WO2020188990A1 - Substrate treatment method - Google Patents

Substrate treatment method Download PDF

Info

Publication number
WO2020188990A1
WO2020188990A1 PCT/JP2020/001869 JP2020001869W WO2020188990A1 WO 2020188990 A1 WO2020188990 A1 WO 2020188990A1 JP 2020001869 W JP2020001869 W JP 2020001869W WO 2020188990 A1 WO2020188990 A1 WO 2020188990A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphoric acid
substrate
tank
acid solution
processing method
Prior art date
Application number
PCT/JP2020/001869
Other languages
French (fr)
Japanese (ja)
Inventor
朋宏 高橋
武知 圭
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020188990A1 publication Critical patent/WO2020188990A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing method, and more particularly to a substrate processing method using a phosphoric acid-containing processing liquid.
  • a substrate processing method for processing a semiconductor substrate in order to manufacture a three-dimensional memory device is disclosed.
  • This semiconductor substrate has a laminated film in which silicon oxide films and silicon nitride films are alternately laminated on a silicon substrate. Further, the semiconductor substrate has a trench penetrating the laminated film.
  • the silicon nitride film is wet-etched by immersing the semiconductor substrate in a heated phosphoric acid solution in the processing tank. At this time, the phosphoric acid solution comes into contact with each layer of the laminated film through the trench of the semiconductor substrate to selectively remove the silicon nitride film.
  • the phosphoric acid solution used in the etching process overflows from the inner tank and is stored in the outer tank. The pump sucks the phosphoric acid solution stored in the outer tank and refluxes it through the circulation path. In the process of reflux, the phosphoric acid solution is heated and supplied into the treatment tank again.
  • the phosphoric acid-containing treatment liquid in contact with the substrate can be replaced to some extent by the flow of the phosphoric acid solution with reflux.
  • the phosphoric acid solution in contact with the substrate may have a portion that is difficult to be replaced by mere flow.
  • the phosphoric acid solution is unlikely to be replaced at a deep position in the trench.
  • the silicon nitride film located deeper among the plurality of silicon nitride films pierced by the trench is less susceptible to the progress of etching from the trench than the silicon nitride film located shallowly. Therefore, the non-uniformity of the etching progress becomes large.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a substrate processing method capable of making the progress of etching of a substrate by a phosphoric acid-containing treatment liquid uniform. ..
  • the substrate processing method of the present invention has the following steps.
  • a dipping step of immersing the substrate in the phosphoric acid-containing treatment liquid in the first tank is performed.
  • an ascending step is performed in which at least a part of the substrate is raised by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank and upward.
  • a descending step is performed in which at least a part of the substrate is lowered by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank or in the second tank different from the first tank.
  • the lowering step may be a step of lowering at least a part of the substrate downward by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank.
  • the lowering step may be a step of lowering at least a part of the substrate downward by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the second tank.
  • the ascending step may be performed by ascending the entire substrate upward through the liquid level of the phosphoric acid-containing treatment liquid in the first tank.
  • the dipping step may include an exposure step of exposing at least one silicon nitride film of the substrate to the phosphoric acid-containing treatment liquid in the first tank.
  • the substrate contains a laminate that alternately has a plurality of first films as at least one silicon nitride film and a plurality of second films made of a material that is less likely to be etched by phosphoric acid than silicon nitride. Good.
  • the laminate has trenches penetrating the plurality of first films and the plurality of second films, and the phosphoric acid-containing treatment liquid penetrates into the trenches.
  • the second film may be a silicon oxide film.
  • the dipping step may include an exposure step of exposing the tungsten film of the substrate to the phosphoric acid-containing treatment liquid in the first tank.
  • the phosphoric acid-containing treatment liquid does not have to be bubbled in the ascending step and the descending step.
  • the phosphoric acid-containing treatment liquid may be bubbled with a gas.
  • the gas may be an inert gas.
  • the main surface of the substrate may be parallel in the vertical direction.
  • the substrate passes through the liquid surface of the phosphoric acid-containing treatment liquid and is moved upward.
  • the phosphoric acid-containing treatment liquid is effectively removed from the substrate due to the surface tension of the phosphoric acid-containing treatment liquid.
  • the phosphoric acid-containing treatment liquid is supplied again to the portion where the phosphoric acid-containing treatment liquid has been removed.
  • FIG. 5 is a cross-sectional view schematically showing a second step of the substrate processing method according to the first embodiment of the present invention. It is sectional drawing which shows roughly the 3rd step of the substrate processing method in Embodiment 1 of this invention.
  • FIG. 5 is a cross-sectional view schematically showing a fourth step of the substrate processing method according to the first embodiment of the present invention. It is sectional drawing which shows typically the 5th step of the substrate processing method in Embodiment 1 of this invention.
  • FIG. 5 is a cross-sectional view schematically showing a seventh step of the substrate processing method according to the second embodiment of the present invention. It is sectional drawing which shows schematic 8 steps of the substrate processing method in Embodiment 2 of this invention. It is sectional drawing which shows schematic 9th steps of the substrate processing method in Embodiment 2 of this invention.
  • FIG. 5 is a cross-sectional view schematically showing a tenth step of the substrate processing method according to the second embodiment of the present invention. It is sectional drawing which shows roughly the 1st step of the substrate processing method in Embodiment 3 of this invention. It is sectional drawing which shows typically the 2nd step of the substrate processing method in Embodiment 3 of this invention. It is sectional drawing which shows roughly the 3rd step of the substrate processing method in Embodiment 3 of this invention.
  • FIG. 1 is a diagram schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment.
  • the substrate 500 processed by the substrate processing apparatus 100 and the phosphoric acid solution ET (phosphoric acid-containing processing liquid) used by the substrate processing apparatus 100 are indicated by virtual lines (two-point chain line). There is.
  • one or more materials may be further dissolved in the phosphoric acid solution ET.
  • the substrate processing apparatus includes a tank 101 (first tank), an outer tank 102, a lifter 51 (board holding unit), an actuator 52 (lifter driving unit), and a solution supply source 11 (phosphoric acid-containing processing liquid supply source).
  • the tank 101 has at least one liquid injection port 111 and at least one gas injection port 112.
  • the tank 101 is a container for storing the phosphoric acid solution ET for processing the substrate 500.
  • the phosphoric acid solution ET stored in the tank 101 has a liquid level SF.
  • the outer tank 102 is a container for storing the phosphoric acid solution ET that overflows from the liquid level SF.
  • the pump 16 and the heater 17 are provided in the piping path from the outer tank 102 to the liquid injection port 111.
  • the heated phosphoric acid solution ET is refluxed.
  • the phosphoric acid solution ET sucked out from the outer tank 102 is heated and then discharged from the liquid injection port 111 into the tank 101.
  • the solution supply source 11 supplies a new phosphoric acid solution (phosphoric acid-containing treatment liquid) to the tank 101 according to the control by the valve 12.
  • FIG. 1 shows a configuration in which the phosphoric acid solution is directly supplied to the tank 101, other configurations may be used.
  • the phosphoric acid solution may be indirectly supplied to the tank 101 via at least one of the above-mentioned reflux path and the outer tank 102.
  • the gas supply source 21 supplies gas to the gas inlet 112 according to the control by the valve 22.
  • bubbling into the phosphoric acid solution ET stored in the tank 101 is performed according to the control by the valve 22.
  • the tank 101 is provided with a plurality of gas inlets 112.
  • the lifter 51 holds at least one substrate 500.
  • the lifter 51 holds a plurality of substrates 500, in which case batch processing will be performed.
  • the actuator 52 displaces the lifter 51 up and down.
  • the relative position of the substrate 500 held by the lifter 51 can be changed with reference to the position of the liquid level SF of the phosphoric acid solution ET in the vertical direction. Therefore, the rate at which the substrate 500 is immersed in the phosphoric acid solution ET is controlled.
  • the actuator 52 has, for example, a servomotor or a timing belt.
  • the valve 22 and the actuator 52 may operate in response to a command from a control unit (not shown).
  • the control unit is typically composed of electrical circuits and includes a processor and a storage device.
  • the processor issues commands to the valve 22 and the actuator 52 by executing a program stored in the storage device.
  • FIGS. 2 to 6 are cross-sectional view schematically showing the first to fifth steps of the substrate processing method using the substrate processing apparatus 100 (FIG. 1) in the first embodiment.
  • the silicon nitride film (not shown in FIGS. 2 to 6) included in the substrate 500 is etched.
  • the phosphoric acid solution ET is stored in the tank 101. At least one, preferably a plurality, of substrates 500 are held by the lifter 51 above the liquid level SF of the phosphoric acid solution ET. Next, the actuator 52 lowers the lifter 51 toward the liquid level SF (see the broken line arrow in the figure).
  • the substrate 500 is arranged below the liquid level SF. It is preferable that the phosphoric acid solution ET is not bubbled during the descent of the lifter 51.
  • the substrate 500 is immersed in the phosphoric acid solution ET in the tank 101 through the above-mentioned steps.
  • the dipping process is started.
  • the position of the substrate 500 is preferably fixed.
  • the main surface MS of the substrate 500 is preferably parallel in the vertical direction.
  • the thickness direction of the substrate 500 is preferably along the horizontal direction.
  • the phosphoric acid solution ET is preferably bubbled with a gas.
  • the bubble BB is generated by the supply of gas from the gas inlet 112.
  • the gas is preferably an inert gas, for example nitrogen gas (N 2 ).
  • the ascending step is then performed. Specifically, at least a part of the substrate 500 is raised upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. As shown in FIG. 6, the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. It is preferable that the phosphoric acid solution ET is not bubbled during the lifting step of the lifter 51.
  • the lowering step is then performed. Specifically, at least a part, preferably the whole, of the substrate 500 is lowered by passing through the liquid level SF of the phosphoric acid solution ET in the tank 101.
  • the phosphoric acid solution ET is preferably not bubbled.
  • the ascending step is then performed again.
  • the set of these steps is preferably performed at least once, more preferably a plurality of times. For example, three or more sets each composed of a descending step, a dipping step, and an ascending step may be periodically performed.
  • the set of the ascending step and the descending step is repeated a plurality of times.
  • This set may be repeated 10 times or more.
  • this set is repeated about 40 to 50 times during the substrate processing for about 2 hours, and in this case, the frequency of setting (the number of times per unit time) is once every few minutes.
  • a first step of repeating the set of the ascending step and the descending step with the first frequency and a second step of repeating the set of the ascending step and the descending step with the second frequency are performed after the first step.
  • the 2nd frequency is lower than the 1st frequency.
  • the substrate processing method of the present embodiment is completed.
  • the substrate 500 may be washed with water, if necessary.
  • the water washing step may be performed by supplying water to the tank 101, or may be performed in another tank.
  • the substrate 500 is moved upward through the liquid level SF of the phosphoric acid solution ET by the ascending step (FIGS. 5 and 6).
  • the phosphoric acid solution ET is effectively removed from the substrate 500 due to the surface tension of the phosphoric acid solution ET.
  • the phosphoric acid solution ET is supplied again to the portion where the phosphoric acid solution ET has been removed by the subsequent descending step (see FIGS. 2 and 3).
