WO2020187279A1 - 一种传输处理方法、装置和计算机可读存储介质 - Google Patents

一种传输处理方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2020187279A1
WO2020187279A1 PCT/CN2020/080087 CN2020080087W WO2020187279A1 WO 2020187279 A1 WO2020187279 A1 WO 2020187279A1 CN 2020080087 W CN2020080087 W CN 2020080087W WO 2020187279 A1 WO2020187279 A1 WO 2020187279A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
time
point
start position
value
Prior art date
Application number
PCT/CN2020/080087
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
付婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20772740.5A priority Critical patent/EP3944701A4/en
Priority to US17/439,008 priority patent/US20220150882A1/en
Priority to KR1020217033754A priority patent/KR20210138730A/ko
Publication of WO2020187279A1 publication Critical patent/WO2020187279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • This application relates to the technical field of wireless communication networks, for example, to a transmission processing method, device, and computer-readable storage medium
  • This application provides a transmission processing method, device, and computer-readable storage medium, and proposes a service transmission rule that can ensure normal transmission of high-priority transmission when at least two transmission preparation processes or transmission processes overlap , While optimizing low-priority transmission.
  • the embodiment of the application provides a transmission processing method, including:
  • point G is a point in time of the first preset time before the start position of the second transmission.
  • the embodiment of the present application also provides a transmission processing method, including:
  • point G is a point in time of the first preset time before the start position of the second transmission.
  • An embodiment of the application provides a transmission processing device, including:
  • the time domain determination module is configured to determine that the start position of the first transmission is earlier than point G for at least two transmissions
  • a sending module configured to transmit the first transmission from the start position of the first transmission to point G, or transmit the first transmission from the start position of the first transmission to the end position of the first transmission;
  • point G is a point in time of the first preset time before the start position of the second transmission.
  • An embodiment of the present application also provides a transmission processing device, including:
  • the time domain determination module is configured to determine that the start position of the first transmission is earlier than point G for at least two transmissions
  • a data determining module configured to determine that the first transmission is transmitted from the start position of the first transmission to the point G, or is transmitted from the start position of the first transmission to the end position of the first transmission;
  • point G is a point in time of the first preset time before the start position of the second transmission.
  • the embodiment of the present application provides a computer-readable storage medium, and the storage medium stores a computer program.
  • the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flowchart of a transmission processing method according to an embodiment
  • FIG. 2(a) is a schematic diagram of the relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • Figure 2(b) is another schematic diagram of the relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • Figure 2(c) is another schematic diagram of the relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • FIG. 3 is a schematic diagram of another relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • FIG. 4 is a schematic diagram of another relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • FIG. 5 is another schematic diagram of the relationship between the first transmission and the second transmission in the time domain according to an embodiment
  • FIG. 6 is a schematic flowchart of another transmission processing method provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a transmission processing apparatus provided by an embodiment
  • FIG. 8 is a schematic structural diagram of another transmission processing apparatus provided by an embodiment
  • FIG. 9 is a schematic structural diagram of another transmission processing apparatus provided by an embodiment.
  • FIG. 10 is a schematic structural diagram of another transmission processing apparatus provided by an embodiment
  • FIG. 11 is a schematic structural diagram of a base station provided by an embodiment
  • Fig. 12 is a schematic structural diagram of a UE provided by an embodiment.
  • Ultra-reliable and low latency communications (Ultra-Reliable and Low Latency Communications, URLLC) transmission has emerged.
  • URLLC transmission requires higher reliability and timeliness. For example, it has very stringent delay requirements for transmission and requires transmission to be completed within a certain time.
  • eMBB transmission has less stringent requirements for delay, and the transmission can be completed by multiple retransmissions.
  • a UE may support both eMBB transmission and URLLC transmission. Since eMBB transmission and URLLC transmission have different requirements, the two transmissions may overlap in time domain.
  • the base station sends the authorization information for eMBB transmission (ie Downlink Control Information (DCI)) to the UE to schedule eMBB transmission (for example, when scheduling downlink transmission services, use physical downlink sharing Channel (Physical downlink shared channel, PDSCH) transmission, when scheduling uplink transmission services, it is transmitted through the physical uplink shared channel (PUSCH).
  • DCI Downlink Control Information
  • the base station After the authorization information transmitted by the eMBB is sent, if there is a sudden URLLC transmission demand, the base station sends the authorization information transmitted by the URLLC to the UE to schedule the URLLC transmission. Due to the delay requirements of URLLC transmission, it is likely that the URLLC transmission and the previously scheduled eMBB transmission will overlap in time domain, but the URLLC transmission cannot be delayed, so the transmission is scheduled immediately, which causes the two transmissions to conflict. In order to reduce the transmission loss, the transmission needs to be processed.
  • a transmission processing method, device, and computer-readable storage medium are provided, and a service transmission rule is proposed, which can ensure high priority when at least two transmission preparation processes or transmission processes overlap.
  • Level transmission is normal transmission, while optimizing low priority transmission.
  • the manner in which the base station sends authorization information described in the foregoing example may be referred to as dynamic grant.
  • the transmission processing method mentioned in the embodiment of this application is not only applicable to transmission of dynamic authorization, but also applicable to transmission of semi-persistent scheduling (also called configuration authorization), which is not specifically limited in the embodiment of this application.
  • Fig. 1 is a schematic flowchart of a transmission processing method provided by an embodiment. As shown in Fig. 1, the method provided in this embodiment is applicable to the sending end, and the method includes the following steps.
  • S110 For at least two transmissions, determine the sequence relationship between the start position of the first transmission and the G point in the time domain.
  • any two of the at least two transmissions are the first transmission and the second transmission, and the priority of the first transmission is lower than the priority of the second transmission as an example. If the number of transmissions is greater than or equal to three, then for these transmissions, any two transmissions can be selected in a permutation and combination manner and processed according to the above rules until all transmissions are traversed.
  • the first transmission may be uplink transmission or downlink transmission
  • the second transmission may be uplink transmission or downlink transmission.
  • the sending end of the first transmission may be a UE and the receiving end may be a base station.
  • the sending end of the first transmission may be a base station
  • the receiving end can be a UE; similarly, when the second transmission is an uplink transmission, the sending end of the second transmission can be a UE and the receiving end can be a base station.
  • the sending end of the second transmission can be It is a base station, and the receiving end can be a UE.
  • the first transmission and the second transmission are in the same carrier or in different carriers.
  • the authorization mode of the first transmission may be dynamic authorization or configuration authorization
  • the authorization mode of the second transmission may be dynamic authorization or configuration authorization.
  • the dynamic authorization of the first transmission precedes the dynamic transmission of the second transmission; the first transmission and the second transmission are both configured authorized
  • the time of the confirmed transmission of the first transmission is earlier than the time of the confirmed transmission of the second transmission.
  • the first transmission and the second transmission overlap in the preparation process or transmission process in the time domain.
  • the overlap between the first transmission and the second transmission in the time domain means that there is a conflict between the first transmission and the second transmission, that is, the transmission process of the second transmission will affect the transmission process of the first transmission.
  • the UE after receiving the dynamic authorization transmission of the first transmission, the UE starts to prepare the content of the first transmission, assuming that preparation requires at least a second preset time, and then determines that there is a second transmission to be sent.
  • the priority of the second transmission is higher than the first transmission, and the UE prepares the content for the second transmission.
  • a UE with lower capability can only prepare one transmission content at a time, so it will stop preparing the content for the first transmission, or The prepared and untransmitted content of the first transmission is discarded.
  • the content preparation here can be seen as a symbol-by-symbol pipeline preparation, that is, when a symbol is prepared, the symbol is sent and the next symbol is also prepared.
  • the first transmission can be data or control information; the second transmission can be data or control information.
  • the sending end can first determine the starting position of the first transmission and the sequence relationship between the G point in the time domain.
  • point G is a point in time of the first preset time before the start position of the second transmission.
  • S120 The start position of the first transmission is earlier than the point G, and the first transmission is transmitted from the start position of the first transmission to the point G.
  • Figure 2(a) is a schematic diagram of the relationship between a first transmission and a second transmission in the time domain provided by an embodiment
  • Figure 2(b) is a time domain diagram of a first transmission and a second transmission provided by an embodiment
  • FIG. 2(c) is a schematic diagram of the relationship between the first transmission and the second transmission in the time domain according to an embodiment.
  • the start position of the first transmission in Figure 2(a), Figure 2(b) and Figure 2(c) is earlier than G Point, corresponding to the three scenarios of Figure 2(a), Figure 2(b) and Figure 2(c), the sender transmits the first transmission from the start position of the first transmission to point G, and the second transmission The start position transmits the second transmission to the end position of the second transmission. In this way, it can be ensured that the second transmission with higher priority can be transmitted normally, and part of the first transmission is transmitted at the same time, so that the purpose of optimizing low-priority transmission and reducing transmission loss is achieved.
  • S130 The start position of the first transmission is earlier than the G point, and the G point is later than or equal to the end position of the first transmission, and the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission.
  • FIG. 3 is a schematic diagram of another relationship between the first transmission and the second transmission in the time domain according to an embodiment.
  • the starting position of the first transmission in Figure 3 is earlier than point G.
  • the difference from Figure 2(a), Figure 2(b) and Figure 2(c) is that the point G in Figure 3 is later
  • the sender can transmit the first transmission from the start position of the first transmission to the end position of the first transmission, and transmit the second transmission from the start position of the second transmission. Transfer to the end of the second transfer. In this way, not only can it be ensured that the second transmission with a higher priority can be transmitted normally, but also the first transmission with a lower priority can be transmitted normally.
  • FIG. 4 is a schematic diagram of another relationship between the first transmission and the second transmission in the time domain according to an embodiment.
  • the start position of the first transmission in Figure 4 is later than or equal to point G.
  • the sender cancels the transmission of the first transmission.
  • the second transmission is transmitted from the start position of the second transmission to the end position of the second transmission.
  • the start position of the first transmission is later than or equal to point G and later than or equal to point H, then the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission; where the point H is A second preset time point after the end position of the second transmission.
  • FIG. 5 is a schematic diagram of another relationship between the first transmission and the second transmission in the time domain according to an embodiment.
  • the start position of the first transmission in Fig. 5 is later than or equal to point G.
  • the difference from Fig. 4 is that the start position of the first transmission in Fig. 5 is also later than or equal to point H.
  • the sender may first transmit the second transmission from the start position of the second transmission to the end position of the second transmission, and then transmit the first transmission from the start position of the first transmission to the end position of the first transmission. In this way, not only can it be ensured that the second transmission with a higher priority can be transmitted normally, but also the first transmission with a lower priority can be transmitted normally.
  • the above steps S120 to S150 are parallel steps.
  • the G point mentioned in the embodiment of the present application may correspond to the end position of the dynamic authorization of the second transmission, or may be later than the end position of the dynamic authorization of the second transmission.
  • the first preset time is T3, or T3+X, or T3+X+D; the second preset time is T1, or T1+X1.
  • T1 and T3 are the time N2 for processing the data of the first transmission and the second transmission, respectively (it can be the value of T1 and T3. Is N2), or T1 and T3 are the second processing time T proc,2 ; D is the time D2 of the first transmission or the second transmission that cancels the processing; in the case that the first transmission and the second transmission are both downlink transmissions, T1 and T3 are respectively the time N1 for processing the data of the first transmission and the second transmission, or T1 and T3 are the first processing time T proc,1 ; D is the time D1 for the first transmission or the second transmission to cancel processing; X1 And X are the adjustments of T1 and T3, respectively.
  • the value of D1 is 0; the value of D2 is 0; the value of X1 is 0; the value of X is 0.
  • the first preset time further includes: the time point corresponding to the first preset time is extended by Q symbols in the time domain, or advanced by M symbols in the time domain.
  • the value of Q is determined according to the time of processing the Physical Downlink Control Channel (PDCCH) and/or the time of processing the PDSCH of the physical downlink shared channel; the value of M is determined according to the symbols occupied by the dynamic authorization The number is determined; or, the value of Q is the agreed value or 0; the value of M is the agreed value or 0.
  • PDCH Physical Downlink Control Channel
  • M the agreed value or 0.
  • FIG. 6 is a schematic flowchart of another transmission processing method provided by an embodiment. As shown in FIG. 6, the method provided in this embodiment is applicable to the receiving end, and the method includes the following steps.
  • S210 For at least two transmissions, determine the sequence relationship between the start position of the first transmission and the G point in the time domain.
  • any two of the at least two transmissions are the first transmission and the second transmission, and the priority of the first transmission is lower than the priority of the second transmission as an example.
  • the first transmission may be uplink transmission or downlink transmission
  • the second transmission may be uplink transmission or downlink transmission
  • the first transmission and the second transmission are in the same carrier or in different carriers.
  • the authorization mode of the first transmission may be dynamic authorization or configuration authorization
  • the authorization mode of the second transmission may be dynamic authorization or configuration authorization.
  • the dynamic authorization of the first transmission precedes the dynamic transmission of the second transmission; the first transmission and the second transmission are both configured authorized
  • the time of definite transmission of the first transmission that is, the time of data arrival of the first transmission
  • the time of definite transmission of the second transmission that is, the time of data arrival of the first transmission
  • the first transmission and the second transmission overlap in the time domain.
  • the receiving end can determine the sequence relationship between the start position of the first transmission and the G point in the time domain.
  • point G is a point in time at the first preset time before the start position of the second transmission.
  • S220 The start position of the first transmission is earlier than the point G, and it is determined that the first transmission is transmitted from the start position of the first transmission to the point G.
  • the receiving end determines that the first transmission is transmitted from the starting position of the first transmission to point G, and determines the second The transmission is transmitted from the start position of the second transmission to the end position of the second transmission. In this way, it can be ensured that the second transmission with higher priority can be transmitted normally, and part of the first transmission is transmitted at the same time, so that the purpose of optimizing low-priority transmission and reducing transmission loss is achieved.
  • the start position of the first transmission is earlier than point G, and point G is later than or equal to the end position of the first transmission, then it is determined that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission .
  • the start position of the first transmission in Fig. 3 is earlier than point G.
  • the difference from Fig. 2(a), Fig. 2(b) and Fig. 2(c) is that in Fig. 3 G point is later than or equal to the end position of the first transmission.
  • the receiving end can determine that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission, and determine that the second transmission is from The start position of the second transmission is transmitted to the end position of the second transmission. In this way, not only can it be ensured that the second transmission with a higher priority can be transmitted normally, but also the first transmission with a lower priority can be transmitted normally.
  • the start position of the first transmission in Figure 4 is later than or equal to point G.
  • the receiving end cancels the reception.
  • the first transmission, and it is determined that the second transmission is transmitted from the start position of the second transmission to the end position of the second transmission.
  • the start position of the first transmission is later than or equal to point G and later than or equal to point H, then it is determined that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission; where H The point is the second preset time point after the end position of the second transmission.
  • the start position of the first transmission in FIG. 5 is later than or equal to point G.
  • the difference from FIG. 4 is that the start position of the first transmission in FIG. 5 is also later than or equal to Point H.
  • the receiving end can determine that the second transmission is transmitted from the start position of the second transmission to the end position of the second transmission, and that the first transmission is transmitted from the start position of the first transmission to the first transmission.
  • the end position of a transmission In this way, not only can it be ensured that the second transmission with a higher priority can be transmitted normally, but also the first transmission with a lower priority can be transmitted normally.
  • step S220-step S250 are parallel steps.
  • the first preset time is T3, or T3+X, or T3+X+D; the second preset time is T1, or T1+X1.
  • T1 and T3 are the time N2 for processing the data of the first transmission and the second transmission, respectively (it can be the value of T1 and T3. Is N2), or T1 and T3 are the second processing time T proc,2 ; D is the time D2 of the first transmission or the second transmission that cancels the processing; in the case that the first transmission and the second transmission are both downlink transmissions, T1 and T3 are respectively the time N1 for processing the data of the first transmission and the second transmission, or T1 and T3 are the first processing time T proc,1 ; D is the time D1 for the first transmission or the second transmission to cancel processing; X1 And X are the adjustments of T1 and T3, respectively.
  • the value of D1 is 0; the value of D2 is 0; the value of X1 is 0; the value of X is 0.
  • the first preset time further includes: the time point corresponding to the first preset time is extended by Q symbols in the time domain, or advanced by M symbols in the time domain.
  • the value of Q is determined according to the time of processing the physical downlink control channel PDCCH and/or the time of processing the physical downlink shared channel PDSCH; the value of M is determined according to the number of symbols occupied by dynamic authorization; or, the value of Q The value is the agreed value or 0; the value of M is the agreed value or 0.
  • the transmission processing method provided in this application may further include the following steps.
  • S310 For at least two transmissions, determine the sequence relationship between the start position of the first transmission and the G point in the time domain.
  • S320 The start position of the first transmission is earlier than the point G, and at least the first transmission is transmitted to the point G from the start position of the first transmission.
  • transmitting at least the first transmission from the start position of the first transmission to point G may mean: transmitting the first transmission from the start position of the first transmission to point G, or from the start of the first transmission
  • the position transmission is first transmitted to any position after the G point, which is not specifically limited in the embodiment of the present application.
  • S330 The start position of the first transmission is earlier than the G point, and the G point is later than or equal to the end position of the first transmission, and the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission.
  • the start position of the first transmission is later than or equal to point G and later than or equal to point H, then the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission; where the point H is A second preset time point after the end position of the second transmission.
