WO2020189218A1 - 細胞培養システム及び細胞培養方法 - Google Patents

細胞培養システム及び細胞培養方法 Download PDF

Info

Publication number
WO2020189218A1
WO2020189218A1 PCT/JP2020/007992 JP2020007992W WO2020189218A1 WO 2020189218 A1 WO2020189218 A1 WO 2020189218A1 JP 2020007992 W JP2020007992 W JP 2020007992W WO 2020189218 A1 WO2020189218 A1 WO 2020189218A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
unit
fluid device
cell
environment
Prior art date
Application number
PCT/JP2020/007992
Other languages
English (en)
French (fr)
Inventor
英俊 高山
晃寿 伊藤
孝浩 大場
圭介 奥
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP20773129.0A priority Critical patent/EP3943586A4/en
Priority to JP2021507144A priority patent/JP7209079B2/ja
Publication of WO2020189218A1 publication Critical patent/WO2020189218A1/ja
Priority to US17/472,729 priority patent/US20210403847A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces

Definitions

  • the present disclosure relates to a cell culture system and a cell culture method.
  • a culture station for culturing living cells in a microfluidic device As a technique related to cell culture, a culture station for culturing living cells in a microfluidic device is known (see Japanese Patent Application Laid-Open No. 2018-512853 (Patent Document 1)).
  • the culture station is equipped with a pump that pumps the culture medium from the culture medium source into the microfluidic device and a heat regulation system that controls the temperature of the microfluidic device.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a cell culture system and a cell culture method capable of integrally adjusting the culture environment of each of a plurality of fluid devices.
  • the cell culture system of the present disclosure includes a fluid device in which cells are cultured, a liquid feeding unit that allows liquid to flow into the fluid device, and a detection unit that detects the state of cells cultured in the fluid device.
  • a fluid device in which cells are cultured
  • a liquid feeding unit that allows liquid to flow into the fluid device
  • a detection unit that detects the state of cells cultured in the fluid device.
  • Detected by a plurality of cell culture channels each having a control unit that controls a liquid feeding unit and a detection unit, a measurement unit that measures the culture environment of cells cultured in the plurality of cell culture channels, and a detection unit.
  • the culture environment is set so that the absolute value of the difference in the evaluation values of the state of the cells cultured in each of the multiple cell culture channels is equal to or less than the threshold value. It includes an adjustable integrated control unit.
  • the integrated control unit may individually adjust the culture environment of cells cultured in a plurality of cell culture channels for each cell culture channel.
  • the integrated control unit has already learned that the arrangement position information indicating the arrangement position of the cell culture channel and the evaluation value of the cell state determined from the cell state are input and the culture environment is output.
  • the culture environment may be adjusted using the model.
  • the cell culture system of the present disclosure may include information derived from the image obtained by photographing the cell and the transepithelial electrical resistance of the cell.
  • the culture environment is such that the flow rate of the liquid, the temperature of the liquid, the environmental temperature around the fluid device, the environmental humidity around the fluid device, the carbon dioxide concentration around the fluid device, and the fluid device. It may include the ambient nitrogen concentration and the oxygen concentration around the fluid device.
  • the cell culture method of the present disclosure detects a fluid device in which cells are cultured, a liquid feeding unit that allows liquid to flow into the fluid device, and a state of cells cultured in the fluid device.
  • a cell culture method using a cell culture system having a plurality of cell culture channels including a control unit for controlling a unit and a liquid feeding unit and a detection unit, and culturing cells cultured in a plurality of cell culture channels.
  • the absolute value of the difference between the evaluation values of the state of the cells cultured in each of the multiple cell culture channels is below the threshold value based on the state of the cells detected by the detection unit and the culture environment of the measured cells.
  • the culture environment can be adjusted so as to be.
  • the culture environment of each of a plurality of fluid devices can be adjusted in an integrated manner.
  • the cell culture system 10 includes an information processing device 12 and an incubator 14.
  • the information processing device 12 include a personal computer, a server computer, and the like.
  • the cell culture system 10 is used in applications such as drug discovery, toxicity evaluation, Organ-on-a-chip, Body-on-a-chip, and analytical chemistry.
  • a control unit 40 Inside the incubator 14, a plurality of cell culture channels 16, a control unit 40, an environment measurement unit 42, and an environment adjustment unit 44 are provided.
  • the control unit 40 is connected to the environment measurement unit 42 and the environment adjustment unit 44.
  • the control unit 40, the environment measurement unit 42, and the environment adjustment unit 44 may be provided, for example, as a set for each one cell culture channel 16 or as a set for each of two cell culture channels 16. ..
  • the cell culture channel 16 includes a storage unit 20, a pump 22, a fluid device 24, a waste liquid unit 26, a flow rate measurement unit 28, a slight differential pressure measurement unit 30, a pH (potential of Hydrogen) measurement unit 32, a resistance measurement unit 34, and an imaging unit. 36 and a control unit 38 are included.
  • the control unit 38 is connected to the pump 22, the flow rate measurement unit 28, the slight differential pressure measurement unit 30, the pH measurement unit 32, the resistance measurement unit 34, and the imaging unit 36.
  • Liquid is stored in the storage unit 20.
  • the liquid stored in the storage unit 20 include a liquid medium, a cell suspension, an added compound solution, an evaluation agent, a tracer solution, and the like.
  • the pump 22 is, for example, a micropump that sends a liquid by driving a piezo element, and causes the liquid stored in the storage unit 20 to flow into the fluid device 24.
  • This is an example of a liquid feeding unit in which the pump 22 causes the liquid to flow into the fluid device 24.
  • the flow rate of the liquid is controlled by the control unit 38.
  • a storage unit 20 and a pump 22 are provided for each type of liquid.
  • the fluid device 24 includes an inlet for the liquid to flow in, an outlet for the liquid to flow out, and a flow path connecting the inlet and the outlet.
  • Examples of the fluid device 24 include a microfluidic device having a fine flow path.
  • cells cultured in the fluid device 24 will be referred to as "cultured cells”.
  • the waste liquid unit 26 discards the liquid flowing out from the fluid device 24.
  • the cell culture channel 16 may be provided with a circulation unit for circulating the liquid flowing out from the fluid device 24 to the storage unit 20 instead of the waste liquid unit 26.
  • the flow rate measuring unit 28 measures the flow rate of the liquid flowing through the fluid device 24 per unit time, and outputs the measurement result to the control unit 38.
  • the minute differential pressure measuring unit 30 measures the minute differential pressure between the inlet and outlet of the fluid device 24, and outputs the measurement result to the control unit 38.
  • the pH measuring unit 32 measures the pH of the liquid flowing through the fluid device 24 and outputs the measurement result to the control unit 38.
  • the measurement results of the flow rate measuring unit 28, the slight differential pressure measuring unit 30, and the pH measuring unit 32 are used, for example, to detect the presence or absence of contamination inside the fluid device 24.
  • the resistance measuring unit 34 measures the transepithelial electrical resistance of the cultured cells and outputs the measurement result to the control unit 38.
  • the transepithelial electrical resistance is used for evaluating the barrier function of cells, and its numerical value varies depending on the environmental temperature, the state of cultured cells, and the like.
  • the photographing unit 36 photographs an image of the cultured cells according to a predetermined frame rate, and outputs image data indicating the image obtained by the photographing to the control unit 38. This is an example of a detection unit in which the resistance measurement unit 34 and the imaging unit 36 detect the state of cells.
  • the flow rate measuring unit 28, the slight differential pressure measuring unit 30, the pH measuring unit 32, the resistance measuring unit 34, and the photographing unit 36 can be configured by various sensors for detecting a target measured amount.
  • the control unit 38 controls the pump 22, the flow rate measurement unit 28, the slight differential pressure measurement unit 30, the pH measurement unit 32, the resistance measurement unit 34, and the imaging unit 36.
  • An example of the control unit 38 is a processor such as a PLD (Programmable Logic Device).
  • the control unit 40 controls the environment measurement unit 42 and the environment adjustment unit 44.
  • An example of the control unit 40 is a processor such as a PLD.
  • the environment measurement unit 42 measures the culture environment of the cells cultured in each cell culture channel 16.