  • the portion of the phosphoric acid solution ET in contact with the substrate 500 that is difficult to be replaced by mere flow is effectively replaced. Therefore, the progress of etching of the substrate 500 by the phosphoric acid solution ET can be made uniform.
  • An example of a portion that is difficult to be replaced only by a simple flow will be described in detail in the third embodiment described later.
  • the lowering step is different from the second embodiment described later, and in the present embodiment, as shown in FIGS. 2 and 3, the lowering substrate passes through the liquid level SF of the phosphoric acid solution ET in the tank 101 and downwards. It is a step of lowering at least a part of 500. As a result, the progress of etching in the tank 101 can be made uniform as described above.
  • the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. Thereby, the phosphoric acid solution ET can be removed more effectively from the substrate 500.
  • the phosphoric acid solution ET is not bubbled in the ascending step (see FIGS. 5 and 6) and the descending step (see FIGS. 2 and 3). As a result, it is possible to prevent the posture of the substrate 500 from becoming unstable due to bubbling in the ascending step and the descending step.
  • the phosphoric acid solution ET is preferably bubbled with gas.
  • the flow of phosphate solution ET caused by bubbling further facilitates the substitution of phosphate solution ET.
  • the bubbling gas is preferably an inert gas. This avoids unnecessary chemical action caused by the gas.
  • the main surface MS of the substrate 500 is preferably parallel in the vertical direction.
  • the substrate 500 can be moved in the vertical direction by moving the substrate 500 along the main surface MS. Therefore, the substrate 500 can be moved in and out of the tank 101 by moving the substrate 500 along the main surface MS.
  • a first step of repeating the set of the ascending step and the descending step with the first frequency and a second step of repeating the set of the ascending step and the descending step with the second frequency are performed after the first step.
  • the 2nd frequency is lower than the 1st frequency.
  • the etching tends to proceed rapidly in the initial stage, so that the silicon concentration in the phosphoric acid solution ET in contact with the substrate 500 also tends to increase rapidly. Therefore, in the initial stage, it is preferable that the ascending step and the descending step are set at a relatively high first frequency in order to suppress the concentration unevenness. On the other hand, in the subsequent stage, the increase in the silicon concentration becomes gradual, so it is preferable that the ascending step and the descending step are set at a relatively low second frequency. As a result, it is possible to suppress a decrease in the processing speed due to the temporary removal of the phosphoric acid solution ET.
  • the temperature of the substrate 500 heated by the phosphoric acid solution ET temporarily decreases between the ascending step and the descending step, which is the progress of etching. It tends to slow down.
  • the second frequency which is lower than the first frequency, the adverse effect of this temperature decrease can be suppressed.
  • FIGS. 7 to 16 are cross-sectional view schematically showing the first to tenth steps of the substrate processing method according to the second embodiment.
  • the substrate processing apparatus used in the present embodiment further includes a tank 201 (second tank) and an outer tank 202 as shown in addition to the configuration of the substrate processing apparatus 100.
  • the tank 201 has at least one liquid injection port 211 and at least one gas injection port 212. Similar to the tank 101 (FIG. 1), the tank 201 is provided with a solution supply source 11, a valve 12, a gas supply source 21, a valve 22, a pump 16, and a heater 17, although not shown. Has been done.
  • the actuator 52 can not only displace the lifter 51 up and down, but also displace it in the horizontal direction.
  • the substrate 500 held by the lifter 51 can be displaced from the position on the tank 101 to the position on the tank 201.
  • the lifter 51 also has a function as a slider.
  • the phosphoric acid solution ET is stored in the tank 101 and the tank 201. Above the liquid level SF of the phosphoric acid solution ET in the tank 101, at least one, preferably a plurality of, substrates 500 are held by the lifter 51. Next, the actuator 52 lowers the lifter 51 toward the liquid level SF (see the broken line arrow in the figure).
  • the substrate 500 by lowering the lifter 51, at least a part, preferably the whole, of the substrate 500 is arranged below the liquid level SF. It is preferable that the phosphoric acid solution ET is not bubbled during the descent of the lifter 51.
  • the substrate 500 is immersed in the phosphoric acid solution ET in the tank 101 through the above-mentioned steps.
  • the dipping step in the tank 101 is started.
  • the position of the substrate 500 is preferably fixed.
  • the main surface MS of the substrate 500 is preferably parallel in the vertical direction.
  • the thickness direction of the substrate 500 is preferably along the horizontal direction.
  • the phosphoric acid solution ET is preferably bubbled with a gas.
  • the bubble BB is generated by the supply of gas from the gas inlet 112.
  • the gas is preferably an inert gas, for example N 2 .
  • the ascending step in the tank 101 is then performed. Specifically, at least a part of the substrate 500 is raised upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. As shown in FIG. 11, the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. It is preferable that the phosphoric acid solution ET is not bubbled during the lifting step of the lifter 51.
  • the actuator 52 displaces the lifter 51 from the position above the tank 101 to the position above the tank 201 (see the dashed arrow in the figure).
  • the lowering step is then performed. Specifically, at least a part, preferably the whole, of the substrate 500 is lowered as it passes through the liquid level SF of the phosphoric acid solution ET in the tank 201.
  • the phosphoric acid solution ET is preferably not bubbled.
  • this initiates the dipping step in tank 201.
  • the position of the substrate 500 is preferably fixed.
  • the main surface MS of the substrate 500 is preferably parallel in the vertical direction. In other words, the thickness direction of the substrate 500 is preferably along the horizontal direction.
  • the phosphoric acid solution ET is preferably bubbled with a gas.
  • the bubble BB is generated by the supply of gas from the gas inlet 212.
  • the gas is preferably an inert gas, for example N 2 .
  • the ascending step in the tank 201 is then performed. This completes the substrate processing method of the present embodiment.
  • the substrate processing method is performed using two tanks 101 and 102 has been described above, three or more tanks may be used. Further, the components of the phosphoric acid solution ET in the tank 101 and the components of the phosphoric acid solution ET in the tank 101 may be different from each other. Thereby, for example, the etching rate by the phosphoric acid solution ET may be relatively low in the tank 101 and relatively high in the tank 201.
  • the progress of etching of the substrate 500 can be made uniform for the same reason as in the case of the first embodiment described above.
  • the treatment with the phosphoric acid solution ET is performed not only in the tank 101 but also in the second tank 201.
  • the product in the phosphoric acid solution ET during the substrate treatment (for example, in the phosphoric acid solution ET during the etching treatment of silicon nitride) is compared with the case where the treatment with the phosphoric acid solution ET is performed only in the tank 101. It is possible to suppress a decrease in the etching ability of the phosphoric acid solution ET due to an increase in the concentration of silicon) produced in the phosphoric acid solution. This effect is particularly large when the treatment for maintaining the etching ability of the phosphoric acid solution ET by gradually mixing a new phosphoric acid solution into the used phosphoric acid solution ET is not performed.
  • FIG. 17 to 19 are cross-sectional views schematically showing the first to third steps of the substrate processing method according to the third embodiment.
  • the substrate 500 to which the substrate processing method of the present embodiment is applied has at least one silicon nitride film 505.
  • the substrate 500 is composed of a plurality of sacrificial films 505 (first film) as at least one silicon nitride film 505, and a plurality of structural films 503 made of a material that is less likely to be etched by phosphoric acid than silicon nitride. (Second film) and a laminated body having alternately.
  • the laminate has a trench TR that penetrates the plurality of sacrificial films 505 and the plurality of structural films 503.
  • the trench TR has an opening OP on the main surface MS and extends in the thickness direction of the substrate 500.
  • the structural film 503 is preferably a silicon oxide film 503.
  • the substrate 500 may have a support layer 501 that supports the laminate.
  • the support layer is, for example, a silicon layer.
  • the immersion step (FIG. 4) is then performed by the substrate processing method described in the first embodiment described above.
  • the exposure step of exposing the silicon nitride film 505 to the phosphoric acid solution ET in the tank 101 (FIG. 4) is performed.
  • the substrate 500 includes the laminate having the trench TR described above.
  • the phosphoric acid solution ET penetrates into the trench TR from the opening OP by the exposure step.
  • each etching of the sacrificial film 505 starts to proceed horizontally from the trench TR.
  • the phosphoric acid solution ET is less likely to be replaced by the mere flow at the etching progress portion P2 of the sacrifice film 505 of the lowermost layer as compared with the etching progress portion P1 of the sacrifice film 505 of the uppermost layer. Therefore, assuming that the treatment for promoting the substitution is merely flow, the etching of the sacrificial film 505 of the lowermost layer is considerably less likely to proceed than that of the sacrificial film 505 of the uppermost layer, and as a result, the etching progresses. Non-uniformity tends to increase.
  • the substrate processing method described in the above-described first embodiment is used for the purpose of sufficiently replacing the phosphoric acid solution ET even at the etching progress portion P2.
  • the ascending step (FIGS. 5 and 6) of this substrate processing method the opening OP of the trench TR is moved from below to above the liquid level SF of the phosphoric acid solution ET.
  • the action of pulling out the phosphoric acid solution ET from the trench TR and the cavity GP formed by etching the sacrificial film 505 extending in the horizontal direction from the trench TR occurs. ..
  • the action of pulling out the phosphoric acid solution ET is also added to the portion P2.
  • the opening OP of the trench TR is moved from above to below the liquid level SF of the phosphoric acid solution ET by the descending step (FIGS. 2 and 3).
  • the descending step (FIGS. 2 and 3).
  • the phosphoric acid solution ET is sufficiently substituted at the location P2 as well.
  • the sacrificial film 505 (FIG. 17) is changed to the cavity GP by the substrate treatment.
  • the substrate 500 subjected to such processing can be used as a substrate for manufacturing a three-dimensional memory device (for example, a three-dimensional NAND memory device).
  • the immersion step includes an exposure step of exposing the silicon nitride film 505 (FIG. 17) to the phosphoric acid solution ET in the tank 101.
  • the silicon nitride film 505 can be etched.
  • the phosphoric acid solution ET invades the trench TR.
  • the phosphoric acid solution ET is less likely to be replaced in the vicinity of the deep portion P2 (FIG. 18) in the trench TR than in the vicinity of the shallow portion P1 (FIG. 18).
  • the silicon nitride film 505 located deeper is less likely to be etched than the silicon nitride film 505 located shallower.
  • the non-uniformity of the etching progress tends to increase.
  • the depth of the trench TR increases, so that the above problem can become more serious.
  • the phosphoric acid solution ET is effectively replaced even in the vicinity of the deep portion P2 (FIG. 18) in the trench TR for the reason described in the first embodiment. Therefore, the progress of etching of the substrate 500 can be made uniform.
  • the structural film 503 is preferably a silicon oxide film 503. As a result, the etching resistance of the structural film 503 with respect to the phosphoric acid solution ET can be sufficiently ensured.
  • the substrate processing method in the above-described first embodiment is used to perform the steps of FIGS. 17 to 19
  • the substrate processing method in the above-described second embodiment is used. It may be used.
  • the dipping step includes an exposure step of exposing the tungsten film of the substrate 500 to the phosphoric acid solution ET in the tank 101.
  • the phosphoric acid-containing treatment liquid is not a simple phosphoric acid solution, but a mixed acid containing at least one acid in addition to phosphoric acid is preferable, and for example, a mixed acid containing phosphoric acid, acetic acid and nitric acid is preferable.
  • a mixed acid containing phosphoric acid, acetic acid and nitric acid is preferable.