  • Step S310-Step S350 are applicable to the sending end.
  • the detailed explanation of step S310-step S350 can refer to the above-mentioned step S110-step S150, and for the sake of brevity, it will not be repeated here.
  • the transmission processing method provided in this application may further include the following steps.
  • S410 For at least two transmissions, determine the sequence relationship between the start position of the first transmission and the G point in the time domain.
  • S420 The start position of the first transmission is earlier than the point G, and it is determined that the first transmission is transmitted from the start position of the first transmission to at least the point G.
  • determining that the first transmission is transmitted from the start position of the first transmission to at least point G may refer to: determining that the first transmission is transmitted from the start position of the first transmission to point G, or determining that the first transmission The transmission is transmitted from the start position of the first transmission to any position after the G point, which is not specifically limited in the embodiment of the present application.
  • the start position of the first transmission is earlier than point G, and point G is later than or equal to the end position of the first transmission, then it is determined that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission .
  • the start position of the first transmission is later than or equal to point G and later than or equal to point H, then it is determined that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission; where H The point is the second preset time point after the end position of the second transmission.
  • Step S410-Step S450 are applicable to the receiving end.
  • the detailed explanation of step S410-step S450 can refer to the above-mentioned step S210-step S250, and for the sake of brevity, it will not be repeated here.
  • the priority of the second transmission is higher than the priority of the first transmission, and the second transmission is always transmitted according to dynamic authorization or configuration authorization.
  • the first transmission and the second transmission may not be dynamically authorized, that is, configuration authorization is used at this time. If both the first transmission and the second transmission have dynamic authorizations, the dynamic authorization of the first transmission precedes the dynamic authorization transmission of the second transmission. If at least one of the first transmission and the second transmission is a configuration authorization, the arrival time point of the first transmission (the time point of determining the transmission) is earlier than the arrival time point of the second transmission. For the transmission of configuration authorization, the start position or the end position of the transmission is determined according to the configuration authorization.
  • the first transmission and the second transmission may be uplink transmission or downlink transmission at the same time, or the first transmission and the second transmission may belong to downlink transmission and uplink transmission.
  • the first transmission and the second transmission can be in two carriers respectively, or in the same carrier.
  • the same UE has multiple transmissions, and the transmission position of low-priority transmission is determined first (whether it is determined by dynamic authorization or by configuration authorization; downlink transmission is the base station determining the transmission position, In the uplink transmission, the dynamic authorization is that the base station determines the transmission position, and the configuration authorization is that the UE determines the transmission position), and subsequent high-priority transmission needs to be transmitted.
  • the transmission position determined for high-priority transmission affects low-priority transmission.
  • the transmission position of high-priority transmission directly and the transmission position of low-priority transmission have all or part of orthogonal frequency division multiplexing in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the data for the first transmission is still in preparation.
  • the UE has low capability and can only prepare one transmission. Therefore, the data preparation for the first transmission after the dynamic authorization of the second transmission is interrupted, resulting in the first transmission not being transmitted.
  • the interpretation of the first preset time and the second preset time may include: when the first transmission and the second transmission are both uplink transmissions, T1 is the time for processing the data of the first transmission, and T3
  • the time to process the second transmitted data (in one embodiment, the time to process the first transmitted data can also be understood as the time to prepare the first transmitted data, and the time to process the second transmitted data can also be understood as the preparation The time of the second transmitted data).
  • the time for the UE to process data (data transmitted through PUSCH) is N2, see TS38.214vf40, and with different transmission conditions, such as subcarrier spacing, cross-carrier scheduling transmission, etc., N2 can take different values.
  • both T1 and T3 are both N2 for description.
  • T1 and T3 have the same value, but in some specific scenarios (such as NR Rel-15), T1 and T3 are given values determined by the UE (mainly based on eMBB definitions).
  • the values of T1 and T3 may be reduced, which may also cause the UE to prepare low-priority services and prepare high-priority services.
  • the time is different, so it may cause the value of T1 and T3 to be different, that is, they are represented by T1 and T3 respectively.
  • T1 and T3 may also be determined according to T proc,2 defined in NR, that is, T1 and T3 are the second processing time T proc,2 .
  • T proc,2 describes the minimum interval from the end of the uplink grant received by the UE to the start position of the PUSCH corresponding to the uplink grant, that is, after the UE receives the uplink grant, at least the time T proc,2 must elapse. The UE can start PUSCH transmission.
  • T proc,2 contains multiple parameters, and the value of the same parameter in different scenarios is also different, and the value of the same parameter under different NR protocol versions can also be different, or under different NR protocol versions
  • the included parameters are different (for example, adding new parameters, etc.).
  • X1 and X are the adjustment values of T1 and T3, respectively, used to fine-tune the values of T1 and T3.
  • X1 and X are optional, which means that X1 and X are always allowed to be 0, that is Ignore this parameter X1 and X.
  • D is the time D2 of the first transmission or the second transmission that cancels the processing.
  • D2 the time to cancel the PUSCH being processed, or the time to cancel the PUSCH that has been processed.
  • the value of D2 is 0, and the cancellation time is included in other reference quantities.
  • a defined value can also be given. For example, the defined value is to consider the worst-capable UE, or consider a very loose value to make all devices Can be satisfied.
  • T1 is the time to process the data of the first transmission
  • T3 is the time to process the data of the second transmission
  • the time to process the first transmitted data can also be understood as the time to decode the first transmitted data
  • the time to process the second transmitted data can also be understood as the time to decode the second transmitted data.
  • N1 the time for the UE to process data (data transmitted via PDSCH) is N1, see TS38.214vf40, and with different transmission conditions, N1 can take different values.
  • T1 and T3 can also be determined according to T proc,1 defined in NR, that is, T1 and T3 are the first processing time T proc,1 .
  • T proc,1 describes the minimum interval between the end of the PDSCH received by the UE and the start position of the corresponding hybrid automatic repeat request-Acknowledgement (Hybrid Automatic Repeat request-Acknowledgement, HARQ-ACK) PUCCH, which is After the UE receives the PDSCH, at least T proc,1 must elapse before the UE can start PUCCH transmission of HARQ-ACK corresponding to the PDSCH.
  • Hybrid Automatic Repeat request-Acknowledgement Hybrid Automatic Repeat request-Acknowledgement
  • T proc,1 contains multiple parameters, and the value of the same parameter in different scenarios is also different, and the value of the same parameter under different NR protocol versions can also be different, or under different NR protocol versions The included parameters are different (for example, adding new parameters, etc.).
  • T1 and T3 in this application can also be equal to T proc,1 .
  • X1 and X are the adjustment values of T1 and T3, respectively, used to fine-tune the values of T1 and T3.
  • X1 and X are optional, which means that X1 and X are always allowed to be 0, that is Ignore this parameter X1 and X.
  • D is the time D1 of the first transmission or the second transmission that cancels the processing. For example, cancel the time of PDSCH being processed, or cancel the time of PDSCH that has been processed.
  • the value of D1 is 0, and the cancellation time is included in other reference quantities.
  • a defined value can also be given. For example, the defined value is to consider the worst-capable UE, or consider a very loose value to make all devices Can be satisfied.
  • T1, T3, X1, X, N2, N1, D1, and D2 can all be represented by absolute duration or by the number of orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • one OFDM The absolute duration corresponding to a symbol is determined in a given system, so the absolute duration and the number of symbols can be converted into duration.
  • multiple predefined values can be used, corresponding to different UE capabilities. For example, N1 of a low-capability UE is W1 symbols, and N1 of a high-capability UE is W2 symbols. Then the UE and the base station can select the corresponding N1 value according to their own capabilities. Other parameters are similar.
  • the first preset time further includes: the time point corresponding to the first preset time is extended by Q symbols in the time domain, or advanced by M symbols in the time domain; wherein, the value of Q depends on the processing The time of the physical downlink control channel PDCCH and/or the time of processing the physical downlink shared channel PDSCH are determined; the value of M is determined according to the number of symbols occupied by the dynamic grant; or the value of Q is the agreed value or 0; the value of M It is the conventional value or 0.
  • first preset time is T3+X as an example
  • second preset time is T1+X1 as an example.
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station first transmits the dynamic authorization of PDSCH 1, and the base station transmits the dynamic authorization of PDSCH 2.
  • the start position of PDSCH 1 transmission is later than or equal to the start position of PDSCH 2 transmission T3+X (Here, T3+X before the start position of PDSCH 2 (high priority) transmission is marked as G point.
  • G point corresponds to the end position of the dynamic authorization of the second transmission, but in fact , Point G can be later than the end position of the dynamic authorization of the second transmission, that is, the end position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (According to the direction in the figure, that is, T3+X determines that the duration is somewhat short, then T3+X will be increased again)
  • E symbols E is a predefined value, refer to the process of canceling a PDSCH or PUSCH, such as 1 or Two, the value of E can also be bound with subcarrier spacing (SCS), that is, the corresponding E value is different for different SCS).
  • SCS subcarrier spacing
  • the base station cancels the transmission of PDSCH 1, and PDSCH 2 is normally transmitted according to the dynamic authorization of PDSCH 2.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PDSCH 1 and the dynamic authorization of PDSCH 2.
  • the start position of the transmission of PDSCH 1 is later than or equal to point G.
  • the receiving UE considers the transmission of PDSCH 1 If it is cancelled, the UE receives PDSCH 2 transmission.
  • the first transmission and the second transmission may also be configuration authorization, or one of them may be configuration authorization. The processing at this time is similar.
  • the start position of the transmission of PDSCH 1 is later than or equal to point G (for the case where the second transmission is a configuration authorization, the determination of point G is at T3+X before the arrival time of the second transmission data, the same below), the base station It is agreed with the UE to cancel the transmission of PDSCH 1 and PDSCH 2 is transmitted normally.
  • the following processing can also be considered: If the start position of the transmission of PDSCH 1 is also in the transmission of PDSCH 2 At or after the end position T1+X1, the PDSCH 1 is also transmitted normally. This is because the start position of PDSCH 1 is relatively late, the transmission of PDSCH 2 is finished, and the transmission of PDSCH 1 starts after at least the interval of T1+X1. At this time, since the transmission of PDSCH 2 has ended, PDSCH 1 can Is completely transmitted.
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station first transmits the dynamic authorization of PUSCH 1, and the base station transmits the dynamic authorization of PUSCH 2.
  • the start position of PUSCH 1 transmission is later than or equal to the start position of PUSCH 2 transmission T3+X (Here, T3+X before the start position of PUSCH 2 (high priority) transmission is marked as G point.
  • G point corresponds to the end position of the dynamic authorization of the second transmission, but in fact , Point G can be later than the end position of the dynamic authorization of the second transmission, that is, the end position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (According to the direction in the figure, that is, T3+X determines that the duration is a bit short, then increase T3+X a little more)
  • E symbols E is a predefined value, refer to the process of canceling a PDSCH or PUSCH, such as 1 or Two, the value of E can also be bound to SCS, that is, when different SCS, the corresponding E value is different
  • the base station determines that the transmission of PUSCH 1 is cancelled, and PUSCH 2 is normally transmitted according to the dynamic authorization of PUSCH 2.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PUSCH 1 and the dynamic authorization of PUSCH 2.
  • the start position of the transmission of PUSCH 1 is later than or equal to point G.
  • the UE cancels the transmission of PUSCH 1, and PUSCH 2 Send normally.
  • the first transmission and the second transmission may also be configuration authorization, or one of them may be configuration authorization. The processing at this time is similar.
  • the start position of the transmission of PUSCH 1 is later than or equal to point G (for the case where the second transmission is a configuration authorization, the determination of point G is at T3+X before the arrival time of the second transmission data, the same below), the base station It is agreed with the UE to cancel the transmission of PUSCH 1 and PUSCH 2 is transmitted normally.
  • the following processing can also be considered: If the start position of the transmission of PUSCH 1 is also in the transmission of PUSCH 2 At or after the end position T1+X1, PUSCH 1 is also transmitted normally. This is because the start position of PUSCH 1 is relatively late, the transmission of PUSCH 2 is ended, and the transmission of PUSCH 1 starts after at least the interval of T1+X1. At this time, because the transmission of PUSCH 2 has ended, PUSCH 1 can Is completely transmitted.
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station first transmits the dynamic authorization of PDSCH 1, and the base station transmits the dynamic authorization of PDSCH 2.
  • the start position of PDSCH 1 transmission The point T3+X before the start position of the transmission of PDSCH 2 (here, T3+X before the start position of the transmission of PDSCH 2 (high priority) is marked as point G, as shown in Figure 2(a) and Figure 2 (b) and Figure 2(c), point G exactly corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the end position of the dynamic authorization of the second transmission, that is, the dynamics of the second transmission The end position of authorization is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, that is, T3+X determines that the duration is somewhat short, then set T3+X again Add some) move E symbols (E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be bound to SCS, that is, when different SCS, the corresponding E values are different)).
  • E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2
  • the base station transmits (or at least transmits) PDSCH 1 to point G (however, if point G is later than the end position of PDSCH 1, the base station transmits PDSCH 1 to the end position of PDSCH 1, for example, Figure 3; If point G is earlier than the end position of the transmission of PDSCH 1, the base station transmits PDSCH 1 to point G, and cancels the transmission of the remaining part of PDSCH 1.
  • PDSCH 2 is transmitted normally.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PDSCH 1 and the dynamic authorization of PDSCH 2.
  • the start position of PDSCH 1 transmission is earlier than point G, and the receiving end UE thinks that PDSCH 1 is transmitted from PDSCH 1 start position
  • the transmission to point G (or at least to point G) is normal (however, if point G is later than the end position of PDSCH 1 transmission, the receiving end UE determines that PDSCH 1 is transmitted to the end position of PDSCH 1, if point G is earlier than
  • the receiving end UE determines that the PDSCH 1 is transmitted to point G), and the receiving end UE transmits PDSCH 2 normally.
  • the first transmission and the second transmission may also be configuration authorization, or one of them may be configuration authorization. The processing at this time is similar.
  • the start position of the PDSCH 1 transmission is earlier than the G point (for the second transmission is the configuration authorization, the determination of the G point is at T3+X before the arrival time of the second transmission data, the same below), the base station and the UE It is agreed that the PDSCH 1 is normally transmitted from the start position of the PDSCH 1 transmission to (or at least to) the G point, and the PDSCH 2 is normally transmitted.
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station first transmits the dynamic authorization of PUSCH 1, and the base station transmits the dynamic authorization of PUSCH 2, according to the dynamic authorization, the starting position of the transmission of PUSCH 1
  • the point T3+X before the start position of the transmission of PUSCH 2 (here, T3+X before the start position of the transmission of PUSCH 2 (higher priority) is marked as point G, as shown in Figure 2(a) and Figure 2 (b) and Figure 2(c)
  • point G exactly corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the end position of the dynamic authorization of the second transmission, that is, the dynamics of the second transmission
  • the end position of authorization is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, that is, T3+X determines that the duration is somewhat short, then set T3+X again Add some) move E symbols (E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be bound to SCS, that is, when different SCS, the corresponding E value is different)), at this time, the base station determines that PUSCH 1 is transmitted (or at least transmitted) to point G (however, if point G is later than the end of the transmission of PUSCH 1, the base station determines that PUSCH 1 is transmitted to PUSCH 1 For example, in Figure 3; if point G is earlier than the end position of the transmission of PUSCH 1, the base station considers that PUSCH 1 is transmitted to point G).
  • E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2
  • the base station determines that the remaining part of PUSCH 1 is cancelled for transmission.
  • PUSCH 2 is transmitted normally.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PUSCH 1 and the dynamic authorization of PUSCH 2.
  • the start position of the transmission of PUSCH 1 is earlier than the G point, and the UE thinks that PUSCH 1 needs to be transmitted from the start position of PUSCH 1 Transmission to (or at least to) point G (however, if point G is later than the end position of PUSCH 1 transmission, the receiving end determines that PUSCH 1 is transmitted to the end position of PUSCH 1, if point G is earlier than PUSCH 1 transmission At the end position of, the receiving end determines that PUSCH 1 is transmitted to point G), and the UE transmits PUSCH 2 normally.
  • the first transmission and the second transmission may also be configuration authorization, or one of them may be configuration authorization. The processing at this time is similar.
  • the start position of the transmission of PUSCH 1 is earlier than the G point (for the second transmission is the configuration authorization, the determination of the G point is T3+X before the arrival time of the second transmission data, the same below), the base station and the UE It is agreed that PUSCH 1 is normally transmitted from the start position of PUSCH 1 transmission to (or at least to) G point, and PUSCH 2 is normally transmitted.
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station transmits the dynamic authorization of PDSCH 1, and the base station determines that PDSCH 2 needs to be transmitted (the base station has previously activated/configured downlink transmission of the configuration authorization for the UE), and the base station performs PDSCH 2 transmission according to the configuration authorization.
  • the base station determines that the start position of PDSCH 1 transmission (determined according to the dynamic authorization of PDSCH 1) is later than or equal to the start position of PDSCH 2 transmission (determined according to the configuration authorization of transmitting PDSCH 2) before T3+X (here, the PDSCH 2
  • T3+X before the start position of the transmission (high priority) is marked as point G.
  • point G can also be the point T3+X before the start position of the second transmission and then to the left (according to the direction in the figure) , That is, T3+X determines that the duration is a bit short, at this time, T3+X is increased by some E symbols (E is a predefined value, refer to the process of canceling a PDSCH or PUSCH, such as 1 or 2, E The value can also be bound to the SCS, that is, the corresponding E value is different for different SCS)).