  • the culture environment measured by the environment measurement unit 42 includes the temperature of the liquid flowing through the fluid device 24, the ambient temperature of the fluid device 24, the environmental humidity around the fluid device 24, the carbon dioxide concentration around the fluid device 24, and the fluid.
  • the nitrogen concentration around the device 24 and the oxygen concentration around the fluid device 24 are included. That is, the environment measurement unit 42 includes various sensors capable of measuring these culture environments.
  • the environment adjustment unit 44 adjusts the culture environment of the cultured cells cultured in each cell culture channel 16.
  • the culture environment that can be adjusted by the environment adjustment unit 44 is, for example, the same as the culture environment that can be measured by the environment measurement unit 42.
  • the control unit 38 and the control unit 40 are connected to the information processing device 12, and are integrally controlled by the information processing device 12.
  • the environment adjusting unit 44 may be able to adjust the culture environment for each cell culture channel 16. In this case, the environment measurement unit 42 also measures the culture environment for each cell culture channel 16.
  • Each cell culture channel 16 is arranged side by side in the incubator 14 as shown in FIG. 2 as an example. Note that FIG. 2 is a front view of the incubator 14.
  • the information processing device 12 includes a CPU (Central Processing Unit) 50, a memory 51 as a temporary storage area, and a non-volatile storage unit 52. Further, the information processing device 12 includes a display unit 53 such as a liquid crystal display, an input unit 54 such as a keyboard and a mouse, and an external I / F (InterFace) 55 to which the control unit 38 and the control unit 40 are connected.
  • the CPU 50, the memory 51, the storage unit 52, the display unit 53, the input unit 54, and the external I / F 55 are connected to the bus 56.
  • the storage unit 52 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • the learning program 57, the cell culture program 58, and the learned model 59 are stored in the storage unit 52 as a storage medium.
  • the CPU 50 reads the learning program 57 and the cell culture program 58 from the storage unit 52, expands them into the memory 51, and executes the expanded learning program 57 and the cell culture program 58.
  • the learning phase for obtaining the trained model 59 will be described.
  • the information processing apparatus 12 includes an acquisition unit 60, a derivation unit 62, and a generation unit 64.
  • the CPU 50 executes the learning program 57, it functions as an acquisition unit 60, a derivation unit 62, and a generation unit 64.
  • the acquisition unit 60 acquires the transepithelial electrical resistance measured by the resistance measurement unit 34 for each cell culture channel 16 via the control unit 38. Further, the acquisition unit 60 acquires image data showing an image of the cultured cells photographed by the imaging unit 36 for each cell culture channel 16 via the control unit 38.
  • the acquisition unit 60 provides information indicating the evaluation value of the state of the cells cultured by each of the fluid devices 24 of each cell culture channel 16, the culture environment, and the arrangement position of the fluid device 24 in the incubator 14 (hereinafter, "" “Placement position information”) is acquired.
  • the acquisition unit 60 acquires the flow rate per unit time of the liquid flowing through the fluid device 24 measured by the flow rate measurement unit 28 as a culture environment for the cultured cells via the control unit 38. Further, as a culture environment for cultured cells, the acquisition unit 60 includes the temperature of the liquid flowing through the fluid device 24 measured by the environment measurement unit 42, the ambient temperature around the fluid device 24, the ambient humidity around the fluid device 24, and the fluid. The carbon dioxide concentration around the device 24, the nitrogen concentration around the fluid device 24, and the oxygen concentration around the fluid device 24 are acquired via the control unit 40.
  • the acquisition unit 60 acquires the evaluation value derived by the out-licensing unit 62, which will be described later, as the evaluation value of the cell state. Further, the acquisition unit 60 acquires the arrangement position information from, for example, the storage unit 52. The arrangement position information of the fluid device 24 will be described in detail with reference to FIG. Note that FIG. 5 shows an example in which the cell culture system 10 includes four cell culture channels 16 for ease of understanding.
  • the arrangement position information of the fluid device 24 the information indicating the number from the top and the number from the left when each cell culture channel 16 is viewed from the front of the incubator 14 are provided.
  • the information to be represented is assigned to each cell culture channel 16.
  • "1-1" is assigned as the placement position information to the cell culture channel 16 which is the first from the top and the first from the left in FIG.
  • this arrangement position information is associated with the identification information of the cell culture channel 16 and stored in the storage unit 52.
  • the identification information of the cell culture channel 16 is given when, for example, the control unit 38 outputs the transepithelial electrical resistance, image data, and flow rate acquired for each cell culture channel 16 to the information processing device 12.
  • each information relates to which cell culture channel 16. It is possible to identify whether it is information. Further, the acquisition unit 60 can also specify that each information is information about the cell culture channel 16 arranged at any position in the incubator 14. The acquisition unit 60 periodically acquires various types of information described above.
  • the derivation unit 62 derives the orientation of the cultured cells of each cell culture channel 16 by using the image indicated by the image data of each frame acquired by the acquisition unit 60.
  • the out-licensing unit 62 can derive the cell orientation from the image of each frame by utilizing the fact that the long and short directions of the cells are aggregated in one direction with respect to the flowing liquid.
  • the derivation unit 62 derives the movement distance of the cell from the image of each frame, and divides the movement distance by the time between frames to derive the movement speed of the cell.
  • the cell orientation and cell migration rate are examples of information derived from images obtained by photographing cells. Further, the orientation of the cell, the movement speed of the cell, and the transepithelial electrical resistance are examples of information indicating the state of the cell.
  • the derivation unit 62 derives an evaluation value of the state of the cells of the cultured cells of each cell culture channel 16 based on the transepithelial electrical resistance, the orientation of the cells, and the migration rate of the cells.
  • the derivation unit 62 derives a value as an evaluation value of the state of the cell, for example, in 10 steps from 1 to 10, and the larger the value, the higher the evaluation.
  • the out-licensing unit 62 may derive a higher evaluation value as the degree of aggregation of cell orientation increases. Further, the out-licensing unit 62 may derive a higher evaluation value, for example, as the cell migration speed increases.
  • out-licensing unit 62 may derive a higher evaluation value, for example, as the magnitude of transepithelial electrical resistance increases.
  • the derivation unit 62 may use the shear stress quantification of the cell for deriving the evaluation value of the state of the cell.
  • the user adjusts the culture environment for each cell culture channel 16 while checking the evaluation value of the state of the cultured cells.
  • the evaluation value of the state of the cultured cells of the four cell culture channels 16 changes.
  • the evaluation value is equal to or higher than the first threshold value by adjusting the culture environment, and the evaluation value is between the cell culture channels.
  • the evaluation value before adjustment, the culture environment after adjustment, and the arrangement position information are used as teacher data. This is because it is preferable that cells having an evaluation value of a certain value or more and a small variation in state can be obtained in each cell culture channel 16.
  • the evaluation values of the state of the cultured cells of the four cell culture channels 16 are 3, 4, 2, 5 by adjusting the culture environment to 8, 8 , 8, 8, the adjusted culture environment, the arrangement position information, and the evaluation value before the adjustment of the culture environment become the teacher data.
  • the generation unit 64 can obtain a large number of teacher data by repeatedly performing the work of culturing the cells in the cell culture system 10. As an example, as shown in FIG. 6, the generation unit 64 inputs the evaluation value and the arrangement position information of each cell culture channel 16 by machine learning using the teacher data obtained as described above, and also inputs the culture environment. Is generated as the output of the trained model 59.
