WO2020188632A1 - Semiconductor device manufacturing method, recording medium and substrate processing device - Google Patents

Semiconductor device manufacturing method, recording medium and substrate processing device Download PDF

Info

Publication number
WO2020188632A1
WO2020188632A1 PCT/JP2019/010843 JP2019010843W WO2020188632A1 WO 2020188632 A1 WO2020188632 A1 WO 2020188632A1 JP 2019010843 W JP2019010843 W JP 2019010843W WO 2020188632 A1 WO2020188632 A1 WO 2020188632A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply
processing
amount
processing chamber
Prior art date
Application number
PCT/JP2019/010843
Other languages
French (fr)
Japanese (ja)
Inventor
水野 謙和
篤郎 清野
小川 有人
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2021506800A priority Critical patent/JP7161603B2/en
Priority to PCT/JP2019/010843 priority patent/WO2020188632A1/en
Priority to TW108148002A priority patent/TWI744759B/en
Publication of WO2020188632A1 publication Critical patent/WO2020188632A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device, a recording medium, and a substrate processing device.
  • a process of forming a film such as a silicon nitride (SiN) film is performed on a substrate using dichlorosilane (SiH 2 Cl 2 ) gas and ammonia (NH 3 ) gas.
  • SiH 2 Cl 2 dichlorosilane
  • NH 3 ammonia
  • a treatment for forming a film such as a titanium nitride (TiN) film may be performed using titanium tetrachloride (TiCl 4 ) gas and NH 3 gas (see, for example, Patent Document 2).
  • the SiN film or TiN film formed as described above may have by-products such as chlorine (Cl) and hydrogen chloride (HCl) remaining in the film. If these by-products remain in the film, the resistivity will increase, the film formation rate will decrease, and the like.
  • the supply time of the processing gas is lengthened, the amount of by-products contained in the membrane can be reduced, but there is a problem that the treatment time becomes long.
  • An object of the present disclosure is to provide a technique capable of reducing the amount of by-products contained in a membrane to a level where there is no problem in terms of characteristics without lengthening the supply time of the processing gas more than necessary.
  • the first step of starting the supply of processing gas to the substrate in the processing chamber A second step of continuously measuring the amount of by-products exhausted from the processing chamber, A third step of controlling to stop the supply of processing gas when a set threshold is reached in the process of decaying the amount of by-product to be measured.
  • the fourth process of exhausting the processing chamber and Technology is provided.
  • the amount of by-products contained in the membrane can be reduced to a level where there is no problem in terms of characteristics without lengthening the supply time of the processing gas more than necessary.
  • FIG. 1 It is a vertical cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this disclosure. It is a schematic cross-sectional view of the line AA in FIG. It is the schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this disclosure, and is the figure which shows the control system of the controller by the block diagram. It is a figure which shows the timing of the gas supply in the 1st Embodiment of this disclosure. (A) and (B) are diagrams for explaining the operation of stopping the supply of TiCl 4 gas in the substrate processing step according to the embodiment of the present disclosure.
  • (A) is a model diagram showing the state of the wafer 200 surface on which the Ti-containing layer was formed before exposure by NH 3 gas supply
  • (B) is the state of the wafer 200 surface after exposure by NH 3 gas supply.
  • (A) is a model diagram showing the state of the surface of the wafer 200 on which the TiN layer was formed before exposure by the SiCl 4 gas supply
  • (B) is the state of the wafer 200 surface after exposure by the SiCl 4 gas supply.
  • TiCl 4 gas supply time is a diagram showing the measured HCl concentration during the TiCl 4 gas supply, the relationship between the size of the surface area of the wafer 200. It is a figure which shows the relationship between the film formation processing time of the substrate processing process and the HCl concentration measured at the time of NH 3 gas supply in one Embodiment of this disclosure.
  • (A) and (B) are vertical cross-sectional views showing an outline of a processing furnace of a substrate processing apparatus according to another embodiment of the present disclosure.
  • the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction vessel is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • the inner tube 204 constituting a reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • the processing container (reaction container) is mainly composed of the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
  • nozzles 410, 420, 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, 330 are connected to the nozzles 410, 420, 430, respectively.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 322, and 332, which are flow rate controllers (flow control units), in order from the upstream side. Further, the gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, which are on-off valves, respectively. Gas supply pipes 510, 520, and 530 for supplying the inert gas are connected to the downstream sides of the valves 314, 324 and 334 of the gas supply pipes 310, 320 and 330, respectively.
  • MFCs mass flow controllers
  • valves 314, 324, and 334 which are on-off valves, respectively.
  • Gas supply pipes 510, 520, and 530 for supplying the inert gas are connected to the downstream sides of the valves 314, 324 and 334 of the gas supply pipes 310, 320 and 330, respectively.
  • the gas supply pipes 510, 520, and 530 are provided with MFC 512, 522, 532, which is a flow rate controller (flow control unit), and valves 514, 524, 534, which are on-off valves, in this order from the upstream side.
  • MFC 512, 522, 532 which is a flow rate controller (flow control unit)
  • valves 514, 524, 534 which are on-off valves, in this order from the upstream side.
  • Nozzles 410, 420, 430 are connected to the tips of the gas supply pipes 310, 320, 330, respectively.
  • the nozzles 410, 420, 430 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410, 420, and 430 are provided inside a channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction. It is provided in the reserve chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
  • the nozzles 410, 420, 430 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a, 420a, 430a are provided at positions facing the wafer 200, respectively. Is provided.
  • the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively.
  • a plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply holes 410a, 420a, 430a are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
  • the nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
  • a raw material gas (metal-containing gas) containing a metal element is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410.
  • the raw material for example, titanium (TiCl 4 ) containing titanium (Ti) as a metal element and titanium tetrachloride (TiCl 4 ) as a halogen-based raw material (halide, halogen-based titanium raw material) is used.
  • a reducing gas as a processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
  • a silane (SiH 4 ) gas containing silicon (Si) and hydrogen (H) and as a halogen-free reducing gas can be used.
  • SiH 4 acts as a reducing agent.
  • a reaction gas that reacts with the raw material gas is supplied into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430.
  • the reaction gas for example, ammonia (NH 3 ) gas as an N-containing gas containing nitrogen (N) can be used.
  • nitrogen (N 2 ) gas as an inert gas is discharged into the processing chamber via MFC512,522,532, valves 514,524,534, and nozzles 410,420,430, respectively. It is supplied in 201.
  • N 2 gas used as the inert gas
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenon other than N 2 gas will be described.
  • a rare gas such as (Xe) gas may be used.
  • the processing gas supply system is mainly composed of gas supply pipes 310, 320, 330, MFC 312, 322, 332, valves 314, 324, 334, and nozzles 410, 420, 430, but only nozzles 410, 420, 430 are used. It may be considered as a processing gas supply system.
  • the treated gas supply system may be simply referred to as a gas supply system.
  • the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314, but the nozzle 410 may be included in the raw material gas supply system.
  • the reducing gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system. ..
  • the reaction gas supply system is mainly composed of the gas supply pipe 330, the MFC 332, and the valve 334, but the nozzle 430 may be included in the reaction gas supply system. ..
  • the reaction gas supply system can also be referred to as a nitrogen-containing gas supply system.
  • the inert gas supply system is mainly composed of gas supply pipes 510, 520, 530, MFC 512, 522, 532, and valves 514, 524, 534.
  • the method of gas supply in the present embodiment is the nozzles 410, 420, arranged in the spare chamber 201a in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is transported via 430. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions facing the wafers of the nozzles 410, 420, 430.
  • the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430 eject the raw material gas or the like in the direction parallel to the surface of the wafer 200.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, 430 on the side wall of the inner tube 204, and is, for example, a slit-shaped through hole formed elongated in the vertical direction. Is.
  • the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 and flowing on the surface of the wafer 200 passes through the exhaust holes 204a into the inner tube 204 and the outer tube 203. It flows into the exhaust passage 206 composed of the gaps formed between them. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a to the vicinity of the wafers 200 in the processing chamber 201 flows in the horizontal direction. After that, it flows into the exhaust passage 206 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • a by-product monitor 500 for measuring the amount of by-products
  • APC APC
  • Auto Pressure Controller Auto Pressure Controller
  • the by-product monitor 500 is provided in the vicinity of the exhaust port 231a, which is a connection portion between the process tube 203 and the exhaust pipe 231.
  • RGA Residal Gas Analyzer
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 and the by-product monitor 500 may be included in the exhaust system.
  • a measuring instrument using principles such as IR absorption, mass spectrometry, and NDIR (Nondispersive Infrared spectroscopy) can be used.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to arrange a plurality of wafers, for example, 25 to 200 wafers 200, in a horizontal posture and at intervals in the vertical direction while being centered on each other. ..
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
  • this embodiment is not limited to the above-described embodiment.
  • a heat insulating cylinder formed as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method for manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. are collectively referred to as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d has the above-mentioned MFC 312,322,332,512,522,532, valve 314,324,334,514,524,534, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature. It is connected to a sensor 263, a by-product monitor 500, a rotation mechanism 267, a boat elevator 115, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 312, 322, 332, 521, 522, 532, opens and closes the valves 314, 324, 334, 514, 524, 534, and the APC valve so as to follow the contents of the read recipe.
  • the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing process As one step of the manufacturing process of the semiconductor device (device), an example of a step of forming, for example, a metal film constituting a gate electrode on the wafer 200 will be described with reference to FIG. 4 as a first embodiment.
  • the step of forming the metal film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • wafer When the word “wafer” is used in the present specification, it may mean “wafer itself” or “a laminate of a wafer and a predetermined layer, film, etc. formed on its surface”. is there.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean “the surface of the wafer itself” or “the surface of a predetermined layer, film, etc. formed on the wafer”. is there.
  • board in the present specification is also synonymous with the use of the term "wafer”.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • TiCl 4 gas supply The valve 314 is opened to allow the TiCl 4 gas, which is a raw material gas, to flow into the gas supply pipe 310.
  • the flow rate of the TiCl 4 gas is adjusted by the MFC 312, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • TiCl 4 gas is supplied to the wafer 200.
  • the valve 514 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened to allow the N 2 gas to flow into the gas supply pipes 520 and 530.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply flow rate of the SiCl 4 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.1 to 2.0 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 20 slm.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 300 to 600 ° C.
  • the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas.
  • a Ti-containing layer is formed on the wafer 200 (base film on the surface).
  • the Ti-containing layer may be a Ti layer containing Cl, an adsorption layer of TiCl 4 , or both of them.
  • the HCl concentration measured by the by-product sensor 500 during the supply of TiCl 4 gas rises to a peak value of P1 and then attenuates. I know that. Further, it is known that when a by-product such as HCl is contained in the film, the film forming rate is lowered and the resistivity of the film is increased.
  • the controller 121 has a preset threshold value in the process of decaying the amount of HCl measured by the by-product monitor 500 when supplying TiCl 4 gas from the peak value P1.
  • P2 the valve 314 of the gas supply pipe 310 is closed to control the supply of SiCl 4 gas to be stopped.
  • FIG. 5 (B) shows.
  • the controller 121 supplies gas when the amount of HCl measured reaches the peak value P1 and then decays to the threshold P2 when it exceeds a predetermined time T1 which is a preset constant time.
  • the valve 314 of the pipe 310 is closed and controlled to stop the supply of SiCl 4 gas.
  • the predetermined time T1 is a preset supply time. Further, the predetermined time T1 is preferably a time that is an integral multiple (N times) of the time from the start of the supply of the SiCl 4 gas until the amount of the by-product measured reaches the peak value P1. N is appropriately set according to a desired process. Further, N is in the range of 2 to 15, preferably 10.
  • the threshold value P2 is set based on the peak value P1 of the measured amount of by-products, and is appropriately set to an arbitrary value such as half or one-third of the peak value P1 of the amount of by-products.
  • the threshold value P2 is set in advance for each process recipe and stored in the storage device 121c. Then, the threshold value P2 corresponding to the recipe read when performing the substrate processing step is set based on the table in which the threshold value is set. That is, the threshold value is set according to the recipe. In the case of a recipe in which the treatment may be executed with the by-products remaining in the membrane, it is better to set a high threshold value and remove the by-products from the membrane to execute the treatment. In some cases, the threshold can be set low.
  • the threshold value P2 is set for each number of wafers charged, the surface area of the wafer, and the like. Then, the threshold value P2 corresponding to the number of charged wafers and the surface area of the wafer is set based on the table in which each threshold value is set. That is, the threshold value is set according to the number of charged wafers, the surface area of the wafer, and the like.
  • the storage device 121c stores a table showing the relationship between the recipe and the threshold value, a table showing the relationship between the number of charged wafers and the threshold value, a table showing the relationship between the surface area of the wafer and the threshold value, and the like.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the TiCl 4 gas and the reaction by-product remaining in the treatment chamber 201 from the inside of the treatment chamber 201 after contributing to the formation of the unreacted or Ti-containing layer. ..
  • [Fifth step] (NH 3 gas supply) After removing the residual gas in the processing chamber 201, the valve 334 is opened and NH 3 gas is flowed into the gas supply pipe 330 as a reaction gas. The flow rate of the NH 3 gas is adjusted by the MFC 332, is supplied into the processing chamber 201 from the gas supply hole 430a of the nozzle 430, and is exhausted from the exhaust pipe 231. At this time, NH 3 gas is supplied to the wafer 200. At this time, the valve 534 is opened at the same time to allow N 2 gas to flow into the gas supply pipe 530. The flow rate of the N 2 gas flowing through the gas supply pipe 530 is adjusted by the MFC 532.
  • the N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 524 are opened to allow N 2 gas to flow into the gas supply pipes 510 and 520.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply flow rate of NH 3 gas controlled by the MFC 332 is, for example, a flow rate within the range of 0.1 to 30 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 30 slm.
  • the time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds.
  • the temperature of the heater 207 at this time is set to the same temperature as that of the SiCl 4 gas supply step.
  • the only gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the first step.
  • Ti contained in the Ti-containing layer and N contained in the NH 3 gas are combined to form a TiN layer on the wafer 200.
  • [7th step] (NH 3 gas supply stopped) Then, as in the third step described above, when the controller 121 reaches the preset threshold value P2 in the process of attenuating the amount of the by-product measured by the by-product monitor 500 from the peak value P1.
  • the valve 334 of the gas supply pipe 330 is closed to control the supply of NH 3 gas.
  • the controller 121 is a gas supply pipe.
  • the valve 334 of 330 is closed and controlled to stop the supply of NH 3 gas.
  • a TiN film having a predetermined thickness is formed on the wafer 200 by performing the cycle of sequentially performing the first step to the eighth step described above one or more times (predetermined number of times (n times)).
  • the above cycle is preferably repeated a plurality of times.
  • FIG. 6A is a model diagram showing the state of the surface of the wafer 200 on which the Ti-containing layer is formed before exposure by NH 3 gas supply
  • FIG. 6B is a wafer after exposure by NH 3 gas supply. It is a model figure which shows the state of the surface of 200.
  • FIG. 7 (A) is a model diagram showing the state of the surface of the wafer 200 on which the TiN layer was formed before exposure by the SiCl 4 gas supply
  • FIG. 7 (B) is a model diagram after exposure by the SiCl 4 gas supply. It is a model figure which shows the state of the surface of the wafer 200.
  • FIG. 8 shows the growth rate of the TiN film when a small amount of HCl was intentionally added to each of the TiCl 4 gas and the NH 3 gas, and the film formation rate of the TiN film when the solution was supplied without the addition of HCl. It is a figure which compared and showed. As shown in FIG. 8, it has been confirmed that the film formation rate is reduced by about 25% by adding HCl when supplying the SiCl 4 gas. It has also been confirmed that the film formation rate is reduced by about 15% by adding HCl when supplying NH 3 gas.
  • HCl which is a reaction by-product
  • the amount of by-products at the time of supplying the processing gas is measured using the by-product monitor 500, and the amount of by-products is attenuated.
  • the amount of by-products measured falls below the threshold, or when the time required for the measured amount of by-products to decrease to the threshold exceeds a predetermined time, it is assumed that by-products such as HCl have been eliminated from the membrane. Stop the supply of NaCl 4 gas and NH 3 gas.
  • the controller 121 supplies a processing gas such as a raw material gas or a reaction gas
  • the controller 121 supplies the processing gas (performs film formation) while measuring the amount of by-products generated on the surface of the wafer 200, and subordinates.
  • the supply of the processing gas is controlled to be stopped when the threshold value is reached in the process of product attenuation or when the measured amount of by-product decays and falls to the threshold value exceeds a predetermined time.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the reaction tube 203. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
  • the setting of the by-product monitor 500 is reset when a new recipe is started or when the number of charged sheets is changed.
  • the second embodiment of the present disclosure is executed using the processing furnace 202 of the substrate processing apparatus 10 in the first embodiment described above. Since the second embodiment of the present disclosure differs only from the substrate processing step and the film forming step of the above-described embodiment, only the film forming process will be described with reference to FIG.
  • the valves 514 and 534 are opened to allow the N 2 gas to flow into the gas supply pipes 510 and 530.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 330 and the nozzles 410 and 430, and is exhausted from the exhaust pipe 231.
  • SiH 4 gas and N 2 gas are simultaneously supplied to the wafer 200.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, 130 to 3990 Pa, preferably 500 to 2660 Pa, and more preferably 900 to 1500 Pa.
  • the pressure in the processing chamber 201 is lower than 130 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film increases to form a TiSiN film. There is a possibility that it will end up.
  • the pressure in the processing chamber 201 is higher than 3990 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film becomes high, and TiSiN It may become a film.
  • the supply flow rate of the SiH 4 gas controlled by the MFC 322 is, for example, a flow rate within the range of 0.1 to 5 slm, preferably 0.5 to 3 slm, and more preferably 1 to 2 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm.
  • the temperature of the heater 207 is set to the same temperature as that of the SiCl 4 gas supply step.
  • the only gases flowing in the processing chamber 201 are SiH 4 gas and N 2 gas.
  • SiH 4 gas By supplying the SiH 4 gas, HCl reacts with SiH 4 and is discharged from the processing chamber 201 as SiCl 4 and H 2 .
  • the controller 121 is a gas supply pipe.
  • the valve 324 of 320 is closed and controlled to stop the supply of SiH 4 gas.
  • a cycle in which the above-mentioned 1st to 4th steps, 4th 1st step, 4th 2nd step, 4th 3rd step, 4th 4th step, and 5th to 8th step are performed in order is performed.
  • n times predetermined number of times
  • a TiN film having a predetermined thickness is formed on the wafer 200.
  • the above cycle is preferably repeated a plurality of times.
  • the supply of the TiCl 4 gas, and the supply of the SiH 4 gas an example to perform across the fourth step (residual gas removing step) is not limited to this
  • the TiCl 4 gas of in the feed, to initiate the supply of the SiH 4 gas, after stop of the supply of the TiCl 4 gas may constitute a gas supply sequence so as to stop the supply of the SiH 4 gas.
  • the supply of TiCl 4 gas and the supply of SiH 4 gas are configured to partially overlap.
  • the amount of by-products is continuously measured by the same treatment procedure as in the second step described above, and the supply of TiCl 4 gas is stopped by the same treatment procedure as in the third step described above. Will be done.
  • the concentration of SiCl 4 is continuously measured by the same treatment procedure as in the second step described above, and then the amount of by-products is continuously measured, and then the fourth step and the third step.
  • the supply of SiH 4 gas is stopped by the same processing procedure.
  • FIG. 10 is a diagram showing the relationship between the SiCl 4 gas supply time and the HCl concentration when the SiCl 4 gas is supplied to the wafers 200 having different surface areas.
  • a TiN film was formed on the wafer W1 having the surface area S1 and the wafer W2 having the surface area S2, respectively, by using the substrate processing apparatus 10 described above and the substrate processing step shown in FIG.
  • the peak value P1-1 is attenuated and the threshold value P2 is reached 1 second after the TiCl 4 gas supply is started. Further, in the film forming process of the wafer W2, the peak value P1-2 is attenuated and reaches the threshold value P2 2 seconds after the start of the SiCl 4 gas supply. That is, it was confirmed that the peak value P1 of the amount of by-products differs depending on the surface area, and that the wafer W2 having a large surface area takes longer to reach the threshold value than the wafer W1 having a small surface area.
  • the wafer W2 having a large surface area requires more time for the amount of HCl in the film to reach the threshold value than the wafer W1 having a small surface area, and it takes more time to desorb HCl. ..
  • the amount of the by-product is measured after the supply of the raw material gas and the reaction gas is started, respectively, and when the amount of the by-product is attenuated and reaches the threshold value, or the sub is measured.
  • the amount of by-product is measured after the supply of the raw material gas or reaction gas is started and the amount of by-product decays and reaches the threshold value, or the amount of by-product measured is the peak value.
  • the present disclosure can be applied even when the supply of the raw material gas or the reaction gas is stopped when the time for decaying and falling to the threshold value exceeds a predetermined time, which is a preset fixed time.
  • the gas supply time from the start of the supply of the processing gas to the stop of the supply of the processing gas is set for each cycle has been described, but the present disclosure is limited to this. It may be set every plurality of cycles, or may be set as a predetermined cycle period.
  • Time may be set as the gas supply time, and a plurality of cycles after the second cycle may be performed using the set gas supply time.
  • FIG. 11 is a diagram showing the relationship between the film formation processing time and the concentration of HCl discharged when NH 3 gas is supplied. As shown in FIG. 11, it can be seen that the HCl discharged when NH 3 gas is supplied decreases as the number of cycles increases. In this way, when using a recipe in which the amount of by-products produced in each cycle changes, the amount of change in by-products in each cycle is stored in the storage device 121c in advance and read from the storage device 121c. The gas supply time for each cycle corresponding to the recipe may be used.
  • the present disclosure is not limited to this, for example, a zirconium oxide (ZrO) film, hafnium oxide (HfO).
  • ZrO zirconium oxide
  • HfO hafnium oxide
  • CO 2 carbon dioxide
  • SiO silicon oxide
  • the amount of the by-product is measured, and when the amount of the by-product decreases and reaches the threshold value, or when the measured amount of the by-product reaches the peak value and then decreases.
  • a predetermined time which is a preset fixed time
  • the present disclosure is not limited to this, and the measured by-production is not limited to this.
  • the gas supply flow rate, the treatment chamber temperature, or the treatment chamber pressure may be controlled according to the amount of the substance.
  • control may be performed based on the absolute amount of by-products, but the control is preferably performed based on the relative amount. Further, it may be configured to measure the concentration ratio of the raw material gas and the by-product, but it is not essential to measure the concentration ratio.
  • the present disclosure is not limited to this. It can also be suitably applied to the case of forming a film using a single-wafer type substrate processing apparatus that processes one or several substrates at a time. Further, in the above-described embodiment, an example of forming a thin film by using a substrate processing apparatus having a hot wall type processing furnace has been described, but the present disclosure is not limited to this, and the present disclosure includes a cold wall type processing furnace. It can also be suitably applied to the case of forming a thin film using a substrate processing apparatus. Even in these cases, the processing conditions can be, for example, the same processing conditions as those in the above-described embodiment.
  • the processing furnace 302 includes a processing container 303 forming the processing chamber 301, a shower head 303s that supplies gas into the processing chamber 301 in a shower shape, and a support base 317 that supports one or several wafers 200 in a horizontal posture.
  • a rotating shaft 355 that supports the support base 317 from below, and a heater 307 provided on the support base 317 are provided.
  • a gas supply port 332a for supplying the above-mentioned raw material gas and a gas supply port 332b for supplying the above-mentioned reaction gas are connected to an inlet (gas introduction port) of the shower head 303s.
  • a raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 332a.
  • a reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 332b.
  • the outlet (gas discharge port) of the shower head 303s is provided with a gas dispersion plate that supplies gas in a shower shape in the processing chamber 301.
  • the processing container 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
  • the processing furnace 402 includes a processing container 403 forming the processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container.
  • a lamp heater 407 that irradiates the wafer 200 of the 403 with light, and a quartz window 403w that transmits the light of the lamp heater 407 are provided.
  • the processing container 403 is connected to the gas supply port 432a for supplying the above-mentioned raw material gas and the gas supply port 432b for supplying the above-mentioned reaction gas.
  • a raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 432a.
  • a reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 432b.
  • the processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
  • film formation can be performed under the same sequence and processing conditions as those in the above-described embodiment.
  • the process recipe (program that describes the treatment procedure, treatment conditions, etc.) used for forming these various thin films is the content of the substrate treatment (film type, composition ratio, film quality, film thickness, treatment procedure, treatment of the thin film to be formed). It is preferable to prepare each individually (multiple preparations are made) according to the conditions, etc.). Then, when starting the substrate processing, it is preferable to appropriately select an appropriate process recipe from a plurality of process recipes according to the content of the substrate processing.
  • the board processing device includes a plurality of process recipes individually prepared according to the content of the board processing via a telecommunication line or a recording medium (external storage device 123) on which the process recipe is recorded. It is preferable to store (install) it in the storage device 121c in advance.
  • the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate process recipe from the plurality of process recipes stored in the storage device 121c according to the content of the substrate processing. Is preferable.
  • thin films of various film types, composition ratios, film qualities, and film thicknesses can be formed with a single substrate processing device in a versatile and reproducible manner. Further, the operation load of the operator (input load of processing procedure, processing condition, etc.) can be reduced, and the board processing can be started quickly while avoiding operation mistakes.
  • the present disclosure can also be realized by, for example, changing the process recipe of the existing substrate processing apparatus.
  • the process recipe according to the present disclosure may be installed on an existing board processing device via a telecommunications line or a recording medium on which the process recipe is recorded, or input / output of the existing board processing device may be input / output. It is also possible to operate the device and change the process recipe itself to the process recipe according to the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Without unnecessarily lengthening the treatment gas supply time, this method enables reducing the amount of byproducts contained in a film to a level that does not pose problems in terms of characteristics. This method involves: a first step for starting the supply of treatment gas to the substrate in a treatment chamber; a second step for continuously measuring the amount of byproduct discharged from the treatment chamber; a third step for exerting control so as to stop the supply of treatment gas in the case that, during the decay process, the measured byproduct amount reaches a set threshold value; and a fourth step for evacuating the treatment chamber.