  • E is a predefined value, refer to the process of canceling a PDSCH or PUSCH, such as 1 or 2
  • E The value can also be bound to the SCS, that is, the corresponding E value is different for different SCS)).
  • the base station cancels the transmission of PDSCH 1, and PDSCH 2 authorizes normal transmission according to the configuration of PDSCH 2.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of the PDSCH 1 and needs to try to receive the PDSCH 2 according to the configured authorization.
  • the receiving end UE determines that the start position of the transmission of the PDSCH 1 is later than or equal to point G. If the UE correctly receives the PDSCH 2 (this is Because after the configuration authorization is activated, the PDSCH 2 may be transmitted using the resources corresponding to the configuration authorization, or it may not be transmitted, so the receiving end UE needs to try to receive). At this time, the receiving end UE thinks that the transmission of PDSCH 1 has been cancelled, and thus follows the configuration Authorized to receive PDSCH 2 transmission.
  • the following processing can also be considered: If the start position of the transmission of PDSCH 1 is also in the transmission of PDSCH 2 At or after the end position T1+X1, the PDSCH 1 is also transmitted normally. This is because the start position of PDSCH 1 is relatively late, the transmission of PDSCH 2 is finished, and the transmission of PDSCH 1 starts after at least the interval of T1+X1. At this time, since the transmission of PDSCH 2 has ended, PDSCH 1 can Is completely transmitted.
  • the authorization method of the first transmission is dynamic authorization
  • the authorization method of the second transmission is configuration authorization
  • both the first transmission and the second transmission are uplink transmissions
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station transmits the dynamic authorization of PUSCH 1, and the base station also activates/configures the uplink transmission of the configuration authorization for the UE before, and tries to receive the transmission of PUSCH 2 according to the configuration authorization.
  • the base station determines that the start position of the transmission of PUSCH 1 (determined according to the dynamic authorization of PUSCH 1) is later than or equal to the start position of the transmission of PUSCH 2 (determined according to the configuration authorization of transmitting PUSCH 2) before T3+X, when the base station determines that it is receiving correctly
  • PUSCH 2 because PUSCH 2 uses configuration authorization, PUSCH 2 may be transmitted by the UE or may not be transmitted by the UE at the transmission position of the configuration authorization, so the base station needs to try to receive PUSCH 2 to determine whether PUSCH 2 is actually sent.
  • the value of E can also be bound to SCS, that is, when different SCS, the corresponding E value is different)), at this time, the base station It is determined that the transmission of PUSCH 1 is cancelled, and the normal transmission of PUSCH 2 is authorized according to the configuration of PUSCH 2.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PUSCH 1, and finds that PUSCH 2 needs to be transmitted, and plans to use the configured authorization to transmit PUSCH 2.
  • the receiving end determines that the start position of the transmission of PUSCH 1 is later than or equal to point G. At this time, The UE cancels the transmission of PUSCH 1, thereby authorizing transmission of PUSCH 2 according to the configuration.
  • the following processing can also be considered: If the start position of the transmission of PUSCH 1 is also in the transmission of PUSCH 2 At or after the end position T1+X1, PUSCH 1 is also transmitted normally. This is because the start position of PUSCH 1 is relatively late, the transmission of PUSCH 2 is ended, and the transmission of PUSCH 1 starts after at least the interval of T1+X1. At this time, because the transmission of PUSCH 2 has ended, PUSCH 1 can Is completely transmitted.
  • the authorization method of the first transmission is configuration authorization
  • the authorization method of the second transmission is dynamic authorization
  • both the first transmission and the second transmission are downlink transmissions
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station determines that PDSCH 1 needs to be transmitted (the base station has previously activated/configured the downlink transmission of the configuration authorization for the UE), the base station will transmit the PDSCH 1 according to the configuration authorization, and the base station transmits the dynamic authorization of PDSCH 2.
  • the base station determines that the start position of PDSCH 1 transmission (determined according to the configuration authorization of PDSCH 1) is later than or equal to the start position of PDSCH 2 transmission (determined according to the dynamic authorization to transmit PDSCH 2) before T3+X (here, the PDSCH 2
  • T3+X before the start position of the (higher priority) transmission is marked as point G.
  • point G corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the first
  • the end position of the dynamic authorization of the second transmission that is, the sending position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, namely T3+X determines that the duration is a bit short.
  • E is a predefined value, refer to the process of canceling a PDSCH or PUSCH, for example, 1 or 2, the value of E It can also be bound with SCS, that is, when different SCSs, the corresponding E value is different)).
  • the base station cancels the transmission of PDSCH 1, and PDSCH 2 is normally transmitted according to the dynamic authorization of PDSCH 2.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE side it will receive the PDSCH 1 with activated/configured configuration authorization, receive the dynamic authorization of PDSCH 2, and the receiving end UE determines that the start position of the transmission of PDSCH 1 (determine the starting position of PDSCH 1 according to the configuration authorization) is late At or equal to point G, at this time, the receiving end UE considers that the transmission of PDSCH 1 is cancelled, and thus receives the transmission of PDSCH 2 according to the dynamic authorization.
  • the following processing can also be considered: If the start position of the transmission of PDSCH 1 is also in the transmission of PDSCH 2 At or after the end position T1+X1, the PDSCH 1 is also transmitted normally. This is because the start position of PDSCH 1 is relatively late, the transmission of PDSCH 2 is finished, and the transmission of PDSCH 1 starts after at least the interval of T1+X1. At this time, since the transmission of PDSCH 2 has ended, PDSCH 1 can Is completely transmitted.
  • the authorization method of the first transmission is configuration authorization
  • the authorization method of the second transmission is dynamic authorization
  • both the first transmission and the second transmission are uplink transmissions
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station has previously activated/configured uplink transmission of the configuration authorization for the UE, and the base station needs to try to receive the transmission of PUSCH 1 according to the configuration authorization.
  • the base station transmits the dynamic authorization of PUSCH 2.
  • the base station determines that the start position of the transmission of PUSCH 1 (determined according to the configuration authorization of PUSCH 1) is later than or equal to the start position of the transmission of PUSCH 2 at T3+X (here, the start of the transmission of PUSCH 2 (high priority)
  • T3+X before the position is marked as point G.
  • point G corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the end position of the dynamic authorization of the second transmission, namely The sending position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, that is, the time length determined by T3+X is somewhat short. Increase T3+X by some more)
  • E symbols E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be bound to SCS, that is, different In SCS, the corresponding E value is different)).
  • the base station determines that the transmission of PUSCH 1 is cancelled, and PUSCH 2 is normally transmitted according to the dynamic authorization of PUSCH 2.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE finds that PUSCH 1 needs to be transmitted, and plans to use the configuration grant to transmit PUSCH 1, the UE receives the dynamic grant of PUSCH 2, and the UE determines that the start position of the transmission of PUSCH 1 is later than or equal to point G.
  • the UE The transmission of PUSCH 1 is cancelled, so that the transmission of PUSCH 2 is sent according to the dynamic authorization.
  • the following processing can also be considered: If the start position of the transmission of PUSCH 1 is also in the transmission of PUSCH 2 At or after the end position T1+X1, PUSCH 1 is also transmitted normally. This is because the start position of PUSCH 1 is relatively late, the transmission of PUSCH 2 is ended, and the transmission of PUSCH 1 starts after at least the interval of T1+X1. At this time, because the transmission of PUSCH 2 has ended, PUSCH 1 can Is completely transmitted.
  • the authorization method of the first transmission is dynamic authorization
  • the authorization method of the second transmission is configuration authorization
  • both the first transmission and the second transmission are downlink transmissions
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station transmits the dynamic authorization of PDSCH 1, and the base station determines that it needs to transmit PDSCH according to the configuration authorization (the base station has previously activated/configured the configuration authorization transmission for the UE) .
  • the base station determines that the start position of the PDSCH 1 transmission is earlier than the start position of the PDSCH 2 transmission T3+X (here, the position T3+X before the start position of the PDSCH 2 (high priority) transmission is marked as G point, In Figure 2(a), Figure 2(b) and Figure 2(c), point G can also be left at T3+X before the start position of the second transmission (according to the direction in the figure, that is, T3+X)
  • the duration is a bit short.
  • E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be the same as SCS Bundling, that is, when different SCS, the corresponding E value is different
  • the base station transmits (or at least is transmitted) PDSCH 1 to point G (however, if point G is later than the end position of the transmission of PDSCH 1, Then the base station transmits the PDSCH 1 to the end position of the PDSCH 1, as shown in Fig. 3; if the G point is earlier than the end position of the PDSCH 1, the base station transmits the PDSCH 1 to the G point).
  • the base station cancels the transmission of the remaining part of the PDSCH 1.
  • PDSCH 2 is transmitted normally.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic grant of PDSCH 1. Also, because the UE is activated/configured with a configuration grant for downlink transmission, the UE tries to receive the PDSCH 2 according to the configuration grant.
  • the receiving end If the start position of PDSCH 1 transmission is earlier than G point, and if the UE receives PDSCH 2 correctly, the receiving end considers that PDSCH 1 is normally transmitted from the start position of PDSCH 1 to point G (or at least to point G) (but If point G is later than the end position of PDSCH 1 transmission, the receiving end determines that PDSCH 1 is transmitted to the end position of PDSCH 1; if point G is earlier than the end position of PDSCH 1 transmission, the receiving end determines that PDSCH 1 is transmitted to point G ), the remaining PDSCH 1 is cancelled for transmission. If the UE does not receive PDSCH 2 correctly, the UE considers that: PDSCH 2 is not transmitted, then PDSCH 1 is transmitted normally, or PDSCH 2 is transmitted but decoded incorrectly, and PDSCH 1 is partially transmitted.
  • the start position of PDSCH 1 is still used earlier than point G.
  • the base station and UE agree that PDSCH 1 is transmitted from the start position of PDSCH 1 to point G (or at least to point G), and the rest Part of the PDSCH 1 is not transmitted, and the PDSCH 2 is transmitted normally.
  • point G is later than the end position of PDSCH 1, the receiving end determines the end position of PDSCH 1 transmission to PDSCH 1, and if point G is earlier than the end position of PDSCH 1, the receiving end determines PDSCH 1 is transmitted to point G.
  • the authorization method of the first transmission is dynamic authorization
  • the authorization method of the second transmission is configuration authorization
  • both the first transmission and the second transmission are uplink transmissions
  • the priority of the first transmission is The priority is lower than that of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station transmits the dynamic authorization of PUSCH1.
  • the base station also activates/configures the configuration authorization for uplink transmission.
  • the UE may use the configuration authorization to transmit PUSCH 2 (whether to transmit depends on whether the UE has PUSCH 2 data to be transmitted).
  • T3+X the position T3+X before the start position of the transmission of PUSCH 2 (high priority) is marked as G point
  • point G can also be left at T3+X before the start position of the second transmission (according to the direction in the figure, that is, T3+X determines the duration Some are short, at this time increase T3+X some more) move E symbols (E is a predefined value, refer to cancel a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be tied to SCS The corresponding E value is different for different SCS).
  • the base station determines that PUSCH 1 is transmitted (or at least transmitted) to point G (if point G is later than the end position of the transmission of PUSCH 1, the base station It is determined that PUSCH 1 is transmitted to the end position of PUSCH 1, as shown in Figure 3; if point G is earlier than the end position of PUSCH 1, the base station considers that PUSCH 1 is transmitted to point G). Whether the remaining part of PUSCH 1 (PUSCH 1 after G point) is transmitted also depends on whether PUSCH 2 is transmitted by the UE. If the UE has PUSCH 2 that needs to be transmitted, PUSCH 2 is normally transmitted, and the remaining part of PUSCH 1 is cancelled at this time.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE receives a dynamic grant for PUSCH 1, and the UE is activated/configured with a configuration grant for uplink transmission. If the UE determines that PUSCH 2 needs to be transmitted, and the UE determines that the start position of PUSCH 1 transmission is earlier than point G, then PUSCH 1 is transmitted from the start position of PUSCH 1 to point G (or at least to point G), and the remaining part of the PUSCH 1 The transmission is cancelled; PUSCH 2 is authorized to be transmitted normally according to the configuration. If the UE determines that no PUSCH 2 needs to be transmitted, the UE transmits PUSCH 1 according to the dynamic authorization.
  • the authorization mode of the first transmission is configuration authorization
  • the authorization mode of the second transmission is dynamic authorization
  • the first transmission and the second transmission are both downlink transmissions
  • the first transmission has priority
  • the priority is lower than the priority of the second transmission, for example, the first transmission corresponds to PDSCH 1, and the second transmission corresponds to PDSCH 2.
  • the base station transmits the dynamic authorization of PDSCH 2, and the base station determines that it needs to transmit PDSCH according to the configuration authorization (the base station has previously activated/configured the configuration authorization transmission for the UE) .
  • the base station determines that the start position of the PDSCH 1 transmission is earlier than the start position of the PDSCH 2 transmission T3+X (here, the position T3+X before the start position of the PDSCH 2 (high priority) transmission is marked as G point,
  • point G exactly corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the dynamic authorization of the second transmission
  • the end position, that is, the sending position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, that is, T3+X determines the length of time.
  • E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be bound to SCS , That is, in different SCS, the corresponding E value is different)
  • the base station transmits (or at least transmits) PDSCH 1 to point G (however, if point G is later than the end position of PDSCH 1, the base station will PDSCH 1 is transmitted to the end position of PDSCH 1, as shown in Fig. 3; if point G is earlier than the end position of PDSCH 1, the base station transmits PDSCH 1 to point G).
  • the base station cancels the transmission of the remaining part of the PDSCH 1.
  • PDSCH 2 is transmitted normally.
  • the transmission of PDSCH 1 and PDSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of the PDSCH 2.
  • the UE is activated/configured with a configuration authorization for downlink transmission and reception. Therefore, the UE tries to receive the PDSCH 1 according to the configuration authorization.
  • the receiving end determines that PDSCH 1 is normally transmitted from the start position of PDSCH 1 to point G (or at least to point G) (but If point G is later than the end position of PDSCH 1 transmission, the receiving end UE determines that PDSCH 1 is transmitted to the end position of PDSCH 1. If point G is earlier than the end position of PDSCH 1 transmission, the receiving end UE determines that PDSCH 1 is transmitted to Point G), the remaining PDSCH 1 is cancelled for transmission. If the UE does not receive PDSCH 2 correctly, the UE considers that: PDSCH 2 is not transmitted, then PDSCH 1 is transmitted normally, or PDSCH 2 is transmitted but decoded incorrectly, and PDSCH 1 is partially transmitted.
  • the start position of PDSCH 1 is still used earlier than point G.
  • the base station and UE agree that PDSCH 1 is transmitted from the start position of PDSCH 1 to point G (or at least to point G), and the rest Part of the PDSCH 1 is not transmitted, and the PDSCH 2 is transmitted normally.
  • point G is later than the end position of PDSCH 1, the receiving end determines the end position of PDSCH 1 transmission to PDSCH 1, and if point G is earlier than the end position of PDSCH 1, the receiving end determines PDSCH 1 is transmitted to point G.
  • the authorization mode of the first transmission is configuration authorization
  • the authorization mode of the second transmission is dynamic authorization
  • both the first transmission and the second transmission are uplink transmissions
  • the first transmission has priority
  • the priority is lower than the priority of the second transmission, for example, the first transmission corresponds to PUSCH 1, and the second transmission corresponds to PUSCH 2.
  • the base station transmits the dynamic authorization of PUSCH2.
  • the base station also activates/configures the configuration authorization for uplink transmission.
  • the UE may use the configuration authorization to transmit PUSCH 1 (whether to transmit depends on whether the UE has PUSCH 1 data to be transmitted).
  • point G exactly corresponds to the end position of the dynamic authorization of the second transmission, but in fact, point G can be later than the end of the dynamic authorization of the second transmission Position, that is, the sending position of the dynamic authorization of the second transmission is earlier than point G.
  • Point G can also be T3+X before the start position of the second transmission and then to the left (according to the direction in the figure, that is, T3+X determines that the duration is somewhat short , At this time increase T3+X some more) move E symbols (E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2, the value of E can also be bound to SCS, That is, the corresponding E value is different for different SCS).
  • E is a predefined value, refer to canceling a PDSCH or PUSCH processing, such as 1 or 2
  • the base station considers that PUSCH 1 is transmitted (or at least transmitted) to point G (however, if point G is later than the end of PUSCH 1, the base station determines PUSCH 1 is transmitted to the end position of PUSCH 1, as shown in Figure 3; if point G is earlier than the end position of PUSCH 1, the base station considers that PUSCH 1 is transmitted to point G).
  • Whether the remaining part of PUSCH 1 (PUSCH 1 after G point) is transmitted also depends on whether PUSCH 2 is transmitted by the UE. If the UE has PUSCH 2 that needs to be transmitted, PUSCH 2 is normally transmitted, and the remaining part of PUSCH 1 is cancelled at this time.
  • the transmission of PUSCH 1 and PUSCH 2 may or may not overlap in time domain.
  • the UE receives the dynamic authorization of PUSCH 2.
  • the UE is activated/configured with a configuration authorization for uplink transmission.
