WO2020189108A1 - Component installation device and component installation method, mounting substrate manufacturing system and mounting substrate manufacturing method, and installed component inspection device - Google Patents

Component installation device and component installation method, mounting substrate manufacturing system and mounting substrate manufacturing method, and installed component inspection device Download PDF

Info

Publication number
WO2020189108A1
WO2020189108A1 PCT/JP2020/005512 JP2020005512W WO2020189108A1 WO 2020189108 A1 WO2020189108 A1 WO 2020189108A1 JP 2020005512 W JP2020005512 W JP 2020005512W WO 2020189108 A1 WO2020189108 A1 WO 2020189108A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
component
data
board
deviation
Prior art date
Application number
PCT/JP2020/005512
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 昌弘
利彦 永冶
貴之 北
哲矢 田中
正宏 木原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080016389.2A priority Critical patent/CN113508652B/en
Priority to JP2021506239A priority patent/JP7382551B2/en
Priority to DE112020001298.0T priority patent/DE112020001298T5/en
Publication of WO2020189108A1 publication Critical patent/WO2020189108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/085Production planning, e.g. of allocation of products to machines, of mounting sequences at machine or facility level
    • H05K13/0853Determination of transport trajectories inside mounting machines

Definitions

  • the present disclosure relates to a component mounting device and a component mounting method for mounting components on a substrate on which a solder portion is formed, a mounting board manufacturing system and a mounting board manufacturing method using the same, and a mounted component inspection device.
  • a mounting board manufacturing system that mounts electronic components on a board to manufacture a mounting board is configured by connecting a plurality of component mounting equipment such as a solder printing device, a component mounting device, and a reflow device.
  • component mounting equipment such as a solder printing device, a component mounting device, and a reflow device.
  • a position correction technique for feeding forward the solder position information on the substrate after solder printing to a subsequent process is used. In the position correction based on the feed forward of the solder position information, the solder position information obtained by actually measuring the printing position of the solder is sent to the component mounting device in the subsequent process.
  • the mounting position is corrected based on the sent solder position information (see, for example, Patent Document 1).
  • the component mounting device executes the first mounting mode in which the feed-forwarded solder position information is applied to execute the component mounting, and the component mounting without applying the solder position information. Selectively execute the second mounting mode.
  • the mounting board manufacturing system of the present disclosure includes a mounting point position data storage unit, a solder part forming device, a solder part inspection device, a solder part position data storage unit, a mounting target position data creation unit, and a component mounting device.
  • the mounting point position data storage unit stores the mounting point position data including the mounting point position obtained by actually measuring the board in association with the identification information for identifying the board.
  • the solder portion forming apparatus forms a solder portion on the substrate.
  • the solder part inspection device measures the solder part formed on the substrate by the solder part forming device, and creates the solder part position data including the position of the solder part.
  • the solder portion position data storage unit stores the solder portion position data in association with the identification information.
  • the mounting target position data creation unit creates mounting target position data including the mounting target position of the component on the board specified by the identification information based on the mounting point position data specified by the identification information and the solder part position data. ..
  • the component mounting device positions the substrate whose position of the solder portion is measured by the solder portion inspection device at the working position. Further, the component mounting device has a mounting head. The mounting head mounts the component at the mounting target position on the board located at the working position. The mounting target position is specified by the mounting target position data associated with the identification information of the substrate.
  • a component mounting device having a mounting head for mounting a component at a mounting point of the board is used.
  • the mounting point position data including the mounting point position obtained by actually measuring the board is stored in association with the identification information for identifying the board.
  • a solder portion is formed on the substrate.
  • the solder portion position data is stored in association with the identification information.
  • mounting target position data including the mounting target position of the component on the substrate specified by the identification information is created.
  • the component mounting device positions the board whose position of the solder portion is measured at the working position, and mounts the component at the mounting target position specified by the mounting target position data associated with the identification information of the board.
  • the component mounting device of the present disclosure includes a board transporting unit, a mounting target position data acquisition unit, and a mounting work unit.
  • the substrate transport unit receives the substrate to which unique identification information is given, the solder portion is formed, and the position of the solder portion is measured, and positions the substrate at the working position.
  • the board transfer unit further carries out the component-mounted board on which the component has been mounted from the work position to the equipment downstream.
  • the mounting target position data acquisition unit acquires the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data.
  • the mounting point position data is obtained by actually measuring the board and includes the position of the mounting point of the board.
  • the solder portion position data includes the position of the solder portion obtained by actually measuring the solder portion.
  • the mounting work unit has a mounting head.
  • the mounting head mounts the component at the mounting target position on the board located at the working position.
  • the mounting target position is specified by the mounting target position data associated with the identification information of the substrate.
  • the component mounting method of the present disclosure is executed by a component mounting device that holds a component with a mounting head and mounts the component on a board to which unique identification information is given.
  • the board is received from the upstream equipment and positioned at the working position by the mounting head.
  • the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data is acquired.
  • the mounting point position data includes the position of the mounting point of the board obtained by actually measuring the board.
  • the solder portion position data includes the position of the solder portion obtained by actually measuring the solder portion.
  • the component is mounted by the mounting head at the mounting target position specified by the mounting target position data associated with the identification information of the board located at the working position.
  • the mounted component inspection device of the present disclosure is included in the mounting board manufacturing system of the present disclosure, and measures the deviation of the mounting position of the mounted component at the mounting point of the board identified by the unique identification information.
  • This inspection device has a work stage, a data acquisition unit, and an inspection unit.
  • the work stage holds a component-mounted board on which components are mounted by a component-mounting device.
  • the data acquisition unit acquires the mounting target position data associated with the identification mark of the substrate held on the work stage.
  • the mounting target position data is created in advance by the mounting target position data creation unit in the information management device of the mounting board manufacturing system.
  • the inspection unit obtains the deviation of the mounting position of the component mounted at the mounting point of the board held on the work stage. That is, the inspection unit obtains the deviation of the mounting position of the component with respect to the mounting target position set based on the mounting target position data.
  • a high level of component mounting quality can be realized by applying the accurate position information of the mounting point of the board and the solder position information obtained by actually measuring the board.
  • Configuration explanatory view of the mounting board manufacturing system according to the embodiment of the present disclosure.
  • Configuration explanatory view of the screen printing apparatus constituting the mounting board manufacturing system shown in FIG. Functional explanatory view of the screen printing apparatus constituting the mounting board manufacturing system shown in FIG.
  • Configuration explanatory view of the component mounting device constituting the mounting board manufacturing system shown in FIG. A block diagram showing a configuration of a control system of an information management device and a component mounting device in the mounting board manufacturing system shown in FIG.
  • a flowchart showing processing in the substrate measuring apparatus shown in FIG. A process explanatory view showing processing in the board measuring apparatus constituting the mounting board manufacturing system shown in FIG.
  • a flowchart showing processing in the screen printing apparatus shown in FIG. A process explanatory view showing processing in the screen printing apparatus shown in FIG.
  • a flowchart showing processing in the solder portion inspection apparatus shown in FIG. A process explanatory view showing processing in the solder portion inspection apparatus shown in FIG.
  • a flowchart showing processing in the information management device shown in FIG. A process explanatory diagram showing processing in the information management device shown in FIG.
  • a flowchart showing processing in the component mounting device shown in FIG. A process explanatory diagram showing processing in the component mounting apparatus shown in FIG. Flow chart showing processing in the mounted parts inspection device shown in FIG.
  • FIG. 16A Diagram showing an example of computer hardware configuration
  • the present disclosure discloses a component mounting device and a component mounting method capable of improving the accuracy of position correction to which solder position information is applied to achieve a high degree of component mounting quality, and a mounting board manufacturing system and mounting board using these. Provide a manufacturing method.
  • the present disclosure also provides a mounted component inspection device used in a mounting board manufacturing system.
  • the mounting board manufacturing system 1 manufactures a mounting board on which electronic components (hereinafter referred to as components) are mounted on the board 4 shown in FIG.
  • the mounting board manufacturing system 1 mainly includes a component mounting line 1a in which a plurality of component mounting devices are connected.
  • the equipment constituting the component mounting line 1a is connected to each other by the communication network 2 and is connected to the information management device 3 via the communication network 2.
  • the board supply device M1 in order from the upstream, the board supply device M1, the board identification information imparting device M2, the board measuring device M3, the screen printing device M4, the solder part inspection device M5, the component mounting devices M6, M7, and the mounted component inspection device.
  • the M8, the reflow device M9, the mounting board inspection device M10, and the board recovery device M11 are connected in series in the board transfer direction (positive direction of the X-axis).
  • These component mounting equipment include component mounting devices M6 and M7 that hold components by component holding nozzles and mount them at mounting points of a substrate 4 on which a solder portion is formed.
  • the board supply device M1 supplies the unmounted board 4 to be produced to the downstream board identification information imparting device M2.
  • the board identification information giving device M2 gives the board 4 supplied from the board supply device M1 unique identification information for identifying the board 4.
  • the substrate identification information imparting device M2 is a laser marker that prints an identification code, which is identification information, on the substrate 4 by a laser.
  • the board measuring device M3 actually measures the position (land position) and size of the reference mark formed on the board 4 and the land for solder connection by imaging the board 4. Then, the land measurement data including the measured land position and size is transmitted to the information management device 3 via the communication network 2 together with the identification information of the board 4 to be measured. Further, the board measuring device M3 calculates the position of the mounting point from the measurement result.
  • the position of the mounting point is specified by the relative positional relationship with the reference mark of the substrate 4. Specifically, the position of the mounting point is specified by the coordinates in the coordinate system determined by the reference mark.
  • the board measuring device M3 calculates the mounting point position data including the positional relationship between the reference mark of the board 4 and the mounting point from the measurement result, associates it with the identification information of the board 4, and establishes the information management device 3 via the communication network 2. Send to.
  • the mounting point position data is transmitted to the screen printing device M4, the solder part inspection device M5, the component mounting devices M6, M7, the mounted component inspection device M8, and the mounting board inspection device M10, which are a group of devices downstream by the information management device 3. Feed forward.
  • the board measuring device M3 functions as a mounting point position data acquisition unit. That is, the mounting point position data acquisition unit acquires the mounting point position data regarding the positional relationship between the reference mark of the substrate and the mounting point obtained by the actual measurement.
  • a device other than the board measuring device M3 (for example, the information management device 3 may calculate the mounting point position data.
  • the board measuring device M3 and the device for calculating the mounting point position data are the mounting point positions.
  • the board measuring device M3 may directly feed forward the mounting point position data to the downstream device group without going through the information management device 3.
  • the mounting point position data is not indispensable for the screen printing device M4, the component mounting devices M6, M7, and the mounted component inspection device M8. Therefore, these devices may be excluded from the feed forward target. In this way, by acquiring the mounting point position data based on the measurement result of the actual measurement, the position error caused by the deformation of the board in the manufacturing process is eliminated, and the positional relationship between the mounting point and the reference mark of the board 4 is eliminated. Can be calculated accurately.
  • the screen printing device M4 forms a solder portion by screen printing on the land formed on the substrate 4. Therefore, the screen printing apparatus M4 functions as a solder portion forming apparatus for forming a solder portion on the substrate 4.
  • a solder coating device that forms the solder portion by applying solder to the lands may be used.
  • the solder part inspection device M5 measures the position of the solder part formed on the substrate 4 by the screen printing device M4, and creates the solder part position data including the positional relationship between the reference mark and the solder part. That is, the solder portion position data includes the coordinates of the solder portion in the coordinate system determined by the reference mark.
  • the mounting target position is calculated in consideration of the displacement of the solder portion based on the solder portion position data and the mounting point position data specified by the same identification information.
  • the component mounting devices M6 and M7 hold the component by the component holding nozzle, and mount the component at the mounting point of the substrate 4 on which the solder portion is formed by the screen printing device M4.
  • unique identification information is given to the substrate 4 to be worked on by the component mounting devices M6 and M7 by the substrate identification information giving device M2.
  • the mounted component inspection device M8 measures the deviation of the component mounting position (hereinafter referred to as the mounting deviation) on the board 4 (hereinafter referred to as the component mounted board) on which the component is mounted by the component mounting devices M6 and M7. To do.
  • the mounted component inspection device M8 outputs component mounting misalignment data related to this mounting misalignment.
  • the mounted component inspection device M8 feeds back the component mounting misalignment data to the component mounting devices M6 and M7 to correct the component mounting misalignment caused by the time variation of the component mounting devices M6 and M7. Will be done. That is, calibration is performed.
  • the mounted component inspection device M8 uses the mounting target position data associated with the identification information of the mounted component board as a reference for measuring the mounting misalignment of the component. Used as.
  • the reflow device M9 heats the component-mounted substrate according to a predetermined heating profile to melt and solidify the solder portion of the land and solder-join the component to the substrate 4.
  • the mounting board inspection device M10 performs an inspection for determining the quality of the mounting board based on the image obtained by imaging the board 4 after the reflow. That is, the mounting board inspection device M10 inspects the mounting state of the board 4, that is, the quality of the position and orientation of the components after soldering, by recognizing the acquired image.
  • the board recovery device M11 collects the completed non-defective mounting board after the mounting board inspection device M10 inspects the board.
  • FIGS. 2 to 5 the configuration of the mounting equipment constituting the above-mentioned component mounting line 1a will be described with reference to FIGS. 2 to 5.
  • the screen printing device M4 the board measuring device M3, the solder part inspection device M5, the mounted component inspection device M8, the mounting board inspection device M10, and the component mounting devices M6 and M7 will be described here.
  • the description of other equipment will be omitted.
  • the substrate positioning unit 11 has a printing stage XY ⁇ table (hereinafter, table) 11a which is an alignment mechanism, and a printing stage elevating mechanism (hereinafter, elevating mechanism) 11b provided on the upper surface of the table 11a.
  • the table 11a has a built-in screen printing control unit (hereinafter, control unit) 10 that controls each unit described below.
  • the elevating mechanism 11b holds the printing stage 13 via the elevating table 13a.
  • a board support portion 14 having a board support pin 14a is provided on the upper surface of the elevating table 13a.
  • the board support unit 14 is driven up and down by a board support unit elevating mechanism (hereinafter, elevating mechanism) 14b.
  • the elevating table 13a supports the printing stage conveyor 15b constituting the substrate transport unit 15 from below.
  • the substrate transport unit 15 further includes a carry-in conveyor 15a located upstream of the printing stage conveyor 15b and a carry-out conveyor 15c located downstream.
  • the substrate 4 carried into the carry-in conveyor 15a from the upstream is delivered to the printing stage conveyor 15b and is subject to screen printing by the screen printing unit 16 described below.
  • the substrate 4 after screen printing is carried out downstream via the carry-out conveyor 15c.
  • a screen printing unit 16 is arranged above the printing stage 13.
  • the screen printing unit 16 includes a screen mask 18 provided with a printing pattern for printing solder on the substrate 4.
  • a squeegee drive mechanism 17a for bringing the squeegee 17 and the squeegee 17 into contact with the screen mask 18 to perform a squeezing operation is provided.
  • a camera unit 19 including a mask camera 19a and a substrate camera 19b is arranged between the printing stage 13 and the screen mask 18.
  • the camera unit 19 can be moved along the X-axis and the Y-axis by a camera moving mechanism (not shown).
  • the mask camera 19a images the desired position of the screen mask 18, and the substrate camera 19b images the desired position of the substrate 4.
  • the horizontal positions of the screen mask 18 and the substrate 4 are detected. Then, based on this position detection result, the substrate 4 and the screen mask 18 can be aligned by horizontally moving the print stage 13.
  • the elevating mechanism 11b is driven to raise the printing stage 13 while the substrate 4 is held by the printing stage conveyor 15b (arrow a). ..
  • the elevating mechanism 14b is driven to raise the board support portion 14 together with the board support pin 14a (arrow b).
  • the substrate 4 is received from the lower surface by the substrate support pin 14a, and the substrate 4 is pressed against the lower surface of the screen mask 18.
  • the squeegee 17 is lowered (arrow c) and brought into contact with the screen mask 18.
  • the squeegee 17 is then moved along the Y axis.
  • solder is screen-printed on the substrate 4 through the pattern holes formed in the screen mask 18, and a solder portion is formed on the land of the substrate 4.
  • the configurations and functions of the board measuring device M3, the solder part inspection device M5, the mounted component inspection device M8, and the mounting board inspection device M10 will be described. Since these devices have different inspection / measurement targets, the detailed configuration differs for each device, but they are common in that the inspection / measurement target is imaged by a camera and optically recognized.
  • the substrate measuring device M3 will be described as a representative.
  • the processing unit 20 is built in the base 21.
  • the processing unit 20 controls various work operations and processes in the substrate measuring device M3, for example, a substrate transport operation, an imaging process, an image recognition process obtained by imaging, and an inspection / measurement process based on the image.
  • the substrate transport portion 22 is arranged on the upper surface of the base 21.
  • the substrate transport unit 22 transports the substrate 4 to be inspected / measured carried in from the upstream, and positions the substrate 4 at the inspection / measurement work position by the inspection head 24 described below.
  • the inspection head 24 has a lens barrel portion 24a and a lighting unit 24b provided at the lower end portion of the lens barrel portion 24a, and is along the X-axis and the Y-axis by the inspection head moving mechanism 25 composed of an XY table. And move horizontally.
  • the camera 26 is built in the lens barrel portion 24a with its imaging direction facing downward. With this configuration, the camera 26 can be positioned above the desired portion of the substrate 4.
  • the lighting unit 24b has a built-in upper lighting 28a and a lower lighting 28b.
  • the processing unit 20 turns on either or both of the upper illumination 28a and the lower illumination 28b according to the illumination conditions suitable for the imaging target. Further, a coaxial illumination 28c is provided on the side surface of the lens barrel portion 24a. By turning on the coaxial illumination 28c, the substrate 4 can be illuminated from the direction coaxial with the imaging direction of the camera 26 via the half mirror 27 arranged inside the lens barrel portion 24a.
  • the upper lighting 28a, the lower lighting 28b, and the coaxial lighting 28c constitute an illumination light source unit 28.
  • the board measuring device M3 measures the board 4 and acquires (creates) mounting point position data
  • the solder portion inspection device M5 inspects the solder portion and acquires (creates) the solder portion position data.
  • the mounted component inspection device M8 measures the mounting misalignment of the components mounted on the substrate 4 and acquires (creates) the component mounting misalignment data
  • the mounting board inspection device M10 inspects the soldered components. Then, the mounting board inspection data is acquired (created).
  • the component mounting device M6 mounts the component at the mounting point of the substrate 4 to which the component is held by the component holding nozzle 37b and unique identification information is given.
  • a component mounting control unit (hereinafter, control unit) 30 is built in the base 31.
  • the control unit 30 controls the work operation of the component mounting device M6 described below.
  • the control unit 30 controls, for example, the substrate transfer operation and the component mounting operation by the component mounting mechanism.
  • control unit 30 performs recognition processing of the image acquired by the component recognition camera 36 and the board recognition camera 39 included in the component mounting device M6.
  • the component recognition camera 36 and the board recognition camera 39 will be referred to as a first camera 36 and a second camera 39.
  • a substrate transfer unit 35 having a pair of substrate transfer conveyors is arranged along the X axis indicating the substrate transfer direction.
  • the substrate transport unit 35 transports the substrate 4 to be worked on along the X axis.
  • a substrate lower receiving portion 34 is provided between the substrate conveying portions 35.
  • the substrate lower receiving portion 34 has a plurality of support pins 34a and a support pin elevating mechanism 34b for raising and lowering the support pins 34a. While the board 4 is carried into the mounting work position, the control unit 30 drives the support pin elevating mechanism 34b to raise the support pin 34a, so that the plurality of support pins 34a support the lower surface of the board 4.
  • Carts 32 for supplying parts are set on both sides of the base 31 in the Y-axis direction.
  • a tape feeder 33 which is a component supply unit, is mounted on the upper surface of the carriage 32.
  • the tape feeder 33 pitch-feeds the carrier tape containing the components mounted on the substrate 4 to supply the components to the component taking-out position by the component mounting mechanism described below.
  • a mounting head moving mechanism (hereinafter, moving mechanism) 38 is arranged along the Y axis in the frame portion (not shown) supported by the base 31.
  • the mounting head 37 is mounted on the moving mechanism 38 via the moving member 37a.
  • a component holding nozzle 37b is provided at the lower end of the mounting head 37.
  • the first camera 36 is arranged between the substrate transport unit 35 and the tape feeder 33, respectively.
  • the first camera 36 takes an image of the parts held by the mounting head 37 from below in a state where the mounting head 37 from which the parts are taken out from the tape feeder 33 is positioned above the first camera 36.
  • the component held by the mounting head 37 is recognized, and the component is identified and the misalignment is detected.
  • a second camera 39 is arranged on the moving member 37a with the imaging direction facing downward.
  • the second camera 39 takes an image of the substrate 4 held by the substrate transport unit 35 in a state where the second camera 39 is moved together with the mounting head 37 and positioned above the substrate 4.
  • the control unit 30 can identify the substrate 4 and detect the position.
  • the component mounting operation by the component mounting mechanism is corrected based on the identification result and the position detection result of the substrate 4 acquired in this way.
  • the substrate transport unit 35 has the following functions. After the solder part is formed by the screen printing device M4 as the solder part forming device and the solder part is measured by the solder part inspection device M5, the board transporting part 35 first receives the board 4 and works with the component holding nozzle 37b. Position it. Next, the component-mounted board on which the component has been mounted by the component holding nozzle 37b is carried out from the work position to the equipment downstream.
  • the information management device 3 is connected to the control units 30 of the component mounting devices M6 and M7 via the communication network 2.
  • the information management device 3 has a mounting point position data storage unit 41, a soldering unit position data storage unit 42, a mounting target position data creating unit 43, and a mounting target position data storage unit 44 as internal processing functions.
  • the mounting point position data storage unit 41 is the first storage unit 41
  • the solder unit position data storage unit 42 is the second storage unit 42
  • the mounting target position data creation unit 43 is the creation unit 43
  • the mounting target position data storage unit 44 is It is referred to as a third storage unit 44.
  • the first storage unit 41 stores the mounting point position data received from the solder unit inspection device M5 in association with the identification information that individually identifies the substrate 4.
  • the mounting point position data is data related to the positional relationship between the reference mark of the board 4 and the mounting point obtained by actually measuring the board 4.
  • the second storage unit 42 stores the solder unit position data.
  • the solder portion is formed on the substrate 4 by the screen printing device M4 which is a solder portion forming device, and the solder portion position data is obtained by measuring with the solder portion inspection device M5.
  • the creating unit 43 creates mounting target position data of the component on the substrate 4 specified by the identification information based on the mounting point position data specified by the same identification information and the soldering part position data.
  • the purpose of creating the mounting target position data based on the mounting point position data and the solder part position data is to consider the behavior of the component due to the surface tension of the molten liquid solder (hereinafter referred to as molten solder). This is to install.
  • the third storage unit 44 stores the mounting target position data created by the creation unit 43.
  • the mounting target position data is stored in association with the identification information of the corresponding substrate 4.
  • the mounting target position data includes the coordinates of the mounting target position in the coordinate system determined by the reference mark on the substrate 4.
  • the information management device 3 has a first information processing unit 45, a second information processing unit 46, and a third information processing unit 47.
  • the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 are each configured to be communicable with one or more specific devices in the component mounting line 1a. Then, specific data corresponding to the one or more specific devices is exchanged with the one or more specific devices.
  • the first information processing unit 45 can communicate with the solder unit inspection device M5 and the component mounting devices M6 and M7.
  • the first information processing unit 45 receives the solder unit position data created by the solder unit inspection device M5 and stores it in the second storage unit 42.
  • the first information processing unit 45 transmits the mounting target position data stored in the third storage unit 44 to the component mounting devices M6 and M7. Specifically, when the first information processing unit 45 receives the identification information of the board 4 on which the component is to be mounted from the component mounting devices M6 and M7, the first information processing unit 45 mounts the component mounting target position data related to the identification information. Output to devices M6 and M7.
  • the second information processing unit 46 can communicate with at least the mounted parts inspection device M8.
  • the second information processing unit 46 reads the mounting target position data related to the identification information of the substrate 4 inspected by the mounted parts inspection device M8 from the third storage unit 44 and provides the mounted parts inspection device M8 with the data. .. This is for the mounted component inspection device M8 to use the component mounting target position data related to the mounting target position as a reference for measuring the mounting deviation of the component.
  • the second information processing unit 46 receives the identification information of the board 4 from the mounted component inspection device M8, the second information processing unit 46 transmits the mounting target position data related to the identification information to the mounted component inspection device M8.
  • the third information processing unit 47 is capable of communicating with a plurality of component mounting devices (here, component mounting devices M6 and M7) and the mounted component inspection device M8. Then, the third information processing unit 47 distributes the component mounting deviation data output from the mounted component inspection device M8 to the component mounting devices that have executed the mounting of the components related to the mounting deviation, and distributes the component mounting deviation data to each component mounting device.
  • the component mounting device includes a component mounting device M6 for mounting the first component on the board 4, and a component mounting device M7 for mounting the second component on the same board 4.
  • the mounted component inspection device M8 measures the deviation of the first mounting position of the first component and the deviation of the second mounting position of the second component for each of the plurality of component mounted boards.
  • the third information processing unit 47 provides the first component mounting deviation data to the component mounting device M6 among the component mounting deviation data output from the mounted component inspection device M8, and the second component mounting deviation data is loaded as a component. Provided to device M7.
  • the configuration and division of the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 described above are arbitrary.
  • the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 may be used as independent information processing devices having dedicated functions, respectively.
  • the functions of the second information processing unit 46 and the third information processing unit 47 may be combined into a single information processing device. Further, all the functions of the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 may be combined to form one information processing device as a whole.
  • the control unit 30 is connected to the mounting head 37, the moving mechanism 38, and the substrate transport unit 35 to control them. Further, the control unit 30 captures the imaging results of the second camera 39 and the first camera 36.
  • the control unit 30 includes a board recognition unit 51, a component recognition unit 52, a component mounting processing unit 54, a mounting point position data acquisition unit 55, a mounting target position data acquisition unit 56, a calibration data calculation unit 57, and a component. It has a mounting misalignment data acquisition unit 58 and a data output unit 59. Further, the control unit 30 has a production-related data storage unit 53 as an internal memory, a mounting point position data storage unit 55a, a mounting target position data storage unit 56a, and a component mounting misalignment data storage unit 58a.
  • the mounting point position data acquisition unit 55, the mounting target position data acquisition unit 56, the calibration data calculation unit 57, and the component mounting deviation data acquisition unit 58 are combined with the first acquisition unit 55, the second acquisition unit 56, the calculation unit 57, and the second.
  • 3 Acquisition unit 58, production-related data storage unit 53, mounting point position data storage unit 55a, mounting target position data storage unit 56a, component mounting misalignment data storage unit 58a are referred to as fourth storage unit 53, fifth storage unit 55a, It is referred to as a sixth storage unit 56a and a seventh storage unit 58a.
  • the board recognition unit 51 recognizes the image acquired by the second camera 39, and the component recognition unit 52 recognizes the image acquired by the first camera 36. That is, the substrate recognition unit 51 detects the identification information of the substrate 4 which is conveyed by the substrate transfer unit 35 and whose position is held by the substrate lower receiving unit 34, and recognizes the positions of the reference mark and the mounting point. Further, the component recognition unit 52 identifies a component held by the mounting head 37 and detects a misaligned state of the component.
  • the component mounting processing unit 54 controls the board transport unit 35, the mounting head 37, and the moving mechanism 38 to execute the component mounting process for mounting the components on the board on which the solder portion has been formed.
  • Various production-related data such as mounting data referred to in this component mounting process are stored in the fourth storage unit 53.
  • the first acquisition unit 55 acquires the mounting point position data stored in the first storage unit 41 of the information management device 3. This mounting point position data relates to the positional relationship between the reference mark and the mounting point obtained by the actual measurement of the board 4 by the board measuring device M3.
  • the fifth storage unit 55a stores the mounting point position data acquired by the first acquisition unit 55.
  • the second acquisition unit 56 acquires the mounting target position data created by the creation unit 43 of the information management device 3.
  • the mounting target position data is calculated based on the mounting point position data and the solder portion position data including the position of the solder portion measured by the solder portion inspection device.
  • the mounting point position data and the solder portion position data are specified by the same identification information.
  • the sixth storage unit 56a stores the mounting target position data acquired by the second acquisition unit 56.
  • the calculation unit 57 calculates calibration data for correcting the component mounting deviation due to the time-dependent fluctuation of the component mounting device M6. This calibration data is calculated based on the component mounting deviation data related to the component mounting deviation measured by the mounted component inspection device M8 for the plurality of component mounted boards.
  • the component mounting device M6 uses calibration data for correcting the mounting deviation of the component due to the time variation of the component mounting device M6, and the component when the component is mounted at the mounting target position.
  • the stop position of the holding nozzle 37b is corrected.
  • the calculation unit 57 calculates the same calibration data for the component mounting device M7, and the component mounting device M7 also uses the calibration data to correct the stop position of the component holding nozzle 37b.
  • the third acquisition unit 58 acquires component mounting misalignment data related to component mounting misalignment measured by the mounted component inspection device M8.
  • the third acquisition unit 58 acquires the component mounting misalignment data distributed by the above-mentioned third information processing unit 47.
  • the seventh storage unit 58a stores the component mounting misalignment data acquired by the third acquisition unit 58.
