WO2020189327A1 - Substrate treatment device, substrate treatment method, and semiconductor manufacturing method - Google Patents

Substrate treatment device, substrate treatment method, and semiconductor manufacturing method Download PDF

Info

Publication number
WO2020189327A1
WO2020189327A1 PCT/JP2020/009607 JP2020009607W WO2020189327A1 WO 2020189327 A1 WO2020189327 A1 WO 2020189327A1 JP 2020009607 W JP2020009607 W JP 2020009607W WO 2020189327 A1 WO2020189327 A1 WO 2020189327A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
substrate
treatment liquid
alkaline treatment
processing
Prior art date
Application number
PCT/JP2020/009607
Other languages
French (fr)
Japanese (ja)
Inventor
誠士 阿野
基村 雅洋
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020189327A1 publication Critical patent/WO2020189327A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate processing method, and a semiconductor manufacturing method.
  • an alkaline treatment liquid is used as a resist stripping liquid in the resist stripping process.
  • a resist stripping solution for example, tetramethylammonium hydroxide (TMAH) is known (for example, Patent Document 1).
  • Alkaline treatment liquid produces carbonate when carbon dioxide in the air dissolves. As a result, the resist peeling performance of the alkaline treatment liquid may deteriorate.
  • the present invention has been made in view of the above problems, and an object of the present invention is a substrate processing apparatus, a substrate processing method, and a semiconductor capable of suppressing the reaction of an alkaline treatment liquid with carbon dioxide to generate carbonate.
  • the purpose is to provide a manufacturing method.
  • the substrate processing apparatus processes the substrate with an alkaline treatment liquid.
  • the substrate processing apparatus includes a processing unit, a supply unit, a recovery unit, and an inert gas supply unit.
  • the processing unit processes the substrate.
  • the supply unit has a first accommodating portion.
  • the first storage unit stores the alkaline treatment liquid to be supplied to the treatment unit.
  • the recovery unit has a second accommodating portion.
  • the second accommodating portion stores the alkaline treatment liquid recovered from the processing unit.
  • the inert gas supply unit supplies the inert gas to at least one of the first accommodating unit and the second accommodating unit.
  • the substrate processing apparatus further comprises a control unit.
  • the recovery unit further has a supply unit.
  • the supply unit supplies the alkaline treatment liquid from the second storage unit to the first storage unit.
  • the control unit controls the supply unit and the inert gas supply unit. When the supply unit is operated, the control unit controls the inert gas supply unit so that the supply amount of the inert gas increases as compared with the case where the supply unit is not operated.
  • the substrate processing apparatus further includes a return piping unit and a detection unit.
  • the return piping section connects the processing section and the second accommodating section.
  • the detection unit detects whether or not the alkaline treatment liquid is present in the return piping unit.
  • the control unit controls the supply unit to start operation when it is determined that the alkaline treatment liquid is present in the return piping unit based on the result detected by the detection unit.
  • the inert gas supply unit has a measurement unit.
  • the measuring unit measures the amount of the inert gas supplied to the first accommodating unit or the second accommodating unit.
  • the processing unit further includes a first nozzle and a second nozzle.
  • the first nozzle supplies the alkaline treatment liquid to the substrate.
  • the second nozzle supplies the alkaline treatment liquid and the inert gas to the substrate.
  • the processing unit further includes a first nozzle and a second nozzle.
  • the first nozzle supplies the alkaline treatment liquid to the substrate.
  • the second nozzle supplies carbonated water and an inert gas to the substrate.
  • the substrate processing apparatus further comprises a third accommodating portion.
  • the third storage unit stores carbonated water recovered from the treatment unit.
  • the second nozzle supplies the carbonated water to the substrate, the carbonated water is collected in the third accommodating portion, and the carbonated water is not collected in the second accommodating portion.
  • the first liquid receiving part, the second liquid receiving part, and the moving part are further provided.
  • the first liquid receiving portion receives the alkaline treatment liquid after processing the substrate.
  • the second liquid receiving portion receives the carbonated water after processing the substrate.
  • the moving portion moves the first liquid receiving portion and the second liquid receiving portion. When the substrate is treated with the alkali-treated liquid, the moving portion moves the first liquid receiving portion so that the first liquid receiving portion receives the alkali-treated liquid.
  • the second nozzle supplies the carbonated water to the substrate, the moving portion moves the second liquid receiving portion so that the second liquid receiving portion receives the carbonated water.
  • the substrate processing apparatus further includes a control unit and a return piping unit.
  • the return piping section connects the processing section and the second accommodating section.
  • the return piping section has a supply piping section and a discharge piping section.
  • the supply piping unit supplies the alkaline treatment liquid after processing the substrate to the second storage unit.
  • the discharge piping unit discharges the alkaline treatment liquid after processing the substrate.
  • the control unit controls the supply piping unit and the discharge piping unit.
  • the control unit controls the treatment unit to start processing the substrate with the alkali treatment liquid so that the alkali treatment liquid after processing the substrate flows through the discharge piping unit within a predetermined period of time. After the elapse of a predetermined period, the alkaline treatment liquid after processing the substrate is controlled to flow through the supply piping portion.
  • the substrate processing apparatus further comprises a recovery piping section.
  • the recovery piping unit connects the first accommodating portion and the second accommodating portion.
  • the inert gas supply unit supplies the inert gas to the recovery piping unit.
  • the substrate processing method is a substrate processing method for processing a substrate.
  • the substrate treatment method includes a supply step of supplying the alkali treatment liquid from the first storage portion containing the alkali treatment liquid to the treatment unit, a treatment step in which the treatment unit treats the substrate with the alkali treatment liquid, and the above. It includes a recovery step of recovering the alkaline treatment liquid obtained by treating the substrate from the treatment unit to the second storage unit.
  • the inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
  • the semiconductor manufacturing method according to the present invention is a semiconductor manufacturing method in which a semiconductor substrate is processed to produce a semiconductor which is the processed semiconductor substrate.
  • the semiconductor manufacturing method includes a supply step of supplying the alkali-treated liquid from the first accommodating portion for accommodating the alkali-treated liquid to the treatment unit, and a processing step of the processing unit treating the semiconductor substrate with the alkali-treated liquid. It includes a recovery step of recovering the alkaline treatment liquid obtained by treating the semiconductor substrate from the treatment unit to the second storage unit.
  • the inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
  • the substrate processing apparatus according to the present invention can suppress the reaction of the alkaline treatment liquid with carbon dioxide to generate carbonate.
  • FIG. 1 It is a top view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 1 of this invention. It is a side view which shows typically the structure of the processing unit.
  • A is a flowchart showing the substrate processing method of this embodiment.
  • B is a flowchart showing a resist peeling treatment method. It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 1 of this invention. It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 2 of this invention. It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 3 of this invention. It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 4 of this invention. It is a side view which shows typically the structure of the substrate processing apparatus which concerns on the modification of this invention.
  • the X-axis, the Y-axis, and the Z-axis are orthogonal to each other, the X-axis and the Y-axis are parallel in the horizontal direction, and the Z-axis is parallel in the vertical direction.
  • FIG. 1 is a plan view schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment of the present invention.
  • the substrate processing apparatus 100 is a single-wafer processing apparatus that processes substrates W one by one.
  • the substrate processing apparatus 100 is, for example, an apparatus used for peeling an unnecessary resist from the surface of the etched substrate W.
  • the substrate processing apparatus 100 processes the substrate W with an alkaline treatment liquid. Further, the substrate processing apparatus 100 processes the substrate W having a metal film on its surface.
  • the substrate W is, for example, a silicon wafer, a resin substrate, or a glass / quartz substrate.
  • the substrate W is a polysilicon wafer.
  • a disk-shaped semiconductor substrate is exemplified as the substrate W.
  • the shape of the substrate W is not particularly limited.
  • the substrate W may be formed in a rectangular shape, for example.
  • the board processing device 100 includes a plurality of load port LPs, a plurality of processing units 1, a storage unit 2, and a control unit 3.
  • the processing unit 1 corresponds to an example of a "processing unit".
  • the load port LP holds the carrier C accommodating the substrate W.
  • the processing unit 1 processes the substrate W conveyed from the load port LP with the processing fluid.
  • the treatment fluid indicates, for example, a treatment liquid or a treatment gas.
  • the storage unit 2 includes a main storage device (for example, a semiconductor memory) such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and may further include an auxiliary storage device (for example, a hard disk drive).
  • a main storage device for example, a semiconductor memory
  • ROM Read Only Memory
  • RAM Random Access Memory
  • auxiliary storage device for example, a hard disk drive
  • the control unit 3 includes a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 3 controls each element of the substrate processing device 100.
  • a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 3 controls each element of the substrate processing device 100.
  • the substrate processing device 100 further includes a transfer robot.
  • the transfer robot transfers the substrate W between the load port LP and the processing unit 1.
  • the transfer robot includes an indexer robot IR and a center robot CR.
  • the indexer robot IR conveys the substrate W between the load port LP and the center robot CR.
  • the center robot CR conveys the substrate W between the indexer robot IR and the processing unit 1.
  • Each of the indexer robot IR and the center robot CR includes a hand that supports the substrate W.
  • the substrate processing device 100 further includes a plurality of supply units 30 and a chemical liquid cabinet 5.
  • the plurality of supply units 30 and the processing unit 1 are arranged inside the housing 100a of the substrate processing device 100.
  • the chemical solution cabinet 5 is arranged outside the housing 100a of the substrate processing apparatus 100.
  • the chemical liquid cabinet 5 may be arranged on the side of the substrate processing apparatus 100. Further, the chemical solution cabinet 5 may be arranged under (underground) a clean room in which the substrate processing device 100 is installed.
  • the plurality of processing units 1 constitute a tower U stacked vertically.
  • a plurality of towers U are provided.
  • the plurality of towers U are arranged so as to surround the center robot CR in a plan view.
  • three processing units 1 are laminated on the tower U.
  • four towers U are provided.
  • the number of processing units 1 constituting the tower U is not particularly limited. Further, the number of towers U is not particularly limited.
  • Each of the plurality of supply units 30 corresponds to a plurality of towers U.
  • the chemical solution in the chemical solution cabinet 5 is supplied to the tower U corresponding to the supply unit 30 via the supply unit 30.
  • the chemical solution is supplied to all the processing units 1 contained in the tower U.
  • FIG. 2 is a side view schematically showing the configuration of the processing unit 1.
  • the substrate processing device 100 includes the processing unit 1, the supply unit 30, the recovery unit 40, the return piping section 51, the recovery piping section 52, the inert gas supply section 60a, and the inert gas. It is provided with a gas supply unit 60b.
  • the processing unit 1 includes a chamber 6, a spin chuck 10, a first cup 14, and a second cup 15.
  • Chamber 6 has a substantially box shape.
  • the chamber 6 houses the substrate W.
  • the substrate W has, for example, a substantially disk shape.
  • the substrate processing apparatus 100 is a single-wafer type that processes the substrate W one by one, and the chamber 6 accommodates the substrate W one by one.
  • the spin chuck 10 is arranged in the chamber 6.
  • the spin chuck 10 rotates the substrate W around the rotation axis A1 while holding the substrate W horizontally.
  • the rotating shaft A1 is a vertical shaft passing through the central portion of the substrate W.
  • the spin chuck 10 includes a plurality of chuck pins 11, a spin base 12, a spin motor 13, a first cup 14, a second cup 15, and a moving portion 16.
  • the first cup 14 corresponds to an example of the "first liquid receiving portion”.
  • the second cup 15 corresponds to an example of the “second liquid receiving portion”.
  • the spin base 12 is a disk-shaped member.
  • the plurality of chuck pins 11 hold the substrate W in a horizontal posture on the spin base 12.
  • the spin motor 13 rotates the substrate W around the rotation axis A1 by rotating the plurality of chuck pins 11.
  • the spin chuck 10 of the present embodiment is a holding type chuck that brings a plurality of chuck pins 11 into contact with the outer peripheral surface of the substrate W.
  • the spin chuck 10 may be a vacuum type chuck.
  • the vacuum type chuck holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate W, which is a non-device forming surface, to the upper surface of the spin base 12.
  • the first cup 14 and the second cup 15 receive the processing liquid discharged from the substrate W. Specifically, the first cup 14 receives the alkaline treatment liquid after treating the substrate W. The second cup 15 receives carbonated water after processing the substrate W.
  • the moving unit 16 raises and lowers the first cup 14 and the second cup 15 between the ascending position and the descending position.
  • the upper end 14a of the first cup 14 is located above the spin chuck 10.
  • the upper end 14a of the first cup 14 is located below the spin chuck 10.
  • the second cup 15 is located in the ascending position, the upper end 15a of the second cup 15 is located above the spin chuck 10.
  • the second cup 15 is located in the lowered position, the upper end 15a of the second cup 15 is located below the spin chuck 10.
  • the first cup 14 and the second cup 15 are located in the raised positions.
  • the processing unit 1 further includes a nozzle 21, a nozzle moving unit 22, a supply pipe P1, and a valve V1.
  • the nozzle 21 discharges the chemical solution toward the substrate W held by the spin chuck 10.
  • the nozzle 21 corresponds to an example of the "first nozzle".
  • the chemical solution is, for example, an alkaline treatment solution.
  • the alkaline treatment solution contains, for example, tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • the alkaline treatment liquid may be potassium hydroxide (potassium hydroxide: KOH).
  • the supply pipe P1 supplies the alkaline treatment liquid to the nozzle 21.
  • the valve V1 switches between starting and stopping the supply of the alkaline treatment liquid to the nozzle 21.
  • the nozzle moving unit 22 moves the nozzle 21 between the processing position and the retracted position.
  • the processing position indicates a position where the nozzle 21 discharges the chemical solution toward the substrate W.
  • the retracted position indicates a position where the nozzle 21 is separated from the substrate W.
  • the nozzle moving unit 22 moves the nozzle 21 by, for example, turning the nozzle 21 around the rotation axis A2.
  • the rotation axis A2 is a vertical axis located around the first cup 14 and the second cup 15.
  • the processing unit 1 further includes a nozzle 23, a nozzle moving unit 24, a supply pipe P2, a supply pipe P3, a valve V2, and a valve V3.
  • the nozzle 23 discharges carbonated water and nitrogen gas toward the substrate W held by the spin chuck 10.
  • the nozzle 23 corresponds to an example of the "second nozzle”.
  • the supply pipe P2 supplies carbonated water to the nozzle 23.
  • the valve V2 switches between starting and stopping the supply of carbonated water to the nozzle 23.
  • the supply pipe P3 supplies nitrogen gas to the nozzle 23.
  • the valve V3 switches between starting and stopping the supply of nitrogen gas to the nozzle 23.
  • the nozzle moving unit 24 moves the nozzle 23 between the processing position and the retracted position.
  • the processing position indicates a position where the nozzle 23 discharges the chemical solution toward the substrate W.
  • the retracted position indicates a position where the nozzle 23 is separated from the substrate W.
  • the nozzle moving unit 24 moves the nozzle 23, for example, by turning the nozzle 23 around the rotation axis A3.
  • the rotation axis A3 is a vertical axis located around the first cup 14 and the second cup 15.
  • the supply unit 30 supplies the alkaline treatment liquid to the treatment unit 1.
  • the supply unit 30 has a supply tank 31.
  • the supply tank 31 houses the alkaline treatment liquid to be supplied to the treatment unit 1. Details of the supply unit 30 will be described later with reference to FIG.
  • the supply tank 31 corresponds to an example of the "first accommodating portion".
  • the recovery unit 40 recovers the alkaline treatment liquid treated with the substrate W from the treatment unit 1.
  • the recovery unit 40 has a recovery tank 41.
  • the recovery tank 41 houses the alkaline treatment liquid recovered from the treatment unit 1. Details of the recovery unit 40 will be described later with reference to FIG.
  • the recovery tank 41 corresponds to an example of the “second storage unit”.
  • the return piping section 51 connects the processing unit 1 and the recovery tank 41. Therefore, the alkaline treatment liquid obtained by treating the substrate W by the treatment unit 1 flows through the return piping section 51 and is recovered in the recovery tank 41.
  • the recovery piping section 52 connects the supply tank 31 and the recovery tank 41. Therefore, the alkaline treatment liquid that has processed the substrate W contained in the recovery tank 41 flows through the recovery piping section 52 and is recovered in the supply tank 31.
  • the inert gas supply unit 60a supplies the inert gas to the supply tank 31.
  • the inert gas is a gas that is inert to the alkaline treatment liquid.
  • the inert gas includes, for example, nitrogen gas.
  • the inert gas may be argon gas.
  • the flow rate of the inert gas is preferably 5 LPM (liter / minute) or more, for example.
  • the inert gas supply unit 60b supplies the inert gas to the recovery unit 40.
  • the inert gas is a gas that is inert to the alkaline treatment liquid.
  • the inert gas includes, for example, nitrogen gas.
  • the inert gas may be argon gas.
  • the flow rate of the inert gas is preferably 5 LPM (liter / minute) or more, for example.
  • FIG. 3A is a flowchart showing the substrate processing method of the present embodiment.
  • FIG. 3B is a flowchart showing a resist stripping treatment method.