  • the UE determines that PUSCH 1 needs to be transmitted, then the UE determines that the start position of PUSCH 1 transmission is earlier than point G, and PUSCH 1 is transmitted from the start position of PUSCH 1 to point G (or at least to point G), and the remaining part of PUSCH 1 The transfer was cancelled.
  • PUSCH2 is normally transmitted according to dynamic authorization.
  • the problem solved by the transmission processing method provided by the embodiment of the present application can also be solved by the following thirteenth exemplary implementation manner.
  • Figure 2 to Figure 5 illustrates two transmissions with different priorities, and there may be time domain overlap between the two transmissions. , It is also possible that the dynamic authorization of one transmission overlaps with the time domain of the other transmission).
  • the start position of the first transmission is earlier than the dynamic authorization end position of the second transmission (or earlier than the dynamic authorization start position of the second transmission, or earlier than the dynamic authorization end position of the second transmission delayed by Q1 symbols), then The first transmission is transmitted (or at least transmitted) to A from the start position of the first transmission.
  • the determination at A can be in one of the following ways:
  • the determination at A is: the end position of the dynamic authorization of the second transmission or the end position of the first transmission, whichever is the earlier (there can be multiple descriptions, the essence is: corresponding to the first transmission
  • the end position of the second transmission is earlier than the end position of the dynamic authorization of the second transmission, then the first transmission is completely transmitted; the end position corresponding to the first transmission is later than the end position of the dynamic authorization of the second transmission, then the first transmission is The start position of a transmission starts to be transmitted to the end position of the dynamic authorization of the second transmission);
  • the determination at A is: the start position of the dynamic authorization of the second transmission or the end position of the first transmission, whichever is the earlier (there can be multiple descriptions, the essence is: corresponding to the first transmission)
  • the end position of a transmission is earlier than the start position of the dynamic authorization of the second transmission, then the first transmission is completely transmitted; the end position corresponding to the first transmission is later than the start position of the dynamic authorization of the second transmission, then the first transmission From the start position of the first transmission to the start position of the dynamic authorization of the second transmission);
  • the determination at A is: the end position of the dynamic authorization of the second transmission is delayed by Q1 symbols, or the end position of the first transmission, whichever is the earlier (there can be multiple descriptions, which The essence is: the end position corresponding to the first transmission is earlier than the end position of the second transmission by Q1 symbols, then the first transmission is completely transmitted; the end position corresponding to the first transmission is later
  • the end position of the dynamic grant of the second transmission is delayed by Q1 symbols
  • the first transmission is delayed from the start position of the first transmission to the end of the dynamic grant of the second transmission by Q1 symbols. Location). That is, the first transmission is either completely transmitted, or the first transmission is transmitted to the end position of the dynamic grant of the second transmission delayed by Q1 symbols.
  • the end position of the dynamic authorization of the second transmission (or the start position of the dynamic authorization of the second transmission; or the end position of the dynamic authorization of the second transmission is delayed by Q1 symbols in time), which is earlier than the start of the first transmission Position, the first transmission is cancelled.
  • Q1 is determined with reference to at least one of the UE decoding PDCCH time and the time to cancel processing data (including the time to cancel the preparation of data during uplink transmission, and the time to cancel decoded data during downlink transmission), or Q1 is predefined It is a fixed value, such as 1, 2 or 3 symbols.
  • the priority of the second transmission is higher than the priority of the first transmission, and the second transmission is always transmitted according to dynamic authorization or configuration authorization.
  • the first transmission and the second transmission may not be dynamically authorized, that is, configuration authorization is used at this time. If both the first transmission and the second transmission have dynamic authorizations, the dynamic authorization of the first transmission precedes the dynamic authorization transmission of the second transmission. If the first transmission and the second transmission are both configuration authorizations, the data arrival time point of the first transmission (the time point of determining the transmission) is earlier than the data arrival time point of the second transmission.
  • the start position or the end position of the transmission is determined according to the configuration authorization.
  • the authorization method for the second transmission is configuration authorization
  • the dynamic authorization related to the second transmission is replaced by the arrival time point of the data of the second transmission.
  • both the dynamic authorization start position of the second transmission and the dynamic authorization end position of the second transmission correspond to the data arrival time point of the second transmission.
  • the first transmission and the second transmission may be uplink transmission or downlink transmission at the same time, or the first transmission and the second transmission may belong to downlink transmission and uplink transmission.
  • the first transmission and the second transmission can be in two carriers respectively, or in the same carrier.
  • the same UE has multiple transmissions, and the transmission position of low-priority transmission is determined first (whether it is determined by dynamic authorization or by configuration authorization; downlink transmission is the base station determining the transmission position, In the uplink transmission, the dynamic authorization is that the base station determines the transmission position, and the configuration authorization is that the UE determines the transmission position), and subsequent high-priority transmission needs to be transmitted.
  • the transmission position determined for high-priority transmission affects the data preparation for low-priority transmission or low-priority transmission. For example, the transmission position of high-priority transmission directly and the transmission position of low-priority transmission exist in the time domain.
  • the OFDM symbols overlap; for example, there is a conflict between the data preparation time for high-priority transmission and the data preparation time for low-priority transmission.
  • only the data for high-priority transmission can be prepared; for example, high-priority transmission
  • the data preparation here can be seen as a symbol-by-symbol pipeline preparation, that is, when a symbol is prepared, the symbol is sent and the next symbol is also prepared. For example, in Figure 2(c), after the dynamic authorization for the second transmission is received, the data for the second transmission is prepared.
  • the data for the first transmission is still in preparation.
  • the UE has low capability and can only prepare one transmission. Therefore, the data preparation for the first transmission after the dynamic authorization of the second transmission is interrupted, resulting in the first transmission not being transmitted.
  • FIG. 7 is a schematic structural diagram of a transmission processing device provided by an embodiment.
  • the transmission processing device may be configured in the sending end.
  • the transmission processing device includes: a time domain determination module 10, which is configured to perform at least two transmissions, It is determined that the start position of the first transmission is earlier than the G point.
  • the sending module 11 is configured to transmit the first transmission from the start position of the first transmission to the point G, or transmit the first transmission from the start position of the first transmission to the end position of the first transmission.
  • point G is a point in time at the first preset time before the start position of the second transmission.
  • the transmission processing device provided in this embodiment is used to implement the transmission processing method of the embodiment shown in FIG. 1.
  • the implementation principles and technical effects of the transmission processing device provided in this embodiment are similar, and will not be repeated here.
  • the priority of the first transmission is lower than the priority of the second transmission.
  • the sending module 11 is set to point G later than or equal to the end position of the first transmission, and then transmits the first transmission from the start position of the first transmission to the end position of the first transmission.
  • FIG. 8 is a schematic structural diagram of another transmission processing device provided by an embodiment. As shown in FIG. 8, the device further includes a processing module 12.
  • the processing module 12 sets that the start position of the first transmission is later than or equal to point G, and then cancels the transmission of the first transmission.
  • the sending module 11 is also set that the start position of the first transmission is later than or equal to the G point and later than or equal to the H point, and the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission.
  • point H is a point in time at the second preset time after the end position of the second transmission.
  • the first preset time is T3, or T3+X, or T3+X+D; the second preset time is T1, or T1+X1.
  • T1 and T3 are the time N2 for processing the data of the first transmission and the second transmission respectively, or T1 and T3 are the second processing time T proc,2 ; D is the time D2 of the first transmission or the second transmission of the cancellation process.
  • T1 and T3 are respectively the time N1 for processing the data of the first transmission and the second transmission, or T1 and T3 are the first processing time T proc,1 ; D It is the time D1 of the first transmission or the second transmission of the cancellation process.
  • X1 and X are the adjustments of T1 and T3, respectively.
  • the value of D1 is 0; the value of D2 is 0; the value of X1 is 0; the value of X is 0.
  • the first preset time further includes: the time point corresponding to the first preset time is extended by Q symbols in the time domain, or advanced by M symbols in the time domain.
  • the value of Q is determined according to at least one of the time for processing the physical downlink control channel PDCCH and the time for processing the physical downlink shared channel PDSCH; the value of M is determined according to the number of symbols occupied by dynamic authorization; or , The value of Q is the agreed value or 0; the value of M is the agreed value or 0.
  • the first transmission is uplink transmission or downlink transmission
  • the second transmission is uplink transmission or downlink transmission
  • the first transmission and the second transmission are in the same carrier or in different carriers.
  • the authorization mode of the first transmission is dynamic authorization or configuration authorization
  • the authorization mode of the second transmission is dynamic authorization or configuration authorization
  • the first transmission and the second transmission overlap in the time domain.
  • the dynamic authorization of the first transmission precedes the dynamic transmission of the second transmission.
  • the time of confirming the transmission of the first transmission is earlier than the time of confirming the transmission of the second transmission.
  • FIG. 9 is a schematic structural diagram of another transmission processing device provided by an embodiment.
  • the transmission processing device may be configured in the receiving end.
  • the transmission processing device includes: a time domain determining module 20, which is configured to perform , It is determined that the start position of the first transmission is earlier than G point.
  • the data determining module 21 is configured to determine that the first transmission is transmitted from the start position of the first transmission to the G point, or is transmitted from the start position of the first transmission to the end position of the first transmission.
  • point G is a point in time at the first preset time before the start position of the second transmission.
  • the transmission processing device provided in this embodiment is used to implement the transmission processing method of the embodiment shown in FIG. 6.
  • the implementation principles and technical effects of the transmission processing device provided in this embodiment are similar, and will not be repeated here.
  • the priority of the first transmission is lower than the priority of the second transmission.
  • the data determining module 21 is set to a point G later than or equal to the end position of the first transmission, and then determines that the first transmission is transmitted from the start position of the first transmission to the end position of the first transmission.
  • FIG. 10 is a schematic structural diagram of another transmission processing device provided by an embodiment. As shown in FIG. 10, the device further includes a processing module 22.
  • the processing module 22 sets that the starting position of the first transmission is later than or equal to point G, and then cancels the reception of the first transmission.
  • the data determining module 21 is also set to set that the start position of the first transmission is later than or equal to point G and later than or equal to point H, and then it is determined that the first transmission is transmitted from the start position of the first transmission to the first transmission. End position.
  • point H is a point in time at the second preset time after the end position of the second transmission.
  • the first preset time is T3, or T3+X, or T3+X+D; the second preset time is T1, or T1+X1.
  • T1 and T3 are the time N2 for processing the data of the first transmission and the second transmission respectively, or T1 and T3 are the second processing time T proc,2 ; D is the time D2 of the first transmission or the second transmission of the cancellation process.
  • T1 and T3 are respectively the time N1 for processing the data of the first transmission and the second transmission, or T1 and T3 are the first processing time T proc,1 ; D It is the time D1 of the first transmission or the second transmission of the cancellation process.
  • X1 and X are the adjustments of T1 and T3, respectively.
  • the value of D1 is 0; the value of D2 is 0; the value of X1 is 0; the value of X is 0.
  • the first preset time further includes: the time point corresponding to the first preset time is extended by Q symbols in the time domain, or advanced by M symbols in the time domain.
  • the value of Q is determined according to at least one of the time for processing the physical downlink control channel PDCCH and the time for processing the physical downlink shared channel PDSCH; the value of M is determined according to the number of symbols occupied by dynamic authorization; or , The value of Q is the agreed value or 0; the value of M is the agreed value or 0.
  • the first transmission is uplink transmission or downlink transmission
  • the second transmission is uplink transmission or downlink transmission
  • the first transmission and the second transmission are in the same carrier or in different carriers.
  • the authorization mode of the first transmission is dynamic authorization or configuration authorization
  • the authorization mode of the second transmission is dynamic authorization or configuration authorization
  • the first transmission and the second transmission overlap in the time domain.
  • the dynamic authorization of the first transmission precedes the dynamic transmission of the second transmission.
  • the time of confirming the transmission of the first transmission is earlier than the time of confirming the transmission of the second transmission.
  • FIG. 11 is a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 40, a memory 41, and a communication interface 42; the number of processors 40 in the base station may be one or more.
  • a processor 40 is taken as an example; the processor 40, the memory 41, and the communication interface 42 in the base station may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the bus represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • the memory 41 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the transmission processing method in the embodiment of the present application.
  • the processor 40 executes at least one functional application and data processing of the base station by running the software programs, instructions, and modules stored in the memory 41, that is, realizes the foregoing transmission processing method.
  • the memory 41 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the UE, etc.
  • the memory 41 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 41 may include a memory remotely provided with respect to the processor 40, and these remote memories may be connected to the base station through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication interface 42 can be used for data reception and transmission.
  • FIG 12 is a schematic diagram of the structure of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include, but is not limited to, mobile phones, smart phones, notebook computers, digital broadcast receivers, and personal computers.
  • Digital assistant Personal Digital Assistant, PDA
  • tablet computer Portable Device, PAD
  • portable multimedia player Portable Media Player, PMP
  • navigation device vehicle terminal equipment, vehicle display terminal, vehicle electronic rearview mirror, etc.
  • Mobile terminal equipment and stationary terminal equipment such as digital television (TV), desktop computers, etc.
  • the UE 50 may include a wireless communication unit 51, an audio/video (A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit 57.
  • Figure 12 shows a UE with various components, but it should be understood that implementation of all the illustrated components is not required. More or fewer components can be implemented instead.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the base station or network.
  • the A/V input unit 52 is configured to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50.
  • the sensing unit 54 detects the current state of the UE 50, the location of the UE 50, the presence or absence of the user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, and so on, and generates a signal for controlling the UE Command or signal for 50 operations.
  • the interface unit 57 is used as an interface through which at least one external device can connect to the UE 50.
  • the output unit 55 is configured to provide output signals in a video, audio, and/or tactile manner.
  • the memory 56 may store a software program for processing and control operations executed by the processor 58, etc., or may temporarily store data that has been output or will be output.
  • the memory 56 may include at least one type of storage medium.
  • the UE 50 can cooperate with a network storage device that performs the storage function of the memory 56 through a network connection.
  • the processor 58 generally controls the overall operation of the UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running a program stored in the memory 56, for example, to implement the transmission processing method provided in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor to implement the transmission processing method as provided in the embodiment of the present application.
  • the method can be, but is not limited to, the content disclosed in the foregoing method embodiments.
  • the computer storage media in the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • Non-exhaustive list of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read-Only Memory, ROM), electrically erasable, programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD- ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and the computer-readable program code is carried in the data signal. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of the present disclosure can be written in one or more programming languages or a combination of multiple programming languages.
  • the programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, Ruby, Go also includes conventional procedural programming languages-such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer (for example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Video Disc, DVD) or compact disc (Compact Disc, CD), etc.
  • Computer-readable media can include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, Special purpose computer, microprocessor, digital signal processor (Digital Signal Processing, DSP), application specific integrated circuit (ASIC), programmable logic device (Field-Programmable Gate Array, FGPA), and multi-core processor based architecture Processor.