  • the calculation unit 57 refers to the component mounting misalignment data stored in the seventh storage unit 58a when calculating the calibration data described above.
  • the data output unit 59 uploads operation information including log information collected by the component mounting devices M6 and M7 to a monitoring system (not shown) connected via the information management device 3 or the communication network 2.
  • the log information includes error information and the like as well as information for identifying the component supply unit (tape feeder 33) and the component holding nozzle 37b used when supplying the component.
  • the mounting head 37, the second camera 39, the moving mechanism 38, the first camera 36, the board recognition unit 51, the component recognition unit 52, the fourth storage unit 53, and the component mounting processing unit 54 perform operations for mounting components.
  • the mounting work unit 40 for executing the above is configured. That is, the mounting work unit 40 detects the position of the reference mark on the substrate 4 located at the working position by the mounting head 37. Then, the mounting target position of the component at the working position is recognized from the detected position of the reference mark and the mounting target position data associated with the identification information of the substrate 4. Further, the component is mounted by the component holding nozzle 37b with the target mounting position as the target.
  • the information management device 3 is connected to the processing unit 20 of the mounted component inspection device M8 via the communication network 2.
  • the processing unit 20 has a substrate recognition unit 20a, an inspection unit 20b, a data acquisition unit 20e, and a data output unit 20f as internal processing functions. Further, the processing unit 20 has an inspection-related data storage unit 20c and an inspection result storage unit 20d as internal memories.
  • the inspection-related data storage unit 20c and the inspection result storage unit 20d will be referred to as an eighth storage unit 20c and a ninth storage unit 20d.
  • the board transfer unit 22 carries in the component-mounted board sent from the component mounting device M7 and holds it in the central portion thereof. That is, the substrate transport unit 22 functions as a work stage in the mounted component inspection device M8.
  • the board recognition unit 20a recognizes and processes the image acquired by the camera 26. That is, the substrate recognition unit 20a detects the identification information of the substrate 4 conveyed by the substrate transfer unit 22 and recognizes the reference mark of the substrate 4.
  • the inspection unit 20b inspects the position and state of the parts mounted on the substrate 4 by analyzing the image acquired by the camera 26. Specifically, the position deviation from the mounting target position of the component (component mounting deviation), the presence or absence of the component, etc. are inspected.
  • the inspection unit 20b inspects the parts mounted on the substrate 4 by using the inspection-related data stored in the eighth storage unit 20c.
  • the ninth storage unit 20d stores the inspection result by the inspection unit 20b.
  • the inspection result is recorded in a record created for each board identification information, and the inspection result can be referred to for each board.
  • the data acquisition unit 20e acquires the data required for inspection through the communication network 2.
  • the data required for the inspection includes the mounting target position data stored in the third storage unit 44 of the information management device 3.
  • the data acquired by the data acquisition unit 20e is stored in the eighth storage unit 20c. That is, the data acquisition unit 20e functions as a data acquisition unit that is created by the creation unit 43 and acquires mounting target position data held on the work stage (board transfer unit 22).
  • the mounting target position data is associated with the identification mark on the substrate 4.
  • the inspection unit 20b obtains the mounting deviation of the component with respect to the mounting target position set based on the mounting target position data acquired by the data acquisition unit 20e. Specifically, the positional deviation between the position of the component mounted at the mounting point and the mounting target position is obtained as the component mounting deviation.
  • the board measuring device M3, the solder portion inspection device M5, and the mounting board inspection device M10 have the same configuration as the mounted component inspection device M8.
  • the control system particularly the inspection unit 20b, the eighth storage unit 20c, and the ninth storage unit 20d, the target parts and data are different depending on the purpose of each device.
  • the substrate 4 is carried in by the substrate transport unit 22 shown in FIG. 4 and is positioned directly below the inspection head 24 (ST1).
  • the reference mark measurement ST2 is performed.
  • the camera 26 captures the reference mark on the substrate 4, and the processing unit 20 (board recognition unit 20a) recognizes the acquired image to detect the position of the reference mark.
  • the reference mark is not shown here.
  • the land L shown in FIG. 8B is measured (ST3).
  • a land L is formed on the substrate 4 for solder joining of parts.
  • the position of the land L does not match the position of the land (L) on the design data described below due to factors such as an error in the manufacturing process, and is often misaligned. Therefore, in the present embodiment, the processing unit 20 determines the position of the mounting point J based on the positional deviation obtained by ST3.
  • the processing unit 20 calculates the position and dimensions of the land from the image taken by the camera 26.
  • (L) and (J) indicated by broken lines indicate lands (L) and mounting points (J) on the design data, respectively.
  • L and J shown by solid lines indicate land L and mounting point J on the actual substrate 4, respectively.
  • the position of the mounting point J is determined by the positions of a plurality of lands L for soldering the components mounted on the mounting point J.
  • the mounted component is a rectangular chip component having connection terminals at both ends, and a pair of lands L is provided as a pattern of a plurality of lands for soldering the chip components.
  • the processing unit 20 defines the midpoint of the straight line connecting the pair of lands L as the mounting point J.
  • the combination is defined as a land for solder bonding.
  • the actual land corresponds to the land body portion La shown in FIGS. 15A to 16B, and the opening corresponds to the opening 4b.
  • a land formed for solder joining of parts any of two types of patterns having different forms of the resist film 4a that covers and protects the surface of the substrate 4 at the time of solder joining can be adopted. It has become. These two types of patterns are the land LA of the first pattern shown in FIGS. 15A and 15B and the land LB of the second pattern shown in FIGS. 16A and 16B.
  • FIGS. 15A and 15B are a cross-sectional view and a plan view of the substrate 4, respectively, and FIG. 15A shows a cross section taken along the line 15A-15A shown in FIG. 15B.
  • a pair of land main body La formed of a metal film such as copper is formed in a rectangular shape on the upper surface of the substrate 4 at a position corresponding to the connection terminal of the chip component mounted on the substrate 4.
  • a resist film 4a covering the upper surface of the substrate 4 is formed around the land main body La.
  • a rectangular opening 4b is formed at a position corresponding to the land main body La.
  • the resist film 4a is omitted except for the vicinity of the peripheral edge of the opening 4b.
  • the opening edge 4c of the resist film 4a located on the inner peripheral edge of the opening 4b covers the land edge Lb, which is the outer peripheral edge of the land main body La, from the upper surface and the side surface of the land main body La.
  • the land body La and the opening 4b form a first pattern of land LA in which the resist film 4a covers the land edge Lb of the land body La.
  • the land LA of each first pattern is detected by detecting the opening edge portion 4c, and the midpoint of the pair of land LA is specified as the mounting point J.
  • FIGS. 16A and 16B are a cross-sectional view and a plan view of the substrate 4, respectively, and FIG. 16A shows a cross section taken along the line 16A-16A shown in FIG. 16B.
  • a pair of land main body La is formed in a rectangular shape on the upper surface of the substrate 4 as in FIG. 15B, and a resist film 4a covering the upper surface of the substrate 4 is formed around the land main body La. Is formed.
  • a rectangular opening 4b is formed at a position corresponding to the land main body La. Note that FIG. 16B omits the illustration of the resist film 4a except for the vicinity of the peripheral edge of the opening 4b.
  • the shape and size of the opening 4b are set so that the inner peripheral edge is separated from the outer peripheral edge of the land main body La by a predetermined edge gap 4c'. As a result, the entire land body La is exposed in the opening 4b.
  • the land body La and the opening 4b form a second pattern of land LB in which the entire land body La is exposed in the opening 4b.
  • each land LB is detected by detecting the land main body La, and the midpoint of the pair of land LBs is specified as the mounting point J.
  • the shape of the land body La and the opening 4b is rectangular, but the land body La and the opening 4b may have shapes other than the rectangle.
  • the land LA and the land LB may be formed by a plurality of land main bodies La and openings 4b.
  • the processing unit 20 calculates the position of the mounting point based on the measured land position (ST4).
  • the position of the mounting point is specified based on the position of the land where the component is actually soldered or the position of the resist opening corresponding to the land.
  • the midpoint of a straight line connecting the land positions L1 and L2 of the pair of lands L obtained by measurement is calculated.
  • the land positions L1 and L2 correspond to the center of gravity of the land L in a plan view, respectively.
  • the calculated midpoint is specified as the mounting point J.
  • the processing unit 20 associates the position of the specified mounting point J with the identification information of the board 4 and uploads it as mounting point position data via the communication network 2 (ST5).
  • the uploaded mounting point position data is stored in the first storage unit 41 of the information management device 3. That is, the first storage unit 41 stores the mounting point position data relating to the positional relationship between the reference mark and the mounting point obtained by actually measuring the board 4 in association with the identification information for individually identifying the board 4 (mounting point). Position data storage process). After that, the substrate 4 is carried out downstream (ST6), and the processing by the substrate measuring device M3 is completed. In the present embodiment, the position of the mounting point J is calculated by the board measuring device M3 (ST4), but the position of the mounting point J is calculated by another device other than the board measuring device M3 (for example, the information management device 3). You may calculate.
  • the substrate 4 is carried into the screen printing apparatus M4 by the carry-in conveyor 15a shown in FIG. 2 and delivered to the printing stage conveyor 15b.
  • the control unit 10 positions the substrate 4 at the printing work position by the screen printing unit 16 (ST11).
  • the control unit 10 acquires mounting point position data from the information management device 3 (ST12).
  • the control unit 10 executes board recognition to recognize the position of the mounting point J or the board 4 at the printing work position (ST13).
  • the reference mark on the substrate is imaged by the substrate camera 19b to detect the position of the reference mark in the printing work position.
  • control unit 10 calculates the position of the mounting point J at the printing work position shown in FIG. 9B based on the detected position of the reference mark and the acquired mounting point position data. Alternatively, the position of the substrate 4 in the printing work position is calculated based on the detected position of the reference mark.
  • control unit 10 images the screen mask 18 and the substrate 4 by the mask camera 19a and the substrate camera 19b to recognize the position, and aligns the substrate 4 with respect to the screen mask 18 based on the position recognition result (ST14). ..
  • the substrate 4 is aligned in contact with the lower surface of the screen mask 18.
  • control unit 10 controls the table 11a based on the position of the mounting point J specified by the substrate recognition or the position of the substrate 4. As a result, the land L of the substrate 4 and the pattern hole of the screen mask 18 can be accurately matched.
  • the substrate 4 is carried into the solder portion inspection device M5 by the substrate transport portion 22 shown in FIG. 4 and is positioned at the inspection / measurement work position (ST21).
  • the processing unit 20 acquires land measurement data and mounting point position data from the information management device 3 (ST22).
  • the processing unit 20 executes board recognition to recognize the land position and the mounting point at the inspection / measurement work position (ST23).
  • the camera 26 takes an image of the reference mark on the substrate 4, and the processing unit 20 processes the acquired image to detect the position of the reference mark in the inspection / measurement work position.
  • the processing unit 20 calculates the actual land L and the mounting point J at the inspection / measurement work position shown in FIG. 10B based on the detected position of the reference mark, the acquired land measurement data, and the mounting point position data. It should be noted that the acquisition of the mounting point position data in the solder portion inspection device M5 is not essential and may be omitted.
  • the processing unit 20 processes the acquired image, and the position and area of the solder portion S formed on the substrate 4 can be measured three-dimensionally.
  • the volume is measured (ST24). That is, the positions S1 and S2 of the solder portions S formed on the substrate 4 by the solder portion forming step are measured, and the solder portion position data including the positional relationship between the reference mark and the solder portion S is created (solder portion position data). Creation process).
  • the positions S1 and S2 of the solder portion S correspond to the center of gravity of the solder portion S in a plan view, respectively.
  • the solder portion position data created in this way is associated with the identification information of the substrate 4 and uploaded to the information management device 3 via the communication network 2 (ST25), and the identification of the substrate 4 is performed in the second storage unit 42. It is stored in association with the information (solder part position data storage process). With the above, the processing in the solder portion inspection device M5 is completed, and the substrate 4 is carried out downstream (ST26).
  • the creating section 43 shown in FIG. 6 reads the mounting point position data and the solder section position data (ST31). That is, the mounting point position data and the solder portion position data acquired by the board measuring device M3 and the solder portion inspection device M5 and stored in the first storage unit 41 and the second storage unit 42, respectively, are read.
  • the creating unit 43 calculates the position of the solder pattern position SP (ST32).
  • the solder pattern position SP is defined by a plurality of solder portions S formed for solder joining the components mounted at the mounting point J.
  • the component to be mounted is a rectangular chip component having connection terminals at both ends, the midpoint of a straight line connecting a pair of solder portions S formed on a pair of lands L is specified as a solder pattern position SP.
  • the creating unit 43 calculates the positional deviation between the calculated solder pattern position SP and the mounting point J specified by the mounting point position data (ST33).
  • the deviation of the solder pattern position SP with respect to the mounting point J is obtained. That is, as shown in FIG. 10B, the solder pattern deviation ( ⁇ X, ⁇ Y) indicating the amount of deviation between the position where the solder portion S should be originally formed and the position of the solder portion S actually formed is obtained. If the solder portion S is formed on the land L without any misalignment, the mounting point J and the solder pattern position SP are at the same position, and the solder pattern misalignment ( ⁇ X, ⁇ Y) is also zero. On the other hand, when the positional deviation between the solder portion S and the land L becomes large, the solder pattern deviation ( ⁇ X, ⁇ Y) also becomes large.
  • the creation unit 43 calculates the mounting target position (ST34: mounting target position data creation process).
  • the creating unit 43 has a target when the component P is mounted on the substrate 4 between the mounting point J given by the mounting point position data and the solder pattern position SP given by the soldering part position data.
  • Set the mounting target position MP That is, the creating unit 43 creates the mounting target position data on the substrate 4 specified by the identification information based on the mounting point position data and the soldering unit position data specified by the same identification information.
  • the mounting target position data includes the mounting target position MP of the component P.
  • the component P shown by the broken line in FIG. 11B shows the outer shape of the component P when the component P is mounted at the mounting target position MP.
  • the created mounting target position data is stored in the third storage unit 44 (ST35).
  • the mounting target position MP is appropriately set between the mounting point J and the solder pattern position SP in consideration of the behavior of parts due to molten solder in the reflow process by the reflow device M9.
  • the creating unit 43 adjusts the mounting target position MP according to the degree of the influence and the magnitude of the deviation between the mounting point J and the solder pattern position SP.
  • the mounting target position MP is set at a substantially intermediate position between the mounting point J and the solder pattern position SP.
  • the creating unit 43 mounts.
  • the point J is set as the mounting target position.
  • the substrate 4 is first carried in and is positioned at the working position for mounting the components. That is, the control unit 30 shown in FIG. 5 controls the substrate transport unit 35 to receive the substrate 4 from the solder portion inspection device M5 which is an upstream facility, and mounts the substrate 4 by the component holding nozzle 37b of the mounting head 37. (ST41: Substrate acceptance process).
  • the mounting point position data is acquired (ST42: mounting point position data acquisition process). That is, the control unit 30 acquires the mounting point position data by the function of the first acquisition unit 55 shown in FIG.
  • the mounting point position data relates to the positional relationship between the reference mark of the substrate 4 and the mounting point, and is obtained in advance by actual measurement with the substrate measuring device M3.
  • the timing of acquiring the mounting point position data is not particularly limited, and any timing may be used as long as it is before the substrate 4 reaches the working position. Further, in the component mounting device M6, acquisition of mounting point position data is not essential and may be omitted.
  • the mounting target position data is acquired (ST43: mounting target position acquisition process). That is, the control unit 30 acquires the mounting target position data created by the information management device 3 by the function of the second acquisition unit 56 shown in FIG. Specifically, the second acquisition unit 56 transmits the identification information of the substrate 4 carried in in the substrate receiving process to the first information processing unit 45 of the information management device 3, and mount target position data of the same substrate 4. Is requested from the first information processing unit 45. Then, when the desired mounting target position data is received from the first information processing unit 45, the second acquisition unit 56 stores the data in the sixth storage unit 56a.
  • the component mounting misalignment data is updated and the calibration data is calculated (ST44: calibration data calculation process). That is, the control unit 30 acquires the latest component mounting misalignment data measured by the mounted component inspection device M8 by the function of the third acquisition unit 58 shown in FIG. 6, and stores it in the seventh storage unit 58a. Update the data. Further, the control unit 30 calculates the calibration data from the updated component mounting misalignment data by the function of the calculation unit 57. Calibration data is calculated for each mounting point. The calibration data is calculated by statistically processing the component mounting deviations collected from a plurality of boards at the same mounting point.
  • the control unit 30 executes board recognition and recognizes the mounting target position MP of the component P at the mounting work position shown in FIG. 12B (ST45: board recognition step).
  • the mounting target position MP at the mounting work position is recognized based on the position of the reference mark detected by the recognition and the positional relationship between the reference mark and the mounting target position MP.
  • the positional relationship between the reference mark and the mounting target position MP is given by the mounting target position data.
  • the control unit 30 uses the calibration data to correct the stop position of the component holding nozzle 37b when the component P is mounted at the mounting target position MP.
  • the data output unit 59 uploads the operation information (ST47: data output process).
  • the substrate transport unit 35 carries out the substrate 4 (ST48), and the processing by the component mounting device M6 ends.
  • the processing in the mounted parts inspection device M8 will be described with reference to FIGS. 13A and 13B.
  • the component-mounted substrate 4 is carried in by the substrate transport unit 22 shown in FIG. 4 and positioned at the inspection / measurement work position (ST51: component-mounted substrate receiving process).
  • the data acquisition unit 20e shown in FIG. 7 acquires the mounting point position data from the information management device 3 (ST52), and acquires the mounting target position data from the third storage unit 44 (ST53: measurement reference acquisition step).
  • the data acquisition unit 20e transmits the identification information of the component-mounted board 4 carried into the board transfer unit 22 to the first information processing unit 45 of the information management device 3, and transmits the mounting target position data of the same board 4 to the first information processing unit 45.
  • the data acquisition unit 20e stores the data in the eighth storage unit 20c. That is, the mounting target position data specified by the identification information given to the substrate 4 positioned at the inspection / measurement work position is acquired.
  • the board recognition unit 20a shown in FIG. 7 executes board recognition and recognizes the mounting point J and the mounting target position MP at the inspection / measurement work position (ST54: board recognition process).
  • the substrate recognition unit 20a detects the position of the reference mark in the inspection / measurement work position from the reference mark of the substrate 4 imaged by the camera 26. Then, the board recognition unit 20a calculates the position of the mounting point J at the inspection / measurement working position from the detected position of the reference mark and the acquired mounting point position data. Further, the substrate recognition unit 20a calculates the mounting target position MP at the inspection / measurement work position from the detected position of the reference mark and the acquired mounting target position data.
  • the mounting target position data specified by the identification information of the substrate 4 positioned at the inspection / measurement work position is used.
  • the mounted component position is measured (ST55: component mounting position measurement process).
  • the camera 26 first captures the mounted component P'mounted by the component mounting device M6 (or M7).
  • the inspection unit 20b shown in FIG. 7 detects the component P'from the captured image and also detects the mounting position of the component P'by image recognition or the like.
  • the component P' is a square chip
  • the component center PC is detected as the component mounting position.
  • the inspection unit 20b calculates the deviation of the component mounting position based on the measurement result (ST56: component mounting deviation data creation step). That is, the inspection unit 20b acquires the mounting target position data specified by the identification information of the substrate 4 positioned at the inspection / measurement work position from the third storage unit 44.
  • the inspection unit 20b obtains the deviation between the mounting target position MP and the component mounting position (part center PC) based on the acquired data as component mounting deviation data ( ⁇ X', ⁇ Y'). That is, the inspection unit 20b measures the deviation of the component mounting position on the component mounted board on which the component is mounted by the component mounting process by the component mounting device M6 (or M7). Furthermore, component mounting deviation data related to the deviation of the mounting position is created.
  • the data output unit 20f shown in FIG. 7 uploads the component mounting deviation data (ST57).
  • the processing unit 20 controls the substrate transport unit 22 shown in FIG. 4 to carry the substrate 4 downstream (ST58), and completes the processing in the mounted component inspection device M8.
  • the component mounting misalignment data uploaded in ST57 is fed back to the component mounting devices M6 and M7 by the third information processing unit 47 of the information management device 3 shown in FIG. 6, and is used for calculating the calibration data by the calculation unit 57. Be done. That is, the component mounting devices M6 and M7 acquire the component mounting deviation data related to the deviation of the component mounting position measured by the mounted component inspection device M8 for the plurality of component mounted boards (component mounting deviation data acquisition process). 7 Update the data in the storage unit 58a.
  • the calculation unit 57 calculates the calibration data based on the acquired component mounting misalignment data (ST44: calibration data calculation process). That is, in the present embodiment, the calibration data for correcting the deviation of the component mounting position due to the time-dependent fluctuation is the deviation of the component mounting position measured by the mounted component inspection device M8 for the plurality of component mounted boards. It is calculated based on the data about.
  • the component mounting line 1a has the component mounting devices M6 and M7.
  • the calibration data calculation process is executed by each of the plurality of component mounting devices.
  • the mounting target position data referred to by each component mounting device is used as a reference for measuring the displacement of the mounting position.
  • the mounting deviation data created in the above-mentioned component mounting deviation data creation process is distributed to the component mounting devices on which the components related to the mounting deviation are mounted. And provide it to each component mounting device (component mounting misalignment data processing process).
  • the processing in the mounting board inspection device M10 will be described with reference to FIGS. 14A and 14B.
  • the quality of the mounting state including the position of the component P in the state of being soldered by the reflow in the reflow device M9 is inspected.
  • the mounting board is carried in by the board transport unit 22 shown in FIG. 4 and positioned at the inspection / measurement work position (ST61).
  • the processing unit 20 acquires mounting point position data from the information management device 3 (ST62).
  • the processing unit 20 executes board recognition and recognizes the mounting point J at the inspection / measurement work position (ST63).
  • the position of the reference mark in the inspection / measurement work position is detected from the reference mark of the substrate 4 imaged by the camera 26.
  • the processing unit 20 calculates the position of the mounting point J at the inspection / measurement working position from the detected position of the reference mark and the acquired mounting point position data.
  • the inspection is executed (ST64). That is, the processing unit 20 obtains the deviation between the obtained coordinates of the component center Pm and the correct mounting point J as mounting position deviations ⁇ Xm and ⁇ Ym.
  • the processing unit 20 obtains the deviation between the obtained coordinates of the component center Pm and the correct mounting point J as mounting position deviations ⁇ Xm and ⁇ Ym.
  • the solder portion S is melted and solidified to form the solder portion S'.
  • the entire surface of the land L is covered by the solder portion S'.
  • the position of the component center Pm corresponding to the component center of the component P'does not always coincide with the mounting point J, and the mounting position deviations ⁇ Xm and ⁇ Ym exist. If at least one of these mounting misalignments exceeds each allowable value, it is determined to be defective.
  • the inspection process for all the parts to be inspected is completed, the inspection results are uploaded (ST65), and the substrate 4 is carried out downstream (ST66).
  • the mounting board manufacturing system 1 shown in the present embodiment includes a mounting point position data storage unit (first storage unit) 41, a screen printing device M4 as a solder part forming device, and a solder part inspection device. It has an M5, a solder unit position data storage unit (second storage unit) 42, a mounting target position data creation unit (creation unit) 43, and a component mounting device M6 (M7).
  • the first storage unit 41 stores the mounting point position data including the position of the mounting point J obtained by actually measuring the board 4 in association with the identification information for identifying the board 4.
  • the mounting point position data relates to the positional relationship between the reference mark on the substrate 4 and the mounting point J.
  • the screen printing apparatus M4 forms a solder portion S on the substrate 4.
  • the solder portion inspection device M5 measures the solder portion S formed on the substrate 4 by the screen printing device M4, and creates solder portion position data including the position of the solder portion S.
  • the solder portion position data includes the positional relationship between the reference mark and the solder portion S.
  • the second storage unit 42 stores the solder unit position data in association with the identification information.
  • the creation unit 43 creates mounting target position data including the mounting target position of the component P on the substrate 4 specified by the identification information based on the mounting point position data specified by the identification information and the solder portion position data.
  • the component mounting device M6 (M7) positions the substrate 4 whose position of the solder portion S is measured by the solder portion inspection device M5 at the working position.
  • the component mounting device M6 (M7) has a mounting head 37.
  • the mounting head 37 mounts the component P at the mounting target position on the substrate 4 located at the working position.
  • the mounting target position is specified by the mounting target position data associated with the identification information of the substrate 4.
  • the component mounting device M6 (M7) shown in the present embodiment has a board transport unit 35, a mounting target position data acquisition unit (second acquisition unit) 56, and a mounting work unit 40.
  • the substrate transport unit 35 receives the substrate 4 to which unique identification information is given, the solder portion S is formed, and the position of the solder portion S is measured, and positions the substrate 4 at the working position.
  • the board transfer unit 35 further carries out the component-mounted board 4 on which the component P has been mounted from the working position to the equipment downstream.
  • the second acquisition unit 56 acquires the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data.
  • the mounting point position data is obtained by actually measuring the board 4, and includes the position of the mounting point J on the board 4.
  • the solder portion position data includes the position of the solder portion S obtained by actually measuring the solder portion S.
  • the mounting work unit 40 has a mounting head 37.
  • the mounting head 37 mounts the component P at the mounting target position on the substrate 4 located at the working position.
  • the mounting target position is specified by the mounting target position data associated with the identification information of the substrate 4.
  • the mounted component inspection device M8 shown in the present embodiment is included in the mounting board manufacturing system 1 shown in the present embodiment, and is a component mounted at the mounting point J of the board 4 identified by the unique identification information. Measure the deviation of the mounting position of P.
  • the mounted component inspection device M8 has a substrate transport unit 22 as a work stage, a data acquisition unit 20e, and an inspection unit 20b.
  • the board transfer unit 22 holds the component-mounted board 4 on which the component P is mounted by the component mounting device M6 (M7).
  • the data acquisition unit 20e acquires the mounting target position data associated with the identification mark of the substrate 4 held by the substrate transport unit 22.
  • the mounting target position data is created in advance by the mounting target position data creating unit 43 in the information management device 3 of the mounting board manufacturing system.
  • the inspection unit 20b obtains a deviation of the mounting position of the component P mounted on the mounting point J of the board 4 held by the board transporting unit 22. That is, the inspection unit 20b obtains the deviation of the mounting position of the component P with respect to the mounting target position set based on the mounting target position data.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the computer.
  • the functions of the information management device 3 in the above-described embodiment, the control unit 30 in the component mounting devices M6 and M7, and the processing unit 20 in the mounted component inspection device M8 are realized by, for example, a program executed by the computer 2100.
  • the computer 2100 has an input device 2101 such as an input button and a touch pad, an output device 2102 such as a display and a speaker, a CPU 2103, a ROM (Read Only Memory) 2104, and a RAM (Random Access Memory) 2105.
  • the computer 2100 reads information from a hard disk device, a storage device 2106 such as an SSD (Solid State Drive), a DVD-ROM (Digital entirely Disk Read Only Memory), and a recording medium such as a USB (Universal Serial Bus) memory.
  • a transmission / reception device 2108 that communicates via a network.
  • the above-mentioned parts are connected by a bus 2109.
  • the reading device 2107 reads the program from the non-temporary recording medium on which the program for realizing the functions of the above parts is recorded, and stores the program in the storage device 2106.
  • the transmission / reception device 2108 communicates with the server device connected to the network, and stores the program downloaded from the server device for realizing the functions of the above parts in the storage device 2106.
  • the CPU 2103 copies the program stored in the storage device 2106 to the RAM 2105, and sequentially reads and executes the instructions included in the program from the RAM 2105.
  • the functions of the creation unit 43 of the information management device 3, the first information processing unit 45 to the third information processing unit 47, and the functional blocks other than the fourth storage unit 53 to the seventh storage unit 58a of the control unit 30 Functions, functions of functional blocks other than the eighth storage unit 20c and the ninth storage unit 20d of the processing unit 20 are realized.
  • the program is executed, the information obtained by the above-mentioned various processes is stored in the RAM 2105 or the storage device 2106, and is appropriately used.
  • the functional block of the information management device 3, the control unit 30, and the processing unit 20 may be realized as a physical circuit such as a dedicated IC (integrated circuit) or LSI (range-scale integration). it can.
  • a dedicated IC integrated circuit
  • LSI range-scale integration
  • a combination of a general-purpose computer and software and a dedicated circuit may be combined to form a functional block, a control unit 30, and a processing unit 20 of the information management device 3.
  • two or more of the functional blocks of the information management device 3, the control unit 30, and the processing unit 20 may be configured as a physically integrated circuit.
  • Each storage unit included in the information management device 3, the control unit 30, and the processing unit 20 is composed of a storage device 2106 such as a ROM 2104, a RAM 2105, a hard disk device, and an SSD (Solid State Drive), or a server device including any of them. Ru. Two or more of these storage units may be composed of a physically integrated storage device or server device. Further, one or more of these storage units may be configured in the cloud server.
  • the component mounting device and component mounting method of the present disclosure have the effect of improving the accuracy of position correction to which solder position information is applied and achieving a high level of component mounting quality. It is useful in the technical field of holding and mounting on a mounting point of a substrate on which a solder portion is formed.
  • Mounting board manufacturing system 1a Parts mounting line 2 Communication network 3 Information management device 4 Board 4a Resist film 4b Opening 4c Opening edge 4c'Edge gap 10 Screen printing control unit (control unit) 11 Board positioning unit 11a Printing stage XY ⁇ table (table) 11b Printing stage elevating mechanism (elevating mechanism) 13 Printed stage 13a Lifting table 14 Board support part 14a Board support pin 14b Board support part Lifting mechanism (lifting mechanism) 15 Substrate transport section 15a Carry-in conveyor 15b Printing stage conveyor 15c Carry-out conveyor 16 Screen printing section 17 Squeegee 17a Squeegee drive mechanism (elevation mechanism) 18 Screen mask 19 Camera unit 19a Mask camera 19b Board camera 20 Processing unit 20a Board recognition unit 20b Inspection unit 20c Inspection-related data storage unit (8th storage unit) 20d Test result storage unit (9th storage unit) 20e Data acquisition unit 20f Data output unit 21, 31 Base 22 Board transfer unit 24 Inspection head 24a Lens barrel unit 24b Lighting unit 25 Inspection head movement mechanism (movement mechanism) 26 Camera 27

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This mounting substrate manufacturing system has a solder section formed on a substrate, and includes a component-installing device that installs a component in this solder section. According to this system, mounting point position data obtained by making actual measurements of the substrate is associated with identification information of the substrate. Also, the position of the solder section formed on the substrate is measured, and solder section position data is created. Then, the solder section position data is associated with the substrate identification information. Furthermore, installation-target position data is created on the basis of the mounting point position data and the solder section position data identified by the same identification information, the installation-target position data including the installation-target position of the component identified by the identification information.

