテナとしての性能が十分に得られない。また、ITO膜は導電性を上げると透明性が低下してしまう。従って、この様な用途にも適用できる透明アンテナの導電体としてITO膜は、十分な導電性と十分な透明性を両立できなかった。   However, conventional transparent antennas with opaque conductive patterns such as metal and conductive paste have good conductivity, but the antenna pattern can be seen. It was in the way and was not applicable. In this respect, if an ITO film is used for the antenna pattern, the conductor itself is transparent, so that display is not hindered. However, the ITO film is inferior in conductivity, and the performance as an antenna cannot be sufficiently obtained. Further, the transparency of the ITO film decreases when the conductivity is increased. Therefore, the ITO film as a conductor of a transparent antenna that can be applied to such a use cannot satisfy both sufficient conductivity and sufficient transparency.

すなわち、本発明の課題は、十分な導電性と十分な透明性を両立した透明アンテナを提供することである。   That is, an object of the present invention is to provide a transparent antenna that has both sufficient conductivity and sufficient transparency.

そこで、本発明の透明アンテナは、透明基材上にアンテナパターンが形成された透明アンテナにおいて、アンテナパターンが、不透明な導電体層の形成部としての導体部と非形成部としての多数の開口部とによるメッシュ状の導電体メッシュ層によって形成されている透明アンテナとした。
また、上記にて、透明基材のアンテナパターンが形成された側とは反対側の面、或いはアンテナパターンが形成された側の面に、更に接着剤層が形成されていても良い。
Therefore, the transparent antenna of the present invention is a transparent antenna in which an antenna pattern is formed on a transparent substrate, and the antenna pattern has a large number of openings as a conductive portion and a non-formed portion as an opaque conductor layer forming portion. And a transparent antenna formed by a mesh-like conductor mesh layer.
In the above, an adhesive layer may be further formed on the surface of the transparent substrate opposite to the side on which the antenna pattern is formed or on the side on which the antenna pattern is formed.

本発明の透明アンテナによれば、導電体自体は不透明であるが導電性に優れた金属層や導電性組成物層を用い導電性を確保する。且つ同時に、この導電体層を多数の開口部を有するメッシュ状の導電体メッシュ層としてアンテナパターンを形成してあるので、十分な導電性と十分な透明性をも両立できる。更に、接着剤層を設けておけば、被着体への貼り付けが容易となる。   According to the transparent antenna of the present invention, the conductivity is ensured by using a metal layer or a conductive composition layer excellent in conductivity although the conductor itself is opaque. At the same time, the antenna pattern is formed as a mesh-like conductor mesh layer having a large number of openings as the conductor layer, so that both sufficient conductivity and sufficient transparency can be achieved. Furthermore, if an adhesive layer is provided, the attachment to the adherend becomes easy.

本発明による透明アンテナの一形態を例示する断面図。Sectional drawing which illustrates one form of the transparent antenna by this invention. 本発明による透明アンテナの二形態を例示する平面図。The top view which illustrates two forms of the transparent antenna by this invention. 本発明による透明アンテナの別の二形態(接着剤層付き)を例示する断面図。Sectional drawing which illustrates another two form (with an adhesive bond layer) of the transparent antenna by this invention. 本発明による透明アンテナの別の一形態(透明保護層付き)を例示する断面図。Sectional drawing which illustrates another form (with a transparent protective layer) of the transparent antenna by this invention. 本発明による透明アンテナの別の二形態(反射防止層付き)を例示する断面図。Sectional drawing which illustrates another two form (with an antireflection layer) of the transparent antenna by this invention. 従来の透明アンテナの一形態を例示する断面図。Sectional drawing which illustrates one form of the conventional transparent antenna.

以下、本発明の実施の形態について、各層毎に図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described for each layer with reference to the drawings.

[透明基材]
透明基材1は、図1の断面図で例示の様に、透明基材1はアンテナパターン2となる導電体メッシュ層3を支持してその変形を防ぐ機能等を担う層である。
透明基材1には、公知の透明な材料を使用すれば良く、可視光線領域での透明性、耐熱性、機械的強度等を考慮すると、樹脂フィルム(乃至シート)が代表的である。樹脂フィルム(乃至シート)の樹脂は例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、ポメチルメタクリレート等のアクリル系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂、或いは、シクロオレフィン重合体などのポリオレフィン系樹脂、トリアセチルセルロースなどのセルロース系樹脂等である。なかでも、2軸延伸ポリエチレンテレフタレートフィルムは好適な材料である。なお、透明基材の厚みは、取扱性、コスト等の点で通常20〜500μm、好ましくは25〜200μmだが、特に制限はない。
また、透明基材1は、透明アンテナを被着体に貼り付け易い点でフレキシブルな(可撓性の)材料を選べる樹脂フィルムが好ましいが、用途に応じたものとすれば良く、ガラス、セラミックス、樹脂等からなる剛直な板や成形物などでも使用できる。なお、板材の場合、その厚みは通常0.5〜10mmだが、特に制限はない。
[Transparent substrate]
As illustrated in the cross-sectional view of FIG. 1, the transparent substrate 1 is a layer that supports the conductor mesh layer 3 that becomes the antenna pattern 2 and has a function of preventing the deformation and the like.
A known transparent material may be used for the transparent substrate 1, and a resin film (or sheet) is representative in view of transparency in the visible light region, heat resistance, mechanical strength, and the like. The resin of the resin film (or sheet) is, for example, a polyester resin such as polyethylene terephthalate, an acrylic resin such as pomethyl methacrylate, a polycarbonate resin, a polyimide resin, or a polyolefin resin such as a cycloolefin polymer, or triacetyl. Cellulose-based resins such as cellulose. Among these, a biaxially stretched polyethylene terephthalate film is a suitable material. The thickness of the transparent substrate is usually 20 to 500 μm, preferably 25 to 200 μm, in view of handling properties and cost, but is not particularly limited.
In addition, the transparent substrate 1 is preferably a resin film from which a flexible (flexible) material can be selected in terms of easy attachment of the transparent antenna to the adherend. Also, a rigid plate or molded product made of resin or the like can be used. In the case of a plate material, the thickness is usually 0.5 to 10 mm, but is not particularly limited.

[導電体メッシュ層]
図1の断面図で例示の様に、本発明は、アンテナパターン2を形成する導電体層をアンテナパターン内に於いて、従来技術の様に、全面ベタ層(連続層)で構成するのではなく、多数の開口部3bを有するメッシュパターンという非連続層で形成するものであり、この非連続層のパターン形状に注目した表現として、非連続層となる該導電体層を導電体メッシュ層と呼ぶ。すなわち、導電体メッシュ層3は、導電体層の形成部としての導体部3aと非形成部としての多数の開口部3bとによるメッシュ状の導電体層である。なお、導電体メッシュ層3は透明基材1の少なくとも片面に形成されるが、両面でも良い。また、導電体メッシュ層3をその両面から透明基材1で挟む構成としても良い。
なお、アンテナパターン2のパターン形状自体(導電体メッシュ層3の輪郭形状)は、ダイポールアンテナなど用途に応じたものとすれば良く、例えば、図2(a)及び図2(b)の平面図で例示するパターン等であり、送受信する電波の周波数、電界強度、利得、用途等に応じて適宜なパターン形状とすれば良い。
一方、図6の断面図で例示する従来の透明アンテナ20の様にITO膜を用いる従来のアンテナパターン2は、導電体層はアンテナパターン2の内部全域で連続層の導電体連続層7である。
[Conductor mesh layer]
As illustrated in the cross-sectional view of FIG. 1, in the present invention, the conductor layer forming the antenna pattern 2 is not formed in the antenna pattern as a solid layer (continuous layer) as in the prior art. However, it is formed by a discontinuous layer called a mesh pattern having a large number of openings 3b. As an expression paying attention to the pattern shape of the discontinuous layer, the conductor layer that becomes the discontinuous layer is defined as a conductor mesh layer. Call. In other words, the conductor mesh layer 3 is a mesh-like conductor layer having a conductor portion 3a as a conductor layer forming portion and a large number of openings 3b as non-forming portions. The conductor mesh layer 3 is formed on at least one side of the transparent substrate 1, but may be on both sides. Moreover, it is good also as a structure which pinches | interposes the conductor mesh layer 3 with the transparent base material 1 from the both surfaces.
The pattern shape of the antenna pattern 2 itself (the contour shape of the conductor mesh layer 3) may be determined according to the application such as a dipole antenna. For example, the plan views of FIGS. 2 (a) and 2 (b) The pattern may be an appropriate pattern shape according to the frequency, electric field strength, gain, application, and the like of radio waves to be transmitted and received.
On the other hand, in the conventional antenna pattern 2 using an ITO film like the conventional transparent antenna 20 illustrated in the cross-sectional view of FIG. 6, the conductor layer is a conductor continuous layer 7 that is a continuous layer throughout the interior of the antenna pattern 2. .