  • DSP Digital Signal Processing
  • ASIC application specific integrated circuit
  • FGPA programmable logic device
  • multi-core processor based architecture Processor multi-core processor based architecture Processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种传输处理方法、装置和计算机可读存储介质。该方法包括:对于至少两个传输,确定第一传输的起始位置早于G点;从第一传输的起始位置传输第一传输至G点,或从第一传输的起始位置传输第一传输至第一传输的结束位置;其中,G点为在第二传输的起始位置之前第一预设时间的时间点。

Description

一种传输处理方法、装置和计算机可读存储介质
本申请要求在2019年03月19日提交中国专利局、申请号为201910211542.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络技术领域,例如涉及一种传输处理方法、装置和计算机可读存储介质
背景技术
一个用户设备(User Equipment,UE)和基站在业务交互的过程中,由于多个业务的要求不同,可能会出现需要同时传输多个业务的情况,从而导致业务交互出现时域重叠。
发明内容
本申请提供一种传输处理方法、装置和计算机可读存储介质,提出一种业务传输规则,能够在至少两个传输的准备过程或传输过程发生重叠的情况下,保证高优先级的传输正常传输,同时优化低优先级的传输。
本申请实施例提供一种传输处理方法,包括:
对于至少两个传输,确定第一传输的起始位置早于G点;
从第一传输的起始位置传输第一传输至G点,或从第一传输的起始位置传输第一传输至第一传输的结束位置;
其中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本申请实施例还提供一种传输处理方法,包括:
对于至少两个传输,确定第一传输的起始位置早于G点;
确定第一传输从第一传输的起始位置被传输至G点,或从第一传输的起始位置被传输至第一传输的结束位置;
其中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本申请实施例提供一种传输处理装置,包括:
时域确定模块,设置为对于至少两个传输,确定第一传输的起始位置早于G点;
发送模块,设置为从第一传输的起始位置传输第一传输至G点,或从第一传输的起始位置传输第一传输至第一传输的结束位置;
其中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本申请实施例还提供一种传输处理装置,包括:
时域确定模块,设置为对于至少两个传输,确定第一传输的起始位置早于G点;
数据确定模块,设置为确定第一传输从第一传输的起始位置被传输至G点,或从第一传输的起始位置被传输至第一传输的结束位置;
其中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本申请实施例提供了一种计算机可读存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为一实施例提供的一种传输处理方法的流程示意图;
图2(a)为一实施例提供的一种第一传输和第二传输在时域上的关系示意图;
图2(b)为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图;
图2(c)为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图;
图3为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图;
图4为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图;
图5为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图;
图6为一实施例提供的另一种传输处理方法的流程示意图;
图7为一实施例提供的一种传输处理装置的结构示意图;
图8为一实施例提供的另一种传输处理装置的结构示意图;
图9为一实施例提供的另一种传输处理装置的结构示意图;
图10为一实施例提供的另一种传输处理装置的结构示意图;
图11为一实施例提供的一种基站的结构示意图;
图12为一实施例提供的一种UE的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
随着无线通信技术的发展,高可靠低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)传输因运而生。与增强移动宽带(Enhanced Mobile Broadband,eMBB)传输相比,URLLC传输要求更高的可靠性和及时性,例如对传输具有非常苛刻的延时要求,要求在一定的时间内完成传输。而eMBB传输对延时的要求就没有这么苛刻,可以采用多次重传的方式完成传输。
在一些场景中,一个UE会出现既支持eMBB传输又支持URLLC传输的情况,由于eMBB传输和URLLC传输的要求不同,因此两种传输可能出现时域重叠。示例性的,当UE的eMBB需要被调度时,基站发送eMBB传输的授权信息(即下行控制信息(Downlink Control Information,DCI))至UE调度eMBB传输(例如,调度下行传输业务时通过物理下行共享信道(Physical downlink shared channel,PDSCH)传输,调度上行传输业务时通过物理上行共享信道(Physical uplink shared channel,PUSCH)传输)。当eMBB传输的授权信息发送之后,若又有突发的URLLC传输需求,此时基站发送URLLC传输的授权信息至UE调度URLLC传输。由于URLLC传输对于延时的要求,很可能导致URLLC传输和之前调度的eMBB传输发生时域重叠,但是URLLC传输不能被延后,所以被立即调度传输,从而导致这两个传输发生了冲突。为了降低传输损失,需要对传输进行处理。
在本申请实施例中,提供一种传输处理方法、装置和计算机可读存储介质,提出一种业务传输规则,能够在至少两个传输的准备过程或传输过程发生重叠的情况下,保证高优先级的传输正常传输,同时优化低优先级的传输。
本实施例中,上述示例所描述的基站发送授权信息的方式可以称为动态授权(dynamic grant)。本申请实施例所提到的传输处理方法,不仅可以适用于动态授权的传输,还可以适用于半静态调度(又称为配置授权)的传输,本申请实施例对此不作具体限制。
图1为一实施例提供的一种传输处理方法的流程示意图,如图1所示,本 实施例提供的方法适用于发送端,该方法包括如下步骤。
S110、对于至少两个传输,确定第一传输的起始位置与G点在时域上的先后关系。
本申请实施例是以至少两个传输中的任意两个传输分别为第一传输和第二传输,且第一传输的优先级低于第二传输的优先级为例进行说明的。若传输的个数大于或者等于三个,那么对于这些传输,可以按照排列组合的方式选取任意两个传输按照上述规则进行处理,直到所有的传输被遍历。
第一传输可以为上行传输或者下行传输,第二传输可以为上行传输或者下行传输。在一实施例中,当第一传输为上行传输时,第一传输的发送端可以为UE,接收端可以为基站,当第一传输为下行传输时,第一传输的发送端可以为基站,接收端可以为UE;同理,当第二传输为上行传输时,第二传输的发送端可以为UE,接收端可以为基站,当第二传输为下行传输时,第二传输的发送端可以为基站,接收端可以为UE。
第一传输和第二传输在同一载波中或者在不同载波中。
第一传输的授权方式可以为动态授权或者配置授权,第二传输的授权方式可以为动态授权或者配置授权。在一实施例中,在第一传输和第二传输均为动态授权的情况下,第一传输的动态授权先于第二传输的动态传输;在第一传输和第二传输均为配置授权的情况下,第一传输的确定传输的时刻早于第二传输的确定传输的时刻。
第一传输和第二传输在时域上准备过程或传输过程存在重叠。本实施例中,第一传输和第二传输在时域上存在重叠是指第一传输和第二传输之间发生了冲突,即第二传输的传输过程会对第一传输的传输过程产生影响。例如,在上行传输的情况下,UE在接收第一传输的动态授权传输后,开始准备第一传输的内容,假设准备至少需要第二预设时间,然后又确定有第二传输需要发送,由于第二传输的优先级高于第一传输,UE又准备第二传输的内容,通常能力较低的UE一个时间只能准备一个传输的内容,因此会停止准备第一传输的内容,或者将已经准备的且未传输的第一传输的内容丢弃。这里的内容准备可以看做是逐个符号的流水方式准备的,即准备好一个符号,就发送该符号同时也准备下一个符号。
另外,第一传输可以是数据,也可以是控制信息;第二传输可以是数据,也可以是控制信息。
当第一传输和第二传输在时域上存在重叠时,首先发送端可以确定第一传输的起始位置和G点在时域上的先后关系。其中,G点为在第二传输的起始位置之前第一预设时间的时间点。
S120、第一传输的起始位置早于G点,从第一传输的起始位置传输第一传输至G点。
图2(a)为一实施例提供的一种第一传输和第二传输在时域上的关系示意图;图2(b)为一实施例提供的一种第一传输和第二传输在时域上的关系示意图;图2(c)为一实施例提供的一种第一传输和第二传输在时域上的关系示意图。如图2(a)、图2(b)和图2(c)所示,图2(a)、图2(b)和图2(c)中第一传输的起始位置均早于G点,对应图2(a)、图2(b)和图2(c)的三种场景下,发送端从第一传输的起始位置传输第一传输至G点,并从第二传输的起始位置传输第二传输至第二传输的结束位置。如此,能够保证优先级更高的第二传输能正常传输,同时传输了部分第一传输,达到了优化低优先级的传输,降低传输损失的目的。
S130、第一传输的起始位置早于G点、且G点晚于或者等于第一传输的结束位置,从第一传输的起始位置传输第一传输至第一传输的结束位置。
图3为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图。如图3所示,图3中第一传输的起始位置早于G点,与图2(a)、图2(b)和图2(c)不同的是,图3中的G点晚于或者等于第一传输的结束位置,在此场景下,发送端可以从第一传输的起始位置传输第一传输至第一传输的结束位置,并从第二传输的起始位置传输第二传输至第二传输的结束位置。如此,不仅能够保证优先级更高的第二传输能正常传输,还可以使低优先级的第一传输正常传输。
S140、第一传输的起始位置晚于或者等于G点,则取消传输第一传输。
图4为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图。如图4所示,图4中第一传输的起始位置晚于或者等于G点,在此场景下,为了保证优先级更高的第二传输能正常传输,发送端取消传输第一传输,并从第二传输的起始位置传输第二传输至第二传输的结束位置。
S150、第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则从第一传输的起始位置传输第一传输至第一传输的结束位置;其中,H点为在第二传输的结束位置之后第二预设时间的时间点。
图5为一实施例提供的另一种第一传输和第二传输在时域上的关系示意图。如图5所示,图5中第一传输的起始位置晚于或者等于G点,与图4不同的是,图5中的第一传输的起始位置还晚于或者等于H点,在此场景下,发送端可以先从第二传输的起始位置传输第二传输至第二传输的结束位置,再从第一传输的起始位置传输第一传输至第一传输的结束位置。如此,不仅能够保证优先级更高的第二传输能正常传输,还可以使低优先级的第一传输正常传输。
本实施例中,上述步骤S120-步骤S150为并列的步骤。另外,本申请实施例所提到的G点可以对应第二传输的动态授权结束位置,也可以晚于第二传输的动态授权结束位置。
在一实施例中,第一预设时间为T3,或者T3+X,或者T3+X+D;第二预设时间为T1,或者T1+X1。
在一实施例中,在第一传输和第二传输均为上行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N2(可以是T1和T3的取值均为N2),或者T1和T3为第二处理时间T proc,2;D为取消处理的第一传输或第二传输的时间D2;在第一传输和第二传输均为下行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N1,或者T1和T3为第一处理时间T proc,1;D为取消处理的第一传输或第二传输的时间D1;X1和X分别为T1和T3的调整量。
在一实施例中,D1的取值为0;D2的取值为0;X1的取值为0;X的取值为0。
在一实施例中,第一预设时间还包括:第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号。
在一实施例中,Q的取值根据处理物理下行控制信道(Physical Downlink Control Channel,PDCCH)的时间,和/或处理物理下行共享信道PDSCH的时间确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
图6为一实施例提供的另一种传输处理方法的流程示意图,如图6所示,本实施例提供的方法适用于接收端,该方法包括如下步骤。
S210、对于至少两个传输,确定第一传输的起始位置与G点在时域上的先后关系。
本申请实施例是以至少两个传输中的任意两个传输分别为第一传输和第二传输,且第一传输的优先级低于第二传输的优先级为例进行说明的。
第一传输可以为上行传输或者下行传输,第二传输可以为上行传输或者下行传输。
第一传输和第二传输在同一载波中或者在不同载波中。
第一传输的授权方式可以为动态授权或者配置授权,第二传输的授权方式可以为动态授权或者配置授权。在一实施例中,在第一传输和第二传输均为动态授权的情况下,第一传输的动态授权先于第二传输的动态传输;在第一传输和第二传输均为配置授权的情况下,第一传输的确定传输的时刻(即第一传输的数据达到时刻)早于第二传输的确定传输的时刻(即第一传输的数据达到时刻)。
第一传输和第二传输在时域上存在重叠。
当第一传输和第二传输在时域上存在重叠时,接收端可以确定第一传输的起始位置与G点在时域上的先后关系。本实施例中,G点为在第二传输的起始位置之前第一预设时间的时间点。
S220、第一传输的起始位置早于G点,确定第一传输从第一传输的起始位置被传输至G点。
如图2(a)、图2(b)和图2(c)所示,图2(a)、图2(b)和图2(c)中第一传输的起始位置均早于G点,对应图2(a)、图2(b)和图2(c)的三种场景下,接收端确定第一传输从第一传输的起始位置被传输至G点,并确定第二传输从第二传输的起始位置被传输至第二传输的结束位置。如此,能够保证优先级更高的第二传输能正常传输,同时传输了部分第一传输,达到了优化低优先级的传输,降低传输损失的目的。
S230、第一传输的起始位置早于G点、且G点晚于或者等于第一传输的结束位置,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置。
参照图3,如图3所示,图3中第一传输的起始位置早于G点,与图2(a)、图2(b)和图2(c)不同的是,图3中的G点晚于或者等于第一传输的结束位置,在此场景下,接收端可以确定第一传输从第一传输的起始位置被传输至第一传输的结束位置,并确定第二传输从第二传输的起始位置被传输至第二传输的结束位置。如此,不仅能够保证优先级更高的第二传输能正常传输,还可以使低优先级的第一传输正常传输。
S240、第一传输的起始位置晚于或者等于G点,则取消接收第一传输。
参照图4,如图4所示,图4中第一传输的起始位置晚于或者等于G点,在此场景下,为了保证优先级更高的第二传输能正常传输,接收端取消接收第一传输,并确定第二传输从第二传输的起始位置被传输至第二传输的结束位置。
S250、第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置;其中,H点为在第二传输的结束位置之后第二预设时间的时间点。
参照图5,如图5所示,图5中第一传输的起始位置晚于或者等于G点,与图4不同的是,图5中的第一传输的起始位置还晚于或者等于H点,在此场景下,接收端可以确定第二传输从第二传输的起始位置被传输至第二传输的结束位置,以及确定第一传输从第一传输的起始位置被传输至第一传输的结束位置。如此,不仅能够保证优先级更高的第二传输能正常传输,还可以使低优先级的第一传输正常传输。
本实施例中,上述步骤S220-步骤S250为并列的步骤。
在一实施例中,第一预设时间为T3,或者T3+X,或者T3+X+D;第二预设时间为T1,或者T1+X1。
在一实施例中,在第一传输和第二传输均为上行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N2(可以是T1和T3的取值均为N2),或者T1和T3为第二处理时间T proc,2;D为取消处理的第一传输或第二传输的时间D2;在第一传输和第二传输均为下行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N1,或者T1和T3为第一处理时间T proc,1;D为取消处理的第一传输或第二传输的时间D1;X1和X分别为T1和T3的调 整量。
在一实施例中,D1的取值为0;D2的取值为0;X1的取值为0;X的取值为0。
在一实施例中,第一预设时间还包括:第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号。
在一实施例中,Q的取值根据处理物理下行控制信道PDCCH的时间,和/或处理物理下行共享信道PDSCH的时间确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
本申请提供的一种传输处理方法还可以包括如下步骤。
S310、对于至少两个传输,确定第一传输的起始位置与G点在时域上的先后关系。
S320、第一传输的起始位置早于G点,从第一传输的起始位置至少传输第一传输至G点。
本实施例中,从第一传输的起始位置至少传输第一传输至G点可以是指:从第一传输的起始位置传输第一传输至G点为止,或者从第一传输的起始位置传输第一传输至G点以后的任意位置,本申请实施例对此不作具体限制。
S330、第一传输的起始位置早于G点、且G点晚于或者等于第一传输的结束位置,从第一传输的起始位置传输第一传输至第一传输的结束位置。
S340、第一传输的起始位置晚于或者等于G点,则取消传输第一传输。
S350、第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则从第一传输的起始位置传输第一传输至第一传输的结束位置;其中,H点为在第二传输的结束位置之后第二预设时间的时间点。
步骤S310-步骤S350适用于发送端。本实施例中,步骤S310-步骤S350的详细解释可以参照上述步骤S110-步骤S150,为了简洁,此处不再赘述。
本申请提供的一种传输处理方法还可以包括如下步骤。
S410、对于至少两个传输,确定第一传输的起始位置与G点在时域上的先后关系。
S420、第一传输的起始位置早于G点,确定第一传输从第一传输的起始位置被至少传输至G点。
本实施例中,确定第一传输从第一传输的起始位置被至少传输至G点可以是指:确定第一传输从第一传输的起始位置被传输至G点为止,或者确定第一传输从第一传输的起始位置被传输至G点以后的任意位置,本申请实施例对此不作具体限制。
S430、第一传输的起始位置早于G点、且G点晚于或者等于第一传输的结束位置,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置。
S440、第一传输的起始位置晚于或者等于G点,则取消接收第一传输。
S450、第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置;其中,H点为在第二传输的结束位置之后第二预设时间的时间点。
步骤S410-步骤S450适用于接收端。本实施例中,步骤S410-步骤S450的详细解释可以参照上述步骤S210-步骤S250,为了简洁,此处不再赘述。
在一实施例中,第二传输的优先级高于第一传输的优先级,第二传输总是按照动态授权或配置授权进行传输。第一传输和第二传输可以是没有动态授权的,即此时采用配置授权。如果第一传输和第二传输均有动态授权,则第一传输的动态授权先于第二传输的动态授权传输。如果第一传输和第二传输中的至少一个为配置授权,则第一传输的到达时刻点(确定传输的时刻点)早于第二传输的到达时刻点。对于配置授权的传输按照配置授权确定传输的起始位置或传输的结束位置。第一传输和第二传输可以同时为上行传输或下行传输,也可以是第一传输和第二传输分属于下行传输和上行传输。第一传输和第二传输可以分别在两个载波中,也可以在同一个载波中。
本申请要解决的问题通常出现在:同一UE有多个传输,且低优先级传输先被确定了传输位置(不管是通过动态授权确定,还是通过配置授权确定;下行 传输就是基站确定传输位置,上行传输中动态授权是基站确定传输位置、配置授权是UE确定传输位置),后续又有高优先级传输需要传输。此时高优先级传输被确定的传输位置影响了低优先级传输,例如,高优先级传输的传输位置直接和低优先级的传输的传输位置在时域存在全部或部分的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号重叠;又例如,高优先级传输的数据准备时间和低优先级传输的数据准备时间之间存在冲突,此时只能准备高优先级传输的数据;又例如,高优先级传输的数据准备时间和低优先级传输的传输位置存在部分或全部的OFDM重叠。这里的数据准备可以看做是逐个符号的流水方式准备的,即准备好一个符号,就发送该符号同时也准备下一个符号。例如图2(c)中,第二传输的动态授权被接收后,就开始准备第二传输的数据,此时在第二传输的动态授权之后,第一传输的数据也还在准备中,如果UE能力低,只能准备一个传输的,所以第二传输的动态授权之后第一传输的数据准备被中断,导致第一传输不能被传输。
在一实施例中,第一预设时间和第二预设时间的解释可以包括:在第一传输和第二传输均为上行传输的情况下,T1为处理第一传输的数据的时间,T3为处理第二传输的数据的时间(在一实施例中,处理第一传输的数据的时间也可以理解为准备第一传输的数据的时间,处理第二传输的数据的时间也可以理解为准备第二传输的数据的时间)。在新无线(New Radio,NR)中,UE处理数据(通过PUSCH传输的数据)的时间为N2,参见TS38.214vf40,并且随着不同的传输情况,例如子载波间隔、跨载波调度传输等,N2可以取不同的取值,本申请实施例以T1和T3均为N2为例进行说明。一般的,对于同一UE来说,T1和T3的取值相同,但是在某些特定的场景(如NR Rel-15)中,T1和T3是根据UE确定的给定数值(主要基于eMBB定义的数值)定义的,但是在NR Rel-16中,为了使T1和T3的定义适应URLLC,T1和T3的数值可能会减小,也可能导致UE准备低优先级业务的时间和准备高优先级业务的时间不同,所以可能导致T1和T3的取值不同,即分别以T1和T3表示。