Description

部品搭載装置および部品搭載方法、実装基板製造システムおよび実装基板製造方法、ならびに搭載済部品検査装置Component mounting device and component mounting method, mounting board manufacturing system and mounting board manufacturing method, and mounted component inspection device
 本開示は、はんだ部が形成された基板に部品を搭載する部品搭載装置および部品搭載方法、それを用いた実装基板製造システムおよび実装基板製造方法、ならびに搭載済部品検査装置に関する。 The present disclosure relates to a component mounting device and a component mounting method for mounting components on a substrate on which a solder portion is formed, a mounting board manufacturing system and a mounting board manufacturing method using the same, and a mounted component inspection device.
 基板に電子部品を実装して実装基板を製造する実装基板製造システムは、はんだ印刷装置、部品搭載装置、リフロー装置などの複数の部品実装用設備を連結して構成されている。このような構成の実装基板製造システムにおいて、基板におけるはんだ接合用のランドに対して、はんだの印刷位置がずれると、このずれに起因する実装不良が発生する。このような実装不良を防止することを目的として、はんだ印刷後の基板におけるはんだ位置情報を後工程に対してフィードフォワードする位置補正技術が用いられている。このはんだ位置情報のフィードフォワードに基づく位置補正では、はんだの印刷位置を実際に計測して求めたはんだ位置情報が、後工程の部品搭載装置に対して送られる。部品搭載装置では送られたはんだ位置情報に基づいて搭載位置が補正される(例えば特許文献1参照)。特許文献1に示された技術では、部品搭載装置は、フィードフォワードされたはんだ位置情報を適用して部品搭載を実行する第1の実装モードと、はんだ位置情報を適用せずに部品搭載を実行する第2の実装モードとを選択的に実行する。 A mounting board manufacturing system that mounts electronic components on a board to manufacture a mounting board is configured by connecting a plurality of component mounting equipment such as a solder printing device, a component mounting device, and a reflow device. In a mounting board manufacturing system having such a configuration, if the solder printing position shifts with respect to the solder bonding land on the board, mounting defects due to this shift occur. For the purpose of preventing such mounting defects, a position correction technique for feeding forward the solder position information on the substrate after solder printing to a subsequent process is used. In the position correction based on the feed forward of the solder position information, the solder position information obtained by actually measuring the printing position of the solder is sent to the component mounting device in the subsequent process. In the component mounting device, the mounting position is corrected based on the sent solder position information (see, for example, Patent Document 1). In the technique shown in Patent Document 1, the component mounting device executes the first mounting mode in which the feed-forwarded solder position information is applied to execute the component mounting, and the component mounting without applying the solder position information. Selectively execute the second mounting mode.
特開2014-103191号公報Japanese Unexamined Patent Publication No. 2014-103191
 本開示の実装基板製造システムは、実装点位置データ記憶部と、はんだ部形成装置と、はんだ部検査装置と、はんだ部位置データ記憶部と、搭載目標位置データ作成部と、部品搭載装置とを有する。実装点位置データ記憶部は、基板を実測して得られた実装点の位置を含む実装点位置データを、その基板を識別する識別情報と関連付けて記憶する。はんだ部形成装置は、その基板にはんだ部を形成する。はんだ部検査装置は、はんだ部形成装置によって基板に形成されたはんだ部を計測して、はんだ部の位置を含むはんだ部位置データを作成する。はんだ部位置データ記憶部は、はんだ部位置データを、識別情報と関連付けて記憶する。搭載目標位置データ作成部は、識別情報で特定される実装点位置データとはんだ部位置データとに基づいて、識別情報で特定される基板における部品の搭載目標位置を含む搭載目標位置データを作成する。部品搭載装置は、はんだ部検査装置によりはんだ部の位置を計測した基板を作業位置に位置させる。また部品搭載装置は搭載ヘッドを有する。搭載ヘッドは、作業位置に位置した基板における搭載目標位置に部品を搭載する。搭載目標位置は、基板の識別情報に関連付けられた搭載目標位置データで特定される。 The mounting board manufacturing system of the present disclosure includes a mounting point position data storage unit, a solder part forming device, a solder part inspection device, a solder part position data storage unit, a mounting target position data creation unit, and a component mounting device. Have. The mounting point position data storage unit stores the mounting point position data including the mounting point position obtained by actually measuring the board in association with the identification information for identifying the board. The solder portion forming apparatus forms a solder portion on the substrate. The solder part inspection device measures the solder part formed on the substrate by the solder part forming device, and creates the solder part position data including the position of the solder part. The solder portion position data storage unit stores the solder portion position data in association with the identification information. The mounting target position data creation unit creates mounting target position data including the mounting target position of the component on the board specified by the identification information based on the mounting point position data specified by the identification information and the solder part position data. .. The component mounting device positions the substrate whose position of the solder portion is measured by the solder portion inspection device at the working position. Further, the component mounting device has a mounting head. The mounting head mounts the component at the mounting target position on the board located at the working position. The mounting target position is specified by the mounting target position data associated with the identification information of the substrate.
 本開示の実装基板製造方法では、部品を基板の実装点に搭載する搭載ヘッドを有する部品搭載装置を使用する。この製造方法では、基板を実測して得られた実装点の位置を含む実装点位置データを、基板を識別する識別情報と関連付けて記憶する。一方、基板にはんだ部を形成する。そして、はんだ部位置データを識別情報と関連付けて記憶する。さらに、識別情報で特定される実装点位置データと、はんだ部位置データとに基づいて、識別情報で特定される基板における部品の搭載目標位置を含む搭載目標位置データを作成する。そして、部品搭載装置によって、はんだ部の位置を計測した基板を作業位置に位置させ、基板の識別情報に関連付けられた搭載目標位置データで特定された搭載目標位置に部品を搭載する。 In the mounting board manufacturing method of the present disclosure, a component mounting device having a mounting head for mounting a component at a mounting point of the board is used. In this manufacturing method, the mounting point position data including the mounting point position obtained by actually measuring the board is stored in association with the identification information for identifying the board. On the other hand, a solder portion is formed on the substrate. Then, the solder portion position data is stored in association with the identification information. Further, based on the mounting point position data specified by the identification information and the solder portion position data, mounting target position data including the mounting target position of the component on the substrate specified by the identification information is created. Then, the component mounting device positions the board whose position of the solder portion is measured at the working position, and mounts the component at the mounting target position specified by the mounting target position data associated with the identification information of the board.
 本開示の部品搭載装置は、基板搬送部と、搭載目標位置データ取得部と、搭載作業部とを有する。基板搬送部は、固有の識別情報が付与され、はんだ部が形成され、はんだ部の位置が計測された基板を受け取って作業位置に位置させる。基板搬送部はさらに、部品の搭載が済んだ部品搭載済基板を作業位置から下流の設備へ搬出する。搭載目標位置データ取得部は、実装点位置データと、実装点位置データと同一の識別情報で特定されるはんだ部位置データとに基づいて算出された搭載目標位置データを取得する。実装点位置データは、基板を実測して得られ、基板の実装点の位置を含む。はんだ部位置データは、はんだ部を実測して得られたはんだ部の位置を含む。搭載作業部は、搭載ヘッドを有する。搭載ヘッドは、作業位置に位置した基板における搭載目標位置に部品を搭載する。搭載目標位置は、基板の識別情報に関連付けられた搭載目標位置データで特定される。 The component mounting device of the present disclosure includes a board transporting unit, a mounting target position data acquisition unit, and a mounting work unit. The substrate transport unit receives the substrate to which unique identification information is given, the solder portion is formed, and the position of the solder portion is measured, and positions the substrate at the working position. The board transfer unit further carries out the component-mounted board on which the component has been mounted from the work position to the equipment downstream. The mounting target position data acquisition unit acquires the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data. The mounting point position data is obtained by actually measuring the board and includes the position of the mounting point of the board. The solder portion position data includes the position of the solder portion obtained by actually measuring the solder portion. The mounting work unit has a mounting head. The mounting head mounts the component at the mounting target position on the board located at the working position. The mounting target position is specified by the mounting target position data associated with the identification information of the substrate.
 本開示の部品搭載方法は、搭載ヘッドで部品を保持して固有の識別情報が付与された基板にその部品を搭載する部品搭載装置で実行される。この部品搭載方法では、基板を上流の設備から受け取って搭載ヘッドによる作業位置に位置させる。一方、実装点位置データと、実装点位置データと同一の識別情報で特定されるはんだ部位置データとに基づいて算出された搭載目標位置データを取得する。実装点位置データは、基板を実測して得られた基板の実装点の位置を含む。はんだ部位置データは、はんだ部を実測して得られたはんだ部の位置を含む。そして、作業位置に位置する基板の識別情報に関連付けられた搭載目標位置データで特定された搭載目標位置に搭載ヘッドで部品を搭載する。 The component mounting method of the present disclosure is executed by a component mounting device that holds a component with a mounting head and mounts the component on a board to which unique identification information is given. In this component mounting method, the board is received from the upstream equipment and positioned at the working position by the mounting head. On the other hand, the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data is acquired. The mounting point position data includes the position of the mounting point of the board obtained by actually measuring the board. The solder portion position data includes the position of the solder portion obtained by actually measuring the solder portion. Then, the component is mounted by the mounting head at the mounting target position specified by the mounting target position data associated with the identification information of the board located at the working position.
 本開示の搭載済部品検査装置は、本開示の実装基板製造システムに含まれ、固有の識別情報で識別される基板の実装点に搭載された部品の搭載位置のずれを計測する。この検査装置は、作業ステージと、データ取得部と、検査部とを有する。作業ステージは、部品搭載装置によって部品が搭載された部品搭載済基板を保持する。データ取得部は、作業ステージに保持された基板の識別マークに関連付けされた搭載目標位置データを取得する。搭載目標位置データは、実装基板製造システムの情報管理装置における搭載目標位置データ作成部で予め作成されている。検査部は、作業ステージに保持された基板の実装点に搭載された部品の搭載位置のずれを求める。すなわち検査部は、搭載目標位置データに基づいて設定された搭載目標位置に対する部品の搭載位置のずれを求める。 The mounted component inspection device of the present disclosure is included in the mounting board manufacturing system of the present disclosure, and measures the deviation of the mounting position of the mounted component at the mounting point of the board identified by the unique identification information. This inspection device has a work stage, a data acquisition unit, and an inspection unit. The work stage holds a component-mounted board on which components are mounted by a component-mounting device. The data acquisition unit acquires the mounting target position data associated with the identification mark of the substrate held on the work stage. The mounting target position data is created in advance by the mounting target position data creation unit in the information management device of the mounting board manufacturing system. The inspection unit obtains the deviation of the mounting position of the component mounted at the mounting point of the board held on the work stage. That is, the inspection unit obtains the deviation of the mounting position of the component with respect to the mounting target position set based on the mounting target position data.
 本開示によれば、基板を実測して得られた、その基板の実装点の正確な位置情報とはんだ位置情報とを適用することで、高度な部品実装品質を実現することができる。 According to the present disclosure, a high level of component mounting quality can be realized by applying the accurate position information of the mounting point of the board and the solder position information obtained by actually measuring the board.
本開示の実施の形態に係る実装基板製造システムの構成説明図Configuration explanatory view of the mounting board manufacturing system according to the embodiment of the present disclosure. 図1に示す実装基板製造システムを構成するスクリーン印刷装置の構成説明図Configuration explanatory view of the screen printing apparatus constituting the mounting board manufacturing system shown in FIG. 図1に示す実装基板製造システムを構成するスクリーン印刷装置の機能説明図Functional explanatory view of the screen printing apparatus constituting the mounting board manufacturing system shown in FIG. 図1に示す実装基板製造システムを構成する基板計測装置、はんだ部検査装置、搭載済部品検査装置、実装基板検査装置の構成説明図Configuration explanatory view of the board measuring device, the solder part inspection device, the mounted component inspection device, and the mounting board inspection device constituting the mounting board manufacturing system shown in FIG. 図1に示す実装基板製造システムを構成する部品搭載装置の構成説明図Configuration explanatory view of the component mounting device constituting the mounting board manufacturing system shown in FIG. 図1に示す実装基板製造システムにおける情報管理装置および部品搭載装置の制御系の構成を示すブロック図A block diagram showing a configuration of a control system of an information management device and a component mounting device in the mounting board manufacturing system shown in FIG. 図1に示す実装基板製造システムにおける搭載済部品検査装置の制御系の構成を示すブロック図A block diagram showing a configuration of a control system of a mounted component inspection device in the mounting board manufacturing system shown in FIG. 図4に示す基板計測装置における処理を示すフローチャートA flowchart showing processing in the substrate measuring apparatus shown in FIG. 図4に示す実装基板製造システムを構成する基板計測装置における処理を示す工程説明図A process explanatory view showing processing in the board measuring apparatus constituting the mounting board manufacturing system shown in FIG. 図2に示すスクリーン印刷装置における処理を示すフローチャートA flowchart showing processing in the screen printing apparatus shown in FIG. 図2に示すスクリーン印刷装置における処理を示す工程説明図A process explanatory view showing processing in the screen printing apparatus shown in FIG. 図4に示すはんだ部検査装置における処理を示すフローチャートA flowchart showing processing in the solder portion inspection apparatus shown in FIG. 図4に示すはんだ部検査装置における処理を示す工程説明図A process explanatory view showing processing in the solder portion inspection apparatus shown in FIG. 図6に示す情報管理装置における処理を示すフローチャートA flowchart showing processing in the information management device shown in FIG. 図6に示す情報管理装置における処理を示す工程説明図A process explanatory diagram showing processing in the information management device shown in FIG. 図6に示す部品搭載装置における処理を示すフローチャートA flowchart showing processing in the component mounting device shown in FIG. 図6に示す部品搭載装置における処理を示す工程説明図A process explanatory diagram showing processing in the component mounting apparatus shown in FIG. 図7に示す搭載済部品検査装置における処理を示すフローチャートFlow chart showing processing in the mounted parts inspection device shown in FIG. 図7に示す搭載済部品検査装置における処理を示す工程説明図A process explanatory view showing processing in the mounted parts inspection apparatus shown in FIG. 図4に示す実装基板検査装置における処理を示すフローチャートA flowchart showing processing in the mounting board inspection apparatus shown in FIG. 図4に示す実装基板検査装置における処理を示す工程説明図A process explanatory view showing processing in the mounting board inspection apparatus shown in FIG. 本開示の実施の形態の実装基板製造システムの作業対象となる基板に形成された第1パターンのランドの断面図Cross-sectional view of the land of the first pattern formed on the substrate to be worked on the mounting substrate manufacturing system of the embodiment of the present disclosure. 図15Aに示す第1パターンのランドの上面図Top view of the land of the first pattern shown in FIG. 15A 本開示の実施の形態の実装基板製造システムの作業対象となる基板に形成された第2パターンのランドの断面図Cross-sectional view of the land of the second pattern formed on the substrate to be worked on the mounting substrate manufacturing system of the embodiment of the present disclosure. 図16Aに示す第2パターンのランドの上面図Top view of the land of the second pattern shown in FIG. 16A コンピュータのハードウェア構成の一例を示す図Diagram showing an example of computer hardware configuration
 本開示の実施の形態に先立ち、本開示に至った経緯について説明する。上述の特許文献1に示す技術を含め、従来技術には位置補正における位置基準の設定方法に起因して、位置補正精度をさらに向上させることが難しい。すなわち従来技術では、基板設計に使用したCADデータで示されるランド位置や実装点を基準として、印刷後のはんだ位置や部品装着後の装着位置が計測され、これらの計測によって得られた位置ずれ量を適用して部品搭載位置が補正される。ところが実際の基板におけるランド位置や実装点は、基板製作工程におけるばらつきやリフローにおける熱膨張の影響等の要因によりCADデータで示される位置からずれている場合が多い。このため、上述のフィードフォワードされたはんだ位置情報を適用した位置補正の精度には限界があり、さらに高度な部品実装品質を実現するためにはこの課題を解決することが求められている。特に、基板の両面に部品を実装する実装基板においては、第1面実装後のリフローにおける熱膨張の影響により、第2面のランド位置の変動が避けられない。そのため、両面実装の場合には、部品実装品質を高度に実現することが一層困難である。 Prior to the embodiment of the present disclosure, the background to the present disclosure will be described. Including the technique shown in Patent Document 1 described above, it is difficult to further improve the position correction accuracy in the prior art due to the method of setting the position reference in the position correction. That is, in the prior art, the solder position after printing and the mounting position after component mounting are measured based on the land position and mounting point indicated by the CAD data used for the board design, and the amount of misalignment obtained by these measurements is measured. Is applied to correct the component mounting position. However, the land position and mounting point on the actual board often deviate from the position indicated by the CAD data due to factors such as variations in the board manufacturing process and the influence of thermal expansion in reflow. Therefore, there is a limit to the accuracy of position correction to which the above-mentioned feed-forwarded solder position information is applied, and it is required to solve this problem in order to realize a higher level of component mounting quality. In particular, in a mounting board in which components are mounted on both sides of the board, fluctuations in the land position of the second surface are unavoidable due to the influence of thermal expansion in the reflow after mounting on the first surface. Therefore, in the case of double-sided mounting, it is more difficult to achieve a high degree of component mounting quality.
 本開示は、はんだ位置情報を適用した位置補正の精度を向上させて、部品実装品質を高度に実現することができる部品搭載装置および部品搭載方法、ならびにこれらを用いた実装基板製造システムおよび実装基板製造方法を提供する。また本開示は、実装基板製造システムにて使用される搭載済部品検査装置を提供する。 The present disclosure discloses a component mounting device and a component mounting method capable of improving the accuracy of position correction to which solder position information is applied to achieve a high degree of component mounting quality, and a mounting board manufacturing system and mounting board using these. Provide a manufacturing method. The present disclosure also provides a mounted component inspection device used in a mounting board manufacturing system.
 次に図面を参照しながら本開示の実施の形態を説明する。まず図1、図2を参照して、本実施の形態における実装基板製造システム1の構成および機能について説明する。実装基板製造システム1は、図2に示す基板4に電子部品(以下、部品と称す)が実装された実装基板を製造する。図1において、実装基板製造システム1は、複数の部品実装用設備を連結した部品実装ライン1aを主体としている。部品実装ライン1aを構成する各設備は通信ネットワーク2によって相互に接続されるとともに、通信ネットワーク2を介して情報管理装置3に接続されている。 Next, an embodiment of the present disclosure will be described with reference to the drawings. First, the configuration and function of the mounting board manufacturing system 1 in the present embodiment will be described with reference to FIGS. 1 and 2. The mounting board manufacturing system 1 manufactures a mounting board on which electronic components (hereinafter referred to as components) are mounted on the board 4 shown in FIG. In FIG. 1, the mounting board manufacturing system 1 mainly includes a component mounting line 1a in which a plurality of component mounting devices are connected. The equipment constituting the component mounting line 1a is connected to each other by the communication network 2 and is connected to the information management device 3 via the communication network 2.
 部品実装ライン1aでは、上流から順に、基板供給装置M1、基板識別情報付与装置M2、基板計測装置M3、スクリーン印刷装置M4、はんだ部検査装置M5、部品搭載装置M6、M7、搭載済部品検査装置M8、リフロー装置M9、実装基板検査装置M10、基板回収装置M11が、基板搬送方向(X軸の正方向)に直列に接続されている。これらの部品実装用設備には、部品保持ノズルで部品を保持してはんだ部が形成された基板4の実装点に搭載する部品搭載装置M6、M7が含まれている。 In the component mounting line 1a, in order from the upstream, the board supply device M1, the board identification information imparting device M2, the board measuring device M3, the screen printing device M4, the solder part inspection device M5, the component mounting devices M6, M7, and the mounted component inspection device. The M8, the reflow device M9, the mounting board inspection device M10, and the board recovery device M11 are connected in series in the board transfer direction (positive direction of the X-axis). These component mounting equipment include component mounting devices M6 and M7 that hold components by component holding nozzles and mount them at mounting points of a substrate 4 on which a solder portion is formed.
 基板供給装置M1は生産対象となる未実装の基板4を下流の基板識別情報付与装置M2へ供給する。基板識別情報付与装置M2は、基板供給装置M1から供給された基板4に、基板4を識別するための固有の識別情報を付与する。例えば、基板識別情報付与装置M2は、基板4に識別情報である識別コードをレーザにより印字するレーザーマーカである。 The board supply device M1 supplies the unmounted board 4 to be produced to the downstream board identification information imparting device M2. The board identification information giving device M2 gives the board 4 supplied from the board supply device M1 unique identification information for identifying the board 4. For example, the substrate identification information imparting device M2 is a laser marker that prints an identification code, which is identification information, on the substrate 4 by a laser.
 基板計測装置M3は、基板4を撮像することにより、基板4に形成された基準マークとはんだ接続用のランドの位置(ランド位置)やサイズを実測する。そして、計測されたランド位置やサイズを含むランド計測データを、計測対象の基板4の識別情報とともに通信ネットワーク2を介して情報管理装置3に送信する。また、基板計測装置M3は、計測結果から実装点の位置を算出する。実装点の位置は、基板4の基準マークとの相対的な位置関係で特定される。具体的には、実装点の位置は、基準マークによって定まる座標系における座標で特定される。基板計測装置M3は、計測結果から基板4の基準マークと実装点との位置関係を含んだ実装点位置データを算出し、基板4の識別情報と関連付けて通信ネットワーク2を介して情報管理装置3に送信する。この実装点位置データは、情報管理装置3によって下流の装置群である、スクリーン印刷装置M4、はんだ部検査装置M5、部品搭載装置M6、M7、搭載済部品検査装置M8、実装基板検査装置M10にフィードフォワードされる。 The board measuring device M3 actually measures the position (land position) and size of the reference mark formed on the board 4 and the land for solder connection by imaging the board 4. Then, the land measurement data including the measured land position and size is transmitted to the information management device 3 via the communication network 2 together with the identification information of the board 4 to be measured. Further, the board measuring device M3 calculates the position of the mounting point from the measurement result. The position of the mounting point is specified by the relative positional relationship with the reference mark of the substrate 4. Specifically, the position of the mounting point is specified by the coordinates in the coordinate system determined by the reference mark. The board measuring device M3 calculates the mounting point position data including the positional relationship between the reference mark of the board 4 and the mounting point from the measurement result, associates it with the identification information of the board 4, and establishes the information management device 3 via the communication network 2. Send to. The mounting point position data is transmitted to the screen printing device M4, the solder part inspection device M5, the component mounting devices M6, M7, the mounted component inspection device M8, and the mounting board inspection device M10, which are a group of devices downstream by the information management device 3. Feed forward.
 本実施の形態では、基板計測装置M3が、実装点位置データ取得部として機能する。すなわち、実装点位置データ取得部は、実測によって得られた基板の基準マークと実装点との位置関係に関する実装点位置データを取得する。なお、基板計測装置M3以外の装置(例えば、情報管理装置3が、実装点位置データを算出してもよい。この場合、基板計測装置M3と実装点位置データを算出する装置とが実装点位置データ取得部として機能する。あるいは、情報管理装置3を経由せず、基板計測装置M3が、直接、下流の装置群に実装点位置データをフィードフォワードしてもよい。 In the present embodiment, the board measuring device M3 functions as a mounting point position data acquisition unit. That is, the mounting point position data acquisition unit acquires the mounting point position data regarding the positional relationship between the reference mark of the substrate and the mounting point obtained by the actual measurement. A device other than the board measuring device M3 (for example, the information management device 3 may calculate the mounting point position data. In this case, the board measuring device M3 and the device for calculating the mounting point position data are the mounting point positions. Alternatively, the board measuring device M3 may directly feed forward the mounting point position data to the downstream device group without going through the information management device 3.
 また、スクリーン印刷装置M4、部品搭載装置M6、M7、搭載済部品検査装置M8には、実装点位置データは必須ではない。したがって、これらの装置をフィードフォワードの対象から除外してもよい。このように、実測による計測結果に基づいて実装点位置データを取得することにより、製造過程における基板の変形などに起因する位置誤差を排除して、実装点と基板4の基準マークとの位置関係を正確に求めることができる。 Further, the mounting point position data is not indispensable for the screen printing device M4, the component mounting devices M6, M7, and the mounted component inspection device M8. Therefore, these devices may be excluded from the feed forward target. In this way, by acquiring the mounting point position data based on the measurement result of the actual measurement, the position error caused by the deformation of the board in the manufacturing process is eliminated, and the positional relationship between the mounting point and the reference mark of the board 4 is eliminated. Can be calculated accurately.
 スクリーン印刷装置M4は、基板4に形成されたランドにスクリーン印刷によりはんだ部を形成する。したがってスクリーン印刷装置M4は基板4にはんだ部を形成するはんだ部形成装置として機能する。なお、はんだ部を形成するには、スクリーン印刷装置を用いる以外にも、例えば、ランドにはんだを塗布することによってはんだ部を形成するはんだ塗布装置を用いてもよい。 The screen printing device M4 forms a solder portion by screen printing on the land formed on the substrate 4. Therefore, the screen printing apparatus M4 functions as a solder portion forming apparatus for forming a solder portion on the substrate 4. In addition to using a screen printing device, for forming the solder portion, for example, a solder coating device that forms the solder portion by applying solder to the lands may be used.
 はんだ部検査装置M5は、スクリーン印刷装置M4よって基板4に形成されたはんだ部の位置を計測して、基準マークとはんだ部との位置関係を含むはんだ部位置データを作成する。すなわち、はんだ部位置データは、基準マークによって定まる座標系におけるはんだ部の座標を含む。本実施の形態においては、このはんだ部位置データと同一の識別情報で特定される実装点位置データとに基づいて、はんだ部の位置ずれを考慮に入れた搭載目標位置が算出される。 The solder part inspection device M5 measures the position of the solder part formed on the substrate 4 by the screen printing device M4, and creates the solder part position data including the positional relationship between the reference mark and the solder part. That is, the solder portion position data includes the coordinates of the solder portion in the coordinate system determined by the reference mark. In the present embodiment, the mounting target position is calculated in consideration of the displacement of the solder portion based on the solder portion position data and the mounting point position data specified by the same identification information.
 部品搭載装置M6、M7は、部品保持ノズルで部品を保持して、スクリーン印刷装置M4によってはんだ部が形成された基板4の実装点に部品を搭載する。本実施の形態では、部品搭載装置M6、M7の作業対象となる基板4には、基板識別情報付与装置M2によって固有の識別情報が付与されている。これにより、上述のはんだ部位置データと実装点位置データとの対応関係が、基板4に印加された識別情報を介して正しく判断される。 The component mounting devices M6 and M7 hold the component by the component holding nozzle, and mount the component at the mounting point of the substrate 4 on which the solder portion is formed by the screen printing device M4. In the present embodiment, unique identification information is given to the substrate 4 to be worked on by the component mounting devices M6 and M7 by the substrate identification information giving device M2. As a result, the correspondence between the solder portion position data and the mounting point position data described above is correctly determined via the identification information applied to the substrate 4.
 搭載済部品検査装置M8は、部品搭載装置M6、M7で部品が搭載された基板4(以下、部品搭載済基板と称す)における、部品の搭載位置のずれ(以下、搭載ずれと称す)を計測する。搭載済部品検査装置M8は、この搭載ずれに関する部品搭載ずれデータを出力する。本実施の形態においては、この部品搭載ずれデータを搭載済部品検査装置M8が部品搭載装置M6、M7にフィードバックすることにより、部品搭載装置M6、M7の経時変動に起因する部品の搭載ずれが補正される。すなわち、キャリブレーションが実行される。なお、搭載済部品検査装置M8は、上述の部品搭載済み基板における部品の搭載ずれを計測する場合は、部品搭載済み基板の識別情報に関連付けられた搭載目標位置データを部品の搭載ずれ計測の基準として使用する。 The mounted component inspection device M8 measures the deviation of the component mounting position (hereinafter referred to as the mounting deviation) on the board 4 (hereinafter referred to as the component mounted board) on which the component is mounted by the component mounting devices M6 and M7. To do. The mounted component inspection device M8 outputs component mounting misalignment data related to this mounting misalignment. In the present embodiment, the mounted component inspection device M8 feeds back the component mounting misalignment data to the component mounting devices M6 and M7 to correct the component mounting misalignment caused by the time variation of the component mounting devices M6 and M7. Will be done. That is, calibration is performed. When the mounted component inspection device M8 measures the mounting misalignment of a component on the above-mentioned mounted component board, the mounted component inspection device M8 uses the mounting target position data associated with the identification information of the mounted component board as a reference for measuring the mounting misalignment of the component. Used as.
 リフロー装置M9は、部品搭載済基板を所定の加熱プロファイルにしたがって加熱することにより、ランドのはんだ部を溶融し、固化させて部品を基板4にはんだ接合する。実装基板検査装置M10は、リフロー後の基板4を撮像して取得された画像に基づき、実装基板の良否を判定するための検査を行う。すなわち実装基板検査装置M10は、取得された画像を認識処理することにより、基板4の実装状態、すなわちはんだ接合後の部品の位置や姿勢などの良否を検査する。基板回収装置M11は、実装基板検査装置M10が検査した後の、完成した良品の実装基板を回収する。 The reflow device M9 heats the component-mounted substrate according to a predetermined heating profile to melt and solidify the solder portion of the land and solder-join the component to the substrate 4. The mounting board inspection device M10 performs an inspection for determining the quality of the mounting board based on the image obtained by imaging the board 4 after the reflow. That is, the mounting board inspection device M10 inspects the mounting state of the board 4, that is, the quality of the position and orientation of the components after soldering, by recognizing the acquired image. The board recovery device M11 collects the completed non-defective mounting board after the mounting board inspection device M10 inspects the board.
 次に、図2~図5を参照して、上述の部品実装ライン1aを構成する実装用設備の構成を説明する。なお、ここではこれらの実装用設備のうち、スクリーン印刷装置M4、基板計測装置M3、はんだ部検査装置M5、搭載済部品検査装置M8、実装基板検査装置M10、部品搭載装置M6、M7についてのみ説明し、他の設備については説明を省略する。 Next, the configuration of the mounting equipment constituting the above-mentioned component mounting line 1a will be described with reference to FIGS. 2 to 5. Of these mounting equipment, only the screen printing device M4, the board measuring device M3, the solder part inspection device M5, the mounted component inspection device M8, the mounting board inspection device M10, and the component mounting devices M6 and M7 will be described here. However, the description of other equipment will be omitted.
 まず図2を参照して、スクリーン印刷装置M4の構成を説明する。基板位置決め部11は、アライメント機構である印刷ステージXYΘテーブル(以下、テーブル)11aと、テーブル11aの上面に設けられた印刷ステージ昇降機構(以下、昇降機構)11bとを有する。テーブル11aには、以下に説明する各部を制御するスクリーン印刷制御部(以下、制御部)10が内蔵されている。昇降機構11bには、昇降テーブル13aを介して印刷ステージ13が保持されている。 First, the configuration of the screen printing device M4 will be described with reference to FIG. The substrate positioning unit 11 has a printing stage XYΘ table (hereinafter, table) 11a which is an alignment mechanism, and a printing stage elevating mechanism (hereinafter, elevating mechanism) 11b provided on the upper surface of the table 11a. The table 11a has a built-in screen printing control unit (hereinafter, control unit) 10 that controls each unit described below. The elevating mechanism 11b holds the printing stage 13 via the elevating table 13a.
 テーブル11aを駆動することにより、印刷ステージ13はXYΘ方向に水平移動し、昇降機構11bを駆動することにより印刷ステージ13は昇降する。昇降テーブル13aの上面には、基板サポートピン14aを有する基板サポート部14が設けられている。基板サポート部14は、基板サポート部昇降機構(以下、昇降機構)14bにより昇降駆動する。 By driving the table 11a, the print stage 13 moves horizontally in the XYΘ direction, and by driving the elevating mechanism 11b, the print stage 13 moves up and down. A board support portion 14 having a board support pin 14a is provided on the upper surface of the elevating table 13a. The board support unit 14 is driven up and down by a board support unit elevating mechanism (hereinafter, elevating mechanism) 14b.
 さらに昇降テーブル13aは、基板搬送部15を構成する印刷ステージコンベア15bを下方から支持している。基板搬送部15は印刷ステージコンベア15bの上流に位置する搬入コンベア15aと、下流に位置する搬出コンベア15cをさらに含む。上流から搬入コンベア15aに搬入された基板4は印刷ステージコンベア15bに受け渡され、以下に説明するスクリーン印刷部16によるスクリーン印刷の対象となる。スクリーン印刷後の基板4は搬出コンベア15cを経て下流へ搬出される。 Further, the elevating table 13a supports the printing stage conveyor 15b constituting the substrate transport unit 15 from below. The substrate transport unit 15 further includes a carry-in conveyor 15a located upstream of the printing stage conveyor 15b and a carry-out conveyor 15c located downstream. The substrate 4 carried into the carry-in conveyor 15a from the upstream is delivered to the printing stage conveyor 15b and is subject to screen printing by the screen printing unit 16 described below. The substrate 4 after screen printing is carried out downstream via the carry-out conveyor 15c.