  • the substrate processing method of the present embodiment includes steps S1 to S5.
  • the resist stripping treatment method includes steps S21 to S23.
  • the substrate W is first carried into the chamber 6 (step S1). Specifically, the transfer robot carries the substrate W into the chamber 6.
  • the substrate W is a substrate on which an etched resist is formed.
  • the carried-in substrate W is held by the spin chuck 10.
  • the resist peeling process is performed (step S2).
  • a supply process is performed (step S21). Specifically, the alkaline treatment liquid is supplied to the treatment unit 1 from the supply tank 31. More specifically, the nozzle 21 discharges the alkaline treatment liquid while rotating around the rotation axis A2. The nozzle 21 discharges the alkaline treatment liquid until at least the entire upper surface of the substrate W is covered with the alkaline treatment liquid.
  • the alkaline solution process is performed (step S22). Specifically, the processing unit 1 processes the substrate W with an alkaline treatment liquid. Specifically, the resist on the surface of the substrate W is peeled off with an alkaline treatment liquid on the substrate W.
  • step S23 the collection process is performed (step S23). Specifically, the alkaline treatment liquid treated with the substrate W is recovered from the treatment unit 1 into the recovery tank 41.
  • step S2 When the resist peeling process (step S2) is completed, the cleaning process is performed in step S3. Specifically, the nozzle 23 discharges carbonated water and nitrogen gas while rotating around the rotation axis A3. As a result, the substrate W is washed.
  • step S4 the substrate W is dried.
  • step S5 after stopping the rotation of the substrate W, the substrate W is carried out from the chamber 6 to end the processes shown in FIGS. 3 (a) and 3 (b).
  • the semiconductor substrate W on which the resist that has been etched is formed is processed by a substrate processing method including steps S1 to S5 and steps S21 to S23, and after the processing.
  • a semiconductor which is a semiconductor substrate W is manufactured.
  • the substrate processing apparatus 100 performs a resist peeling treatment on the substrate W on which the etched resist is formed, but the present invention is not limited to this.
  • the etching process may be performed in the substrate processing apparatus 100.
  • FIG. 4 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment of the present invention.
  • the supply unit 30 includes a circulation pipe 32, a circulation pump 33, a circulation filter 34, a circulation heater 35, a gas supply pipe P4, a pipe P5, and a valve. It further has a V31, a valve V32, and a valve V33.
  • the supply tank 31 stores the alkaline treatment liquid.
  • the circulation pipe 32 is a tubular member. A circulation path through which the alkaline treatment liquid circulates is formed in the circulation pipe 32.
  • the circulation pipe 32 has an upstream side end portion 32a and a downstream side end portion 32b.
  • the circulation pipe 32 communicates with the supply tank 31. Specifically, the upstream end 32a and the downstream end 32b of the circulation pipe 32 communicate with the supply tank 31.
  • the circulation pump 33 sends the alkaline treatment liquid in the supply tank 31 to the circulation pipe 32.
  • the circulation pump 33 operates, the alkaline treatment liquid in the supply tank 31 is sent to the upstream end 32a of the circulation pipe 32.
  • the alkaline treatment liquid sent to the upstream end 32a is conveyed in the circulation pipe 32 and discharged from the downstream end 32b to the supply tank 31.
  • the circulation pump 33 continues to operate, the alkaline treatment liquid continues to flow in the circulation pipe 32 from the upstream end 32a toward the downstream end 32b. As a result, the alkaline treatment liquid circulates in the circulation pipe 32.
  • the circulation filter 34 removes foreign substances such as particles from the alkaline treatment liquid circulating in the circulation pipe 32.
  • the circulation heater 35 adjusts the temperature of the alkaline treatment liquid by heating the alkaline treatment liquid.
  • the circulation heater 35 keeps the temperature of the alkaline treatment liquid at a constant temperature (for example, 60 ° C.) higher than, for example, room temperature.
  • the temperature of the alkaline treatment liquid circulating in the circulation pipe 32 is maintained at a constant temperature by the circulation heater 35.
  • the circulation pump 33, the circulation filter 34, and the circulation heater 35 are installed in the circulation pipe 32.
  • a pressurizing device may be provided instead of the circulation pump 33.
  • the pressurizing device sends the alkaline treatment liquid in the supply tank 31 to the circulation pipe 32 by increasing the air pressure in the supply tank 31.
  • the gas supply pipe P4 connects the inert gas supply unit 60a and the supply tank 31 via the valve V31.
  • the valve V31 switches between starting and stopping the supply of the inert gas to the supply tank 31.
  • the pipe P5 is connected to a drain tank (not shown) via a valve V32 and a valve V33.
  • the valve V32 and the valve V33 switch between starting and stopping the discharge of the alkaline treatment liquid to the drain tank.
  • the inert gas supply unit 60a supplies the inert gas to the supply tank 31 via the gas supply pipe P4. Therefore, the concentration of carbon dioxide in the supply tank 31 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
  • the processing unit 1 further includes a valve V4 and a branch pipe P6.
  • An alkaline treatment liquid is supplied to the back surface of the substrate W.
  • the valve V4 switches between starting and stopping the supply of the alkaline treatment liquid to the back surface of the substrate W.
  • the recovery unit 40 further includes a valve V41, a recovery pump 44, and a gas supply pipe P7 in addition to the recovery tank 41.
  • the recovery pump 44 corresponds to an example of a “supply unit”.
  • the recovery tank 41 stores the alkaline treatment liquid recovered from the treatment unit.
  • the recovery pump 44 supplies the alkaline treatment liquid from the recovery tank 41 to the supply tank 31. Specifically, the recovery pump 44 sends the alkaline treatment liquid in the recovery tank 41 to the recovery piping section 52.
  • a pressurizing device may be provided instead of the recovery pump 44.
  • the pressurizing device sends the alkaline treatment liquid in the recovery tank 41 to the recovery piping section 52 by raising the air pressure in the recovery tank 41.
  • the gas supply pipe P7 connects the inert gas supply unit 60b and the recovery tank 41.
  • the inert gas supply unit 60b supplies the inert gas to the recovery tank 41 via the gas supply pipe P7. Therefore, the concentration of carbon dioxide in the recovery tank 41 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
  • the control unit 3 supplies the inert gas so that the supply amount of the inert gas increases when the recovery pump 44 is operated as compared with the case where the recovery pump 44 is not operated. It is preferable to control the unit 60b. Therefore, it is possible to reduce the increased concentration of carbon dioxide in the recovery tank 41 by operating the recovery pump 44. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate.
  • the substrate processing device 100 further includes a discharge tank 70.
  • the alkaline treatment liquid after processing the substrate W is discharged to the discharge tank 70.
  • the return piping section 51 connects the processing unit 1 and the recovery tank 41.
  • the return piping section 51 has a supply piping section P8 and a discharge piping section P9.
  • the supply piping unit P8 supplies the alkaline treatment liquid after processing the substrate W to the recovery tank 41.
  • the supply piping unit P8 connects the processing unit 1 and the recovery tank 41.
  • the supply piping section P8 has a valve V5. The valve V5 switches between starting and stopping the supply of the alkaline treatment liquid after processing the substrate W to the recovery tank 41.
  • the discharge piping unit P9 discharges the alkaline treatment liquid after processing the substrate W to the discharge tank 70.
  • the discharge pipe unit P9 branches from the supply pipe unit P8 and connects to the discharge tank 70.
  • the discharge pipe portion P9 has a valve V6. The valve V6 switches between starting and stopping the discharge of the alkaline treatment liquid after processing the substrate W into the discharge tank 70.
  • control unit 3 can control the supply pipe unit P8 and the discharge pipe unit P9 so that the alkaline treatment liquid is not collected in the recovery tank 41 immediately after the resist removal process is started. preferable.
  • the processing unit 1 starts processing the substrate W with the alkaline treatment liquid so that the alkaline treatment liquid after processing the substrate W flows through the discharge piping unit P9 within a predetermined period.
  • the control unit 3 opens the valve V6 and controls the valve V6 so that the alkaline treatment liquid after processing the substrate W flows into the discharge tank 70.
  • the control unit 3 controls the valve V5 so that the alkaline treatment liquid after the valve V5 is closed and the substrate W is treated does not flow into the recovery tank 41.
  • the alkaline treatment liquid after processing the substrate W is controlled to flow through the supply piping portion P8.
  • the control unit 3 opens the valve V5 and controls the valve V6 so that the alkaline treatment liquid after processing the substrate W flows into the recovery tank 41.
  • the control unit 3 controls the valve V6 so that the alkaline treatment liquid after the valve V5 is closed and the substrate W is treated does not flow into the discharge tank 70.
  • the control unit 3 controls so that the alkaline treatment liquid is not collected in the recovery tank 41. Therefore, it is possible to prevent the alkaline treatment liquid from being recovered in the recovery tank 41 in a state where a large amount of resist is mixed. As a result, the alkaline treatment liquid after treating the substrate W can be efficiently reused.
  • the inert gas supply unit 60 is the supply tank 31 (first accommodation unit) and the recovery tank 41 (second accommodation unit).
  • the inert gas nitrogen gas
  • the inert gas is supplied to at least one of them. Therefore, the concentration of carbon dioxide in the supply tank 31 and the recovery tank 41 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 and the recovery tank 41 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
  • the inert gas supply unit 60 supplies the inert gas to both the supply tank 31 and the recovery tank 41, but the present invention is not limited to this.
  • the inert gas supply unit 60 may supply the inert gas to only one of the supply tank 31 and the recovery tank 41.
  • the control unit 3 controls the inert gas supply unit 60 so that the supply amount of the inert gas increases as compared with the case where the recovery pump 44 is not operated. Therefore, it is possible to reduce the increased concentration of carbon dioxide in the recovery tank 41 by operating the recovery pump 44. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate.
  • the processing unit 1 (processing unit) starts processing the substrate W with the alkaline treatment liquid, and within a predetermined period of time, the alkaline treatment liquid after processing the substrate W flows through the discharge piping unit P9. To control. Further, the control unit 3 controls so that the alkaline treatment liquid after processing the substrate W flows through the supply piping unit P8 after the elapse of a predetermined period. Therefore, it is possible to prevent the alkaline treatment liquid from being recovered in the recovery tank 41 in a state where a large amount of resist is mixed. As a result, the alkaline treatment liquid after treating the substrate W can be efficiently reused.
  • FIG. 5 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the second embodiment of the present invention. Since the substrate processing apparatus 100 according to the second embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the inert gas supply unit 60 has the flow meter 62, the overlapping portion is not included. The description is omitted.
  • the inert gas supply unit 60a has a flow meter 62.
  • the flow meter 62 corresponds to an example of the “measurement unit”.
  • the flow meter 62 measures the amount of the inert gas supplied to the supply tank 31.
  • the control unit 3 preferably adjusts the amount of the inert gas supplied by the inert gas supply unit 60a to the supply tank 31 based on the amount of the inert gas supplied by the flow meter 62. As a result, it is possible to suppress the supply of the inert gas more than necessary.
  • the control unit 3 may adjust the amount of the inert gas supplied to the supply tank 31 by performing feedback control.
  • the inert gas supply unit 60b has a flow meter 62.
  • the flow meter 62 corresponds to an example of the “measurement unit”.
  • the flow meter 62 measures the amount of the inert gas supplied to the recovery tank 41.
  • the control unit 3 adjusts the amount of the inert gas supplied by the inert gas supply unit 60b to the recovery tank 41 based on the amount of the inert gas supplied by the flow meter 62. As a result, it is possible to suppress the supply of the inert gas more than necessary.
  • the control unit 3 may adjust the amount of the inert gas supplied to the recovery tank 41 by performing feedback control.
  • the concentration of carbon dioxide in the recovery tank 41 may increase during the operation of the recovery pump 44. Therefore, it is particularly preferable that the inert gas supply unit 60b that supplies the inert gas to the recovery tank 41 has a flow meter 62.
  • FIG. 6 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the third embodiment of the present invention. Since the substrate processing apparatus 100 according to the third embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the substrate processing apparatus 100 includes the detection unit 515, the description of the overlapping portion is omitted. To do.
  • the substrate processing device 100 further includes a detection unit 515.
  • the detection unit 515 is provided in the collection tank 41. Specifically, the detection unit 515 is provided near the bottom surface of the recovery tank 41.
  • the detection unit 515 detects whether or not the alkaline treatment liquid is present in the recovery tank 41.
  • the detection unit 515 is, for example, a capacitance sensor.
  • the control unit 3 controls the recovery pump 44 to start operation when it is determined that the alkaline treatment liquid is present in the recovery tank 41 based on the result detected by the detection unit 515. Therefore, the time for the alkaline treatment liquid to stay in the recovery tank 41 can be shortened.
  • control unit 3 controls the recovery pump 44 to stop the operation when it is determined that the alkaline treatment liquid does not exist in the recovery tank 41 based on the result detected by the detection unit 515.
  • the recovery tank 41 it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
  • FIG. 7 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the fourth embodiment of the present invention. Since the substrate processing apparatus 100 according to the fourth embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the substrate processing apparatus 100 further includes a discharge tank 80, the overlapping portion will be described. Omit.
  • the substrate processing device 100 further includes a discharge tank 80 and a piping portion P10.
  • the discharge tank 80 accommodates the carbonated water recovered from the processing unit 1.
  • the carbonated water after cleaning the substrate W is discharged to the discharge tank 80.
  • the piping unit P10 connects the processing unit 1 and the discharge tank 80.
  • the discharge tank 80 corresponds to an example of the "third accommodating portion".
  • the control unit 3 controls to open the valve V5 and close the valve V6. Further, when the substrate W is treated with the alkaline treatment liquid, the moving unit 16 (see FIG. 2) moves the first cup 14 so that the first cup 14 receives the alkaline treatment liquid. Therefore, the alkaline treatment liquid received by the first cup 14 is collected in the recovery tank 41 via the supply piping section P8.
  • the control unit 3 controls to close the valve V5 and the valve V6. Further, when the nozzle 23 supplies carbonated water to the substrate W, the moving unit 16 (see FIG. 2) moves the second cup 15 so that the second cup 15 receives the carbonated water. Therefore, the carbonated water received by the second cup 15 is collected in the discharge tank 80 via the piping portion P10.
  • the moving portion 16 has the alkaline treatment liquid in the first cup 14 (first liquid receiving portion). Move the first cup 14 to receive. Therefore, when the substrate W is treated with the alkaline treatment liquid, the alkaline treatment liquid is recovered in the recovery tank 41.
  • the nozzle 23 (second nozzle) supplies carbonated water to the substrate W
  • the second cup 15 is moved so that the second cup 15 (second liquid receiving portion) receives the carbonated water. Therefore, when the nozzle 23 supplies the carbonated water to the substrate W, the carbonated water is collected in the discharge tank 80. As a result, the alkaline treatment liquid and carbonated water can be efficiently recovered.
  • FIG. 1 The embodiment of the present invention has been described above with reference to the drawings (FIGS. 1 to 7).
  • the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof (for example, (1) to (5) shown below).
  • the drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each component shown are different from the actual ones for the convenience of drawing creation. ..
  • the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. is there.
  • the nozzle 23 (second nozzle) supplies (discharges) carbonated water and nitrogen gas to the substrate W, but the present invention is not limited to this.
  • the nozzle 23 may supply (discharge) an alkaline treatment liquid and an inert gas. In this case, it is possible to suppress the formation of carbonate during the treatment of the substrate W with the alkaline treatment liquid.
  • the inert gas supply unit 60 supplies the inert gas to the supply tank 31 or the recovery tank 41, but the present invention is not limited to this.
  • the inert gas supply unit 60 may supply the inert gas to the recovery piping unit 52.
  • the inert gas supply unit 60 may supply the inert gas to the supply tank 31 and the recovery tank 41 by bubbling. By supplying the inert gas by bubbling, the amount of dissolved carbon dioxide in the alkaline treatment liquid can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide to produce carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
  • the recovery unit 40 is arranged inside the substrate processing device 100, but the present invention is not limited to this.
  • the recovery unit 40 may be arranged outside the substrate processing device 100.
  • the processing unit 1 may further include an opposing member 28 (see FIG. 8).
  • FIG. 8 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the modified example of the present invention.
  • the facing member (blocking plate) 28 can be arranged to face the upper surface of the substrate W.
  • the opposing member 28 moves to a height of 10 mm or less from the substrate W.
  • the dimension of the surface of the facing member 28 facing the upper surface of the substrate W is larger than the dimension of the upper surface of the substrate W, for example.
  • the nozzle 21 faces the upper surface of the substrate W at a distance from the central portion of the facing member 28.
  • the nozzle 21 discharges the alkaline treatment liquid and also discharges the inert gas. Therefore, it is possible to suppress the formation of carbonate during the treatment of the substrate W with the alkaline treatment liquid.
  • Processing unit processing unit
  • Control unit 14 1st cup (1st liquid receiving unit) 15 2nd cup (2nd liquid receiving part) 16 Moving part 21 Nozzle (1st nozzle) 23 nozzles (second nozzle) 30 Supply unit 31 Supply tank (1st housing) 40 Recovery unit 41 Recovery tank (second storage unit) 44 Recovery pump (supply unit) 51 Return piping section 52 Recovery piping section 60, 60a, 60b Inert gas supply section 62 Flow meter (measuring section) 80 Discharge tank (3rd housing) 100 Board processing device 515 Detector W board