  • the culture environment which is the output of the trained model 59, includes the flow rate of the liquid flowing through the fluid device 24 per unit time, the temperature of the liquid flowing through the fluid device 24, the ambient temperature around the fluid device 24, and the environment around the fluid device 24. Environmental humidity, carbon dioxide concentration around the fluid device 24, nitrogen concentration around the fluid device 24, and oxygen concentration around the fluid device 24 are included.
  • the generation unit 64 applies a deep neural network as the trained model 59, and generates the trained model 59 by the backpropagation method.
  • the generation unit 64 may use a method other than the neural network such as linear regression and decision tree as the machine learning method.
  • the operation of the information processing apparatus 12 according to the present embodiment in the learning phase will be described.
  • the CPU 50 executes the learning program 57
  • the learning process shown in FIG. 7 is executed.
  • the learning process shown in FIG. 7 is executed, for example, when a start instruction is input by the user via the input unit 54.
  • step S10 of FIG. 7 the acquisition unit 60 collects teacher data.
  • the acquisition unit 60 periodically acquires the evaluation value of the state of the cultured cells, the culture environment, and the arrangement position information for each cell culture channel 16.
  • the evaluation value is equal to or higher than the first threshold value by adjusting the culture environment, and the difference between the evaluation values between the cell culture channels is different.
  • the absolute value is equal to or less than the second threshold value, the evaluation value before adjustment, the culture environment after adjustment, and the arrangement position information are collected as teacher data.
  • step S12 the generation unit 64 inputs the evaluation value and the arrangement position information of each cell culture channel 16 by machine learning using the teacher data collected in the process of step S12, and the culture environment. Is generated as the output of the trained model 59.
  • the main learning process is completed.
  • the operation phase is a phase in which cells are cultured in each cell culture channel 16.
  • the information processing apparatus 12 includes an acquisition unit 70, a derivation unit 72, and an integrated control unit 74.
  • the CPU 50 executes the cell culture program 58, it functions as an acquisition unit 70, a derivation unit 72, and an integrated control unit 74.
  • the acquisition unit 70 acquires transepithelial electrical resistance and image data for each cell culture channel 16 in the same manner as the acquisition unit 60. Further, the acquisition unit 70 acquires the evaluation value of the state of the cells cultured by each of the fluid devices 24 of each cell culture channel 16 and the arrangement position information of the fluid device 24, similarly to the acquisition unit 60.
  • the derivation unit 72 derives an evaluation value of the cell state for the cultured cells of each cell culture channel 16.
  • the integrated control unit 74 can adjust the culture environment so that the state of the cultured cells of each cell culture channel 16 is the same based on the state of the cultured cells of each cell culture channel 16 and the culture environment.
  • the integrated control unit 74 according to the present embodiment adjusts the culture environment using the trained model 59 described above.
  • the integrated control unit 74 inputs the arrangement position information and the evaluation value of the cell state for each cell culture channel 16 acquired by the acquisition unit 70 into the trained model 59. In addition, the integrated control unit 74 acquires the culture environment output by the trained model 59 in response to this input.
  • the integrated control unit 74 controls the acquired culture environment that can be controlled for each cell culture channel 16 (flow rate in this embodiment) by outputting it to the control unit 38.
  • the control unit 38 controls the pump 22 so that the flow rate of the liquid flowing through the fluid device 24 becomes the flow rate input from the integrated control unit 74.
  • the integrated control unit 74 controls the acquired culture environment that can be controlled in units of 14 incubators (in the present embodiment, the one that can be adjusted by the environment adjustment unit 44) by outputting to the control unit 40. ..
  • the control unit 40 controls the environment adjustment unit 44 so that the culture environment measured by the environment measurement unit 42 becomes the environment input from the integrated control unit 74. That is, the integrated control unit 74 adjusts the culture environment so that the absolute value of the difference in the evaluation values of the states of the cells cultured in each cell culture channel 16 is equal to or less than the second threshold value.
  • the operation of the information processing apparatus 12 according to the present embodiment in the operation phase will be described.
  • the CPU 50 executes the cell culture program 58
  • the cell culture process shown in FIG. 9 is executed.
  • the cell culture process shown in FIG. 9 is executed, for example, when a start instruction is input by the user via the input unit 54.
  • step S20 of FIG. 9 the acquisition unit 70 acquires the evaluation value and the arrangement position information of the state of the cultured cells for each cell culture channel 16.
  • step S22 as described above, the integrated control unit 74 inputs the evaluation value and the arrangement position information acquired by the process of step S20 into the trained model 59 to input the culture environment output by the trained model 59. get.
  • step S24 the integrated control unit 74 controls the culture environment acquired by the process of step S22 that can be controlled for each cell culture channel 16 by outputting it to the control unit 38. .. Further, the integrated control unit 74 controls the culture environment acquired by the process of step S22 by outputting it to the control unit 40 if it can be controlled in units of 14 incubators. By the process of this step S24, the culture environment of the cells cultured by each cell culture channel 16 is adjusted. When the process of step S24 is completed, the cell culture process is completed.
  • the evaluation value of the state of the cultured cells in each cell culture channel 16 is equal to or higher than the first threshold value, and the absolute value of the difference in the evaluation values between the cell culture channels is the second. It is repeated at predetermined time intervals until it falls below the threshold. Cells having an evaluation value of a certain value or more and a small variation in state obtained by repeating this process are used for applications such as drug discovery.
  • the culture environment of each of the plurality of fluid devices 24 can be adjusted in an integrated manner.
  • the culture environment that can be adjusted by the environment adjustment unit 44 in units of 14 incubators may be individually adjusted for each cell culture channel 16.
  • the environment measurement unit 42 and the environment adjustment unit 44 are provided in each cell culture channel 16 and controlled by the control unit 38 of each cell culture channel 16 is exemplified.
  • the culture environment output by the trained model 59 is also output corresponding to each cell culture channel 16.
  • the generation unit 64 may generate the trained model 59 for each cell culture channel 16.
  • the culture environment of each cell culture channel 16 can be individually adjusted by the integrated control unit 74.
  • the integrated control unit 74 of the information processing device 12 may control to display the evaluation value of the state of the cultured cells of each cell culture channel 16 on the display unit 53.
  • a mode in which the user switches to a manual operation and adjusts the culture environment when the evaluation value of the cell state displayed by the display unit 53 does not satisfy the desired condition is exemplified.
  • the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a processor whose circuit configuration can be changed after manufacturing an FPGA or the like.
  • a dedicated electric circuit which is a processor having a circuit configuration specially designed for executing a specific process such as a programmable logic device (PLD), an ASIC (Application Specific Integrated Circuit), and the like.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be composed of a combination). Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client and a server. There is a form in which the processor functions as a plurality of processing units.
  • SoC System on Chip
  • a processor that realizes the functions of the entire system including a plurality of processing units with one IC (Integrated Circuit) chip is used.
  • the various processing units are configured by using one or more of the various processors as a hardware structure.
  • an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
  • the mode in which the learning program 57 and the cell culture program 58 are stored (installed) in the storage unit 52 in advance has been described, but the present invention is not limited to this.
  • the learning program 57 and the cell culture program 58 are recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. May be provided at. Further, the learning program 57 and the cell culture program 58 may be downloaded from an external device via a network.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞培養システムは、細胞が培養される流体デバイス、液体を流体デバイスに流入させるポンプ、流体デバイスで培養される細胞の状態を検出する検出部、及びポンプと検出部とを制御する制御部をそれぞれ備えた複数の細胞培養チャンネルと、複数の細胞培養チャンネルで培養されている細胞の培養環境を測定する測定部と、検出部により検出された細胞の状態及び測定部により測定された細胞の培養環境に基づいて、複数の細胞培養チャンネルそれぞれで培養される細胞の状態の評価値の差の絶対値が閾値以下になるように培養環境を調整可能な情報処理装置と、を備える。