 印刷ステージ13の上方には、スクリーン印刷部16が配置されている。スクリーン印刷部16は、基板4にはんだを印刷するための印刷パターンが設けられたスクリーンマスク18を含む。スクリーンマスク18の上方には、スキージ17およびスキージ17をスクリーンマスク18に当接させてスキージング動作を行わせるためのスキージ駆動機構17aが設けられている。 A screen printing unit 16 is arranged above the printing stage 13. The screen printing unit 16 includes a screen mask 18 provided with a printing pattern for printing solder on the substrate 4. Above the screen mask 18, a squeegee drive mechanism 17a for bringing the squeegee 17 and the squeegee 17 into contact with the screen mask 18 to perform a squeezing operation is provided.
 印刷ステージ13とスクリーンマスク18との間には、マスクカメラ19aと基板カメラ19bとを含むカメラユニット19が配置されている。カメラユニット19はカメラ移動機構(図示省略)によりX軸、Y軸に沿って移動可能である。これにより、マスクカメラ19aは、スクリーンマスク18の所望の位置を撮像し、基板カメラ19bは、基板4の所望の位置を撮像する。この撮像により取得された画像を認識処理することにより、スクリーンマスク18、基板4の水平方向の位置が検出される。そしてこの位置検出結果に基づいて、印刷ステージ13を水平移動させることにより、基板4とスクリーンマスク18とを位置合わせすることができる。 A camera unit 19 including a mask camera 19a and a substrate camera 19b is arranged between the printing stage 13 and the screen mask 18. The camera unit 19 can be moved along the X-axis and the Y-axis by a camera moving mechanism (not shown). As a result, the mask camera 19a images the desired position of the screen mask 18, and the substrate camera 19b images the desired position of the substrate 4. By recognizing the image acquired by this imaging, the horizontal positions of the screen mask 18 and the substrate 4 are detected. Then, based on this position detection result, the substrate 4 and the screen mask 18 can be aligned by horizontally moving the print stage 13.
 スクリーン印刷装置M4によるはんだのスクリーン印刷においては、図3に示すように、印刷ステージコンベア15bに基板4を保持させた状態で、昇降機構11bを駆動して印刷ステージ13を上昇させる(矢印a)。これとともに、昇降機構14bを駆動して基板サポート部14を基板サポートピン14aとともに上昇させる(矢印b)。さらに、基板4を下面から基板サポートピン14aによって下受けして基板4をスクリーンマスク18の下面に押しつける。そしてこの状態でスキージ17を下降させて(矢印c)、スクリーンマスク18に当接させる。次いでスキージ17をY軸に沿って移動させる。これにより、基板4にはスクリーンマスク18に形成されたパターン孔を介してはんだがスクリーン印刷され、基板4のランドにははんだ部が形成される。 In the screen printing of solder by the screen printing apparatus M4, as shown in FIG. 3, the elevating mechanism 11b is driven to raise the printing stage 13 while the substrate 4 is held by the printing stage conveyor 15b (arrow a). .. At the same time, the elevating mechanism 14b is driven to raise the board support portion 14 together with the board support pin 14a (arrow b). Further, the substrate 4 is received from the lower surface by the substrate support pin 14a, and the substrate 4 is pressed against the lower surface of the screen mask 18. Then, in this state, the squeegee 17 is lowered (arrow c) and brought into contact with the screen mask 18. The squeegee 17 is then moved along the Y axis. As a result, solder is screen-printed on the substrate 4 through the pattern holes formed in the screen mask 18, and a solder portion is formed on the land of the substrate 4.
 次に、図4を参照して、基板計測装置M3、はんだ部検査装置M5、搭載済部品検査装置M8、実装基板検査装置M10の構成および機能を説明する。なお、これらの装置は検査・計測の対象が異なることから詳細構成は装置毎に異なっているが、検査・計測の対象をカメラで撮像して光学的に認識する点では共通している。以下、基板計測装置M3を代表して説明する。 Next, with reference to FIG. 4, the configurations and functions of the board measuring device M3, the solder part inspection device M5, the mounted component inspection device M8, and the mounting board inspection device M10 will be described. Since these devices have different inspection / measurement targets, the detailed configuration differs for each device, but they are common in that the inspection / measurement target is imaged by a camera and optically recognized. Hereinafter, the substrate measuring device M3 will be described as a representative.
 基台21には処理部20が内蔵されている。処理部20は、基板計測装置M3における各種の作業動作や処理、例えば基板搬送動作、撮像処理、撮像により得られた画像の認識処理や画像に基づく検査・計測処理を制御する。基台21の上面には、基板搬送部22が配列されている。基板搬送部22は上流から搬入された検査・計測対象の基板4を搬送して、以下に説明する検査ヘッド24による検査・計測作業位置に基板4を位置させる。 The processing unit 20 is built in the base 21. The processing unit 20 controls various work operations and processes in the substrate measuring device M3, for example, a substrate transport operation, an imaging process, an image recognition process obtained by imaging, and an inspection / measurement process based on the image. The substrate transport portion 22 is arranged on the upper surface of the base 21. The substrate transport unit 22 transports the substrate 4 to be inspected / measured carried in from the upstream, and positions the substrate 4 at the inspection / measurement work position by the inspection head 24 described below.
 検査ヘッド24は、鏡筒部24aと、鏡筒部24aの下端部に設けられた照明ユニット24bとを有し、XYテーブルで構成された検査ヘッド移動機構25によって、X軸、Y軸に沿って水平移動する。カメラ26は、その撮像方向を下向きにして鏡筒部24aに内蔵されている。この構成により、カメラ26を、基板4の所望の部位の上方に位置させることができる。照明ユニット24bには、上段照明28a、下段照明28bが内蔵されている。 The inspection head 24 has a lens barrel portion 24a and a lighting unit 24b provided at the lower end portion of the lens barrel portion 24a, and is along the X-axis and the Y-axis by the inspection head moving mechanism 25 composed of an XY table. And move horizontally. The camera 26 is built in the lens barrel portion 24a with its imaging direction facing downward. With this configuration, the camera 26 can be positioned above the desired portion of the substrate 4. The lighting unit 24b has a built-in upper lighting 28a and a lower lighting 28b.
 カメラ26が撮像する時には、処理部20は、撮像対象に適した照明条件に応じて上段照明28a、下段照明28bのいずれかまたは双方を点灯させる。さらに鏡筒部24aの側面には同軸照明28cが設けられている。同軸照明28cを点灯することにより、鏡筒部24aの内部に配置されたハーフミラー27を介して基板4をカメラ26の撮像方向と同軸方向から照明することができる。上段照明28a、下段照明28b、同軸照明28cは、照明光源部28を構成している。 When the camera 26 takes an image, the processing unit 20 turns on either or both of the upper illumination 28a and the lower illumination 28b according to the illumination conditions suitable for the imaging target. Further, a coaxial illumination 28c is provided on the side surface of the lens barrel portion 24a. By turning on the coaxial illumination 28c, the substrate 4 can be illuminated from the direction coaxial with the imaging direction of the camera 26 via the half mirror 27 arranged inside the lens barrel portion 24a. The upper lighting 28a, the lower lighting 28b, and the coaxial lighting 28c constitute an illumination light source unit 28.
 このように、照明条件を切り替えることにより、同一のカメラ26によって異なる用途の検査・計測を実行することができる。基板計測装置M3は、基板4を計測して実装点位置データを取得(作成)し、はんだ部検査装置M5は、はんだ部を検査してはんだ部位置データを取得(作成)する。また、搭載済部品検査装置M8は、基板4に搭載された部品の搭載ずれを計測して、部品搭載ずれデータを取得(作成)し、実装基板検査装置M10は、はんだ付けされた部品を検査して、実装基板検査データを取得(作成)する。 By switching the lighting conditions in this way, it is possible to carry out inspections and measurements for different purposes with the same camera 26. The board measuring device M3 measures the board 4 and acquires (creates) mounting point position data, and the solder portion inspection device M5 inspects the solder portion and acquires (creates) the solder portion position data. Further, the mounted component inspection device M8 measures the mounting misalignment of the components mounted on the substrate 4 and acquires (creates) the component mounting misalignment data, and the mounting board inspection device M10 inspects the soldered components. Then, the mounting board inspection data is acquired (created).
 次に、図5を参照して、部品搭載装置M6、M7の構成および機能を説明する。部品搭載装置M6、M7の基本構成は共通しているので、代表して部品搭載装置M6について説明する。部品搭載装置M6は、部品保持ノズル37bで部品を保持して固有の識別情報が付与された基板4の実装点に搭載する。基台31には、部品搭載制御部(以下、制御部)30が内蔵されている。制御部30は、以下に説明する部品搭載装置M6の作業動作を制御する。制御部30は、例えば基板搬送動作、部品搭載機構による部品搭載作業を制御する。また制御部30は、部品搭載装置M6が有する部品認識カメラ36、基板認識カメラ39によって取得された画像の認識処理を行う。以下、部品認識カメラ36、基板認識カメラ39を第1カメラ36、第2カメラ39と称する。 Next, the configurations and functions of the component mounting devices M6 and M7 will be described with reference to FIG. Since the basic configurations of the component mounting devices M6 and M7 are common, the component mounting device M6 will be described as a representative. The component mounting device M6 mounts the component at the mounting point of the substrate 4 to which the component is held by the component holding nozzle 37b and unique identification information is given. A component mounting control unit (hereinafter, control unit) 30 is built in the base 31. The control unit 30 controls the work operation of the component mounting device M6 described below. The control unit 30 controls, for example, the substrate transfer operation and the component mounting operation by the component mounting mechanism. Further, the control unit 30 performs recognition processing of the image acquired by the component recognition camera 36 and the board recognition camera 39 included in the component mounting device M6. Hereinafter, the component recognition camera 36 and the board recognition camera 39 will be referred to as a first camera 36 and a second camera 39.
 基台31の上面には、1対の基板搬送コンベアを有する基板搬送部35が基板搬送方向を示すX軸に沿って配置されている。基板搬送部35は、作業対象の基板4をX軸に沿って搬送する。基台31の上面において、基板搬送部35の間には、基板下受け部34が配備されている。基板下受け部34は、複数のサポートピン34aと、サポートピン34aを昇降させるサポートピン昇降機構34bとを有する。基板4が搭載作業位置に搬入された状態において、制御部30がサポートピン昇降機構34bを駆動してサポートピン34aを上昇させることにより、複数のサポートピン34aが基板4の下面を支持する。 On the upper surface of the base 31, a substrate transfer unit 35 having a pair of substrate transfer conveyors is arranged along the X axis indicating the substrate transfer direction. The substrate transport unit 35 transports the substrate 4 to be worked on along the X axis. On the upper surface of the base 31, a substrate lower receiving portion 34 is provided between the substrate conveying portions 35. The substrate lower receiving portion 34 has a plurality of support pins 34a and a support pin elevating mechanism 34b for raising and lowering the support pins 34a. While the board 4 is carried into the mounting work position, the control unit 30 drives the support pin elevating mechanism 34b to raise the support pin 34a, so that the plurality of support pins 34a support the lower surface of the board 4.
 基台31のY軸の方向の両側には、それぞれ部品供給用の台車32がセットされている。台車32の上面には、部品供給ユニットであるテープフィーダ33が装着されている。テープフィーダ33は、基板4に搭載される部品を収納したキャリアテープをピッチ送りすることにより、以下に説明する部品搭載機構による部品取出し位置に部品を供給する。 Carts 32 for supplying parts are set on both sides of the base 31 in the Y-axis direction. A tape feeder 33, which is a component supply unit, is mounted on the upper surface of the carriage 32. The tape feeder 33 pitch-feeds the carrier tape containing the components mounted on the substrate 4 to supply the components to the component taking-out position by the component mounting mechanism described below.
 次に、部品搭載機構の構成を説明する。基台31によって支持されたフレーム部(図示省略)には、搭載ヘッド移動機構(以下、移動機構)38がY軸に沿って配置されている。移動機構38には、移動部材37aを介して搭載ヘッド37が装着されている。搭載ヘッド37の下端部には部品保持ノズル37bが設けられている。移動機構38を駆動することにより、搭載ヘッド37はX軸およびY軸に沿って移動する。これにより、搭載ヘッド37は、基板搬送部35に位置決め保持された基板4とテープフィーダ33との間で移動する。そして、部品保持ノズル37bによってテープフィーダ33から取り出した部品を基板4に搭載する。 Next, the configuration of the component mounting mechanism will be described. A mounting head moving mechanism (hereinafter, moving mechanism) 38 is arranged along the Y axis in the frame portion (not shown) supported by the base 31. The mounting head 37 is mounted on the moving mechanism 38 via the moving member 37a. A component holding nozzle 37b is provided at the lower end of the mounting head 37. By driving the moving mechanism 38, the mounting head 37 moves along the X-axis and the Y-axis. As a result, the mounting head 37 moves between the substrate 4 positioned and held by the substrate transport unit 35 and the tape feeder 33. Then, the components taken out from the tape feeder 33 by the component holding nozzle 37b are mounted on the substrate 4.
 基板搬送部35とテープフィーダ33との間には第1カメラ36がそれぞれ配置されている。テープフィーダ33から部品を取り出した搭載ヘッド37を第1カメラ36の上方に位置させた状態で、第1カメラ36は、搭載ヘッド37に保持された部品を下方から撮像する。これにより、搭載ヘッド37に保持された状態の部品が認識され、部品の識別や位置ずれの検出が行われる。 The first camera 36 is arranged between the substrate transport unit 35 and the tape feeder 33, respectively. The first camera 36 takes an image of the parts held by the mounting head 37 from below in a state where the mounting head 37 from which the parts are taken out from the tape feeder 33 is positioned above the first camera 36. As a result, the component held by the mounting head 37 is recognized, and the component is identified and the misalignment is detected.
 移動部材37aには、第2カメラ39が撮像方向を下向きにして配置されている。第2カメラ39を搭載ヘッド37とともに移動させて基板4の上方に位置させた状態で、第2カメラ39は、基板搬送部35に保持された基板4を撮像する。この撮像により取得された基板4の識別情報や基準マークおよび実装点の画像を認識処理することにより、制御部30は、基板4の識別や位置検出を行うことができる。部品搭載装置M6、M7による部品搭載においては、このようにして取得された基板4の識別結果や位置検出結果に基づいて、部品搭載機構による部品搭載動作が補正される。 A second camera 39 is arranged on the moving member 37a with the imaging direction facing downward. The second camera 39 takes an image of the substrate 4 held by the substrate transport unit 35 in a state where the second camera 39 is moved together with the mounting head 37 and positioned above the substrate 4. By recognizing the identification information of the substrate 4 and the images of the reference mark and the mounting point acquired by this imaging, the control unit 30 can identify the substrate 4 and detect the position. In the component mounting by the component mounting devices M6 and M7, the component mounting operation by the component mounting mechanism is corrected based on the identification result and the position detection result of the substrate 4 acquired in this way.
 上述構成において、基板搬送部35は以下の機能を有している。はんだ部形成装置としてのスクリーン印刷装置M4によってはんだ部が形成され、はんだ部検査装置M5によるはんだ部の計測が済んだ後、まず基板搬送部35は、基板4を受け取って部品保持ノズル37bによる作業位置に位置させる。次いで部品保持ノズル37bによる部品の搭載が済んだ部品搭載済基板を作業位置から下流の設備へ搬出する。 In the above configuration, the substrate transport unit 35 has the following functions. After the solder part is formed by the screen printing device M4 as the solder part forming device and the solder part is measured by the solder part inspection device M5, the board transporting part 35 first receives the board 4 and works with the component holding nozzle 37b. Position it. Next, the component-mounted board on which the component has been mounted by the component holding nozzle 37b is carried out from the work position to the equipment downstream.
 次に、図6を参照して、実装基板製造システム1を構成する情報管理装置3および部品搭載装置M6、M7の制御系の構成について説明する。情報管理装置3は通信ネットワーク2を介して部品搭載装置M6、M7の制御部30と接続されている。情報管理装置3は内部処理機能としての実装点位置データ記憶部41、はんだ部位置データ記憶部42、搭載目標位置データ作成部43および搭載目標位置データ記憶部44を有している。以下、実装点位置データ記憶部41を第1記憶部41、はんだ部位置データ記憶部42を第2記憶部42、搭載目標位置データ作成部43を作成部43、搭載目標位置データ記憶部44を第3記憶部44と称する。第1記憶部41は、はんだ部検査装置M5から受信した実装点位置データを、基板4を個別に識別する識別情報と関連付けて記憶する。実装点位置データとは、基板4を実測して得られた基板4の基準マークと実装点との位置関係に関するデータである。 Next, with reference to FIG. 6, the configuration of the control system of the information management device 3 and the component mounting devices M6 and M7 constituting the mounting board manufacturing system 1 will be described. The information management device 3 is connected to the control units 30 of the component mounting devices M6 and M7 via the communication network 2. The information management device 3 has a mounting point position data storage unit 41, a soldering unit position data storage unit 42, a mounting target position data creating unit 43, and a mounting target position data storage unit 44 as internal processing functions. Hereinafter, the mounting point position data storage unit 41 is the first storage unit 41, the solder unit position data storage unit 42 is the second storage unit 42, the mounting target position data creation unit 43 is the creation unit 43, and the mounting target position data storage unit 44 is It is referred to as a third storage unit 44. The first storage unit 41 stores the mounting point position data received from the solder unit inspection device M5 in association with the identification information that individually identifies the substrate 4. The mounting point position data is data related to the positional relationship between the reference mark of the board 4 and the mounting point obtained by actually measuring the board 4.
 第2記憶部42は、はんだ部位置データを記憶する。はんだ部は、はんだ部形成装置であるスクリーン印刷装置M4によって基板4に形成され、はんだ部位置データは、はんだ部検査装置M5で計測して得られている。作成部43は、同一の識別情報で特定される実装点位置データとはんだ部位置データとに基づいて、その識別情報で特定される基板4における部品の搭載目標位置データを作成する。実装点位置データとはんだ部位置データとに基づいて搭載目標位置データを作成する目的は、溶融した液状のはんだ(以下、溶融はんだと称する)の表面張力による部品の挙動などを考慮した位置に部品を搭載するためである。第3記憶部44は、作成部43によって作成された搭載目標位置データを記憶する。搭載目標位置データは、対応する基板4の識別情報と関連付けされて記憶される。搭載目標位置データは、基板4の基準マークで定まる座標系における搭載目標位置の座標を含む。 The second storage unit 42 stores the solder unit position data. The solder portion is formed on the substrate 4 by the screen printing device M4 which is a solder portion forming device, and the solder portion position data is obtained by measuring with the solder portion inspection device M5. The creating unit 43 creates mounting target position data of the component on the substrate 4 specified by the identification information based on the mounting point position data specified by the same identification information and the soldering part position data. The purpose of creating the mounting target position data based on the mounting point position data and the solder part position data is to consider the behavior of the component due to the surface tension of the molten liquid solder (hereinafter referred to as molten solder). This is to install. The third storage unit 44 stores the mounting target position data created by the creation unit 43. The mounting target position data is stored in association with the identification information of the corresponding substrate 4. The mounting target position data includes the coordinates of the mounting target position in the coordinate system determined by the reference mark on the substrate 4.
 さらに情報管理装置3は、第1の情報処理部45と、第2の情報処理部46と、第3の情報処理部47とを有している。第1の情報処理部45、第2の情報処理部46、第3の情報処理部47はそれぞれ、部品実装ライン1aのうちの1つ以上の特定の装置と通信可能に構成されている。そして、その1つ以上の特定の装置との間で、1つ以上の特定の装置に応じた特定のデータを授受する。第1の情報処理部45は、はんだ部検査装置M5および部品搭載装置M6、M7と通信可能となっている。第1の情報処理部45は、はんだ部検査装置M5によって作成されたはんだ部位置データを受信して第2記憶部42に記憶する。また、第1の情報処理部45は、第3記憶部44に記憶されている搭載目標位置データを部品搭載装置M6、M7へ送信する。具体的には、第1の情報処理部45は、部品搭載装置M6、M7からこれから部品の搭載が行われる基板4の識別情報を受信すると、その識別情報に関連する搭載目標位置データを部品搭載装置M6、M7に出力する。 Further, the information management device 3 has a first information processing unit 45, a second information processing unit 46, and a third information processing unit 47. The first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 are each configured to be communicable with one or more specific devices in the component mounting line 1a. Then, specific data corresponding to the one or more specific devices is exchanged with the one or more specific devices. The first information processing unit 45 can communicate with the solder unit inspection device M5 and the component mounting devices M6 and M7. The first information processing unit 45 receives the solder unit position data created by the solder unit inspection device M5 and stores it in the second storage unit 42. Further, the first information processing unit 45 transmits the mounting target position data stored in the third storage unit 44 to the component mounting devices M6 and M7. Specifically, when the first information processing unit 45 receives the identification information of the board 4 on which the component is to be mounted from the component mounting devices M6 and M7, the first information processing unit 45 mounts the component mounting target position data related to the identification information. Output to devices M6 and M7.
 第2の情報処理部46は、少なくとも搭載済部品検査装置M8と通信可能となっている。第2の情報処理部46は、搭載済部品検査装置M8で検査される基板4の識別情報に関連する搭載目標位置データを第3記憶部44から読みだして搭載済部品検査装置M8へ提供する。これは、搭載済部品検査装置M8に搭載目標位置に関する部品搭載目標位置データを部品の搭載ずれ計測の基準として利用させるためである。第2の情報処理部46は、搭載済部品検査装置M8から基板4の識別情報を受信するとその識別情報に関連する搭載目標位置データを搭載済部品検査装置M8に送信する。 The second information processing unit 46 can communicate with at least the mounted parts inspection device M8. The second information processing unit 46 reads the mounting target position data related to the identification information of the substrate 4 inspected by the mounted parts inspection device M8 from the third storage unit 44 and provides the mounted parts inspection device M8 with the data. .. This is for the mounted component inspection device M8 to use the component mounting target position data related to the mounting target position as a reference for measuring the mounting deviation of the component. When the second information processing unit 46 receives the identification information of the board 4 from the mounted component inspection device M8, the second information processing unit 46 transmits the mounting target position data related to the identification information to the mounted component inspection device M8.
 第3の情報処理部47は、複数の部品搭載装置(ここでは部品搭載装置M6、M7)および搭載済部品検査装置M8と通信可能となっている。そして第3の情報処理部47は、搭載済部品検査装置M8から出力された部品搭載ずれデータを、その搭載ずれに係る部品の搭載を実行した部品搭載装置に振り分けて、それぞれの部品搭載装置に提供する。具体的には、部品搭載装置は、第1部品を基板4に搭載する部品搭載装置M6と、第2部品を同じ基板4に搭載する部品搭載装置M7とを含む。搭載済部品検査装置M8は、複数の部品搭載済基板のそれぞれについて、第1部品の第1搭載位置のずれと、第2部品の第2搭載位置のずれとを計測する。そして、部品搭載ずれデータとして、第1搭載位置のずれに関する第1部品搭載ずれデータを出力するとともに、第2搭載位置のずれに関する第2部品搭載ずれデータを出力する。第3の情報処理部47は、搭載済部品検査装置M8から出力された部品搭載ずれデータのうち、第1部品搭載ずれデータを部品搭載装置M6に提供し、第2部品搭載ずれデータを部品搭載装置M7に提供する。 The third information processing unit 47 is capable of communicating with a plurality of component mounting devices (here, component mounting devices M6 and M7) and the mounted component inspection device M8. Then, the third information processing unit 47 distributes the component mounting deviation data output from the mounted component inspection device M8 to the component mounting devices that have executed the mounting of the components related to the mounting deviation, and distributes the component mounting deviation data to each component mounting device. provide. Specifically, the component mounting device includes a component mounting device M6 for mounting the first component on the board 4, and a component mounting device M7 for mounting the second component on the same board 4. The mounted component inspection device M8 measures the deviation of the first mounting position of the first component and the deviation of the second mounting position of the second component for each of the plurality of component mounted boards. Then, as the component mounting deviation data, the first component mounting deviation data regarding the deviation of the first mounting position is output, and the second component mounting deviation data regarding the deviation of the second mounting position is output. The third information processing unit 47 provides the first component mounting deviation data to the component mounting device M6 among the component mounting deviation data output from the mounted component inspection device M8, and the second component mounting deviation data is loaded as a component. Provided to device M7.
 なお、上述の第1の情報処理部45、第2の情報処理部46、第3の情報処理部47の構成および区分は任意である。例えば本実施の形態に示すように、第1の情報処理部45、第2の情報処理部46、第3の情報処理部47をそれぞれ専用の機能を有する単独の情報処理装置としてもよく、また第2の情報処理部46、第3の情報処理部47の機能をまとめて単一の情報処理装置としてもよい。さらに、第1の情報処理部45、第2の情報処理部46、第3の情報処理部47の機能を全てまとめて、全体で一つの情報処理装置を構成するようにしてもよい。 The configuration and division of the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 described above are arbitrary. For example, as shown in the present embodiment, the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 may be used as independent information processing devices having dedicated functions, respectively. The functions of the second information processing unit 46 and the third information processing unit 47 may be combined into a single information processing device. Further, all the functions of the first information processing unit 45, the second information processing unit 46, and the third information processing unit 47 may be combined to form one information processing device as a whole.
 制御部30は、搭載ヘッド37、移動機構38、基板搬送部35と接続されて、これらを制御する。また制御部30には第2カメラ39、第1カメラ36による撮像結果が取り込まれる。 The control unit 30 is connected to the mounting head 37, the moving mechanism 38, and the substrate transport unit 35 to control them. Further, the control unit 30 captures the imaging results of the second camera 39 and the first camera 36.
 制御部30は、内部処理機能として、基板認識部51、部品認識部52、部品搭載処理部54、実装点位置データ取得部55、搭載目標位置データ取得部56、キャリブレーションデータ算出部57、部品搭載ずれデータ取得部58、データ出力部59を有している。さらに制御部30は、内部メモリとしての生産関連データ記憶部53、実装点位置データ記憶部55a、搭載目標位置データ記憶部56a、部品搭載ずれデータ記憶部58aを有している。以下、実装点位置データ取得部55、搭載目標位置データ取得部56、キャリブレーションデータ算出部57、部品搭載ずれデータ取得部58を第1取得部55、第2取得部56、算出部57、第3取得部58と称し、生産関連データ記憶部53、実装点位置データ記憶部55a、搭載目標位置データ記憶部56a、部品搭載ずれデータ記憶部58aを第4記憶部53、第5記憶部55a、第6記憶部56a、第7記憶部58aと称する。 As internal processing functions, the control unit 30 includes a board recognition unit 51, a component recognition unit 52, a component mounting processing unit 54, a mounting point position data acquisition unit 55, a mounting target position data acquisition unit 56, a calibration data calculation unit 57, and a component. It has a mounting misalignment data acquisition unit 58 and a data output unit 59. Further, the control unit 30 has a production-related data storage unit 53 as an internal memory, a mounting point position data storage unit 55a, a mounting target position data storage unit 56a, and a component mounting misalignment data storage unit 58a. Hereinafter, the mounting point position data acquisition unit 55, the mounting target position data acquisition unit 56, the calibration data calculation unit 57, and the component mounting deviation data acquisition unit 58 are combined with the first acquisition unit 55, the second acquisition unit 56, the calculation unit 57, and the second. 3 Acquisition unit 58, production-related data storage unit 53, mounting point position data storage unit 55a, mounting target position data storage unit 56a, component mounting misalignment data storage unit 58a are referred to as fourth storage unit 53, fifth storage unit 55a, It is referred to as a sixth storage unit 56a and a seventh storage unit 58a.
 基板認識部51は、第2カメラ39によって取得された画像を認識処理し、部品認識部52は、第1カメラ36によって取得された画像を認識処理する。すなわち、基板認識部51は、基板搬送部35によって搬送されて基板下受け部34に位置保持された基板4の識別情報を検出し、基準マーク、実装点の位置を認識する。また、部品認識部52は、搭載ヘッド37に保持された状態の部品を識別し、部品の位置ずれ状態を検出する。 The board recognition unit 51 recognizes the image acquired by the second camera 39, and the component recognition unit 52 recognizes the image acquired by the first camera 36. That is, the substrate recognition unit 51 detects the identification information of the substrate 4 which is conveyed by the substrate transfer unit 35 and whose position is held by the substrate lower receiving unit 34, and recognizes the positions of the reference mark and the mounting point. Further, the component recognition unit 52 identifies a component held by the mounting head 37 and detects a misaligned state of the component.
 部品搭載処理部54は、基板搬送部35、搭載ヘッド37、移動機構38を制御することにより、搬入されたはんだ部形成済み基板に部品を搭載する部品搭載処理を実行させる。この部品搭載処理において参照される実装データなどの各種の生産関連データは、第4記憶部53に記憶されている。 The component mounting processing unit 54 controls the board transport unit 35, the mounting head 37, and the moving mechanism 38 to execute the component mounting process for mounting the components on the board on which the solder portion has been formed. Various production-related data such as mounting data referred to in this component mounting process are stored in the fourth storage unit 53.
 第1取得部55は、情報管理装置3の第1記憶部41に格納されている実装点位置データを取得する。この実装点位置データは、基板計測装置M3による基板4の実測によって得られた基準マークと実装点との位置関係に関する。第5記憶部55aは、第1取得部55によって取得された実装点位置データを記憶する。 The first acquisition unit 55 acquires the mounting point position data stored in the first storage unit 41 of the information management device 3. This mounting point position data relates to the positional relationship between the reference mark and the mounting point obtained by the actual measurement of the board 4 by the board measuring device M3. The fifth storage unit 55a stores the mounting point position data acquired by the first acquisition unit 55.
 第2取得部56は、情報管理装置3の作成部43によって作成された搭載目標位置データを取得する。この搭載目標位置データは、実装点位置データと、はんだ部検査装置で計測されたはんだ部の位置を含むはんだ部位置データに基づいて算出されている。これらの実装点位置データとはんだ部位置データは、同一の識別情報で特定される。第6記憶部56aは、第2取得部56によって取得された搭載目標位置データを記憶する。 The second acquisition unit 56 acquires the mounting target position data created by the creation unit 43 of the information management device 3. The mounting target position data is calculated based on the mounting point position data and the solder portion position data including the position of the solder portion measured by the solder portion inspection device. The mounting point position data and the solder portion position data are specified by the same identification information. The sixth storage unit 56a stores the mounting target position data acquired by the second acquisition unit 56.
 算出部57は、部品搭載装置M6の経時変動に起因する部品の搭載ずれを補正するためのキャリブレーションデータを算出する。このキャリブレーションデータは、複数の部品搭載済基板について搭載済部品検査装置M8で計測された部品の搭載ずれに関する部品搭載ずれデータに基づいて計算されている。部品搭載作業においては、部品搭載装置M6は、部品搭載装置M6の経時変動に起因する部品の搭載ずれを補正するためのキャリブレーションデータを使用して、搭載目標位置に部品を搭載する際の部品保持ノズル37bの停止位置を補正する。算出部57は、部品搭載装置M7についても同様のキャリブレーションデータを算出し、部品搭載装置M7もまた、そのキャリブレーションデータを使用して部品保持ノズル37bの停止位置を補正する。 The calculation unit 57 calculates calibration data for correcting the component mounting deviation due to the time-dependent fluctuation of the component mounting device M6. This calibration data is calculated based on the component mounting deviation data related to the component mounting deviation measured by the mounted component inspection device M8 for the plurality of component mounted boards. In the component mounting work, the component mounting device M6 uses calibration data for correcting the mounting deviation of the component due to the time variation of the component mounting device M6, and the component when the component is mounted at the mounting target position. The stop position of the holding nozzle 37b is corrected. The calculation unit 57 calculates the same calibration data for the component mounting device M7, and the component mounting device M7 also uses the calibration data to correct the stop position of the component holding nozzle 37b.
 第3取得部58は、搭載済部品検査装置M8で計測された部品の搭載ずれに関する部品搭載ずれデータを取得する。第3取得部58は、前述の第3の情報処理部47によって振り分けられた部品搭載ずれデータを取得する。第7記憶部58aは、第3取得部58によって取得された部品搭載ずれデータを記憶する。算出部57は、上述のキャリブレーションデータの算出に際し、第7記憶部58aに記憶された部品搭載ずれデータを参照する。 The third acquisition unit 58 acquires component mounting misalignment data related to component mounting misalignment measured by the mounted component inspection device M8. The third acquisition unit 58 acquires the component mounting misalignment data distributed by the above-mentioned third information processing unit 47. The seventh storage unit 58a stores the component mounting misalignment data acquired by the third acquisition unit 58. The calculation unit 57 refers to the component mounting misalignment data stored in the seventh storage unit 58a when calculating the calibration data described above.
 データ出力部59は、部品搭載装置M6、M7で収集されたログ情報等を含む稼働情報を、情報管理装置3や通信ネットワーク2を介して接続された監視システム(図示せず)にアップロードする。ログ情報は、部品を供給する際に使用された部品供給ユニット(テープフィーダ33)や部品保持ノズル37bを識別するための情報の他、エラー情報等を含む。 The data output unit 59 uploads operation information including log information collected by the component mounting devices M6 and M7 to a monitoring system (not shown) connected via the information management device 3 or the communication network 2. The log information includes error information and the like as well as information for identifying the component supply unit (tape feeder 33) and the component holding nozzle 37b used when supplying the component.
 上記構成において、搭載ヘッド37、第2カメラ39、移動機構38、第1カメラ36、基板認識部51、部品認識部52、第4記憶部53、部品搭載処理部54は、部品を搭載する作業を実行する搭載作業部40を構成する。すなわち搭載作業部40は、搭載ヘッド37による作業位置に位置する基板4の基準マークの位置を検出する。そして、検出した基準マークの位置と、基板4の識別情報に関連付けられた搭載目標位置データとから、作業位置における部品の搭載目標位置を認識する。さらに、この搭載目標位置を目標に部品保持ノズル37bで部品を搭載する。 In the above configuration, the mounting head 37, the second camera 39, the moving mechanism 38, the first camera 36, the board recognition unit 51, the component recognition unit 52, the fourth storage unit 53, and the component mounting processing unit 54 perform operations for mounting components. The mounting work unit 40 for executing the above is configured. That is, the mounting work unit 40 detects the position of the reference mark on the substrate 4 located at the working position by the mounting head 37. Then, the mounting target position of the component at the working position is recognized from the detected position of the reference mark and the mounting target position data associated with the identification information of the substrate 4. Further, the component is mounted by the component holding nozzle 37b with the target mounting position as the target.