Abstract

According to the present invention, a substrate (500) is immersed in a phosphoric acid-containing treatment liquid (ET) in a first tank (101). Then, at least a part of the substrate (500) passes through a liquid level (SF) of the phosphoric acid-containing treatment liquid (ET) in the first tank (101) and is raised. Then, at least a part of the substrate (500) passes through a liquid level (SF) of a phosphoric acid-containing treatment liquid (ET) in the first tank (101) or in a second tank different from the first tank and is lowered.

Description

基板処理方法Substrate processing method
 本発明は、基板処理方法に関し、特に、リン酸含有処理液を用いた基板処理方法に関するものである。 The present invention relates to a substrate processing method, and more particularly to a substrate processing method using a phosphoric acid-containing processing liquid.
 特許文献1によれば、3次元メモリデバイスを製造するために半導体基板を処理する基板処理方法が開示されている。この半導体基板は、シリコン基板上に、酸化シリコン膜と窒化シリコン膜とを交互に積層した積層膜を有する。また半導体基板は、積層膜を貫通するトレンチを有する。この基板処理方法によれば、処理槽において、加熱されたリン酸溶液中に半導体基板を浸漬することで、窒化シリコン膜のウェットエッチング処理が行われる。このとき、リン酸溶液は、半導体基板のトレンチを通して積層膜の各層に接触して、窒化シリコン膜を選択的に除去する。エッチング処理に用いられたリン酸溶液は、内槽からオーバーフローして外槽に貯留される。ポンプは、外槽に貯留されたリン酸溶液を吸引し、循環路を通じて還流する。還流の過程で、リン酸溶液に対して、加熱と、処理槽内への供給とが再度行われる。 According to Patent Document 1, a substrate processing method for processing a semiconductor substrate in order to manufacture a three-dimensional memory device is disclosed. This semiconductor substrate has a laminated film in which silicon oxide films and silicon nitride films are alternately laminated on a silicon substrate. Further, the semiconductor substrate has a trench penetrating the laminated film. According to this substrate processing method, the silicon nitride film is wet-etched by immersing the semiconductor substrate in a heated phosphoric acid solution in the processing tank. At this time, the phosphoric acid solution comes into contact with each layer of the laminated film through the trench of the semiconductor substrate to selectively remove the silicon nitride film. The phosphoric acid solution used in the etching process overflows from the inner tank and is stored in the outer tank. The pump sucks the phosphoric acid solution stored in the outer tank and refluxes it through the circulation path. In the process of reflux, the phosphoric acid solution is heated and supplied into the treatment tank again.
特開2017-118092号公報Japanese Unexamined Patent Publication No. 2017-118092
 上記特許文献1に記載の技術によれば、リン酸溶液の還流にともなう流動によって、基板に接するリン酸含有処理液が、ある程度は置換され得る。しかしながら、基板に接するリン酸溶液は、単なる流動だけでは置換されにくい部分を有し得る。特に、トレンチにおける深い位置では、リン酸溶液が置換されにくい。これにより、トレンチによって貫かれた複数の窒化シリコン膜のうち深く位置する窒化シリコン膜は、浅く位置する窒化シリコン膜に比して、トレンチからのエッチングの進行を受けにくくなる。よって、エッチングの進行の不均一性が大きくなる。近年、3次元メモリデバイスの層数が増加してきており、それにともなってトレンチの深さが増大してきているので、上記問題はより深刻となり得る。また上記特許文献1に記載の技術の場合に限らず、基板に接するリン酸含有処理液が、単なる流動だけでは置換されにくい部分を有する場合、エッチングの進行の不均一性が大きくなり得る。 According to the technique described in Patent Document 1, the phosphoric acid-containing treatment liquid in contact with the substrate can be replaced to some extent by the flow of the phosphoric acid solution with reflux. However, the phosphoric acid solution in contact with the substrate may have a portion that is difficult to be replaced by mere flow. In particular, the phosphoric acid solution is unlikely to be replaced at a deep position in the trench. As a result, the silicon nitride film located deeper among the plurality of silicon nitride films pierced by the trench is less susceptible to the progress of etching from the trench than the silicon nitride film located shallowly. Therefore, the non-uniformity of the etching progress becomes large. In recent years, the number of layers of the three-dimensional memory device has been increasing, and the depth of the trench has been increasing accordingly, so that the above problem can become more serious. Further, not limited to the case of the technique described in Patent Document 1, when the phosphoric acid-containing treatment liquid in contact with the substrate has a portion that is difficult to be replaced only by a simple flow, the non-uniformity of the etching progress can be increased.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、リン酸含有処理液による基板のエッチングの進行を均一化することができる基板処理方法を提供することである。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a substrate processing method capable of making the progress of etching of a substrate by a phosphoric acid-containing treatment liquid uniform. ..
 本発明の基板処理方法は、以下の工程を有する。第1槽内のリン酸含有処理液に基板を浸漬する浸漬工程が行われる。浸漬工程の後に、第1槽内のリン酸含有処理液の液面を通過して上方へと、基板の少なくとも一部を上昇させる上昇工程が行われる。上昇工程の後に、第1槽内または第1槽と異なる第2槽内のリン酸含有処理液の液面を通過して下方へと基板の少なくとも一部を下降させる下降工程が行われる。 The substrate processing method of the present invention has the following steps. A dipping step of immersing the substrate in the phosphoric acid-containing treatment liquid in the first tank is performed. After the dipping step, an ascending step is performed in which at least a part of the substrate is raised by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank and upward. After the ascending step, a descending step is performed in which at least a part of the substrate is lowered by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank or in the second tank different from the first tank.
 下降工程は、第1槽内のリン酸含有処理液の液面を通過して下方へと基板の少なくとも一部を下降させる工程であってよい。下降工程は、第2槽内のリン酸含有処理液の液面を通過して下方へと基板の少なくとも一部を下降させる工程であってよい。 The lowering step may be a step of lowering at least a part of the substrate downward by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank. The lowering step may be a step of lowering at least a part of the substrate downward by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the second tank.
 上昇工程は、第1槽内のリン酸含有処理液の液面を通過して上方へと、基板の全体を上昇させることによって行われてよい。 The ascending step may be performed by ascending the entire substrate upward through the liquid level of the phosphoric acid-containing treatment liquid in the first tank.
 浸漬工程は、基板が有する少なくとも1つの窒化シリコン膜を第1槽内のリン酸含有処理液にさらす暴露工程を含んでよい。暴露工程において、基板は少なくとも1つの窒化シリコン膜としての複数の第1膜と窒化シリコンに比してリン酸にエッチングされにくい材料からなる複数の第2膜とを交互に有する積層体を含んでよい。積層体は複数の第1膜および複数の第2膜を貫通するトレンチを有しており、トレンチ内へリン酸含有処理液が侵入する。第2膜は酸化シリコン膜であってよい。 The dipping step may include an exposure step of exposing at least one silicon nitride film of the substrate to the phosphoric acid-containing treatment liquid in the first tank. In the exposure step, the substrate contains a laminate that alternately has a plurality of first films as at least one silicon nitride film and a plurality of second films made of a material that is less likely to be etched by phosphoric acid than silicon nitride. Good. The laminate has trenches penetrating the plurality of first films and the plurality of second films, and the phosphoric acid-containing treatment liquid penetrates into the trenches. The second film may be a silicon oxide film.
 浸漬工程は、基板が有するタングステン膜を第1槽内のリン酸含有処理液にさらす暴露工程を含んでよい。 The dipping step may include an exposure step of exposing the tungsten film of the substrate to the phosphoric acid-containing treatment liquid in the first tank.
 上昇工程および下降工程において、リン酸含有処理液はバブリングされていなくてよい。浸漬工程において、リン酸含有処理液はガスによってバブリングされていてよい。ガスは不活性ガスであってよい。 The phosphoric acid-containing treatment liquid does not have to be bubbled in the ascending step and the descending step. In the dipping step, the phosphoric acid-containing treatment liquid may be bubbled with a gas. The gas may be an inert gas.
 浸漬工程において、基板の主面は上下方向に平行であってよい。 In the dipping step, the main surface of the substrate may be parallel in the vertical direction.
 本発明によれば、基板の少なくとも一部がリン酸含有処理液の液面を通過して上方へと移動される。このとき、リン酸含有処理液の表面張力に起因して、基板からリン酸含有処理液が効果的に除去される。そしてその後の下降工程によって、リン酸含有処理液が除去された箇所へリン酸含有処理液が再度供給される。これにより、基板に接するリン酸含有処理液のうち、単なる流動だけでは置換されにくい部分も、効果的に置換される。よって、リン酸含有処理液による基板のエッチングの進行を均一化することができる。 According to the present invention, at least a part of the substrate passes through the liquid surface of the phosphoric acid-containing treatment liquid and is moved upward. At this time, the phosphoric acid-containing treatment liquid is effectively removed from the substrate due to the surface tension of the phosphoric acid-containing treatment liquid. Then, by the subsequent lowering step, the phosphoric acid-containing treatment liquid is supplied again to the portion where the phosphoric acid-containing treatment liquid has been removed. As a result, in the phosphoric acid-containing treatment liquid in contact with the substrate, the portion that is difficult to be replaced by mere flow is also effectively replaced. Therefore, the progress of etching of the substrate by the phosphoric acid-containing treatment liquid can be made uniform.
本発明の実施の形態1における基板処理装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理方法の第1の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 1st step of the substrate processing method in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理方法の第2の工程を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a second step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法の第3の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 3rd step of the substrate processing method in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理方法の第4の工程を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a fourth step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法の第5の工程を概略的に示す断面図である。It is sectional drawing which shows typically the 5th step of the substrate processing method in Embodiment 1 of this invention. 本発明の実施の形態2における基板処理方法の第1の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 1st step of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第2の工程を概略的に示す断面図である。It is sectional drawing which shows typically the 2nd step of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第3の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 3rd process of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第4の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 4th step of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第5の工程を概略的に示す断面図である。It is sectional drawing which shows typically the 5th step of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第6の工程を概略的に示す断面図である。It is sectional drawing which shows schematic | 6th steps of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第7の工程を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a seventh step of the substrate processing method according to the second embodiment of the present invention. 本発明の実施の形態2における基板処理方法の第8の工程を概略的に示す断面図である。It is sectional drawing which shows schematic 8 steps of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第9の工程を概略的に示す断面図である。It is sectional drawing which shows schematic 9th steps of the substrate processing method in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理方法の第10の工程を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a tenth step of the substrate processing method according to the second embodiment of the present invention. 本発明の実施の形態3における基板処理方法の第1の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 1st step of the substrate processing method in Embodiment 3 of this invention. 本発明の実施の形態3における基板処理方法の第2の工程を概略的に示す断面図である。It is sectional drawing which shows typically the 2nd step of the substrate processing method in Embodiment 3 of this invention. 本発明の実施の形態3における基板処理方法の第3の工程を概略的に示す断面図である。It is sectional drawing which shows roughly the 3rd step of the substrate processing method in Embodiment 3 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings below, the same or corresponding parts are given the same reference number and the explanation is not repeated.
 <実施の形態1>
 図1は、本実施の形態1における基板処理装置100の構成を概略的に示す図である。なお、説明の便宜上、基板処理装置100によって処理される基板500と、基板処理装置100によって用いられるリン酸溶液ET(リン酸含有処理液)とが、仮想線(2点鎖線)によって示されている。リン酸溶液ET中には、リン酸に加えてさらに、ひとつまたは複数の材料が溶かされていてもよい。