Description

半導体装置の製造方法、記録媒体および基板処理装置Manufacturing method of semiconductor equipment, recording medium and substrate processing equipment
 本開示は、半導体装置の製造方法、記録媒体および基板処理装置に関する。 The present disclosure relates to a method for manufacturing a semiconductor device, a recording medium, and a substrate processing device.
 半導体装置の製造工程の一工程として、基板上に、ジクロロシラン(SiH2Cl2)ガスとアンモニア(NH3)ガスを用いて、窒化シリコン(SiN)膜等の膜を形成する処理が行われることがある(例えば特許文献1参照)。また、四塩化チタン(TiCl4)ガスとNH3ガスを用いて、窒化チタン(TiN)膜等の膜を形成する処理が行われることがある(例えば特許文献2参照)。 As one step in the manufacturing process of a semiconductor device, a process of forming a film such as a silicon nitride (SiN) film is performed on a substrate using dichlorosilane (SiH 2 Cl 2 ) gas and ammonia (NH 3 ) gas. In some cases (see, for example, Patent Document 1). Further, a treatment for forming a film such as a titanium nitride (TiN) film may be performed using titanium tetrachloride (TiCl 4 ) gas and NH 3 gas (see, for example, Patent Document 2).
特開2018-10891号公報JP-A-2018-10891 特開2014-208883号公報Japanese Unexamined Patent Publication No. 2014-208883
 上述したように形成されたSiN膜やTiN膜は、膜中に塩素(Cl)や塩化水素(HCl)等の副生成物が残留した状態となることがある。これらの副生成物が膜中に残留すると、抵抗率が高くなったり、成膜速度の低下等に繋がる。 The SiN film or TiN film formed as described above may have by-products such as chlorine (Cl) and hydrogen chloride (HCl) remaining in the film. If these by-products remain in the film, the resistivity will increase, the film formation rate will decrease, and the like.
 処理ガスの供給時間を長くすれば、膜中に含まれる副生成物の量を減らすことができるが、処理時間が長くなってしまうという問題が発生する。また、ウエハの投入枚数(チャージ枚数)やウエハの表面積等の条件が変わると、膜中に含まれる副生成物の量を特性上問題無いレベルまで下げるために必要な処理ガスの供給時間が変わってくる。 If the supply time of the processing gas is lengthened, the amount of by-products contained in the membrane can be reduced, but there is a problem that the treatment time becomes long. In addition, when conditions such as the number of wafers charged (the number of charged sheets) and the surface area of the wafer change, the supply time of the processing gas required to reduce the amount of by-products contained in the film to a level that does not cause any problem in terms of characteristics changes. Come on.
 本開示は、処理ガスの供給時間を必要以上に長くすることなく、膜中に含まれる副生成物の量を特性上問題無いレベルまで下げることが可能な技術を提供することを目的とする。 An object of the present disclosure is to provide a technique capable of reducing the amount of by-products contained in a membrane to a level where there is no problem in terms of characteristics without lengthening the supply time of the processing gas more than necessary.
 本開示の一態様によれば、
 処理室内の基板に対して、処理ガスの供給を開始する第1の工程と、
 処理室から排気される副生成物の量を継続して測定する第2の工程と、
 測定される副生成物の量が減衰する過程において、設定された閾値に達した場合に、処理ガスの供給を停止するよう制御する第3の工程と、
 処理室内を排気する第4の工程と、
 を有する技術が提供される。
According to one aspect of the present disclosure
The first step of starting the supply of processing gas to the substrate in the processing chamber,
A second step of continuously measuring the amount of by-products exhausted from the processing chamber,
A third step of controlling to stop the supply of processing gas when a set threshold is reached in the process of decaying the amount of by-product to be measured.
The fourth process of exhausting the processing chamber and
Technology is provided.
 本開示によれば、処理ガスの供給時間を必要以上に長くすることなく、膜中に含まれる副生成物の量を特性上問題無いレベルまで下げることができる。 According to the present disclosure, the amount of by-products contained in the membrane can be reduced to a level where there is no problem in terms of characteristics without lengthening the supply time of the processing gas more than necessary.
本開示の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this disclosure. 図1におけるA-A線概略横断面図である。It is a schematic cross-sectional view of the line AA in FIG. 本開示の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is the schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this disclosure, and is the figure which shows the control system of the controller by the block diagram. 本開示の第1の実施形態におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the 1st Embodiment of this disclosure. (A)及び(B)は、本開示の一実施形態における基板処理工程のTiCl4ガスの供給停止動作を説明するための図である。(A) and (B) are diagrams for explaining the operation of stopping the supply of TiCl 4 gas in the substrate processing step according to the embodiment of the present disclosure. (A)は、NH3ガス供給による暴露前のTi含有層が形成されたウエハ200表面の様子を示すモデル図であり、(B)は、NH3ガス供給による暴露後のウエハ200表面の様子を示すモデル図である。(A) is a model diagram showing the state of the wafer 200 surface on which the Ti-containing layer was formed before exposure by NH 3 gas supply, and (B) is the state of the wafer 200 surface after exposure by NH 3 gas supply. It is a model diagram which shows. (A)は、TiCl4ガス供給による暴露前のTiN層が形成されたウエハ200表面の様子を示すモデル図であり、(B)は、TiCl4ガス供給による暴露後のウエハ200表面の様子を示すモデル図である。(A) is a model diagram showing the state of the surface of the wafer 200 on which the TiN layer was formed before exposure by the SiCl 4 gas supply, and (B) is the state of the wafer 200 surface after exposure by the SiCl 4 gas supply. It is a model diagram which shows. TiCl4ガスとNH3ガスのそれぞれにHClガスを微量に添加して供給した場合とHClガスを添加しないで供給した場合の成膜速度を比較して示した図である。It is the figure which compared the film formation rate when it was supplied by adding a small amount of HCl gas to each of TiCl 4 gas and NH 3 gas, and when it was supplied without adding HCl gas. 本開示の第2の実施形態におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the 2nd Embodiment of this disclosure. TiCl4ガス供給時間と、TiCl4ガス供給時に測定されたHCl濃度と、ウエハ200の表面積の大きさとの関係を示す図である。And TiCl 4 gas supply time is a diagram showing the measured HCl concentration during the TiCl 4 gas supply, the relationship between the size of the surface area of the wafer 200. 本開示の一実施形態における基板処理工程の成膜処理時間とNH3ガス供給時に測定されたHCl濃度との関係を示す図である。It is a figure which shows the relationship between the film formation processing time of the substrate processing process and the HCl concentration measured at the time of NH 3 gas supply in one Embodiment of this disclosure. (A)及び(B)は、本開示の他の実施形態における基板処理装置の処理炉の概略を示す縦断面図である。(A) and (B) are vertical cross-sectional views showing an outline of a processing furnace of a substrate processing apparatus according to another embodiment of the present disclosure.
<本開示の一実施形態>
 以下に本開示の一実施形態について説明する。
<One Embodiment of the present disclosure>
An embodiment of the present disclosure will be described below.
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
(1) Configuration of Substrate Processing Device The substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属からなり、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。 Inside the heater 207, an outer tube 203 forming a reaction vessel (processing vessel) is arranged concentrically with the heater 207. The outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open. Below the outer tube 203, a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203. When the manifold 209 is supported by the heater base, the outer tube 203 is in a vertically installed state.
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。 Inside the outer tube 203, an inner tube 204 constituting a reaction vessel is arranged. The inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open. The processing container (reaction container) is mainly composed of the outer tube 203, the inner tube 204, and the manifold 209. A processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。 The processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給管310,320,330が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。 In the processing chamber 201, nozzles 410, 420, 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204. Gas supply pipes 310, 320, 330 are connected to the nozzles 410, 420, 430, respectively. However, the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532及び開閉弁であるバルブ514,524,534がそれぞれ設けられている。 The gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 322, and 332, which are flow rate controllers (flow control units), in order from the upstream side. Further, the gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, which are on-off valves, respectively. Gas supply pipes 510, 520, and 530 for supplying the inert gas are connected to the downstream sides of the valves 314, 324 and 334 of the gas supply pipes 310, 320 and 330, respectively. The gas supply pipes 510, 520, and 530 are provided with MFC 512, 522, 532, which is a flow rate controller (flow control unit), and valves 514, 524, 534, which are on-off valves, in this order from the upstream side.
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。 Nozzles 410, 420, 430 are connected to the tips of the gas supply pipes 310, 320, 330, respectively. The nozzles 410, 420, 430 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204. The vertical portions of the nozzles 410, 420, and 430 are provided inside a channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction. It is provided in the reserve chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。 The nozzles 410, 420, 430 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a, 420a, 430a are provided at positions facing the wafer 200, respectively. Is provided. As a result, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively. A plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch. However, the gas supply holes 410a, 420a, 430a are not limited to the above-described form. For example, the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a more uniform.
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。 A plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217. The nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。原料としては、例えば金属元素としてのチタン(Ti)を含み、ハロゲン系原料(ハロゲン化物、ハロゲン系チタン原料)としての四塩化チタン(TiCl4)が用いられる。 From the gas supply pipe 310, a raw material gas (metal-containing gas) containing a metal element is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410. As the raw material, for example, titanium (TiCl 4 ) containing titanium (Ti) as a metal element and titanium tetrachloride (TiCl 4 ) as a halogen-based raw material (halide, halogen-based titanium raw material) is used.
 ガス供給管320からは、処理ガスとして、還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。還元ガスとしては、例えばシリコン(Si)及び水素(H)を含み、ハロゲンを含まない還元ガスとしての例えばシラン(SiH4)ガスを用いることができる。SiH4は還元剤として作用する。 From the gas supply pipe 320, a reducing gas as a processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420. As the reducing gas, for example, a silane (SiH 4 ) gas containing silicon (Si) and hydrogen (H) and as a halogen-free reducing gas can be used. SiH 4 acts as a reducing agent.
 ガス供給管330からは、処理ガスとして、原料ガスと反応する反応ガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。反応ガスとしては、例えば窒素(N)を含むN含有ガスとしての例えばアンモニア(NH3)ガスを用いることができる。 From the gas supply pipe 330, as a processing gas, a reaction gas that reacts with the raw material gas is supplied into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430. As the reaction gas, for example, ammonia (NH 3 ) gas as an N-containing gas containing nitrogen (N) can be used.
 ガス供給管510,520,530からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。 From the gas supply pipes 510, 520, and 530, for example, nitrogen (N 2 ) gas as an inert gas is discharged into the processing chamber via MFC512,522,532, valves 514,524,534, and nozzles 410,420,430, respectively. It is supplied in 201. Hereinafter, an example in which N 2 gas is used as the inert gas will be described. As the inert gas, for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenon other than N 2 gas will be described. A rare gas such as (Xe) gas may be used.
 主に、ガス供給管310,320,330、MFC312,322,332、バルブ314,324,334、ノズル410,420,430により処理ガス供給系が構成されるが、ノズル410,420,430のみを処理ガス供給系と考えてもよい。処理ガス供給系は単にガス供給系と称してもよい。ガス供給管310から原料ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成されるが、ノズル410を原料ガス供給系に含めて考えてもよい。また、ガス供給管320から還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により還元ガス供給系が構成されるが、ノズル420を還元ガス供給系に含めて考えてもよい。また、ガス供給管330から反応ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により反応ガス供給系が構成されるが、ノズル430を反応ガス供給系に含めて考えてもよい。ガス供給管330から反応ガスとして窒素含有ガスを供給する場合、反応ガス供給系を窒素含有ガス供給系と称することもできる。また、主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給系が構成される。 The processing gas supply system is mainly composed of gas supply pipes 310, 320, 330, MFC 312, 322, 332, valves 314, 324, 334, and nozzles 410, 420, 430, but only nozzles 410, 420, 430 are used. It may be considered as a processing gas supply system. The treated gas supply system may be simply referred to as a gas supply system. When the raw material gas flows from the gas supply pipe 310, the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314, but the nozzle 410 may be included in the raw material gas supply system. Further, when the reducing gas flows from the gas supply pipe 320, the reducing gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system. .. Further, when the reaction gas is flowed from the gas supply pipe 330, the reaction gas supply system is mainly composed of the gas supply pipe 330, the MFC 332, and the valve 334, but the nozzle 430 may be included in the reaction gas supply system. .. When a nitrogen-containing gas is supplied as a reaction gas from the gas supply pipe 330, the reaction gas supply system can also be referred to as a nitrogen-containing gas supply system. Further, the inert gas supply system is mainly composed of gas supply pipes 510, 520, 530, MFC 512, 522, 532, and valves 514, 524, 534.
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a及びノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向に向かって原料ガス等を噴出させている。 The method of gas supply in the present embodiment is the nozzles 410, 420, arranged in the spare chamber 201a in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is transported via 430. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions facing the wafers of the nozzles 410, 420, 430. More specifically, the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430 eject the raw material gas or the like in the direction parallel to the surface of the wafer 200.