 次に、図7を参照して、実装基板製造システム1を構成する搭載済部品検査装置M8の制御系の構成について説明する。情報管理装置3は通信ネットワーク2を介して搭載済部品検査装置M8の処理部20と接続されている。処理部20は、内部処理機能として、基板認識部20a、検査部20b、データ取得部20e、データ出力部20fを有している。さらに処理部20は、内部メモリとしての検査関連データ記憶部20c、検査結果記憶部20dを有している。以下、検査関連データ記憶部20c、検査結果記憶部20dを第8記憶部20c、第9記憶部20dと称する。 Next, with reference to FIG. 7, the configuration of the control system of the mounted component inspection device M8 constituting the mounting board manufacturing system 1 will be described. The information management device 3 is connected to the processing unit 20 of the mounted component inspection device M8 via the communication network 2. The processing unit 20 has a substrate recognition unit 20a, an inspection unit 20b, a data acquisition unit 20e, and a data output unit 20f as internal processing functions. Further, the processing unit 20 has an inspection-related data storage unit 20c and an inspection result storage unit 20d as internal memories. Hereinafter, the inspection-related data storage unit 20c and the inspection result storage unit 20d will be referred to as an eighth storage unit 20c and a ninth storage unit 20d.
 基板搬送部22は部品搭載装置M7から送られてきた部品搭載済基板を搬入するとともにその中央部に保持する。すなわち、基板搬送部22は搭載済部品検査装置M8における作業ステージとして機能する。 The board transfer unit 22 carries in the component-mounted board sent from the component mounting device M7 and holds it in the central portion thereof. That is, the substrate transport unit 22 functions as a work stage in the mounted component inspection device M8.
 基板認識部20aは、カメラ26によって取得された画像を認識処理する。すなわち、基板認識部20aは、基板搬送部22によって搬送されてきた基板4の識別情報を検出し、基板4の基準マークを認識する。 The board recognition unit 20a recognizes and processes the image acquired by the camera 26. That is, the substrate recognition unit 20a detects the identification information of the substrate 4 conveyed by the substrate transfer unit 22 and recognizes the reference mark of the substrate 4.
 検査部20bは、カメラ26によって取得された画像を解析することで基板4に搭載された部品の位置や状態等を検査する。具体的には、部品の搭載目標位置からの位置ずれ(部品搭載ずれ)、部品の有無などを検査する。検査部20bは、第8記憶部20cに記憶されている検査関連データを使用して、基板4に搭載された部品を検査する。第9記憶部20dは検査部20bによる検査結果を記憶する。検査結果は、基板識別情報毎に作成されたレコードに記録され、基板単位で検査結果を参照可能になっている。 The inspection unit 20b inspects the position and state of the parts mounted on the substrate 4 by analyzing the image acquired by the camera 26. Specifically, the position deviation from the mounting target position of the component (component mounting deviation), the presence or absence of the component, etc. are inspected. The inspection unit 20b inspects the parts mounted on the substrate 4 by using the inspection-related data stored in the eighth storage unit 20c. The ninth storage unit 20d stores the inspection result by the inspection unit 20b. The inspection result is recorded in a record created for each board identification information, and the inspection result can be referred to for each board.
 データ取得部20eは、通信ネットワーク2を通じて検査に必要なデータを取得する。検査に必要なデータとしては、情報管理装置3の第3記憶部44に記憶されている搭載目標位置データが含まれる。データ取得部20eによって取得されたデータは第8記憶部20cに記憶される。すなわち、データ取得部20eは、作成部43で作成され、作業ステージ(基板搬送部22)に保持された搭載目標位置データを取得するデータ取得部として機能する。搭載目標位置データは、基板4の識別マークに関連付けられている。 The data acquisition unit 20e acquires the data required for inspection through the communication network 2. The data required for the inspection includes the mounting target position data stored in the third storage unit 44 of the information management device 3. The data acquired by the data acquisition unit 20e is stored in the eighth storage unit 20c. That is, the data acquisition unit 20e functions as a data acquisition unit that is created by the creation unit 43 and acquires mounting target position data held on the work stage (board transfer unit 22). The mounting target position data is associated with the identification mark on the substrate 4.
 検査部20bは、データ取得部20eが取得した搭載目標位置データに基づいて設定された搭載目標位置に対する部品の搭載ずれを求める。具体的には、実装点に搭載された部品の位置と搭載目標位置との位置ずれを部品搭載ずれとして求める。 The inspection unit 20b obtains the mounting deviation of the component with respect to the mounting target position set based on the mounting target position data acquired by the data acquisition unit 20e. Specifically, the positional deviation between the position of the component mounted at the mounting point and the mounting target position is obtained as the component mounting deviation.
 なお、前述のように、基板計測装置M3、はんだ部検査装置M5、実装基板検査装置M10は搭載済部品検査装置M8と同様の構成を有する。ただし、制御系、特に検査部20b、第8記憶部20c、第9記憶部20dについては、それぞれの装置の目的に応じて対象とする部位やデータが異なっている。 As described above, the board measuring device M3, the solder portion inspection device M5, and the mounting board inspection device M10 have the same configuration as the mounted component inspection device M8. However, with respect to the control system, particularly the inspection unit 20b, the eighth storage unit 20c, and the ninth storage unit 20d, the target parts and data are different depending on the purpose of each device.
 次に、図8A~図14Bを参照して、基板計測装置M3から実装基板検査装置M10までの各装置における処理のフローおよびこれらの処理において実行される作業内容を説明する。ここでは、基板供給装置M1から供給されて基板識別情報付与装置M2によって識別情報である識別コードが付与された後の基板4を対象として、以下の処理が順次行われる。これらの処理は、部品保持ノズル37bが部品を保持して、はんだ部が形成された基板4の実装点に搭載する部品搭載装置における部品搭載方法、この部品搭載装置を使用した実装基板製造方法を示している。 Next, with reference to FIGS. 8A to 14B, the process flow in each device from the board measuring device M3 to the mounting board inspection device M10 and the work contents executed in these processes will be described. Here, the following processing is sequentially performed on the substrate 4 after being supplied from the substrate supply device M1 and assigned an identification code which is identification information by the substrate identification information imparting device M2. These processes include a component mounting method in a component mounting device in which a component holding nozzle 37b holds a component and mounts the component at a mounting point of a substrate 4 on which a solder portion is formed, and a mounting board manufacturing method using this component mounting device. Shown.
 まず図8A、図8Bを参照して、基板計測装置M3における処理について説明する。図8Aに示すように、基板4が図4に示す基板搬送部22によって搬入され、検査ヘッド24の直下に位置決めされる(ST1)。次いで基準マーク計測(ST2)が行われる。基準マーク計測では、基板4における基準マークをカメラ26が撮像し、取得された画像を処理部20(基板認識部20a)が認識処理することにより基準マークの位置を検出する。なお、ここでは基準マークの図示を省略している。 First, the processing in the substrate measuring device M3 will be described with reference to FIGS. 8A and 8B. As shown in FIG. 8A, the substrate 4 is carried in by the substrate transport unit 22 shown in FIG. 4 and is positioned directly below the inspection head 24 (ST1). Next, the reference mark measurement (ST2) is performed. In the reference mark measurement, the camera 26 captures the reference mark on the substrate 4, and the processing unit 20 (board recognition unit 20a) recognizes the acquired image to detect the position of the reference mark. The reference mark is not shown here.
 次いで図8Bに示すランドLが計測される(ST3)。基板4には部品のはんだ接合のためにランドLが形成されている。ランドLの位置は製造過程における誤差などの要因により、以下に説明する設計データ上のランド(L)の位置とは一致せず、位置ずれしている場合が多い。このため本実施の形態では、ST3によって求められた位置ずれに基づいて、処理部20が実装点Jの位置を定める。 Next, the land L shown in FIG. 8B is measured (ST3). A land L is formed on the substrate 4 for solder joining of parts. The position of the land L does not match the position of the land (L) on the design data described below due to factors such as an error in the manufacturing process, and is often misaligned. Therefore, in the present embodiment, the processing unit 20 determines the position of the mounting point J based on the positional deviation obtained by ST3.
 そのため、基板4に形成されたランドの位置および寸法が計測される。すなわち、処理部20は、カメラ26が撮影した画像からランドの位置および寸法を算出する。なお基板4において、破線で示す(L)、(J)は、設計データ上のランド(L)、実装点(J)をそれぞれ示している。また実線で示すL、Jは、実際の基板4におけるランドL、実装点Jをそれぞれ示している。実装点Jの位置はその実装点Jに実装される部品をはんだ接合する複数のランドLの位置によって定められる。ここでは、実装される部品が両端に接続端子を有する矩形型のチップ部品であり、このチップ部品をはんだ接合する複数のランドのパターンとして1対のランドLが設けられた例を示している。この例では処理部20は、1対のランドLを結ぶ直線の中点を実装点Jに定めている。 Therefore, the position and dimensions of the land formed on the substrate 4 are measured. That is, the processing unit 20 calculates the position and dimensions of the land from the image taken by the camera 26. In the substrate 4, (L) and (J) indicated by broken lines indicate lands (L) and mounting points (J) on the design data, respectively. Further, L and J shown by solid lines indicate land L and mounting point J on the actual substrate 4, respectively. The position of the mounting point J is determined by the positions of a plurality of lands L for soldering the components mounted on the mounting point J. Here, an example is shown in which the mounted component is a rectangular chip component having connection terminals at both ends, and a pair of lands L is provided as a pattern of a plurality of lands for soldering the chip components. In this example, the processing unit 20 defines the midpoint of the straight line connecting the pair of lands L as the mounting point J.
 なお、本実施の形態においては、部品の端子がはんだ接合される実際のランドと、基板4の表面を覆って保護するレジスト膜4aにランド本体部Laに対応して形成された開口部との組み合わせを、はんだ接合用のランドと定義している。実際のランドは、図15A~図16Bに示すランド本体部Laに相当し、開口部は、開口部4bに相当する。そして本実施の形態では、部品のはんだ接合のために形成されるランドとして、はんだ接合時に基板4の表面を覆って保護するレジスト膜4aの形態が異なる2種類のパターンのいずれをも採用可能となっている。この2種類のパターンとは、図15A、図15Bに示す第1パターンのランドLAと、図16A、図16Bに示す第2パターンのランドLBである。 In the present embodiment, the actual land to which the terminals of the parts are solder-bonded and the opening formed in the resist film 4a that covers and protects the surface of the substrate 4 corresponding to the land body La. The combination is defined as a land for solder bonding. The actual land corresponds to the land body portion La shown in FIGS. 15A to 16B, and the opening corresponds to the opening 4b. Further, in the present embodiment, as a land formed for solder joining of parts, any of two types of patterns having different forms of the resist film 4a that covers and protects the surface of the substrate 4 at the time of solder joining can be adopted. It has become. These two types of patterns are the land LA of the first pattern shown in FIGS. 15A and 15B and the land LB of the second pattern shown in FIGS. 16A and 16B.
 まず、図15A、図15Bを参照して、基板4の上面に形成される第1パターンのランドLAについて説明する。図15A、図15Bは、それぞれ基板4の断面図、平面図で、図15Aは、図15Bに示す15A-15A線における断面を示している。図15Bに示すように、基板4の上面には基板4に実装されるチップ部品の接続端子に対応した位置に、銅などの金属膜で形成された1対のランド本体部Laが矩形に形成されている。ランド本体部Laの周囲には基板4の上面を覆うレジスト膜4aが形成されている。レジスト膜4aにおいて、ランド本体部Laに対応する位置には矩形の開口部4bが形成されている。なお、図15Bは、開口部4bの周縁近傍を除いてレジスト膜4aを省略して示している。 First, the first pattern of land LA formed on the upper surface of the substrate 4 will be described with reference to FIGS. 15A and 15B. 15A and 15B are a cross-sectional view and a plan view of the substrate 4, respectively, and FIG. 15A shows a cross section taken along the line 15A-15A shown in FIG. 15B. As shown in FIG. 15B, a pair of land main body La formed of a metal film such as copper is formed in a rectangular shape on the upper surface of the substrate 4 at a position corresponding to the connection terminal of the chip component mounted on the substrate 4. Has been done. A resist film 4a covering the upper surface of the substrate 4 is formed around the land main body La. In the resist film 4a, a rectangular opening 4b is formed at a position corresponding to the land main body La. In FIG. 15B, the resist film 4a is omitted except for the vicinity of the peripheral edge of the opening 4b.
 開口部4bの内周縁に位置する、レジスト膜4aの開口縁部4cは、ランド本体部Laの外周縁であるランド縁部Lbを、ランド本体部Laの上面および側面から覆っている。この構成では、ランド本体部Laおよび開口部4bは、レジスト膜4aがランド本体部Laのランド縁部Lbを覆う第1パターンのランドLAを形成する。そして、ST3においては、開口縁部4cを検出することによりそれぞれの第1パターンのランドLAが検出され、1対のランドLAの中点が実装点Jとして特定される。 The opening edge 4c of the resist film 4a located on the inner peripheral edge of the opening 4b covers the land edge Lb, which is the outer peripheral edge of the land main body La, from the upper surface and the side surface of the land main body La. In this configuration, the land body La and the opening 4b form a first pattern of land LA in which the resist film 4a covers the land edge Lb of the land body La. Then, in ST3, the land LA of each first pattern is detected by detecting the opening edge portion 4c, and the midpoint of the pair of land LA is specified as the mounting point J.
 次に図16A、図16Bを参照して、第2パターンのランドLBについて説明する。図16A、図16Bは、それぞれ基板4の断面図、平面図で、図16Aは、図16Bに示す16A-16A線における断面を示している。図16Bに示すように、基板4の上面には、図15Bと同様に、1対のランド本体部Laが矩形に形成され、ランド本体部Laの周囲には基板4の上面を覆うレジスト膜4aが形成されている。レジスト膜4aにおいて、ランド本体部Laに対応する位置には矩形の開口部4bが形成されている。なお、図16Bは、開口部4bの周縁近傍を除いてレジスト膜4aの図示を省略して示している。 Next, the second pattern of land LB will be described with reference to FIGS. 16A and 16B. 16A and 16B are a cross-sectional view and a plan view of the substrate 4, respectively, and FIG. 16A shows a cross section taken along the line 16A-16A shown in FIG. 16B. As shown in FIG. 16B, a pair of land main body La is formed in a rectangular shape on the upper surface of the substrate 4 as in FIG. 15B, and a resist film 4a covering the upper surface of the substrate 4 is formed around the land main body La. Is formed. In the resist film 4a, a rectangular opening 4b is formed at a position corresponding to the land main body La. Note that FIG. 16B omits the illustration of the resist film 4a except for the vicinity of the peripheral edge of the opening 4b.
 開口部4bは、内周縁がランド本体部Laの外周縁から所定の縁部隙間4c’だけ隔てた位置となるように形状およびサイズが設定されている。これにより、ランド本体部Laの全体が開口部4b内において露呈されている。この構成において、ランド本体部Laおよび開口部4bは、ランド本体部Laの全体が開口部4b内において露呈された第2パターンのランドLBを形成する。そして、ST3においては、ランド本体部Laを検出することによりそれぞれのランドLBが検出され、1対のランドLBの中点が実装点Jとして特定される。なお図15A~図16Bに示す例では、ランド本体部La、開口部4bの形状が矩形である例を示したが、ランド本体部La、開口部4bは矩形以外の形状であってもよく、さらに複数のランド本体部La、開口部4bによってランドLA、ランドLBを形成してもよい。 The shape and size of the opening 4b are set so that the inner peripheral edge is separated from the outer peripheral edge of the land main body La by a predetermined edge gap 4c'. As a result, the entire land body La is exposed in the opening 4b. In this configuration, the land body La and the opening 4b form a second pattern of land LB in which the entire land body La is exposed in the opening 4b. Then, in ST3, each land LB is detected by detecting the land main body La, and the midpoint of the pair of land LBs is specified as the mounting point J. In the examples shown in FIGS. 15A to 16B, the shape of the land body La and the opening 4b is rectangular, but the land body La and the opening 4b may have shapes other than the rectangle. Further, the land LA and the land LB may be formed by a plurality of land main bodies La and openings 4b.
 次いで計測されたランド位置に基づいて、処理部20が実装点の位置を計算する(ST4)。前述のように、本実施の形態では、部品が実際にはんだ接合されるランドの位置もしくはランドに対応するレジスト開口部の位置に基づいて、実装点の位置が特定される。一対の端子を有するチップ部品が実装される実装点の場合は、計測によって求められた1対のランドLのランド位置L1,L2を結ぶ直線の中点を計算する。なおこの例では、ランド位置L1,L2はそれぞれ、平面視においてランドLの重心に相当する。そして、計算された中点が実装点Jとして特定される。そして処理部20は、特定された実装点Jの位置を基板4の識別情報と関連付けて、実装点位置データとして通信ネットワーク2を介してアップロードする(ST5)。 Next, the processing unit 20 calculates the position of the mounting point based on the measured land position (ST4). As described above, in the present embodiment, the position of the mounting point is specified based on the position of the land where the component is actually soldered or the position of the resist opening corresponding to the land. In the case of a mounting point on which a chip component having a pair of terminals is mounted, the midpoint of a straight line connecting the land positions L1 and L2 of the pair of lands L obtained by measurement is calculated. In this example, the land positions L1 and L2 correspond to the center of gravity of the land L in a plan view, respectively. Then, the calculated midpoint is specified as the mounting point J. Then, the processing unit 20 associates the position of the specified mounting point J with the identification information of the board 4 and uploads it as mounting point position data via the communication network 2 (ST5).
 アップロードされた実装点位置データは、情報管理装置3の第1記憶部41に記憶される。すなわち第1記憶部41は、基板4を実測して得られた基準マークと実装点との位置関係に関する実装点位置データを、基板4を個別に識別する識別情報と関連付けて記憶する(実装点位置データ記憶工程)。この後、基板4は下流に搬出されて(ST6)、基板計測装置M3による処理を終了する。なお、本実施の形態では、基板計測装置M3によって実装点Jの位置を計算(ST4)しているが、基板計測装置M3以外の他装置(例えば情報管理装置3)で実装点Jの位置を計算してもよい。 The uploaded mounting point position data is stored in the first storage unit 41 of the information management device 3. That is, the first storage unit 41 stores the mounting point position data relating to the positional relationship between the reference mark and the mounting point obtained by actually measuring the board 4 in association with the identification information for individually identifying the board 4 (mounting point). Position data storage process). After that, the substrate 4 is carried out downstream (ST6), and the processing by the substrate measuring device M3 is completed. In the present embodiment, the position of the mounting point J is calculated by the board measuring device M3 (ST4), but the position of the mounting point J is calculated by another device other than the board measuring device M3 (for example, the information management device 3). You may calculate.
 次に図9A、図9Bを参照して、スクリーン印刷装置M4における処理について説明する。図9Aに示すように、基板4は、図2に示す搬入コンベア15aによってスクリーン印刷装置M4内部に搬入され、印刷ステージコンベア15bに受け渡される。そして制御部10は、スクリーン印刷部16による印刷作業位置に基板4を位置決めする(ST11)。次いで、制御部10は、情報管理装置3から実装点位置データを取得する(ST12)。次に、制御部10は、基板認識を実行して印刷作業位置における実装点Jまたは基板4の位置を認識する(ST13)。基板認識は、基板の基準マークを基板カメラ19bで撮像して印刷作業位置における基準マークの位置を検出する。そして制御部10は、検出された基準マークの位置と、取得した実装点位置データとによって、図9Bに示す印刷作業位置における実装点Jの位置を計算する。または、検出された基準マークの位置に基づいて印刷作業位置における基板4の位置を計算する。 Next, the processing in the screen printing apparatus M4 will be described with reference to FIGS. 9A and 9B. As shown in FIG. 9A, the substrate 4 is carried into the screen printing apparatus M4 by the carry-in conveyor 15a shown in FIG. 2 and delivered to the printing stage conveyor 15b. Then, the control unit 10 positions the substrate 4 at the printing work position by the screen printing unit 16 (ST11). Next, the control unit 10 acquires mounting point position data from the information management device 3 (ST12). Next, the control unit 10 executes board recognition to recognize the position of the mounting point J or the board 4 at the printing work position (ST13). In the substrate recognition, the reference mark on the substrate is imaged by the substrate camera 19b to detect the position of the reference mark in the printing work position. Then, the control unit 10 calculates the position of the mounting point J at the printing work position shown in FIG. 9B based on the detected position of the reference mark and the acquired mounting point position data. Alternatively, the position of the substrate 4 in the printing work position is calculated based on the detected position of the reference mark.
 次いで制御部10は、マスクカメラ19a、基板カメラ19bによってそれぞれスクリーンマスク18、基板4を撮像して位置認識し、位置認識結果に基づいて基板4をスクリーンマスク18に対して位置合わせする(ST14)。これにより、基板4がスクリーンマスク18の下面に接触した状態で位置合わせされる。また、スクリーンマスク18と基板4との位置合わせにおいては、基板認識で特定した実装点Jの位置または基板4の位置に基づいて制御部10がテーブル11aを制御する。これにより基板4のランドLとスクリーンマスク18のパターン孔とを精度よく一致させることができる。 Next, the control unit 10 images the screen mask 18 and the substrate 4 by the mask camera 19a and the substrate camera 19b to recognize the position, and aligns the substrate 4 with respect to the screen mask 18 based on the position recognition result (ST14). .. As a result, the substrate 4 is aligned in contact with the lower surface of the screen mask 18. Further, in the alignment between the screen mask 18 and the substrate 4, the control unit 10 controls the table 11a based on the position of the mounting point J specified by the substrate recognition or the position of the substrate 4. As a result, the land L of the substrate 4 and the pattern hole of the screen mask 18 can be accurately matched.
 次いで、印刷が実行される(ST15)。すなわち図3に示すように、制御部10は、基板4をスクリーンマスク18の下面に当接させた状態で、はんだペーストが供給されたスクリーンマスク18の上面でスキージ17をスキージングさせる。これにより、スクリーンマスク18に形成されたパターン孔を介して基板4にははんだが印刷され、はんだ部Sが形成される(はんだ部形成工程)。このとき、印刷により形成されるはんだ部Sの位置は基板4の上面のランドLに正しく一致しているとは限らず、図9Bに示すように、ランドLから位置ずれ(はんだ位置ずれ)している場合がある。このはんだ位置ずれは、次工程のはんだ部検査装置M5によるはんだ検査にて計測される。 Next, printing is executed (ST15). That is, as shown in FIG. 3, the control unit 10 squeezes the squeegee 17 on the upper surface of the screen mask 18 to which the solder paste is supplied, with the substrate 4 in contact with the lower surface of the screen mask 18. As a result, solder is printed on the substrate 4 through the pattern holes formed in the screen mask 18, and the solder portion S is formed (solder portion forming step). At this time, the position of the solder portion S formed by printing does not always exactly match the land L on the upper surface of the substrate 4, and as shown in FIG. 9B, the position is displaced (solder position deviation) from the land L. May be. This solder misalignment is measured by a solder inspection by the solder portion inspection device M5 in the next process.
 このようにしてスクリーン印刷が完了した後には版離れが実行され、スクリーンマスク18と基板4とが分離される(ST16)。すなわち、印刷ステージ13に保持された基板4を印刷ステージ13とともに下降させることにより、基板4に印刷されたはんだ部をスクリーンマスク18のパターン孔から抜き出す。以上で、基板計測装置M3における処理が完了し、基板4は下流へ搬出される(ST17)。 After the screen printing is completed in this way, plate separation is executed, and the screen mask 18 and the substrate 4 are separated (ST16). That is, by lowering the substrate 4 held by the printing stage 13 together with the printing stage 13, the solder portion printed on the substrate 4 is extracted from the pattern hole of the screen mask 18. With the above, the processing in the substrate measuring apparatus M3 is completed, and the substrate 4 is carried out downstream (ST17).
 次に図10A、図10Bを参照して、はんだ部検査装置M5における処理について説明する。図10Aに示すように、基板4は、図4に示す基板搬送部22によりはんだ部検査装置M5内部へ搬入され、検査・計測作業位置に位置決めされる(ST21)。次いで、処理部20は、情報管理装置3からランド計測データと実装点位置データを取得する(ST22)。 Next, the processing in the solder portion inspection device M5 will be described with reference to FIGS. 10A and 10B. As shown in FIG. 10A, the substrate 4 is carried into the solder portion inspection device M5 by the substrate transport portion 22 shown in FIG. 4 and is positioned at the inspection / measurement work position (ST21). Next, the processing unit 20 acquires land measurement data and mounting point position data from the information management device 3 (ST22).
 次いで、処理部20は、基板認識を実行して検査・計測作業位置におけるランド位置や実装点を認識する(ST23)。基板認識では、基板4の基準マークをカメラ26が撮像し、取得された画像を処理部20が処理し、検査・計測作業位置における基準マークの位置を検出する。そして検出された基準マークの位置と取得したランド計測データと実装点位置データとによって、処理部20は、図10Bに示す検査・計測作業位置における実際のランドLおよび実装点Jを計算する。なお、はんだ部検査装置M5において実装点位置データの取得は必須ではなく省略してもよい。 Next, the processing unit 20 executes board recognition to recognize the land position and the mounting point at the inspection / measurement work position (ST23). In the substrate recognition, the camera 26 takes an image of the reference mark on the substrate 4, and the processing unit 20 processes the acquired image to detect the position of the reference mark in the inspection / measurement work position. Then, the processing unit 20 calculates the actual land L and the mounting point J at the inspection / measurement work position shown in FIG. 10B based on the detected position of the reference mark, the acquired land measurement data, and the mounting point position data. It should be noted that the acquisition of the mounting point position data in the solder portion inspection device M5 is not essential and may be omitted.
 次いで、はんだ部形成済みの基板4をカメラ26が撮像し、取得された画像を処理部20が処理し、基板4に形成されたはんだ部Sの位置や面積、3次元計測が可能な場合は体積を計測する(ST24)。すなわち、はんだ部形成工程によって基板4に形成されたはんだ部Sの位置S1、S2を計測して、基準マークとはんだ部Sとの位置関係を含むはんだ部位置データを作成する(はんだ部位置データ作成工程)。なおこの例では、はんだ部Sの位置S1,S2はそれぞれ、平面視においてはんだ部Sの重心に相当する。 Next, when the camera 26 takes an image of the substrate 4 on which the solder portion has been formed, the processing unit 20 processes the acquired image, and the position and area of the solder portion S formed on the substrate 4 can be measured three-dimensionally. The volume is measured (ST24). That is, the positions S1 and S2 of the solder portions S formed on the substrate 4 by the solder portion forming step are measured, and the solder portion position data including the positional relationship between the reference mark and the solder portion S is created (solder portion position data). Creation process). In this example, the positions S1 and S2 of the solder portion S correspond to the center of gravity of the solder portion S in a plan view, respectively.
 このようにして作成されたはんだ部位置データは、基板4の識別情報と関連付けられて、通信ネットワーク2を介して情報管理装置3にアップロードされ(ST25)、第2記憶部42に基板4の識別情報と関連付けて記憶される(はんだ部位置データ記憶工程)。以上で、はんだ部検査装置M5における処理が完了し、基板4は下流へ搬出される(ST26)。 The solder portion position data created in this way is associated with the identification information of the substrate 4 and uploaded to the information management device 3 via the communication network 2 (ST25), and the identification of the substrate 4 is performed in the second storage unit 42. It is stored in association with the information (solder part position data storage process). With the above, the processing in the solder portion inspection device M5 is completed, and the substrate 4 is carried out downstream (ST26).
 次に図11A、図11Bを参照して、情報管理装置3における処理について説明する。図11Aに示すように、まず図6に示す作成部43が、実装点位置データ、はんだ部位置データの読み取る(ST31)。すなわち基板計測装置M3、はんだ部検査装置M5で取得されてそれぞれ第1記憶部41、第2記憶部42に記憶された実装点位置データ、はんだ部位置データが読み取られる。次いで、作成部43は、はんだパターン位置SPの位置を計算する(ST32)。はんだパターン位置SPは、実装点Jに実装される部品をはんだ接合するために形成された複数のはんだ部Sから定められる。実装される部品が両端に接続端子を有する矩形型のチップ部品である場合、1対のランドLに形成された一対のはんだ部Sを結ぶ直線の中点がはんだパターン位置SPと特定される。 Next, the processing in the information management device 3 will be described with reference to FIGS. 11A and 11B. As shown in FIG. 11A, first, the creating section 43 shown in FIG. 6 reads the mounting point position data and the solder section position data (ST31). That is, the mounting point position data and the solder portion position data acquired by the board measuring device M3 and the solder portion inspection device M5 and stored in the first storage unit 41 and the second storage unit 42, respectively, are read. Next, the creating unit 43 calculates the position of the solder pattern position SP (ST32). The solder pattern position SP is defined by a plurality of solder portions S formed for solder joining the components mounted at the mounting point J. When the component to be mounted is a rectangular chip component having connection terminals at both ends, the midpoint of a straight line connecting a pair of solder portions S formed on a pair of lands L is specified as a solder pattern position SP.
 次いで、作成部43は、計算されたはんだパターン位置SPと実装点位置データで特定される実装点Jとの位置ずれを計算する(ST33)。ここでは、実装点Jに対するはんだパターン位置SPの偏差が求められる。すなわち図10Bに示すように、はんだ部Sが本来形成されるべき位置と実際に形成されたはんだ部Sの位置とのずれ量を示すはんだパターンずれ(ΔX、ΔY)が求められる。はんだ部SがランドLに位置ずれなく形成されていれば実装点Jとはんだパターン位置SPは同じ位置となり、はんだパターンずれ(ΔX、ΔY)もゼロとなる。一方、はんだ部SとランドLの位置ずれが大きくなると、はんだパターンずれ(ΔX、ΔY)も大きくなる。 Next, the creating unit 43 calculates the positional deviation between the calculated solder pattern position SP and the mounting point J specified by the mounting point position data (ST33). Here, the deviation of the solder pattern position SP with respect to the mounting point J is obtained. That is, as shown in FIG. 10B, the solder pattern deviation (ΔX, ΔY) indicating the amount of deviation between the position where the solder portion S should be originally formed and the position of the solder portion S actually formed is obtained. If the solder portion S is formed on the land L without any misalignment, the mounting point J and the solder pattern position SP are at the same position, and the solder pattern misalignment (ΔX, ΔY) is also zero. On the other hand, when the positional deviation between the solder portion S and the land L becomes large, the solder pattern deviation (ΔX, ΔY) also becomes large.
 次いで、作成部43は、搭載目標位置を計算する(ST34:搭載目標位置データ作成工程)。図11Bに示すように作成部43は、実装点位置データによって与えられる実装点Jとはんだ部位置データによって与えられるはんだパターン位置SPとの中間に、基板4に部品Pを搭載する場合の目標となる搭載目標位置MPを設定する。すなわち作成部43は、同一の識別情報で特定される実装点位置データおよびはんだ部位置データに基づいて、その識別情報で特定される基板4における搭載目標位置データを作成する。搭載目標位置データは、部品Pの搭載目標位置MPを含む。図11Bにおいて破線で示す部品Pは、搭載目標位置MPに部品Pを搭載した場合の部品Pの外形を示している。作成された搭載目標位置データは、第3記憶部44に記憶される(ST35)。 Next, the creation unit 43 calculates the mounting target position (ST34: mounting target position data creation process). As shown in FIG. 11B, the creating unit 43 has a target when the component P is mounted on the substrate 4 between the mounting point J given by the mounting point position data and the solder pattern position SP given by the soldering part position data. Set the mounting target position MP. That is, the creating unit 43 creates the mounting target position data on the substrate 4 specified by the identification information based on the mounting point position data and the soldering unit position data specified by the same identification information. The mounting target position data includes the mounting target position MP of the component P. The component P shown by the broken line in FIG. 11B shows the outer shape of the component P when the component P is mounted at the mounting target position MP. The created mounting target position data is stored in the third storage unit 44 (ST35).
 なお、搭載目標位置MPは、リフロー装置M9によるリフロー過程における溶融はんだによる部品の挙動などを考慮して、実装点Jとはんだパターン位置SPの間に適宜設定される。溶融はんだの表面張力の影響を受けやすい微小部品の場合、作成部43は、その影響の度合いや実装点Jとはんだパターン位置SPのずれの大きさに応じて搭載目標位置MPを調整する。図11Bに示す例では、実装点Jとはんだパターン位置SPとの略中間位置に搭載目標位置MPが設定されている。また、溶融はんだの表面張力の影響を受けにくい大型部品や、基板4にリードを挿入して装着される挿入部品のようにその影響を考慮する必要のないものについては、作成部43は、実装点Jを搭載目標位置として設定する。 The mounting target position MP is appropriately set between the mounting point J and the solder pattern position SP in consideration of the behavior of parts due to molten solder in the reflow process by the reflow device M9. In the case of minute parts that are easily affected by the surface tension of the molten solder, the creating unit 43 adjusts the mounting target position MP according to the degree of the influence and the magnitude of the deviation between the mounting point J and the solder pattern position SP. In the example shown in FIG. 11B, the mounting target position MP is set at a substantially intermediate position between the mounting point J and the solder pattern position SP. In addition, for large parts that are not easily affected by the surface tension of molten solder, and for insert parts that are mounted by inserting leads into the substrate 4, the effect of which does not need to be considered, the creating unit 43 mounts. The point J is set as the mounting target position.
 次に図12A、図12Bを参照して、部品搭載装置M6における処理について説明する。なお、部品搭載装置M7の処理も、搭載する部品と搭載する位置等が異なる以外は部品搭載装置M6と同じなのでここでは部品搭載装置M6の処理についてのみ説明する。図12Aに示すように、まず基板4が搬入され、部品搭載の作業位置に位置される。すなわち図5に示す制御部30は、基板搬送部35を制御して、基板4を上流の設備であるはんだ部検査装置M5から受け取らせ、基板4を搭載ヘッド37の部品保持ノズル37bによる部品搭載の作業位置に位置させる(ST41:基板受け入れ工程)。 Next, the processing in the component mounting device M6 will be described with reference to FIGS. 12A and 12B. Since the processing of the component mounting device M7 is the same as that of the component mounting device M6 except that the mounting position and the like are different from the mounted component, only the processing of the component mounting device M6 will be described here. As shown in FIG. 12A, the substrate 4 is first carried in and is positioned at the working position for mounting the components. That is, the control unit 30 shown in FIG. 5 controls the substrate transport unit 35 to receive the substrate 4 from the solder portion inspection device M5 which is an upstream facility, and mounts the substrate 4 by the component holding nozzle 37b of the mounting head 37. (ST41: Substrate acceptance process).
 次に、実装点位置データが取得される(ST42:実装点位置データ取得工程)。すなわち制御部30は、実装点位置データを、図6に示す第1取得部55の機能により取得する。前述のように、実装点位置データは、基板4の基準マークと実装点との位置関係に関しており、基板計測装置M3での実測によって予め得られている。なお、実装点位置データの取得のタイミングは特に限定されず、基板4が作業位置に到達する以前であればどのタイミングでもよい。さらに、部品搭載装置M6において実装点位置データの取得は必須ではなく省略してもよい。 Next, the mounting point position data is acquired (ST42: mounting point position data acquisition process). That is, the control unit 30 acquires the mounting point position data by the function of the first acquisition unit 55 shown in FIG. As described above, the mounting point position data relates to the positional relationship between the reference mark of the substrate 4 and the mounting point, and is obtained in advance by actual measurement with the substrate measuring device M3. The timing of acquiring the mounting point position data is not particularly limited, and any timing may be used as long as it is before the substrate 4 reaches the working position. Further, in the component mounting device M6, acquisition of mounting point position data is not essential and may be omitted.
 次に搭載目標位置データが取得される(ST43:搭載目標位置取得工程)。すなわち制御部30は、情報管理装置3によって作成された搭載目標位置データを、図6に示す第2取得部56の機能により取得する。具体的には、第2取得部56は、基板受け入れ工程で搬入された基板4の識別情報を情報管理装置3の第1の情報処理部45へ送信して、同じ基板4の搭載目標位置データを第1の情報処理部45に要求する。そして、第1の情報処理部45から所望の搭載目標位置データを受信すると第2取得部56は、そのデータを第6記憶部56aに記憶する。 Next, the mounting target position data is acquired (ST43: mounting target position acquisition process). That is, the control unit 30 acquires the mounting target position data created by the information management device 3 by the function of the second acquisition unit 56 shown in FIG. Specifically, the second acquisition unit 56 transmits the identification information of the substrate 4 carried in in the substrate receiving process to the first information processing unit 45 of the information management device 3, and mount target position data of the same substrate 4. Is requested from the first information processing unit 45. Then, when the desired mounting target position data is received from the first information processing unit 45, the second acquisition unit 56 stores the data in the sixth storage unit 56a.