(メッシュ形状)
メッシュ状とは、その平面視形状が所謂メッシュ(格子乃至網目)形状の他、ストライプ形状などを含むメッシュパターンである。メッシュ形状は単位格子が、例えば、正三角形、二等辺三角形などの三角形、正方形、長方形、菱形、台形などの四角形、五角形、六角形、などの多角形、円、楕円などの輪郭が滑らかな形などの格子模様であり、ストライプ形状は直線状縞模様、スパイラル(螺旋)模様などである。なかでも単位格子が正方形で正方格子形状となるメッシュ形状が代表的である。なお、開口部の形状は正方格子形状では正方形、ストライプ形状では帯形状となる。なお、開口部の形状は、全面で同一形状同一サイズとするのが一般的だが、場所によって変えるなど全面均一としなくても良い。
(Mesh shape)
The mesh shape is a mesh pattern whose shape in plan view includes a so-called mesh (lattice or mesh) shape, as well as a stripe shape. The mesh shape is a unit cell, for example, triangles such as regular triangles and isosceles triangles, squares such as squares, rectangles, rhombuses, and trapezoids, polygons such as pentagons, hexagons, and shapes with smooth outlines such as circles and ellipses. The stripe shape is a linear stripe pattern, a spiral pattern, or the like. Among them, a mesh shape in which the unit cell is a square and a square lattice shape is typical. In addition, the shape of the opening is a square in the square lattice shape and a band shape in the stripe shape. The shape of the opening is generally the same shape and the same size on the entire surface, but it may not be uniform on the entire surface, for example, by changing the location.

導電体メッシュ層3の導体部3aは平面視では線となっており、その線幅は、導電性と透明性の観点から1〜100μm、線のパターンが見え難い「非視認性」の点では、線幅は50μm以下、より好ましくは30μm以下と、なるべく細い方が良い。そこで、線幅50μm以下、より好ましくは30μm以下に設定するこの様な線を、「細線」と呼ぶことにする。一方、導電性及び機械的強度の確保の点からは、線幅3μm以上、好ましくは10μm以上確保する。細線の視認性(見え易さ)は、透明アンテナがどの位の距離から視認されるかにもよるので、細線の線幅は用途に応じて設定すると良い。また、細線の線幅は、全面で均一とするのが一般的だが、場所によって変えるなど均一としなくても良い。
また、細線の周期は、50〜1000μm程度である。但し、設定する開口率との兼ね合いで、要求される面としての導電性(表面抵抗)を満たす範囲内とするのは言うまでもない。なお、導電体メッシュ層の開口率〔(導電体メッシュ層非形成部である開口部の合計面積/開口部も含める導電体メッシュ層の全被覆面積)×100で定義〕は、導電性と透明性(可視光透過性)との両立の点から、50%以上、好ましくは70%以上とするのが良い。
また、導電体メッシュ層の厚みは、導電性(及び透明性)の観点等の点から1〜100μm程度である。
The conductor portion 3a of the conductor mesh layer 3 is a line in plan view, and the line width is 1 to 100 μm from the viewpoint of conductivity and transparency, and in terms of “invisibility” in which the line pattern is difficult to see. The line width should be as thin as possible, preferably 50 μm or less, more preferably 30 μm or less. Therefore, such a line set to a line width of 50 μm or less, more preferably 30 μm or less, will be referred to as a “thin line”. On the other hand, from the viewpoint of ensuring conductivity and mechanical strength, the line width is 3 μm or more, preferably 10 μm or more. The visibility (easy visibility) of the thin line depends on how far the transparent antenna is visually recognized, so the line width of the thin line is preferably set according to the application. In addition, the line width of the thin line is generally uniform over the entire surface, but it may not be uniform, for example, depending on the location.
Moreover, the period of a thin wire | line is about 50-1000 micrometers. However, it goes without saying that it is within a range that satisfies the required conductivity (surface resistance) in consideration of the aperture ratio to be set. Note that the opening ratio of the conductor mesh layer (defined by (total area of openings that are conductor mesh layer non-formed parts / total covering area of conductor mesh layers including openings) × 100) is conductive and transparent. From the viewpoint of compatibility with the property (visible light transparency), it is preferable to set it to 50% or more, preferably 70% or more.
Moreover, the thickness of the conductor mesh layer is about 1 to 100 μm from the viewpoint of conductivity (and transparency).

(層材料)
この様な導電性と透明性とを高度に両立させることができる導電体メッシュ層に利用できる導電体層としては、本発明ではITO膜の様なそれ自身可視光線に対して透明な層は十分な導電性が期待できないので採用せず、十分な導電性が得られるがそれ自体不透明な層となるもの採用する。それ自身可視光線に対して不透明な層となる導電体層としては、公知のものを適宜使用すれば良く、細線(線幅が50μm以下)での形成が可能なものであれば特に制限はなく、材料及び細線(メッシュパターン)の形成法など、公知のものから適宜選択できる。例えば、金属層、或いは銀等から成る導電性粒子を樹脂バインダ中に分散させた導電性組成物層などである。
(Layer material)
In the present invention, a layer transparent to visible light such as an ITO film is sufficient as a conductor layer that can be used for a conductor mesh layer that can achieve both such conductivity and transparency at a high level. Therefore, it is not adopted because it cannot be expected to have a good conductivity, and a sufficient conductivity can be obtained, but an opaque layer itself is adopted. As the conductor layer that becomes an opaque layer with respect to visible light itself, a known layer may be used as appropriate, and there is no particular limitation as long as it can be formed with a thin line (line width of 50 μm or less). The material and the fine line (mesh pattern) forming method can be appropriately selected from known methods. For example, a metal composition or a conductive composition layer in which conductive particles made of silver or the like are dispersed in a resin binder.

((金属層))
上記金属層の金属としては高導電性金属、例えば、金、銀、銅、白金、錫、アルミニウム、鉄、ニッケルなどの金属(含む合金)である。なかでも、金属として銅は一般的であるが、銅よりも安価であるアルミニウムを用いるのも好ましい。
((Metal layer))
The metal of the metal layer is a highly conductive metal, for example, a metal (including alloy) such as gold, silver, copper, platinum, tin, aluminum, iron, or nickel. Among these, copper is generally used as a metal, but it is also preferable to use aluminum which is cheaper than copper.

金属層の場合、導電体メッシュ層を形成するには、大別して、パターン非形成の金属層からパターン形成する方法、最初からパターン形成された金属層を形成する方法の二方法がある。
前者の方法では、パターン非形成の金属層の形成には、金属箔の積層法、めっき法、或いは蒸着やスパッタ等の乾式法が利用される。そして、該金属層に対するパターン形成には、ケミカルエッチング法が利用でき、その際エッチングレジストのパターン形成には、フォトリソグラフィ法や印刷法が利用される。また、金属層を蒸着やスパッタ等で金属薄膜として形成する場合は、金属薄膜形成面に予め水溶性樹脂でネガパターン(開口部とする部分に該樹脂の層を形成する)を形成しておき、金属薄膜形成後、水洗してネガパターン上の金属薄膜を水溶性樹脂と共に除去する方法などもある。
In the case of a metal layer, the conductor mesh layer can be roughly divided into two methods: a method of forming a pattern from a non-patterned metal layer and a method of forming a patterned metal layer from the beginning.
In the former method, a metal foil laminating method, a plating method, or a dry method such as vapor deposition or sputtering is used to form a non-patterned metal layer. A chemical etching method can be used to form a pattern on the metal layer, and a photolithography method or a printing method is used to form an etching resist pattern. In addition, when a metal layer is formed as a metal thin film by vapor deposition or sputtering, a negative pattern (forming a layer of the resin at the opening portion) is formed in advance with a water-soluble resin on the surface of the metal thin film. There is also a method of removing the metal thin film on the negative pattern together with the water-soluble resin by washing with water after forming the metal thin film.