或者,在第一传输和第二传输均为上行传输的情况下,T1和T3也可以按照NR中定义的T proc,2确定,即T1和T3为第二处理时间T proc,2。T proc,2是描述从UE接收到上行授权的末尾直到上行授权对应的PUSCH的起始位置之间的最小间隔,也就是在UE接收到上行授权后,至少要经过T proc,2的时间,UE才能开始PUSCH传输。这里,T proc,2的定义中包含多个参数,以及同一参数在不同场景下 的取值也有所不同,以及同一参数在不同NR协议版本下的取值也可以不同,或者不同NR协议版本下包含的参数不同(例如增加新的参数等)。本申请中的T1和T3也可以均等同于T proc,2;其中,TS38.214vf40中的T proc,2=max((N 2+d 2,1)(2048+144)·κ2 ·T C,d 2,2),这里的参数定义可以参考TS38.214vf40。
在一实施例中,X1和X分别为T1和T3的调整量,用来微调T1和T3的取值,X1和X是可选的存在,也就是说X1和X允许总是为0,即忽略这个参数X1和X。
在第一传输和第二传输均为上行传输的情况下,D为取消处理的第一传输或第二传输的时间D2。例如取消正在处理的PUSCH的时间,或取消已经处理完毕的PUSCH的时间。一般的,D2的取值为0,取消的时间被计入其他参考量中,也可以给出定义值,例如,定义值是考虑最差能力的UE,或者考虑一个很宽松的值使得所有设备都能满足。
在一实施例中,在第一传输和第二传输均为下行传输的情况下,T1为处理第一传输的数据的时间,T3为处理第二传输的数据的时间(在一实施例中,处理第一传输的数据的时间也可以理解为解码第一传输的数据的时间,处理第二传输的数据的时间也可以理解为解码第二传输的数据的时间)。在NR中,UE处理数据(通过PDSCH传输的数据)的时间为N1,参见TS38.214vf40,并且随着不同的传输情况,N1可以取不同的取值。
或者,在第一传输和第二传输均为下行传输的情况下,T1和T3也可以按照NR中定义的T proc,1确定,即T1和T3为第一处理时间T proc,1。T proc,1是描述从UE接收到PDSCH的末尾直到对应的混合自动重传请求-确认信息(Hybrid Automatic Repeat request-Acknowledgement,HARQ-ACK)的PUCCH的起始位置之间的最小间隔,也就是在UE接收到PDSCH后,至少要经过T proc,1的时间,UE才能开始PDSCH对应的HARQ-ACK的PUCCH传输。这里,T proc,1的定义中包含多个参数,以及同一参数在不同场景下的取值也有所不同,以及同一参数在不同NR协议版本下的取值也可以不同,或者不同NR协议版本下包含的参数 不同(例如增加新的参数等)。本申请中的T1和T3也可以均等同于T proc,1
在一实施例中,X1和X分别为T1和T3的调整量,用来微调T1和T3的取值,X1和X是可选的存在,也就是说X1和X允许总是为0,即忽略这个参数X1和X。
在第一传输和第二传输均为下行传输的情况下,D为取消处理的第一传输或第二传输的时间D1。例如取消正在处理的PDSCH的时间,或取消已经处理完毕的PDSCH的时间。一般的,D1的取值为0,取消的时间被计入其他参考量中,也可以给出定义值,例如,定义值是考虑最差能力的UE,或者考虑一个很宽松的值使得所有设备都能满足。
在一实施例中,T1,T3,X1,X,N2,N1,D1和D2都可以使用绝对时长或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数量来进行表示,这里一个OFDM符号对应的绝对时长在给定系统中是确定的,所以绝对时长和符号数量之间可以换算时长。进一步的,对于同一参数,可以采用多个预定义的取值,对应不同的UE能力。例如,低能力UE的N1为W1个符号,高能力UE的N1为W2个符号。然后UE和基站根据自己的能力可以选择对应的N1取值。其他参数类似。
在一实施例中,第一预设时间还包括:第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号;其中,Q的取值根据处理物理下行控制信道PDCCH的时间,和/或处理物理下行共享信道PDSCH的时间确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
下面罗列一些典型示例性实施方式,其中第一预设时间以T3+X为例,第二预设时间以T1+X1为例。
在第一个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图4,基站先传输了PDSCH 1的动态授权,基站又传输了PDSCH 2的动态授权,按照动态授权,PDSCH 1的传输的开始位置晚于或等于PDSCH 2的传输的开始位置之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点恰好对应第二传输的动态授权 的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的结束位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和子载波间隔(Subcarrier spacing,SCS)绑定,即不同的SCS时,对应的E值不同))。此时,基站取消PDSCH 1的传输,PDSCH 2按照PDSCH 2的动态授权正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PDSCH 1的动态授权,又接收到PDSCH 2的动态授权,按照动态授权,PDSCH 1的传输的开始位置晚于或等于G点,此时,接收端UE认为PDSCH 1的传输被取消,UE接收PDSCH 2的传输。对于第一传输和第二传输也可以是配置授权,或者其中一个是配置授权的,此时的处理是类似的。即PDSCH 1的传输的开始位置晚于或等于G点(对于第二传输为配置授权的情况,G点的确定,为第二传输的数据到达时刻点之前T3+X处,下同),基站和UE约定,取消PDSCH 1的传输,PDSCH 2正常传输。
在一实施例中,(参考图5)对于PDSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PDSCH 1的传输的开始位置也在PDSCH 2的传输的结束位置之后T1+X1处或之后,则PDSCH 1也被正常传输。这是因为,PDSCH 1的开始位置比较晚,PDSCH 2被传输结束了,并且还至少间隔了T1+X1时长之后,PDSCH 1才开始传输,此时由于PDSCH 2已经传输结束了,所以PDSCH 1能被完整传输。
在第二个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图4,基站先传输了PUSCH 1的动态授权,基站又传输了PUSCH 2的动态授权,按照动态授权,PUSCH 1的传输的开始位置晚于或等于PUSCH 2的传输的开始位置之前T3+X处(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的结束位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X 再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同))。此时,基站确定PUSCH 1被取消传输,PUSCH 2按照PUSCH 2的动态授权正常传输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PUSCH 1的动态授权,又接收到PUSCH 2的动态授权,按照动态授权,PUSCH 1的传输的开始位置晚于或等于G点,此时,UE取消PUSCH 1的发送,PUSCH2正常发送。对于第一传输和第二传输也可以是配置授权,或者其中一个是配置授权的,此时的处理是类似的。即PUSCH 1的传输的开始位置晚于或等于G点(对于第二传输为配置授权的情况,G点的确定,为第二传输的数据到达时刻点之前T3+X处,下同),基站和UE约定,取消PUSCH 1的传输,PUSCH 2正常传输。
在一实施例中,(参考图5)对于PUSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PUSCH 1的传输的开始位置也在PUSCH 2的传输的结束位置之后T1+X1处或之后,则PUSCH 1也被正常传输。这是因为,PUSCH 1的开始位置比较晚,PUSCH 2被传输结束了,并且还至少间隔了T1+X1时长之后,PUSCH 1才开始传输,此时由于PUSCH 2已经传输结束了,所以PUSCH 1能被完整传输。
在第三个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图2(a)、图2(b)和图2(c),基站先传输了PDSCH 1的动态授权,基站又传输了PDSCH 2的动态授权,按照动态授权,PDSCH 1的传输的开始位置早于PDSCH 2的传输的开始位置之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的结束位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同))。此时,基站将PDSCH 1传输(或至少传输)至G点(但是,如果G点晚于PDSCH 1 的传输的结束位置,则基站将PDSCH 1传输至PDSCH 1的结束位置处,例如图3;如果G点早于PDSCH 1的传输的结束位置,则基站将PDSCH 1传输至G点),并将PDSCH 1剩余部分取消传输。PDSCH 2正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PDSCH 1的动态授权,又接收到PDSCH 2的动态授权,按照动态授权,PDSCH 1的传输的开始位置早于G点,接收端UE认为PDSCH 1从PDSCH 1传输的开始位置至G点(或至少至G点)是正常传输的(但是,如果G点晚于PDSCH 1传输的结束位置,则接收端UE确定PDSCH 1传输至PDSCH 1的结束位置处,如果G点早于PDSCH 1传输的结束位置,则接收端UE确定PDSCH 1传输至G点),接收端UE正常传输PDSCH 2。对于第一传输和第二传输也可以是配置授权,或者其中一个是配置授权的,此时的处理是类似的。即PDSCH 1的传输的开始位置早于G点(对于第二传输为配置授权的情况,G点的确定,为第二传输的数据到达时刻点之前T3+X处,下同),基站和UE约定,PDSCH 1从PDSCH 1传输的开始位置至(或至少至)G点是正常传输的,PDSCH 2正常传输。
在第四个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图2(a)、图2(b)和图2(c),基站先传输了PUSCH 1的动态授权,基站又传输了PUSCH 2的动态授权,按照动态授权,PUSCH 1的传输的开始位置早于PUSCH 2的传输的开始位置之前T3+X处(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的结束位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站确定PUSCH 1被传输(或至少被传输)至G点(但是,如果G点晚于PUSCH 1的传输的结束位置,则基站确定PUSCH 1被传输至PUSCH 1的结束位置处,例如图3;如果G点早于PUSCH 1的传输的结束位置,则基站认为PUSCH 1传输至G点)。基站确定PUSCH 1剩余部分被取消传输。PUSCH 2被正常传 输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PUSCH 1的动态授权,又接收到PUSCH 2的动态授权,按照动态授权,PUSCH 1的传输的开始位置早于G点,UE认为PUSCH 1需要从PUSCH 1的传输的开始位置传输至(或至少传输至)G点(但是,如果G点晚于PUSCH 1的传输的结束位置,则接收端确定PUSCH 1传输至PUSCH 1的结束位置处,如果G点早于PUSCH 1的传输的结束位置,则接收端确定PUSCH 1被传输至G点),UE正常传输PUSCH 2。对于第一传输和第二传输也可以是配置授权,或者其中一个是配置授权的,此时的处理是类似的。即PUSCH 1的传输的开始位置早于G点(对于第二传输为配置授权的情况,G点的确定,为第二传输的数据到达时刻点之前T3+X处,下同),基站和UE约定,PUSCH 1从PUSCH 1传输的开始位置至(或至少至)G点是正常传输的,PUSCH 2正常传输。
在第五个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为配置授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图4,基站传输了PDSCH 1的动态授权,基站又确定PDSCH 2需要传输(基站之前为UE激活/配置了配置授权的下行传输),基站按照配置授权进行PDSCH 2的传输。基站确定PDSCH 1的传输的开始位置(按照PDSCH 1的动态授权确定)晚于或等于PDSCH 2的传输的开始位置(按照传输PDSCH 2的配置授权确定)之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站取消PDSCH 1的传输,PDSCH 2按照PDSCH 2的配置授权正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PDSCH 1的动态授权,又需要按照配置授权尝试接收PDSCH 2,接收端UE确定PDSCH 1的传输的开始位置晚于或等于G点,如果UE正确接收到了PDSCH 2(这是因为配置授权激活后,PDSCH 2有可能使用配置授权对应的资源传输,也可能并未传输,所以需要接收端UE尝试接收),此时,接收端UE认为PDSCH 1的传输被取消,从而按照配置授权接收PDSCH 2的传输。
在一实施例中,(参考图5)对于PDSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PDSCH 1的传输的开始位置也在PDSCH 2的传输的结束位置之后T1+X1处或之后,则PDSCH 1也被正常传输。这是因为,PDSCH 1的开始位置比较晚,PDSCH 2被传输结束了,并且还至少间隔了T1+X1时长之后,PDSCH 1才开始传输,此时由于PDSCH 2已经传输结束了,所以PDSCH 1能被完整传输。
在第六个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为配置授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图4,基站传输了PUSCH 1的动态授权,基站之前也为UE激活/配置了配置授权的上行传输,按照配置授权尝试接收PUSCH 2的传输。基站确定PUSCH 1的传输的开始位置(按照PUSCH 1的动态授权确定)晚于或等于PUSCH 2的传输的开始位置(按照传输PUSCH 2的配置授权确定)之前T3+X处,当基站确定正确接收到了PUSCH 2(因为PUSCH 2采用配置授权,所以PUSCH 2在配置授权的传输位置处,可能被UE传输,也可能未被UE传输,所以需要基站尝试接收PUSCH 2来确定是否真实发送了PUSCH 2,只有UE实际发送了PUSCH 2,此时PUSCH 1才会受到影响)(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站确定PUSCH 1的传输被取消,PUSCH 2按照PUSCH 2的配置授权正常传输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PUSCH 1的动态授权,又发现有PUSCH 2需要传输,且计划使用配置授权来传输PUSCH 2,接收端确定PUSCH 1的传输的开始位置晚于或等于G点,此时,UE取消PUSCH 1的传输,从而按照配置授权传输PUSCH 2。
在一实施例中,(参考图5)对于PUSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PUSCH 1的传输的开始位置也在PUSCH 2的传输的结束位置之后T1+X1处或之后,则PUSCH 1也被正常传输。这是因为,PUSCH 1的开始位置比较晚,PUSCH 2被传输结束了,并且还至少 间隔了T1+X1时长之后,PUSCH 1才开始传输,此时由于PUSCH 2已经传输结束了,所以PUSCH 1能被完整传输。
在第七个示例性实施方式中,若第一传输的授权方式为配置授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图4,基站确定PDSCH 1需要传输(基站之前为UE激活/配置了配置授权的下行传输),基站将按照配置授权进行PDSCH 1的传输,基站又传输了PDSCH 2的动态授权。基站确定PDSCH 1的传输的开始位置(按照PDSCH 1的配置授权确定)晚于或等于PDSCH 2的传输的开始位置(按照传输PDSCH 2的动态授权确定)之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的发送位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站取消PDSCH 1的传输,PDSCH 2按照PDSCH 2的动态授权正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,将接收激活/配置了配置授权的PDSCH 1,接收PDSCH 2的动态授权,接收端UE确定PDSCH 1(按照配置授权确定PDSCH 1的可能传输时的开始位置)的传输的开始位置晚于或等于G点,此时,接收端UE认为PDSCH 1的传输被取消,从而按照动态授权接收PDSCH 2的传输。
在一实施例中,(参考图5)对于PDSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PDSCH 1的传输的开始位置也在PDSCH 2的传输的结束位置之后T1+X1处或之后,则PDSCH 1也被正常传输。这是因为,PDSCH 1的开始位置比较晚,PDSCH 2被传输结束了,并且还至少间隔了T1+X1时长之后,PDSCH 1才开始传输,此时由于PDSCH 2已经传输结束了,所以PDSCH 1能被完整传输。
在第八个示例性实施方式中,若第一传输的授权方式为配置授权,第二传 输的授权方式为动态授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图4,基站之前也为UE激活/配置了配置授权的上行传输,基站需要按照配置授权尝试接收PUSCH 1的传输。基站传输了PUSCH 2的动态授权。基站确定PUSCH 1的传输的开始位置(按照PUSCH 1的配置授权确定)晚于或等于PUSCH 2的传输的开始位置之前T3+X处(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图4中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的发送位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站确定PUSCH 1的传输被取消,PUSCH 2按照PUSCH 2的动态授权正常传输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE发现有PUSCH 1需要传输,且计划使用配置授权来传输PUSCH 1,UE接收PUSCH 2的动态授权,UE确定PUSCH 1的传输的开始位置晚于或等于G点,此时,UE取消PUSCH 1的传输,从而按照动态授权发送PUSCH 2的传输。
在一实施例中,(参考图5)对于PUSCH 1的传输的开始位置晚于或等于G点的情况,还可以考虑下面的处理:如果PUSCH 1的传输的开始位置也在PUSCH 2的传输的结束位置之后T1+X1处或之后,则PUSCH 1也被正常传输。这是因为,PUSCH 1的开始位置比较晚,PUSCH 2被传输结束了,并且还至少间隔了T1+X1时长之后,PUSCH 1才开始传输,此时由于PUSCH 2已经传输结束了,所以PUSCH 1能被完整传输。
在第九个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为配置授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图2(a)、图2(b)和图2(c),基站传输了PDSCH 1的动态授权,基站确定需要按照配置授权传输PDSCH 2(基站之前为UE激活/配置了配置授 权传输)。基站确定PDSCH 1的传输的开始位置早于PDSCH 2的传输的开始位置之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站将PDSCH 1传输(或至少被传输)至G点(但是,如果G点晚于PDSCH 1的传输的结束位置,则基站将PDSCH 1传输至PDSCH 1的结束位置处,例如图3;如果G点早于PDSCH 1的传输的结束位置,则基站将PDSCH 1传输至G点)。基站将PDSCH 1剩余部分取消传输。PDSCH 2正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PDSCH 1的动态授权。又因为UE被激活/配置了配置授权来进行下行传输,所以,UE按照配置授权尝试接收PDSCH 2。如果PDSCH 1的传输的开始位置早于G点,且如果UE正确接收了PDSCH 2,则接收端认为PDSCH 1从PDSCH 1的开始位置至G点(或至少至G点)是正常传输的(但是,如果G点晚于PDSCH 1传输的结束位置,则接收端确定PDSCH 1传输至PDSCH 1的结束位置处,如果G点早于PDSCH 1传输的结束位置,则接收端确定PDSCH 1传输至G点),剩余的PDSCH 1被取消传输。如果UE未正确接收PDSCH 2,则UE认为:PDSCH 2未传输,那么PDSCH 1被正常传输,或者PDSCH 2传输了但是解码错误,此时PDSCH 1被传输了部分。
这里对于PDSCH 2在传输的情况下,仍然使用了PDSCH 1的开始位置早于G点,基站和UE约定,PDSCH 1从PDSCH 1的开始位置被传输至G点(或至少至G点),其余部分PDSCH 1未被传输,PDSCH 2正常传输。需要说明的是,如果G点晚于PDSCH 1的传输的结束位置,则接收端确定PDSCH 1传输至PDSCH 1的结束位置处,如果G点早于PDSCH 1的传输的结束位置,则接收端确定PDSCH 1传输至G点。