 次に部品搭載ずれデータが更新され、キャリブレーションデータが算出される(ST44:キャリブレーションデータ算出工程)。すなわち、制御部30は、搭載済部品検査装置M8で計測された最新の部品搭載ずれデータを、図6に示す第3取得部58の機能により取得して、第7記憶部58aに記憶されたデータを更新する。また制御部30は、算出部57の機能により、更新した部品搭載ずれデータからキャリブレーションデータを算出する。キャリブレーションデータは実装点毎に算出される。キャリブレーションデータの算出は、同一の実装点において複数の枚数分の基板から集めた部品搭載ずれを統計的に処理して求められる。 Next, the component mounting misalignment data is updated and the calibration data is calculated (ST44: calibration data calculation process). That is, the control unit 30 acquires the latest component mounting misalignment data measured by the mounted component inspection device M8 by the function of the third acquisition unit 58 shown in FIG. 6, and stores it in the seventh storage unit 58a. Update the data. Further, the control unit 30 calculates the calibration data from the updated component mounting misalignment data by the function of the calculation unit 57. Calibration data is calculated for each mounting point. The calibration data is calculated by statistically processing the component mounting deviations collected from a plurality of boards at the same mounting point.
 次に制御部30は、基板認識を実行して、図12Bに示す搭載作業位置における部品Pの搭載目標位置MPを認識する(ST45:基板認識工程)。基板認識工程では、認識によって検出された基準マークの位置と、基準マークと搭載目標位置MPとの位置関係とに基づいて、搭載作業位置における搭載目標位置MPを認識する。基準マークと搭載目標位置MPとの位置関係は、搭載目標位置データによって与えられる。 Next, the control unit 30 executes board recognition and recognizes the mounting target position MP of the component P at the mounting work position shown in FIG. 12B (ST45: board recognition step). In the board recognition step, the mounting target position MP at the mounting work position is recognized based on the position of the reference mark detected by the recognition and the positional relationship between the reference mark and the mounting target position MP. The positional relationship between the reference mark and the mounting target position MP is given by the mounting target position data.
 この後、部品Pが搭載される(ST46:部品搭載工程)。部品搭載工程において制御部30は、キャリブレーションデータを使用して、搭載目標位置MPに部品Pを搭載する際の部品保持ノズル37bの停止位置を補正する。部品搭載装置M6による部品Pの搭載が全て完了したら、データ出力部59が稼働情報をアップロードする(ST47:データ出力工程)。その後、基板搬送部35が基板4を搬出し(ST48)、部品搭載装置M6による処理を終了する。 After this, the component P is mounted (ST46: component mounting process). In the component mounting process, the control unit 30 uses the calibration data to correct the stop position of the component holding nozzle 37b when the component P is mounted at the mounting target position MP. When the mounting of the component P by the component mounting device M6 is completed, the data output unit 59 uploads the operation information (ST47: data output process). After that, the substrate transport unit 35 carries out the substrate 4 (ST48), and the processing by the component mounting device M6 ends.
 次に図13A、図13Bを参照して、搭載済部品検査装置M8における処理について説明する。図13Aに示すように、部品搭載済の基板4が図4に示す基板搬送部22によって搬入され、検査・計測作業位置に位置決めされる(ST51:部品搭載済基板受け入れ工程)。次いで、図7に示すデータ取得部20eが、情報管理装置3から実装点位置データを取得し(ST52)、第3記憶部44から搭載目標位置データを取得する(ST53:計測基準取得工程)。データ取得部20eは基板搬送部22に搬入された部品搭載済の基板4の識別情報を情報管理装置3の第1の情報処理部45へ送信して、同じ基板4の搭載目標位置データを第1の情報処理部45に要求する。そして、第1の情報処理部45から所望の搭載目標位置データを受信すると、データ取得部20eは第8記憶部20cにそのデータを記憶させる。すなわち、検査・計測作業位置に位置決めされた基板4に付与されている識別情報で特定される搭載目標位置データが取得される。 Next, the processing in the mounted parts inspection device M8 will be described with reference to FIGS. 13A and 13B. As shown in FIG. 13A, the component-mounted substrate 4 is carried in by the substrate transport unit 22 shown in FIG. 4 and positioned at the inspection / measurement work position (ST51: component-mounted substrate receiving process). Next, the data acquisition unit 20e shown in FIG. 7 acquires the mounting point position data from the information management device 3 (ST52), and acquires the mounting target position data from the third storage unit 44 (ST53: measurement reference acquisition step). The data acquisition unit 20e transmits the identification information of the component-mounted board 4 carried into the board transfer unit 22 to the first information processing unit 45 of the information management device 3, and transmits the mounting target position data of the same board 4 to the first information processing unit 45. Request to the information processing unit 45 of 1. Then, when the desired mounting target position data is received from the first information processing unit 45, the data acquisition unit 20e stores the data in the eighth storage unit 20c. That is, the mounting target position data specified by the identification information given to the substrate 4 positioned at the inspection / measurement work position is acquired.
 次に図7に示す基板認識部20aは、基板認識を実行して検査・計測作業位置における実装点Jと搭載目標位置MPを認識する(ST54:基板認識工程)。基板認識工程では、カメラ26で撮像した基板4の基準マークから、基板認識部20aは、検査・計測作業位置における基準マークの位置を検出する。そして基板認識部20aは、検出された基準マークの位置と、取得された実装点位置データとから、検査・計測作業位置における実装点Jの位置を計算する。また基板認識部20aは、検出された基準マークの位置と、取得された搭載目標位置データとから、検査・計測作業位置における搭載目標位置MPを計算する。なお、搭載目標位置MPの計算には、検査・計測作業位置に位置決めされた基板4の識別情報で特定される搭載目標位置データが使用される。 Next, the board recognition unit 20a shown in FIG. 7 executes board recognition and recognizes the mounting point J and the mounting target position MP at the inspection / measurement work position (ST54: board recognition process). In the substrate recognition step, the substrate recognition unit 20a detects the position of the reference mark in the inspection / measurement work position from the reference mark of the substrate 4 imaged by the camera 26. Then, the board recognition unit 20a calculates the position of the mounting point J at the inspection / measurement working position from the detected position of the reference mark and the acquired mounting point position data. Further, the substrate recognition unit 20a calculates the mounting target position MP at the inspection / measurement work position from the detected position of the reference mark and the acquired mounting target position data. In the calculation of the mounting target position MP, the mounting target position data specified by the identification information of the substrate 4 positioned at the inspection / measurement work position is used.
 次いで、搭載済部品位置が計測される(ST55:部品搭載位置計測工程)。ここでは図13Bに示すように、まず部品搭載装置M6(またはM7)によって搭載された搭載済の部品P’をカメラ26が撮像する。そして、図7に示す検査部20bは、画像認識等によって、撮像された画像から部品P’を検出するとともに部品P’の搭載位置を検出する。部品P’が角チップの場合、部品中心PCが部品搭載位置として検出される。次いで、検査部20bは計測結果に基づき、部品搭載位置のずれを計算する(ST56:部品搭載ずれデータ作成工程)。すなわち検査部20bは、第3記憶部44から、検査・計測作業位置に位置決めされた基板4の識別情報で特定された搭載目標位置データを取得する。そして検査部20bは、取得されたデータに基づく搭載目標位置MPと部品搭載位置(部品中心PC)との偏差を、部品搭載ずれデータ(ΔX’、ΔY’)として求める。すなわち検査部20bは、部品搭載装置M6(またはM7)による部品搭載工程により部品が搭載された部品搭載済基板について、部品の搭載位置のずれを計測する。さらに、搭載位置のずれに関する部品搭載ずれデータを作成する。1枚の部品搭載済基板のすべての実装点について、部品搭載ずれデータ作成工程が完了すると、図7に示すデータ出力部20fは部品搭載ずれデータをアップロードする(ST57)。この後、処理部20は、図4に示す基板搬送部22を制御して基板4を下流へ搬出して(ST58)、搭載済部品検査装置M8における処理を完了する。 Next, the mounted component position is measured (ST55: component mounting position measurement process). Here, as shown in FIG. 13B, the camera 26 first captures the mounted component P'mounted by the component mounting device M6 (or M7). Then, the inspection unit 20b shown in FIG. 7 detects the component P'from the captured image and also detects the mounting position of the component P'by image recognition or the like. When the component P'is a square chip, the component center PC is detected as the component mounting position. Next, the inspection unit 20b calculates the deviation of the component mounting position based on the measurement result (ST56: component mounting deviation data creation step). That is, the inspection unit 20b acquires the mounting target position data specified by the identification information of the substrate 4 positioned at the inspection / measurement work position from the third storage unit 44. Then, the inspection unit 20b obtains the deviation between the mounting target position MP and the component mounting position (part center PC) based on the acquired data as component mounting deviation data (ΔX', ΔY'). That is, the inspection unit 20b measures the deviation of the component mounting position on the component mounted board on which the component is mounted by the component mounting process by the component mounting device M6 (or M7). Furthermore, component mounting deviation data related to the deviation of the mounting position is created. When the component mounting deviation data creation process is completed for all the mounting points of one component-mounted board, the data output unit 20f shown in FIG. 7 uploads the component mounting deviation data (ST57). After that, the processing unit 20 controls the substrate transport unit 22 shown in FIG. 4 to carry the substrate 4 downstream (ST58), and completes the processing in the mounted component inspection device M8.
 ST57にてアップロードされた部品搭載ずれデータは、図6に示す情報管理装置3の第3の情報処理部47によって部品搭載装置M6、M7にフィードバックされ、算出部57によるキャリブレーションデータの算出に用いられる。すなわち部品搭載装置M6,M7は、複数の部品搭載済基板について搭載済部品検査装置M8で計測された部品の搭載位置のずれに関する部品搭載ずれデータを取得し(部品搭載ずれデータ取得工程)、第7記憶部58aのデータを更新する。 The component mounting misalignment data uploaded in ST57 is fed back to the component mounting devices M6 and M7 by the third information processing unit 47 of the information management device 3 shown in FIG. 6, and is used for calculating the calibration data by the calculation unit 57. Be done. That is, the component mounting devices M6 and M7 acquire the component mounting deviation data related to the deviation of the component mounting position measured by the mounted component inspection device M8 for the plurality of component mounted boards (component mounting deviation data acquisition process). 7 Update the data in the storage unit 58a.
 そして前述のように、算出部57は、取得された部品搭載ずれデータを基にキャリブレーションデータを計算する(ST44:キャリブレーションデータ算出工程)。すなわち本実施の形態において経時変動に起因する部品の搭載位置のずれを補正するためのキャリブレーションデータは、複数の部品搭載済基板について搭載済部品検査装置M8で計測された部品の搭載位置のずれに関するデータを基に計算されている。 Then, as described above, the calculation unit 57 calculates the calibration data based on the acquired component mounting misalignment data (ST44: calibration data calculation process). That is, in the present embodiment, the calibration data for correcting the deviation of the component mounting position due to the time-dependent fluctuation is the deviation of the component mounting position measured by the mounted component inspection device M8 for the plurality of component mounted boards. It is calculated based on the data about.
 なお本実施の形態では、部品実装ライン1aが部品搭載装置M6,M7を有する。このように部品実装ラインが複数の部品搭載装置を有する場合には、これら複数の部品搭載装置でそれぞれキャリブレーションデータ算出工程を実行する。そして前述の部品搭載ずれデータ作成工程においては、各部品搭載装置で参照された搭載目標位置データが搭載位置のずれの計測の基準として使用される。また複数の部品搭載装置で前述の部品搭載工程を実行する場合には、前述の部品搭載ずれデータ作成工程で作成された搭載ずれデータを、その搭載ずれに係る部品を搭載した部品搭載装置に振り分けて、各々の部品搭載装置に提供する(部品搭載ずれデータ処理工程)。 In the present embodiment, the component mounting line 1a has the component mounting devices M6 and M7. When the component mounting line has a plurality of component mounting devices in this way, the calibration data calculation process is executed by each of the plurality of component mounting devices. Then, in the above-mentioned component mounting deviation data creation process, the mounting target position data referred to by each component mounting device is used as a reference for measuring the displacement of the mounting position. When the above-mentioned component mounting process is executed by a plurality of component mounting devices, the mounting deviation data created in the above-mentioned component mounting deviation data creation process is distributed to the component mounting devices on which the components related to the mounting deviation are mounted. And provide it to each component mounting device (component mounting misalignment data processing process).
 次に図14A、図14Bを参照して、実装基板検査装置M10における処理について説明する。実装基板検査装置M10によって行われる実装基板検査では、リフロー装置M9におけるリフローによってはんだ接合された状態の部品Pの位置を含む実装状態の良否が検査される。図14Aに示すように、実装基板が、図4に示す基板搬送部22によって搬入され、検査・計測作業位置に位置決めされる(ST61)。次いで、処理部20は、情報管理装置3から実装点位置データを取得する(ST62)。 Next, the processing in the mounting board inspection device M10 will be described with reference to FIGS. 14A and 14B. In the mounting board inspection performed by the mounting board inspection device M10, the quality of the mounting state including the position of the component P in the state of being soldered by the reflow in the reflow device M9 is inspected. As shown in FIG. 14A, the mounting board is carried in by the board transport unit 22 shown in FIG. 4 and positioned at the inspection / measurement work position (ST61). Next, the processing unit 20 acquires mounting point position data from the information management device 3 (ST62).
 次に処理部20は、基板認識を実行して検査・計測作業位置における実装点Jを認識する(ST63)。基板認識では、カメラ26で撮像した基板4の基準マークから、検査・計測作業位置における基準マークの位置が検出される。そして処理部20は、検出された基準マークの位置と、取得された実装点位置データとから、検査・計測作業位置における実装点Jの位置を計算する。 Next, the processing unit 20 executes board recognition and recognizes the mounting point J at the inspection / measurement work position (ST63). In the substrate recognition, the position of the reference mark in the inspection / measurement work position is detected from the reference mark of the substrate 4 imaged by the camera 26. Then, the processing unit 20 calculates the position of the mounting point J at the inspection / measurement working position from the detected position of the reference mark and the acquired mounting point position data.
 次いで検査が実行される(ST64)。すなわち処理部20は、求められた部品中心Pmの座標と、正しい実装点Jとの偏差を、実装位置ずれΔXm、ΔYmとして求める。リフロー後の基板4を撮像して取得された画像においては、図14Bに示すように、はんだ部Sが溶融固化してはんだ部S’が形成されている。なお、ランドLは、はんだ部S’によってその全面が覆われる。 Next, the inspection is executed (ST64). That is, the processing unit 20 obtains the deviation between the obtained coordinates of the component center Pm and the correct mounting point J as mounting position deviations ΔXm and ΔYm. In the image obtained by imaging the substrate 4 after the reflow, as shown in FIG. 14B, the solder portion S is melted and solidified to form the solder portion S'. The entire surface of the land L is covered by the solder portion S'.
 リフロー過程における溶融はんだの挙動により、部品P’の部品中心に相当する部品中心Pmの位置は必ずしも実装点Jとは一致せず、実装位置ずれΔXm、ΔYmが存在する。これらの実装位置ずれの少なくとも一方が、それぞれの許容値を超える場合には不良と判定される。そして全ての検査対象部品について検査処理が終了すると検査結果がアップロードされ(ST65)、基板4は下流へ搬出される(ST66)。 Due to the behavior of the molten solder in the reflow process, the position of the component center Pm corresponding to the component center of the component P'does not always coincide with the mounting point J, and the mounting position deviations ΔXm and ΔYm exist. If at least one of these mounting misalignments exceeds each allowable value, it is determined to be defective. When the inspection process for all the parts to be inspected is completed, the inspection results are uploaded (ST65), and the substrate 4 is carried out downstream (ST66).
 以上説明したように、本実施の形態に示す実装基板製造システム1は、実装点位置データ記憶部(第1記憶部)41と、はんだ部形成装置としてのスクリーン印刷装置M4と、はんだ部検査装置M5と、はんだ部位置データ記憶部(第2記憶部)42と、搭載目標位置データ作成部(作成部)43と、部品搭載装置M6(M7)とを有する。第1記憶部41は、基板4を実測して得られた実装点Jの位置を含む実装点位置データを、基板4を識別する識別情報と関連付けて記憶する。例えば、実装点位置データは、基板4の基準マークと実装点Jとの位置関係に関する。スクリーン印刷装置M4は、基板4にはんだ部Sを形成する。はんだ部検査装置M5は、スクリーン印刷装置M4によって基板4に形成されたはんだ部Sを計測して、はんだ部Sの位置を含むはんだ部位置データを作成する。例えば、はんだ部位置データは、基準マークとはんだ部Sとの位置関係を含む。第2記憶部42は、はんだ部位置データを、識別情報と関連付けて記憶する。作成部43は、識別情報で特定される実装点位置データとはんだ部位置データとに基づいて、識別情報で特定される基板4における部品Pの搭載目標位置を含む搭載目標位置データを作成する。部品搭載装置M6(M7)は、はんだ部検査装置M5によりはんだ部Sの位置を計測した基板4を作業位置に位置させる。また部品搭載装置M6(M7)は搭載ヘッド37を有する。搭載ヘッド37は、作業位置に位置した基板4における搭載目標位置に部品Pを搭載する。搭載目標位置は、基板4の識別情報に関連付けられた搭載目標位置データで特定される。この構成により、はんだ位置情報を適用した位置補正の精度を向上させて、高度な部品実装品質を実現することができる。 As described above, the mounting board manufacturing system 1 shown in the present embodiment includes a mounting point position data storage unit (first storage unit) 41, a screen printing device M4 as a solder part forming device, and a solder part inspection device. It has an M5, a solder unit position data storage unit (second storage unit) 42, a mounting target position data creation unit (creation unit) 43, and a component mounting device M6 (M7). The first storage unit 41 stores the mounting point position data including the position of the mounting point J obtained by actually measuring the board 4 in association with the identification information for identifying the board 4. For example, the mounting point position data relates to the positional relationship between the reference mark on the substrate 4 and the mounting point J. The screen printing apparatus M4 forms a solder portion S on the substrate 4. The solder portion inspection device M5 measures the solder portion S formed on the substrate 4 by the screen printing device M4, and creates solder portion position data including the position of the solder portion S. For example, the solder portion position data includes the positional relationship between the reference mark and the solder portion S. The second storage unit 42 stores the solder unit position data in association with the identification information. The creation unit 43 creates mounting target position data including the mounting target position of the component P on the substrate 4 specified by the identification information based on the mounting point position data specified by the identification information and the solder portion position data. The component mounting device M6 (M7) positions the substrate 4 whose position of the solder portion S is measured by the solder portion inspection device M5 at the working position. Further, the component mounting device M6 (M7) has a mounting head 37. The mounting head 37 mounts the component P at the mounting target position on the substrate 4 located at the working position. The mounting target position is specified by the mounting target position data associated with the identification information of the substrate 4. With this configuration, the accuracy of position correction to which the solder position information is applied can be improved, and a high level of component mounting quality can be realized.
 また、本実施の形態に示す部品搭載装置M6(M7)は、基板搬送部35と、搭載目標位置データ取得部(第2取得部)56と、搭載作業部40とを有する。基板搬送部35は、固有の識別情報が付与され、はんだ部Sが形成され、はんだ部Sの位置が計測された基板4を受け取って作業位置に位置させる。基板搬送部35はさらに、部品Pの搭載が済んだ部品搭載済の基板4を作業位置から下流の設備へ搬出する。第2取得部56は、実装点位置データと、実装点位置データと同一の識別情報で特定されるはんだ部位置データとに基づいて算出された搭載目標位置データを取得する。実装点位置データは、基板4を実測して得られ、基板4の実装点Jの位置を含む。はんだ部位置データは、はんだ部Sを実測して得られたはんだ部Sの位置を含む。搭載作業部40は、搭載ヘッド37を有する。搭載ヘッド37は、作業位置に位置した基板4における搭載目標位置に部品Pを搭載する。搭載目標位置は、基板4の識別情報に関連付けられた搭載目標位置データで特定される。この構成により、はんだ位置情報を適用した位置補正の精度を向上させて、高度な部品実装品質を実現することができる。 Further, the component mounting device M6 (M7) shown in the present embodiment has a board transport unit 35, a mounting target position data acquisition unit (second acquisition unit) 56, and a mounting work unit 40. The substrate transport unit 35 receives the substrate 4 to which unique identification information is given, the solder portion S is formed, and the position of the solder portion S is measured, and positions the substrate 4 at the working position. The board transfer unit 35 further carries out the component-mounted board 4 on which the component P has been mounted from the working position to the equipment downstream. The second acquisition unit 56 acquires the mounting target position data calculated based on the mounting point position data and the solder portion position data specified by the same identification information as the mounting point position data. The mounting point position data is obtained by actually measuring the board 4, and includes the position of the mounting point J on the board 4. The solder portion position data includes the position of the solder portion S obtained by actually measuring the solder portion S. The mounting work unit 40 has a mounting head 37. The mounting head 37 mounts the component P at the mounting target position on the substrate 4 located at the working position. The mounting target position is specified by the mounting target position data associated with the identification information of the substrate 4. With this configuration, the accuracy of position correction to which the solder position information is applied can be improved, and a high level of component mounting quality can be realized.
 また、本実施の形態に示す搭載済部品検査装置M8は、本実施の形態に示す実装基板製造システム1に含まれ、固有の識別情報で識別される基板4の実装点Jに搭載された部品Pの搭載位置のずれを計測する。搭載済部品検査装置M8は、作業ステージとしての基板搬送部22と、データ取得部20eと、検査部20bとを有する。基板搬送部22は、部品搭載装置M6(M7)によって部品Pが搭載された部品搭載済の基板4を保持する。データ取得部20eは、基板搬送部22に保持された基板4の識別マークに関連付けされた搭載目標位置データを取得する。搭載目標位置データは、実装基板製造システムの情報管理装置3における搭載目標位置データ作成部43で予め作成されている。検査部20bは、基板搬送部22に保持された基板4の実装点Jに搭載された部品Pの搭載位置のずれを求める。すなわち検査部20bは、搭載目標位置データに基づいて設定された搭載目標位置に対する部品Pの搭載位置のずれを求める。 Further, the mounted component inspection device M8 shown in the present embodiment is included in the mounting board manufacturing system 1 shown in the present embodiment, and is a component mounted at the mounting point J of the board 4 identified by the unique identification information. Measure the deviation of the mounting position of P. The mounted component inspection device M8 has a substrate transport unit 22 as a work stage, a data acquisition unit 20e, and an inspection unit 20b. The board transfer unit 22 holds the component-mounted board 4 on which the component P is mounted by the component mounting device M6 (M7). The data acquisition unit 20e acquires the mounting target position data associated with the identification mark of the substrate 4 held by the substrate transport unit 22. The mounting target position data is created in advance by the mounting target position data creating unit 43 in the information management device 3 of the mounting board manufacturing system. The inspection unit 20b obtains a deviation of the mounting position of the component P mounted on the mounting point J of the board 4 held by the board transporting unit 22. That is, the inspection unit 20b obtains the deviation of the mounting position of the component P with respect to the mounting target position set based on the mounting target position data.
 図17は、コンピュータのハードウェア構成の一例を示す図である。上述した実施の形態における情報管理装置3や部品搭載装置M6、M7における制御部30、搭載済部品検査装置M8における処理部20の機能は、例えば、コンピュータ2100が実行するプログラムにより実現される。 FIG. 17 is a diagram showing an example of the hardware configuration of the computer. The functions of the information management device 3 in the above-described embodiment, the control unit 30 in the component mounting devices M6 and M7, and the processing unit 20 in the mounted component inspection device M8 are realized by, for example, a program executed by the computer 2100.
 コンピュータ2100は、入力ボタン、タッチパッド等の入力装置2101、ディスプレイ、スピーカ等の出力装置2102、CPU2103、ROM(Read Only Memory)2104、RAM(Random Access Memory)2105を有する。また、コンピュータ2100は、ハードディスク装置、SSD(Solid State Drive)等の記憶装置2106、DVD-ROM(Digital Versatile Disk Read Only Memory)、USB(Universal Serial Bus)メモリ等の記録媒体から情報を読み取る読取装置2107、ネットワークを介して通信を行う送受信装置2108を有する。上述した各部は、バス2109により接続されている。 The computer 2100 has an input device 2101 such as an input button and a touch pad, an output device 2102 such as a display and a speaker, a CPU 2103, a ROM (Read Only Memory) 2104, and a RAM (Random Access Memory) 2105. In addition, the computer 2100 reads information from a hard disk device, a storage device 2106 such as an SSD (Solid State Drive), a DVD-ROM (Digital Versailles Disk Read Only Memory), and a recording medium such as a USB (Universal Serial Bus) memory. 2107, a transmission / reception device 2108 that communicates via a network. The above-mentioned parts are connected by a bus 2109.
 そして、読取装置2107は、上記各部の機能を実現するためのプログラムを記録した非一時的な記録媒体からそのプログラムを読み取り、記憶装置2106に記憶させる。あるいは、送受信装置2108が、ネットワークに接続されたサーバ装置と通信を行い、サーバ装置からダウンロードした上記各部の機能を実現するためのプログラムを記憶装置2106に記憶させる。 Then, the reading device 2107 reads the program from the non-temporary recording medium on which the program for realizing the functions of the above parts is recorded, and stores the program in the storage device 2106. Alternatively, the transmission / reception device 2108 communicates with the server device connected to the network, and stores the program downloaded from the server device for realizing the functions of the above parts in the storage device 2106.
 そして、CPU2103が、記憶装置2106に記憶されたプログラムをRAM2105にコピーし、そのプログラムに含まれる命令をRAM2105から順次読み出して実行する。これにより、情報管理装置3の作成部43、第1の情報処理部45~第3の情報処理部47の機能や、制御部30の第4記憶部53~第7記憶部58a以外の機能ブロックの機能、処理部20の第8記憶部20c、第9記憶部20d以外の機能ブロックの機能が実現される。また、プログラムを実行する際、RAM2105または記憶装置2106には、上述の各種処理で得られた情報が記憶され、適宜利用される。 Then, the CPU 2103 copies the program stored in the storage device 2106 to the RAM 2105, and sequentially reads and executes the instructions included in the program from the RAM 2105. As a result, the functions of the creation unit 43 of the information management device 3, the first information processing unit 45 to the third information processing unit 47, and the functional blocks other than the fourth storage unit 53 to the seventh storage unit 58a of the control unit 30 Functions, functions of functional blocks other than the eighth storage unit 20c and the ninth storage unit 20d of the processing unit 20 are realized. Further, when the program is executed, the information obtained by the above-mentioned various processes is stored in the RAM 2105 or the storage device 2106, and is appropriately used.
 なお、他の例として、情報管理装置3の機能ブロックや制御部30、処理部20は、専用のIC(integrated circuit)、LSI(large-scale integration)などの物理的な回路として実現することもできる。あるいは、このような汎用コンピュータとソフトウェアの組み合わせと専用回路とを組み合わせて情報管理装置3の機能ブロックや制御部30、処理部20を構成してもよい。あるいは、情報管理装置3の機能ブロックや制御部30、処理部20の機能ブロックのうち、2つ以上を、物理的に一体の回路として構成してもよい。 As another example, the functional block of the information management device 3, the control unit 30, and the processing unit 20 may be realized as a physical circuit such as a dedicated IC (integrated circuit) or LSI (range-scale integration). it can. Alternatively, such a combination of a general-purpose computer and software and a dedicated circuit may be combined to form a functional block, a control unit 30, and a processing unit 20 of the information management device 3. Alternatively, two or more of the functional blocks of the information management device 3, the control unit 30, and the processing unit 20 may be configured as a physically integrated circuit.
 情報管理装置3、制御部30、処理部20に含まれる各記憶部は、ROM2104、RAM2105、ハードディスク装置、SSD(Solid State Drive)等の記憶装置2106や、そのいずれかを含むサーバ装置で構成される。これらの記憶部のうち、2つ以上を、物理的に一体の記憶装置やサーバ装置で構成してもよい。またこれらの記憶部のうち、1つ以上をクラウドサーバに構成してもよい。 Each storage unit included in the information management device 3, the control unit 30, and the processing unit 20 is composed of a storage device 2106 such as a ROM 2104, a RAM 2105, a hard disk device, and an SSD (Solid State Drive), or a server device including any of them. Ru. Two or more of these storage units may be composed of a physically integrated storage device or server device. Further, one or more of these storage units may be configured in the cloud server.
 本開示の部品搭載装置および部品搭載方法は、はんだ位置情報を適用した位置補正の精度を向上させて、高度な部品実装品質を実現することができるという効果を有し、部品保持ノズルで部品を保持してはんだ部が形成された基板の実装点に搭載する技術分野において有用である。 The component mounting device and component mounting method of the present disclosure have the effect of improving the accuracy of position correction to which solder position information is applied and achieving a high level of component mounting quality. It is useful in the technical field of holding and mounting on a mounting point of a substrate on which a solder portion is formed.
1  実装基板製造システム
1a  部品実装ライン
2  通信ネットワーク
3  情報管理装置
4  基板
4a  レジスト膜
4b  開口部
4c  開口縁部
4c’  縁部隙間
10  スクリーン印刷制御部(制御部)
11  基板位置決め部
11a  印刷ステージXYΘテーブル(テーブル)
11b  印刷ステージ昇降機構(昇降機構)
13  印刷ステージ
13a  昇降テーブル
14  基板サポート部
14a  基板サポートピン
14b  基板サポート部昇降機構(昇降機構)
15  基板搬送部
15a  搬入コンベア
15b  印刷ステージコンベア
15c  搬出コンベア
16  スクリーン印刷部
17  スキージ
17a  スキージ駆動機構(昇降機構)
18  スクリーンマスク
19  カメラユニット
19a  マスクカメラ
19b  基板カメラ
20  処理部
20a  基板認識部
20b  検査部
20c  検査関連データ記憶部(第8記憶部)
20d  検査結果記憶部(第9記憶部)
20e  データ取得部
20f  データ出力部
21,31  基台
22  基板搬送部
24  検査ヘッド
24a  鏡筒部
24b  照明ユニット
25  検査ヘッド移動機構(移動機構)
26  カメラ
27  ハーフミラー
28  照明光源部
28a  上段照明
28b  下段照明
28c  同軸照明
30  部品搭載制御部(制御部)
32  台車
33  テープフィーダ
34  基板下受け部
34a  サポートピン
34b  サポートピン昇降機構(昇降機構)
35  基板搬送部
36  部品認識カメラ(第1カメラ)
37  搭載ヘッド
37a  移動部材
37b  部品保持ノズル
38  搭載ヘッド移動機構(移動機構)
39  基板認識カメラ(第2カメラ)
40  搭載作業部
41  実装点位置データ記憶部(第1記憶部)
42  はんだ部位置データ記憶部(第2記憶部)
43  搭載目標位置データ作成部(作成部)
44  搭載目標位置データ記憶部(第3記憶部)
45  第1の情報処理部
46  第2の情報処理部
47  第3の情報処理部
51  基板認識部
52  部品認識部
53  生産関連データ記憶部(第4記憶部)
54  部品搭載処理部
55  実装点位置データ取得部(第1取得部)
55a  実装点位置データ記憶部(第5記憶部)
56  搭載目標位置データ取得部(第2取得部)
56a  搭載目標位置データ記憶部(第6記憶部)
57  キャリブレーションデータ算出部(算出部)
58  部品搭載ずれデータ取得部(第3取得部)
58a  部品搭載ずれデータ記憶部(第7記憶部)
59  データ出力部
2100  コンピュータ
2101  入力装置
2102  出力装置
2103  CPU
2104  ROM
2105  RAM
2106  記憶装置
2107  読取装置
2108  送受信装置
2109  バス
M1  基板供給装置
M2  基板識別情報付与装置
M3  基板計測装置
M4  スクリーン印刷装置
M5  はんだ部検査装置
M6,M7  部品搭載装置
M8  搭載済部品検査装置
M9  リフロー装置
M10  実装基板検査装置
M11  基板回収装置
L,LA,LB  ランド
L1,L2  ランド位置
La  ランド本体部
Lb  ランド縁部
J  実装点
S,S’  はんだ部
S1,S2  位置
SP  はんだパターン位置
MP  搭載目標位置
P  部品
P’  搭載済部品
PC,Pm  部品中心
1 Mounting board manufacturing system 1a Parts mounting line 2 Communication network 3 Information management device 4 Board 4a Resist film 4b Opening 4c Opening edge 4c'Edge gap 10 Screen printing control unit (control unit)
11 Board positioning unit 11a Printing stage XYΘ table (table)
11b Printing stage elevating mechanism (elevating mechanism)
13 Printed stage 13a Lifting table 14 Board support part 14a Board support pin 14b Board support part Lifting mechanism (lifting mechanism)
15 Substrate transport section 15a Carry-in conveyor 15b Printing stage conveyor 15c Carry-out conveyor 16 Screen printing section 17 Squeegee 17a Squeegee drive mechanism (elevation mechanism)
18 Screen mask 19 Camera unit 19a Mask camera 19b Board camera 20 Processing unit 20a Board recognition unit 20b Inspection unit 20c Inspection-related data storage unit (8th storage unit)
20d Test result storage unit (9th storage unit)
20e Data acquisition unit 20f Data output unit 21, 31 Base 22 Board transfer unit 24 Inspection head 24a Lens barrel unit 24b Lighting unit 25 Inspection head movement mechanism (movement mechanism)
26 Camera 27 Half mirror 28 Lighting light source unit 28a Upper stage lighting 28b Lower stage lighting 28c Coaxial lighting 30 Parts mounting control unit (control unit)
32 Bogie 33 Tape feeder 34 Board underlaying part 34a Support pin 34b Support pin lifting mechanism (lifting mechanism)
35 Board carrier 36 Parts recognition camera (first camera)
37 Mounting head 37a Moving member 37b Parts holding nozzle 38 Mounting head moving mechanism (moving mechanism)
39 Board recognition camera (second camera)
40 Mounting work unit 41 Mounting point position data storage unit (first storage unit)
42 Solder section position data storage section (second storage section)
43 Mounting target position data creation unit (creation unit)
44 Mounting target position data storage unit (third storage unit)
45 1st information processing unit 46 2nd information processing unit 47 3rd information processing unit 51 Board recognition unit 52 Parts recognition unit 53 Production-related data storage unit (4th storage unit)
54 Parts mounting processing unit 55 Mounting point position data acquisition unit (first acquisition unit)
55a Mounting point position data storage unit (fifth storage unit)
56 Mounting target position data acquisition unit (second acquisition unit)
56a Mounting target position data storage unit (6th storage unit)
57 Calibration data calculation unit (calculation unit)
58 Parts mounting misalignment data acquisition unit (3rd acquisition unit)
58a Parts mounting misalignment data storage unit (7th storage unit)
59 Data output unit 2100 Computer 2101 Input device 2102 Output device 2103 CPU
2104 ROM
2105 RAM
2106 Storage device 2107 Reading device 2108 Transmission / reception device 2109 Bus M1 Board supply device M2 Board identification information addition device M3 Board measurement device M4 Screen printing device M5 Solder part inspection device M6, M7 Parts mounting device M8 Mounted parts inspection device M9 Reflow device M10 Mounting board inspection device M11 Board recovery device L, LA, LB Land L1, L2 Land position La Land body Lb Land edge J Mounting point S, S'Solder part S1, S2 Position SP Solder pattern position MP Mounting target position P Parts P'Installed parts PC, Pm parts center