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間で構成される排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。 The exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, 430 on the side wall of the inner tube 204, and is, for example, a slit-shaped through hole formed elongated in the vertical direction. Is. The gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 and flowing on the surface of the wafer 200 passes through the exhaust holes 204a into the inner tube 204 and the outer tube 203. It flows into the exhaust passage 206 composed of the gaps formed between them. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410a、420a、430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。 The exhaust holes 204a are provided at positions facing the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a to the vicinity of the wafers 200 in the processing chamber 201 flows in the horizontal direction. After that, it flows into the exhaust passage 206 through the exhaust hole 204a. The exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,副生成物の量を測定する副生成物モニタ500、APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。副生成物モニタ500は、プロセスチューブ203と排気管231の接続部である排気口231a近傍に設けられている。副生成物モニタ500として、例えばRGA(Residual Gas Analyzer)が用いられる。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246、副生成物モニタ500を排気系に含めて考えてもよい。なお、RGAには、例えば、IR吸収や、質量分析、NDIR(Nondispersive Infrared分光法)等の原理を用いた測定器を用いることができる。 The manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. In the exhaust pipe 231, in order from the upstream side, a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201, a by-product monitor 500 for measuring the amount of by-products, and an APC (APC). Auto Pressure Controller) valve 243, vacuum pump 246 as a vacuum exhaust device is connected. The by-product monitor 500 is provided in the vicinity of the exhaust port 231a, which is a connection portion between the process tube 203 and the exhaust pipe 231. As the by-product monitor 500, for example, RGA (Residal Gas Analyzer) is used. The APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted. The exhaust system is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245. The vacuum pump 246 and the by-product monitor 500 may be included in the exhaust system. For RGA, for example, a measuring instrument using principles such as IR absorption, mass spectrometry, and NDIR (Nondispersive Infrared spectroscopy) can be used.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。 Below the manifold 209, a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209. The seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219. On the opposite side of the processing chamber 201 in the seal cap 219, a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed. The rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219. The boat elevator 115 is configured as a transport device (convey mechanism) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成される断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。 The boat 217 as a substrate support is configured to arrange a plurality of wafers, for example, 25 to 200 wafers 200, in a horizontal posture and at intervals in the vertical direction while being centered on each other. .. The boat 217 is made of a heat resistant material such as quartz or SiC. At the lower part of the boat 217, a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side. However, this embodiment is not limited to the above-described embodiment. For example, instead of providing the heat insulating plate 218 at the lower part of the boat 217, a heat insulating cylinder formed as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420及び430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。 As shown in FIG. 2, a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263. The temperature in the processing chamber 201 is configured to have a desired temperature distribution. The temperature sensor 263 is L-shaped like the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been done. The RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus. An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored. The process recipes are combined so that the controller 121 can execute each step (each step) in the method for manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, control program, etc. are collectively referred to as a program. When the term program is used in the present specification, it may include only a process recipe alone, a control program alone, or a combination of a process recipe and a control program. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
 I/Oポート121dは、上述のMFC312,322,332,512,522,532、バルブ314,324,334,514,524,534、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、副生成物モニタ500、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d has the above-mentioned MFC 312,322,332,512,522,532, valve 314,324,334,514,524,534, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature. It is connected to a sensor 263, a by-product monitor 500, a rotation mechanism 267, a boat elevator 115, and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532による各種ガスの流量調整動作、バルブ314,324,334,514,524,534の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、副生成物モニタ500による副生物の量の測定動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFC 312, 322, 332, 521, 522, 532, opens and closes the valves 314, 324, 334, 514, 524, 534, and the APC valve so as to follow the contents of the read recipe. Opening and closing operation of 243 and pressure adjustment operation based on pressure sensor 245 by APC valve 243, temperature adjustment operation of heater 207 based on temperature sensor 263, measurement operation of amount of by-products by by-product monitor 500, activation of vacuum pump 246 and operation. It is configured to control the stop, the rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, the raising and lowering operation of the boat 217 by the boat elevator 115, the accommodation operation of the wafer 200 in the boat 217, and the like.
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123. The above-mentioned program can be configured by installing it on a computer. The storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. In the present specification, the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程(成膜工程)
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えばゲート電極を構成する金属膜を形成する工程の一例について、第1の実施形態として図4を用いて説明する。金属膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
(2) Substrate processing process (deposition process)
As one step of the manufacturing process of the semiconductor device (device), an example of a step of forming, for example, a metal film constituting a gate electrode on the wafer 200 will be described with reference to FIG. 4 as a first embodiment. The step of forming the metal film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体」を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面」を意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 When the word "wafer" is used in the present specification, it may mean "wafer itself" or "a laminate of a wafer and a predetermined layer, film, etc. formed on its surface". is there. When the term "wafer surface" is used in the present specification, it may mean "the surface of the wafer itself" or "the surface of a predetermined layer, film, etc. formed on the wafer". is there. The use of the term "board" in the present specification is also synonymous with the use of the term "wafer".
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介してアウタチューブ203の下端開口を閉塞した状態となる。
(Wafer delivery)
When a plurality of wafers 200 are loaded (wafer charged) into the boat 217, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and processed in the processing chamber 201. It is carried in (boat road). In this state, the seal cap 219 is in a state of closing the lower end opening of the outer tube 203 via the O-ring 220.
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
[第1の工程]
(TiCl4ガス供給)
 バルブ314を開き、ガス供給管310内に原料ガスであるTiCl4ガスを流す。TiCl4ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiCl4ガスが供給される。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、TiCl4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430内へのTiCl4ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にN2ガスを流す。N2ガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。
[First step]
(TiCl 4 gas supply)
The valve 314 is opened to allow the TiCl 4 gas, which is a raw material gas, to flow into the gas supply pipe 310. The flow rate of the TiCl 4 gas is adjusted by the MFC 312, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200. At this time, the valve 514 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 510. The flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the SiCl 4 gas from entering the nozzles 420 and 430, the valves 524 and 534 are opened to allow the N 2 gas to flow into the gas supply pipes 520 and 530. The N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC312で制御するTiCl4ガスの供給流量は、例えば0.1~2.0slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~600℃の範囲内の温度となるような温度に設定する。 At this time, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa. The supply flow rate of the SiCl 4 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.1 to 2.0 slm. The supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 20 slm. At this time, the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 300 to 600 ° C.
 このとき処理室201内に流しているガスはTiCl4ガスとN2ガスのみである。TiCl4ガスの供給により、ウエハ200(表面の下地膜)上にTi含有層が形成される。Ti含有層は、Clを含むTi層であってもよいし、TiCl4の吸着層であってもよいし、それらの両方を含んでいてもよい。 At this time, the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas. By supplying TiCl 4 gas, a Ti-containing layer is formed on the wafer 200 (base film on the surface). The Ti-containing layer may be a Ti layer containing Cl, an adsorption layer of TiCl 4 , or both of them.
[第2の工程]
(副生成物量の測定)
 上述の第1の工程における、ウエハ200に対してTiCl4ガスが供給され、排気管231から排気されている間、副生成物モニタ500により排気管231から排気される副生成物であるHClの量が継続して測定される。
[Second step]
(Measurement of by-product amount)
In the first step described above, while the SiCl 4 gas is supplied to the wafer 200 and exhausted from the exhaust pipe 231 of the HCl, which is a by-product discharged from the exhaust pipe 231 by the by-product monitor 500. The amount is continuously measured.
[第3の工程]
(TiCl4ガス供給停止)
 図5(A)及び図5(B)は、本開示の一実施形態における基板処理工程のTiCl4ガスの供給停止動作を説明するための図である。
[Third step]
(TiCl 4 gas supply stopped)
5 (A) and 5 (B) are diagrams for explaining the operation of stopping the supply of TiCl 4 gas in the substrate processing step according to the embodiment of the present disclosure.
 図5(A)及び図5(B)に示されているように、TiCl4ガス供給時の副生成物センサ500により測定されるHCl濃度は、上昇してピーク値P1となってから減衰することが分かっている。また、膜中にHCl等の副生成物が含まれていると、成膜速度が低下し、膜の抵抗率が高くなってしまうことが分かっている。 As shown in FIGS. 5 (A) and 5 (B), the HCl concentration measured by the by-product sensor 500 during the supply of TiCl 4 gas rises to a peak value of P1 and then attenuates. I know that. Further, it is known that when a by-product such as HCl is contained in the film, the film forming rate is lowered and the resistivity of the film is increased.
 本工程では、図5(A)に示すように、コントローラ121は、TiCl4ガス供給時に副生成物モニタ500により測定されるHClの量がピーク値P1から減衰する過程において、予め設定された閾値P2に達した場合に、ガス供給管310のバルブ314を閉じて、TiCl4ガスの供給を停止するように制御する。 In this step, as shown in FIG. 5 (A), the controller 121 has a preset threshold value in the process of decaying the amount of HCl measured by the by-product monitor 500 when supplying TiCl 4 gas from the peak value P1. When P2 is reached, the valve 314 of the gas supply pipe 310 is closed to control the supply of SiCl 4 gas to be stopped.
 また、TiCl4ガス供給時に副生成物モニタ500により測定されるHClの量がピーク値P1から減衰する過程において、予め設定された閾値P2に達しない場合であっても、図5(B)に示すように、コントローラ121は、測定されるHClの量がピーク値P1となってから減衰して閾値P2まで下がる時間が予め設定された一定時間である所定時間T1を超えた場合に、ガス供給管310のバルブ314を閉じて、TiCl4ガスの供給を停止するように制御する。 Further, even if the amount of HCl measured by the by-product monitor 500 during the supply of TiCl 4 gas does not reach the preset threshold value P2 in the process of decaying from the peak value P1, FIG. 5 (B) shows. As shown, the controller 121 supplies gas when the amount of HCl measured reaches the peak value P1 and then decays to the threshold P2 when it exceeds a predetermined time T1 which is a preset constant time. The valve 314 of the pipe 310 is closed and controlled to stop the supply of SiCl 4 gas.
 ここで、所定時間T1は、予め設定された供給時間である。また、所定時間T1は、TiCl4ガスの供給を開始してから測定される副生成物の量がピーク値P1に達するまでの時間の整数倍(N倍)の時間が好ましい。Nは、所望の処理によって適宜設定される。また、Nは2~15の範囲であり、好ましくは10とする。 Here, the predetermined time T1 is a preset supply time. Further, the predetermined time T1 is preferably a time that is an integral multiple (N times) of the time from the start of the supply of the SiCl 4 gas until the amount of the by-product measured reaches the peak value P1. N is appropriately set according to a desired process. Further, N is in the range of 2 to 15, preferably 10.
 また、閾値P2は、測定される副生成物の量のピーク値P1に基づいて設定され、例えば副生成物の量のピーク値P1の半分や3分の1等の任意の値に適宜設定される。 Further, the threshold value P2 is set based on the peak value P1 of the measured amount of by-products, and is appropriately set to an arbitrary value such as half or one-third of the peak value P1 of the amount of by-products. To.
 また、閾値P2は、予めプロセスレシピ毎に設定され、記憶装置121cに記憶される。そして、基板処理工程を行う際に読み出されたレシピに対応する閾値P2が、閾値が設定されたテーブルに基づいて設定される。すなわち、レシピに応じて閾値が設定される。なお、副生成物が膜中に残留したまま処理を実行してもよいレシピの場合には、閾値を高く設定し、副生成物を膜中から除去して処理を実行した方がよいレシピの場合には、閾値を低く設定することができる。 Further, the threshold value P2 is set in advance for each process recipe and stored in the storage device 121c. Then, the threshold value P2 corresponding to the recipe read when performing the substrate processing step is set based on the table in which the threshold value is set. That is, the threshold value is set according to the recipe. In the case of a recipe in which the treatment may be executed with the by-products remaining in the membrane, it is better to set a high threshold value and remove the by-products from the membrane to execute the treatment. In some cases, the threshold can be set low.
 また、閾値P2は、ウエハのチャージ枚数やウエハの表面積等毎に設定される。そして、ウエハのチャージ枚数やウエハの表面積に対応する閾値P2が、それぞれの閾値が設定されたテーブルに基づいて設定される。すなわち、ウエハのチャージ枚数やウエハの表面積等に応じて閾値が設定される。 Further, the threshold value P2 is set for each number of wafers charged, the surface area of the wafer, and the like. Then, the threshold value P2 corresponding to the number of charged wafers and the surface area of the wafer is set based on the table in which each threshold value is set. That is, the threshold value is set according to the number of charged wafers, the surface area of the wafer, and the like.
