WO2020187230A1 - 空调器自清洁控制方法和空调器 - Google Patents

空调器自清洁控制方法和空调器 Download PDF

Info

Publication number
WO2020187230A1
WO2020187230A1 PCT/CN2020/079907 CN2020079907W WO2020187230A1 WO 2020187230 A1 WO2020187230 A1 WO 2020187230A1 CN 2020079907 W CN2020079907 W CN 2020079907W WO 2020187230 A1 WO2020187230 A1 WO 2020187230A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
time
preset
air conditioner
cleaning
Prior art date
Application number
PCT/CN2020/079907
Other languages
English (en)
French (fr)
Inventor
于洋
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020187230A1 publication Critical patent/WO2020187230A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides a self-cleaning control method for an air conditioner and an air conditioner.
  • the air conditioner is a device that can cool/heat the room. As time goes by, the dust accumulation on the indoor unit of the air conditioner will gradually increase. When the dust accumulation reaches a certain level, a large number of bacteria will breed, especially when the indoor air flows through the room. The air conditioner needs to be cleaned in time because it will carry a lot of dust and bacteria when it is running.
  • Now air conditioners mostly adopt a self-cleaning method, that is, by controlling the operation of the indoor unit, the evaporator is frosted first and then defrosted, and the evaporator is cleaned by defrosting.
  • both the frosting time and the defrosting time are fixed, and the fixed time is generally a value determined under ideal and specific test conditions.
  • the actual operation of the air conditioner there may be some differences between the actual operating conditions and the ideal and specific test conditions. This leads to the problem of insufficient control accuracy when the air conditioner runs in accordance with the existing self-cleaning procedures. , Such as insufficient cleaning due to too short frosting time.
  • the present invention provides a self-cleaning control method for an air conditioner.
  • the air conditioner includes an indoor heat exchanger and is first frosted and then The indoor heat exchanger is self-cleaned in a defrosting manner.
  • the air conditioner further includes a condensate pipeline. The condensate generated by the indoor heat exchanger is discharged through the condensate pipeline.
  • the air conditioner is self-cleaning control
  • the method includes the following steps: S110, detecting the turbidity C of the condensate water in the condensate water pipeline during the operation of the air conditioner in the standard self-cleaning mode; S120, detecting the current indoor air humidity T; S130, according to The turbidity C and the indoor air humidity T are selectively adjusted in the frosting time and/or defrosting time in the standard self-cleaning mode.
  • step S130 specifically includes: when the first preset threshold ⁇ C ⁇ the second preset threshold and the second preset humidity value ⁇ T ⁇ the first preset humidity value , Execute the standard self-cleaning mode of the air conditioner.
  • step S130 specifically includes: when the first preset threshold ⁇ C ⁇ the second preset threshold and T ⁇ the first preset humidity value, self-cleaning the standard The frost time of the mode is reduced by the first preset time.
  • step S130 specifically includes: when the first preset threshold ⁇ C ⁇ the second preset threshold and T ⁇ the second preset humidity value, self-cleaning the standard The frost time of the mode is increased by the second preset time.
  • step S130 specifically includes: when C ⁇ the second preset threshold and the second preset humidity value ⁇ T ⁇ the first preset humidity value, the standard is self-cleaning
  • the frosting time of the cleaning mode is increased by a second preset time
  • the defrosting time of the standard self-cleaning mode is increased by a first preset time.
  • step S130 specifically includes: when C ⁇ the second preset threshold and T ⁇ the first preset humidity value, increasing the defrosting time of the standard self-cleaning mode The first preset time.
  • step S130 specifically includes: when C ⁇ the second preset threshold and T ⁇ the second preset humidity value, increasing the frosting time of the standard self-cleaning mode The third preset time, and the defrosting time of the standard self-cleaning mode is increased by the first preset time.
  • the first preset time is any time between 0.5-1.5 minutes; the second preset time is any time between 4.5-5.5 minutes; The third preset time is any time between 9-11 minutes; and/or the first preset time is 1 minute; the second preset time is 5 minutes, and the third preset time For 10 minutes.
  • the air conditioner further includes a water turbidity sensor arranged on the condensate water pipeline,
  • step S110 the water quality turbidity sensor is used to detect the turbidity of the condensed water in the condensed water pipeline.
  • the present invention also provides an air conditioner including a controller configured to execute the above-mentioned air conditioner self-cleaning control method.
  • the present invention selectively adjusts the frosting time and/or defrosting time of the standard self-cleaning mode according to the condensed water turbidity C on the indoor unit heat exchanger and the indoor air humidity T.
  • the present invention can accurately control the frosting time and defrosting time of the standard self-cleaning mode of the air conditioner according to the actual operating conditions of the air conditioner , Thereby greatly improving the cleaning effect of the air conditioner during self-cleaning operation, thereby enhancing the user experience.