Claims (23)

  1. 基板を実測して得られた実装点の位置を含む実装点位置データを、前記基板を識別する識別情報と関連付けて記憶する実装点位置データ記憶部と、
    前記基板にはんだ部を形成するはんだ部形成装置と、
    前記はんだ部形成装置によって前記基板に形成された前記はんだ部を計測して、前記はんだ部の位置を含むはんだ部位置データを作成するはんだ部検査装置と、
    前記はんだ部位置データを、前記識別情報と関連付けて記憶するはんだ部位置データ記憶部と、
    前記識別情報で特定される前記実装点位置データと前記はんだ部位置データとに基づいて、前記識別情報で特定される前記基板における前記部品の搭載目標位置を含む搭載目標位置データを作成する搭載目標位置データ作成部と、
    前記はんだ部検査装置により前記はんだ部の前記位置を計測した前記基板を作業位置に位置させ、前記基板の前記識別情報に関連付けられた前記搭載目標位置データで特定された前記搭載目標位置に前記部品を搭載する搭載ヘッドを有する部品搭載装置と、を備えた、
    実装基板製造システム。
    A mounting point position data storage unit that stores mounting point position data including the mounting point positions obtained by actually measuring the board in association with identification information that identifies the board.
    A solder portion forming device for forming a solder portion on the substrate,
    A solder portion inspection device that measures the solder portion formed on the substrate by the solder portion forming device and creates solder portion position data including the position of the solder portion.
    A solder portion position data storage unit that stores the solder portion position data in association with the identification information,
    A mounting target for creating mounting target position data including a mounting target position of the component on the substrate specified by the identification information based on the mounting point position data specified by the identification information and the solder portion position data. Position data creation unit and
    The substrate whose position of the solder portion is measured by the solder portion inspection device is positioned at a working position, and the component is located at the mounting target position specified by the mounting target position data associated with the identification information of the substrate. With a component mounting device, which has a mounting head,
    Mounting board manufacturing system.
  2. 前記はんだ部検査装置および前記部品搭載装置と通信するように構成された第1の情報処理部をさらに備え、
    前記第1の情報処理部は、前記はんだ部位置データ記憶部と前記搭載目標位置データ作成部とを含む、
    請求項1に記載の実装基板製造システム。
    Further, a first information processing unit configured to communicate with the solder unit inspection device and the component mounting device is provided.
    The first information processing unit includes the solder unit position data storage unit and the mounting target position data creation unit.
    The mounting board manufacturing system according to claim 1.
  3. 前記部品搭載装置は、前記部品搭載装置の経時変動に起因する前記部品の搭載位置のずれを補正するためのキャリブレーションデータを使用して、前記搭載目標位置に前記部品を搭載する際の前記搭載ヘッドの停止位置を補正する、
    請求項1に記載の実装基板製造システム。
    The component mounting device uses calibration data for correcting a deviation in the mounting position of the component due to a change over time of the component mounting device, and mounts the component at the mounting target position. Correct the stop position of the head,
    The mounting board manufacturing system according to claim 1.
  4. 前記部品搭載装置により前記部品がそれぞれ搭載された複数の部品搭載済基板のそれぞれについて、前記搭載位置のずれを計測し、前記搭載位置のずれに関する部品搭載ずれデータを出力する搭載済部品検査装置と、
    前記複数の前記部品搭載済基板の前記部品搭載ずれデータに基づいて、前記キャリブレーションデータを算出するキャリブレーションデータ算出部と、をさらに備えた、
    請求項3に記載の実装基板製造システム。
    With the mounted component inspection device, which measures the deviation of the mounting position for each of the plurality of component-mounted boards on which the component is mounted by the component mounting device, and outputs the component mounting deviation data related to the deviation of the mounting position. ,
    A calibration data calculation unit for calculating the calibration data based on the component mounting deviation data of the plurality of component-mounted boards is further provided.
    The mounting board manufacturing system according to claim 3.
  5. 前記搭載済部品検査装置は、前記複数の部品搭載済基板のそれぞれについて前記搭載位置のずれを計測する場合に、前記複数の部品搭載済基板のそれぞれの前記識別情報に関連付けられた前記搭載目標位置データを、前記搭載位置のずれを計測する基準として使用する、
    請求項4に記載の実装基板製造システム。
    When the mounted component inspection device measures the deviation of the mounting position for each of the plurality of component mounted boards, the mounted component inspection device is associated with the identification information of each of the plurality of component mounted boards. The data is used as a reference for measuring the deviation of the mounting position.
    The mounting board manufacturing system according to claim 4.
  6. 前記部品搭載装置は、前記キャリブレーションデータ算出部を有する、
    請求項4記載の実装基板製造システム。
    The component mounting device has the calibration data calculation unit.
    The mounting board manufacturing system according to claim 4.
  7. 前記搭載済部品検査装置と通信するように構成された第2の情報処理部をさらに備え、
    前記第2の情報処理部は、前記部品搭載装置で参照された前記搭載目標位置データを前記搭載済部品検査装置へ提供する、
    請求項4に記載の実装基板製造システム。
    Further, a second information processing unit configured to communicate with the mounted component inspection device is provided.
    The second information processing unit provides the mounted target position data referred to by the component mounting device to the mounted component inspection device.
    The mounting board manufacturing system according to claim 4.
  8. 前記部品搭載装置は、第1部品を前記基板に搭載する第1部品搭載装置と、第2部品を前記基板に搭載する第2部品搭載装置とを含み、
    前記実装基板製造システムは、前記第1部品搭載装置、前記第2部品搭載装置、および前記搭載済部品検査装置と通信可能な第3の情報処理部をさらに備え、
    前記搭載済部品検査装置は、前記複数の部品搭載済基板のそれぞれについて、前記第1部品の第1搭載位置のずれと、前記第2部品の第2搭載位置のずれとを計測して、前記部品搭載ずれデータとして前記第1搭載位置のずれに関する第1部品搭載ずれデータを出力するとともに前記第2搭載位置のずれに関する第2部品搭載ずれデータを出力し、
    前記第3の情報処理部は、前記搭載済部品検査装置から出力された前記部品搭載ずれデータのうち、前記第1部品搭載ずれデータを前記第1部品搭載装置に提供し、前記第2部品搭載ずれデータを前記第2部品搭載装置に提供する、
    請求項6に記載の実装基板製造システム。
    The component mounting device includes a first component mounting device that mounts a first component on the board, and a second component mounting device that mounts a second component on the board.
    The mounting board manufacturing system further includes a first component mounting device, a second component mounting device, and a third information processing unit capable of communicating with the mounted component inspection device.
    The mounted component inspection device measures the deviation of the first mounting position of the first component and the deviation of the second mounting position of the second component for each of the plurality of component mounted boards, and the above-mentioned As the component mounting misalignment data, the first component mounting misalignment data relating to the first mounting misalignment is output, and the second component mounting misalignment data relating to the second mounting misalignment is output.
    The third information processing unit provides the first component mounting deviation data among the component mounting deviation data output from the mounted component inspection device to the first component mounting device, and the second component mounting. The deviation data is provided to the second component mounting device.
    The mounting board manufacturing system according to claim 6.
  9. 部品を基板の実装点に搭載する搭載ヘッドを有する部品搭載装置を使用した実装基板製造方法であって、
    前記基板を実測して得られた前記実装点の位置を含む実装点位置データを、前記基板を識別する識別情報と関連付けて記憶するステップと、
    前記基板にはんだ部を形成するステップと、
    前記基板に形成された前記はんだ部を計測して、前記はんだ部の位置を含むはんだ部位置データを作成するステップと、
    前記はんだ部位置データを前記識別情報と関連付けて記憶するステップと、
    前記識別情報で特定される前記実装点位置データと、前記はんだ部位置データとに基づいて、前記識別情報で特定される前記基板における前記部品の搭載目標位置を含む搭載目標位置データを作成するステップと、
    前記部品搭載装置によって、前記はんだ部の前記位置を計測した前記基板を作業位置に位置させ、前記基板の前記識別情報に関連付けられた前記搭載目標位置データで特定された前記搭載目標位置に前記部品を搭載するステップと、を備えた、
    実装基板製造方法。
    It is a mounting board manufacturing method using a component mounting device having a mounting head for mounting components at a mounting point of the board.
    A step of storing the mounting point position data including the mounting point position obtained by actually measuring the board in association with the identification information for identifying the board.
    The step of forming a solder portion on the substrate and
    A step of measuring the solder portion formed on the substrate and creating solder portion position data including the position of the solder portion, and
    A step of storing the solder portion position data in association with the identification information,
    A step of creating mounting target position data including a mounting target position of the component on the substrate specified by the identification information based on the mounting point position data specified by the identification information and the solder portion position data. When,
    The component mounting device positions the board whose position of the solder portion is measured at a working position, and the component is positioned at the mounting target position specified by the mounting target position data associated with the identification information of the board. With steps to mount,
    Mounting board manufacturing method.
  10. 前記部品搭載装置の経時変動に起因する前記部品の搭載位置のずれを補正するためのキャリブレーションデータを使用して、前記搭載目標位置に前記部品を搭載する際の前記搭載ヘッドの停止位置を補正する、
    請求項9に記載の実装基板製造方法。
    Using the calibration data for correcting the deviation of the mounting position of the component due to the time variation of the component mounting device, the stop position of the mounting head when the component is mounted at the mounting target position is corrected. To do
    The mounting substrate manufacturing method according to claim 9.
  11. 前記部品搭載装置により前記部品がそれぞれ搭載された複数の部品搭載済基板のそれぞれについて、前記搭載位置のずれを計測し、前記搭載位置のずれに関する部品搭載ずれデータを作成するステップと、
    前記複数の前記部品搭載済基板の前記部品搭載ずれデータに基づいて前記キャリブレーションデータを算出するステップと、をさらに備えた、
    請求項10記載の実装基板製造方法。
    A step of measuring the deviation of the mounting position for each of a plurality of component-mounted boards on which the component is mounted by the component mounting device, and creating component mounting deviation data related to the deviation of the mounting position.
    A step of calculating the calibration data based on the component mounting deviation data of the plurality of component mounted boards is further provided.
    The mounting substrate manufacturing method according to claim 10.
  12. 前記複数の部品搭載済基板のそれぞれについて前記搭載位置のずれを計測する場合に、前記複数の部品搭載済基板のそれぞれの前記識別情報に関連付けられた前記搭載目標位置データを前記搭載位置のずれを計測する基準として使用する、
    請求項11に記載の実装基板製造方法。
    When measuring the deviation of the mounting position for each of the plurality of component-mounted boards, the mounting target position data associated with the identification information of each of the plurality of component-mounted boards is used to determine the deviation of the mounting position. Used as a measurement standard,
    The mounting substrate manufacturing method according to claim 11.
  13. 前記部品搭載装置が前記キャリブレーションデータを算出し、
    前記部品搭載ずれデータを作成する際に、前記部品搭載装置で参照された前記搭載目標位置データを前記搭載位置のずれを計測する基準として使用する、
    請求項11に記載の実装基板製造方法。
    The component mounting device calculates the calibration data and
    When creating the component mounting deviation data, the mounting target position data referred to by the component mounting device is used as a reference for measuring the deviation of the mounting position.
    The mounting substrate manufacturing method according to claim 11.
  14. 前記部品搭載装置は、第1部品を前記基板に搭載する第1部品搭載装置と、第2部品を前記基板に搭載する第2部品搭載装置とを含み、
    前記部品搭載ずれデータを作成する際に、前記複数の部品搭載済基板のそれぞれについて、前記第1部品の第1搭載位置のずれと、前記第2部品の第2搭載位置のずれとを計測して、前記部品搭載ずれデータとして前記第1搭載位置のずれに関する第1部品搭載ずれデータを出力するとともに前記第2搭載位置のずれに関する第2部品搭載ずれデータを出力し、
    出力された前記部品搭載ずれデータのうち、前記第1部品搭載ずれデータを前記第1部品搭載装置に提供し、前記第2部品搭載ずれデータを前記第2部品搭載装置に提供する、
    請求項12に記載の実装基板製造方法。
    The component mounting device includes a first component mounting device that mounts a first component on the board, and a second component mounting device that mounts a second component on the board.
    When creating the component mounting deviation data, the deviation of the first mounting position of the first component and the deviation of the second mounting position of the second component are measured for each of the plurality of component-mounted boards. Then, as the component mounting misalignment data, the first component mounting misalignment data relating to the misalignment of the first mounting position is output, and the second component mounting misalignment data relating to the misalignment of the second mounting position is output.
    Of the output component mounting deviation data, the first component mounting deviation data is provided to the first component mounting device, and the second component mounting deviation data is provided to the second component mounting device.
    The mounting substrate manufacturing method according to claim 12.
  15. 固有の識別情報が付与され、はんだ部が形成され、前記はんだ部の位置が計測された基板を受け取って作業位置に位置させ、部品の搭載が済んだ部品搭載済基板を前記作業位置から下流の設備へ搬出する基板搬送部と、
    前記基板を実測して得られた前記基板の実装点の位置を含む実装点位置データと、前記実装点位置データと同一の前記識別情報で特定され、前記はんだ部を実測して得られた前記はんだ部の前記位置を含むはんだ部位置データとに基づいて算出された搭載目標位置データを取得する搭載目標位置データ取得部と、
    前記作業位置に位置する前記基板の前記識別情報に関連付けられた搭載目標位置データで特定された搭載目標位置に、前記部品を搭載する搭載ヘッドを有する搭載作業部と、を備えた、
    部品搭載装置。
    Unique identification information is given, a solder portion is formed, the board on which the position of the solder portion is measured is received and positioned at the work position, and the component-mounted board on which the components have been mounted is located downstream from the work position. The board transport section that carries out to the equipment and
    The solder portion obtained by actually measuring the solder portion, which is specified by the mounting point position data including the position of the mounting point of the board obtained by actually measuring the board and the identification information same as the mounting point position data. A mounting target position data acquisition unit that acquires mounting target position data calculated based on the solder portion position data including the position of the solder portion, and a mounting target position data acquisition unit.
    A mounting work unit having a mounting head for mounting the component is provided at a mounting target position specified by mounting target position data associated with the identification information of the substrate located at the working position.
    Parts mounting device.
  16. 前記搭載作業部は、前記部品搭載装置の経時変動に起因する前記部品の搭載位置のずれを補正するためのキャリブレーションデータを使用して、前記搭載目標位置に前記部品を搭載する際の前記搭載ヘッドの停止位置を補正する、
    請求項15に記載の部品搭載装置。
    The mounting work unit uses calibration data for correcting the deviation of the mounting position of the component due to the time variation of the component mounting device, and mounts the component at the mounting target position. Correct the stop position of the head,
    The component mounting device according to claim 15.
  17. 前記部品搭載済基板は、複数の部品搭載済基板のひとつであり、
    前記部品搭載装置は、複数の前記部品搭載済基板について計測された前記搭載位置のずれに関するデータを基に前記キャリブレーションデータを算出するキャリブレーションデータ算出部を、さらに備えた、
    請求項16に記載の部品搭載装置。
    The component-mounted board is one of a plurality of component-mounted boards.
    The component mounting device further includes a calibration data calculation unit that calculates the calibration data based on the data regarding the deviation of the mounting position measured for the plurality of the component mounted boards.
    The component mounting device according to claim 16.
  18. 複数の前記部品搭載済基板の前記搭載位置のずれに関する前記データを取得する部品搭載ずれデータ取得部をさらに備え、
    前記キャリブレーションデータ算出部は、前記部品搭載ずれデータ取得部で取得した前記搭載位置のずれに関する前記データに基づいて前記キャリブレーションデータを算出する、
    請求項17に記載の部品搭載装置。
    Further, a component mounting deviation data acquisition unit for acquiring the data regarding the deviation of the mounting position of the plurality of the component mounted boards is further provided.
    The calibration data calculation unit calculates the calibration data based on the data regarding the deviation of the mounting position acquired by the component mounting deviation data acquisition unit.
    The component mounting device according to claim 17.
  19. 搭載ヘッドで部品を保持して固有の識別情報が付与された基板に前記部品を搭載する部品搭載装置における部品搭載方法であって、
    前記基板を上流の設備から受け取って前記搭載ヘッドによる作業位置に位置させるステップと、
    前記基板を実測して得られた前記基板の実装点の位置を含む実装点位置データと、前記実装点位置データと同一の前記識別情報で特定され、前記基板に設けられたはんだ部を実測して得られた前記はんだ部の位置を含むはんだ部位置データとに基づいて算出された搭載目標位置データを取得するステップと、
    前記作業位置に位置する前記基板の前記識別情報に関連付けられた搭載目標位置データで特定された搭載目標位置に前記搭載ヘッドで前記部品を搭載するステップと、を備えた、
    部品搭載方法。
    It is a component mounting method in a component mounting device in which a component is held by a mounting head and the component is mounted on a board to which unique identification information is given.
    A step of receiving the board from upstream equipment and locating it at a working position by the mounting head.
    The solder portion provided on the board is actually measured, which is specified by the mounting point position data including the position of the mounting point of the board obtained by actually measuring the board and the identification information same as the mounting point position data. The step of acquiring the mounting target position data calculated based on the solder part position data including the position of the solder part obtained by
    A step of mounting the component with the mounting head at the mounting target position specified by the mounting target position data associated with the identification information of the substrate located at the working position is provided.
    Parts mounting method.
  20. 前記部品搭載装置の経時変動に起因する前記部品の搭載位置のずれを補正するためのキャリブレーションデータを使用して、前記搭載目標位置に前記部品を搭載する際の前記搭載ヘッドの停止位置を補正する、
    請求項19に記載の部品搭載方法。
    Using the calibration data for correcting the deviation of the mounting position of the component due to the time variation of the component mounting device, the stop position of the mounting head when the component is mounted at the mounting target position is corrected. To do
    The component mounting method according to claim 19.
  21. 前記部品搭載装置により前記部品がそれぞれ搭載された複数の部品搭載済基板のそれぞれについて、前記搭載位置のずれを計測することで作成された、前記搭載位置のずれに関する部品搭載ずれデータに基づいて前記キャリブレーションデータを算出するステップをさらに備えた、
    請求項20に記載の部品搭載方法。
    Based on the component mounting deviation data related to the deviation of the mounting position, which is created by measuring the deviation of the mounting position for each of the plurality of component-mounted boards on which the components are mounted by the component mounting device. With additional steps to calculate calibration data,
    The component mounting method according to claim 20.
  22. 前記搭載目標位置に関する部品搭載目標位置データを、前記部品の前記搭載位置のずれを計測する基準とするために、前記部品搭載目標位置データを前記識別情報と関連付けて出力するステップをさらに備えた、
    請求項21に記載の部品搭載方法。
    In order to use the component mounting target position data related to the mounting target position as a reference for measuring the deviation of the mounting position of the component, a step of outputting the component mounting target position data in association with the identification information is further provided.
    The component mounting method according to claim 21.
  23. 請求項4記載の実装基板製造システムに含まれ、前記識別情報で識別される前記基板の前記実装点に搭載された前記部品の前記搭載位置のずれを計測する搭載済部品検査装置であって、
    前記部品搭載装置によって前記部品が搭載された前記部品搭載済基板を保持する作業ステージと、
    前記搭載目標位置データ作成部で作成され、前記作業ステージに保持された前記基板の前記識別情報に関連付けされた搭載目標位置データを取得するデータ取得部と、
    前記作業ステージに保持された前記基板の前記実装点に搭載された前記部品の前記搭載位置のずれを求める検査部と、を備え、
    前記検査部は前記搭載目標位置データに基づいて設定された搭載目標位置に対する前記部品の前記搭載位置のずれを求める、
    搭載済部品検査装置。
    A mounted component inspection device included in the mounting board manufacturing system according to claim 4, which measures a deviation of the mounting position of the component mounted at the mounting point of the board identified by the identification information.
    A work stage for holding the component-mounted board on which the component is mounted by the component-mounting device, and
    A data acquisition unit that acquires mounting target position data created by the mounting target position data creation unit and associated with the identification information of the substrate held on the work stage, and
    It is provided with an inspection unit for obtaining a deviation of the mounting position of the component mounted on the mounting point of the board held on the work stage.
    The inspection unit obtains the deviation of the mounting position of the component with respect to the mounting target position set based on the mounting target position data.
    Installed parts inspection device.
PCT/JP2020/005512 2019-03-15 2020-02-13 Component installation device and component installation method, mounting substrate manufacturing system and mounting substrate manufacturing method, and installed component inspection device WO2020189108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080016389.2A CN113508652B (en) 2019-03-15 2020-02-13 Component mounting device, component mounting method, mounting board manufacturing system, mounting board manufacturing method, and mounted component inspection device
JP2021506239A JP7382551B2 (en) 2019-03-15 2020-02-13 Component mounting equipment and component mounting method, mounting board manufacturing system and mounting board manufacturing method, and mounted component inspection equipment
DE112020001298.0T DE112020001298T5 (en) 2019-03-15 2020-02-13 Component mounter and component mounting method, mounting substrate manufacturing system and mounting substrate manufacturing method, and mounted component inspection device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-047845 2019-03-15
JP2019047845 2019-03-15
JP2019-047846 2019-03-15
JP2019047846 2019-03-15
JP2019125048 2019-07-04
JP2019-125048 2019-07-04