Description

細胞培養システム及び細胞培養方法
 本開示は、細胞培養システム及び細胞培養方法に関する。
 細胞培養に関する技術として、マイクロ流体デバイス内で生体細胞を培養するための培養ステーションが知られている(特表2018-512853号公報(特許文献1)参照)。この培養ステーションは、培養培地源からマイクロ流体デバイスへ培養培地を流入させるポンプ、及びマイクロ流体デバイスの温度を制御する熱調整システムを備えている。
 ところで、マイクロ流体デバイス等の流体デバイスを用いた細胞培養では、流体デバイスの流路構造を種々検討することにより多様な機能をカスタマイズできるようになっている。これにより、創薬、毒性評価、Organ-on-a-chip、Body-on-a-chip、及び分析化学等の用途への応用がされている。しかしながら、流体デバイス単体では、想定した用途で使用できないため、送液系、センシング、及び培養環境の調整等の制御が可能なシステムが求められている。
 また、上記の用途では、複数の流体デバイスを用いた細胞培養が行えることが好ましい。更に、この場合、複数の流体デバイス各々で培養が行われている細胞の培養状態を参照しながら、複数の流体デバイス各々の培養環境を統合的に調整できることが好ましい。しかしながら、特許文献1に記載の技術では、複数の流体デバイス各々の培養環境を統合的に調整することは考慮されていない。
 本開示は、以上の事情を鑑みてなされたものであり、複数の流体デバイス各々の培養環境を統合的に調整することができる細胞培養システム及び細胞培養方法を提供することを目的とする。
 上記目的を達成するために、本開示の細胞培養システムは、細胞が培養される流体デバイス、液体を流体デバイスに流入させる送液部、流体デバイスで培養される細胞の状態を検出する検出部、及び送液部と検出部とを制御する制御部をそれぞれ備えた複数の細胞培養チャンネルと、複数の細胞培養チャンネルで培養されている細胞の培養環境を測定する測定部と、検出部により検出された細胞の状態及び測定部により測定された細胞の培養環境に基づいて、複数の細胞培養チャンネルそれぞれで培養される細胞の状態の評価値の差の絶対値が閾値以下になるように培養環境を調整可能な統合制御部と、を備える。
 なお、本開示の細胞培養システムは、統合制御部が、複数の細胞培養チャンネルで培養されている細胞の培養環境を細胞培養チャンネル毎に個別に調整してもよい。
 また、本開示の細胞培養システムは、統合制御部が、細胞培養チャンネルの配置位置を表す配置位置情報及び細胞の状態から定まる細胞の状態の評価値を入力とし、培養環境を出力とした学習済みモデルを用いて培養環境を調整してもよい。
 また、本開示の細胞培養システムは、細胞の状態が、細胞を撮影して得られた画像から導出される情報及び細胞の経上皮電気抵抗を含んでもよい。
 また、本開示の細胞培養システムは、培養環境が、液体の流量、液体の温度、流体デバイスの周囲の環境温度、流体デバイスの周囲の環境湿度、流体デバイスの周囲の二酸化炭素濃度、流体デバイスの周囲の窒素濃度、及び流体デバイスの周囲の酸素濃度を含んでもよい。
 一方、上記目的を達成するために、本開示の細胞培養方法は、細胞が培養される流体デバイス、液体を流体デバイスに流入させる送液部、流体デバイスで培養される細胞の状態を検出する検出部、及び送液部と検出部とを制御する制御部を備えた複数の細胞培養チャンネルを備えた細胞培養システムによる細胞培養方法であって、複数の細胞培養チャンネルで培養されている細胞の培養環境を測定し、検出部により検出された細胞の状態及び測定した細胞の培養環境に基づいて、複数の細胞培養チャンネルそれぞれで培養される細胞の状態の評価値の差の絶対値が閾値以下になるように培養環境を調整可能であるものである。
 本開示によれば、複数の流体デバイス各々の培養環境を統合的に調整することができる。
実施形態に係る細胞培養システムの構成の一例を示すブロック図である。 実施形態に係る細胞培養チャンネルの配置状態を説明するための図である。 実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。 実施形態に係る学習フェーズにおける情報処理装置の機能的な構成の一例を示すブロック図である。 実施形態に係る細胞培養チャンネルの配置位置を表す情報を説明するための図である。 実施形態に係る学習済みモデルを説明するための図である。 実施形態に係る学習処理の一例を示すフローチャートである。 実施形態に係る運用フェーズにおける情報処理装置の機能的な構成の一例を示すブロック図である。 実施形態に係る細胞培養処理の一例を示すフローチャートである。
 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。
 まず、図1を参照して、本実施形態に係る細胞培養システム10の構成を説明する。図1に示すように、細胞培養システム10は、情報処理装置12及びインキュベータ14を含む。情報処理装置12の例としては、パーソナルコンピュータ又はサーバコンピュータ等が挙げられる。細胞培養システム10は、例えば、創薬、毒性評価、Organ-on-a-chip、Body-on-a-chip、及び分析化学等の用途で用いられる。
 インキュベータ14の内部には、複数の細胞培養チャンネル16、制御部40、環境測定部42、及び環境調整部44が設けられている。制御部40は、環境測定部42及び環境調整部44に接続される。なお、本実施形態では、制御部40、環境測定部42、及び環境調整部44がインキュベータ14の内部に一組設けられている形態例を説明するが、これに限定されない。制御部40、環境測定部42、及び環境調整部44は、例えば、1つの細胞培養チャンネル16毎に一組設けられてもよいし、2つの細胞培養チャンネル16毎に一組設けられてもよい。
 細胞培養チャンネル16は、貯留部20、ポンプ22、流体デバイス24、廃液部26、流量測定部28、微差圧測定部30、pH(potential of Hydrogen)測定部32、抵抗測定部34、撮影部36、及び制御部38を含む。制御部38は、ポンプ22、流量測定部28、微差圧測定部30、pH測定部32、抵抗測定部34、及び撮影部36に接続される。
 貯留部20には、液体が貯留される。貯留部20に貯留される液体の一例としては、液体培地、細胞懸濁液、添加化合物液、評価薬剤、及びトレーサー液等が挙げられる。ポンプ22は、例えば、ピエゾ素子を駆動することによって送液を行うマイクロポンプであり、貯留部20に貯留された液体を流体デバイス24に流入させる。ポンプ22が液体を流体デバイス24に流入させる送液部の一例である。ポンプ22は、制御部38によって液体の流量が制御される。送液対象の液体が複数種類の場合は、貯留部20及びポンプ22は、液体の種類毎に一組設けられる。
 流体デバイス24では、細胞が培養される。流体デバイス24は、液体が流入する流入口、液体が流出する流出口、及び流入口と流出口との間を結ぶ流路を備える。流体デバイス24の例としては、微細な流路を有するマイクロ流体デバイスが挙げられる。なお、以下では、流体デバイス24で培養される細胞を「培養細胞」という。
 廃液部26は、流体デバイス24から流出した液体を廃棄する。なお、細胞培養チャンネル16に、廃液部26に代えて、流体デバイス24から流出した液体を貯留部20に循環させる循環部を設けてもよい。
 流量測定部28は、流体デバイス24を流れる液体の単位時間あたりの流量を測定し、測定結果を制御部38に出力する。微差圧測定部30は、流体デバイス24の流入口と流出口との間の微差圧を測定し、測定結果を制御部38に出力する。pH測定部32は、流体デバイス24を流れる液体のpHを測定し、測定結果を制御部38に出力する。流量測定部28、微差圧測定部30、及びpH測定部32の測定結果は、例えば、流体デバイス24内部へのコンタミネーションの有無の検出に用いられる。
 抵抗測定部34は、培養細胞の経上皮電気抵抗を測定し、測定結果を制御部38に出力する。経上皮電気抵抗は、細胞のバリア機能の評価に用いられるものであり、環境温度及び培養細胞の状態等によって数値が変動する。撮影部36は、予め定められたフレームレートに従って培養細胞の画像を撮影し、撮影により得られた画像を示す画像データを制御部38に出力する。抵抗測定部34及び撮影部36が細胞の状態を検出する検出部の一例である。また、流量測定部28、微差圧測定部30、pH測定部32、抵抗測定部34、及び撮影部36は、対象となる測定量を検出する各種センサにより構成することができる。
 制御部38は、ポンプ22、流量測定部28、微差圧測定部30、pH測定部32、抵抗測定部34、及び撮影部36を制御する。制御部38の例としては、PLD(Programmable Logic Device)等のプロセッサが挙げられる。