 つまり、記憶装置121cには、レシピと閾値の関係を示すテーブルや、ウエハのチャージ枚数と閾値の関係を示すテーブルや、ウエハの表面積と閾値の関係を示すテーブル等が記憶されている。 That is, the storage device 121c stores a table showing the relationship between the recipe and the threshold value, a table showing the relationship between the number of charged wafers and the threshold value, a table showing the relationship between the surface area of the wafer and the threshold value, and the like.
[第4の工程]
(残留ガス除去)
 そして、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスやHCl等の反応副生成物を処理室201内から除去する。このときバルブ514,524,534は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスや反応副生成物を処理室201内から除去する効果を高めることができる。
[Fourth step]
(Removal of residual gas)
Then, with the APC valve 243 of the exhaust pipe 231 kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or TiCl 4 gas remaining in the processing chamber 201 contributes to the formation of the Ti-containing layer. Reaction by-products such as and HCl are removed from the processing chamber 201. At this time, the valves 514, 524, 534 are left open to maintain the supply of N 2 gas into the processing chamber 201. The N 2 gas acts as a purge gas, and can enhance the effect of removing the TiCl 4 gas and the reaction by-product remaining in the treatment chamber 201 from the inside of the treatment chamber 201 after contributing to the formation of the unreacted or Ti-containing layer. ..
[第5の工程]
(NH3ガス供給)
 処理室201内の残留ガスを除去した後、バルブ334を開き、ガス供給管330内に、反応ガスとしてNH3ガスを流す。NH3ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、NH3ガスが供給される。このとき同時にバルブ534を開き、ガス供給管530内にN2ガスを流す。ガス供給管530内を流れたN2ガスは、MFC532により流量調整される。N2ガスはNH3ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410,420内へのNH3ガスの侵入を防止するために、バルブ514,524を開き、ガス供給管510,520内にN2ガスを流す。N2ガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。
[Fifth step]
(NH 3 gas supply)
After removing the residual gas in the processing chamber 201, the valve 334 is opened and NH 3 gas is flowed into the gas supply pipe 330 as a reaction gas. The flow rate of the NH 3 gas is adjusted by the MFC 332, is supplied into the processing chamber 201 from the gas supply hole 430a of the nozzle 430, and is exhausted from the exhaust pipe 231. At this time, NH 3 gas is supplied to the wafer 200. At this time, the valve 534 is opened at the same time to allow N 2 gas to flow into the gas supply pipe 530. The flow rate of the N 2 gas flowing through the gas supply pipe 530 is adjusted by the MFC 532. The N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the intrusion of NH 3 gas into the nozzles 410 and 420, the valves 514 and 524 are opened to allow N 2 gas to flow into the gas supply pipes 510 and 520. The N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC332で制御するNH3ガスの供給流量は、例えば0.1~30slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。NH3ガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。このときのヒータ207の温度は、TiCl4ガス供給ステップと同様の温度に設定する。 At this time, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa. The supply flow rate of NH 3 gas controlled by the MFC 332 is, for example, a flow rate within the range of 0.1 to 30 slm. The supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 30 slm. The time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds. The temperature of the heater 207 at this time is set to the same temperature as that of the SiCl 4 gas supply step.
 このとき処理室201内に流しているガスは、NH3ガスとN2ガスのみである。NH3ガスは、第1の工程でウエハ200上に形成されたTi含有層の少なくとも一部と置換反応する。置換反応の際には、Ti含有層に含まれるTiとNH3ガスに含まれるNとが結合して、ウエハ200上にTiN層が形成される。 At this time, the only gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas. The NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the first step. At the time of the substitution reaction, Ti contained in the Ti-containing layer and N contained in the NH 3 gas are combined to form a TiN layer on the wafer 200.
[第6の工程]
(副生成物量の測定)
 上述の第5の工程における、ウエハ200に対してNH3ガスが供給され、排気管231から排気されている間、副生成物モニタ500により排気管231から排気される副生成物であるHClの量が継続して測定される。
[Sixth step]
(Measurement of by-product amount)
In the fifth step described above, while NH 3 gas is supplied to the wafer 200 and exhausted from the exhaust pipe 231 of the HCl, which is a by-product exhausted from the exhaust pipe 231 by the by-product monitor 500. The amount is continuously measured.
[第7の工程]
(NH3ガス供給停止)
 そして、上述した第3の工程と同様に、コントローラ121は、副生成物モニタ500により測定される副生成物の量がピーク値P1から減衰する過程において、予め設定された閾値P2に達した場合に、ガス供給管330のバルブ334を閉じて、NH3ガスの供給を停止するように制御する。
[7th step]
(NH 3 gas supply stopped)
Then, as in the third step described above, when the controller 121 reaches the preset threshold value P2 in the process of attenuating the amount of the by-product measured by the by-product monitor 500 from the peak value P1. In addition, the valve 334 of the gas supply pipe 330 is closed to control the supply of NH 3 gas.
 また、上述した第3の工程と同様に、副生成物モニタ500により測定される副生成物の量がピーク値P1から減衰する過程において、予め設定された閾値P2に達しない場合であっても、コントローラ121は、測定される副生成物の量がピーク値P1となってから減衰して閾値P2まで下がる時間が予め設定された一定時間である所定時間T1を超えた場合に、ガス供給管330のバルブ334を閉じて、NH3ガスの供給を停止するように制御する。 Further, as in the third step described above, even when the amount of the by-product measured by the by-product monitor 500 does not reach the preset threshold value P2 in the process of decaying from the peak value P1. When the amount of by-products measured reaches the peak value P1 and then decays to the threshold value P2 exceeds a predetermined time T1 which is a preset fixed time, the controller 121 is a gas supply pipe. The valve 334 of 330 is closed and controlled to stop the supply of NH 3 gas.
[第8の工程]
(残留ガス除去)
 そして、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTiN層形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。このときバルブ514,524,534は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTiN層形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する効果を高めることができる。
[8th step]
(Removal of residual gas)
Then, while the APC valve 243 of the exhaust pipe 231 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the NH 3 gas remaining in the processing chamber 201 or after contributing to the formation of the TiN layer is generated. Reaction by-products are removed from the processing chamber 201. At this time, the valves 514, 524, 534 are left open to maintain the supply of N 2 gas into the processing chamber 201. N 2 gas acts as a purge gas, it is possible to enhance the effect of removing the NH 3 gas and reaction by-products after contributing to not react or TiN layer formed remaining in the process chamber 201 from the process chamber 201.
(所定回数実施)
 上記した第1の工程~第8の工程を順に行うサイクルを1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さのTiN膜を形成する。上述のサイクルは、複数回繰り返すのが好ましい。
(Implemented a predetermined number of times)
A TiN film having a predetermined thickness is formed on the wafer 200 by performing the cycle of sequentially performing the first step to the eighth step described above one or more times (predetermined number of times (n times)). The above cycle is preferably repeated a plurality of times.
 このようなウエハ200上にTiN膜が形成される様子を図6及び図7に示す。図6(A)は、NH3ガス供給による暴露前のTi含有層が形成されたウエハ200表面の様子を示すモデル図であり、図6(B)は、NH3ガス供給による暴露後のウエハ200表面の様子を示すモデル図である。また、図7(A)は、TiCl4ガス供給による暴露前のTiN層が形成されたウエハ200表面の様子を示すモデル図であり、図7(B)は、TiCl4ガス供給による暴露後のウエハ200表面の様子を示すモデル図である。 6 and 7 show how a TiN film is formed on such a wafer 200. FIG. 6A is a model diagram showing the state of the surface of the wafer 200 on which the Ti-containing layer is formed before exposure by NH 3 gas supply, and FIG. 6B is a wafer after exposure by NH 3 gas supply. It is a model figure which shows the state of the surface of 200. Further, FIG. 7 (A) is a model diagram showing the state of the surface of the wafer 200 on which the TiN layer was formed before exposure by the SiCl 4 gas supply, and FIG. 7 (B) is a model diagram after exposure by the SiCl 4 gas supply. It is a model figure which shows the state of the surface of the wafer 200.
 図6(A)に示すように、Ti含有層が形成されたウエハ200表面に、NH3ガスが供給されると、図6(B)に示すように、ウエハ200表面にTiN層が形成され、HCl、塩化アンモニウム(NH4Cl)等の反応副生成物が生成される。 When NH 3 gas is supplied to the surface of the wafer 200 on which the Ti-containing layer is formed as shown in FIG. 6 (A), a TiN layer is formed on the surface of the wafer 200 as shown in FIG. 6 (B). , HCl, ammonium chloride (NH 4 Cl) and other reaction by-products are produced.
 そして、図7(A)に示すように、TiN層が形成されたウエハ200表面に、TiCl4ガスが供給されると、図7(B)に示すように、ウエハ200表面にTiN層が積層され、HCl、Cl2等の反応副生成物が生成される。 Then, as shown in FIG. 7 (A), when the SiCl 4 gas is supplied to the surface of the wafer 200 on which the TiN layer is formed, the TiN layer is laminated on the surface of the wafer 200 as shown in FIG. 7 (B). Then, reaction by-products such as HCl and Cl 2 are produced.
 Ti含有層又はTiN層中にHCl等の副生成物が含まれていると、成膜速度が低下し、膜の抵抗率が高くなってしまうことが分かっている。 It is known that if a by-product such as HCl is contained in the Ti-containing layer or the TiN layer, the film forming rate decreases and the resistivity of the film increases.
 図8は、TiCl4ガスとNH3ガスのそれぞれに故意にHClを微量に添加して供給した場合のTiN膜の成長速度と、HClを添加しないで供給した場合のTiN膜の成膜速度とを比較して示した図である。図8に示されているように、TiCl4ガスを供給する際にHClを添加することにより、成膜速度が25%程度低下してしまうことが確認されている。また、NH3ガスを供給する際にHClを添加することにより、成膜速度が15%程度低下してしまうことが確認されている。 FIG. 8 shows the growth rate of the TiN film when a small amount of HCl was intentionally added to each of the TiCl 4 gas and the NH 3 gas, and the film formation rate of the TiN film when the solution was supplied without the addition of HCl. It is a figure which compared and showed. As shown in FIG. 8, it has been confirmed that the film formation rate is reduced by about 25% by adding HCl when supplying the SiCl 4 gas. It has also been confirmed that the film formation rate is reduced by about 15% by adding HCl when supplying NH 3 gas.
 つまり、反応副生成物であるHClは、TiN層の成膜速度を妨げる作用がある。よって、HCl等の副生成物をTi含有層やTiN層から脱離させるために副生物モニタ500を用いて処理ガス供給時の副生成物の量を測定し、副生成物の量が減衰して閾値以下になった時、又は測定される副生成物の量が減衰して閾値まで下がる時間が所定時間を超えた時を、膜中からHCl等の副生成物が脱離されたものとしてTiCl4ガスやNH3ガスの供給を停止する。 That is, HCl, which is a reaction by-product, has an effect of hindering the film formation rate of the TiN layer. Therefore, in order to desorb by-products such as HCl from the Ti-containing layer and TiN layer, the amount of by-products at the time of supplying the processing gas is measured using the by-product monitor 500, and the amount of by-products is attenuated. When the amount of by-products measured falls below the threshold, or when the time required for the measured amount of by-products to decrease to the threshold exceeds a predetermined time, it is assumed that by-products such as HCl have been eliminated from the membrane. Stop the supply of NaCl 4 gas and NH 3 gas.
 つまり、コントローラ121は、原料ガスや反応ガス等の処理ガスを供給する際に、ウエハ200表面で生成される副生成物の量を測定しながら処理ガスを供給し(成膜を行い)、副生成物が減衰する過程において閾値に達した時又は測定される副生成物の量が減衰して閾値まで下がる時間が所定時間を超えた時に処理ガスの供給が停止されるように制御する。 That is, when the controller 121 supplies a processing gas such as a raw material gas or a reaction gas, the controller 121 supplies the processing gas (performs film formation) while measuring the amount of by-products generated on the surface of the wafer 200, and subordinates. The supply of the processing gas is controlled to be stopped when the threshold value is reached in the process of product attenuation or when the measured amount of by-product decays and falls to the threshold value exceeds a predetermined time.
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(After purging and returning to atmospheric pressure)
N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and exhausted from the exhaust pipe 231. The N 2 gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge). After that, the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(Wafer unloading)
After that, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the reaction tube 203. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
 なお、副生物モニタ500の設定は、新たにレシピが開始されるタイミング、又はチャージ枚数等が変更されたタイミングでリセットされる。 The setting of the by-product monitor 500 is reset when a new recipe is started or when the number of charged sheets is changed.
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)処理ガスの供給時間を必要以上に長くすることなく、膜中に含まれる副生成物の量を特性上問題無いレベルまで下げることができる。
(b)成膜中に発生し、成膜速度を低下させるHClを効率よく排出でき、成膜速度を上げることができる。
(c)抵抗率を低くすることができる。
(d)処理ガスの供給時間と成膜速度を監視しながら、処理ガスの供給時間を決定する場合と比較して、実験データを少なくすることができる。具体的には、処理ガスの供給時間と成膜速度を監視しながら、処理ガスの供給時間を決定する場合には、ウエハの表面積やチャージ枚数に応じた実験データが必要となるが、本実施形態によれば、実験データを必要としない。
(e)また、HCl発生量が多い条件で処理ガスの供給を停止すると、膜中Cl含有量が多くなり、抵抗値が高くなる課題があるが、本実施形態のように、予め設定された閾値を下回ってから処理ガスの供給を停止することで、表面積やチャージ枚数によらず、安定した膜質を得ることができる。
(f)また、閾値を任意に設定することにより異なる膜質を得ることができ、用途に応じて閾値を設定することが可能である。
(3) Effects of the present embodiment According to the present embodiment, one or more of the following effects can be obtained.
(A) The amount of by-products contained in the membrane can be reduced to a level at which there is no problem in terms of characteristics without lengthening the supply time of the processing gas more than necessary.
(B) HCl that is generated during film formation and reduces the film formation rate can be efficiently discharged, and the film formation rate can be increased.
(C) The resistivity can be lowered.
(D) The amount of experimental data can be reduced as compared with the case where the supply time of the processing gas is determined while monitoring the supply time of the processing gas and the film formation rate. Specifically, when determining the processing gas supply time while monitoring the processing gas supply time and the film formation rate, experimental data according to the surface area of the wafer and the number of charged sheets is required. According to the form, no experimental data is required.
(E) Further, if the supply of the processing gas is stopped under the condition that the amount of HCl generated is large, there is a problem that the Cl content in the membrane becomes large and the resistance value becomes high, but it is set in advance as in the present embodiment. By stopping the supply of the processing gas after the value falls below the threshold value, stable film quality can be obtained regardless of the surface area and the number of charged sheets.