  • Fig. 1 is a main flow chart of the air conditioner self-cleaning control method of the present invention.
  • the air conditioner self-cleaning control method provided by the present invention aims to more accurately control the self-cleaning of the air conditioner.
  • the air conditioner of the present invention includes an indoor unit and an outdoor unit, and the indoor unit is self-cleaned by first frosting and then defrosting .
  • Fig. 1 is a main flowchart of the self-cleaning control method of an air conditioner of the present invention.
  • the air conditioner self-cleaning control method of the present invention includes the following steps: S110, detecting the turbidity C of the condensate water in the condensate water pipeline during the air conditioner running the standard self-cleaning mode; S120, detecting the current The indoor air humidity T; S130, according to the turbidity C of the condensed water and the indoor air humidity T, selectively adjust the frosting time and/or defrosting time of the standard self-cleaning mode.
  • a water quality turbidity sensor may be provided on the condensate water pipeline, and the water quality turbidity sensor is used to detect the turbidity C of the condensate water in the condensate water pipeline.
  • step S130 the following conditions can be specifically followed Adjust the frosting time and/or defrosting time in the self-cleaning mode.
  • Case 1 When the first preset threshold ⁇ C ⁇ the second preset threshold, and the second preset humidity value ⁇ T ⁇ the first preset humidity value, the standard self-cleaning mode of the air conditioner is executed.
  • the first preset threshold and the second preset threshold can be obtained by those skilled in the art through experiments.
  • the condensate turbidity C is between the first preset threshold and the second preset threshold, it is determined that the indoor unit is replaced.
  • the heater is in a general dirty state.
  • the second preset humidity value and the first preset humidity value can also be obtained by those skilled in the art through experiments.
  • the indoor air humidity T is between the second preset humidity value and the first preset humidity value, it is determined that the current indoor humidity is Humidity is a general humidity state.
  • the standard self-cleaning mode of the air conditioner is executed, that is, the frosting/defrosting time in the self-cleaning mode is not increased or decreased.
  • the frosting time of the standard self-cleaning mode is reduced by the first preset time.
  • the condensed water turbidity C is between the first preset threshold and the second preset threshold, it is determined that the indoor unit heat exchanger is in a general dirty state; when the indoor air humidity T is higher than the first When a preset humidity value, it can be judged that the current indoor air humidity is humid.
  • the frosting time of the standard self-cleaning mode is reduced by the first preset time, and the defrosting time remains unchanged.
  • the first preset time may be obtained by those skilled in the art according to experiments.
  • the first preset time may be 1 minute, or any time between 0.5 and 1.5 minutes.
  • Case 3 When the first preset threshold ⁇ C ⁇ the second preset threshold, and T ⁇ the second preset humidity value, the frosting time of the standard self-cleaning mode is increased by the second preset time. Specifically, as mentioned above, when the condensate turbidity C is between the first preset threshold and the second preset threshold, it is determined that the indoor unit heat exchanger is in a general dirty state; when the indoor air humidity T is lower than the first 2. When the humidity value is preset, it can be judged that the current indoor air humidity is dry. In this case, the frosting time of the standard self-cleaning mode is increased by the second preset time, and the defrosting time remains unchanged.
  • the second preset time may be obtained by those skilled in the art according to experiments. For example, the second preset time may be 5 minutes, or any time between 4.5-5.5 minutes.
  • Case 4 When C ⁇ the second preset threshold value, and the second preset humidity value ⁇ T ⁇ the first preset humidity value, increase the frosting time of the standard self-cleaning mode by the second preset time, and set the standard self-cleaning
  • the defrost time of the mode is increased by the first preset time.
  • the condensed water turbidity C is higher than the second preset threshold, it can be determined that the indoor unit heat exchanger is in a severely dirty state; when the indoor air humidity T is between the second preset humidity value and the first preset humidity value During the period, it is judged that the current indoor humidity is the normal humidity state.
  • the frosting time of the standard self-cleaning mode is increased by the second preset time
  • the defrosting time of the standard self-cleaning mode is increased by the first preset time.
  • the first preset time and the second preset time may be obtained by those skilled in the art according to experiments.
  • the first preset time may be 1 minute, or any time between 0.5-1.5 minutes
  • the second preset time The time can be 5 minutes, or any time between 4.5-5.5 minutes.
  • Case 6 When C ⁇ the second preset threshold value and T ⁇ the second preset humidity value, increase the frosting time of the standard self-cleaning mode by the third preset time, and increase the defrosting time of the standard self-cleaning mode by the first A preset time.
  • the condensed water turbidity C is higher than the second preset threshold, it can be determined that the indoor unit heat exchanger is in a severely dirty state; when the indoor air humidity T is lower than the second preset humidity value, it can be determined that the current indoor unit The air humidity is dry.