一方、後者の最初からパターン形成した金属層を形成する方法としては、めっき触媒インキの印刷でパターン形成した触媒パターン上にのみ金属層をめっきする方法、これとは逆に、金属などの導電面上の非形成部とする部分にめっきレジストをパターン形成した後、めっきレジストの非形成部に電気めっきして導電体メッシュ層を形成し、導電面から剥離する方法などがある。なお、剥離は更に透明基材を積層後、透明基材と共に剥離するなどする。
また、パターン形成前、パターン形成後の金属層について、転写法を利用して、金属層の積層面を転移させて変更する方法も利用できる。例えば、剥離性基材上に転写層として導電体メッシュ層を形成した転写箔から、接着層を介して透明基材に導電体メッシュ層を積層する。剥離性基材には、前記透明基材で列記した樹脂フィルムなどを使用し(但し不透明でも良い)、接着層はアクリル系熱可塑性樹脂等を、転写箔側、透明基材側、又は両方に施す。
On the other hand, as a method of forming the metal layer patterned from the beginning of the latter, a method of plating the metal layer only on the catalyst pattern patterned by printing of the plating catalyst ink, conversely, a conductive surface such as metal is used. There is a method of forming a conductive mesh layer by patterning a plating resist on a portion to be an upper non-formed portion and then electroplating the non-formed portion of the plating resist to peel from the conductive surface. In addition, peeling peels with a transparent base material after laminating | stacking a transparent base material further.
In addition, for the metal layer before pattern formation and after pattern formation, a method of changing the laminated surface of the metal layer by using a transfer method can also be used. For example, a conductor mesh layer is laminated on a transparent substrate via an adhesive layer from a transfer foil in which a conductor mesh layer is formed as a transfer layer on a peelable substrate. For the peelable substrate, use a resin film or the like listed on the transparent substrate (but may be opaque), and the adhesive layer is made of acrylic thermoplastic resin or the like on the transfer foil side, the transparent substrate side, or both. Apply.

なお、通常は、導電体メッシュ層の製造は、金属層による場合は、透明基材上に金属箔接着、めっき、金属蒸着等で形成した金属層をフォトエッチングする方法で形成する。導電性組成物層による場合は、導電性組成物から成るインキの印刷で形成する。また、金属層としては金属の細いワイヤーを編んで(或いは織って)メッシュ状にした、文字どおりの金属メッシュもあり得るが、アンテナパターンのパターン形成が容易にできるならば、これでも良い。   In general, the conductor mesh layer is produced by a method of photoetching a metal layer formed by adhesion of metal foil, plating, metal vapor deposition, or the like on a transparent substrate when using a metal layer. In the case of using a conductive composition layer, it is formed by printing an ink made of a conductive composition. The metal layer may be a literal metal mesh formed by knitting (or weaving) a thin metal wire into a mesh shape, but this may be used as long as the antenna pattern can be easily formed.

また、めっき触媒パターン、レジストパターン、或いは下記する導電性組成物層、等を印刷でパターン形成する場合、シルクスクリーン印刷、フレキソ印刷、凹版印刷、インクジェット印刷など適宜選択すれば良いが、凹版印刷の場合は、特に後述する「引抜プライマ方式凹版印刷法」は微細且つ高精度にできる点で好ましい。   In addition, when patterning a plating catalyst pattern, a resist pattern, or a conductive composition layer described below by printing, silk screen printing, flexographic printing, intaglio printing, inkjet printing, etc. may be selected as appropriate. In this case, the “pulling primer type intaglio printing method” described later is particularly preferable because it can be made fine and highly accurate.

また、導電体メッシュ層3としての金属層がアルミニウム金属層である場合、メッシュパターンの形成法は特に限定されるものではないが、微細なパターンを容易に形成可能である点で、好適にはアルミニウム箔のエッチングで行うことができる。ただ、金属アルミニウム自体は高活性で表面に酸化皮膜が存在し、このため、均一安定的なケミカルエッチングが難しく、ギザ(線条部分の平面視輪郭線がZigZagな非直線状になること)等パターン精度不良となる。しかし、酸化皮膜の厚さを0〜13Å以下に規定すると均一安定的なケミカルエッチングが可能となり、銅よりも安価なアルミニウムで導電体メッシュ層を形成できる。また、厚みの上限は13Åだが、好ましくは12Å、より好ましくは10Å、更に好ましくは8Åである。厚みの下限はケミカルエッチングを阻害しない点からは0Åだが、箔の加工・保管中などでの不用意な望まれない酸化や腐食防止の観点から、2〜3Å程度の酸化皮膜があるのも良い。なお、1Å=0.1nmである。
また、酸化皮膜の厚み規定はエッチング液が始めに接する面側(通常箔を透明基材に積層後エッチングするので透明基材から遠い方の面、これを上面、他方の面を下面と呼んでもよい)のみで良いが、他方の面(下面)も同じ規定とすることができる。なお、一般的なアルミニウム箔の酸化皮膜は15Å以上、通常20〜100Å程度の厚さである。
また、酸化皮膜の厚さを薄くするにはアルミニウム箔製造時の圧延条件や焼鈍条件を調整できる。また、酸化皮膜の厚さは、ハンターホール法、蛍光X線分析の一種であるX線光電子分光法(XPS)で測定する。
また、アルミニウム箔は導電性が高い点で純度99.0%以上が好ましく、JIS H4160(アルミニウム及びアルミニウム合金はく)、JIS H4170(高純度アルミニウムはく)で規定されるアルミニウム箔に準じた箔を使用することができる。
In addition, when the metal layer as the conductor mesh layer 3 is an aluminum metal layer, the mesh pattern forming method is not particularly limited, but is preferable in that a fine pattern can be easily formed. It can be performed by etching an aluminum foil. However, the metal aluminum itself is highly active and has an oxide film on the surface. For this reason, it is difficult to perform uniform and stable chemical etching. Giza (the contour line in the plan view of the line portion becomes a ZigZag non-linear shape) etc. Pattern accuracy is poor. However, if the thickness of the oxide film is regulated to 0 to 13 mm or less, uniform and stable chemical etching can be performed, and the conductor mesh layer can be formed of aluminum which is cheaper than copper. The upper limit of the thickness is 13 mm, but is preferably 12 mm, more preferably 10 mm, and still more preferably 8 mm. The lower limit of the thickness is 0 mm from the point of not inhibiting chemical etching, but it is also possible to have an oxide film of about 2 to 3 mm from the viewpoint of preventing undesired oxidation and corrosion during processing and storage of the foil. . Note that 1Å = 0.1 nm.
In addition, the thickness of the oxide film is defined by the side that comes into contact with the etchant first (usually the surface that is far from the transparent substrate because it is etched after laminating the foil on the transparent substrate; The other surface (lower surface) can be defined in the same manner. In addition, the oxide film of a general aluminum foil has a thickness of 15 mm or more, usually about 20 to 100 mm.
Moreover, in order to reduce the thickness of the oxide film, it is possible to adjust rolling conditions and annealing conditions at the time of manufacturing the aluminum foil. The thickness of the oxide film is measured by the Hunter Hall method or X-ray photoelectron spectroscopy (XPS) which is a kind of fluorescent X-ray analysis.
In addition, the aluminum foil preferably has a purity of 99.0% or more from the viewpoint of high conductivity, and is a foil conforming to the aluminum foil defined by JIS H4160 (aluminum and aluminum alloy foil) and JIS H4170 (high purity aluminum foil). Can be used.

(導電性組成物層)
導電体メッシュ層3としての導電性組成物層は、導電性粒子を樹脂バインダ中に分散させた層であり、導電性粒子としては、金、銀、白金、銅、錫、アルミニウム、ニッケルなど高導電性金属(含む合金)粒子を用い、或いは樹脂粒子や無機物粒子の表面を金、銀など上記高導電性金属で被覆した金属被覆粒子、或いは黒鉛粒子などを用いてもよい。
(Conductive composition layer)
The conductive composition layer as the conductor mesh layer 3 is a layer in which conductive particles are dispersed in a resin binder. Examples of the conductive particles include gold, silver, platinum, copper, tin, aluminum, and nickel. Conductive metal (including alloy) particles may be used, or metal-coated particles in which the surfaces of resin particles or inorganic particles are coated with the above highly conductive metal such as gold or silver, or graphite particles may be used.

また、上記樹脂バインダの樹脂としては、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などを単独使用又は併用する。熱可塑性樹脂には熱可塑性ポリエステル樹脂、熱可塑性アクリル樹脂など、熱硬化性樹脂にはメラミン樹脂、熱硬化性ポリエステル樹脂、熱硬化性アクリル樹脂、熱硬化性ウレタン樹脂などを使用する。また、電離放射線硬化性樹脂には、電離放射線で架橋反応などを起こして重合硬化するモノマー及び/又はプレポリマーを含む組成物を使用する。モノマーやプレポリマーにはラジカル重合性やカチオン重合性の化合物を使用する。なかでも、アクリレート系化合物を用いた電離放射性硬化性樹脂が代表的である。   In addition, as the resin of the resin binder, a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, or the like is used alone or in combination. A thermoplastic polyester resin, a thermoplastic acrylic resin, or the like is used as the thermoplastic resin, and a melamine resin, a thermosetting polyester resin, a thermosetting acrylic resin, a thermosetting urethane resin, or the like is used as the thermosetting resin. In addition, as the ionizing radiation curable resin, a composition containing a monomer and / or a prepolymer that undergoes a crosslinking reaction with ionizing radiation and is cured. As the monomer or prepolymer, a radical polymerizable or cationic polymerizable compound is used. Among these, ionizing radiation curable resins using acrylate compounds are typical.