(F) Further, different film qualities can be obtained by arbitrarily setting the threshold value, and the threshold value can be set according to the application.
<第2の実施形態>
 次に、本開示の第2の実施形態について説明する。
<Second embodiment>
Next, a second embodiment of the present disclosure will be described.
 本開示の第2の実施形態は、上述した第1の実施形態における基板処理装置10の処理炉202を用いて実行される。本開示の第2の実施形態は、上述した実施形態の基板処理工程と成膜工程のみ異なるため、成膜工程のみを図9を用いて説明する。 The second embodiment of the present disclosure is executed using the processing furnace 202 of the substrate processing apparatus 10 in the first embodiment described above. Since the second embodiment of the present disclosure differs only from the substrate processing step and the film forming step of the above-described embodiment, only the film forming process will be described with reference to FIG.
(1)成膜工程
[第1の工程]
(TiCl4ガス供給)
 上述した第1の工程におけるTiCl4ガス供給ステップと同様の処理手順により、TiCl4ガスを処理室201内に供給する。このとき処理室201内に流しているガスはTiCl4ガスとN2ガスのみであり、TiCl4ガスの供給により、ウエハ200(表面の下地膜)上にTi含有層が形成される。
(1) Film formation process [first process]
(TiCl 4 gas supply)
The first similar procedure as TiCl 4 gas supply step in the process described above, supplies TiCl 4 gas into the process chamber 201. At this time, the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas, and the supply of the TiCl 4 gas forms a Ti-containing layer on the wafer 200 (undercoat film on the surface).
[第2の工程]
(副生成物量の測定)
 上述した第2の工程と同様の処理手順により、副生成物の量が継続して測定される。
[Second step]
(Measurement of by-product amount)
The amount of by-products is continuously measured by the same treatment procedure as in the second step described above.
[第3の工程]
(TiCl4ガス供給停止)
 そして、上述した第3の工程と同様の処理手順により、コントローラ121は、ガス供給管310のバルブ314を閉じて、TiCl4ガスの供給を停止するように制御する。
[Third step]
(TiCl 4 gas supply stopped)
Then, according to the same processing procedure as in the third step described above, the controller 121 controls to close the valve 314 of the gas supply pipe 310 and stop the supply of TiCl 4 gas.
[第4の工程]
(残留ガス除去)
 そして、上述した第4の工程と同様の処理手順により、処理室201内に残留する未反応もしくはTi含有層の形成に寄与した後のTiCl4ガスや反応副生成物を処理室201内から排除する。
[Fourth step]
(Removal of residual gas)
Then, by the same treatment procedure as in the fourth step described above, the TiCl 4 gas and the reaction by-products remaining in the treatment chamber 201 after contributing to the formation of the unreacted or Ti-containing layer are removed from the treatment chamber 201. To do.
[第4の1の工程]
(SiH4ガス供給)
 処理室201内の残留ガスを除去した後、バルブ324を開き、ガス供給管320内に還元ガスであるSiH4ガスを流す。SiH4ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、SiH4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410,430内へのSiH4ガスの侵入を防止するために、バルブ514,534を開き、ガス供給管510,530内にN2ガスを流す。N2ガスは、ガス供給管310,330、ノズル410,430を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してSiH4ガスとN2ガスが同時に供給されることとなる。
[Fourth step 1]
(SiH 4 gas supply)
After removing the residual gas in the processing chamber 201, the valve 324 is opened and SiH 4 gas, which is a reducing gas, flows into the gas supply pipe 320. The flow rate of SiH 4 gas is adjusted by MFC322, is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420, and is exhausted from the exhaust pipe 231. At this time, the valve 524 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 520. The flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, is supplied into the processing chamber 201 together with the SiH 4 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the SiH 4 gas from entering the nozzles 410 and 430, the valves 514 and 534 are opened to allow the N 2 gas to flow into the gas supply pipes 510 and 530. The N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 330 and the nozzles 410 and 430, and is exhausted from the exhaust pipe 231. At this time, SiH 4 gas and N 2 gas are simultaneously supplied to the wafer 200.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば130~3990Pa、好ましくは500~2660Pa、より好ましくは900~1500Paの範囲内の圧力とする。処理室201内の圧力が130Paより低いと、SiH4ガスに含まれるSiがTi含有層に進入し、成膜されるTiN膜に含まれる膜中のSi含有率が高くなってTiSiN膜となってしまう可能性がある。処理室201内の圧力が3990Paより高い場合も同様に、SiH4ガスに含まれるSiがTi含有層に進入し、成膜されるTiN膜に含まれる膜中のSi含有率が高くなってTiSiN膜となってしまう可能性がある。このように、処理室201内の圧力は低すぎても高すぎても、成膜される膜の元素組成が変化してしまう。MFC322で制御するSiH4ガスの供給流量は、例えば0.1~5slm、好ましくは0.5~3slm、より好ましくは1~2slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.01~20slm、好ましくは0.1~10slm、より好ましくは0.1~1slmの範囲内の流量とする。このときヒータ207の温度は、TiCl4ガス供給ステップと同様の温度に設定する。 At this time, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, 130 to 3990 Pa, preferably 500 to 2660 Pa, and more preferably 900 to 1500 Pa. When the pressure in the processing chamber 201 is lower than 130 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film increases to form a TiSiN film. There is a possibility that it will end up. Similarly, when the pressure in the processing chamber 201 is higher than 3990 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film becomes high, and TiSiN It may become a film. As described above, if the pressure in the processing chamber 201 is too low or too high, the elemental composition of the film to be formed changes. The supply flow rate of the SiH 4 gas controlled by the MFC 322 is, for example, a flow rate within the range of 0.1 to 5 slm, preferably 0.5 to 3 slm, and more preferably 1 to 2 slm. The supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm. At this time, the temperature of the heater 207 is set to the same temperature as that of the SiCl 4 gas supply step.
 このとき処理室201内に流しているガスは、SiH4ガスとN2ガスのみである。SiH4ガスの供給により、HClがSiH4と反応し、SiCl4とH2として処理室201から排出される。 At this time, the only gases flowing in the processing chamber 201 are SiH 4 gas and N 2 gas. By supplying the SiH 4 gas, HCl reacts with SiH 4 and is discharged from the processing chamber 201 as SiCl 4 and H 2 .
[第4の2の工程]
(副生成物量の測定)
 上述の第4の1の工程における、ウエハ200に対してSiH4ガスが供給され、排気管231から排気されている間、副生成物モニタ500により排気管231から排気される副生成物の量が継続して測定される。
[Fourth step 2]
(Measurement of by-product amount)
The amount of by-products exhausted from the exhaust pipe 231 by the by-product monitor 500 while the SiH 4 gas is supplied to the wafer 200 and exhausted from the exhaust pipe 231 in the fourth step 1 described above. Is continuously measured.
[第4の3の工程]
(SiH4ガス供給停止)
 そして、上述した第3の工程と同様に、コントローラ121は、副生成物モニタ500により測定される副生成物の量がピーク値P1から減衰する過程において、予め設定された閾値P2に達した場合に、ガス供給管320のバルブ324を閉じて、SiH4ガスの供給を停止するように制御する。
[Fourth and third steps]
(SiH 4 gas supply stopped)
Then, as in the third step described above, when the controller 121 reaches the preset threshold value P2 in the process of attenuating the amount of the by-product measured by the by-product monitor 500 from the peak value P1. In addition, the valve 324 of the gas supply pipe 320 is closed to control the supply of SiH 4 gas to be stopped.
 また、上述した第3の工程と同様に、副生成物モニタ500により測定される副生成物の量がピーク値P1から減衰する過程において、予め設定された閾値P2に達しない場合であっても、コントローラ121は、測定される副生成物の量がピーク値P1となってから減衰して閾値P2まで下がる時間が予め設定された一定時間である所定時間T1を超えた場合に、ガス供給管320のバルブ324を閉じて、SiH4ガスの供給を停止するように制御する。 Further, as in the third step described above, even when the amount of the by-product measured by the by-product monitor 500 does not reach the preset threshold value P2 in the process of decaying from the peak value P1. When the amount of by-products measured reaches the peak value P1 and then decays to the threshold value P2 exceeds a predetermined time T1 which is a preset fixed time, the controller 121 is a gas supply pipe. The valve 324 of 320 is closed and controlled to stop the supply of SiH 4 gas.
[第4の4の工程]
(残留ガス除去)
 そして、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のSiH4ガスや反応副生成物を処理室201内から除去する。このときバルブ514,524,534は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のSiH4ガスや反応副生成物を処理室201内から除去する効果を高めることができる。
[Fourth step 4]
(Removal of residual gas)
Then, with the APC valve 243 of the exhaust pipe 231 kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or Ti-containing layer remaining in the processing chamber 201 is contributed to the formation of the SiH 4 gas. And reaction by-products are removed from the processing chamber 201. At this time, the valves 514, 524, 534 are left open to maintain the supply of N 2 gas into the processing chamber 201. N 2 gas acts as a purge gas, it is possible to enhance the effect of removing the SiH 4 gas and reaction by-products after contributing to not react or Ti-containing layer formed remaining in the process chamber 201 from the process chamber 201 ..
[第5の工程]
(NH3ガス供給)
 上述した第5の工程におけるNH3ガス供給ステップと同様の処理手順により、NH3ガスを処理室201内に供給する。このとき処理室201内に流しているガスはNH3ガスとN2ガスのみであり、NH3ガスの供給により、ウエハ200(表面の下地膜)上にTiN層が形成される。
[Fifth step]
(NH 3 gas supply)
By the fifth similar procedure as NH 3 gas supply step in the process described above, supplying NH 3 gas into the processing chamber 201. At this time, the only gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas, and the supply of NH 3 gas forms a TiN layer on the wafer 200 (base film on the surface).
[第6の工程]
(副生成物量の測定)
 上述した第6の工程と同様の処理手順により、副生成物の量が継続して測定される。
[Sixth step]
(Measurement of by-product amount)
The amount of by-products is continuously measured by the same treatment procedure as in the sixth step described above.
[第7の工程]
(NH3ガス供給停止)
 そして、上述した第7の工程と同様の処理手順により、ガス供給管330のバルブ334を閉じて、NH3ガスの供給を停止するように制御する。
[7th step]
(NH 3 gas supply stopped)
Then, by the same processing procedure as in the seventh step described above, the valve 334 of the gas supply pipe 330 is closed and the NH 3 gas supply is controlled to be stopped.
[第8の工程]
(残留ガス除去)
 そして、上述した第8の工程と同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。
[8th step]
(Removal of residual gas)
Then, by the same treatment procedure as in the eighth step described above, NH 3 gas and reaction by-products remaining in the treatment chamber 201 after contributing to the formation of the unreacted or TiN layer are removed from the treatment chamber 201. ..
(所定回数実施)
 上記した第1~第4の工程、第4の1の工程、第4の2の工程、第4の3の工程、第4の4の工程、第5~第8の工程を順に行うサイクルを1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さのTiN膜を形成する。上述のサイクルは、複数回繰り返すのが好ましい。
(Implemented a predetermined number of times)
A cycle in which the above-mentioned 1st to 4th steps, 4th 1st step, 4th 2nd step, 4th 3rd step, 4th 4th step, and 5th to 8th step are performed in order is performed. By performing this once or more (predetermined number of times (n times)), a TiN film having a predetermined thickness is formed on the wafer 200. The above cycle is preferably repeated a plurality of times.
 なお、図9では、TiCl4ガスの供給と、SiH4ガスの供給とを、第4の工程(残留ガス除去工程)を挟んで行わせる例を示したが、これに限らず、TiCl4ガスの供給中に、SiH4ガスの供給を開始させ、TiCl4ガスの供給停止後に、SiH4ガスの供給を停止する様にガス供給シーケンスを構成しても良い。言い換えると、TiCl4ガスの供給と、SiH4ガスの供給とが、一部重なる様に構成する。この様に構成すると、TiCl4ガス供給中に発生するHClと、SiH4ガスとを反応させることで、SiCl4を生成し、HClの除去効率を向上させることが可能となる。 In FIG. 9, the supply of the TiCl 4 gas, and the supply of the SiH 4 gas, an example to perform across the fourth step (residual gas removing step) is not limited to this, the TiCl 4 gas of in the feed, to initiate the supply of the SiH 4 gas, after stop of the supply of the TiCl 4 gas, may constitute a gas supply sequence so as to stop the supply of the SiH 4 gas. In other words, the supply of TiCl 4 gas and the supply of SiH 4 gas are configured to partially overlap. When configured in this manner, and HCl generated during the TiCl 4 gas supply, by the reaction of SiH 4 gas to generate SiCl 4, it is possible to improve the removal efficiency of HCl.
 この供給シーケンスの場合、上述した第2の工程と同様の処理手順により、副生成物の量が継続して測定され、上述した第3の工程と同様の処理手順によりTiCl4ガスの供給が停止される。 In the case of this supply sequence, the amount of by-products is continuously measured by the same treatment procedure as in the second step described above, and the supply of TiCl 4 gas is stopped by the same treatment procedure as in the third step described above. Will be done.
 次に、第4の2の工程では、SiCl4の濃度を上述した第2の工程と同様の処理手順により、副生成物の量が継続して測定され、その後、第4の3の工程と同様の処理手順により、SiH4ガスの供給を停止する。 Next, in the fourth step, the concentration of SiCl 4 is continuously measured by the same treatment procedure as in the second step described above, and then the amount of by-products is continuously measured, and then the fourth step and the third step. The supply of SiH 4 gas is stopped by the same processing procedure.
(2)第2の実施形態による効果
 本実施形態によれば、上述した実施形態による効果と同様の効果に加えて、TiCl4ガス供給後に発生したHClをSiH4と反応させ、反応管外へ排出させることができる。
(2) Effect of Second Embodiment According to this embodiment, in addition to the same effect as that of the above-described embodiment, HCl generated after the supply of TiCl 4 gas is reacted with SiH 4 to the outside of the reaction tube. It can be discharged.
 以下に実験例を説明するが、本開示はこれらの実験例により限定されるものではない。 Experimental examples will be described below, but the present disclosure is not limited to these experimental examples.
<実験例>
 図10は、表面積の異なるウエハ200に対して、TiCl4ガスを供給した際の、TiCl4ガス供給時間とHCl濃度の関係を示す図である。
<Experimental example>
FIG. 10 is a diagram showing the relationship between the SiCl 4 gas supply time and the HCl concentration when the SiCl 4 gas is supplied to the wafers 200 having different surface areas.
 本実験例では、上述した基板処理装置10と図4に示す基板処理工程を用いて、表面積S1のウエハW1と表面積S2のウエハW2のウエハ200上に、それぞれTiN膜を形成した。ここでS1<S2とする。 In this experimental example, a TiN film was formed on the wafer W1 having the surface area S1 and the wafer W2 having the surface area S2, respectively, by using the substrate processing apparatus 10 described above and the substrate processing step shown in FIG. Here, S1 <S2.
 図10に示されているように、ウエハW1の成膜処理では、TiCl4ガス供給を開始してからt1秒後にピーク値P1-1から減衰して閾値P2に達している。また、ウエハW2の成膜処理では、TiCl4ガス供給を開始してからt2秒後にピーク値P1-2から減衰して閾値P2に達している。つまり、表面積によって副生成物の量のピーク値P1が異なり、表面積の大きいウエハW2の方が、表面積の小さいウエハW1よりも閾値に達するまでの時間が長いことが確認された。つまり、表面積の大きいウエハW2の方が、表面積の小さいウエハW1よりも膜中のHClの量が閾値に達するまでに時間を要し、HClを脱離させるために時間を要することが確認された。 As shown in FIG. 10, in the film forming process of the wafer W1, the peak value P1-1 is attenuated and the threshold value P2 is reached 1 second after the TiCl 4 gas supply is started. Further, in the film forming process of the wafer W2, the peak value P1-2 is attenuated and reaches the threshold value P2 2 seconds after the start of the SiCl 4 gas supply. That is, it was confirmed that the peak value P1 of the amount of by-products differs depending on the surface area, and that the wafer W2 having a large surface area takes longer to reach the threshold value than the wafer W1 having a small surface area. That is, it was confirmed that the wafer W2 having a large surface area requires more time for the amount of HCl in the film to reach the threshold value than the wafer W1 having a small surface area, and it takes more time to desorb HCl. ..