<Embodiment 1>
FIG. 1 is a diagram schematically showing the configuration of the substrate processing apparatus 100 according to the first embodiment. For convenience of explanation, the substrate 500 processed by the substrate processing apparatus 100 and the phosphoric acid solution ET (phosphoric acid-containing processing liquid) used by the substrate processing apparatus 100 are indicated by virtual lines (two-point chain line). There is. In addition to phosphoric acid, one or more materials may be further dissolved in the phosphoric acid solution ET.
 基板処理装置は、槽101(第1槽)と、外槽102と、リフター51(基板保持部)と、アクチュエータ52(リフター駆動部)と、溶液供給源11(リン酸含有処理液供給源)と、バルブ12と、ガス供給源21と、バルブ22と、ポンプ16と、ヒータ17とを有している。槽101は、少なくとも1つの液注入口111と、少なくとも1つのガス注入口112とを有している。 The substrate processing apparatus includes a tank 101 (first tank), an outer tank 102, a lifter 51 (board holding unit), an actuator 52 (lifter driving unit), and a solution supply source 11 (phosphoric acid-containing processing liquid supply source). A valve 12, a gas supply source 21, a valve 22, a pump 16, and a heater 17. The tank 101 has at least one liquid injection port 111 and at least one gas injection port 112.
 槽101は、基板500を処理するためのリン酸溶液ETを貯留する容器である。槽101に貯留されたリン酸溶液ETは液面SFを有する。槽101に貯留されたリン酸溶液ETに基板500が浸漬されることによって、基板500の処理、具体的にはエッチング処理、が行われる。外槽102は、液面SFからオーバーフローしたリン酸溶液ETを貯留する容器である。 The tank 101 is a container for storing the phosphoric acid solution ET for processing the substrate 500. The phosphoric acid solution ET stored in the tank 101 has a liquid level SF. By immersing the substrate 500 in the phosphoric acid solution ET stored in the tank 101, the substrate 500 is processed, specifically, an etching process is performed. The outer tank 102 is a container for storing the phosphoric acid solution ET that overflows from the liquid level SF.
 ポンプ16およびヒータ17は、外槽102から液注入口111への配管経路中に設けられている。これにより、加熱されたリン酸溶液ETが還流される。具体的には、外槽102から吸い出されたリン酸溶液ETは、加熱された後、液注入口111から槽101中へ吐出される。 The pump 16 and the heater 17 are provided in the piping path from the outer tank 102 to the liquid injection port 111. As a result, the heated phosphoric acid solution ET is refluxed. Specifically, the phosphoric acid solution ET sucked out from the outer tank 102 is heated and then discharged from the liquid injection port 111 into the tank 101.
 溶液供給源11は、バルブ12による制御に応じて、新たなリン酸溶液(リン酸含有処理液)を槽101へ供給する。なお図1においてはリン酸溶液が槽101へ直接供給される構成が示されているが、他の構成が用いられてもよい。例えば、リン酸溶液が、上述した還流用の経路と外槽102との少なくともいずれかを介して槽101へ間接的に供給されてもよい。 The solution supply source 11 supplies a new phosphoric acid solution (phosphoric acid-containing treatment liquid) to the tank 101 according to the control by the valve 12. Although FIG. 1 shows a configuration in which the phosphoric acid solution is directly supplied to the tank 101, other configurations may be used. For example, the phosphoric acid solution may be indirectly supplied to the tank 101 via at least one of the above-mentioned reflux path and the outer tank 102.
 ガス供給源21は、バルブ22による制御に応じて、ガスをガス注入口112へ供給する。これにより、バルブ22による制御に応じて、槽101に貯留されたリン酸溶液ET中へのバブリングが実施される。好ましくは、槽101に複数のガス注入口112が設けられている。 The gas supply source 21 supplies gas to the gas inlet 112 according to the control by the valve 22. As a result, bubbling into the phosphoric acid solution ET stored in the tank 101 is performed according to the control by the valve 22. Preferably, the tank 101 is provided with a plurality of gas inlets 112.
 リフター51は、少なくとも1つの基板500を保持する。好ましくは、リフター51は複数の基板500を保持し、この場合、バッチ式処理が行なわれることになる。アクチュエータ52は、リフター51を上下に変位させる。これにより、上下方向におけるリン酸溶液ETの液面SFの位置を基準として、リフター51に保持された基板500の相対位置が変化させられる。よって、基板500がどの程度の割合でリン酸溶液ETに浸漬されるかが制御される。アクチュエータ52は、例えば、サーボモータまたはタイミングベルトを有している。 The lifter 51 holds at least one substrate 500. Preferably, the lifter 51 holds a plurality of substrates 500, in which case batch processing will be performed. The actuator 52 displaces the lifter 51 up and down. As a result, the relative position of the substrate 500 held by the lifter 51 can be changed with reference to the position of the liquid level SF of the phosphoric acid solution ET in the vertical direction. Therefore, the rate at which the substrate 500 is immersed in the phosphoric acid solution ET is controlled. The actuator 52 has, for example, a servomotor or a timing belt.
 バルブ22およびアクチュエータ52は、制御部(図示せず)からの命令に応じて動作してよい。制御部は、典型的には、電気回路によって構成され、プロセッサおよび記憶装置を有する。プロセッサは、記憶装置に格納されているプログラムを実行することによって、バルブ22およびアクチュエータ52への命令を発する。 The valve 22 and the actuator 52 may operate in response to a command from a control unit (not shown). The control unit is typically composed of electrical circuits and includes a processor and a storage device. The processor issues commands to the valve 22 and the actuator 52 by executing a program stored in the storage device.
 図2~図6のそれぞれは、本実施の形態1における、基板処理装置100(図1)を用いた基板処理方法の第1~第5の工程を概略的に示す断面図である。この基板処理方法により、例えば、基板500が有する窒化シリコン膜(図2~図6において図示せず)がエッチングされる。 Each of FIGS. 2 to 6 is a cross-sectional view schematically showing the first to fifth steps of the substrate processing method using the substrate processing apparatus 100 (FIG. 1) in the first embodiment. By this substrate processing method, for example, the silicon nitride film (not shown in FIGS. 2 to 6) included in the substrate 500 is etched.
 図2を参照して、槽101内にリン酸溶液ETが貯留される。リン酸溶液ETの液面SFの上方に、少なくとも1つ、好ましくは複数、の基板500が、リフター51によって保持される。次に、アクチュエータ52がリフター51を液面SFへ向けて下降させる(図中、破線矢印参照)。 With reference to FIG. 2, the phosphoric acid solution ET is stored in the tank 101. At least one, preferably a plurality, of substrates 500 are held by the lifter 51 above the liquid level SF of the phosphoric acid solution ET. Next, the actuator 52 lowers the lifter 51 toward the liquid level SF (see the broken line arrow in the figure).
 図3を参照して、リフター51の下降により、基板500の少なくとも一部、好ましくは全体、が液面SFよりも下方に配置される。リフター51の下降中は、リン酸溶液ETはバブリングされていないことが好ましい。 With reference to FIG. 3, by lowering the lifter 51, at least a part, preferably the whole, of the substrate 500 is arranged below the liquid level SF. It is preferable that the phosphoric acid solution ET is not bubbled during the descent of the lifter 51.
 図4を参照して、上述した工程を経ることで、槽101内のリン酸溶液ETに基板500が浸漬される。言い換えれば、浸漬工程が開始される。浸漬工程中は、基板500の位置は固定されていることが好ましい。浸漬工程において、基板500の主面MSは上下方向に平行であることが好ましい。言い換えれば、基板500の厚み方向は水平方向に沿っていることが好ましい。浸漬工程において、リン酸溶液ETはガスによってバブリングされていることが好ましい。言い換えれば、ガス注入口112からのガスの供給によってバブルBBが発生させられることが好ましい。ガスは、不活性ガスであることが好ましく、例えば窒素ガス(N)である。 With reference to FIG. 4, the substrate 500 is immersed in the phosphoric acid solution ET in the tank 101 through the above-mentioned steps. In other words, the dipping process is started. During the dipping step, the position of the substrate 500 is preferably fixed. In the dipping step, the main surface MS of the substrate 500 is preferably parallel in the vertical direction. In other words, the thickness direction of the substrate 500 is preferably along the horizontal direction. In the dipping step, the phosphoric acid solution ET is preferably bubbled with a gas. In other words, it is preferable that the bubble BB is generated by the supply of gas from the gas inlet 112. The gas is preferably an inert gas, for example nitrogen gas (N 2 ).
 図5および図6を参照して、次に、上昇工程が行われる。具体的には、槽101内のリン酸溶液ETの液面SFを通過して上方へと、基板500の少なくとも一部が上昇させられる。上昇工程は、図6に示されているように、槽101内のリン酸溶液ETの液面SFを通過して上方へと、基板500の全体を上昇させることによって行われることが好ましい。リフター51の上昇工程中は、リン酸溶液ETはバブリングされていないことが好ましい。 With reference to FIGS. 5 and 6, the ascending step is then performed. Specifically, at least a part of the substrate 500 is raised upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. As shown in FIG. 6, the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. It is preferable that the phosphoric acid solution ET is not bubbled during the lifting step of the lifter 51.
 再び図2および図3を参照して、次に、下降工程が行われる。具体的には、槽101内のリン酸溶液ETの液面SFを通過して下方へと、基板500の少なくとも一部、好ましくは全体、が下降させられる。下降工程において、リン酸溶液ETはバブリングされていないことが好ましい。再び図4を参照して、これにより、上述した浸漬工程が再度開始される。再び図5および図6を参照して、次に、上昇工程が再度行われる。このように、下降工程、浸漬工程および上昇工程のセットが1回行われる。この後、これら工程のセットがさらに、少なくとも1回行われることが好ましく、複数回行われることがさらに好ましい。例えば、下降工程、浸漬工程および上昇工程によって各々構成される3回以上のセットが周期的に実施されてよい。 With reference to FIGS. 2 and 3 again, the lowering step is then performed. Specifically, at least a part, preferably the whole, of the substrate 500 is lowered by passing through the liquid level SF of the phosphoric acid solution ET in the tank 101. In the lowering step, the phosphoric acid solution ET is preferably not bubbled. With reference to FIG. 4 again, this initiates the immersion step described above again. With reference to FIGS. 5 and 6 again, the ascending step is then performed again. In this way, the lowering step, the dipping step, and the ascending step are set once. After this, the set of these steps is preferably performed at least once, more preferably a plurality of times. For example, three or more sets each composed of a descending step, a dipping step, and an ascending step may be periodically performed.
 言い換えれば、好ましくは、上昇工程および下降工程のセットが複数回繰り返される。このセットは、10回以上繰り返されてよい。例えば、このセットは2時間程度の基板処理中に40~50回程度繰り返され、この場合、セットが行われる頻度(単位時間当たりの回数)は数分あたり1回である。好ましくは、上昇工程および下降工程のセットを第1頻度で繰り返す第1工程と、この第1工程の後に、上昇工程および下降工程のセットを第2頻度で繰り返す第2工程とが行われ、第2頻度は第1頻度よりも低い。 In other words, preferably, the set of the ascending step and the descending step is repeated a plurality of times. This set may be repeated 10 times or more. For example, this set is repeated about 40 to 50 times during the substrate processing for about 2 hours, and in this case, the frequency of setting (the number of times per unit time) is once every few minutes. Preferably, a first step of repeating the set of the ascending step and the descending step with the first frequency and a second step of repeating the set of the ascending step and the descending step with the second frequency are performed after the first step. The 2nd frequency is lower than the 1st frequency.
 以上により、本実施の形態の基板処理方法が完了する。なお上述した工程の後、必要に応じて、基板500に対して、水洗工程が行なわれてよい。水洗工程は、槽101へ水を供給することによって行なわれてもよく、あるいは、別の槽において行われてもよい。 With the above, the substrate processing method of the present embodiment is completed. After the above-mentioned steps, the substrate 500 may be washed with water, if necessary. The water washing step may be performed by supplying water to the tank 101, or may be performed in another tank.
 本実施の形態によれば、上昇工程(図5および図6)によって、基板500の少なくとも一部がリン酸溶液ETの液面SFを通過して上方へと移動される。このとき、リン酸溶液ETの表面張力に起因して、基板500からリン酸溶液ETが効果的に除去される。そしてその後の下降工程(図2および図3参照)によって、リン酸溶液ETが除去された箇所へリン酸溶液ETが再度供給される。これにより、基板500に接するリン酸溶液ETのうち、単なる流動だけでは置換されにくい部分も、効果的に置換される。よって、リン酸溶液ETによる基板500のエッチングの進行を均一化することができる。なお、単なる流動だけでは置換されにくい部分の例については、後述する実施の形態3において詳述する。 According to the present embodiment, at least a part of the substrate 500 is moved upward through the liquid level SF of the phosphoric acid solution ET by the ascending step (FIGS. 5 and 6). At this time, the phosphoric acid solution ET is effectively removed from the substrate 500 due to the surface tension of the phosphoric acid solution ET. Then, the phosphoric acid solution ET is supplied again to the portion where the phosphoric acid solution ET has been removed by the subsequent descending step (see FIGS. 2 and 3). As a result, the portion of the phosphoric acid solution ET in contact with the substrate 500 that is difficult to be replaced by mere flow is effectively replaced. Therefore, the progress of etching of the substrate 500 by the phosphoric acid solution ET can be made uniform. An example of a portion that is difficult to be replaced only by a simple flow will be described in detail in the third embodiment described later.