  • the frosting time of the standard self-cleaning mode is increased by the third preset time, and the defrosting time of the standard self-cleaning mode is increased by the first preset time.
  • the third preset time and the first preset time can be obtained by those skilled in the art according to experiments.
  • the third preset time can be 10 minutes, or any time between 9-11 minutes
  • the first preset The time can be 1 minute, or any time between 0.5-1.5 minutes.
  • the first preset threshold and the second preset threshold mentioned above can be obtained by those skilled in the art through experiments, specifically the condensation when the heat exchanger of the indoor unit is in a general dirty state obtained through experimental data.
  • the highest value of water turbidity When the condensed water turbidity C is higher than the highest value, it is judged that the heat exchanger of the indoor unit is in a severely dirty state.
  • the first preset humidity value and the second preset humidity value can also be obtained by those skilled in the art through experiments.
  • the interval range when the indoor air humidity is at the general humidity is obtained through test data, and the interval range is determined After that, if the indoor air humidity is higher than the upper limit of the interval range, it indicates that the indoor air humidity is in a humid state; if the indoor air humidity is lower than the lower limit of the interval range, it indicates that the indoor air humidity is in a dry state.
  • the first preset time, the second preset time, and the third preset time can also be obtained by those skilled in the art through experiments.
  • the present invention also provides an air conditioner including a controller configured to execute the above-mentioned air conditioner self-cleaning control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器自清洁控制方法,包括下列步骤:在空调器运行标准自清洁模式的过程中,检测冷凝水管路内的冷凝水的浊度C;检测当前的室内空气湿度T;根据冷凝水浊度C和室内空气湿度T选择性地调整标准自清洁模式的结霜时间和/或化霜时间。

Description

空调器自清洁控制方法和空调器 技术领域
本发明属于空调器技术领域,具体提供一种空调器自清洁控制方法和空调器。
背景技术
空调器是能够为室内制冷/制热的设备,随着时间的推移,空调器室内机上的积灰会逐渐增多,积灰累积到一定程度后会滋生大量的细菌,尤其在室内空气流经室内机时,会携带大量的灰尘和细菌,因此需要对空调器及时进行清洁。
现在空调器多采用自清洁的方式,即通过控制室内机的运行,使得蒸发器先结霜、后化霜,利用化霜对蒸发器进行清洁。现有空调器在运行自清洁的过程中,结霜时间和化霜时间均是固定不变的,该固定不变的时间一般是在较为理想的、特定的试验工况下所确定的值。但是在空调器实际运行的过程中,其实际运行工况与理想的、特定的试验工况可能存在一定差异,这就导致空调器在按照运行现有自清洁程序时容易出现控制不够精确的问题,如结霜时间过短导致清洁不充分等。