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

A substrate treatment device (100) treats a substrate (W) via an alkali treatment fluid. The substrate treatment device (100) comprises a treatment part (1), a supply unit (30), a recovery unit (40), and an inert-gas-supplying part (60). The treatment part (1) treats the substrate (W). The supply unit (30) comprises a first accommodating part (31). The first accommodating part (31) accommodates the alkali treatment fluid supplied to the treatment part (1). The recovery unit (40) comprises a second accommodating part (41). The second accommodating part (41) contains alkali treatment fluid recovered from the treatment part (1). The inert-gas-supplying part (60) supplies an inert gas to the first accommodating part (31) and/or the second accommodating part (41).

Description

基板処理装置、基板処理方法および半導体製造方法Substrate processing equipment, substrate processing method and semiconductor manufacturing method
 本発明は、基板処理装置、基板処理方法および半導体製造方法に関する。 The present invention relates to a substrate processing apparatus, a substrate processing method, and a semiconductor manufacturing method.
 半導体製造において、レジスト剥離工程にレジスト剥離液としてアルカリ処理液が使用されている。レジスト剥離液として、例えば、水酸化テトラメチルアンモニウム(tetra methyl ammonium hydroxide:TMAH)が知られている(例えば、特許文献1)。 In semiconductor manufacturing, an alkaline treatment liquid is used as a resist stripping liquid in the resist stripping process. As a resist stripping solution, for example, tetramethylammonium hydroxide (TMAH) is known (for example, Patent Document 1).
特開2003-140364号公報Japanese Unexamined Patent Publication No. 2003-140364
 アルカリ処理液は、空気中の二酸化炭素が溶け込むと炭酸塩が生成される。その結果、アルカリ処理液のレジスト剥離性能が低下する可能性があった。 Alkaline treatment liquid produces carbonate when carbon dioxide in the air dissolves. As a result, the resist peeling performance of the alkaline treatment liquid may deteriorate.
 本発明は上記課題に鑑みてなされたものであり、その目的はアルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる基板処理装置、基板処理方法および半導体製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is a substrate processing apparatus, a substrate processing method, and a semiconductor capable of suppressing the reaction of an alkaline treatment liquid with carbon dioxide to generate carbonate. The purpose is to provide a manufacturing method.
 本発明に係る基板処理装置は、アルカリ処理液によって基板を処理する。前記基板処理装置は、処理部と、供給ユニットと、回収ユニットと、不活性ガス供給部とを備える。前記処理部は、前記基板を処理する。前記供給ユニットは、第1収容部を有する。前記第1収容部は、前記処理部に供給する前記アルカリ処理液を収容する。前記回収ユニットは、第2収容部を有する。前記第2収容部は、前記処理部から回収した前記アルカリ処理液を収容する。前記不活性ガス供給部は、前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスを供給する。 The substrate processing apparatus according to the present invention processes the substrate with an alkaline treatment liquid. The substrate processing apparatus includes a processing unit, a supply unit, a recovery unit, and an inert gas supply unit. The processing unit processes the substrate. The supply unit has a first accommodating portion. The first storage unit stores the alkaline treatment liquid to be supplied to the treatment unit. The recovery unit has a second accommodating portion. The second accommodating portion stores the alkaline treatment liquid recovered from the processing unit. The inert gas supply unit supplies the inert gas to at least one of the first accommodating unit and the second accommodating unit.
 ある実施形態において、前記基板処理装置は、制御部をさらに備える。前記回収ユニットは、供給部をさらに有する。前記供給部は、前記第2収容部から前記第1収容部に前記アルカリ処理液を供給する。前記制御部は、前記供給部と前記不活性ガス供給部とを制御する。前記制御部は前記供給部を動作させる場合、前記供給部を動作させない場合に比べて、前記不活性ガスの供給量が増加するように前記不活性ガス供給部を制御する。 In certain embodiments, the substrate processing apparatus further comprises a control unit. The recovery unit further has a supply unit. The supply unit supplies the alkaline treatment liquid from the second storage unit to the first storage unit. The control unit controls the supply unit and the inert gas supply unit. When the supply unit is operated, the control unit controls the inert gas supply unit so that the supply amount of the inert gas increases as compared with the case where the supply unit is not operated.
 ある実施形態において、前記基板処理装置は、戻り配管部と、検知部とをさらに備える。前記戻り配管部は、前記処理部と前記第2収容部とを接続する。前記検知部は、前記戻り配管部内に前記アルカリ処理液が存在するか否かを検知する。前記制御部は、前記検知部が検知した結果に基づいて、前記戻り配管部内に前記アルカリ処理液が存在すると判定した場合、前記供給部が動作を開始するように制御する。 In a certain embodiment, the substrate processing apparatus further includes a return piping unit and a detection unit. The return piping section connects the processing section and the second accommodating section. The detection unit detects whether or not the alkaline treatment liquid is present in the return piping unit. The control unit controls the supply unit to start operation when it is determined that the alkaline treatment liquid is present in the return piping unit based on the result detected by the detection unit.
 ある実施形態において、前記不活性ガス供給部は、計測部を有する。前記計測部は、前記第1収容部または前記第2収容部に供給する前記不活性ガスの量を計測する。 In certain embodiments, the inert gas supply unit has a measurement unit. The measuring unit measures the amount of the inert gas supplied to the first accommodating unit or the second accommodating unit.
 ある実施形態において、前記処理部は、第1ノズルと、第2ノズルとをさらに有する。前記第1ノズルは、前記基板に前記アルカリ処理液を供給する。前記第2ノズルは、前記基板に前記アルカリ処理液および不活性ガスを供給する。 In certain embodiments, the processing unit further includes a first nozzle and a second nozzle. The first nozzle supplies the alkaline treatment liquid to the substrate. The second nozzle supplies the alkaline treatment liquid and the inert gas to the substrate.
 ある実施形態において、前記処理部は、第1ノズルと、第2ノズルとをさらに有する。前記第1ノズルは、前記基板に前記アルカリ処理液を供給する。前記第2ノズルは、前記基板に炭酸水および不活性ガスを供給する。 In certain embodiments, the processing unit further includes a first nozzle and a second nozzle. The first nozzle supplies the alkaline treatment liquid to the substrate. The second nozzle supplies carbonated water and an inert gas to the substrate.
 ある実施形態において、前記基板処理装置は、第3収容部をさらに備える。前記第3収容部は、前記処理部から回収した炭酸水を収容する。前記第2ノズルが前記基板に前記炭酸水を供給する場合、前記第3収容部に前記炭酸水が回収され、前記第2収容部には前記炭酸水が回収されない。 In certain embodiments, the substrate processing apparatus further comprises a third accommodating portion. The third storage unit stores carbonated water recovered from the treatment unit. When the second nozzle supplies the carbonated water to the substrate, the carbonated water is collected in the third accommodating portion, and the carbonated water is not collected in the second accommodating portion.
 ある実施形態において、第1液受部と、第2液受部と、移動部とをさらに備える。前記第1液受部は、前記基板を処理した後のアルカリ処理液を受ける。前記第2液受部は、前記基板を処理した後の前記炭酸水を受ける。前記移動部は、前記第1液受部と前記第2液受部とを移動させる。前記移動部は、前記アルカリ処理液によって前記基板を処理する場合、前記第1液受部が前記アルカリ処理液を受けるように前記第1液受部を移動させる。前記移動部は、前記第2ノズルが前記基板に前記炭酸水を供給する場合、前記第2液受部が前記炭酸水を受けるように前記第2液受部を移動させる。 In a certain embodiment, the first liquid receiving part, the second liquid receiving part, and the moving part are further provided. The first liquid receiving portion receives the alkaline treatment liquid after processing the substrate. The second liquid receiving portion receives the carbonated water after processing the substrate. The moving portion moves the first liquid receiving portion and the second liquid receiving portion. When the substrate is treated with the alkali-treated liquid, the moving portion moves the first liquid receiving portion so that the first liquid receiving portion receives the alkali-treated liquid. When the second nozzle supplies the carbonated water to the substrate, the moving portion moves the second liquid receiving portion so that the second liquid receiving portion receives the carbonated water.
 ある実施形態において、前記基板処理装置は、制御部と、戻り配管部とをさらに備える。前記戻り配管部は、前記処理部と前記第2収容部とを接続する。前記戻り配管部は、供給配管部と、排出配管部とを有する。前記供給配管部は、前記基板を処理した後のアルカリ処理液を前記第2収容部に供給する。前記排出配管部は、前記基板を処理した後のアルカリ処理液を排出する。前記制御部は、前記供給配管部と前記排出配管部とを制御する。前記制御部は、前記処理部が前記アルカリ処理液によって前記基板の処理を開始して所定の期間内は、前記基板を処理した後のアルカリ処理液が前記排出配管部を流れるように制御し、所定の期間経過後は、前記基板を処理した後のアルカリ処理液が前記供給配管部を流れるように制御する。 In a certain embodiment, the substrate processing apparatus further includes a control unit and a return piping unit. The return piping section connects the processing section and the second accommodating section. The return piping section has a supply piping section and a discharge piping section. The supply piping unit supplies the alkaline treatment liquid after processing the substrate to the second storage unit. The discharge piping unit discharges the alkaline treatment liquid after processing the substrate. The control unit controls the supply piping unit and the discharge piping unit. The control unit controls the treatment unit to start processing the substrate with the alkali treatment liquid so that the alkali treatment liquid after processing the substrate flows through the discharge piping unit within a predetermined period of time. After the elapse of a predetermined period, the alkaline treatment liquid after processing the substrate is controlled to flow through the supply piping portion.
 ある実施形態において、前記基板処理装置は、回収配管部をさらに備える。前記回収配管部は、前記第1収容部と前記第2収容部とを接続する。前記不活性ガス供給部は、前記回収配管部に不活性ガスを供給する。 In certain embodiments, the substrate processing apparatus further comprises a recovery piping section. The recovery piping unit connects the first accommodating portion and the second accommodating portion. The inert gas supply unit supplies the inert gas to the recovery piping unit.
 本発明に係る基板処理方法は、基板を処理する基板処理方法である。前記基板処理方法は、アルカリ処理液を収容する第1収容部から前記アルカリ処理液を処理部に供給する供給工程と、前記処理部が前記アルカリ処理液によって前記基板を処理する処理工程と、前記基板を処理したアルカリ処理液を前記処理部から第2収容部に回収する回収工程とを包含する。前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスが供給されている。 The substrate processing method according to the present invention is a substrate processing method for processing a substrate. The substrate treatment method includes a supply step of supplying the alkali treatment liquid from the first storage portion containing the alkali treatment liquid to the treatment unit, a treatment step in which the treatment unit treats the substrate with the alkali treatment liquid, and the above. It includes a recovery step of recovering the alkaline treatment liquid obtained by treating the substrate from the treatment unit to the second storage unit. The inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
 本発明に係る半導体製造方法は、半導体基板を処理して、処理後の前記半導体基板である半導体を製造する半導体製造方法である。前記半導体製造方法は、アルカリ処理液を収容する第1収容部から前記アルカリ処理液を処理部に供給する供給工程と、前記処理部が前記アルカリ処理液によって前記半導体基板を処理する処理工程と、前記半導体基板を処理したアルカリ処理液を前記処理部から第2収容部に回収する回収工程とを包含する。前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスが供給されている。 The semiconductor manufacturing method according to the present invention is a semiconductor manufacturing method in which a semiconductor substrate is processed to produce a semiconductor which is the processed semiconductor substrate. The semiconductor manufacturing method includes a supply step of supplying the alkali-treated liquid from the first accommodating portion for accommodating the alkali-treated liquid to the treatment unit, and a processing step of the processing unit treating the semiconductor substrate with the alkali-treated liquid. It includes a recovery step of recovering the alkaline treatment liquid obtained by treating the semiconductor substrate from the treatment unit to the second storage unit. The inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
 本発明に係る基板処理装置は、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。 The substrate processing apparatus according to the present invention can suppress the reaction of the alkaline treatment liquid with carbon dioxide to generate carbonate.
本発明の実施形態1に係る基板処理装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 1 of this invention. 処理ユニットの構成を模式的に示す側面図である。It is a side view which shows typically the structure of the processing unit. (a)は、本実施形態の基板処理方法を示すフローチャートである。(b)は、レジスト剥離処理方法を示すフローチャートである。(A) is a flowchart showing the substrate processing method of this embodiment. (B) is a flowchart showing a resist peeling treatment method. 本発明の実施形態1に係る基板処理装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る基板処理装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る基板処理装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る基板処理装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the substrate processing apparatus which concerns on Embodiment 4 of this invention. 本発明の変形例に係る基板処理装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the substrate processing apparatus which concerns on the modification of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、本発明の実施形態において、X軸、Y軸、およびZ軸は互いに直交し、X軸およびY軸は水平方向に平行であり、Z軸は鉛直方向に平行である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals and the description is not repeated. Further, in the embodiment of the present invention, the X-axis, the Y-axis, and the Z-axis are orthogonal to each other, the X-axis and the Y-axis are parallel in the horizontal direction, and the Z-axis is parallel in the vertical direction.
 [実施形態1]
 図1を参照して、本発明の実施形態1に係る基板処理装置100について説明する。図1は、本発明の実施形態1に係る基板処理装置100の構成を模式的に示す平面図である。
[Embodiment 1]
The substrate processing apparatus 100 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a plan view schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment of the present invention.
 図1に示すように、基板処理装置100は、基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置100は、例えば、エッチング処理をされた基板Wの表面から不要になったレジストを剥離するために用いられる装置である。詳しくは、基板処理装置100は、アルカリ処理液によって、基板Wを処理する。また、基板処理装置100は、表面にメタル膜が存在する基板Wに対して、処理を行う。 As shown in FIG. 1, the substrate processing apparatus 100 is a single-wafer processing apparatus that processes substrates W one by one. The substrate processing apparatus 100 is, for example, an apparatus used for peeling an unnecessary resist from the surface of the etched substrate W. Specifically, the substrate processing apparatus 100 processes the substrate W with an alkaline treatment liquid. Further, the substrate processing apparatus 100 processes the substrate W having a metal film on its surface.
 基板Wは、例えば、シリコンウエハ、樹脂基板、または、ガラス・石英基板である。本実施形態では、基板Wは、ポリシリコンウエハである。本実施形態では、基板Wとして、円板状の半導体基板が例示されている。しかし、基板Wの形状は特に限定されない。基板Wは、例えば、矩形状に形成されていてもよい。 The substrate W is, for example, a silicon wafer, a resin substrate, or a glass / quartz substrate. In this embodiment, the substrate W is a polysilicon wafer. In the present embodiment, a disk-shaped semiconductor substrate is exemplified as the substrate W. However, the shape of the substrate W is not particularly limited. The substrate W may be formed in a rectangular shape, for example.
 基板処理装置100は、複数のロードポートLPと、複数の処理ユニット1と、記憶部2と、制御部3とを備える。なお、処理ユニット1は、「処理部」の一例に相当する。 The board processing device 100 includes a plurality of load port LPs, a plurality of processing units 1, a storage unit 2, and a control unit 3. The processing unit 1 corresponds to an example of a "processing unit".
 ロードポートLPは、基板Wを収容したキャリアCを保持する。処理ユニット1は、ロードポートLPから搬送された基板Wを処理流体で処理する。処理流体は、例えば、処理液、または処理ガスを示す。 The load port LP holds the carrier C accommodating the substrate W. The processing unit 1 processes the substrate W conveyed from the load port LP with the processing fluid. The treatment fluid indicates, for example, a treatment liquid or a treatment gas.
 記憶部2は、ROM(Read Only Memory)、およびRAM(Random Access Memory)のような主記憶装置(例えば、半導体メモリー)を含み、補助記憶装置(例えば、ハードディスクドライブ)をさらに含んでもよい。主記憶装置、および/または,補助記憶装置は、制御部3によって実行される種々のコンピュータープログラムを記憶する。 The storage unit 2 includes a main storage device (for example, a semiconductor memory) such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and may further include an auxiliary storage device (for example, a hard disk drive). The main storage device and / or the auxiliary storage device stores various computer programs executed by the control unit 3.
 制御部3は、CPU(Central Processing Unit)およびMPU(Micro Processing Unit)のようなプロセッサーを含む。制御部3は、基板処理装置100の各要素を制御する。 The control unit 3 includes a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 3 controls each element of the substrate processing device 100.
 基板処理装置100は、搬送ロボットをさらに備える。搬送ロボットは、ロードポートLPと処理ユニット1との間で基板Wを搬送する。搬送ロボットは、インデクサロボットIRと、センターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、インデクサロボットIRと処理ユニット1との間で基板Wを搬送する。インデクサロボットIR、およびセンターロボットCRの各々は、基板Wを支持するハンドを含む。 The substrate processing device 100 further includes a transfer robot. The transfer robot transfers the substrate W between the load port LP and the processing unit 1. The transfer robot includes an indexer robot IR and a center robot CR. The indexer robot IR conveys the substrate W between the load port LP and the center robot CR. The center robot CR conveys the substrate W between the indexer robot IR and the processing unit 1. Each of the indexer robot IR and the center robot CR includes a hand that supports the substrate W.