 したがって、ウエハの表面積が異なる場合であっても、処理ガス供給時のHClの量を測定して処理ガスの供給を停止することにより、HCl濃度の低い膜を形成することが可能となることが確認された。 Therefore, even if the surface areas of the wafers are different, it is possible to form a film having a low HCl concentration by measuring the amount of HCl at the time of supplying the processing gas and stopping the supply of the processing gas. confirmed.
<変形例>
 なお、上記実施形態では、原料ガス及び反応ガスの供給をそれぞれ開始してから副生成物の量を測定して、副生成物の量が減衰して閾値に達した場合、又は測定される副生成物の量がピーク値となってから減衰して閾値まで下がる時間が予め設定された一定時間である所定時間を超えた場合に原料ガス及び反応ガスの供給を停止する場合について説明したが、これに限定されるものではない。原料ガス又は反応ガスの供給を開始してから副生成物の量を測定して、副生成物の量が減衰して閾値に達した場合、又は測定される副生成物の量がピーク値となってから減衰して閾値まで下がる時間が予め設定された一定時間である所定時間を超えた場合に原料ガス又は反応ガスの供給を停止する場合でも同様に本開示を適用可能である。
<Modification example>
In the above embodiment, the amount of the by-product is measured after the supply of the raw material gas and the reaction gas is started, respectively, and when the amount of the by-product is attenuated and reaches the threshold value, or the sub is measured. The case where the supply of the raw material gas and the reaction gas is stopped when the time for the amount of the product to decay after reaching the peak value and to decrease to the threshold value exceeds a predetermined time, which is a preset fixed time, has been described. It is not limited to this. When the amount of by-product is measured after the supply of the raw material gas or reaction gas is started and the amount of by-product decays and reaches the threshold value, or the amount of by-product measured is the peak value. Similarly, the present disclosure can be applied even when the supply of the raw material gas or the reaction gas is stopped when the time for decaying and falling to the threshold value exceeds a predetermined time, which is a preset fixed time.
 また、上記実施形態では、処理ガスの供給を開始してから処理ガスの供給を停止するまでのガス供給時間を1サイクル毎に設定した場合を用いて説明したが、本開示はこれに限定されるものではなく、複数サイクル毎に設定してもよいし、所定サイクル期間としてもよい。 Further, in the above embodiment, the case where the gas supply time from the start of the supply of the processing gas to the stop of the supply of the processing gas is set for each cycle has been described, but the present disclosure is limited to this. It may be set every plurality of cycles, or may be set as a predetermined cycle period.
 具体的には、例えば1サイクル目に第1の工程から第3の工程を行って、第1の工程の処理ガスの供給を開始してから第3の工程の処理ガスの供給を停止するまでの時間をガス供給時間として設定し、設定されたガス供給時間を用いて第2サイクル目以降の複数サイクルを行ってもよい。 Specifically, for example, from the first step to the third step in the first cycle, from the start of the supply of the processing gas in the first step to the stop of the supply of the processing gas in the third step. Time may be set as the gas supply time, and a plurality of cycles after the second cycle may be performed using the set gas supply time.
 ここで、複数サイクルを行う場合であって、サイクル毎に生成される副生成物の量が変化する場合がある。図11は、成膜処理時間とNH3ガス供給時に排出されるHCl濃度との関係を示す図である。図11に示すように、NH3ガス供給時に排出されるHClは、サイクル数が増える毎に減少していることが分かる。このように、サイクル毎に生成される副生成物の量が変化するレシピを用いる場合には、予めサイクル毎の副生成物の変化量を記憶装置121cに記憶し、記憶装置121cから読み出されたレシピに対応するサイクル毎のガス供給時間を用いるようにしてもよい。 Here, when a plurality of cycles are performed, the amount of by-products produced may change for each cycle. FIG. 11 is a diagram showing the relationship between the film formation processing time and the concentration of HCl discharged when NH 3 gas is supplied. As shown in FIG. 11, it can be seen that the HCl discharged when NH 3 gas is supplied decreases as the number of cycles increases. In this way, when using a recipe in which the amount of by-products produced in each cycle changes, the amount of change in by-products in each cycle is stored in the storage device 121c in advance and read from the storage device 121c. The gas supply time for each cycle corresponding to the recipe may be used.
 なお、上記実施形態では、TiN膜を形成する過程で生成されるHClの量を測定する場合を用いて説明したが、本開示はこれに限定されるものではなく、ヘキサクロロジシラン(Si2Cl6)ガスとNH3ガスを用いてSiN膜を形成する過程で生成されるHClの量を測定する場合にも適用可能である。 In the above embodiment, the case of measuring the amount of HCl produced in the process of forming the TiN film has been described, but the present disclosure is not limited to this, and hexachlorodisilane (Si 2 Cl 6). It is also applicable when measuring the amount of HCl produced in the process of forming a SiN film using gas and NH 3 gas.
 また、上記実施形態では、副生成物としてHClの量を測定する場合を用いて説明したが、本開示はこれに限定されるものではなく、例えば酸化ジルコニウム(ZrO)膜、酸化ハフニウム(HfO)膜、アミンリガンドを含む原料とオゾン(O3)を用いて形成されるシリコン酸化(SiO)膜等を形成する過程で生成される二酸化炭素(CO2)の量を測定する場合等の、一方のガスの反応を阻害するガスの量を測定する場合に適用可能である。 Further, in the above embodiment, the case where the amount of HCl is measured as a by-product has been described, but the present disclosure is not limited to this, for example, a zirconium oxide (ZrO) film, hafnium oxide (HfO). On the other hand, when measuring the amount of carbon dioxide (CO 2 ) produced in the process of forming a film, a silicon oxide (SiO) film formed by using a raw material containing an amine ligand and ozone (O 3 ), etc. It is applicable when measuring the amount of gas that inhibits the reaction of gas.
 また、上記実施形態では、副生成物の量を測定して、副生成物の量が減衰して閾値に達した場合、又は測定される副生成物の量がピーク値となってから減衰して閾値まで下がる時間が予め設定された一定時間である所定時間を超えた場合に処理ガスの供給を停止する場合を用いて説明したが、本開示はこれに限定されず、測定される副生成物の量に応じてガス供給流量、処理室内温度又は処理室内圧力を制御するようにしてもよい。 Further, in the above embodiment, the amount of the by-product is measured, and when the amount of the by-product decreases and reaches the threshold value, or when the measured amount of the by-product reaches the peak value and then decreases. Although the case where the supply of the processing gas is stopped when the time for lowering to the threshold value exceeds a predetermined time, which is a preset fixed time, the present disclosure is not limited to this, and the measured by-production is not limited to this. The gas supply flow rate, the treatment chamber temperature, or the treatment chamber pressure may be controlled according to the amount of the substance.
 なお、本開示では、副生成物の絶対量に基づいて、上述の制御を行っても良いが、好ましくは、相対量に基づいて制御が行われる。また、原料ガスと副生成物の濃度比を測定する様に構成しても良いが、濃度比を測定する必要は必須では無い。 In the present disclosure, the above-mentioned control may be performed based on the absolute amount of by-products, but the control is preferably performed based on the relative amount. Further, it may be configured to measure the concentration ratio of the raw material gas and the by-product, but it is not essential to measure the concentration ratio.
 また、上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本開示はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する例について説明したが、本開示はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。これらの場合においても、処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。 Further, in the above-described embodiment, an example of forming a film using a substrate processing apparatus which is a batch type vertical apparatus for processing a plurality of substrates at one time has been described, but the present disclosure is not limited to this. It can also be suitably applied to the case of forming a film using a single-wafer type substrate processing apparatus that processes one or several substrates at a time. Further, in the above-described embodiment, an example of forming a thin film by using a substrate processing apparatus having a hot wall type processing furnace has been described, but the present disclosure is not limited to this, and the present disclosure includes a cold wall type processing furnace. It can also be suitably applied to the case of forming a thin film using a substrate processing apparatus. Even in these cases, the processing conditions can be, for example, the same processing conditions as those in the above-described embodiment.
 例えば、図12(A)に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内にガスをシャワー状に供給するシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレット(ガス導入口)には、上述の原料ガスを供給するガス供給ポート332aと、上述の反応ガスを供給するガス供給ポート332bと、が接続されている。ガス供給ポート332aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート332bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。シャワーヘッド303sのアウトレット(ガス排出口)には、処理室301内にガスをシャワー状に供給するガス分散板が設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。 For example, the present disclosure can be suitably applied to the case where a film is formed by using a substrate processing apparatus provided with the processing furnace 302 shown in FIG. 12 (A). The processing furnace 302 includes a processing container 303 forming the processing chamber 301, a shower head 303s that supplies gas into the processing chamber 301 in a shower shape, and a support base 317 that supports one or several wafers 200 in a horizontal posture. A rotating shaft 355 that supports the support base 317 from below, and a heater 307 provided on the support base 317 are provided. A gas supply port 332a for supplying the above-mentioned raw material gas and a gas supply port 332b for supplying the above-mentioned reaction gas are connected to an inlet (gas introduction port) of the shower head 303s. A raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 332a. A reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 332b. The outlet (gas discharge port) of the shower head 303s is provided with a gas dispersion plate that supplies gas in a shower shape in the processing chamber 301. The processing container 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
 また例えば、図12(B)に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持台417と、支持台417を下方から支持する回転軸455と、処理容器403のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、上述の原料ガスを供給するガス供給ポート432aと、上述の反応ガスを供給するガス供給ポート432bと、が接続されている。ガス供給ポート432aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート432bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。 Further, for example, the present disclosure can be suitably applied to the case where a film is formed by using a substrate processing apparatus provided with the processing furnace 402 shown in FIG. 12 (B). The processing furnace 402 includes a processing container 403 forming the processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container. A lamp heater 407 that irradiates the wafer 200 of the 403 with light, and a quartz window 403w that transmits the light of the lamp heater 407 are provided. The processing container 403 is connected to the gas supply port 432a for supplying the above-mentioned raw material gas and the gas supply port 432b for supplying the above-mentioned reaction gas. A raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 432a. A reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 432b. The processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
 これらの基板処理装置を用いる場合においても、上述の実施形態と同様なシーケンス、処理条件にて成膜を行うことができる。 Even when these substrate processing devices are used, film formation can be performed under the same sequence and processing conditions as those in the above-described embodiment.
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。 The process recipe (program that describes the treatment procedure, treatment conditions, etc.) used for forming these various thin films is the content of the substrate treatment (film type, composition ratio, film quality, film thickness, treatment procedure, treatment of the thin film to be formed). It is preferable to prepare each individually (multiple preparations are made) according to the conditions, etc.). Then, when starting the substrate processing, it is preferable to appropriately select an appropriate process recipe from a plurality of process recipes according to the content of the substrate processing. Specifically, the board processing device includes a plurality of process recipes individually prepared according to the content of the board processing via a telecommunication line or a recording medium (external storage device 123) on which the process recipe is recorded. It is preferable to store (install) it in the storage device 121c in advance. Then, when starting the substrate processing, the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate process recipe from the plurality of process recipes stored in the storage device 121c according to the content of the substrate processing. Is preferable. With this configuration, thin films of various film types, composition ratios, film qualities, and film thicknesses can be formed with a single substrate processing device in a versatile and reproducible manner. Further, the operation load of the operator (input load of processing procedure, processing condition, etc.) can be reduced, and the board processing can be started quickly while avoiding operation mistakes.
 また、本開示は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本開示に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本開示に係るプロセスレシピに変更したりすることも可能である。 Further, the present disclosure can also be realized by, for example, changing the process recipe of the existing substrate processing apparatus. When changing the process recipe, the process recipe according to the present disclosure may be installed on an existing board processing device via a telecommunications line or a recording medium on which the process recipe is recorded, or input / output of the existing board processing device may be input / output. It is also possible to operate the device and change the process recipe itself to the process recipe according to the present disclosure.
 以上、本開示の種々の典型的な実施形態を説明してきたが、本開示はそれらの実施形態に限定されず、適宜組み合わせて用いることもできる。 Although various typical embodiments of the present disclosure have been described above, the present disclosure is not limited to those embodiments, and can be used in combination as appropriate.
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室
500 副生成物モニタ
10 Board processing device 121 Controller 200 Wafer (board)
201 Processing room 500 By-product monitor