 制御部40は、環境測定部42及び環境調整部44を制御する。制御部40の例としては、PLD等のプロセッサが挙げられる。環境測定部42は、各細胞培養チャンネル16で培養されている細胞の培養環境を測定する。環境測定部42が測定する培養環境には、流体デバイス24を流れる液体の温度、流体デバイス24の周囲の環境温度、流体デバイス24の周囲の環境湿度、流体デバイス24の周囲の二酸化炭素濃度、流体デバイス24の周囲の窒素濃度、及び流体デバイス24の周囲の酸素濃度が含まれる。すなわち、環境測定部42は、これらの培養環境を測定可能な各種のセンサを含む。
 環境調整部44は、各細胞培養チャンネル16で培養されている培養細胞の培養環境を調整する。環境調整部44が調整可能な培養環境は、例えば、環境測定部42が測定可能な培養環境と同様である。制御部38及び制御部40は、情報処理装置12に接続され、情報処理装置12によって統合的に制御される。なお、環境調整部44は、細胞培養チャンネル16毎に培養環境を調整可能としてもよい。この場合、環境測定部42も細胞培養チャンネル16毎に培養環境を測定する。
 各細胞培養チャンネル16は、一例として図2に示すようにインキュベータ14内に並べられて配置される。なお、図2は、インキュベータ14を正面から見た図である。
 次に、図3を参照して、本実施形態に係る情報処理装置12のハードウェア構成を説明する。図3に示すように、情報処理装置12は、CPU(Central Processing Unit)50、一時記憶領域としてのメモリ51、及び不揮発性の記憶部52を含む。また、情報処理装置12は、液晶ディスプレイ等の表示部53、キーボードとマウス等の入力部54、及び制御部38と制御部40が接続される外部I/F(InterFace)55を含む。CPU50、メモリ51、記憶部52、表示部53、入力部54、及び外部I/F55は、バス56に接続される。
 記憶部52は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、及びフラッシュメモリ等によって実現される。記憶媒体としての記憶部52には、学習プログラム57、細胞培養プログラム58、及び学習済みモデル59が記憶される。CPU50は、記憶部52から学習プログラム57及び細胞培養プログラム58を読み出してからメモリ51に展開し、展開した学習プログラム57及び細胞培養プログラム58を実行する。
<学習フェーズ>
 次に、学習済みモデル59を得るための学習フェーズについて説明する。図4を参照して、本実施形態に係る情報処理装置12の学習フェーズにおける機能的な構成について説明する。図4に示すように、情報処理装置12は、取得部60、導出部62、及び生成部64を含む。CPU50が学習プログラム57を実行することにより、取得部60、導出部62、及び生成部64として機能する。
 取得部60は、各細胞培養チャンネル16について、抵抗測定部34により測定された経上皮電気抵抗を、制御部38を介して取得する。また、取得部60は、各細胞培養チャンネル16について、撮影部36により撮影された培養細胞の画像を示す画像データを、制御部38を介して取得する。
 また、取得部60は、各細胞培養チャンネル16の流体デバイス24それぞれにより培養されている細胞の状態の評価値、培養環境、及び流体デバイス24のインキュベータ14内における配置位置を表す情報(以下、「配置位置情報」という)を取得する。
 具体的には、取得部60は、培養細胞の培養環境として、流量測定部28により測定された流体デバイス24を流れる液体の単位時間あたりの流量を、制御部38を介して取得する。また、取得部60は、培養細胞の培養環境として、環境測定部42により測定された流体デバイス24を流れる液体の温度、流体デバイス24の周囲の環境温度、流体デバイス24の周囲の環境湿度、流体デバイス24の周囲の二酸化炭素濃度、流体デバイス24の周囲の窒素濃度、及び流体デバイス24の周囲の酸素濃度を、制御部40を介して取得する。
 また、取得部60は、細胞の状態の評価値として、後述する導出部62により導出された評価値を取得する。また、取得部60は、配置位置情報を、例えば、記憶部52から取得する。図5を参照して、流体デバイス24の配置位置情報について詳細に説明する。なお、図5では、理解を容易にするために、細胞培養システム10が4つの細胞培養チャンネル16を備えている例を示している。
 図5に示すように、本実施形態では、流体デバイス24の配置位置情報として、各細胞培養チャンネル16がインキュベータ14を正面視した場合における上から何番目かを表す情報と左から何番目かを表す情報とが各細胞培養チャンネル16に割り当てられる。例えば、図5における上から1番目で、かつ左から1番目の細胞培養チャンネル16には、配置位置情報として「1-1」が割り当てられる。本実施形態では、この配置位置情報が細胞培養チャンネル16の識別情報に対応付けられて記憶部52に記憶されている。細胞培養チャンネル16の識別情報は、例えば、制御部38によって、各細胞培養チャンネル16について取得された経上皮電気抵抗、画像データ、及び流量が情報処理装置12に出力される際に付与される。
 従って、取得部60は、流体デバイス24を流れる液体の流量、経上皮電気抵抗、及び画像データの各情報を、制御部38を介して取得する際に、各情報が何れの細胞培養チャンネル16に関する情報であるかを特定できる。更に、取得部60は、各情報がインキュベータ14内の何れの位置に配置された細胞培養チャンネル16に関する情報であるかも特定することができる。取得部60は、前述した各種の情報を定期的に取得する。
 導出部62は、各細胞培養チャンネル16の培養細胞について、取得部60により取得された各フレームの画像データが示す画像を用いて、細胞の向きを導出する。導出部62は、流れている液体に対して、細胞の長短の方向性が一方向に集約されることを利用して、各フレームの画像から細胞の向きを導出することができる。
 また、導出部62は、各フレームの画像から、細胞の移動距離を導出し、移動距離をフレーム間の時間で除算することによって、細胞の移動速度を導出する。細胞の向き及び細胞の移動速度が、細胞を撮影して得られた画像から導出される情報の一例である。また、細胞の向き及び細胞の移動速度と、経上皮電気抵抗とが細胞の状態を表す情報の一例である。
 導出部62は、各細胞培養チャンネル16の培養細胞について、経上皮電気抵抗、細胞の向き、及び細胞の移動速度に基づいて、細胞の状態の評価値を導出する。本実施形態では、導出部62は、細胞の状態の評価値として、例えば、1から10までの10段階で、かつ数値が大きくなるほど評価が高い値を導出する。導出部62は、例えば、細胞の向きの集約の度合いが高くなる程、高い評価値を導出してもよい。また、導出部62は、例えば、細胞の移動速度が高くなる程、高い評価値を導出してもよい。また、導出部62は、例えば、経上皮電気抵抗の大きさが大きくなる程、高い評価値を導出してもよい。なお、導出部62は、細胞の状態の評価値の導出に、細胞のshear stress定量を用いてもよい。
 例えば、ユーザは、各細胞培養チャンネル16について、培養細胞の状態の評価値を確認しつつ、培養環境を調整する。この調整により、例えば、4つの細胞培養チャンネル16の培養細胞の状態の評価値が変動する。本実施形態に係る生成部64は、細胞の状態の評価値、培養環境、及び配置位置情報のうち、培養環境が調整されることによって評価値が第1閾値以上で、かつ細胞培養チャンネル間における評価値の差の絶対値が第2閾値以下となった場合の調整前の評価値、調整後の培養環境、及び配置位置情報を教師データとして用いる。これは、各細胞培養チャンネル16において、評価値が一定値以上で、かつ状態のバラつきが小さい細胞が得られることが好ましいためである。
 第1閾値を8、第2閾値を0とした場合、例えば、培養環境の調整によって4つの細胞培養チャンネル16の培養細胞の状態の評価値が3、4、2、5という状態から8、8、8、8という状態になったときの調整後の培養環境、配置位置情報、及び培養環境の調整前の評価値が教師データとなる。