導電性組成物層は層形成時の最初からパターン形成でき、印刷でパターン形成する場合、シルクスクリーン印刷、フレキソ印刷、凹版印刷、インクジェット印刷など適宜選択すれば良いが、凹版印刷の場合は、特に後述する「引抜プライマ方式凹版印刷法」は、微細なパターンを高精度で形成できる点で好ましい。尚、導電性組成物は導電性インキ、導電性ペースト等とも呼称される。
また、透明基材表面に目的とするパターンのパターン溝を基材面に形成しておき、該基材面の全面に導電性組成物を塗布した後、該溝部以外に有る不要な導電性組成物をブレードなどで掻き取って溝内部のみに導電性組成物を残すことで、導電性メッシュ層を形成することもできる(所謂ワイピング加工法)。パターン溝を形成する基材は、透明基材でも良く、或いは他の基材に形成後、転写で透明基材に積層しても良い。
The conductive composition layer can be patterned from the beginning at the time of layer formation. When patterning by printing, silk screen printing, flexographic printing, intaglio printing, ink jet printing, etc. may be appropriately selected. The “pulling primer intaglio printing method” described later is preferable in that a fine pattern can be formed with high accuracy. The conductive composition is also called conductive ink, conductive paste, or the like.
In addition, after forming a pattern groove of a desired pattern on the surface of the transparent substrate and applying the conductive composition to the entire surface of the substrate, an unnecessary conductive composition other than the groove The conductive mesh layer can also be formed by scraping off an object with a blade or the like and leaving the conductive composition only in the groove (so-called wiping method). The substrate for forming the pattern groove may be a transparent substrate, or may be laminated on the transparent substrate by transfer after being formed on another substrate.

((導電性組成物層の「引抜プライマ方式凹版印刷法」))
この印刷法は、本出願人が国際公開WO2008/149969号公報に開示した印刷法であり、「転移促進層」とも言える、凹版版面の凹部内部に充填したインキを引き抜いて被印刷物へのインキの転移を促進させる「プライマ層」と呼んでいる層を、印刷の最中に流動状態で作用させる点に特徴がある凹版印刷法である。よって、ここでは、この凹版印刷法を「引抜プライマ方式凹版印刷法」と呼ぶことにする。
(("Pulling Primer Intaglio Printing Method for Conductive Composition Layer")))
This printing method is a printing method disclosed by the present applicant in International Publication No. WO2008 / 149969, and can be referred to as a “transition promoting layer”. The ink filled in the concave portion of the intaglio plate surface is drawn out, and the ink on the printing material is extracted. This is an intaglio printing method characterized in that a layer called a “primer layer” that promotes transfer is allowed to act in a fluid state during printing. Therefore, here, this intaglio printing method is referred to as “pulling primer type intaglio printing method”.

引抜プライマ方式凹版印刷法では、例えば次の様にして印刷する。導電性ペーストなどの固化前の導電性組成物を、凹版の版面の凹部のみにドクターブレードによって充填すると共に凹部以外の版面凸部上の導電性組成物は掻き取って除去する。凹部に充填された導電性組成物の表面は版面(凸部)と完全な面一にならず僅かに窪んだ凹みが生じる。この凹版に、未だ流動状態のプライマ流動層が塗工された透明基材を供給して該プライマ流動層を版面に圧着すると、プライマ流動層が凹みに流れ込み凹みを充填し、また版面凸部も覆う。この状態でプライマ流動層を紫外線硬化などで固化してプライマ層とした後、透明基材を凹版から離版して、透明基材上に固化したプライマ層と、未硬化の導電性組成物、或いは導電性組成物が硬化済みの導電性組成物層からなる導電体層が積層された印刷物を得る。なお、導電体層の固化は、未硬化の導電性組成物が溶剤を含むときは離版後に行い、無溶剤の場合は離版後、或いは、離版前のプライマ固化と同時又はプライマ固化後に行う。   In the drawing primer type intaglio printing method, for example, printing is performed as follows. A conductive composition such as a conductive paste before solidification is filled only in the concave portion of the intaglio plate surface with a doctor blade, and the conductive composition on the convex portion of the plate surface other than the concave portion is scraped off and removed. The surface of the conductive composition filled in the recesses is not completely flush with the plate surface (convex portions), and a slightly depressed recess is generated. When a transparent base material coated with a fluidized primer fluidized bed is supplied to the intaglio plate and the primer fluidized bed is pressure-bonded to the plate surface, the primer fluidized bed flows into the recess and fills the recess, cover. In this state, the primer fluidized layer is solidified by ultraviolet curing or the like to form a primer layer, and then the transparent substrate is released from the intaglio, and the primer layer solidified on the transparent substrate and an uncured conductive composition, Or the printed matter by which the conductor layer which consists of a conductive composition layer by which the conductive composition was hardened was laminated | stacked. The solidification of the conductor layer is performed after the release when the uncured conductive composition contains a solvent, and after the release in the case of no solvent, or simultaneously with the primer solidification before the release or after the primer solidification. Do.

そして、この様な、「引抜プライマ方式凹版印刷法」による印刷物が、他の印刷法にみられない大きな特徴は、プライマ層と導電性組成物層との界面について、プライマ層は導電性組成物層の形成部の導体部3aである凸部に於ける厚さが導電性組成物層の非形成部である開口部3bに於ける厚さよりも厚い形状となることである。   And, such a printed matter by the “pulling primer intaglio printing method” is a major feature that is not seen in other printing methods, the interface between the primer layer and the conductive composition layer, the primer layer is the conductive composition The thickness of the convex portion which is the conductor portion 3a of the layer forming portion is thicker than the thickness of the opening portion 3b which is a non-forming portion of the conductive composition layer.

更に、プライマ層と導電性組成物層との界面は、次の(A)〜(C)のいずれかの1以上の断面形態を有する。(A)プライマ層と導電性組成物層との界面が非直線状に入り組んでいる断面形態、(B)プライマ層を構成する成分と導電性組成物層を構成する成分とが混合している混合領域を界面近傍に有する断面形態、(C)導電性組成物層を構成する導電性組成物中にプライマ層に含まれる成分が存在している断面形態。この様な、界面の断面形態は、プライマ層がプライマ層と導電性組成物層との離版時の密着性を強化し、凹版からインキ(導電性組成物)の被印刷物(透明基材)への転移を促進し高精度且つ高品質の凹版印刷を可能にしている理由であると思われる。   Furthermore, the interface between the primer layer and the conductive composition layer has one or more of the following cross-sectional forms (A) to (C). (A) Cross-sectional form in which the interface between the primer layer and the conductive composition layer is in a non-linear manner, and (B) the component constituting the primer layer and the component constituting the conductive composition layer are mixed. A cross-sectional form having a mixed region in the vicinity of the interface, and (C) a cross-sectional form in which a component contained in the primer layer is present in the conductive composition constituting the conductive composition layer. Such a cross-sectional form of the interface is such that the primer layer reinforces the adhesiveness at the time of release between the primer layer and the conductive composition layer, and the printing material (transparent substrate) from the intaglio to the ink (conductive composition) This is considered to be the reason why the transition to JIS is promoted, and high-precision and high-quality intaglio printing is possible.