Claims (16)

  1.  処理室内の基板に対して、処理ガスの供給を開始する第1の工程と、
     前記処理室から排気される副生成物の量を継続して測定する第2の工程と、
     測定される副生成物の量が減衰する過程において、設定された閾値に達した場合に、処理ガスの供給を停止するよう制御する第3の工程と、
     前記処理室内を排気する第4の工程と、
     を有する半導体装置の製造方法。
    The first step of starting the supply of processing gas to the substrate in the processing chamber,
    A second step of continuously measuring the amount of by-products exhausted from the processing chamber, and
    A third step of controlling to stop the supply of processing gas when a set threshold is reached in the process of decaying the amount of by-product to be measured.
    The fourth step of exhausting the processing chamber and
    A method for manufacturing a semiconductor device having.
  2.  前記閾値は、測定される副生成物の量のピーク値に基づいて設定される請求項1記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the threshold value is set based on a peak value of the amount of by-products to be measured.
  3.  前記第1,2,3,4の工程を含むレシピを記憶装置から読み出すと共に、
     前記記憶装置から読み出されたレシピに対応する閾値を、レシピ毎に閾値が設定されたテーブルに基づいて設定する請求項1記載の半導体装置の製造方法。
    While reading the recipe including the first, second, third, and fourth steps from the storage device,
    The method for manufacturing a semiconductor device according to claim 1, wherein a threshold value corresponding to a recipe read from the storage device is set based on a table in which a threshold value is set for each recipe.
  4.  前記第3の工程では、測定される副生成物の量がピーク値となってから減衰して閾値まで下がる時間が所定時間を超えた場合に、処理ガスの供給を停止するよう制御する請求項1記載の半導体装置の製造方法。 The third step is claimed to control the supply of the processing gas to be stopped when the time for the measured amount of by-products to decrease from the peak value to the threshold value exceeds a predetermined time. 1. The method for manufacturing a semiconductor device according to 1.
  5.  前記所定時間は、予め設定された一定時間である請求項4記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 4, wherein the predetermined time is a preset fixed time.
  6.  前記所定時間は、処理ガスの供給を開始してから測定される副生成物の量がピーク値に達する時間の整数倍の時間である請求項4記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 4, wherein the predetermined time is an integral multiple of the time when the amount of by-products measured after starting the supply of the processing gas reaches the peak value.
  7.  前記処理室内の基板に対して、前記処理ガスと反応する反応ガスの供給を開始する第5の工程と、
     前記処理室から排気される副生成物の量を継続して測定する第6の工程と、
     測定される副生成物の量が減衰する過程において、設定された閾値に達した場合に、反応ガスの供給を停止するよう制御する第7の工程と、
     前記処理室内を排気する第8の工程と、
     をさらに有する請求項1記載の半導体装置の製造方法。
    A fifth step of starting the supply of the reaction gas that reacts with the processing gas to the substrate in the processing chamber, and
    A sixth step of continuously measuring the amount of by-products exhausted from the processing chamber, and
    A seventh step of controlling the supply of the reaction gas to be stopped when a set threshold is reached in the process of decaying the amount of by-product to be measured.
    The eighth step of exhausting the processing chamber and
    The method for manufacturing a semiconductor device according to claim 1, further comprising.
  8.  前記第1の工程から前記第3の工程までの前記処理ガスの供給を開始してから前記処理ガスの供給を停止するまでのガス供給時間を、1サイクル毎に設定してもよいし、複数サイクル毎に設定してもよいし、所定サイクル期間としてもよい請求項1記載の半導体装置の製造方法。 The gas supply time from the start of the supply of the processing gas from the first step to the third step to the stop of the supply of the processing gas may be set for each cycle, or a plurality of times. The method for manufacturing a semiconductor device according to claim 1, which may be set for each cycle or may be a predetermined cycle period.
  9.  複数サイクル毎にガス供給時間を設定する場合には、前記第1の工程から前記第3の工程までの前記処理ガスの供給を開始してから前記処理ガスの供給を停止するまでのガス供給時間を用いて、複数サイクルを行う請求項8記載の半導体装置の製造方法。 When the gas supply time is set for each of a plurality of cycles, the gas supply time from the start of the supply of the processed gas from the first step to the third step to the stop of the supply of the processed gas. The method for manufacturing a semiconductor device according to claim 8, wherein a plurality of cycles are performed using the above.
  10.  サイクル毎に生成される副生成物の量が変化するレシピを用いる場合には、予めサイクル毎の副生成物の変化量を記憶装置に記憶し、前記記憶装置から読み出されたレシピに対応するサイクル毎のガス供給時間を用いる請求項8記載の半導体装置の製造方法。 When a recipe in which the amount of the by-product generated in each cycle changes is used, the amount of change in the by-product in each cycle is stored in the storage device in advance, and the recipe is read from the storage device. The method for manufacturing a semiconductor device according to claim 8, wherein the gas supply time for each cycle is used.
  11.  副生成物の量を測定する副生成物モニタの設定を、新たにレシピが開始されるタイミング、又はチャージ枚数が変更されたタイミングでリセットする請求項8記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 8, wherein the setting of the by-product monitor for measuring the amount of by-products is reset at the timing when a new recipe is started or when the number of charged sheets is changed.
  12.  前記第3の工程では、測定される副生成物の量に応じてガス供給流量、処理室内温度又は処理室内圧力を制御する請求項1記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein in the third step, the gas supply flow rate, the processing chamber temperature, or the processing chamber pressure is controlled according to the amount of by-products to be measured.
  13.  前記第2の工程では、他のガスの反応を阻害するガスの量を測定する請求項1記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein in the second step, the amount of gas that inhibits the reaction of other gases is measured.
  14.  前記第2の工程では、反応管の排気口近傍に設けられた副生成物の量を測定する副生成物モニタを用いる請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein in the second step, a by-product monitor provided in the vicinity of the exhaust port of the reaction tube is used to measure the amount of by-products.
  15.  基板処理装置の処理室内の基板に対して、処理ガスの供給を開始させる第1の手順と、
     前記処理室から排気される副生成物の量を継続して測定させる第2の手順と、
     測定される副生成物の量が減衰する過程において、設定された閾値に達した場合に、処理ガスの供給を停止するよう制御させる第3の手順と、
     前記処理室内を排気させる第4の手順と、
     をコンピュータにより前記基板処理装置に実行させるプログラムが記録された記録媒体。
    The first procedure for starting the supply of processing gas to the substrate in the processing chamber of the substrate processing apparatus, and
    A second procedure for continuously measuring the amount of by-products exhausted from the processing chamber, and
    A third step of controlling to stop the supply of processing gas when a set threshold is reached in the process of decaying the amount of by-product to be measured.
    The fourth procedure for exhausting the processing chamber and
    A recording medium on which a program for causing the substrate processing apparatus to execute a program is recorded.
  16.  基板を処理する処理室と、
     前記基板に処理ガスを供給する処理ガス供給系と、
     前記処理室を排気する排気系と、
     前記処理室から排気される副生成物の量を測定する副生成物モニタと、
     前記処理ガスの供給開始後、前記副生成物の量が減衰する過程において、設定された閾値に達した場合に、前記処理ガスの供給を停止するよう前記処理ガス供給系と、前記排気系と、前記副生成物モニタと、を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
    A processing room for processing the substrate and
    A processing gas supply system that supplies processing gas to the substrate,
    The exhaust system that exhausts the processing chamber and
    A by-product monitor that measures the amount of by-products exhausted from the processing chamber, and
    The processing gas supply system and the exhaust system so as to stop the supply of the processing gas when a set threshold value is reached in the process of decreasing the amount of the by-product after the start of the supply of the processing gas. , The control unit configured to be able to control the by-product monitor,
    Substrate processing equipment with.
PCT/JP2019/010843 2019-03-15 2019-03-15 Semiconductor device manufacturing method, recording medium and substrate processing device WO2020188632A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021506800A JP7161603B2 (en) 2019-03-15 2019-03-15 Substrate processing method, semiconductor device manufacturing method, program, and substrate processing apparatus
PCT/JP2019/010843 WO2020188632A1 (en) 2019-03-15 2019-03-15 Semiconductor device manufacturing method, recording medium and substrate processing device
TW108148002A TWI744759B (en) 2019-03-15 2019-12-27 Manufacturing method of semiconductor device, recording medium and substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010843 WO2020188632A1 (en) 2019-03-15 2019-03-15 Semiconductor device manufacturing method, recording medium and substrate processing device