 下降工程は、後述する実施の形態2と異なり本実施の形態においては、図2および図3に示されるように、槽101内のリン酸溶液ETの液面SFを通過して下方へと基板500の少なくとも一部を下降させる工程である。これにより、槽101中でのエッチングの進行を、上記のように均一化することができる。 The lowering step is different from the second embodiment described later, and in the present embodiment, as shown in FIGS. 2 and 3, the lowering substrate passes through the liquid level SF of the phosphoric acid solution ET in the tank 101 and downwards. It is a step of lowering at least a part of 500. As a result, the progress of etching in the tank 101 can be made uniform as described above.
 上昇工程は、図6に示されるように、槽101内のリン酸溶液ETの液面SFを通過して上方へと、基板500の全体を上昇させることによって行われることが好ましい。これにより、基板500からリン酸溶液ETを、より効果的に除去することができる。 As shown in FIG. 6, the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. Thereby, the phosphoric acid solution ET can be removed more effectively from the substrate 500.
 上昇工程(図5および図6参照)および下降工程(図2および図3参照)において、リン酸溶液ETはバブリングされていないことが好ましい。これにより、上昇工程および下降工程においてバブリングに起因して基板500の姿勢が不安定となることが避けられる。 It is preferable that the phosphoric acid solution ET is not bubbled in the ascending step (see FIGS. 5 and 6) and the descending step (see FIGS. 2 and 3). As a result, it is possible to prevent the posture of the substrate 500 from becoming unstable due to bubbling in the ascending step and the descending step.
 浸漬工程(図4)において、リン酸溶液ETはガスによってバブリングされていることが好ましい。バブリングによって引き起こされるリン酸溶液ETの流れによって、リン酸溶液ETの置換が、より促進される。バブリング用ガスは不活性ガスであることが好ましい。これにより、ガスに起因しての不必要な化学的作用を避けることができる。 In the dipping step (FIG. 4), the phosphoric acid solution ET is preferably bubbled with gas. The flow of phosphate solution ET caused by bubbling further facilitates the substitution of phosphate solution ET. The bubbling gas is preferably an inert gas. This avoids unnecessary chemical action caused by the gas.
 浸漬工程(図4)において、基板500の主面MSは上下方向に平行であることが好ましい。これにより、主面MSに沿っての基板500の移動によって、基板500を上下方向に動かすことができる。よって、主面MSに沿っての基板500の移動によって、基板500を槽101へ入れたり出したりすることができる。 In the dipping step (FIG. 4), the main surface MS of the substrate 500 is preferably parallel in the vertical direction. As a result, the substrate 500 can be moved in the vertical direction by moving the substrate 500 along the main surface MS. Therefore, the substrate 500 can be moved in and out of the tank 101 by moving the substrate 500 along the main surface MS.
 好ましくは、上昇工程および下降工程のセットを第1頻度で繰り返す第1工程と、この第1工程の後に、上昇工程および下降工程のセットを第2頻度で繰り返す第2工程とが行われ、第2頻度は第1頻度よりも低い。第2頻度に比して第1頻度を高くすることによって、基板処理の初期段階におけるリン酸溶液ETの置換むらの影響を抑制することができる。また第1頻度に比して第2頻度を低くすることによって、上昇工程および下降工程を過度に頻繁に繰り返すことに起因しての処理速度の低下を避けることができる。例えば、窒化シリコン膜をエッチングする基板処理が行われる場合、初期段階においては、エッチングが急速に進行しやすいので、基板500に接するリン酸溶液ET中のシリコン濃度も急増しやすい。よって初期段階においては、濃度むらを抑制するために、比較的高い第1頻度で上昇工程および下降工程のセットが行われることが好ましい。一方でその後の段階においては、シリコン濃度の増加は緩やかとなるので、比較的低い第2頻度で上昇工程および下降工程のセットが行われることが好ましい。これにより、リン酸溶液ETが一時的に除去されることに起因しての処理速度の低下を抑制することができる。特に、加熱されたリン酸溶液ETが用いられている場合は、リン酸溶液ETによって加熱された基板500の温度が上昇工程と下降工程との間で一時的に低下し、これはエッチングの進行速度の低下につながりやすい。第1頻度に比して低い第2頻度を用いることによって、この温度低下による悪影響を抑制することができる。 Preferably, a first step of repeating the set of the ascending step and the descending step with the first frequency and a second step of repeating the set of the ascending step and the descending step with the second frequency are performed after the first step. The 2nd frequency is lower than the 1st frequency. By increasing the first frequency as compared with the second frequency, the influence of uneven replacement of the phosphoric acid solution ET in the initial stage of substrate treatment can be suppressed. Further, by lowering the second frequency as compared with the first frequency, it is possible to avoid a decrease in the processing speed due to the ascending step and the descending step being repeated excessively frequently. For example, when a substrate treatment for etching a silicon nitride film is performed, the etching tends to proceed rapidly in the initial stage, so that the silicon concentration in the phosphoric acid solution ET in contact with the substrate 500 also tends to increase rapidly. Therefore, in the initial stage, it is preferable that the ascending step and the descending step are set at a relatively high first frequency in order to suppress the concentration unevenness. On the other hand, in the subsequent stage, the increase in the silicon concentration becomes gradual, so it is preferable that the ascending step and the descending step are set at a relatively low second frequency. As a result, it is possible to suppress a decrease in the processing speed due to the temporary removal of the phosphoric acid solution ET. In particular, when the heated phosphoric acid solution ET is used, the temperature of the substrate 500 heated by the phosphoric acid solution ET temporarily decreases between the ascending step and the descending step, which is the progress of etching. It tends to slow down. By using the second frequency, which is lower than the first frequency, the adverse effect of this temperature decrease can be suppressed.
 <実施の形態2>
 図7~図16のそれぞれは、本実施の形態2における基板処理方法の第1~第10の工程を概略的に示す断面図である。本実施の形態において用いられる基板処理装置は、基板処理装置100の構成に加えてさらに、図示されているように、槽201(第2槽)および外槽202を有している。槽201は、少なくとも1つの液注入口211と、少なくとも1つのガス注入口212とを有している。槽101(図1)にとってと同様に槽201にも、図示されていないが、溶液供給源11と、バルブ12と、ガス供給源21と、バルブ22と、ポンプ16と、ヒータ17とが設けられている。
<Embodiment 2>
Each of FIGS. 7 to 16 is a cross-sectional view schematically showing the first to tenth steps of the substrate processing method according to the second embodiment. The substrate processing apparatus used in the present embodiment further includes a tank 201 (second tank) and an outer tank 202 as shown in addition to the configuration of the substrate processing apparatus 100. The tank 201 has at least one liquid injection port 211 and at least one gas injection port 212. Similar to the tank 101 (FIG. 1), the tank 201 is provided with a solution supply source 11, a valve 12, a gas supply source 21, a valve 22, a pump 16, and a heater 17, although not shown. Has been done.
 本実施の形態においては、アクチュエータ52は、リフター51を上下に変位させることができるだけでなく、水平方向にも変位させることができる。これにより、リフター51に保持された基板500を、槽101上の位置から槽201上の位置へ変位させることができる。言いかえれば、リフター51はスライダーとしての機能も有している。 In the present embodiment, the actuator 52 can not only displace the lifter 51 up and down, but also displace it in the horizontal direction. As a result, the substrate 500 held by the lifter 51 can be displaced from the position on the tank 101 to the position on the tank 201. In other words, the lifter 51 also has a function as a slider.
 図7を参照して、槽101および槽201内にリン酸溶液ETが貯留される。槽101におけるリン酸溶液ETの液面SFの上方に、少なくとも1つ、好ましくは複数、の基板500が、リフター51によって保持される。次に、アクチュエータ52がリフター51を液面SFへ向けて下降させる(図中、破線矢印参照)。 With reference to FIG. 7, the phosphoric acid solution ET is stored in the tank 101 and the tank 201. Above the liquid level SF of the phosphoric acid solution ET in the tank 101, at least one, preferably a plurality of, substrates 500 are held by the lifter 51. Next, the actuator 52 lowers the lifter 51 toward the liquid level SF (see the broken line arrow in the figure).
 図8を参照して、リフター51の下降により、基板500の少なくとも一部、好ましくは全体、が液面SFよりも下方に配置される。リフター51の下降中は、リン酸溶液ETはバブリングされていないことが好ましい。 With reference to FIG. 8, by lowering the lifter 51, at least a part, preferably the whole, of the substrate 500 is arranged below the liquid level SF. It is preferable that the phosphoric acid solution ET is not bubbled during the descent of the lifter 51.
 図9を参照して、上述した工程を経ることで、槽101内のリン酸溶液ETに基板500が浸漬される。言い換えれば、槽101における浸漬工程が開始される。浸漬工程中は、基板500の位置は固定されていることが好ましい。浸漬工程において、基板500の主面MSは上下方向に平行であることが好ましい。言い換えれば、基板500の厚み方向は水平方向に沿っていることが好ましい。浸漬工程において、リン酸溶液ETはガスによってバブリングされていることが好ましい。言い換えれば、ガス注入口112からのガスの供給によってバブルBBが発生させられることが好ましい。ガスは、不活性ガスであることが好ましく、例えばNである。 With reference to FIG. 9, the substrate 500 is immersed in the phosphoric acid solution ET in the tank 101 through the above-mentioned steps. In other words, the dipping step in the tank 101 is started. During the dipping step, the position of the substrate 500 is preferably fixed. In the dipping step, the main surface MS of the substrate 500 is preferably parallel in the vertical direction. In other words, the thickness direction of the substrate 500 is preferably along the horizontal direction. In the dipping step, the phosphoric acid solution ET is preferably bubbled with a gas. In other words, it is preferable that the bubble BB is generated by the supply of gas from the gas inlet 112. The gas is preferably an inert gas, for example N 2 .
 図10および図11を参照して、次に、槽101における上昇工程が行われる。具体的には、槽101内のリン酸溶液ETの液面SFを通過して上方へと、基板500の少なくとも一部が上昇させられる。上昇工程は、図11に示されているように、槽101内のリン酸溶液ETの液面SFを通過して上方へと、基板500の全体を上昇させることによって行われることが好ましい。リフター51の上昇工程中は、リン酸溶液ETはバブリングされていないことが好ましい。 With reference to FIGS. 10 and 11, the ascending step in the tank 101 is then performed. Specifically, at least a part of the substrate 500 is raised upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. As shown in FIG. 11, the ascending step is preferably performed by ascending the entire substrate 500 upward through the liquid level SF of the phosphoric acid solution ET in the tank 101. It is preferable that the phosphoric acid solution ET is not bubbled during the lifting step of the lifter 51.
 図12を参照して、アクチュエータ52がリフター51を、槽101の上方の位置から槽201の上方の位置へと変位させる(図中、破線矢印参照)。 With reference to FIG. 12, the actuator 52 displaces the lifter 51 from the position above the tank 101 to the position above the tank 201 (see the dashed arrow in the figure).
 図13を参照して、次に、下降工程が行われる。具体的には、槽201内のリン酸溶液ETの液面SFを通過して下方へと、基板500の少なくとも一部、好ましくは全体、が下降させられる。下降工程において、リン酸溶液ETはバブリングされていないことが好ましい。図14を参照して、これにより、槽201における浸漬工程が開始される。浸漬工程中は、基板500の位置は固定されていることが好ましい。浸漬工程において、基板500の主面MSは上下方向に平行であることが好ましい。言い換えれば、基板500の厚み方向は水平方向に沿っていることが好ましい。浸漬工程において、リン酸溶液ETはガスによってバブリングされていることが好ましい。言い換えれば、ガス注入口212からのガスの供給によってバブルBBが発生させられることが好ましい。ガスは、不活性ガスであることが好ましく、例えばNである。 With reference to FIG. 13, the lowering step is then performed. Specifically, at least a part, preferably the whole, of the substrate 500 is lowered as it passes through the liquid level SF of the phosphoric acid solution ET in the tank 201. In the lowering step, the phosphoric acid solution ET is preferably not bubbled. With reference to FIG. 14, this initiates the dipping step in tank 201. During the dipping step, the position of the substrate 500 is preferably fixed. In the dipping step, the main surface MS of the substrate 500 is preferably parallel in the vertical direction. In other words, the thickness direction of the substrate 500 is preferably along the horizontal direction. In the dipping step, the phosphoric acid solution ET is preferably bubbled with a gas. In other words, it is preferable that the bubble BB is generated by the supply of gas from the gas inlet 212. The gas is preferably an inert gas, for example N 2 .
 図15および図16を参照して、次に、槽201における上昇工程が行われる。これにより、本実施の形態の基板処理方法が完了する。 With reference to FIGS. 15 and 16, the ascending step in the tank 201 is then performed. This completes the substrate processing method of the present embodiment.
 なお、上記においては基板処理方法が2つの槽101,102を用いて行われる場合について説明したが、3つ以上の槽が用いられてもよい。また、槽101中のリン酸溶液ETの成分と、槽101中のリン酸溶液ETの成分とは、互いに異なっていてもよい。これにより、例えば、リン酸溶液ETによるエッチング速度が、槽101において相対的に低速とされ、槽201において相対的に高速とされてもよい。 Although the case where the substrate processing method is performed using two tanks 101 and 102 has been described above, three or more tanks may be used. Further, the components of the phosphoric acid solution ET in the tank 101 and the components of the phosphoric acid solution ET in the tank 101 may be different from each other. Thereby, for example, the etching rate by the phosphoric acid solution ET may be relatively low in the tank 101 and relatively high in the tank 201.