また、導電性組成物層の形成部である導体部3aの凸部の内部では、導電性粒子が一様均一な分布ではなく、導電性粒子の分布が、相対的に、凸部の頂上部の近くが密でそれよりも頂上部から遠いプライマ層の近くが疎である分布を持つ内部構造が好ましい。密とは単位体積中の導電性粒子の粒子数で見た数密度である。つまり、凸部内部の導電性粒子の数密度が、プライマ層近くに比べて頂上部近くの方が大きくなる分布である。数密度が大きい方が導電性粒子同士の電気的接触が行われ易い。従って、例え導電性組成物中の導電性粒子の平均濃度が同じであっても、同じ数の導電性粒子を数密度一様で分布させた場合に比べて、数密度が大きい部分での電気抵抗の低下が寄与して全体として電気抵抗が下がり、導電性能が向上する。更に、プライマ層との境界近傍での導電性粒子の数密度が小さいことによって、導電性組成物層とプライマ層との密着性が向上する。
この様に凸部頂上部の方に導電性粒子を偏在させるには、例えば、プライマ流動層形成済みの透明基材を版面に圧着する工程にて圧着力を強くすると共に、導電性組成物は粘度は低めにし且つ凹版凹部内では固化させずに版面から離版後に固化させると良い。この他、固化前の導電性組成物の粘度(樹脂材料及び樹脂量、溶剤量、その他添加剤量、導電性粒子の形状、粒度分布、含有量など関係)、固化条件などにも依存するので、これらは適宜実験的に決定すると良い。
In addition, inside the convex part of the conductor part 3a, which is the formation part of the conductive composition layer, the conductive particles are not uniformly distributed, but the distribution of the conductive particles is relatively the top of the convex part. An internal structure with a distribution that is dense near and sparse near the primer layer farther from the top is preferred. Density is the number density in terms of the number of conductive particles in a unit volume. That is, the number density of the conductive particles inside the convex portion is a distribution that is larger near the top than in the vicinity of the primer layer. The larger the number density, the easier the electrical contact between the conductive particles. Therefore, even if the average concentration of the conductive particles in the conductive composition is the same, the electric number in the portion where the number density is larger than that in the case where the same number of conductive particles are uniformly distributed. The decrease in resistance contributes to a decrease in electrical resistance as a whole, and the conductive performance is improved. Furthermore, since the number density of the conductive particles in the vicinity of the boundary with the primer layer is small, the adhesion between the conductive composition layer and the primer layer is improved.
Thus, in order to make the conductive particles unevenly distributed toward the top of the convex portion, for example, the pressure-bonding force is increased in the step of pressure-bonding the transparent substrate on which the primer fluidized layer is formed to the plate surface, and the conductive composition is It is preferable to lower the viscosity and solidify after releasing from the plate surface without solidifying in the intaglio recess. In addition, it depends on the viscosity of the conductive composition before solidification (resin material and resin amount, solvent amount, amount of other additives, shape of conductive particles, particle size distribution, content, etc.), solidification conditions, etc. These may be determined experimentally as appropriate.

なお、プライマ層には、熱可塑性樹脂、硬化性樹脂などが使用され、硬化性樹脂としては、熱硬化性樹脂、電離放射線硬化性樹脂を使用できるが、流動状態から固化状態への迅速な変化を制御できる点で、好ましくは電離放射線硬化性樹脂が使用される。電離放射線としては、紫外線、電子線等が使用できる。   For the primer layer, a thermoplastic resin, a curable resin, or the like is used. As the curable resin, a thermosetting resin or an ionizing radiation curable resin can be used, but a rapid change from a fluidized state to a solidified state is possible. Preferably, ionizing radiation curable resin is used in that it can be controlled. As the ionizing radiation, ultraviolet rays, electron beams and the like can be used.

(黒化処理)
なお、金属層や導電性組成物層等として形成した導電体メッシュ層3が、金属色や銀色等と明るい色を呈し、これがメッシュパターンの細線を目立たせてしまう場合には、目立たなくさせる為に、その表面が黒化処理層を有するものとしても良い。黒化処理層としては、金属層の場合は黒化ニッケルめっきを行うなど公知の処理を適宜採用すれば良い。或いは、導電性組成物の場合には、組成物中にカーボンブラック等の黒色乃至は暗色を呈する色材を添加しても良い。
(Blackening treatment)
The conductive mesh layer 3 formed as a metal layer, a conductive composition layer, or the like exhibits a bright color such as a metal color or silver color, and this makes the fine lines of the mesh pattern stand out, so that it does not stand out. In addition, the surface may have a blackening treatment layer. As the blackening treatment layer, in the case of a metal layer, a known treatment such as blackening nickel plating may be appropriately employed. Alternatively, in the case of the conductive composition, a black or dark color material such as carbon black may be added to the composition.

(導電体メッシュ層をアンテナパターン形状にする方法)
上記の様なメッシュパターンの導電体メッシュ層3で、アンテナパターン2のパターン形状を形成するには、導電体メッシュ層のメッシュパターンの形成と同時に行えば良い。すなわち、導電体メッシュ層3(メッシュパターン)の領域の輪郭形状をアンテナパターンのパターン形状として、導電体メッシュ層のメッシュパターンを形成すれば良い。
或いは、導電体メッシュ層3はアンテナパターンよりも広い面積で形成しておいたもの(汎用原反)から、アンテナパターンのパターン形状を形成しても良い。例えば、透明基材上に導電体メッシュ層3を形成したものを汎用原反として、これを要求されるアンテナパターンの形状に応じて、透明基材ごとアンテナパターン形状に切断乃至切抜することで形成できる。また、導電体メッシュ層が金属層である場合には、該汎用原反の不要な領域の導電体メッシュ層をエッチングで除去することで形成できる。
この様に、導電体メッシュ層をアンテナパターン形状にする方法は、特に限定されるものではない。
(Method of making conductor mesh layer into antenna pattern shape)
In order to form the pattern shape of the antenna pattern 2 with the conductor mesh layer 3 having the mesh pattern as described above, it may be performed simultaneously with the formation of the mesh pattern of the conductor mesh layer. That is, the mesh pattern of the conductor mesh layer may be formed using the contour shape of the region of the conductor mesh layer 3 (mesh pattern) as the pattern shape of the antenna pattern.
Alternatively, the conductor mesh layer 3 may be formed in a pattern shape of the antenna pattern from one (general raw material) formed in a wider area than the antenna pattern. For example, by forming a conductive mesh layer 3 on a transparent base material as a general-purpose raw material, this is formed by cutting or cutting the whole transparent base material into an antenna pattern shape according to the required antenna pattern shape it can. Moreover, when a conductor mesh layer is a metal layer, it can form by removing the conductor mesh layer of the unnecessary area | region of this general purpose raw material by an etching.
Thus, the method for making the conductor mesh layer into the antenna pattern shape is not particularly limited.

(その他)
なお、本発明では、アンテナパターン2が導電体メッシュ層3で形成されているが、透明アンテナが含む導電体層として、導電体メッシュ層以外の導電体層が存在してもよい。該導電体層に公知の導電体を適宜採用すれば良い。
また、透明アンテナ自体の透明性は(アンテナパターンの領域内で)、380〜780nmの可視光波長領域において、可視光透過率50%以上、より好ましくは70%以上であるが、用途にもよる。
(Other)
In the present invention, the antenna pattern 2 is formed of the conductor mesh layer 3, but a conductor layer other than the conductor mesh layer may exist as the conductor layer included in the transparent antenna. What is necessary is just to employ | adopt a well-known conductor for this conductor layer suitably.
Further, the transparency of the transparent antenna itself (within the antenna pattern region) is visible light transmittance of 50% or more, more preferably 70% or more in the visible light wavelength region of 380 to 780 nm. .