 基板処理装置100は、複数の供給ユニット30と、薬液キャビネット5とをさらに備える。複数の供給ユニット30と、処理ユニット1とは、基板処理装置100の筐体100aの内部に配置されている。薬液キャビネット5は、基板処理装置100の筐体100aの外部に配置されている。薬液キャビネット5は、基板処理装置100の側方に配置されていてもよい。また、薬液キャビネット5は、基板処理装置100が設置されるクリーンルームの下(地下)に配置されていてもよい。 The substrate processing device 100 further includes a plurality of supply units 30 and a chemical liquid cabinet 5. The plurality of supply units 30 and the processing unit 1 are arranged inside the housing 100a of the substrate processing device 100. The chemical solution cabinet 5 is arranged outside the housing 100a of the substrate processing apparatus 100. The chemical liquid cabinet 5 may be arranged on the side of the substrate processing apparatus 100. Further, the chemical solution cabinet 5 may be arranged under (underground) a clean room in which the substrate processing device 100 is installed.
 複数の処理ユニット1は、上下に積層された塔Uを構成する。塔Uは複数設けられる。複数の塔Uは、平面視においてセンターロボットCRを取り囲むように配置される。 The plurality of processing units 1 constitute a tower U stacked vertically. A plurality of towers U are provided. The plurality of towers U are arranged so as to surround the center robot CR in a plan view.
 本実施形態では、塔Uには、3つの処理ユニット1が積層される。また、塔Uは4つ設けられる。なお、塔Uを構成する処理ユニット1の個数は特に限定されない。また、塔Uの個数も特に限定されない。 In the present embodiment, three processing units 1 are laminated on the tower U. In addition, four towers U are provided. The number of processing units 1 constituting the tower U is not particularly limited. Further, the number of towers U is not particularly limited.
 複数の供給ユニット30は、それぞれ、複数の塔Uと対応する。薬液キャビネット5内の薬液は、供給ユニット30を介して、供給ユニット30と対応する塔Uに供給される。その結果、塔Uに含まれる全ての処理ユニット1に対して薬液が供給される。 Each of the plurality of supply units 30 corresponds to a plurality of towers U. The chemical solution in the chemical solution cabinet 5 is supplied to the tower U corresponding to the supply unit 30 via the supply unit 30. As a result, the chemical solution is supplied to all the processing units 1 contained in the tower U.
 図1および図2を参照して、処理ユニット1について説明する。図2は、処理ユニット1の構成を模式的に示す側面図である。 The processing unit 1 will be described with reference to FIGS. 1 and 2. FIG. 2 is a side view schematically showing the configuration of the processing unit 1.
 図2に示すように、基板処理装置100は、処理ユニット1と、供給ユニット30と、回収ユニット40と、戻り配管部51と、回収配管部52と、不活性ガス供給部60aと、不活性ガス供給部60bとを備える。 As shown in FIG. 2, the substrate processing device 100 includes the processing unit 1, the supply unit 30, the recovery unit 40, the return piping section 51, the recovery piping section 52, the inert gas supply section 60a, and the inert gas. It is provided with a gas supply unit 60b.
 処理ユニット1は、チャンバー6と、スピンチャック10と、第1カップ14と、第2カップ15とを含む。 The processing unit 1 includes a chamber 6, a spin chuck 10, a first cup 14, and a second cup 15.
 チャンバー6は略箱形状を有する。チャンバー6は基板Wを収容する。基板Wは、例えば略円板状である。ここでは、基板処理装置100は基板Wを1枚ずつ処理する枚葉型であり、チャンバー6には基板Wが1枚ずつ収容される。 Chamber 6 has a substantially box shape. The chamber 6 houses the substrate W. The substrate W has, for example, a substantially disk shape. Here, the substrate processing apparatus 100 is a single-wafer type that processes the substrate W one by one, and the chamber 6 accommodates the substrate W one by one.
 スピンチャック10は、チャンバー6内に配置される。スピンチャック10は、基板Wを水平に保持しつつ、回転軸A1回りに回転させる。回転軸A1は、基板Wの中央部を通る鉛直な軸である。 The spin chuck 10 is arranged in the chamber 6. The spin chuck 10 rotates the substrate W around the rotation axis A1 while holding the substrate W horizontally. The rotating shaft A1 is a vertical shaft passing through the central portion of the substrate W.
 スピンチャック10は、複数のチャックピン11と、スピンベース12と、スピンモータ13と、第1カップ14と、第2カップ15と、移動部16とを含む。なお、第1カップ14は、「第1液受部」の一例に相当する。また、第2カップ15は、「第2液受部」の一例に相当する。 The spin chuck 10 includes a plurality of chuck pins 11, a spin base 12, a spin motor 13, a first cup 14, a second cup 15, and a moving portion 16. The first cup 14 corresponds to an example of the "first liquid receiving portion". Further, the second cup 15 corresponds to an example of the “second liquid receiving portion”.
 スピンベース12は、円板状の部材である。複数のチャックピン11は、スピンベース12上で基板Wを水平な姿勢で保持する。スピンモータ13は、複数のチャックピン11を回転させることにより、回転軸A1回りに基板Wを回転させる。 The spin base 12 is a disk-shaped member. The plurality of chuck pins 11 hold the substrate W in a horizontal posture on the spin base 12. The spin motor 13 rotates the substrate W around the rotation axis A1 by rotating the plurality of chuck pins 11.
 本実施形態のスピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックである。しかし、本発明はこれに限定されない。スピンチャック10は、バキューム式のチャックでもよい。バキューム式のチャックは、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面に吸着させることにより、基板Wを水平に保持する。 The spin chuck 10 of the present embodiment is a holding type chuck that brings a plurality of chuck pins 11 into contact with the outer peripheral surface of the substrate W. However, the present invention is not limited to this. The spin chuck 10 may be a vacuum type chuck. The vacuum type chuck holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate W, which is a non-device forming surface, to the upper surface of the spin base 12.
 第1カップ14と第2カップ15とは、基板Wから排出された処理液を受け止める。詳しくは、第1カップ14は、基板Wを処理した後のアルカリ処理液を受ける。第2カップ15は、基板Wを処理した後の炭酸水を受ける。 The first cup 14 and the second cup 15 receive the processing liquid discharged from the substrate W. Specifically, the first cup 14 receives the alkaline treatment liquid after treating the substrate W. The second cup 15 receives carbonated water after processing the substrate W.
 移動部16は、上昇位置と、下降位置との間で第1カップ14と第2カップ15とを昇降させる。第1カップ14が上昇位置に位置するとき、第1カップ14の上端14aが、スピンチャック10よりも上方に位置する。第1カップ14が下降位置に位置するとき、第1カップ14の上端14aが、スピンチャック10よりも下方に位置する。また、第2カップ15が上昇位置に位置するとき、第2カップ15の上端15aが、スピンチャック10よりも上方に位置する。第2カップ15が下降位置に位置するとき、第2カップ15の上端15aが、スピンチャック10よりも下方に位置する。 The moving unit 16 raises and lowers the first cup 14 and the second cup 15 between the ascending position and the descending position. When the first cup 14 is in the ascending position, the upper end 14a of the first cup 14 is located above the spin chuck 10. When the first cup 14 is located in the lowered position, the upper end 14a of the first cup 14 is located below the spin chuck 10. Further, when the second cup 15 is located in the ascending position, the upper end 15a of the second cup 15 is located above the spin chuck 10. When the second cup 15 is located in the lowered position, the upper end 15a of the second cup 15 is located below the spin chuck 10.
 基板Wに処理液が供給されるとき、第1カップ14と第2カップ15とは上昇位置に位置する。 When the processing liquid is supplied to the substrate W, the first cup 14 and the second cup 15 are located in the raised positions.
 処理ユニット1は、ノズル21と、ノズル移動ユニット22と、供給配管P1と、バルブV1とをさらに含む。 The processing unit 1 further includes a nozzle 21, a nozzle moving unit 22, a supply pipe P1, and a valve V1.
 ノズル21は、スピンチャック10に保持されている基板Wに向けて薬液を吐出する。なお、ノズル21は、「第1ノズル」の一例に相当する。薬液は、例えば、アルカリ処理液である。アルカリ処理液は、例えば、水酸化テトラメチルアンモニウム(tetra methyl ammonium hydroxide:TMAH)を含む。なお、アルカリ処理液は、水酸化カリウム(potassium hydroxide:KOH)でもよい。 The nozzle 21 discharges the chemical solution toward the substrate W held by the spin chuck 10. The nozzle 21 corresponds to an example of the "first nozzle". The chemical solution is, for example, an alkaline treatment solution. The alkaline treatment solution contains, for example, tetramethylammonium hydroxide (TMAH). The alkaline treatment liquid may be potassium hydroxide (potassium hydroxide: KOH).
 供給配管P1はノズル21にアルカリ処理液を供給する。バルブV1は、ノズル21に対するアルカリ処理液の供給開始と供給停止とを切り替える。 The supply pipe P1 supplies the alkaline treatment liquid to the nozzle 21. The valve V1 switches between starting and stopping the supply of the alkaline treatment liquid to the nozzle 21.
 ノズル移動ユニット22は、処理位置と退避位置との間でノズル21を移動させる。処理位置は、ノズル21が基板Wに向けて薬液を吐出する位置を示す。退避位置は、ノズル21が基板Wから離間した位置を示す。ノズル移動ユニット22は、例えば、回動軸線A2回りにノズル21を旋回させることでノズル21を移動させる。回動軸線A2は、第1カップ14および第2カップ15の周辺に位置する鉛直な軸である。 The nozzle moving unit 22 moves the nozzle 21 between the processing position and the retracted position. The processing position indicates a position where the nozzle 21 discharges the chemical solution toward the substrate W. The retracted position indicates a position where the nozzle 21 is separated from the substrate W. The nozzle moving unit 22 moves the nozzle 21 by, for example, turning the nozzle 21 around the rotation axis A2. The rotation axis A2 is a vertical axis located around the first cup 14 and the second cup 15.
 処理ユニット1は、ノズル23と、ノズル移動ユニット24と、供給配管P2と、供給配管P3と、バルブV2と、バルブV3とをさらに含む。 The processing unit 1 further includes a nozzle 23, a nozzle moving unit 24, a supply pipe P2, a supply pipe P3, a valve V2, and a valve V3.
 ノズル23は、スピンチャック10に保持されている基板Wに向けて炭酸水および窒素ガスを吐出する。なお、ノズル23は、「第2ノズル」の一例に相当する。 The nozzle 23 discharges carbonated water and nitrogen gas toward the substrate W held by the spin chuck 10. The nozzle 23 corresponds to an example of the "second nozzle".
 供給配管P2はノズル23に炭酸水を供給する。バルブV2は、ノズル23に対する炭酸水の供給開始と供給停止とを切り替える。 The supply pipe P2 supplies carbonated water to the nozzle 23. The valve V2 switches between starting and stopping the supply of carbonated water to the nozzle 23.
 供給配管P3はノズル23に窒素ガスを供給する。バルブV3は、ノズル23に対する窒素ガスの供給開始と供給停止とを切り替える。 The supply pipe P3 supplies nitrogen gas to the nozzle 23. The valve V3 switches between starting and stopping the supply of nitrogen gas to the nozzle 23.
 ノズル移動ユニット24は、処理位置と退避位置との間でノズル23を移動させる。処理位置は、ノズル23が基板Wに向けて薬液を吐出する位置を示す。退避位置は、ノズル23が基板Wから離間した位置を示す。ノズル移動ユニット24は、例えば、回動軸線A3回りにノズル23を旋回させることでノズル23を移動させる。回動軸線A3は、第1カップ14および第2カップ15の周辺に位置する鉛直な軸である。 The nozzle moving unit 24 moves the nozzle 23 between the processing position and the retracted position. The processing position indicates a position where the nozzle 23 discharges the chemical solution toward the substrate W. The retracted position indicates a position where the nozzle 23 is separated from the substrate W. The nozzle moving unit 24 moves the nozzle 23, for example, by turning the nozzle 23 around the rotation axis A3. The rotation axis A3 is a vertical axis located around the first cup 14 and the second cup 15.
 供給ユニット30は、処理ユニット1に、アルカリ処理液を供給する。供給ユニット30は、供給タンク31を有する。供給タンク31は、処理ユニット1に供給するアルカリ処理液を収容する。供給ユニット30の詳細については、図4を参照して後述する。なお、供給タンク31は、「第1収容部」の一例に相当する。 The supply unit 30 supplies the alkaline treatment liquid to the treatment unit 1. The supply unit 30 has a supply tank 31. The supply tank 31 houses the alkaline treatment liquid to be supplied to the treatment unit 1. Details of the supply unit 30 will be described later with reference to FIG. The supply tank 31 corresponds to an example of the "first accommodating portion".
 回収ユニット40は、基板Wを処理したアルカリ処理液を処理ユニット1から回収する。回収ユニット40は、回収タンク41を有する。回収タンク41は、処理ユニット1から回収したアルカリ処理液を収容する。回収ユニット40の詳細については、図4を参照して後述する。なお、回収タンク41は、「第2収容部」の一例に相当する。 The recovery unit 40 recovers the alkaline treatment liquid treated with the substrate W from the treatment unit 1. The recovery unit 40 has a recovery tank 41. The recovery tank 41 houses the alkaline treatment liquid recovered from the treatment unit 1. Details of the recovery unit 40 will be described later with reference to FIG. The recovery tank 41 corresponds to an example of the “second storage unit”.
 戻り配管部51は、処理ユニット1と回収タンク41とを接続する。したがって、処理ユニット1によって基板Wを処理したアルカリ処理液は、戻り配管部51を流れて、回収タンク41に回収される。 The return piping section 51 connects the processing unit 1 and the recovery tank 41. Therefore, the alkaline treatment liquid obtained by treating the substrate W by the treatment unit 1 flows through the return piping section 51 and is recovered in the recovery tank 41.
 回収配管部52は、供給タンク31と回収タンク41とを接続する。したがって、回収タンク41に収容されている基板Wを処理したアルカリ処理液は、回収配管部52を流れて、供給タンク31に回収される。 The recovery piping section 52 connects the supply tank 31 and the recovery tank 41. Therefore, the alkaline treatment liquid that has processed the substrate W contained in the recovery tank 41 flows through the recovery piping section 52 and is recovered in the supply tank 31.
 不活性ガス供給部60aは、供給タンク31に不活性ガスを供給する。不活性ガスは、アルカリ処理液に対して不活性な気体である。不活性ガスは、例えば、窒素ガスを含む。なお、不活性ガスは、アルゴンガスでもよい。不活性ガスの流量は、例えば、5LPM(リットル/分)以上が好ましい。 The inert gas supply unit 60a supplies the inert gas to the supply tank 31. The inert gas is a gas that is inert to the alkaline treatment liquid. The inert gas includes, for example, nitrogen gas. The inert gas may be argon gas. The flow rate of the inert gas is preferably 5 LPM (liter / minute) or more, for example.
 不活性ガス供給部60bは、回収ユニット40に不活性ガスを供給する。不活性ガスは、アルカリ処理液に対して不活性な気体である。不活性ガスは、例えば、窒素ガスを含む。なお、不活性ガスは、アルゴンガスでもよい。不活性ガスの流量は、例えば、5LPM(リットル/分)以上が好ましい。 The inert gas supply unit 60b supplies the inert gas to the recovery unit 40. The inert gas is a gas that is inert to the alkaline treatment liquid. The inert gas includes, for example, nitrogen gas. The inert gas may be argon gas. The flow rate of the inert gas is preferably 5 LPM (liter / minute) or more, for example.
 次に、図1、図2、図3(a)および図3(b)を参照して、本実施形態の基板処理装置100が実行する基板処理方法を説明する。図3(a)は、本実施形態の基板処理方法を示すフローチャートである。図3(b)は、レジスト剥離処理方法を示すフローチャートである。図3(a)に示すように、本実施形態の基板処理方法は、ステップS1~ステップS5を含む。図3(b)に示すように、レジスト剥離処理方法は、ステップS21~ステップS23を含む。 Next, the substrate processing method executed by the substrate processing apparatus 100 of the present embodiment will be described with reference to FIGS. 1, 2, 3 (a) and 3 (b). FIG. 3A is a flowchart showing the substrate processing method of the present embodiment. FIG. 3B is a flowchart showing a resist stripping treatment method. As shown in FIG. 3A, the substrate processing method of the present embodiment includes steps S1 to S5. As shown in FIG. 3B, the resist stripping treatment method includes steps S21 to S23.
 図3(a)に示すように、基板処理装置100が基板Wを処理する場合、まず、基板Wがチャンバー6に搬入される(ステップS1)。詳しくは、搬送ロボットが基板Wをチャンバー6に搬入する。なお、本実施形態では、基板Wはエッチング処理済のレジストが形成された基板である。搬入された基板Wは、スピンチャック10によって保持される。 As shown in FIG. 3A, when the substrate processing apparatus 100 processes the substrate W, the substrate W is first carried into the chamber 6 (step S1). Specifically, the transfer robot carries the substrate W into the chamber 6. In the present embodiment, the substrate W is a substrate on which an etched resist is formed. The carried-in substrate W is held by the spin chuck 10.
 スピンチャック10が基板Wを保持した後に、レジスト剥離処理が行われる(ステップS2)。図3(b)に示すように、レジスト剥離処理において、まず、供給処理が行われる(ステップS21)。詳しくは、供給タンク31からアルカリ処理液を処理ユニット1に供給する。より詳しくは、ノズル21が、回動軸線A2を中心に回動しながら、アルカリ処理液を吐出する。ノズル21は、少なくとも基板Wの上面全域がアルカリ処理液で覆われるまで、アルカリ処理液を吐出する。 After the spin chuck 10 holds the substrate W, the resist peeling process is performed (step S2). As shown in FIG. 3B, in the resist stripping process, first, a supply process is performed (step S21). Specifically, the alkaline treatment liquid is supplied to the treatment unit 1 from the supply tank 31. More specifically, the nozzle 21 discharges the alkaline treatment liquid while rotating around the rotation axis A2. The nozzle 21 discharges the alkaline treatment liquid until at least the entire upper surface of the substrate W is covered with the alkaline treatment liquid.
 供給処理が行われた後に、アルカリ液処理が行われる(ステップS22)。詳しくは、処理ユニット1がアルカリ処理液によって基板Wを処理する。詳しくは、基板Wをアルカリ処理液で基板Wの表面のレジストを剥離する。 After the supply process is performed, the alkaline solution process is performed (step S22). Specifically, the processing unit 1 processes the substrate W with an alkaline treatment liquid. Specifically, the resist on the surface of the substrate W is peeled off with an alkaline treatment liquid on the substrate W.
 次に、回収処理が行われる(ステップS23)。詳しくは、基板Wを処理したアルカリ処理液を処理ユニット1から回収タンク41に回収する。 Next, the collection process is performed (step S23). Specifically, the alkaline treatment liquid treated with the substrate W is recovered from the treatment unit 1 into the recovery tank 41.
 レジスト剥離処理(ステップS2)が終了すると、ステップS3において、洗浄処理が行われる。詳しくは、ノズル23が、回動軸線A3を中心に回動しながら、炭酸水および窒素ガスを吐出する。その結果、基板Wが洗浄される。 When the resist peeling process (step S2) is completed, the cleaning process is performed in step S3. Specifically, the nozzle 23 discharges carbonated water and nitrogen gas while rotating around the rotation axis A3. As a result, the substrate W is washed.
 ステップS4において、基板Wを乾燥させる。 In step S4, the substrate W is dried.
 ステップS5において、基板Wの回転を停止させた後、チャンバー6から基板Wを搬出して、図3(a)および図3(b)に示す処理を終了する。 In step S5, after stopping the rotation of the substrate W, the substrate W is carried out from the chamber 6 to end the processes shown in FIGS. 3 (a) and 3 (b).