 本実施の形態によれば、前述した実施の形態1の場合と同様の理由で、基板500のエッチングの進行を均一化することができる。さらに、リン酸溶液ETによる処理が、槽101中だけでなく第2槽201中でも行われる。これにより、リン酸溶液ETによる処理が槽101中のみで行われる場合に比して、基板処理時のリン酸溶液ET中での生成物(例えば、窒化シリコンのエッチング処理時にリン酸溶液ET中へ生成されるシリコン)の濃度の増大等に起因してのリン酸溶液ETのエッチング能力の低下を抑制することができる。この効果は、使用済みのリン酸溶液ET中へ新たなリン酸溶液を徐々に混入することによってリン酸溶液ETのエッチング能力を維持する処理が実施されない場合において、特に大きい。 According to the present embodiment, the progress of etching of the substrate 500 can be made uniform for the same reason as in the case of the first embodiment described above. Further, the treatment with the phosphoric acid solution ET is performed not only in the tank 101 but also in the second tank 201. As a result, the product in the phosphoric acid solution ET during the substrate treatment (for example, in the phosphoric acid solution ET during the etching treatment of silicon nitride) is compared with the case where the treatment with the phosphoric acid solution ET is performed only in the tank 101. It is possible to suppress a decrease in the etching ability of the phosphoric acid solution ET due to an increase in the concentration of silicon) produced in the phosphoric acid solution. This effect is particularly large when the treatment for maintaining the etching ability of the phosphoric acid solution ET by gradually mixing a new phosphoric acid solution into the used phosphoric acid solution ET is not performed.
 <実施の形態3>
 本実施の形態3においては、前述した実施の形態1における基板処理方法の具体的な適用について説明する。図17~図19は、本実施の形態3における基板処理方法の第1~第3の工程を概略的に示す断面図である。
<Embodiment 3>
In the third embodiment, the specific application of the substrate processing method in the first embodiment described above will be described. 17 to 19 are cross-sectional views schematically showing the first to third steps of the substrate processing method according to the third embodiment.
 図17を参照して、本実施の形態における基板処理方法が適用されることになる基板500は、少なくとも1つの窒化シリコン膜505を有している。具体的には、基板500は、少なくとも1つの窒化シリコン膜505としての複数の犠牲膜505(第1膜)と、窒化シリコンに比してリン酸にエッチングされにくい材料からなる複数の構造膜503(第2膜)と、を交互に有する積層体を含む。積層体は複数の犠牲膜505および複数の構造膜503を貫通するトレンチTRを有している。トレンチTRは、主面MS上に開口部OPを有しており、基板500の厚み方向に延びている。構造膜503は酸化シリコン膜503であることが好ましい。基板500は、積層体を支持する支持層501を有していてよい。支持層は、例えばシリコン層である。 With reference to FIG. 17, the substrate 500 to which the substrate processing method of the present embodiment is applied has at least one silicon nitride film 505. Specifically, the substrate 500 is composed of a plurality of sacrificial films 505 (first film) as at least one silicon nitride film 505, and a plurality of structural films 503 made of a material that is less likely to be etched by phosphoric acid than silicon nitride. (Second film) and a laminated body having alternately. The laminate has a trench TR that penetrates the plurality of sacrificial films 505 and the plurality of structural films 503. The trench TR has an opening OP on the main surface MS and extends in the thickness direction of the substrate 500. The structural film 503 is preferably a silicon oxide film 503. The substrate 500 may have a support layer 501 that supports the laminate. The support layer is, for example, a silicon layer.
 図18を参照して、次に、前述した実施の形態1で説明した基板処理方法によって、浸漬工程(図4)が行われる。これにより、窒化シリコン膜505を槽101(図4)内のリン酸溶液ETにさらす暴露工程が行われる。暴露工程の時点で基板500は、前述したトレンチTRを有する積層体を含む。暴露工程によって、開口部OPからトレンチTR内へリン酸溶液ETが侵入する。その結果、トレンチTRから水平方向に犠牲膜505の各々のエッチングが進行し始める。 With reference to FIG. 18, the immersion step (FIG. 4) is then performed by the substrate processing method described in the first embodiment described above. As a result, the exposure step of exposing the silicon nitride film 505 to the phosphoric acid solution ET in the tank 101 (FIG. 4) is performed. At the time of the exposure step, the substrate 500 includes the laminate having the trench TR described above. The phosphoric acid solution ET penetrates into the trench TR from the opening OP by the exposure step. As a result, each etching of the sacrificial film 505 starts to proceed horizontally from the trench TR.
 このエッチングの進行中、最上層の犠牲膜505のエッチング進行箇所P1に比して、最下層の犠牲膜505のエッチング進行箇所P2においては、リン酸溶液ETが、単なる流動だけでは置換されにくい。よって、置換を促進するための処理が単なる流動のみであったと仮定すると、最上層の犠牲膜505に比して、最下層の犠牲膜505のエッチングはかなり進行しにくく、その結果、エッチングの進行の不均一性が大きくなりやすい。 During the progress of this etching, the phosphoric acid solution ET is less likely to be replaced by the mere flow at the etching progress portion P2 of the sacrifice film 505 of the lowermost layer as compared with the etching progress portion P1 of the sacrifice film 505 of the uppermost layer. Therefore, assuming that the treatment for promoting the substitution is merely flow, the etching of the sacrificial film 505 of the lowermost layer is considerably less likely to proceed than that of the sacrificial film 505 of the uppermost layer, and as a result, the etching progresses. Non-uniformity tends to increase.
 本実施の形態においては、エッチング進行箇所P2であってもリン酸溶液ETが十分に置換されるようにする目的で、前述した実施の形態1で説明した基板処理方法が用いられる。この基板処理方法が有する上昇工程(図5および図6)によって、トレンチTRの開口部OPは、リン酸溶液ETの液面SFの下方から上方へと移動される。このとき、リン酸溶液ETの表面張力に起因して、トレンチTRと、そこから水平方向に延びる、犠牲膜505のエッチングによって形成された空洞部GPとから、リン酸溶液ETを引き抜く作用が生じる。その結果、箇所P2においても、リン酸溶液ETを引き抜く作用が加わる。次に、下降工程(図2および図3)によって、トレンチTRの開口部OPは、リン酸溶液ETの液面SFの上方から下方へと移動される。このとき箇所P2においても、前述した上昇工程によってリン酸溶液ETを引き抜く作用が加わっていたために、新たなリン酸溶液ETが侵入しやすくなる。よって箇所P2においてもリン酸溶液ETが十分に置換される。 In the present embodiment, the substrate processing method described in the above-described first embodiment is used for the purpose of sufficiently replacing the phosphoric acid solution ET even at the etching progress portion P2. By the ascending step (FIGS. 5 and 6) of this substrate processing method, the opening OP of the trench TR is moved from below to above the liquid level SF of the phosphoric acid solution ET. At this time, due to the surface tension of the phosphoric acid solution ET, the action of pulling out the phosphoric acid solution ET from the trench TR and the cavity GP formed by etching the sacrificial film 505 extending in the horizontal direction from the trench TR occurs. .. As a result, the action of pulling out the phosphoric acid solution ET is also added to the portion P2. Next, the opening OP of the trench TR is moved from above to below the liquid level SF of the phosphoric acid solution ET by the descending step (FIGS. 2 and 3). At this time, also in the portion P2, since the action of pulling out the phosphoric acid solution ET is added by the above-mentioned ascending step, a new phosphoric acid solution ET easily invades. Therefore, the phosphoric acid solution ET is sufficiently substituted at the location P2 as well.
 図19を参照して、上記基板処理によって、犠牲膜505(図17)が空洞部GPへと変化させられる。このような処理を施された基板500は、3次元メモリデバイス(例えば、3次元NANDメモリデバイス)を製造するための基板として用いられ得る。 With reference to FIG. 19, the sacrificial film 505 (FIG. 17) is changed to the cavity GP by the substrate treatment. The substrate 500 subjected to such processing can be used as a substrate for manufacturing a three-dimensional memory device (for example, a three-dimensional NAND memory device).
 本実施の形態によれば、浸漬工程(図4)は、窒化シリコン膜505(図17)を槽101内のリン酸溶液ETにさらす暴露工程を含む。これにより、窒化シリコン膜505をエッチングすることができる。暴露工程において、トレンチTR内へリン酸溶液ETが侵入する。この場合、一般的に言えば、トレンチTRにおける深い箇所P2(図18)の近傍では、浅い箇所P1(図18)の近傍に比して、リン酸溶液ETが置換されにくい。これにより、浅く位置する窒化シリコン膜505に比して、深く位置する窒化シリコン膜505がエッチングされにくくなりやすい。よって、エッチングの進行の不均一性が大きくなりやすい。窒化シリコン膜505の層数が増加するほどトレンチTRの深さが増大するので、上記問題はより深刻となり得る。本実施の形態によれば、トレンチTRにおける深い箇所P2(図18)の近傍においても、実施の形態1において説明した理由により、リン酸溶液ETが効果的に置換される。よって、基板500のエッチングの進行を均一化することができる。 According to the present embodiment, the immersion step (FIG. 4) includes an exposure step of exposing the silicon nitride film 505 (FIG. 17) to the phosphoric acid solution ET in the tank 101. As a result, the silicon nitride film 505 can be etched. In the exposure step, the phosphoric acid solution ET invades the trench TR. In this case, generally speaking, the phosphoric acid solution ET is less likely to be replaced in the vicinity of the deep portion P2 (FIG. 18) in the trench TR than in the vicinity of the shallow portion P1 (FIG. 18). As a result, the silicon nitride film 505 located deeper is less likely to be etched than the silicon nitride film 505 located shallower. Therefore, the non-uniformity of the etching progress tends to increase. As the number of layers of the silicon nitride film 505 increases, the depth of the trench TR increases, so that the above problem can become more serious. According to the present embodiment, the phosphoric acid solution ET is effectively replaced even in the vicinity of the deep portion P2 (FIG. 18) in the trench TR for the reason described in the first embodiment. Therefore, the progress of etching of the substrate 500 can be made uniform.
 構造膜503は酸化シリコン膜503であることが好ましい。これにより、リン酸溶液ETに対しての構造膜503の耐エッチング性を十分に確保することができる。 The structural film 503 is preferably a silicon oxide film 503. As a result, the etching resistance of the structural film 503 with respect to the phosphoric acid solution ET can be sufficiently ensured.
 なお上記においては、図17~図19の工程を行うために、前述した実施の形態1における基板処理方法が用いられる場合について説明したが、代わりに、前述した実施の形態2における基板処理方法が用いられてもよい。 In the above, the case where the substrate processing method in the above-described first embodiment is used to perform the steps of FIGS. 17 to 19 has been described, but instead, the substrate processing method in the above-described second embodiment is used. It may be used.
 <実施の形態4>
 上記実施の形態1~3においては、リン酸溶液ET(リン酸含有処理液)を用いて窒化シリコン膜がエッチングされる場合について説明した。しかしながら、エッチングされる膜は窒化シリコンからなるものに限定されるわけではなく、本実施の形態においてはタングステンからなる。言い換えれば、本実施の形態においては、浸漬工程(例えば図4)は、基板500が有するタングステン膜を槽101内のリン酸溶液ETにさらす暴露工程を含む。この場合、リン酸含有処理液としては、単なるリン酸溶液ではなく、リン酸に加えて少なくとも1つの酸を含む混酸が好ましく、例えば、リン酸、酢酸および硝酸を含む混酸が好ましい。本実施の形態によれば、タングステン膜のエッチングにおいて、実施の形態1~3の場合とほぼ同様の効果が得られる。
<Embodiment 4>
In the first to third embodiments, the case where the silicon nitride film is etched by using the phosphoric acid solution ET (phosphoric acid-containing treatment liquid) has been described. However, the film to be etched is not limited to that made of silicon nitride, and in the present embodiment, it is made of tungsten. In other words, in the present embodiment, the dipping step (for example, FIG. 4) includes an exposure step of exposing the tungsten film of the substrate 500 to the phosphoric acid solution ET in the tank 101. In this case, the phosphoric acid-containing treatment liquid is not a simple phosphoric acid solution, but a mixed acid containing at least one acid in addition to phosphoric acid is preferable, and for example, a mixed acid containing phosphoric acid, acetic acid and nitric acid is preferable. According to the present embodiment, in etching the tungsten film, substantially the same effect as in the cases of the first to third embodiments can be obtained.
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is exemplary in all aspects, and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention. The configurations described in the above embodiments and the modifications can be appropriately combined or omitted as long as they do not conflict with each other.
 GP 空洞部
 ET リン酸溶液(リン酸含有処理液)
 SF 液面
 OP 開口部
 MS 主面
 TR トレンチ
 11 溶液供給源
 12,22 バルブ
 16 ポンプ
 17 ヒータ
 21 ガス供給源
 51 リフター
 52 アクチュエータ
 100 基板処理装置
 101 槽(第1槽)
 102,202 外槽
 201 槽(第2槽)
 111,211 液注入口
 112,212 ガス注入口
 500 基板
 501 支持層
 503 酸化シリコン膜(構造膜)
 505 窒化シリコン膜(犠牲膜)
GP cavity ET phosphoric acid solution (phosphoric acid-containing treatment solution)
SF Liquid level OP Opening MS Main surface TR Trench 11 Solution supply source 12, 22 Valve 16 Pump 17 Heater 21 Gas supply source 51 Lifter 52 Actuator 100 Board processing device 101 Tank (1st tank)
102, 202 Outer tank 201 tank (second tank)
111,211 Liquid injection port 112,212 Gas injection port 500 Substrate 501 Support layer 503 Silicon oxide film (structural film)
505 Silicon Nitride Membrane (Sacrifice Membrane)