[接着剤層]
図3(a)及び図3(b)の断面図で例示する透明アンテナ10の様に、接着剤層4を、透明基材1のアンテナパターン2を形成した側とは反対側の面{図3(a)}、或いはアンテナパターン2を形成した側の面{図3(b)}に形成しても良い。或いは、更にこれら両方の面に形成しても良い(図示略)。接着剤層により被着体への貼り付けが容易となる。なお、この接着剤層は透明であるが、公知の透明なものを適宜選択すれば良い。該接着剤としては、各種形態の物が用いられる。例えば、(1)熱可塑性樹脂を用い、加熱溶融後に冷却固化させて接着する、所謂ヒートシール(熱封着)型乃至はホットメルト(熱溶)型接着剤、(2)熱硬化性樹脂を用い、加熱による重合乃至は架橋反応により硬化させて接着する、所謂熱硬化型接着剤、(3)電離放射線硬化性樹脂を用い、電離放射線照射による重合乃至は架橋反応により硬化させて接着する、所謂電離放射線硬化型接着剤、(4)表面に粘着性を有する樹脂を用い、接触、加圧のみで(加熱、電離放射線照射等のエネルギー印加、或いは化学反応を利用することなく)接着する、所謂粘着剤、等が挙げられる。これらの中でも、加熱等の特別な処理が不要で、且つ必要に応じて再剥離も可能な点に於いて、粘着剤が汎用且つ便利である。
接着剤として粘着剤を使用した接着剤層即ち粘着剤層としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等であり、公知の塗工法、或いはセパレータ付きなどの粘着フィルムの積層などで形成する。
また、粘着剤層の粘着面には、使用時には剥離するセパレータ(剥離紙)を通常は積層しておく。セパレータとしては、公知のもので良く、透明なものの他、使用時は剥離除去するので透明でなくても良い。この様な、セパレータとしては、例えば、ポリエステルフィルムや紙にシリコーン等の剥離性材料を塗布したものなどがある。
又、これらの各種接着剤層としては、接着剤層のみからなる形態の他、不織布、樹脂シート等の芯材シートを中間層として具備し、その表裏両面に接着剤層を積層した3層構成の形態(所謂両面接(粘)着テープ)で用いることも出来る。
[Adhesive layer]
Like the transparent antenna 10 illustrated in the cross-sectional views of FIGS. 3A and 3B, the adhesive layer 4 has a surface opposite to the side on which the antenna pattern 2 of the transparent substrate 1 is formed {FIG. 3 (a)} or the surface {FIG. 3 (b)} on the side where the antenna pattern 2 is formed. Alternatively, it may be formed on both of these surfaces (not shown). Adhesion to the adherend is facilitated by the adhesive layer. In addition, although this adhesive bond layer is transparent, what is necessary is just to select a well-known transparent thing suitably. As the adhesive, various forms are used. For example, (1) a so-called heat seal (hot seal) type or hot melt (hot melt) type adhesive that uses a thermoplastic resin and is cooled and solidified after heat melting and bonded, and (2) a thermosetting resin. Use, so-called thermosetting adhesive, which is cured by a polymerization or cross-linking reaction by heating, and (3) an ionizing radiation curable resin, and is cured by an ionizing radiation irradiation or cured by a cross-linking reaction to be bonded. A so-called ionizing radiation curable adhesive, (4) using a resin having adhesiveness on the surface, and adhering only by contact and pressurization (without using energy such as heating, ionizing radiation irradiation, or chemical reaction); Examples include so-called pressure-sensitive adhesives. Among these, a pressure-sensitive adhesive is general-purpose and convenient in that a special treatment such as heating is unnecessary and re-peeling is possible as necessary.
Examples of the adhesive layer using the adhesive as the adhesive, that is, the adhesive layer, are, for example, an acrylic adhesive, a silicone adhesive, a rubber adhesive, and the like, and a known coating method or an adhesive film with a separator, etc. It is formed by laminating.
Moreover, the separator (release paper) which peels at the time of use is normally laminated | stacked on the adhesive surface of an adhesive layer. As a separator, a well-known thing may be sufficient, and since it peels and removes at the time of use other than a transparent thing, it does not need to be transparent. Examples of such a separator include a polyester film or paper coated with a peelable material such as silicone.
Moreover, as these various adhesive layers, in addition to the form consisting of only the adhesive layer, a core material sheet such as a nonwoven fabric or a resin sheet is provided as an intermediate layer, and an adhesive layer is laminated on both front and back surfaces. (So-called double-sided adhesive tape) can also be used.

[透明保護層]
また、図4の断面図で例示する透明アンテナ10の様に、アンテナパターン2の上にアンテナパターンを外力などから保護する透明保護層5を形成してもよい。透明保護層5は少なくともアンテナパターン2上に形成するが、アンテナパターン2非形成部も含む透明アンテナの全面に形成しても良い。透明保護層5は透明樹脂フィルムの接着剤や粘着剤を介した積層や、透明樹脂塗料の塗布で形成できる。
なお、透明樹脂フィルムには前記透明基材で列記したものなどが使用でき、接着剤にはウレタン樹脂系など公知のものを、粘着剤には前記粘着剤層で列記したものなど公知のものを使用できる。
また、透明樹脂塗料の樹脂としては、熱可塑性樹脂、硬化性樹脂等が使用でき、熱可塑性樹脂は、例えば、アクリル系樹脂、ポリエステル系樹脂、セルロース系樹脂、熱可塑性ウレタン系樹脂などであり、硬化性樹脂は例えば、熱硬化型ウレタン系樹脂、熱硬化型アクリル系樹脂、エポキシ系樹脂等の熱硬化性樹脂や、紫外線や電子線で硬化する電離放射線硬化性樹脂である。なお、電離放射線硬化性樹脂は、アクリレート系で代表されるラジカル重合性化合物や、エポキシ系で代表されるカチオン重合性化合物を含む樹脂がある。
[Transparent protective layer]
Further, like the transparent antenna 10 illustrated in the cross-sectional view of FIG. 4, a transparent protective layer 5 may be formed on the antenna pattern 2 to protect the antenna pattern from external force. The transparent protective layer 5 is formed on at least the antenna pattern 2, but may be formed on the entire surface of the transparent antenna including the portion where the antenna pattern 2 is not formed. The transparent protective layer 5 can be formed by laminating a transparent resin film via an adhesive or pressure-sensitive adhesive or applying a transparent resin paint.
In addition, what was listed by the said transparent base material etc. can be used for a transparent resin film, A well-known thing, such as a urethane resin type, is used for an adhesive, and what is known, such as what was listed by the said adhesive layer, is used for an adhesive. Can be used.
Further, as the resin of the transparent resin paint, a thermoplastic resin, a curable resin, and the like can be used, and the thermoplastic resin is, for example, an acrylic resin, a polyester resin, a cellulose resin, a thermoplastic urethane resin, The curable resin is, for example, a thermosetting resin such as a thermosetting urethane resin, a thermosetting acrylic resin, or an epoxy resin, or an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam. Examples of the ionizing radiation curable resin include resins containing a radical polymerizable compound typified by an acrylate type and a cationic polymerizable compound typified by an epoxy type.

[反射防止層]
また、図5(a)及び図5(b)の断面図で例示する透明アンテナ10の様に、反射防止層6を、透明基材1のアンテナパターン2を形成した側の面{図5(a)}、或いはアンテナパターン2を形成した側とは反対側の面{図5(b)}に形成しても良い。反射防止層6を設けることで、表面反射による光線透過率低下を防ぎ、透明アンテナ全体としての透明性低下を防げる。
反射防止層6としては公知のものを適宜採用すれば良く、例えば、反射防止層には、低屈折率層と高屈折率層とを低屈折率層が最表面に位置する様に交互に積層した多層構成、或いは低屈折率層のみの単層構成(その下層が高屈折率層の役割を果たす)があり、各層は塗工などの湿式法、蒸着やスパッタなどの乾式法で形成する。例えば、低屈折率層は、低屈折率材としてケイ素酸化物、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ素含有樹脂などが用いられ、高屈折率層には高屈折率材として、酸化チタン、酸化ジルコニウム、酸化ニオブなどが用いられる。また塗工形成する場合は、バインダー樹脂として、好ましくは、前記透明保護層で列記した様な、熱硬化性樹脂や電離放射線硬化性樹脂などの硬化性樹脂が用いられる。例えば、低屈折率層には低屈折率材として中空シリカを電離放射線硬化性樹脂中に分散させた樹脂層を用い高屈折率層には高屈折率材として酸化ジルコニウムを電離放射線硬化性樹脂中に分散させた樹脂層を用いるか、透明基材或いは前記透明保護層自体で代用させる。
[Antireflection layer]
Further, like the transparent antenna 10 illustrated in the cross-sectional views of FIGS. 5A and 5B, the antireflection layer 6 is provided on the surface on the side where the antenna pattern 2 of the transparent substrate 1 is formed {FIG. a)} or a surface {FIG. 5 (b)} opposite to the side on which the antenna pattern 2 is formed. By providing the antireflection layer 6, it is possible to prevent a decrease in light transmittance due to surface reflection and to prevent a decrease in transparency of the entire transparent antenna.
Any known antireflection layer 6 may be used as appropriate. For example, in the antireflection layer, a low refractive index layer and a high refractive index layer are alternately laminated so that the low refractive index layer is located on the outermost surface. In other words, each layer is formed by a wet method such as coating, or a dry method such as vapor deposition or sputtering. For example, the low refractive index layer uses silicon oxide, magnesium fluoride, lithium fluoride, calcium fluoride, fluorine-containing resin, etc. as the low refractive index material, and the high refractive index layer uses oxidized material as the high refractive index material. Titanium, zirconium oxide, niobium oxide, etc. are used. When the coating is formed, a curable resin such as a thermosetting resin or an ionizing radiation curable resin as listed in the transparent protective layer is preferably used as the binder resin. For example, a resin layer in which hollow silica is dispersed in an ionizing radiation curable resin as a low refractive index material is used for the low refractive index layer, and zirconium oxide is used as a high refractive index material in the ionizing radiation curable resin for the high refractive index layer. The resin layer dispersed in is used, or a transparent substrate or the transparent protective layer itself is substituted.