 ユーザが、細胞培養システム10で細胞を培養する作業を何度も行うことにより、生成部64は、多数の教師データを得ることができる。一例として図6に示すように、生成部64は、以上のようにして得られた教師データを用いた機械学習によって、各細胞培養チャンネル16の評価値及び配置位置情報を入力とし、かつ培養環境を出力とした学習済みモデル59を生成する。学習済みモデル59の出力である培養環境には、流体デバイス24を流れる液体の単位時間あたりの流量、流体デバイス24を流れる液体の温度、流体デバイス24の周囲の環境温度、流体デバイス24の周囲の環境湿度、流体デバイス24の周囲の二酸化炭素濃度、流体デバイス24の周囲の窒素濃度、及び流体デバイス24の周囲の酸素濃度が含まれる。例えば、生成部64は、学習済みモデル59として、ディープニューラルネットワークを適用し、誤差逆伝播法によって学習済みモデル59を生成する。なお、生成部64は、機械学習の手法として、線形回帰及び決定木等のニューラルネットワーク以外の手法を用いてもよい。
 次に、図7を参照して、本実施形態に係る情報処理装置12の学習フェーズでの作用を説明する。CPU50が学習プログラム57を実行することによって、図7に示す学習処理が実行される。図7に示す学習処理は、例えば、ユーザにより入力部54を介して開始指示が入力された場合に実行される。
 図7のステップS10で、取得部60は、教師データを収集する。前述したように、取得部60は、各細胞培養チャンネル16について、培養細胞の状態の評価値、培養環境、及び配置位置情報を定期的に取得する。取得部60は、取得した複数の評価値、培養環境、及び配置位置情報のうち、培養環境が調整されることによって評価値が第1閾値以上で、かつ細胞培養チャンネル間における評価値の差の絶対値が第2閾値以下となった場合の調整前の評価値、調整後の培養環境、及び配置位置情報を教師データとして収集する。
 ステップS12で、生成部64は、前述したように、ステップS12の処理により収集された教師データを用いた機械学習によって、各細胞培養チャンネル16の評価値及び配置位置情報を入力とし、かつ培養環境を出力とした学習済みモデル59を生成する。ステップS12の処理が終了すると、本学習処理が終了する。
<運用フェーズ>
 次に、学習済みモデル59を用いた運用フェーズについて説明する。運用フェーズは、各細胞培養チャンネル16にて細胞を培養するフェーズである。図8を参照して、本実施形態に係る情報処理装置12の運用フェーズにおける機能的な構成について説明する。図8に示すように、情報処理装置12は、取得部70、導出部72、及び統合制御部74を含む。CPU50が細胞培養プログラム58を実行することにより、取得部70、導出部72、及び統合制御部74として機能する。
 取得部70は、取得部60と同様に、各細胞培養チャンネル16について、経上皮電気抵抗及び画像データを取得する。また、取得部70は、取得部60と同様に、各細胞培養チャンネル16の流体デバイス24それぞれにより培養されている細胞の状態の評価値、及び流体デバイス24の配置位置情報を取得する。
 導出部72は、導出部62と同様に、各細胞培養チャンネル16の培養細胞について、細胞の状態の評価値を導出する。
 統合制御部74は、各細胞培養チャンネル16の培養細胞の状態及び培養環境に基づいて、各細胞培養チャンネル16の培養細胞の状態が同じ状態になるように培養環境を調整可能とされる。本実施形態に係る統合制御部74は、前述した学習済みモデル59を用いて、培養環境を調整する。
 具体的には、統合制御部74は、取得部70により取得された各細胞培養チャンネル16についての配置位置情報及び細胞の状態の評価値を学習済みモデル59に入力する。また、統合制御部74は、この入力に対応して学習済みモデル59により出力された培養環境を取得する。
 統合制御部74は、取得した培養環境のうち、細胞培養チャンネル16毎に制御可能なもの(本実施形態では、流量)については、制御部38に出力することによって制御する。制御部38は、流体デバイス24を流れる液体の流量が統合制御部74から入力された流量になるように、ポンプ22を制御する。
 統合制御部74は、取得した培養環境のうち、インキュベータ14単位で制御可能なもの(本実施形態では、環境調整部44が調整可能なもの)については、制御部40に出力することによって制御する。制御部40は、環境測定部42により測定される培養環境が統合制御部74から入力された環境となるように、環境調整部44を制御する。すなわち、統合制御部74は、各細胞培養チャンネル16で培養される細胞の状態の評価値の差の絶対値が第2閾値以下になるように培養環境を調整する。
 次に、図9を参照して、本実施形態に係る情報処理装置12の運用フェーズでの作用を説明する。CPU50が細胞培養プログラム58を実行することによって、図9に示す細胞培養処理が実行される。図9に示す細胞培養処理は、例えば、ユーザにより入力部54を介して開始指示が入力された場合に実行される。
 図9のステップS20で、取得部70は、前述したように、各細胞培養チャンネル16について、培養細胞の状態の評価値及び配置位置情報を取得する。ステップS22で、統合制御部74は、前述したように、ステップS20の処理により取得された評価値及び配置位置情報を学習済みモデル59に入力することによって学習済みモデル59により出力された培養環境を取得する。
 ステップS24で、統合制御部74は、前述したように、ステップS22の処理により取得した培養環境のうち、細胞培養チャンネル16毎に制御可能なものについては、制御部38に出力することによって制御する。また、統合制御部74は、ステップS22の処理により取得した培養環境のうち、インキュベータ14単位で制御可能なものについては、制御部40に出力することによって制御する。本ステップS24の処理により、各細胞培養チャンネル16により培養されている細胞の培養環境が調整される。ステップS24の処理が終了すると、本細胞培養処理が終了する。以上のステップS20からステップS24までの処理は、例えば、各細胞培養チャンネル16の培養細胞の状態の評価値が第1閾値以上で、かつ細胞培養チャンネル間における評価値の差の絶対値が第2閾値以下となるまで、予め定められた時間間隔で繰り返される。この繰り返しによって得られた、評価値が一定値以上で、かつ状態のバラつきが小さい細胞は、創薬等の用途に用いられる。
 以上説明したように、本実施形態によれば、複数の流体デバイス24各々の培養環境を統合的に調整することができる。
 なお、上記実施形態において、環境調整部44がインキュベータ14単位で調整可能な培養環境を、細胞培養チャンネル16毎に個別に調整可能としてもよい。この場合、環境測定部42及び環境調整部44を各細胞培養チャンネル16に設け、各細胞培養チャンネル16の制御部38によって制御する形態が例示される。また、この形態例では、学習済みモデル59が出力する培養環境も各細胞培養チャンネル16に対応して出力される。なお、この形態例において、生成部64は、学習済みモデル59を細胞培養チャンネル16毎に生成してもよい。また、この形態例では、統合制御部74によって、各細胞培養チャンネル16の培養環境が個別に調整可能とされる。
 また、上記実施形態の運用フェーズにおいて、情報処理装置12の統合制御部74は、各細胞培養チャンネル16の培養細胞の状態の評価値を表示部53に表示する制御を行ってもよい。この場合、ユーザは、表示部53により表示された細胞の状態の評価値が所望する条件を満たしてない場合に、マニュアル操作に切り替えて培養環境を調整する形態が例示される。
 また、上記実施形態において、例えば、取得部60、70、導出部62、72、生成部64、及び統合制御部74といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 また、上記各実施形態では、学習プログラム57及び細胞培養プログラム58が記憶部52に予め記憶(インストール)されている態様を説明したが、これに限定されない。学習プログラム57及び細胞培養プログラム58は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、学習プログラム57及び細胞培養プログラム58は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 日本出願特願2019-051925号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 細胞培養システム
12 情報処理装置
14 インキュベータ
16 細胞培養チャンネル
20 貯留部
22 ポンプ
24 流体デバイス
26 廃液部
28 流量測定部
30 微差圧測定部
32 pH測定部
34 抵抗測定部
36 撮影部
38、40 制御部
42 環境測定部
44 環境調整部
50 CPU
51 メモリ
52 記憶部
53 表示部
54 入力部
55 外部I/F
56 バス
57 学習プログラム
58 細胞培養プログラム
59 学習済みモデル
60、70 取得部
62、72 導出部
64 生成部
74 統合制御部