在第十个示例性实施方式中,若第一传输的授权方式为动态授权,第二传输的授权方式为配置授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图2(a)、图2(b)和图2(c),基站传输了PUSCH 1的动态授权。 基站也激活/配置了配置授权为上行传输。这样,UE可能利用配置授权来传输PUSCH 2(是否传输,取决于UE是否有PUSCH 2的数据需要传输)。如果PUSCH 1的传输的开始位置早于PUSCH 2的传输的开始位置之前T3+X处(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站确定PUSCH 1被传输(或至少被传输)至G点(如果G点晚于PUSCH 1的传输的结束位置,则基站确定PUSCH 1被传输至PUSCH 1的结束位置处,例如图3;如果G点早于PUSCH 1的传输的结束位置,则基站认为PUSCH 1被传输至G点)。剩余部分的PUSCH 1(G点之后的PUSCH 1)是否被传输,还取决于PUSCH 2是否被UE传输。如果UE有PUSCH 2需要传输,则PUSCH 2正常传输,此时PUSCH 1剩余部分被取消传输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PUSCH 1的动态授权,且UE被激活/配置了配置授权来进行上行传输。若UE确定有PUSCH 2需要传输,且UE确定PUSCH 1的传输的开始位置早于G点,则PUSCH 1从PUSCH 1的开始位置被传输至G点(或至少至G点),剩余部分的PUSCH 1被取消传输;PUSCH 2根据配置授权被正常传输。若UE确定没有PUSCH 2需要被传输,那么UE按照动态授权传输PUSCH 1。
在第十一个示例性实施方式中,若第一传输的授权方式为配置授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为下行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PDSCH 1,第二传输对应PDSCH 2。
参考图2(a)、图2(b)和图2(c),基站传输了PDSCH 2的动态授权,基站确定需要按照配置授权传输PDSCH 1(基站之前为UE激活/配置了配置授权传输)。基站确定PDSCH 1的传输的开始位置早于PDSCH 2的传输的开始位置之前T3+X处(这里,将PDSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点恰好对应第二传输的动态授权的结束位置,但是实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的发送位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个 PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站将PDSCH 1传输(或至少传输)至G点(但是,如果G点晚于PDSCH 1的传输的结束位置,则基站将PDSCH 1传输至PDSCH 1的结束位置处,例如图3;如果G点早于PDSCH 1的传输的结束位置,则基站将PDSCH 1传输至G点)。基站将PDSCH 1剩余部分取消传输。PDSCH 2正常传输。PDSCH 1和PDSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PDSCH 2的动态授权。UE被激活/配置了配置授权来进行下行传输接收,因此,UE按照配置授权尝试接收PDSCH 1。如果PDSCH 1的传输的开始位置早于G点,且如果UE正确接收了PDSCH 2,则接收端认为PDSCH 1从PDSCH 1的开始位置至G点(或至少至G点)是正常传输的(但是,如果G点晚于PDSCH 1传输的结束位置,则接收端UE确定PDSCH 1传输至PDSCH 1的结束位置处,如果G点早于PDSCH 1传输的结束位置,则接收端UE确定PDSCH 1传输至G点),剩余的PDSCH 1被取消传输。如果UE未正确接收PDSCH 2,则UE认为:PDSCH 2未传输,那么PDSCH 1被正常传输,或者PDSCH 2传输了但是解码错误,此时PDSCH 1被传输了部分。
这里对于PDSCH 1在传输的情况下,仍然使用了PDSCH 1的开始位置早于G点,基站和UE约定,PDSCH 1从PDSCH 1的开始位置被传输至G点(或至少至G点),其余部分PDSCH 1未被传输,PDSCH 2正常传输。需要说明的是,如果G点晚于PDSCH 1的传输的结束位置,则接收端确定PDSCH 1传输至PDSCH 1的结束位置处,如果G点早于PDSCH 1的传输的结束位置,则接收端确定PDSCH 1传输至G点。
在第十二个示例性实施方式中,若第一传输的授权方式为配置授权,第二传输的授权方式为动态授权,且第一传输和第二传输均为上行传输,第一传输的优先级低于第二传输的优先级,例如第一传输对应PUSCH 1,第二传输对应PUSCH 2。
参考图2(a)、图2(b)和图2(c),基站传输了PUSCH 2的动态授权。基站也激活/配置了配置授权为上行传输。这样,UE可能利用配置授权来传输PUSCH 1(是否传输,取决于UE是否有PUSCH 1的数据需要传输)。如果PUSCH 1的传输的开始位置早于PUSCH 2的传输的开始位置之前T3+X处(这里,将PUSCH 2(优先级高的)的传输的开始位置之前T3+X处记为G点,在图2(a)、图2(b)和图2(c)中,G点恰好对应第二传输的动态授权的结束位置,但是 实际上,G点可以晚于第二传输的动态授权的结束位置,即第二传输的动态授权的发送位置早于G点。G点也可以是第二传输的开始位置之前T3+X处再向左(按照图中方向,即T3+X确定时长有些短,此时将T3+X再增加一些)移动E个符号(E为预定义的数值,参考取消一个PDSCH或PUSCH的处理,例如1个或2个,E的取值也可以和SCS绑定,即不同的SCS时,对应的E值不同)),此时,基站认为PUSCH 1传输(或至少被传输)至G点(但是,如果G点晚于PUSCH 1的传输的结束位置,则基站确定PUSCH 1被传输至PUSCH 1的结束位置处,例如图3;如果G点早于PUSCH 1的传输的结束位置,则基站认为PUSCH 1传输至G点)。剩余部分的PUSCH 1(G点之后的PUSCH1)是否被传输,还取决于PUSCH 2是否被UE传输。如果UE有PUSCH 2需要传输,则PUSCH 2正常传输,此时PUSCH 1剩余部分被取消传输。PUSCH 1和PUSCH 2的传输两者之间可能时域重叠,也可以不重叠。对于UE侧,UE接收PUSCH 2的动态授权。UE被激活/配置了配置授权来进行上行传输。UE确定有PUSCH 1需要被传输,那么UE确定PUSCH 1的传输的开始位置早于G点,PUSCH 1从PUSCH 1的开始位置被传输至G点(或至少至G点),剩余部分的PUSCH 1被取消传输。PUSCH2根据动态授权被正常传输。
上述示例性实施方式均是以第一预设时间为T3+X,第二预设时间为T1+X1为例进行说明的。
本申请实施例所提供的一种传输处理方法所解决的问题,也可以通过下面第十三个示例性实施方式来解决。
参考图2-图5,该方法可以描述为:对于一个UE的多个业务传输,(例如图2-图5中示意了两个不同优先级的传输,两个传输之间可能存在时域重叠,也可能其中一个传输的动态授权和另一个传输的时域重叠)。
第一传输的起始位置早于第二传输的动态授权结束位置(或早于第二传输的动态授权开始位置,或早于第二传输的动态授权结束位置向后延迟Q1个符号),则第一传输从第一传输的起始位置传输(或至少传输)至A处。
A处的确定可以为下述方式中的一种:
A处的确定为:第二传输的动态授权的结束位置处或第一传输的结束位置处,取两者中的较早者(这里可以有多种描述,其本质就是:对应于第一传输的结束位置早于第二传输的动态授权的结束位置,则第一传输被全部传输结束; 对应于第一传输的结束位置晚于第二传输的动态授权的结束位置,则第一传输从第一传输的起始位置开始传输至第二传输的动态授权的结束位置处);
或者,A处的确定为:第二传输的动态授权的开始位置处或第一传输的结束位置处,取两者中的较早者(这里可以有多种描述,其本质就是:对应于第一传输的结束位置早于第二传输的动态授权的开始位置,则第一传输被全部传输结束;对应于第一传输的结束位置晚于第二传输的动态授权的开始位置,则第一传输从第一传输的起始位置开始传输至第二传输的动态授权的开始位置处);
或者,A处的确定为:第二传输的动态授权的结束位置向后延迟Q1个符号,或第一传输的结束位置处,取两者中的较早者(这里可以有多种描述,其本质就是:对应于第一传输的结束位置早于第二传输的动态授权的结束位置向后延迟Q1个符号的位置处,则第一传输被全部传输结束;对应于第一传输的结束位置晚于第二传输的动态授权的结束位置向后延迟Q1个符号的位置处,则第一传输从第一传输的起始位置开始传输至第二传输的动态授权的结束位置向后延迟Q1个符号的位置处)。也就是第一传输要么被全部传输结束,要么第一传输被传输至第二传输的动态授权的结束位置处向后延迟Q1个符号。
第二传输的动态授权的结束位置(或第二传输的动态授权的开始位置;或第二传输的动态授权的结束位置向后延迟Q1个符号对应的时间点),早于第一传输的开始位置,则第一传输被取消传输。
其中,Q1取值参考UE解码PDCCH时间,和取消处理数据的时间(上行传输时包括取消准备数据的时间,下行传输时包括取消解码数据的时间)中的至少一个来确定,或者Q1被预定义为固定数值,例如1个,2个或3个符号。
在一实施例中,第二传输的优先级高于第一传输的优先级,第二传输总是按照动态授权或配置授权进行传输。第一传输和第二传输可以是没有动态授权的,即此时采用配置授权。如果第一传输和第二传输均有动态授权,则第一传输的动态授权先于第二传输的动态授权传输。如果第一传输和第二传输均为配置授权,则第一传输的数据到达时刻点(确定传输的时刻点)早于第二传输的数据到达时刻点。对于配置授权的传输按照配置授权确定传输的起始位置或传输的结束位置。
如果第二传输的授权方式为配置授权,则在上述的方式中,涉及到第二传输的动态授权被第二传输的数据到达时刻点替代。此时,第二传输的动态授权开始位置和第二传输的动态授权结束位置均对应为第二传输的数据到达时刻点。
第一传输和第二传输可以同时为上行传输或下行传输,也可以是第一传输和第二传输分属于下行传输和上行传输。第一传输和第二传输可以分别在两个载波中,也可以在同一个载波中。
本申请要解决的问题通常出现在:同一UE有多个传输,且低优先级传输先被确定了传输位置(不管是通过动态授权确定,还是通过配置授权确定;下行传输就是基站确定传输位置,上行传输中动态授权是基站确定传输位置、配置授权是UE确定传输位置),后续又有高优先级传输需要传输。此时高优先级传输被确定的传输位置影响了低优先级传输或低优先级传输的数据准备,例如,高优先级传输的传输位置直接和低优先级的传输的传输位置在时域存在全部或部分的OFDM符号重叠;又例如,高优先级传输的数据准备时间和低优先级传输的数据准备时间之间存在冲突,此时只能准备高优先级传输的数据;又例如,高优先级传输的数据准备时间和低优先级传输的传输位置存在部分或全部的OFDM重叠。这里的数据准备可以看做是逐个符号的流水方式准备的,即准备好一个符号,就发送该符号同时也准备下一个符号。例如图2(c)中,第二传输的动态授权被接收后,就开始准备第二传输的数据,此时在第二传输的动态授权之后,第一传输的数据也还在准备中,如果UE能力低,只能准备一个传输的,所以第二传输的动态授权之后第一传输的数据准备被中断,导致第一传输不能被传输。
图7为一实施例提供的一种传输处理装置的结构示意图,该传输处理装置可以配置于发送端中,如图7所示,包括:时域确定模块10,设置为对于至少两个传输,确定第一传输的起始位置早于G点。发送模块11,设置为从第一传输的起始位置传输第一传输至G点,或从第一传输的起始位置传输第一传输至第一传输的结束位置。
本实施例中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本实施例提供的传输处理装置用于实现图1所示实施例的传输处理方法,本实施例提供的传输处理装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第一传输的优先级低于第二传输的优先级。
在一实施例中,发送模块11,是设置为G点晚于或者等于第一传输的结束位置,则从第一传输的起始位置传输第一传输至第一传输的结束位置。
在一实施例中,结合图7,图8为一实施例提供的另一种传输处理装置的结 构示意图,如图8所示,该装置还包括:处理模块12。
处理模块12,设置为第一传输的起始位置晚于或者等于G点,则取消传输第一传输。
发送模块11,还设置为第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则从第一传输的起始位置传输第一传输至第一传输的结束位置。
本实施例中,H点为在第二传输的结束位置之后第二预设时间的时间点。
在一实施例中,第一预设时间为T3,或者T3+X,或者T3+X+D;第二预设时间为T1,或者T1+X1。
在一实施例中,在第一传输和第二传输均为上行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N2,或者T1和T3为第二处理时间T proc,2;D为取消处理的第一传输或第二传输的时间D2。
在第一传输和第二传输均为下行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N1,或者T1和T3为第一处理时间T proc,1;D为取消处理的第一传输或第二传输的时间D1。
X1和X分别为T1和T3的调整量。
在一实施例中,D1的取值为0;D2的取值为0;X1的取值为0;X的取值为0。
在一实施例中,第一预设时间还包括:第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号。
在一实施例中,Q的取值根据处理物理下行控制信道PDCCH的时间,和处理物理下行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
在一实施例中,第一传输为上行传输或者下行传输,第二传输为上行传输或者下行传输。
第一传输和第二传输在同一载波中或者在不同载波中。
第一传输的授权方式为动态授权或者配置授权,第二传输的授权方式为动态授权或者配置授权。
第一传输和第二传输在时域上存在重叠。
在一实施例中,在第一传输和第二传输均为动态授权的情况下,第一传输的动态授权先于第二传输的动态传输。
在第一传输和第二传输均为配置授权的情况下,第一传输的确定传输的时刻早于第二传输的确定传输的时刻。
图9为一实施例提供的另一种传输处理装置的结构示意图,该传输处理装置可以配置于接收端中,如图9所示,包括:时域确定模块20,设置为对于至少两个传输,确定第一传输的起始位置早于G点。数据确定模块21,设置为确定第一传输从第一传输的起始位置被传输至G点,或从第一传输的起始位置被传输至第一传输的结束位置。
本实施例中,G点为在第二传输的起始位置之前第一预设时间的时间点。
本实施例提供的传输处理装置用于实现图6所示实施例的传输处理方法,本实施例提供的传输处理装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第一传输的优先级低于第二传输的优先级。
在一实施例中,数据确定模块21,是设置为G点晚于或者等于第一传输的结束位置,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置。
在一实施例中,结合图9,图10为一实施例提供的另一种传输处理装置的结构示意图,如图10所示,该装置还包括:处理模块22。
处理模块22,设置为第一传输的起始位置晚于或者等于G点,则取消接收第一传输。
数据确定模块21,还设置为第一传输的起始位置晚于或者等于G点,且晚于或者等于H点,则确定第一传输从第一传输的起始位置被传输至第一传输的结束位置。
本实施例中,H点为在第二传输的结束位置之后第二预设时间的时间点。
在一实施例中,第一预设时间为T3,或者T3+X,或者T3+X+D;第二预设时间为T1,或者T1+X1。
在一实施例中,在第一传输和第二传输均为上行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N2,或者T1和T3为第二处理时间T proc,2;D为取消处理的第一传输或第二传输的时间D2。
在第一传输和第二传输均为下行传输的情况下,T1和T3分别为处理第一传输和第二传输的数据的时间N1,或者T1和T3为第一处理时间T proc,1;D为取消处理的第一传输或第二传输的时间D1。
X1和X分别为T1和T3的调整量。
在一实施例中,D1的取值为0;D2的取值为0;X1的取值为0;X的取值为0。
在一实施例中,第一预设时间还包括:第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号。
在一实施例中,Q的取值根据处理物理下行控制信道PDCCH的时间,和处理物理下行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
在一实施例中,第一传输为上行传输或者下行传输,第二传输为上行传输或者下行传输。
第一传输和第二传输在同一载波中或者在不同载波中。
第一传输的授权方式为动态授权或者配置授权,第二传输的授权方式为动态授权或者配置授权。
第一传输和第二传输在时域上存在重叠。
在一实施例中,在第一传输和第二传输均为动态授权的情况下,第一传输的动态授权先于第二传输的动态传输。
在第一传输和第二传输均为配置授权的情况下,第一传输的确定传输的时 刻早于第二传输的确定传输的时刻。
图11为一实施例提供的一种基站的结构示意图,如图11所示,该基站包括处理器40、存储器41和通信接口42;基站中处理器40的数量可以是一个或多个,图11中以一个处理器40为例;基站中的处理器40、存储器41、通信接口42可以通过总线或其他方式连接,图11中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器41作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的传输处理方法对应的程序指令/模块。处理器40通过运行存储在存储器41中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的传输处理方法。
存储器41可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据UE的使用所创建的数据等。此外,存储器41可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器41可包括相对于处理器40远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信接口42可用于数据的接收与发送。
图12为一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图12所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图12示出了具有多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少 的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视频、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的传输处理方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请实施例所提供的传输处理方法。该方法可以但不限于上述各方法实施例所公开的内容。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据 信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++、Ruby、Go,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(InstructionSet Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (37)

  1. 一种传输处理方法,包括:
    对于至少两个传输,确定第一传输的起始位置早于G点;
    从所述第一传输的起始位置传输所述第一传输至所述G点,或从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置;
    其中,所述G点为在第二传输的起始位置之前第一预设时间的时间点。
  2. 根据权利要求1所述的方法,其中,所述第一传输的优先级低于所述第二传输的优先级。
  3. 根据权利要求1所述的方法,其中,所述从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置,包括:
    在所述G点晚于或者等于所述第一传输的结束位置的情况下,从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置。
  4. 根据权利要求1所述的方法,还包括:
    在所述第一传输的起始位置晚于或者等于所述G点的情况下,取消传输所述第一传输;或者,
    在所述第一传输的起始位置晚于或者等于所述G点,且晚于或者等于H点的情况下,从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置;
    其中,所述H点为在所述第二传输的结束位置之后第二预设时间的时间点。
  5. 根据权利要求1所述的方法,其中,所述第一预设时间为T3,或者T3+X,或者T3+X+D;所述第二预设时间为T1,或者T1+X1;
    其中,在所述第一传输和所述第二传输均为上行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第二处理时间T proc,2;D为取消处理的所述第一传输或所述第二传输的时间D2;
    在所述第一传输和所述第二传输均为下行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第一处理时间T proc,1;D为取消处理的所述第一传输或所述第二传输的时间D1;
    X1和X分别为T1和T3的调整量。
  6. 根据权利要求5所述的方法,其中,所述D1的取值为0;所述D2的取值为0;所述X1的取值为0;所述X的取值为0。
  7. 根据权利要求5所述的方法,其中,所述第一预设时间还包括:所述第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号;
    其中,Q的取值根据处理物理下行控制信道PDCCH的时间,和处理物理下行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
  8. 根据权利要求1-7中任意一项所述的方法,其中,所述第一传输为上行传输或者下行传输,所述第二传输为上行传输或者下行传输;
    所述第一传输和所述第二传输在同一载波中或者在不同载波中;
    所述第一传输的授权方式为动态授权或者配置授权,所述第二传输的授权方式为动态授权或者配置授权;
    所述第一传输和所述第二传输在时域上存在重叠。
  9. 根据权利要求1所述的方法,其中,
    在所述第一传输和所述第二传输均为动态授权的情况下,所述第一传输的动态授权先于所述第二传输的动态传输;
    在所述第一传输和所述第二传输均为配置授权的情况下,所述第一传输的确定传输的时刻早于所述第二传输的确定传输的时刻。