[用途]
本発明による透明アンテナは、各種用途に使用可能である。例えば、自動車等の車両の窓に貼付する用途では、カーナビゲーション等の、テレビ、ラジオ、GPS(Global Positioning System)衛星等の各種電波の受信アンテナ或いは送信乃至は送受信アンテナ、携帯電話など携帯情報機器の表示窓等に取り付ける、受信、送信、送受信用のアンテナ、建築物の窓ガラスの破損検知用に用いる窓貼りセンサとしての電波の送信、受信、送受信用アンテナ、商品陳列ケースの透明窓などに貼付しICタグによる在庫管理用途での信号送受信アンテナ等である。
[Usage]
The transparent antenna according to the present invention can be used for various applications. For example, in applications to be attached to the window of a vehicle such as an automobile, mobile information devices such as a car navigation system, such as a TV, radio, GPS (Global Positioning System) satellite, and other radio wave receiving antennas, transmission or transmission / reception antennas, and cellular phones. For reception, transmission, transmission / reception antennas attached to display windows, etc., for transmission, reception, transmission / reception antennas, transparent windows for product display cases, etc. A signal transmission / reception antenna or the like for inventory management using an attached IC tag.

次に、本発明を実施例によって更に詳述する。   Next, the present invention will be described in further detail with reference to examples.

[実施例1]
2軸延伸透明ポリエチレンテレフタレートフィルムからなる透明基材の片面に、「引抜プライマ方式凹版印刷法」によって導電性組成物層として導電体メッシュ層を、所定のアンテナパターンにて形成して、透明アンテナを作成した。プライマ層には紫外線硬化性アクリル樹脂を用い、導電性組成物層は導電性粒子として鱗片状銀粒子を熱可塑性ポリエステルウレタン樹脂と溶剤を含む樹脂バインダに分散した銀ペーストで形成した。導電体メッシュ層は、厚みが20μm、メッシュの線幅が20μmで、開口部となる正方格子が繰返ピッチ300μmで配列した形状で、厚さは19μmである。また、開口率は、(280×280)÷(300×300)×100=87%である。
また、アンテナパターンは、2.45GHz帯の送受信用2分の1波長ダイポールアンテナであり、長さ30mm、幅40mmの長方形状2枚から成る図2(b)の如き形態のものであった。放射特性を測定した結果、本実施例のものと同アンテナパターンを該アンテナパターン内が全域連続体膜の厚み20μmの銅箔から成る現行の金属ダイポールアンテナと同等のアンテナ特性が得られた。
[Example 1]
On one side of a transparent substrate made of a biaxially stretched transparent polyethylene terephthalate film, a conductive mesh layer is formed as a conductive composition layer by a “drawing primer type intaglio printing method” with a predetermined antenna pattern. Created. An ultraviolet curable acrylic resin was used for the primer layer, and the conductive composition layer was formed of a silver paste in which scaly silver particles were dispersed as a conductive particle in a resin binder containing a thermoplastic polyester urethane resin and a solvent. The conductor mesh layer has a thickness of 20 μm, a mesh line width of 20 μm, and a square lattice serving as openings arranged in a repeating pitch of 300 μm, and the thickness is 19 μm. The aperture ratio is (280 × 280) ÷ (300 × 300) × 100 = 87%.
Further, the antenna pattern is a half-wave dipole antenna for transmission / reception in the 2.45 GHz band, and has a form as shown in FIG. 2B, which is composed of two rectangular pieces having a length of 30 mm and a width of 40 mm. As a result of measuring the radiation characteristics, the same antenna characteristics as those of the present example were obtained, which are the same as those of the current metal dipole antenna in which the antenna pattern is made of a copper foil having a thickness of a continuous film of 20 μm.

1 透明基材
2 アンテナパターン
3 導電体メッシュ層
3a 導体部
3b 開口部
4 接着剤層
5 透明保護層
6 反射防止層
7 導電体連続層
10 透明アンテナ
20 従来の透明アンテナ
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Antenna pattern 3 Conductor mesh layer 3a Conductor part 3b Opening part 4 Adhesive layer 5 Transparent protective layer 6 Antireflection layer 7 Conductor continuous layer 10 Transparent antenna 20 Conventional transparent antenna

Claims (2)

透明基材上にアンテナパターンが形成された透明アンテナにおいて、
アンテナパターンが、不透明な導電体層の形成部としての導体部と非形成部としての多数の開口部とによるメッシュ状の導電体メッシュ層によって形成されている透明アンテナ。
In a transparent antenna in which an antenna pattern is formed on a transparent substrate,
A transparent antenna in which an antenna pattern is formed by a conductor mesh layer in the form of a mesh having a conductor portion as an opaque conductor layer forming portion and a large number of openings as non-forming portions.
透明基材のアンテナパターンが形成された側とは反対側の面、或いはアンテナパターンが形成された側の面に、更に接着剤層が形成されている、請求項1記載の透明アンテナ。
The transparent antenna according to claim 1, wherein an adhesive layer is further formed on the surface of the transparent substrate opposite to the side on which the antenna pattern is formed or on the side on which the antenna pattern is formed.
JP2009214515A 2009-09-16 2009-09-16 Transparent antenna Active JP5447813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214515A JP5447813B2 (en) 2009-09-16 2009-09-16 Transparent antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214515A JP5447813B2 (en) 2009-09-16 2009-09-16 Transparent antenna

Publications (2)

Publication Number Publication Date
JP2011066610A true JP2011066610A (en) 2011-03-31
JP5447813B2 JP5447813B2 (en) 2014-03-19

Family

ID=43952389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214515A Active JP5447813B2 (en) 2009-09-16 2009-09-16 Transparent antenna

Country Status (1)

Country Link
JP (1) JP5447813B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005013A (en) * 2011-06-13 2013-01-07 Dainippon Printing Co Ltd Transparent antenna, and image display device
GB2520747A (en) * 2013-11-29 2015-06-03 Pragmatic Printing Ltd Antenna and apparatus comprising antenna
JP2016516623A (en) * 2013-03-15 2016-06-09 エージーシー オートモーティヴ アメリカズ アールアンドディー,インコーポレイテッド Window assembly with a transparent region having a property enhancing slit
JP2016173674A (en) * 2015-03-16 2016-09-29 大日本印刷株式会社 Production method of conductive pattern sheet, conductive pattern sheet, touch panel sensor, and image display device
JP2016180632A (en) * 2015-03-23 2016-10-13 シチズンホールディングス株式会社 Timepiece
JP2018155727A (en) * 2017-03-17 2018-10-04 巨擘科技股▲ふん▼有限公司 Input device and method for manufacturing the same
WO2019107476A1 (en) 2017-11-29 2019-06-06 大日本印刷株式会社 Wiring board and production method for wiring board
WO2020066817A1 (en) 2018-09-28 2020-04-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
WO2020189451A1 (en) * 2019-03-15 2020-09-24 Agc株式会社 Antenna device, electronic device, window glass, and movable body
US10819007B2 (en) 2015-05-21 2020-10-27 Sharp Kabushiki Kaisha Display device
WO2020226049A1 (en) 2019-05-07 2020-11-12 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
CN112486361A (en) * 2020-12-20 2021-03-12 英特睿达(山东)电子科技有限公司 Display touch screen member
WO2021161972A1 (en) 2020-02-13 2021-08-19 旭化成株式会社 Transparent antenna and rf tag
CN113437504A (en) * 2021-06-21 2021-09-24 中国科学院重庆绿色智能技术研究院 Transparent antenna preparation method based on film photoetching process and transparent antenna
US11139579B2 (en) 2017-04-04 2021-10-05 Denso Corporation Light-transmissive antenna, window affixing type communication module, and periphery monitoring unit
WO2021206177A1 (en) 2020-04-09 2021-10-14 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP2021527908A (en) * 2019-04-19 2021-10-14 エヌイーシー ラボラトリーズ アメリカ インクNEC Laboratories America, Inc. Transparent walkthrough gate
WO2021221119A1 (en) 2020-05-01 2021-11-04 大日本印刷株式会社 Wiring board, and method for manufacturing wiring board
WO2022071608A1 (en) 2020-10-02 2022-04-07 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
WO2022075463A1 (en) * 2020-10-08 2022-04-14 大日本印刷株式会社 Head-mounted display
WO2022196730A1 (en) 2021-03-16 2022-09-22 大日本印刷株式会社 Wiring board, method for manufacturing wiring board, laminate for image display device, and image display device
WO2022215683A1 (en) 2021-04-09 2022-10-13 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
WO2022215674A1 (en) 2021-04-09 2022-10-13 大日本印刷株式会社 Laminate for image display device and image display device
WO2023058663A1 (en) * 2021-10-04 2023-04-13 大日本印刷株式会社 Laminate for image display device, image display device, and module
US11936103B2 (en) 2019-10-29 2024-03-19 Teijin Limited Conductive film for antennas, and antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179297B1 (en) 2015-12-09 2020-04-01 Samsung Electronics Co., Ltd. Meta device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430914U (en) * 1987-08-19 1989-02-27
JP2005142984A (en) * 2003-11-10 2005-06-02 Shin Etsu Polymer Co Ltd Translucent antenna
WO2006106759A1 (en) * 2005-04-01 2006-10-12 Nissha Printing Co., Ltd. Transparent antenna for vehicle and vehicle glass with antenna
JP2008259010A (en) * 2007-04-06 2008-10-23 Hitachi Cable Ltd Glass antenna for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430914U (en) * 1987-08-19 1989-02-27
JP2005142984A (en) * 2003-11-10 2005-06-02 Shin Etsu Polymer Co Ltd Translucent antenna
WO2006106759A1 (en) * 2005-04-01 2006-10-12 Nissha Printing Co., Ltd. Transparent antenna for vehicle and vehicle glass with antenna
JP2008259010A (en) * 2007-04-06 2008-10-23 Hitachi Cable Ltd Glass antenna for vehicle