Claims (13)

  1.  第1槽内のリン酸含有処理液に基板を浸漬する浸漬工程と、
     前記浸漬工程の後に、前記第1槽内のリン酸含有処理液の液面を通過して上方へと、前記基板の少なくとも一部を上昇させる上昇工程と、
     前記上昇工程の後に、前記第1槽内または前記第1槽と異なる第2槽内のリン酸含有処理液の液面を通過して下方へと前記基板の少なくとも一部を下降させる下降工程と、
    を備える基板処理方法。
    A dipping step of immersing the substrate in the phosphoric acid-containing treatment liquid in the first tank, and
    After the dipping step, an ascending step of raising at least a part of the substrate by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank and upward.
    After the ascending step, there is a descending step of lowering at least a part of the substrate by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank or in a second tank different from the first tank. ,
    Substrate processing method comprising.
  2.  前記下降工程は、前記第1槽内のリン酸含有処理液の液面を通過して下方へと前記基板の少なくとも一部を下降させる工程である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the lowering step is a step of lowering at least a part of the substrate downward after passing through the liquid surface of the phosphoric acid-containing processing liquid in the first tank.
  3.  前記下降工程は、前記第2槽内のリン酸含有処理液の液面を通過して下方へと前記基板の少なくとも一部を下降させる工程である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the lowering step is a step of lowering at least a part of the substrate downward after passing through the liquid surface of the phosphoric acid-containing processing liquid in the second tank.
  4.  前記上昇工程は、前記第1槽内のリン酸含有処理液の液面を通過して上方へと、前記基板の全体を上昇させることによって行われる、請求項1から3のいずれか1項に記載の基板処理方法。 The ascending step is carried out by ascending the entire substrate by passing through the liquid surface of the phosphoric acid-containing treatment liquid in the first tank and upward, according to any one of claims 1 to 3. The substrate processing method described.
  5.  前記浸漬工程は、前記基板が有する少なくとも1つの窒化シリコン膜を前記第1槽内のリン酸含有処理液にさらす暴露工程を含む、請求項1から4のいずれか1項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 4, wherein the dipping step includes an exposure step of exposing at least one silicon nitride film of the substrate to a phosphoric acid-containing treatment liquid in the first tank. ..
  6.  前記暴露工程において、前記基板は前記少なくとも1つの窒化シリコン膜としての複数の第1膜と窒化シリコンに比してリン酸にエッチングされにくい材料からなる複数の第2膜とを交互に有する積層体を含み、前記積層体は前記複数の第1膜および前記複数の第2膜を貫通するトレンチを有しており、前記トレンチ内へ前記リン酸含有処理液が侵入する、請求項5に記載の基板処理方法。 In the exposure step, the substrate is a laminate having a plurality of first films as the at least one silicon nitride film and a plurality of second films made of a material that is less likely to be etched by phosphoric acid than silicon nitride. 5. The phosphoric acid-containing treatment liquid according to claim 5, wherein the laminate has trenches penetrating the plurality of first films and the plurality of second films, and the phosphoric acid-containing treatment liquid penetrates into the trenches. Substrate processing method.
  7.  前記第2膜は酸化シリコン膜である、請求項6に記載の基板処理方法。 The substrate processing method according to claim 6, wherein the second film is a silicon oxide film.
  8.  前記浸漬工程は、前記基板が有するタングステン膜を前記第1槽内のリン酸含有処理液にさらす暴露工程を含む、請求項1から4のいずれか1項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 4, wherein the dipping step includes an exposure step of exposing the tungsten film of the substrate to the phosphoric acid-containing treatment liquid in the first tank.
  9.  前記上昇工程および前記下降工程において、前記リン酸含有処理液はバブリングされていない、請求項1から8のいずれか1項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 8, wherein the phosphoric acid-containing treatment liquid is not bubbled in the ascending step and the descending step.
  10.  前記浸漬工程において、前記リン酸含有処理液はガスによってバブリングされている、請求項1から9のいずれか1項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 9, wherein in the dipping step, the phosphoric acid-containing treatment liquid is bubbled with a gas.
  11.  前記ガスは不活性ガスである、請求項10に記載の基板処理方法。 The substrate processing method according to claim 10, wherein the gas is an inert gas.
  12.  前記浸漬工程において、前記基板の主面は上下方向に平行である、請求項1から11のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 11, wherein in the dipping step, the main surface of the substrate is parallel in the vertical direction.
  13.  前記上昇工程および前記下降工程のセットを第1頻度で繰り返す第1工程と、
     前記第1工程の後に、前記上昇工程および前記下降工程のセットを、前記第1頻度よりも低い第2頻度で繰り返す第2工程と、
    が行われる、請求項1から12のいずれか1項に記載の基板処理方法。
    The first step of repeating the set of the ascending step and the descending step at the first frequency, and
    After the first step, a second step in which the set of the ascending step and the descending step is repeated at a second frequency lower than the first frequency, and
    The substrate processing method according to any one of claims 1 to 12, wherein the method is carried out.
PCT/JP2020/001869 2019-03-19 2020-01-21 Substrate treatment method WO2020188990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-051659 2019-03-19
JP2019051659A JP2020155549A (en) 2019-03-19 2019-03-19 Substrate processing method