Claims (6)

  1.  細胞が培養される流体デバイス、液体を前記流体デバイスに流入させる送液部、前記流体デバイスで培養される細胞の状態を検出する第1センサ、及び前記送液部と前記第1センサとを制御する第1プロセッサをそれぞれ備えた複数の細胞培養チャンネルと、
     前記複数の細胞培養チャンネルで培養されている細胞の培養環境を測定する第2センサと、
     前記第1センサにより検出された細胞の状態及び前記第2センサにより測定された細胞の培養環境に基づいて、前記複数の前記細胞培養チャンネルそれぞれで培養される前記細胞の状態の評価値の差の絶対値が閾値以下になるように前記培養環境を調整可能な第2プロセッサと、
     を備えた細胞培養システム。
  2.  前記第2プロセッサは、前記複数の細胞培養チャンネルで培養されている細胞の培養環境を細胞培養チャンネル毎に個別に調整する
     請求項1に記載の細胞培養システム。
  3.  前記第2プロセッサは、前記細胞培養チャンネルの配置位置を表す配置位置情報及び前記細胞の状態から定まる前記細胞の状態の評価値を入力とし、前記培養環境を出力とした学習済みモデルを用いて前記培養環境を調整する
     請求項1又は請求項2に記載の細胞培養システム。
  4.  前記細胞の状態は、前記細胞を撮影して得られた画像から導出される情報及び前記細胞の経上皮電気抵抗を含む
     請求項1から請求項3の何れか1項に記載の細胞培養システム。
  5.  前記培養環境は、前記液体の流量、前記液体の温度、前記流体デバイスの周囲の環境温度、前記流体デバイスの周囲の環境湿度、前記流体デバイスの周囲の二酸化炭素濃度、前記流体デバイスの周囲の窒素濃度、及び前記流体デバイスの周囲の酸素濃度を含む
     請求項1から請求項4の何れか1項に記載の細胞培養システム。
  6.  細胞が培養される流体デバイス、液体を前記流体デバイスに流入させる送液部、前記流体デバイスで培養される細胞の状態を検出する第1センサ、及び前記送液部と前記第1センサとを制御するプロセッサを備えた複数の細胞培養チャンネルを備えた細胞培養システムによる細胞培養方法であって、
     前記複数の細胞培養チャンネルで培養されている細胞の培養環境を測定し、
     前記第1センサにより検出された細胞の状態及び測定した細胞の培養環境に基づいて、前記複数の前記細胞培養チャンネルそれぞれで培養される前記細胞の状態の評価値の差の絶対値が閾値以下になるように前記培養環境を調整可能である
     細胞培養方法。
PCT/JP2020/007992 2019-03-19 2020-02-27 細胞培養システム及び細胞培養方法 WO2020189218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20773129.0A EP3943586A4 (en) 2019-03-19 2020-02-27 CELL CULTURE SYSTEM AND CELL CULTURE METHODS
JP2021507144A JP7209079B2 (ja) 2019-03-19 2020-02-27 細胞培養システム及び細胞培養方法
US17/472,729 US20210403847A1 (en) 2019-03-19 2021-09-13 Cell culture system and cell culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019051925 2019-03-19
JP2019-051925 2019-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,729 Continuation US20210403847A1 (en) 2019-03-19 2021-09-13 Cell culture system and cell culture method