 また、実施形態1に係る半導体製造方法では、エッチング処理済のレジストが形成された半導体基板Wを、ステップS1~ステップS5およびステップS21~ステップS23を含む基板処理方法によって処理して、処理後の半導体基板Wである半導体を製造する。 Further, in the semiconductor manufacturing method according to the first embodiment, the semiconductor substrate W on which the resist that has been etched is formed is processed by a substrate processing method including steps S1 to S5 and steps S21 to S23, and after the processing. A semiconductor which is a semiconductor substrate W is manufactured.
 なお、本実施形態では、基板処理装置100は、エッチング処理済のレジストが形成された基板Wについてレジスト剥離処理を行ったが、本発明はこれに限定されない。例えば、基板処理装置100においてエッチング処理を行ってもよい。 In the present embodiment, the substrate processing apparatus 100 performs a resist peeling treatment on the substrate W on which the etched resist is formed, but the present invention is not limited to this. For example, the etching process may be performed in the substrate processing apparatus 100.
 図4を参照して、基板処理装置100についてさらに説明する。図4は、本発明の実施形態1に係る基板処理装置100の構成を模式的に示す側面図である。 The substrate processing apparatus 100 will be further described with reference to FIG. FIG. 4 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment of the present invention.
 図4に示すように、供給ユニット30は、供給タンク31に加えて、循環配管32と、循環ポンプ33と、循環フィルター34と、循環ヒータ35と、気体供給配管P4と、配管P5と、バルブV31と、バルブV32と、バルブV33とをさらに有する。 As shown in FIG. 4, in addition to the supply tank 31, the supply unit 30 includes a circulation pipe 32, a circulation pump 33, a circulation filter 34, a circulation heater 35, a gas supply pipe P4, a pipe P5, and a valve. It further has a V31, a valve V32, and a valve V33.
 供給タンク31は、アルカリ処理液を収容する。循環配管32は、管状の部材である。循環配管32内には、アルカリ処理液が循環する循環路が形成される。循環配管32は、上流側端部32aと、下流側端部32bとを有する。循環配管32は、供給タンク31に連通する。具体的には、循環配管32の上流側端部32aと、下流側端部32bとが供給タンク31に連通する。 The supply tank 31 stores the alkaline treatment liquid. The circulation pipe 32 is a tubular member. A circulation path through which the alkaline treatment liquid circulates is formed in the circulation pipe 32. The circulation pipe 32 has an upstream side end portion 32a and a downstream side end portion 32b. The circulation pipe 32 communicates with the supply tank 31. Specifically, the upstream end 32a and the downstream end 32b of the circulation pipe 32 communicate with the supply tank 31.
 循環ポンプ33は、供給タンク31内のアルカリ処理液を循環配管32に送る。循環ポンプ33が作動すると、供給タンク31内のアルカリ処理液が循環配管32の上流側端部32aに送られる。上流側端部32aに送られたアルカリ処理液は、循環配管32内を搬送されて、下流側端部32bから供給タンク31に排出される。循環ポンプ33が作動し続けることで、上流側端部32aから下流側端部32bに向かって、循環配管32内にアルカリ処理液が流れ続ける。その結果、アルカリ処理液が循環配管32を循環する。 The circulation pump 33 sends the alkaline treatment liquid in the supply tank 31 to the circulation pipe 32. When the circulation pump 33 operates, the alkaline treatment liquid in the supply tank 31 is sent to the upstream end 32a of the circulation pipe 32. The alkaline treatment liquid sent to the upstream end 32a is conveyed in the circulation pipe 32 and discharged from the downstream end 32b to the supply tank 31. As the circulation pump 33 continues to operate, the alkaline treatment liquid continues to flow in the circulation pipe 32 from the upstream end 32a toward the downstream end 32b. As a result, the alkaline treatment liquid circulates in the circulation pipe 32.
 循環フィルター34は、循環配管32を循環するアルカリ処理液から、パーティクルのような異物を除去する。循環ヒータ35は、アルカリ処理液を加熱することで、アルカリ処理液の温度を調整する。循環ヒータ35は、アルカリ処理液の温度を、例えば、室温よりも高い一定の温度(例えば、60℃)に保持する。循環配管32を循環するアルカリ処理液の温度は、循環ヒータ35により一定の温度に保持される。 The circulation filter 34 removes foreign substances such as particles from the alkaline treatment liquid circulating in the circulation pipe 32. The circulation heater 35 adjusts the temperature of the alkaline treatment liquid by heating the alkaline treatment liquid. The circulation heater 35 keeps the temperature of the alkaline treatment liquid at a constant temperature (for example, 60 ° C.) higher than, for example, room temperature. The temperature of the alkaline treatment liquid circulating in the circulation pipe 32 is maintained at a constant temperature by the circulation heater 35.
 循環ポンプ33、循環フィルター34、および循環ヒータ35は、循環配管32に設置される。 The circulation pump 33, the circulation filter 34, and the circulation heater 35 are installed in the circulation pipe 32.
 循環ポンプ33に代えて、加圧装置を設けてもよい。加圧装置は、供給タンク31内の気圧を上昇させることにより、供給タンク31内のアルカリ処理液を循環配管32に送り出す。 A pressurizing device may be provided instead of the circulation pump 33. The pressurizing device sends the alkaline treatment liquid in the supply tank 31 to the circulation pipe 32 by increasing the air pressure in the supply tank 31.
 気体供給配管P4は、バルブV31を介して、不活性ガス供給部60aと供給タンク31とを接続する。バルブV31は、供給タンク31に対する、不活性ガスの供給開始と供給停止とを切り替える。 The gas supply pipe P4 connects the inert gas supply unit 60a and the supply tank 31 via the valve V31. The valve V31 switches between starting and stopping the supply of the inert gas to the supply tank 31.
 配管P5は、バルブV32およびバルブV33を介して、ドレンタンク(図示せず)に接続される。バルブV32およびバルブV33は、ドレンタンクに対するアルカリ処理液の排出開始と排出停止とを切り替える。 The pipe P5 is connected to a drain tank (not shown) via a valve V32 and a valve V33. The valve V32 and the valve V33 switch between starting and stopping the discharge of the alkaline treatment liquid to the drain tank.
 一般的にアルカリ処理液が空気中の二酸化炭素が溶け込むと炭酸塩が生成される。炭酸塩が生成されると、アルカリ処理液の濃度が低下し、アルカリ処理液のレジスト剥離性能が低下する。 Generally, when carbon dioxide in the air dissolves in the alkaline treatment liquid, carbonate is generated. When carbonate is produced, the concentration of the alkaline treatment liquid is lowered, and the resist peeling performance of the alkaline treatment liquid is lowered.
 そこで、不活性ガス供給部60aは、気体供給配管P4を介して、供給タンク31に、不活性ガスを供給する。したがって、供給タンク31内の二酸化炭素の濃度を低減させることができる。その結果、供給タンク31内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 Therefore, the inert gas supply unit 60a supplies the inert gas to the supply tank 31 via the gas supply pipe P4. Therefore, the concentration of carbon dioxide in the supply tank 31 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 処理ユニット1は、バルブV4と、分岐配管P6とをさらに有する。基板Wの裏面にアルカリ処理液を供給する。バルブV4は、基板Wの裏面に対するアルカリ処理液の供給開始と供給停止とを切り替える。 The processing unit 1 further includes a valve V4 and a branch pipe P6. An alkaline treatment liquid is supplied to the back surface of the substrate W. The valve V4 switches between starting and stopping the supply of the alkaline treatment liquid to the back surface of the substrate W.
 回収ユニット40は、回収タンク41に加えて、バルブV41と、回収ポンプ44と、気体供給配管P7とをさらに有する。なお、回収ポンプ44は、「供給部」の一例に相当する。 The recovery unit 40 further includes a valve V41, a recovery pump 44, and a gas supply pipe P7 in addition to the recovery tank 41. The recovery pump 44 corresponds to an example of a “supply unit”.
 回収タンク41は、処理部から回収したアルカリ処理液を収容する。 The recovery tank 41 stores the alkaline treatment liquid recovered from the treatment unit.
 回収ポンプ44は、回収タンク41から供給タンク31にアルカリ処理液を供給する。詳しくは、回収ポンプ44は、回収タンク41内のアルカリ処理液を回収配管部52に送る。 The recovery pump 44 supplies the alkaline treatment liquid from the recovery tank 41 to the supply tank 31. Specifically, the recovery pump 44 sends the alkaline treatment liquid in the recovery tank 41 to the recovery piping section 52.
 回収ポンプ44に代えて、加圧装置を設けてもよい。加圧装置は、回収タンク41内の気圧を上昇させることにより、回収タンク41内のアルカリ処理液を回収配管部52に送り出す。 A pressurizing device may be provided instead of the recovery pump 44. The pressurizing device sends the alkaline treatment liquid in the recovery tank 41 to the recovery piping section 52 by raising the air pressure in the recovery tank 41.
 気体供給配管P7は、不活性ガス供給部60bと回収タンク41とを接続する。 The gas supply pipe P7 connects the inert gas supply unit 60b and the recovery tank 41.
 不活性ガス供給部60bは、気体供給配管P7を介して、回収タンク41に、不活性ガスを供給する。したがって、回収タンク41内の二酸化炭素の濃度を低減させることができる。その結果、回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 The inert gas supply unit 60b supplies the inert gas to the recovery tank 41 via the gas supply pipe P7. Therefore, the concentration of carbon dioxide in the recovery tank 41 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 回収ポンプ44を動作させた場合、回収タンク41の排気口(図示せず)から回収タンク41外の空気が回収ユニットに入り込む可能性がある。その結果、回収タンク41内の二酸化炭素の濃度が上昇する可能性がある。 When the recovery pump 44 is operated, there is a possibility that air outside the recovery tank 41 may enter the recovery unit from the exhaust port (not shown) of the recovery tank 41. As a result, the concentration of carbon dioxide in the recovery tank 41 may increase.
 したがって、回収ポンプ44を動作させた場合、制御部3は、回収ポンプ44を動作させる場合、回収ポンプ44を動作させない場合に比べて、不活性ガスの供給量が増加するように不活性ガス供給部60bを制御することが好ましい。したがって、回収ポンプ44を動作させることによって増加した回収タンク41内の二酸化炭素の濃度を低減させることができる。その結果、回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。 Therefore, when the recovery pump 44 is operated, the control unit 3 supplies the inert gas so that the supply amount of the inert gas increases when the recovery pump 44 is operated as compared with the case where the recovery pump 44 is not operated. It is preferable to control the unit 60b. Therefore, it is possible to reduce the increased concentration of carbon dioxide in the recovery tank 41 by operating the recovery pump 44. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate.
 基板処理装置100は、排出タンク70をさらに備える。排出タンク70には、基板Wを処理した後のアルカリ処理液が排出される。 The substrate processing device 100 further includes a discharge tank 70. The alkaline treatment liquid after processing the substrate W is discharged to the discharge tank 70.
 戻り配管部51は、処理ユニット1と回収タンク41とを接続する。戻り配管部51は、供給配管部P8と、排出配管部P9とを有する。 The return piping section 51 connects the processing unit 1 and the recovery tank 41. The return piping section 51 has a supply piping section P8 and a discharge piping section P9.
 供給配管部P8は、基板Wを処理した後のアルカリ処理液を回収タンク41に供給する。供給配管部P8は、処理ユニット1と回収タンク41とを接続する。供給配管部P8は、バルブV5を有する。バルブV5は、回収タンク41への基板Wを処理した後のアルカリ処理液の供給開始と供給停止とを切り替える。 The supply piping unit P8 supplies the alkaline treatment liquid after processing the substrate W to the recovery tank 41. The supply piping unit P8 connects the processing unit 1 and the recovery tank 41. The supply piping section P8 has a valve V5. The valve V5 switches between starting and stopping the supply of the alkaline treatment liquid after processing the substrate W to the recovery tank 41.
 排出配管部P9は、基板Wを処理した後のアルカリ処理液を排出タンク70に排出する。排出配管部P9は、供給配管部P8から分岐して排出タンク70に接続する。排出配管部P9は、バルブV6を有する。バルブV6は、排出タンク70への基板Wを処理した後のアルカリ処理液の排出開始と排出停止とを切り替える。 The discharge piping unit P9 discharges the alkaline treatment liquid after processing the substrate W to the discharge tank 70. The discharge pipe unit P9 branches from the supply pipe unit P8 and connects to the discharge tank 70. The discharge pipe portion P9 has a valve V6. The valve V6 switches between starting and stopping the discharge of the alkaline treatment liquid after processing the substrate W into the discharge tank 70.
 一般的に、処理ユニットがアルカリ処理液によってレジスト除去の処理を開始した直後は、多量のレジストがアルカリ処理液に混入している。したがって、レジスト除去の処理を開始した直後は、アルカリ処理液を回収タンクに回収しないことが好ましい。したがって、本実施形態では、レジスト除去の処理を開始した直後は、アルカリ処理液を回収タンク41に回収しないように、制御部3は、供給配管部P8と排出配管部P9とを制御することが好ましい。 Generally, a large amount of resist is mixed in the alkaline treatment liquid immediately after the treatment unit starts the resist removal treatment with the alkaline treatment liquid. Therefore, it is preferable not to collect the alkaline treatment liquid in the recovery tank immediately after starting the resist removing treatment. Therefore, in the present embodiment, the control unit 3 can control the supply pipe unit P8 and the discharge pipe unit P9 so that the alkaline treatment liquid is not collected in the recovery tank 41 immediately after the resist removal process is started. preferable.
 具体的には、制御部3は、処理ユニット1がアルカリ処理液によって基板Wの処理を開始して所定の期間内は、基板Wを処理した後のアルカリ処理液が排出配管部P9を流れるように制御する。詳しくは、制御部3は、バルブV6を開いて、基板Wを処理した後のアルカリ処理液が排出タンク70に流れるようにバルブV6を制御する。一方、制御部3は、バルブV5を閉じて基板Wを処理した後のアルカリ処理液が回収タンク41に流れないようにバルブV5を制御する。 Specifically, in the control unit 3, the processing unit 1 starts processing the substrate W with the alkaline treatment liquid so that the alkaline treatment liquid after processing the substrate W flows through the discharge piping unit P9 within a predetermined period. To control. Specifically, the control unit 3 opens the valve V6 and controls the valve V6 so that the alkaline treatment liquid after processing the substrate W flows into the discharge tank 70. On the other hand, the control unit 3 controls the valve V5 so that the alkaline treatment liquid after the valve V5 is closed and the substrate W is treated does not flow into the recovery tank 41.
 また、所定の期間経過後は、基板Wを処理した後のアルカリ処理液が供給配管部P8を流れるように制御する。詳しくは、制御部3は、バルブV5を開いて、基板Wを処理した後のアルカリ処理液が回収タンク41に流れるようにバルブV6を制御する。一方、制御部3は、バルブV5を閉じて基板Wを処理した後のアルカリ処理液が排出タンク70に流れないようにバルブV6を制御する。 Further, after the lapse of a predetermined period, the alkaline treatment liquid after processing the substrate W is controlled to flow through the supply piping portion P8. Specifically, the control unit 3 opens the valve V5 and controls the valve V6 so that the alkaline treatment liquid after processing the substrate W flows into the recovery tank 41. On the other hand, the control unit 3 controls the valve V6 so that the alkaline treatment liquid after the valve V5 is closed and the substrate W is treated does not flow into the discharge tank 70.
 このように、レジスト除去の処理を開始した直後は、制御部3がアルカリ処理液を回収タンク41に回収されないように制御する。したがって、多量のレジストが混入した状態で、アルカリ処理液を回収タンク41に回収されないようにすることができる。その結果、基板Wを処理した後のアルカリ処理液を効率良く再使用することができる。 In this way, immediately after starting the resist removing process, the control unit 3 controls so that the alkaline treatment liquid is not collected in the recovery tank 41. Therefore, it is possible to prevent the alkaline treatment liquid from being recovered in the recovery tank 41 in a state where a large amount of resist is mixed. As a result, the alkaline treatment liquid after treating the substrate W can be efficiently reused.
 以上、図1~図4を参照して説明したように、基板処理装置100において、不活性ガス供給部60は、供給タンク31(第1収容部)および回収タンク41(第2収容部)の少なくとも一方に不活性ガス(窒素ガス)を供給する。したがって、供給タンク31内および回収タンク41内の二酸化炭素の濃度を低減させることができる。その結果、供給タンク31内および回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 As described above with reference to FIGS. 1 to 4, in the substrate processing apparatus 100, the inert gas supply unit 60 is the supply tank 31 (first accommodation unit) and the recovery tank 41 (second accommodation unit). The inert gas (nitrogen gas) is supplied to at least one of them. Therefore, the concentration of carbon dioxide in the supply tank 31 and the recovery tank 41 can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 and the recovery tank 41 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 なお、本実施形態では、不活性ガス供給部60は、供給タンク31および回収タンク41のいずれにも不活性ガスを供給していたが、本発明はこれに限定されない。例えば、不活性ガス供給部60は、供給タンク31および回収タンク41のいずれか一方にのみ不活性ガスを供給してもよい。 In the present embodiment, the inert gas supply unit 60 supplies the inert gas to both the supply tank 31 and the recovery tank 41, but the present invention is not limited to this. For example, the inert gas supply unit 60 may supply the inert gas to only one of the supply tank 31 and the recovery tank 41.
 また、制御部3は回収ポンプ44(供給部)を動作させる場合、回収ポンプ44を動作させない場合に比べて、不活性ガスの供給量が増加するように不活性ガス供給部60を制御する。したがって、回収ポンプ44を動作させることによって増加した回収タンク41内の二酸化炭素の濃度を低減させることができる。その結果、回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。 Further, when the recovery pump 44 (supply unit) is operated, the control unit 3 controls the inert gas supply unit 60 so that the supply amount of the inert gas increases as compared with the case where the recovery pump 44 is not operated. Therefore, it is possible to reduce the increased concentration of carbon dioxide in the recovery tank 41 by operating the recovery pump 44. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the recovery tank 41 to generate carbonate.
 また、制御部3は、処理ユニット1(処理部)がアルカリ処理液によって基板Wの処理を開始して所定の期間内は、基板Wを処理した後のアルカリ処理液が排出配管部P9を流れるように制御する。また、制御部3は、所定の期間経過後は、基板Wを処理した後のアルカリ処理液が供給配管部P8を流れるように制御する。したがって、多量のレジストが混入した状態で、アルカリ処理液を回収タンク41に回収されないようにすることができる。その結果、基板Wを処理した後のアルカリ処理液を効率良く再使用することができる。 Further, in the control unit 3, the processing unit 1 (processing unit) starts processing the substrate W with the alkaline treatment liquid, and within a predetermined period of time, the alkaline treatment liquid after processing the substrate W flows through the discharge piping unit P9. To control. Further, the control unit 3 controls so that the alkaline treatment liquid after processing the substrate W flows through the supply piping unit P8 after the elapse of a predetermined period. Therefore, it is possible to prevent the alkaline treatment liquid from being recovered in the recovery tank 41 in a state where a large amount of resist is mixed. As a result, the alkaline treatment liquid after treating the substrate W can be efficiently reused.