Publications (1)

Publication Number Publication Date
WO2020188990A1 true WO2020188990A1 (en) 2020-09-24

Family

ID=72520615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001869 WO2020188990A1 (en) 2019-03-19 2020-01-21 Substrate treatment method

Country Status (3)

Country Link
JP (1) JP2020155549A (en)
TW (1) TW202036706A (en)
WO (1) WO2020188990A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228774A1 (en) * 2022-05-27 2023-11-30 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361974A (en) * 1976-11-16 1978-06-02 Toshiba Corp Production of semiconductor device
JPS54139380A (en) * 1978-04-20 1979-10-29 Kyushu Nippon Electric Etching device
JPH0766170A (en) * 1993-08-31 1995-03-10 Toray Ind Inc Etching method for thin film
JP2005260004A (en) * 2004-03-11 2005-09-22 Seiko Epson Corp Organic substance removal method
JP2010103379A (en) * 2008-10-24 2010-05-06 Shindengen Electric Mfg Co Ltd Wet etching method and wet etching apparatus
JP2012064646A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Substrate processing method, storage medium having program recorded therein for execution of substrate processing method and substrate processing apparatus
JP2017195338A (en) * 2016-04-22 2017-10-26 東芝メモリ株式会社 Substrate processing apparatus and substrate processing method
JP2018046263A (en) * 2016-09-16 2018-03-22 東芝メモリ株式会社 Substrate processing apparatus and manufacturing method for semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361974A (en) * 1976-11-16 1978-06-02 Toshiba Corp Production of semiconductor device
JPS54139380A (en) * 1978-04-20 1979-10-29 Kyushu Nippon Electric Etching device
JPH0766170A (en) * 1993-08-31 1995-03-10 Toray Ind Inc Etching method for thin film
JP2005260004A (en) * 2004-03-11 2005-09-22 Seiko Epson Corp Organic substance removal method
JP2010103379A (en) * 2008-10-24 2010-05-06 Shindengen Electric Mfg Co Ltd Wet etching method and wet etching apparatus
JP2012064646A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Substrate processing method, storage medium having program recorded therein for execution of substrate processing method and substrate processing apparatus
JP2017195338A (en) * 2016-04-22 2017-10-26 東芝メモリ株式会社 Substrate processing apparatus and substrate processing method
JP2018046263A (en) * 2016-09-16 2018-03-22 東芝メモリ株式会社 Substrate processing apparatus and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JP2020155549A (en) 2020-09-24
TW202036706A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6446003B2 (en) Substrate processing apparatus, substrate processing method and etching solution
JP6300139B2 (en) Substrate processing method and substrate processing system
JP6985957B2 (en) Semiconductor processing equipment
JP7130510B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP5931780B2 (en) Selective epitaxial growth method and film forming apparatus
TWI754164B (en) Substrate processing device and substrate processing method
WO2020188990A1 (en) Substrate treatment method
JP5189121B2 (en) Substrate processing apparatus, substrate processing method, and recording medium on which a computer program for executing the substrate processing method is recorded
US20200273726A1 (en) Substrate treatment apparatus and manufacturing method of semiconductor device
KR20210028274A (en) Systems and methods for chemical and heated wetting of substrates prior to metal plating
JP7261567B2 (en) Substrate processing method and substrate processing apparatus
KR102015702B1 (en) Substrate processing method and substrate processing apparatus
US11682568B2 (en) Substrate treatment apparatus and manufacturing method of semiconductor device
KR20190136998A (en) Liquid processing apparatus, liquid processing method, and storage medium
JP7458965B2 (en) Substrate processing method and substrate processing apparatus
JP4829094B2 (en) Substrate processing apparatus, substrate processing method, substrate processing program, and program recording medium
JP5400735B2 (en) Substrate processing method, recording medium storing program for executing substrate processing method, and substrate processing apparatus
JP6495837B2 (en) Substrate processing equipment
JP2014103149A (en) Substrate processing apparatus and substrate processing method, and computer readable recording medium recording substrate processing program
US20220367203A1 (en) Substrate processing method and substrate processing apparatus
WO2016042667A1 (en) Method for manufacturing semiconductor device
WO2024042833A1 (en) Substrate treatment method and substrate treatment device
JP2021163861A (en) Substrate treatment method and substrate treatment apparatus
TW202412098A (en) Substrate processing apparatus and substrate processing method
TW202224008A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773914

Country of ref document: EP

Kind code of ref document: A1