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005013A (en) * 2011-06-13 2013-01-07 Dainippon Printing Co Ltd Transparent antenna, and image display device
JP2016516623A (en) * 2013-03-15 2016-06-09 エージーシー オートモーティヴ アメリカズ アールアンドディー,インコーポレイテッド Window assembly with a transparent region having a property enhancing slit
GB2520747A (en) * 2013-11-29 2015-06-03 Pragmatic Printing Ltd Antenna and apparatus comprising antenna
GB2520747B (en) * 2013-11-29 2018-02-14 Pragmatic Printing Ltd Antenna and apparatus comprising antenna
US10020559B2 (en) 2013-11-29 2018-07-10 Pragmatic Printing Limited Antenna and apparatus comprising antenna
JP2016173674A (en) * 2015-03-16 2016-09-29 大日本印刷株式会社 Production method of conductive pattern sheet, conductive pattern sheet, touch panel sensor, and image display device
JP2016180632A (en) * 2015-03-23 2016-10-13 シチズンホールディングス株式会社 Timepiece
US10819007B2 (en) 2015-05-21 2020-10-27 Sharp Kabushiki Kaisha Display device
JP2018155727A (en) * 2017-03-17 2018-10-04 巨擘科技股▲ふん▼有限公司 Input device and method for manufacturing the same
US11139579B2 (en) 2017-04-04 2021-10-05 Denso Corporation Light-transmissive antenna, window affixing type communication module, and periphery monitoring unit
WO2019107476A1 (en) 2017-11-29 2019-06-06 大日本印刷株式会社 Wiring board and production method for wiring board
KR20200093583A (en) 2017-11-29 2020-08-05 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
US11705624B2 (en) 2017-11-29 2023-07-18 Dai Nippon Printing Co., Ltd. Wiring board and method for manufacturing wiring board
WO2020066817A1 (en) 2018-09-28 2020-04-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
US11916285B2 (en) 2018-09-28 2024-02-27 Dai Nippon Printing Co., Ltd. Wiring board and method for manufacturing wiring board
KR20210065986A (en) 2018-09-28 2021-06-04 다이니폰 인사츠 가부시키가이샤 A wiring board and a method for manufacturing a wiring board
WO2020189451A1 (en) * 2019-03-15 2020-09-24 Agc株式会社 Antenna device, electronic device, window glass, and movable body
JP2021527908A (en) * 2019-04-19 2021-10-14 エヌイーシー ラボラトリーズ アメリカ インクNEC Laboratories America, Inc. Transparent walkthrough gate
JP7061732B2 (en) 2019-04-19 2022-04-28 エヌイーシー ラボラトリーズ アメリカ インク Transparent walkthrough gate
KR20220003007A (en) 2019-05-07 2022-01-07 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
WO2020226049A1 (en) 2019-05-07 2020-11-12 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
US11936103B2 (en) 2019-10-29 2024-03-19 Teijin Limited Conductive film for antennas, and antenna
WO2021161972A1 (en) 2020-02-13 2021-08-19 旭化成株式会社 Transparent antenna and rf tag
EP4105830A4 (en) * 2020-02-13 2023-07-19 Asahi Kasei Kabushiki Kaisha Transparent antenna and rf tag
WO2021206177A1 (en) 2020-04-09 2021-10-14 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
KR20220165752A (en) 2020-04-09 2022-12-15 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
KR20230004562A (en) 2020-05-01 2023-01-06 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
WO2021221119A1 (en) 2020-05-01 2021-11-04 大日本印刷株式会社 Wiring board, and method for manufacturing wiring board
WO2022071608A1 (en) 2020-10-02 2022-04-07 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
KR20230074262A (en) 2020-10-02 2023-05-26 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
WO2022075463A1 (en) * 2020-10-08 2022-04-14 大日本印刷株式会社 Head-mounted display
CN112486361B (en) * 2020-12-20 2023-01-24 英特睿达(山东)电子科技有限公司 Display touch screen member
CN112486361A (en) * 2020-12-20 2021-03-12 英特睿达(山东)电子科技有限公司 Display touch screen member
KR20230157413A (en) 2021-03-16 2023-11-16 다이니폰 인사츠 가부시키가이샤 Wiring board, manufacturing method of wiring board, laminate for image display device, and image display device
WO2022196730A1 (en) 2021-03-16 2022-09-22 大日本印刷株式会社 Wiring board, method for manufacturing wiring board, laminate for image display device, and image display device
WO2022215674A1 (en) 2021-04-09 2022-10-13 大日本印刷株式会社 Laminate for image display device and image display device
WO2022215683A1 (en) 2021-04-09 2022-10-13 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
KR20230169204A (en) 2021-04-09 2023-12-15 다이니폰 인사츠 가부시키가이샤 Laminates for image display devices and image display devices
KR20230170014A (en) 2021-04-09 2023-12-18 다이니폰 인사츠 가부시키가이샤 Wiring board and manufacturing method of wiring board
CN113437504B (en) * 2021-06-21 2023-08-01 中国科学院重庆绿色智能技术研究院 Transparent antenna preparation method based on film lithography process and transparent antenna
CN113437504A (en) * 2021-06-21 2021-09-24 中国科学院重庆绿色智能技术研究院 Transparent antenna preparation method based on film photoetching process and transparent antenna
WO2023058663A1 (en) * 2021-10-04 2023-04-13 大日本印刷株式会社 Laminate for image display device, image display device, and module

Also Published As

Publication number Publication date
JP5447813B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5447813B2 (en) Transparent antenna
JP5636735B2 (en) Transparent antenna element and transparent antenna
JP5682464B2 (en) Transparent antenna and image display device
JP5308782B2 (en) Method for producing frequency selective electromagnetic shielding material, and electromagnetic wave absorber using the same
EP2620523B1 (en) Method of forming a microstructure
KR101200349B1 (en) Transparent electrically conductive film and process for producing the same
KR102122749B1 (en) Substrate film and sintering method
EP3028126B1 (en) Bonding electronic components to patterned nanowire transparent conductors
JP2011082211A (en) Transparent conductive material and method of manufacturing the same
KR20150093208A (en) Method of making transparent conductors on a substrate
JP2011124534A (en) Method for manufacturing electromagnetic wave-shielding material
JP2008311416A (en) Manufacturing method of electromagnetic wave shielding mesh using metal transfer foil, and electromagnetic wave shielding mesh
JP5151242B2 (en) Manufacturing method of light transmissive electromagnetic wave shielding member
JP4148108B2 (en) Electromagnetic shielding light transmissive window material and method for manufacturing the same
KR101704454B1 (en) Electromagnetic shielding film
JP2004335609A (en) Electromagnetic shielding light transmitting window material and its manufacturing method
JP5043732B2 (en) OPTICAL FILM FOR DISPLAY, OPTICAL SHEET FOR DISPLAY, DISPLAY DEVICE, AND METHOD FOR PRODUCING OPTICAL FILM FOR DISPLAY
JP2011222853A (en) Method of manufacturing electromagnetic wave shielding filter, and electromagnetic wave shielding filter
JP2018022755A (en) Conductive circuit and method of forming the same
KR20160106631A (en) Electrically conductive adhesive tapes
JP4850236B2 (en) Transparent conductive sheet and manufacturing method thereof, decorative molded product
CN112300627A (en) Metal-phobic material and application thereof
JP2004119880A (en) Manufacturing method for electromagnetic wave shield and front plate for display
CN105856707B (en) One kind can release printing film, compound print structure and production method
JP2011253850A (en) Transparent conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5447813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150