  10. 一种传输处理方法,包括:
    对于至少两个传输,确定第一传输的起始位置早于G点;
    确定所述第一传输从所述第一传输的起始位置被传输至所述G点,或确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置;
    其中,所述G点为在第二传输的起始位置之前第一预设时间的时间点。
  11. 根据权利要求10所述的方法,其中,所述第一传输的优先级低于所述第二传输的优先级。
  12. 根据权利要求10所述的方法,其中,所述确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置,包括:
    在所述G点晚于或者等于所述第一传输的结束位置的情况下,确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置。
  13. 根据权利要求10所述的方法,还包括:
    在所述第一传输的起始位置晚于或者等于所述G点的情况下,取消接收所述第一传输;或者,
    在所述第一传输的起始位置晚于或者等于所述G点,且晚于或者等于H点的情况下,确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置;
    其中,所述H点为在所述第二传输的结束位置之后第二预设时间的时间点。
  14. 根据权利要求10所述的方法,其中,所述第一预设时间为T3,或者T3+X,或者T3+X+D;所述第二预设时间为T1,或者T1+X1;
    其中,在所述第一传输和所述第二传输均为上行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第二处理时间T proc,2;D为取消处理的所述第一传输或所述第二传输的时间D2;
    在所述第一传输和所述第二传输均为下行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第一处理时间T proc,1;D为取消处理的所述第一传输或所述第二传输的时间D1;
    X1和X分别为T1和T3的调整量。
  15. 根据权利要求14所述的方法,其中,所述D1的取值为0;所述D2的取值为0;所述X1的取值为0;所述X的取值为0。
  16. 根据权利要求14所述的方法,其中,所述第一预设时间还包括:所述第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号;
    其中,Q的取值根据处理物理下行控制信道PDCCH的时间,和处理物理下 行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
  17. 根据权利要求10-16中任意一项所述的方法,其中,所述第一传输为上行传输或者下行传输,所述第二传输为上行传输或者下行传输;
    所述第一传输和所述第二传输在同一载波中或者在不同载波中;
    所述第一传输的授权方式为动态授权或者配置授权,所述第二传输的授权方式为动态授权或者配置授权;
    所述第一传输和所述第二传输在时域上存在重叠。
  18. 根据权利要求10所述的方法,其中,
    在所述第一传输和所述第二传输均为动态授权的情况下,所述第一传输的动态授权先于所述第二传输的动态传输;
    在所述第一传输和所述第二传输均为配置授权的情况下,所述第一传输的确定传输的时刻早于所述第二传输的确定传输的时刻。
  19. 一种传输处理装置,包括:
    时域确定模块,设置为对于至少两个传输,确定第一传输的起始位置早于G点;
    发送模块,设置为从所述第一传输的起始位置传输所述第一传输至所述G点,或从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置;
    其中,所述G点为在第二传输的起始位置之前第一预设时间的时间点。
  20. 根据权利要求19所述的装置,其中,所述第一传输的优先级低于所述第二传输的优先级。
  21. 根据权利要求19所述的装置,其中,所述发送模块,是设置为在所述G点晚于或者等于所述第一传输的结束位置的情况下,从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置。
  22. 根据权利要求19所述的装置,还包括处理模块;
    所述处理模块,设置为在所述第一传输的起始位置晚于或者等于所述G点的情况下,取消传输所述第一传输;
    所述发送模块,还设置为在所述第一传输的起始位置晚于或者等于所述G点,且晚于或者等于H点的情况下,从所述第一传输的起始位置传输所述第一传输至所述第一传输的结束位置;
    其中,所述H点为在所述第二传输的结束位置之后第二预设时间的时间点。
  23. 根据权利要求19所述的装置,其中,所述第一预设时间为T3,或者T3+X,或者T3+X+D;所述第二预设时间为T1,或者T1+X1;
    其中,在所述第一传输和所述第二传输均为上行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第二处理时间T proc,2;D为取消处理的所述第一传输或所述第二传输的时间D2;
    在所述第一传输和所述第二传输均为下行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第一处理时间T proc,1;D为取消处理的所述第一传输或所述第二传输的时间D1;
    X1和X分别为T1和T3的调整量。
  24. 根据权利要求23所述的装置,其中,所述D1的取值为0;所述D2的取值为0;所述X1的取值为0;所述X的取值为0。
  25. 根据权利要求23所述的装置,其中,所述第一预设时间还包括:所述第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号;
    其中,Q的取值根据处理物理下行控制信道PDCCH的时间,和处理物理下行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
  26. 根据权利要求19-25中任意一项所述的装置,其中,所述第一传输为上行传输或者下行传输,所述第二传输为上行传输或者下行传输;
    所述第一传输和所述第二传输在同一载波中或者在不同载波中;
    所述第一传输的授权方式为动态授权或者配置授权,所述第二传输的授权方式为动态授权或者配置授权;
    所述第一传输和所述第二传输在时域上存在重叠。
  27. 根据权利要求19所述的装置,其中,
    在所述第一传输和所述第二传输均为动态授权的情况下,所述第一传输的动态授权先于所述第二传输的动态传输;
    在所述第一传输和所述第二传输均为配置授权的情况下,所述第一传输的确定传输的时刻早于所述第二传输的确定传输的时刻。
  28. 一种传输处理装置,包括:
    时域确定模块,设置为对于至少两个传输,确定第一传输的起始位置早于G点;
    数据确定模块,设置为确定所述第一传输从所述第一传输的起始位置被传输至所述G点,或确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置;
    其中,所述G点为在第二传输的起始位置之前第一预设时间的时间点。
  29. 根据权利要求28所述的装置,其中,所述第一传输的优先级低于所述第二传输的优先级。
  30. 根据权利要求28所述的装置,其中,所述数据确定模块,是设置为在所述G点晚于或者等于所述第一传输的结束位置的情况下,确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置。
  31. 根据权利要求28所述的装置,还包括处理模块;
    所述处理模块,设置为所述第一传输的起始位置晚于或者等于所述G点,则取消接收所述第一传输;
    所述数据确定模块,还设置为在所述第一传输的起始位置晚于或者等于所述G点,且晚于或者等于H点的情况下,确定所述第一传输从所述第一传输的起始位置被传输至所述第一传输的结束位置;
    其中,所述H点为在所述第二传输的结束位置之后第二预设时间的时间点。
  32. 根据权利要求28所述的装置,其中,所述第一预设时间为T3,或者T3+X,或者T3+X+D;所述第二预设时间为T1,或者T1+X1;
    其中,在所述第一传输和所述第二传输均为上行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第二处理时间T proc,2;D为取消处理的所述第一传输或所述第二传输的时间D2;
    在所述第一传输和所述第二传输均为下行传输的情况下,T1和T3分别为处理所述第一传输和所述第二传输的数据的时间,或者T1和T3为第一处理时间T proc,1;D为取消处理的所述第一传输或所述第二传输的时间D1;
    X1和X分别为T1和T3的调整量。
  33. 根据权利要求32所述的装置,其中,所述D1的取值为0;所述D2的取值为0;所述X1的取值为0;所述X的取值为0。
  34. 根据权利要求32所述的装置,其中,所述第一预设时间还包括:所述第一预设时间对应的时间点在时域上顺延Q个符号,或者在时域上提前M个符号;
    其中,Q的取值根据处理物理下行控制信道PDCCH的时间和处理物理下行共享信道PDSCH的时间中的至少之一确定;M的取值根据动态授权占用的符号数确定;或者,Q的取值为约定值或0;M的取值为约定值或0。
  35. 根据权利要求28-34中任意一项所述的装置,其中,所述第一传输为上行传输或者下行传输,所述第二传输为上行传输或者下行传输;
    所述第一传输和所述第二传输在同一载波中或者在不同载波中;
    所述第一传输的授权方式为动态授权或者配置授权,所述第二传输的授权方式为动态授权或者配置授权;
    所述第一传输和所述第二传输在时域上存在重叠。
  36. 根据权利要求28所述的装置,其中,
    在所述第一传输和所述第二传输均为动态授权的情况下,所述第一传输的动态授权先于所述第二传输的动态传输;
    在所述第一传输和所述第二传输均为配置授权的情况下,所述第一传输的确定传输的时刻早于所述第二传输的确定传输的时刻。
  37. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-18中任一所述的传输处理方法。
PCT/CN2020/080087 2019-03-19 2020-03-19 一种传输处理方法、装置和计算机可读存储介质 WO2020187279A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20772740.5A EP3944701A4 (en) 2019-03-19 2020-03-19 TRANSMISSION PROCESSING METHOD AND APPARATUS, AND COMPUTER READABLE MATERIAL
US17/439,008 US20220150882A1 (en) 2019-03-19 2020-03-19 Method and apparatus for transmission processing, and computer-readable storage medium
KR1020217033754A KR20210138730A (ko) 2019-03-19 2020-03-19 전송 처리 방법, 장치 및 컴퓨터 판독 가능 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910211542.6 2019-03-19
CN201910211542.6A CN110536463A (zh) 2019-03-19 2019-03-19 一种传输处理方法、装置和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020187279A1 true WO2020187279A1 (zh) 2020-09-24

Family

ID=68659783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080087 WO2020187279A1 (zh) 2019-03-19 2020-03-19 一种传输处理方法、装置和计算机可读存储介质

Country Status (5)

Country Link
US (1) US20220150882A1 (zh)
EP (1) EP3944701A4 (zh)
KR (1) KR20210138730A (zh)
CN (1) CN110536463A (zh)
WO (1) WO2020187279A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536463A (zh) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 一种传输处理方法、装置和计算机可读存储介质
CN111901868A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 上行传输方法、装置、通信节点及存储介质
WO2021155602A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信号传输方法、装置及设备
BR112022016468A2 (pt) * 2020-02-21 2022-10-04 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para processar transmissão em enlace ascendente, dispositivo de comunicação, e, meio de armazenamento de computador
WO2021208081A1 (en) * 2020-04-17 2021-10-21 JRD Communication (Shenzhen) Ltd. Method for handling inter-ue collision and intra-ue collision
WO2021227970A1 (en) * 2020-05-13 2021-11-18 Mediatek Singapore Pte. Ltd. Methods for intra-user equipment prioritization in wireless communications
CN115299164A (zh) * 2020-05-25 2022-11-04 Oppo广东移动通信有限公司 取消传输配置授权上行信道的方法、终端设备和网络设备
US20230292310A1 (en) * 2020-08-07 2023-09-14 JRD Communication (Shenzhen) Ltd. Transmitter, receiver and communication method for improving uplink transmission with configured grant
CN116456478A (zh) * 2020-08-07 2023-07-18 Oppo广东移动通信有限公司 通信方法和通信装置
WO2022266957A1 (zh) * 2021-06-24 2022-12-29 北京小米移动软件有限公司 一种跨载波的波束使用时间的确定方法及其装置
WO2023137739A1 (en) * 2022-01-24 2023-07-27 Qualcomm Incorporated Indication of preferred scheduling mode for energy harvesting
CN116981063A (zh) * 2022-04-14 2023-10-31 维沃移动通信有限公司 传输处理方法、装置、终端及网络侧设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129325A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. URLLC AND eMBB DATA MULTIPLEXING COMMUNICATIONS
CN108521674A (zh) * 2018-04-23 2018-09-11 珠海市魅族科技有限公司 上行占用指示的发送和接收方法、发送和接收装置
US20180279229A1 (en) * 2017-03-23 2018-09-27 Ofinno Technologies, Llc Uplink Transmission Power Adjustment
CN108632977A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 功率状态转换方法及装置、终端、存储介质、处理器
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
CN110536463A (zh) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 一种传输处理方法、装置和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129325A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. URLLC AND eMBB DATA MULTIPLEXING COMMUNICATIONS
US20180279229A1 (en) * 2017-03-23 2018-09-27 Ofinno Technologies, Llc Uplink Transmission Power Adjustment
CN108632977A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 功率状态转换方法及装置、终端、存储介质、处理器
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
CN108521674A (zh) * 2018-04-23 2018-09-11 珠海市魅族科技有限公司 上行占用指示的发送和接收方法、发送和接收装置
CN110536463A (zh) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 一种传输处理方法、装置和计算机可读存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944701A4
VIVO: "DL Intra UE Tx Prioritization for URLLC", 3GPP TSG RAN WG1 MEETING #96 R1-1901699, 16 February 2019 (2019-02-16), XP051599395, DOI: 20200605160026X *
ZTE: "UL Control Enhancements for NR URLLC", 3GPP TSG RAN WG1 MEETING #98BIS R1-1910101, 8 October 2019 (2019-10-08), XP051788908, DOI: 20200605160517PX *
ZTE: "UL Control Enhancements for NR URLLC", 3GPP TSG RAN WG1 MEETING #99 R1-1911964, 9 November 2019 (2019-11-09), XP051823145, DOI: 20200605160806PX *

Also Published As

Publication number Publication date
CN110536463A (zh) 2019-12-03
KR20210138730A (ko) 2021-11-19
US20220150882A1 (en) 2022-05-12
EP3944701A1 (en) 2022-01-26
EP3944701A4 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
WO2020187279A1 (zh) 一种传输处理方法、装置和计算机可读存储介质
CN110535555B (zh) 一种确定传输优先级的方法、装置和计算机可读存储介质
KR20220047997A (ko) 전송 방법, 장치, 통신 노드 및 매체
US11324032B2 (en) Methods for data transmission and user equipment
WO2021143786A1 (zh) 信道冲突处理方法、装置、设备和存储介质
EP3768020B1 (en) System and method for performing transmission cancellation indication monitoring
US20220330279A1 (en) Data processing method, communication node, and computer-readable storage medium
WO2021147823A1 (zh) 上行传输的方法、移动终端和网络设备
WO2022151907A1 (zh) 信道占用时间确定方法、装置、第一通信节点及存储介质
WO2021143790A1 (zh) 上行传输方法、装置、通信节点及存储介质
WO2021155517A1 (zh) 资源指示方法、装置和终端
WO2024067687A1 (zh) 信息传输方法、第一通信节点、第二通信节点及存储介质
WO2024027604A1 (zh) 信道占用信息指示方法、通信终端及存储介质
AU2017444441B2 (en) Data sending method and apparatus, computer device and storage medium
WO2022028604A1 (zh) 上行传输方法、装置及终端设备
JP2023552477A (ja) 通信処理方法、装置と通信機器
CN115428374A (zh) 组合的盲重传和基于反馈的重传
CN112788771B (zh) 数据传输方法、装置、相关设备及存储介质
CN112997431B (zh) 混合自动重传请求应答信息发送方法、装置以及存储介质
US20240196382A1 (en) Resource negotiation method
CN117939641A (zh) 一种数据发送方法,资源配置方法,通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033754

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020772740

Country of ref document: EP

Effective date: 20211019