 [実施形態2]
 図1、図2および図5を参照して、本発明の実施形態2に係る基板処理装置100について説明する。図5は、本発明の実施形態2に係る基板処理装置100の構成を模式的に示す側面図である。不活性ガス供給部60が、流量計62を有する点を除いて、実施形態2に係る基板処理装置100は、実施形態1に係る基板処理装置100と同様な構成を有するため、重複部分については説明を省略する。
[Embodiment 2]
The substrate processing apparatus 100 according to the second embodiment of the present invention will be described with reference to FIGS. 1, 2 and 5. FIG. 5 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the second embodiment of the present invention. Since the substrate processing apparatus 100 according to the second embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the inert gas supply unit 60 has the flow meter 62, the overlapping portion is not included. The description is omitted.
 図5に示すように、不活性ガス供給部60aは、流量計62を有する。なお、流量計62は、「計測部」の一例に相当する。流量計62は、供給タンク31に供給される不活性ガスの量を計測する。制御部3は、流量計62で計測された不活性ガスの供給量に基づいて、不活性ガス供給部60aが供給タンク31に供給する不活性ガスの量を調整することが好ましい。その結果、必要以上に不活性ガスを供給することを抑制することができる。なお、制御部3は、フィードバック制御をすることによって、供給タンク31に供給する不活性ガスの量を調整してもよい。 As shown in FIG. 5, the inert gas supply unit 60a has a flow meter 62. The flow meter 62 corresponds to an example of the “measurement unit”. The flow meter 62 measures the amount of the inert gas supplied to the supply tank 31. The control unit 3 preferably adjusts the amount of the inert gas supplied by the inert gas supply unit 60a to the supply tank 31 based on the amount of the inert gas supplied by the flow meter 62. As a result, it is possible to suppress the supply of the inert gas more than necessary. The control unit 3 may adjust the amount of the inert gas supplied to the supply tank 31 by performing feedback control.
 同様に、不活性ガス供給部60bは、流量計62を有する。なお、流量計62は、「計測部」の一例に相当する。流量計62は、回収タンク41に供給される不活性ガスの量を計測する。制御部3は、流量計62で計測された不活性ガスの供給量に基づいて、不活性ガス供給部60bが回収タンク41に供給する不活性ガスの量を調整することが好ましい。その結果、必要以上に不活性ガスを供給することを抑制することができる。なお、制御部3は、フィードバック制御をすることによって、回収タンク41に供給する不活性ガスの量を調整してもよい。なお、実施形態1で説明したように、回収タンク41は、回収ポンプ44の動作中に、回収タンク41の二酸化炭素の濃度が上昇する可能性がある。したがって、回収タンク41に不活性ガスを供給する不活性ガス供給部60bは、流量計62を有することが、特に好ましい。 Similarly, the inert gas supply unit 60b has a flow meter 62. The flow meter 62 corresponds to an example of the “measurement unit”. The flow meter 62 measures the amount of the inert gas supplied to the recovery tank 41. It is preferable that the control unit 3 adjusts the amount of the inert gas supplied by the inert gas supply unit 60b to the recovery tank 41 based on the amount of the inert gas supplied by the flow meter 62. As a result, it is possible to suppress the supply of the inert gas more than necessary. The control unit 3 may adjust the amount of the inert gas supplied to the recovery tank 41 by performing feedback control. As described in the first embodiment, in the recovery tank 41, the concentration of carbon dioxide in the recovery tank 41 may increase during the operation of the recovery pump 44. Therefore, it is particularly preferable that the inert gas supply unit 60b that supplies the inert gas to the recovery tank 41 has a flow meter 62.
 本実施形態でも、実施形態1同様に、供給タンク31内および回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 Also in the present embodiment, similarly to the first embodiment, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 and the recovery tank 41 to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 [実施形態3]
 図1、図2および図6を参照して、本発明の実施形態3に係る基板処理装置100について説明する。図6は、本発明の実施形態3に係る基板処理装置100の構成を模式的に示す側面図である。基板処理装置100が検知部515を備える点を除いて、実施形態3に係る基板処理装置100は、実施形態1に係る基板処理装置100と同様な構成を有するため、重複部分については説明を省略する。
[Embodiment 3]
The substrate processing apparatus 100 according to the third embodiment of the present invention will be described with reference to FIGS. 1, 2 and 6. FIG. 6 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the third embodiment of the present invention. Since the substrate processing apparatus 100 according to the third embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the substrate processing apparatus 100 includes the detection unit 515, the description of the overlapping portion is omitted. To do.
 図6に示すように、基板処理装置100は、検知部515をさらに備える。検知部515は、回収タンク41内に設けられる。詳しくは、検知部515は、回収タンク41の底面近傍に設けられる。検知部515は、回収タンク41内にアルカリ処理液が存在するか否かを検知する。検知部515は、例えば、静電容量センサーである。制御部3は、検知部515が検知した結果に基づいて、回収タンク41内にアルカリ処理液が存在すると判定した場合、回収ポンプ44が動作を開始するように制御する。したがって、回収タンク41にアルカリ処理液が滞留する時間を短くすることができる。また、制御部3は、検知部515が検知した結果に基づいて、回収タンク41内にアルカリ処理液が存在しないと判定した場合、回収ポンプ44が動作を停止するように制御する。その結果、回収タンク41において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 As shown in FIG. 6, the substrate processing device 100 further includes a detection unit 515. The detection unit 515 is provided in the collection tank 41. Specifically, the detection unit 515 is provided near the bottom surface of the recovery tank 41. The detection unit 515 detects whether or not the alkaline treatment liquid is present in the recovery tank 41. The detection unit 515 is, for example, a capacitance sensor. The control unit 3 controls the recovery pump 44 to start operation when it is determined that the alkaline treatment liquid is present in the recovery tank 41 based on the result detected by the detection unit 515. Therefore, the time for the alkaline treatment liquid to stay in the recovery tank 41 can be shortened. Further, the control unit 3 controls the recovery pump 44 to stop the operation when it is determined that the alkaline treatment liquid does not exist in the recovery tank 41 based on the result detected by the detection unit 515. As a result, in the recovery tank 41, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide to generate carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 本実施形態でも、実施形態1および実施形態2と同様に、供給タンク31内および回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 Also in the present embodiment, as in the first and second embodiments, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 and the recovery tank 41 to generate carbonate. it can. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 [実施形態4]
 図1、図2および図7を参照して、本発明の実施形態4に係る基板処理装置100について説明する。図7は、本発明の実施形態4に係る基板処理装置100の構成を模式的に示す側面図である。基板処理装置100が排出タンク80をさらに備える点を除いて、実施形態4に係る基板処理装置100は、実施形態1に係る基板処理装置100と同様な構成を有するため、重複部分については説明を省略する。
[Embodiment 4]
The substrate processing apparatus 100 according to the fourth embodiment of the present invention will be described with reference to FIGS. 1, 2 and 7. FIG. 7 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the fourth embodiment of the present invention. Since the substrate processing apparatus 100 according to the fourth embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment except that the substrate processing apparatus 100 further includes a discharge tank 80, the overlapping portion will be described. Omit.
 図7に示すように、基板処理装置100は、排出タンク80と配管部P10とをさらに備える。排出タンク80は、処理ユニット1から回収した炭酸水を収容する。排出タンク80には、基板Wを洗浄した後の炭酸水が排出される。配管部P10は、処理ユニット1と排出タンク80とを接続する。なお、排出タンク80は、「第3収容部」の一例に相当する。 As shown in FIG. 7, the substrate processing device 100 further includes a discharge tank 80 and a piping portion P10. The discharge tank 80 accommodates the carbonated water recovered from the processing unit 1. The carbonated water after cleaning the substrate W is discharged to the discharge tank 80. The piping unit P10 connects the processing unit 1 and the discharge tank 80. The discharge tank 80 corresponds to an example of the "third accommodating portion".
 ノズル21が基板Wにアルカリ処理液を供給する場合、回収タンク41に基板Wを処理した後のアルカリ処理液が回収される。この際、制御部3は、バルブV5を開くように、かつ、バルブV6を閉じるように制御する。また、移動部16(図2参照)は、アルカリ処理液によって基板Wを処理する場合、第1カップ14がアルカリ処理液を受けるように第1カップ14を移動させる。したがって、第1カップ14によって受け止められたアルカリ処理液は、供給配管部P8を介して回収タンク41に回収される。 When the nozzle 21 supplies the alkaline treatment liquid to the substrate W, the alkali treatment liquid after the substrate W is treated in the recovery tank 41 is recovered. At this time, the control unit 3 controls to open the valve V5 and close the valve V6. Further, when the substrate W is treated with the alkaline treatment liquid, the moving unit 16 (see FIG. 2) moves the first cup 14 so that the first cup 14 receives the alkaline treatment liquid. Therefore, the alkaline treatment liquid received by the first cup 14 is collected in the recovery tank 41 via the supply piping section P8.
 一方、ノズル23が基板Wに炭酸水を供給する場合、排出タンク80に炭酸水が回収される。また、ノズル23が基板Wに炭酸水を供給する場合、回収タンク41には炭酸水が回収されない。この際、制御部3は、バルブV5およびバルブV6を閉じるように制御する。また、移動部16(図2参照)は、ノズル23が基板Wに炭酸水を供給する場合、第2カップ15が炭酸水を受けるように第2カップ15を移動させる。したがって、第2カップ15によって受け止められた炭酸水は、配管部P10を介して排出タンク80に回収される。 On the other hand, when the nozzle 23 supplies carbonated water to the substrate W, the carbonated water is collected in the discharge tank 80. Further, when the nozzle 23 supplies the carbonated water to the substrate W, the carbonated water is not recovered in the recovery tank 41. At this time, the control unit 3 controls to close the valve V5 and the valve V6. Further, when the nozzle 23 supplies carbonated water to the substrate W, the moving unit 16 (see FIG. 2) moves the second cup 15 so that the second cup 15 receives the carbonated water. Therefore, the carbonated water received by the second cup 15 is collected in the discharge tank 80 via the piping portion P10.
 以上、図1、図2および図7を参照して説明したように、移動部16は、アルカリ処理液によって基板Wを処理する場合、第1カップ14(第1液受部)がアルカリ処理液を受けるように第1カップ14を移動させる。したがって、アルカリ処理液によって基板Wを処理する場合には、アルカリ処理液が回収タンク41に回収される。一方、ノズル23(第2ノズル)が基板Wに炭酸水を供給する場合、第2カップ15(第2液受部)が炭酸水を受けるように第2カップ15を移動させる。したがって、ノズル23が基板Wに炭酸水を供給する場合には、炭酸水が排出タンク80に回収される。その結果、アルカリ処理液および炭酸水を効率良く回収することができる。 As described above, as described with reference to FIGS. 1, 2 and 7, when the substrate W is treated with the alkaline treatment liquid, the moving portion 16 has the alkaline treatment liquid in the first cup 14 (first liquid receiving portion). Move the first cup 14 to receive. Therefore, when the substrate W is treated with the alkaline treatment liquid, the alkaline treatment liquid is recovered in the recovery tank 41. On the other hand, when the nozzle 23 (second nozzle) supplies carbonated water to the substrate W, the second cup 15 is moved so that the second cup 15 (second liquid receiving portion) receives the carbonated water. Therefore, when the nozzle 23 supplies the carbonated water to the substrate W, the carbonated water is collected in the discharge tank 80. As a result, the alkaline treatment liquid and carbonated water can be efficiently recovered.
 本実施形態でも、実施形態1~実施形態2と同様に、供給タンク31内および回収タンク41内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 Also in the present embodiment, similarly to the first to second embodiments, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide in the supply tank 31 and the recovery tank 41 to generate carbonate. it can. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 以上、図面(図1~図7)を参照しながら本発明の実施形態を説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である(例えば、下記に示す(1)~(5))。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。また、上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiment of the present invention has been described above with reference to the drawings (FIGS. 1 to 7). However, the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof (for example, (1) to (5) shown below). The drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each component shown are different from the actual ones for the convenience of drawing creation. .. Further, the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. is there.
 (1)実施形態1~実施形態4において、ノズル23(第2ノズル)は、基板Wに炭酸水および窒素ガスを供給(吐出)していたが、本発明はこれに限定されない。例えば、ノズル23は、アルカリ処理液および不活性ガスを供給(吐出)してもよい。この場合、アルカリ処理液で基板Wを処理中に、炭酸塩が生成することを抑制することができる。 (1) In the first to fourth embodiments, the nozzle 23 (second nozzle) supplies (discharges) carbonated water and nitrogen gas to the substrate W, but the present invention is not limited to this. For example, the nozzle 23 may supply (discharge) an alkaline treatment liquid and an inert gas. In this case, it is possible to suppress the formation of carbonate during the treatment of the substrate W with the alkaline treatment liquid.
 (2)実施形態1~実施形態4において、不活性ガス供給部60は、供給タンク31または回収タンク41に不活性ガスを供給していたが、本発明はこれに限定されない。例えば、不活性ガス供給部60は、回収配管部52に不活性ガスを供給してもよい。その結果、回収ユニット40から供給ユニット30に回収配管部52を介してアルカリ処理液を供給する場合に、回収配管部52内において、アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 (2) In the first to fourth embodiments, the inert gas supply unit 60 supplies the inert gas to the supply tank 31 or the recovery tank 41, but the present invention is not limited to this. For example, the inert gas supply unit 60 may supply the inert gas to the recovery piping unit 52. As a result, when the alkali-treated solution is supplied from the recovery unit 40 to the supply unit 30 via the recovery piping section 52, the alkali-treated solution reacts with carbon dioxide in the recovery piping section 52 to generate carbonate. Can be suppressed. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 (3)不活性ガス供給部60は、不活性ガスをバブリングによって供給タンク31および回収タンク41に供給してもよい。不活性ガスをバブリングによって供給することによって、アルカリ処理液中の溶存二酸化炭素量を低減させることができる。その結果アルカリ処理液が二酸化炭素と反応して、炭酸塩が生成されることを抑制することができる。したがって、アルカリ処理液のレジスト剥離性能の低下を抑制することができる。 (3) The inert gas supply unit 60 may supply the inert gas to the supply tank 31 and the recovery tank 41 by bubbling. By supplying the inert gas by bubbling, the amount of dissolved carbon dioxide in the alkaline treatment liquid can be reduced. As a result, it is possible to suppress the reaction of the alkaline treatment liquid with carbon dioxide to produce carbonate. Therefore, it is possible to suppress a decrease in the resist peeling performance of the alkaline treatment liquid.
 (4)実施形態1~実施形態4において、回収ユニット40は、基板処理装置100の内部に配置されていたが、本発明はこれに限定されない。回収ユニット40は、基板処理装置100の外部に配置されてもよい。 (4) In the first to fourth embodiments, the recovery unit 40 is arranged inside the substrate processing device 100, but the present invention is not limited to this. The recovery unit 40 may be arranged outside the substrate processing device 100.
 (5)実施形態1~実施形態4において、処理ユニット1は、対向部材28(図8参照)をさらに含んでいてもよい。図8は、本発明の変形例に係る基板処理装置100の構成を模式的に示す側面図である。図8に示すように、対向部材(遮断板)28は、基板Wの上面に対して対向配置可能である。例えば、対向部材28は、基板Wから10mm以下の高さに移動する。対向部材28のうち基板Wの上面と対向する面の寸法は、例えば、基板Wの上面の寸法よりも大きい。ノズル21は、基板Wの上面に対して対向部材28の中央部から間隔を空けて対向する。ノズル21は、アルカリ処理液を吐出するとともに、不活性ガスが吐出される。したがって、アルカリ処理液で基板Wを処理中に、炭酸塩が生成することを抑制することができる。 (5) In the first to fourth embodiments, the processing unit 1 may further include an opposing member 28 (see FIG. 8). FIG. 8 is a side view schematically showing the configuration of the substrate processing apparatus 100 according to the modified example of the present invention. As shown in FIG. 8, the facing member (blocking plate) 28 can be arranged to face the upper surface of the substrate W. For example, the opposing member 28 moves to a height of 10 mm or less from the substrate W. The dimension of the surface of the facing member 28 facing the upper surface of the substrate W is larger than the dimension of the upper surface of the substrate W, for example. The nozzle 21 faces the upper surface of the substrate W at a distance from the central portion of the facing member 28. The nozzle 21 discharges the alkaline treatment liquid and also discharges the inert gas. Therefore, it is possible to suppress the formation of carbonate during the treatment of the substrate W with the alkaline treatment liquid.
1    処理ユニット(処理部)
3    制御部
14   第1カップ(第1液受部)
15   第2カップ(第2液受部)
16   移動部
21   ノズル(第1ノズル)
23   ノズル(第2ノズル)
30   供給ユニット
31   供給タンク(第1収容部)
40   回収ユニット
41   回収タンク(第2収容部)
44   回収ポンプ(供給部)
51   戻り配管部
52   回収配管部
60、60a、60b 不活性ガス供給部
62   流量計(計測部)
80   排出タンク(第3収容部)
100  基板処理装置
515  検知部
W    基板
1 Processing unit (processing unit)
3 Control unit 14 1st cup (1st liquid receiving unit)
15 2nd cup (2nd liquid receiving part)
16 Moving part 21 Nozzle (1st nozzle)
23 nozzles (second nozzle)
30 Supply unit 31 Supply tank (1st housing)
40 Recovery unit 41 Recovery tank (second storage unit)
44 Recovery pump (supply unit)
51 Return piping section 52 Recovery piping section 60, 60a, 60b Inert gas supply section 62 Flow meter (measuring section)
80 Discharge tank (3rd housing)
100 Board processing device 515 Detector W board