Publications (1)

Publication Number Publication Date
WO2020189218A1 true WO2020189218A1 (ja) 2020-09-24

Family

ID=72520883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007992 WO2020189218A1 (ja) 2019-03-19 2020-02-27 細胞培養システム及び細胞培養方法

Country Status (4)

Country Link
US (1) US20210403847A1 (ja)
EP (1) EP3943586A4 (ja)
JP (1) JP7209079B2 (ja)
WO (1) WO2020189218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388583A (zh) * 2021-06-25 2021-09-14 北京理工大学 一种用于空间环境的片上原位细胞复苏、悬浮培养的方法及其微流控芯片和装置
WO2022202733A1 (en) * 2021-03-26 2022-09-29 Terumo Kabushiki Kaisha Cell culturing system
WO2023195490A1 (ja) * 2022-04-06 2023-10-12 富士フイルム株式会社 撮像システム及び細胞濃度調整方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024052678A1 (en) * 2022-09-07 2024-03-14 Microfluidx Ltd System for biorocessing
WO2024052679A1 (en) * 2022-09-07 2024-03-14 Microfluidx Ltd System for bioprocessing
CN116407562A (zh) * 2023-04-13 2023-07-11 安徽科门生物科技有限公司 脐带或胎盘或脐血来源间充质干细胞治疗慢阻肺应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203322A1 (ja) * 2013-06-18 2014-12-24 株式会社日立製作所 細胞画像処理装置、細胞画像認識装置及び細胞画像認識方法
JP2016054724A (ja) * 2014-09-12 2016-04-21 富士フイルム株式会社 細胞培養評価システムおよび方法
WO2017176357A2 (en) * 2016-02-04 2017-10-12 Massachusetts Institute Of Technology Modular organ microphysiological system with integrated pumping, leveling, and sensing
JP2018512853A (ja) 2015-04-22 2018-05-24 バークレー ライツ,インコーポレイテッド マイクロ流体デバイス用の培養ステーション
JP2019051925A (ja) 2017-08-02 2019-04-04 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 減衰器室を備えた、車両ブレーキ装置の液圧ユニットの減衰装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039433A1 (en) * 2007-09-20 2009-03-26 Incept Biosystems Inc. Analytical microfluidic culture system
WO2014018770A1 (en) * 2012-07-25 2014-01-30 The Charles Stark Draper Laboratory, Inc. Modular platform for multi-tissue integrated cell culture
US11001796B2 (en) * 2016-11-23 2021-05-11 The Charles Stark Draper Laboratory, Inc. Bi-layer multi-well cell culture platform
WO2018213357A1 (en) * 2017-05-16 2018-11-22 Cairn Biosciences, Inc. Microfluidic-enabled multiwell cell culture devices and systems for precision culture, control and monitoring of living cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203322A1 (ja) * 2013-06-18 2014-12-24 株式会社日立製作所 細胞画像処理装置、細胞画像認識装置及び細胞画像認識方法
JP2016054724A (ja) * 2014-09-12 2016-04-21 富士フイルム株式会社 細胞培養評価システムおよび方法
JP2018512853A (ja) 2015-04-22 2018-05-24 バークレー ライツ,インコーポレイテッド マイクロ流体デバイス用の培養ステーション
WO2017176357A2 (en) * 2016-02-04 2017-10-12 Massachusetts Institute Of Technology Modular organ microphysiological system with integrated pumping, leveling, and sensing
JP2019051925A (ja) 2017-08-02 2019-04-04 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 減衰器室を備えた、車両ブレーキ装置の液圧ユニットの減衰装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943586A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202733A1 (en) * 2021-03-26 2022-09-29 Terumo Kabushiki Kaisha Cell culturing system
CN113388583A (zh) * 2021-06-25 2021-09-14 北京理工大学 一种用于空间环境的片上原位细胞复苏、悬浮培养的方法及其微流控芯片和装置
WO2023195490A1 (ja) * 2022-04-06 2023-10-12 富士フイルム株式会社 撮像システム及び細胞濃度調整方法

Also Published As

Publication number Publication date
JP7209079B2 (ja) 2023-01-19
EP3943586A1 (en) 2022-01-26
JPWO2020189218A1 (ja) 2020-09-24
EP3943586A4 (en) 2022-05-04
US20210403847A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2020189218A1 (ja) 細胞培養システム及び細胞培養方法
Lake et al. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
Mani et al. Electroconvection near electrochemical interfaces: Experiments, modeling, and computation
Kaiser et al. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software
Llamosi et al. What population reveals about individual cell identity: single-cell parameter estimation of models of gene expression in yeast
Kumar et al. A low-cost multi-sensor data acquisition system for fault detection in fused deposition modelling
Taktikos et al. Pili-induced clustering of N. gonorrhoeae bacteria
Herrero-Carrón et al. An active, inverse temperature modulation strategy for single sensor odorant classification
EP2745110B1 (en) Extrapolation of interpolated sensor data to increase sample throughput
McClure et al. Characterizing bubble column bioreactor performance using computational fluid dynamics
WO2020189219A1 (ja) 情報処理装置、細胞培養システム、情報処理方法、及び情報処理プログラム
Yang et al. Poisketch: Semantic place labeling over user activity streams
KR20210099575A (ko) 체액의 샘플 내 피분석물의 농도를 결정하기 위한 방법 및 시스템, 및 소프트웨어-구현 모듈을 생성하는 방법 및 시스템
Ji et al. Electroosmotic flow of viscoelastic fluid through a constriction microchannel
Monroy et al. Towards odor-sensitive mobile robots
Eyo et al. Development of a real-time objective gas–liquid flow regime identifier using kernel methods
Zarzycki et al. Fast real-time model predictive control for a ball-on-plate process
Eskanlou et al. Estimation of flotation rate constant and collision efficiency using regression and artificial neural networks
Bauer et al. Wireless electrochemical detection on a microfluidic compact disc (CD) and evaluation of redox-amplification during flow
Lipinski-Kruszka et al. Using dynamic noise propagation to infer causal regulatory relationships in biochemical networks
Vappangi et al. Applications of raspberry pi in bio-technology: A review
CN111775182B (zh) 空转检测的方法、行走机器人及计算机存储介质
Dezhkam et al. Continuous submicron particle separation via vortex-enhanced ionic concentration polarization: a numerical investigation
Berres et al. Centrifugal settling of flocculated suspensions: a sensitivity analysis of parametric model functions
Chen et al. Constructing custom thermodynamics using deep learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773129

Country of ref document: EP

Effective date: 20211019