Publications (1)

Publication Number Publication Date
WO2020188632A1 true WO2020188632A1 (en) 2020-09-24

Family

ID=72520586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010843 WO2020188632A1 (en) 2019-03-15 2019-03-15 Semiconductor device manufacturing method, recording medium and substrate processing device

Country Status (3)

Country Link
JP (1) JP7161603B2 (en)
TW (1) TWI744759B (en)
WO (1) WO2020188632A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129325A (en) * 1980-03-14 1981-10-09 Fujitsu Ltd Dry etching
JP2003209103A (en) * 2002-01-17 2003-07-25 Tokyo Electron Ltd Treatment apparatus and method therefor
JP2004103689A (en) * 2002-09-06 2004-04-02 Horiba Ltd System and method for depositing film
US20070134823A1 (en) * 2005-12-14 2007-06-14 Taek-Seung Yang Atomic layer deposition equipment and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109224B2 (en) * 2015-03-30 2017-04-05 株式会社日立国際電気 Semiconductor device manufacturing method, program, and substrate processing apparatus
JP6153975B2 (en) * 2015-08-07 2017-06-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing system, program, recording medium, and substrate processing apparatus
JP5938506B1 (en) * 2015-09-17 2016-06-22 株式会社日立国際電気 Substrate processing system, semiconductor device manufacturing method, program, and recording medium
JP6333302B2 (en) * 2016-03-30 2018-05-30 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6479713B2 (en) * 2016-07-11 2019-03-06 株式会社Kokusai Electric Semiconductor device manufacturing method, program, and substrate processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129325A (en) * 1980-03-14 1981-10-09 Fujitsu Ltd Dry etching
JP2003209103A (en) * 2002-01-17 2003-07-25 Tokyo Electron Ltd Treatment apparatus and method therefor
JP2004103689A (en) * 2002-09-06 2004-04-02 Horiba Ltd System and method for depositing film
US20070134823A1 (en) * 2005-12-14 2007-06-14 Taek-Seung Yang Atomic layer deposition equipment and method

Also Published As

Publication number Publication date
TW202104654A (en) 2021-02-01
TWI744759B (en) 2021-11-01
JPWO2020188632A1 (en) 2021-12-02
JP7161603B2 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
US20110059600A1 (en) Method of manufacturing semiconductor device, cleaning method, and substrate processing apparatus
US9773661B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR101737215B1 (en) Method and apparatus of manufacturing semiconductor device, and computer program
JP6647260B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2021186677A1 (en) Substrate processing apparatus, method for producing semiconductor device, and program
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP6994483B2 (en) Semiconductor device manufacturing methods, programs, and substrate processing devices
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
US20210292895A1 (en) Vaporizer, substrate processing apparatus and method of manufacturing semiconductor device
CN111850512A (en) Film forming method and film forming apparatus
CN113227450A (en) Method for manufacturing semiconductor device, substrate processing apparatus, and program
US20220208557A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
WO2018181508A1 (en) Method for producing semiconductor device, cleaning method, substrate processing apparatus and program
US20220093386A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020188632A1 (en) Semiconductor device manufacturing method, recording medium and substrate processing device
JP7307038B2 (en) Semiconductor device manufacturing method, program, substrate processing apparatus, and substrate processing method
JP7079340B2 (en) Semiconductor device manufacturing methods, substrate processing devices, and programs
JP7324740B2 (en) Substrate processing method, program, substrate processing apparatus, and semiconductor device manufacturing method
WO2022059170A1 (en) Semiconductor device manufacturing method, recording medium, and substrate treatment device
JP7273168B2 (en) Substrate processing method, semiconductor device manufacturing method, program, and substrate processing apparatus
JP2023023351A (en) Method for manufacturing semiconductor device, substrate treatment apparatus, program, and substrate treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919669

Country of ref document: EP

Kind code of ref document: A1