Claims (12)

  1.  アルカリ処理液によって基板を処理する基板処理装置であって、
     前記基板を処理する処理部と、
     前記処理部に供給する前記アルカリ処理液を収容する第1収容部を有する供給ユニットと、
     前記処理部から回収した前記アルカリ処理液を収容する第2収容部を有する回収ユニットと、
     前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスを供給する不活性ガス供給部と
    を備える、基板処理装置。
    A substrate processing device that processes a substrate with an alkaline treatment liquid.
    A processing unit that processes the substrate and
    A supply unit having a first accommodating portion for accommodating the alkaline treatment liquid to be supplied to the processing unit, and
    A recovery unit having a second storage unit for storing the alkaline treatment liquid recovered from the treatment unit, and a recovery unit.
    A substrate processing apparatus including an inert gas supply unit that supplies an inert gas to at least one of the first storage unit and the second storage unit.
  2.  制御部をさらに備え、
     前記回収ユニットは、前記第2収容部から前記第1収容部に前記アルカリ処理液を供給する供給部をさらに有し、
     前記制御部は、前記供給部と前記不活性ガス供給部とを制御し、
     前記制御部は前記供給部を動作させる場合、前記供給部を動作させない場合に比べて、前記不活性ガスの供給量が増加するように前記不活性ガス供給部を制御する、請求項1に記載の基板処理装置。
    With more control
    The recovery unit further includes a supply unit that supplies the alkaline treatment liquid from the second storage unit to the first storage unit.
    The control unit controls the supply unit and the inert gas supply unit.
    The first aspect of the present invention, wherein the control unit controls the inert gas supply unit so that the supply amount of the inert gas increases when the supply unit is operated, as compared with the case where the supply unit is not operated. Substrate processing equipment.
  3.  前記処理部と前記第2収容部とを接続する戻り配管部と、
     前記戻り配管部内に前記アルカリ処理液が存在するか否かを検知する検知部と
    をさらに備え、
     前記制御部は、前記検知部が検知した結果に基づいて、前記戻り配管部内に前記アルカリ処理液が存在すると判定した場合、前記供給部が動作を開始するように制御する、請求項2に記載の基板処理装置。
    A return piping section that connects the processing section and the second accommodating section,
    Further provided with a detection unit for detecting whether or not the alkaline treatment liquid is present in the return piping unit.
    The second aspect of the present invention, wherein the control unit controls the supply unit to start operation when it is determined that the alkaline treatment liquid is present in the return piping unit based on the result detected by the detection unit. Substrate processing equipment.
  4.  前記不活性ガス供給部は、前記第1収容部または前記第2収容部に供給する前記不活性ガスの量を計測する計測部を有する、請求項1から請求項3のいずれか1項に記載の基板処理装置。 The invention according to any one of claims 1 to 3, wherein the inert gas supply unit includes a measurement unit that measures the amount of the inert gas supplied to the first storage unit or the second storage unit. Substrate processing equipment.
  5.  前記処理部は、
     前記基板に前記アルカリ処理液を供給する第1ノズルと、
     前記基板に前記アルカリ処理液および不活性ガスを供給する第2ノズルと
    をさらに有する、請求項1から請求項4のいずれか1項に記載の基板処理装置。
    The processing unit
    A first nozzle that supplies the alkaline treatment liquid to the substrate,
    The substrate processing apparatus according to any one of claims 1 to 4, further comprising the alkaline treatment liquid and a second nozzle for supplying the inert gas to the substrate.
  6.  前記処理部は、
     前記基板に前記アルカリ処理液を供給する第1ノズルと、
     前記基板に炭酸水および不活性ガスを供給する第2ノズルと
    をさらに有する、請求項1から請求項4のいずれか1項に記載の基板処理装置。
    The processing unit
    A first nozzle that supplies the alkaline treatment liquid to the substrate,
    The substrate processing apparatus according to any one of claims 1 to 4, further comprising a second nozzle for supplying carbonated water and an inert gas to the substrate.
  7.  前記処理部から回収した炭酸水を収容する第3収容部をさらに備え、
     前記第2ノズルが前記基板に前記炭酸水を供給する場合、前記第3収容部に前記炭酸水が回収され、前記第2収容部には前記炭酸水が回収されない、請求項6に記載の基板処理装置。
    A third accommodating unit for accommodating carbonated water recovered from the processing unit is further provided.
    The substrate according to claim 6, wherein when the second nozzle supplies the carbonated water to the substrate, the carbonated water is recovered in the third accommodating portion and the carbonated water is not collected in the second accommodating portion. Processing equipment.
  8.  前記基板を処理した後のアルカリ処理液を受ける第1液受部と、
     前記基板を処理した後の前記炭酸水を受ける第2液受部と、
     前記第1液受部と前記第2液受部とを移動させる移動部と
    をさらに備え、
     前記移動部は、
     前記アルカリ処理液によって前記基板を処理する場合、前記第1液受部が前記アルカリ処理液を受けるように前記第1液受部を移動させ、
     前記第2ノズルが前記基板に前記炭酸水を供給する場合、前記第2液受部が前記炭酸水を受けるように前記第2液受部を移動させる、請求項7に記載の基板処理装置。
    A first liquid receiving part that receives the alkaline treatment liquid after processing the substrate, and
    A second liquid receiving portion that receives the carbonated water after processing the substrate, and
    Further provided with a moving portion for moving the first liquid receiving portion and the second liquid receiving portion.
    The moving part
    When the substrate is treated with the alkaline treatment liquid, the first liquid receiving portion is moved so that the first liquid receiving portion receives the alkaline treatment liquid.
    The substrate processing apparatus according to claim 7, wherein when the second nozzle supplies the carbonated water to the substrate, the second liquid receiving portion moves the second liquid receiving portion so that the second liquid receiving portion receives the carbonated water.
  9.  制御部と、
     前記処理部と前記第2収容部とを接続する戻り配管部と
    をさらに備え、
     前記戻り配管部は、
     前記基板を処理した後のアルカリ処理液を前記第2収容部に供給する供給配管部と、
     前記基板を処理した後のアルカリ処理液を排出する排出配管部と
    を有し、
     前記制御部は、前記供給配管部と前記排出配管部とを制御し、
     前記制御部は、前記処理部が前記アルカリ処理液によって前記基板の処理を開始して所定の期間内は、前記基板を処理した後のアルカリ処理液が前記排出配管部を流れるように制御し、所定の期間経過後は、前記基板を処理した後のアルカリ処理液が前記供給配管部を流れるように制御する、請求項2から請求項8のいずれか1項に記載の基板処理装置。
    Control unit and
    Further provided with a return piping section for connecting the processing section and the second accommodating section.
    The return piping section
    A supply piping unit that supplies the alkaline treatment liquid after processing the substrate to the second storage unit, and
    It has a discharge piping section that discharges the alkaline treatment liquid after processing the substrate.
    The control unit controls the supply piping unit and the discharge piping unit, and controls the supply piping unit.
    The control unit controls the treatment unit to start processing the substrate with the alkali treatment liquid so that the alkali treatment liquid after processing the substrate flows through the discharge piping unit within a predetermined period of time. The substrate processing apparatus according to any one of claims 2 to 8, which controls the alkaline treatment liquid after processing the substrate to flow through the supply piping portion after a lapse of a predetermined period.
  10.  前記第1収容部と前記第2収容部とを接続する回収配管部をさらに備え、
     前記不活性ガス供給部は、前記回収配管部に不活性ガスを供給する、請求項1から請求項9のいずれか1項に記載の基板処理装置。
    Further provided with a recovery piping section for connecting the first accommodating portion and the second accommodating portion.
    The substrate processing apparatus according to any one of claims 1 to 9, wherein the inert gas supply unit supplies the inert gas to the recovery piping unit.
  11.  基板を処理する基板処理方法であって、
     アルカリ処理液を収容する第1収容部から前記アルカリ処理液を処理部に供給する供給工程と、
     前記処理部が前記アルカリ処理液によって前記基板を処理する処理工程と、
     前記基板を処理したアルカリ処理液を前記処理部から第2収容部に回収する回収工程と
    を包含し、
     前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスが供給されている、基板処理方法。
    It is a substrate processing method that processes a substrate.
    A supply step of supplying the alkaline treatment liquid from the first storage portion for accommodating the alkaline treatment liquid to the treatment unit, and
    A processing step in which the processing unit processes the substrate with the alkaline treatment liquid, and
    Including a recovery step of recovering the alkaline treatment liquid obtained by treating the substrate from the treatment unit to the second storage unit.
    A substrate processing method in which an inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
  12.  半導体基板を処理して、処理後の前記半導体基板である半導体を製造する半導体製造方法であって、
     アルカリ処理液を収容する第1収容部から前記アルカリ処理液を処理部に供給する供給工程と、
     前記処理部が前記アルカリ処理液によって前記半導体基板を処理する処理工程と、
     前記半導体基板を処理したアルカリ処理液を前記処理部から第2収容部に回収する回収工程と
    を包含し、
     前記第1収容部および前記第2収容部の少なくとも一方に不活性ガスが供給されている、半導体製造方法。
    A semiconductor manufacturing method for processing a semiconductor substrate to produce a semiconductor that is the processed semiconductor substrate.
    A supply step of supplying the alkaline treatment liquid from the first storage portion for accommodating the alkaline treatment liquid to the treatment unit, and
    A processing step in which the processing unit processes the semiconductor substrate with the alkaline treatment liquid, and
    Including a recovery step of recovering the alkaline treatment liquid obtained by treating the semiconductor substrate from the treatment unit to the second storage unit.
    A semiconductor manufacturing method in which an inert gas is supplied to at least one of the first accommodating portion and the second accommodating portion.
PCT/JP2020/009607 2019-03-20 2020-03-06 Substrate treatment device, substrate treatment method, and semiconductor manufacturing method WO2020189327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053334 2019-03-20
JP2019053334A JP7202229B2 (en) 2019-03-20 2019-03-20 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Publications (1)