Publications (1)

Publication Number Publication Date
WO2020189108A1 true WO2020189108A1 (en) 2020-09-24

Family

ID=72520117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005512 WO2020189108A1 (en) 2019-03-15 2020-02-13 Component installation device and component installation method, mounting substrate manufacturing system and mounting substrate manufacturing method, and installed component inspection device

Country Status (4)

Country Link
JP (1) JP7382551B2 (en)
CN (1) CN113508652B (en)
DE (1) DE112020001298T5 (en)
WO (1) WO2020189108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185957A1 (en) * 2021-03-03 2022-09-09 パナソニックIpマネジメント株式会社 Imaging device and mounting apparatus
WO2023095213A1 (en) * 2021-11-24 2023-06-01 株式会社Fuji Component mounting machine and method for calculating correction value

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251897A (en) * 1991-01-24 1993-09-28 Matsushita Electric Works Ltd Apparatus for mounting parts
JP2003229699A (en) * 2002-02-05 2003-08-15 Matsushita Electric Ind Co Ltd Electronic component mounting system and method therefor
JP2015099863A (en) * 2013-11-20 2015-05-28 パナソニックIpマネジメント株式会社 Component mounting system and component mounting method
WO2018189937A1 (en) * 2017-04-13 2018-10-18 Ckd株式会社 Component mounting system and adhesive inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747164B2 (en) * 2011-09-27 2015-07-08 パナソニックIpマネジメント株式会社 Electronic component mounting system
JP5945697B2 (en) 2012-11-19 2016-07-05 パナソニックIpマネジメント株式会社 Electronic component mounting system and electronic component mounting method
JP6277422B2 (en) * 2014-09-11 2018-02-14 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
JP6913851B2 (en) * 2017-08-24 2021-08-04 パナソニックIpマネジメント株式会社 Mounting board manufacturing system and mounting board manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251897A (en) * 1991-01-24 1993-09-28 Matsushita Electric Works Ltd Apparatus for mounting parts
JP2003229699A (en) * 2002-02-05 2003-08-15 Matsushita Electric Ind Co Ltd Electronic component mounting system and method therefor
JP2015099863A (en) * 2013-11-20 2015-05-28 パナソニックIpマネジメント株式会社 Component mounting system and component mounting method
WO2018189937A1 (en) * 2017-04-13 2018-10-18 Ckd株式会社 Component mounting system and adhesive inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185957A1 (en) * 2021-03-03 2022-09-09 パナソニックIpマネジメント株式会社 Imaging device and mounting apparatus
JP7496490B2 (en) 2021-03-03 2024-06-07 パナソニックIpマネジメント株式会社 Imaging device and mounting machine
WO2023095213A1 (en) * 2021-11-24 2023-06-01 株式会社Fuji Component mounting machine and method for calculating correction value

Also Published As

Publication number Publication date
JP7382551B2 (en) 2023-11-17
CN113508652A (en) 2021-10-15
DE112020001298T5 (en) 2021-12-16
CN113508652B (en) 2023-08-18
JPWO2020189108A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
CN101385409B (en) Electronic components mounting system, placement state inspecting apparatus, and electronic components mounting method
CN101107898B (en) Electronic component mounting system and electronic component mounting method
US5134575A (en) Method of producing numerical control data for inspecting assembled printed circuit board
US20080289175A1 (en) Electronic component mounting system and electronic component mounting method
JP4493421B2 (en) Printed circuit board inspection apparatus, printed circuit board assembly inspection line system, and program
JP4289381B2 (en) Electronic component mounting system and electronic component mounting method
JP6262378B1 (en) Substrate inspection apparatus, substrate inspection method, and substrate manufacturing method
WO2020189108A1 (en) Component installation device and component installation method, mounting substrate manufacturing system and mounting substrate manufacturing method, and installed component inspection device
EP1653794A1 (en) Technique for optical inspection system verification
JP4379348B2 (en) Electronic component mounting system and electronic component mounting method
US20150289426A1 (en) Electronic component mounting system
KR20130124313A (en) Screen printing device and screen printing method
KR20130124312A (en) Screen printing device and screen printing method
JP3873757B2 (en) Electronic component mounting system and electronic component mounting method
WO2020195024A1 (en) Information processing device
JP3128891B2 (en) Component mounting method and component mounting device
JPH05251897A (en) Apparatus for mounting parts
CN115362762A (en) Mounting substrate manufacturing apparatus and mounting substrate manufacturing method
JP7126122B2 (en) Mounting system and production control equipment
JP2012086432A (en) Screen printing device and screen printing method
CN113498634A (en) Correction amount calculation device and correction amount calculation method
JP7369916B2 (en) Component mounting system and component mounting method
JP7291871B2 (en) MOUNTING BOARD MANUFACTURING SYSTEM AND MOUNTING BOARD MANUFACTURING METHOD
CN114503797B (en) Component mounting system and component mounting method
JP7232987B2 (en) Information processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506239

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20774192

Country of ref document: EP

Kind code of ref document: A1