Publication Number Publication Date
WO2020189327A1 true WO2020189327A1 (en) 2020-09-24

Family

ID=72520955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009607 WO2020189327A1 (en) 2019-03-20 2020-03-06 Substrate treatment device, substrate treatment method, and semiconductor manufacturing method

Country Status (3)

Country Link
JP (1) JP7202229B2 (en)
TW (1) TWI791956B (en)
WO (1) WO2020189327A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248326A (en) * 2002-02-27 2003-09-05 Mitsubishi Chemical Engineering Corp Developer supply system
JP2005046737A (en) * 2003-07-29 2005-02-24 Tokyo Electron Ltd Two-fluid nozzle, mist generation method, and washing treatment apparatus
JP2007171232A (en) * 2005-12-19 2007-07-05 Mitsubishi Chemical Engineering Corp Developer supply system
JP2015070073A (en) * 2013-09-27 2015-04-13 株式会社Screenホールディングス Processing cup cleaning method, substrate processing method and substrate processing apparatus
JP2015167938A (en) * 2014-03-10 2015-09-28 株式会社Screenホールディングス Substrate processing device
JP2015192980A (en) * 2014-03-26 2015-11-05 株式会社Screenホールディングス Substrate processing apparatus, nozzle, and substrate processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248326A (en) * 2002-02-27 2003-09-05 Mitsubishi Chemical Engineering Corp Developer supply system
JP2005046737A (en) * 2003-07-29 2005-02-24 Tokyo Electron Ltd Two-fluid nozzle, mist generation method, and washing treatment apparatus
JP2007171232A (en) * 2005-12-19 2007-07-05 Mitsubishi Chemical Engineering Corp Developer supply system
JP2015070073A (en) * 2013-09-27 2015-04-13 株式会社Screenホールディングス Processing cup cleaning method, substrate processing method and substrate processing apparatus
JP2015167938A (en) * 2014-03-10 2015-09-28 株式会社Screenホールディングス Substrate processing device
JP2015192980A (en) * 2014-03-26 2015-11-05 株式会社Screenホールディングス Substrate processing apparatus, nozzle, and substrate processing method

Also Published As

Publication number Publication date
TWI791956B (en) 2023-02-11
JP7202229B2 (en) 2023-01-11
JP2020155613A (en) 2020-09-24
TW202040291A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI839024B (en) Substrate processing apparatus
KR101035983B1 (en) Single type substrate treating apparatus and method of exhausting in the apparatus
KR102189980B1 (en) Substrate processing method and substrate processing apparatus
JP2009060112A (en) Single type substrate treating apparatus and cleaning method thereof
JP4579138B2 (en) Substrate processing apparatus and substrate processing method
JP7128099B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR20180075388A (en) Substrate processing method, substrate processing apparatus, substrate processing system, control device for substrate processing system, semiconductor substrate manufacturing method, and semiconductor substrate
JP2003124180A (en) Substrate processor
KR102090419B1 (en) Substrate processing method and substrate processing apparatus
WO2020189327A1 (en) Substrate treatment device, substrate treatment method, and semiconductor manufacturing method
TWI734876B (en) Substrate processing method, substrate processing apparatus, substrate processing system, substrate processing system control device, semiconductor substrate manufacturing method, and semiconductor substrate
JP6571942B2 (en) Substrate processing equipment
KR102240493B1 (en) Substrate processing method and substrate processing apparatus
KR101570167B1 (en) Substrate processing apparatus
JP2020155649A (en) Substrate processing device, and pipe cleaning method for substrate processing device
KR20160116476A (en) Apparatus for cleaning wafer
JP2005175036A (en) Substrate treatment apparatus
JP2020088085A (en) Substrate processing method and substrate processing apparatus
KR20120077516A (en) Substrate processing apparatus
JP2006012881A (en) Substrate processor and substrate processing method
KR101023067B1 (en) Single type substrate treating apparatus and method for controlling presure of substrate treating apparatus
JP2011204948A (en) Treatment liquid supply device and treatment liquid supply method
TW202105495A (en) Substrate processing method
KR20120077515A (en) Substrate processing apparatus
JP2007273789A (en) Apparatus and method for processing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772705

Country of ref document: EP

Kind code of ref document: A1