因此,本领域提出了一种新的空调器自清洁控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了更精确地控制空调器的自清洁,本发明提供了一种空调器自清洁控制方法,所述空调器包括室内换热器并且通过先结霜后化霜的方式对所述室内换热器进行自清洁,所述空调器还包括冷凝水管路,所述室内换热器产生的冷凝水经过所述冷凝水管路排出,所述空调器自清洁控制方法包括下列步骤:S110、在所述空调器运行标准自清洁模式的过程中,检测所述冷凝水管路内的冷凝水的浊度C;S120、检测当前的室内空气湿度T;S130、根据所述浊度C和所述室内空气湿度T选择性地调整在所述标准自清洁模式的结霜时间和/或化霜时间。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当第一预设阈值<C<第二预设阈值且第二预设湿度值<T<第一预设湿度值时,执行所述空调器的标准自清洁模式。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当第一预设阈值<C<第二预设阈值且T≥第一预设湿度值时,将所述标准自清洁模式的结霜时间减少第一预设时间。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当第一预设阈值<C<第二预设阈值且T≤第二预设湿度值时,将所述标准自清洁模式的结霜时间增加第二预设时间。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当C≥第二预设阈值且第二预设湿度值<T<第一预设湿度值时,将所述标准自清洁模式的结霜时间增加第二预设时间,并将所述标准自清洁模式的化霜时间增加第一预设时间。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当C≥第二预设阈值且T≥第一预设湿度值时,将所述标准自清洁模式的化霜时间增加第一预设时间。
在上述空调器自清洁控制方法的优选实施方式中,步骤S130具体包括:当C≥第二预设阈值且T≤第二预设湿度值时,将所述标准自清洁模式的结霜时间增加第三预设时间,并将所述标准自清洁模式的化霜时间增加第一预设时间。
在上述空调器自清洁控制方法的优选实施方式中,所述第一预设时间为0.5-1.5分钟之间的任意时间;所述第二预设时间为4.5-5.5分钟之间的任意时间;所述第三预设时间为9-11分钟之间的任意时间;并且/或者所述第一预设时间为1分钟;所述第二预设时间为5分钟,所述第三预设时间为10分钟。
在上述空调器自清洁控制方法的优选实施方式中,所述空调器还包括设置于所述冷凝水管路上的水质浊度传感器,
在步骤S110中,利用所述水质浊度传感器检测所述冷凝水管路内的冷凝水的浊度。
本发明还提供了一种空调器,包括控制器,所述控制器配置成能够执行上述的空调器自清洁控制方法。
本发明根据室内机换热器上的冷凝水浊度C和室内空气湿度T选择性地调整标准自清洁模式的结霜时间和/或化霜时间。相对于现有自清洁模式采用的固定的结霜时间和化霜时间来说,本发明能够根据空调器的实际运行工况来精确地控制空调器标准自清洁模式的结霜时间和化霜时间,从而极大地提高了空调器在运行自清洁时的清洁效果,进而提升用户的使用体验。
附图说明
图1是本发明的空调器自清洁控制方法的主要流程图。
具体实施方式
为使本发明的实施例、技术方案和优点更加明显,下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所述的实施例是本发明的一部分实施例,而不是全部实施例。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明提供的空调器自清洁控制方法旨在更精确地控制空调器的自清洁,本发明的空调器包括室内机和室外机,并且通过先结霜后化霜的方式对室内机进行自清洁。参照图1,图1是本发明的空调器自清洁控制方法的主要流程图。如图1所述,本发明的空调器自清洁控制方法包括下列步骤:S110、在空调器运行标准自清洁模式的过程中,检测冷凝水管路内的冷凝水的浊度C;S120、检测当前的室内空气湿度T;S130、根据冷凝水的浊度C和室内空气湿度T选择性地调整标准自清洁模式的结霜时间和/或化霜时间。
作为示例,在步骤S110中,可以在冷凝水管路上设置水质浊度传感器,利用该水质浊度传感器检测所述冷凝水管路内的冷凝水的浊度C。
本领域技术人员能够理解的是,当室内机的换热器较脏时,则需要自清洁的强度高,也就是需要结霜更厚;当室内机的换热器较干净时,自清洁需要结霜稍薄一些。而现有的空调器在运行自清洁的过程中,结霜时间和化霜时间均是固定不变的,因此为了更加精确地控制空 调器的自清洁,在步骤S130中,具体可以按照以下情形调整在自清洁模式下的结霜时间和/或化霜时间。
情形一:当第一预设阈值<C<第二预设阈值,且第二预设湿度值<T<第一预设湿度值,执行空调器的标准自清洁模式。具体地,第一预设阈值和第二预设阈值可以由本领域技术人员通过试验获得,当冷凝水浊度C位于第一预设阈值和第二预设阈值之间时,判断该室内机换热器处于一般污浊状态。第二预设湿度值和第一预设湿度值也可以由本领域技术人员通过试验获得,当室内空气湿度T位于第二预设湿度值和第一预设湿度值之间时,判断当前室内的湿度为一般湿度状态。在该情形下,执行空调器的标准自清洁模式,即不增加或减少自清洁模式下的结霜/化霜时间。
情形二:当第一预设阈值<C<第二预设阈值,且T≥第一预设湿度值,将标准自清洁模式的结霜时间减少第一预设时间。具体地,如前所述,当冷凝水浊度C位于第一预设阈值和第二预设阈值之间时,判断该室内机换热器处于一般污浊状态;当室内空气湿度T高于第一预设湿度值时,可以判断当前室内空气湿度为潮湿状态。在该情形下,将标准自清洁模式的结霜时间减少第一预设时间,化霜时间保持不变。该第一预设时间可以由本领域技术人员根据试验获得,例如该第一预设时间可以为1分钟,或者为0.5-1.5分钟之间的任意时间。
情形三:当第一预设阈值<C<第二预设阈值,且T≤第二预设湿度值,将标准自清洁模式的结霜时间增加第二预设时间。具体地,如前所述,当冷凝水浊度C位于第一预设阈值和第二预设阈值之间时,判断该室内机换热器处于一般污浊状态;当室内空气湿度T低于第二预设湿度值时,可以判断当前室内空气湿度为干燥状态。在该情形下,将标准自清洁模式的结霜时间增加第二预设时间,化霜时间保持不变。该第二预设时间可以由本领域技术人员根据试验获得,例如该第二预设时间可以为5分钟,或者为4.5-5.5分钟之间的任意时间。
情形四:当C≥第二预设阈值,且第二预设湿度值<T<第一预设湿度值,将标准自清洁模式的结霜时间增加第二预设时间,并将标准自清洁模式的化霜时间增加第一预设时间。具体地,当冷凝水浊度C高于第二预设阈值时,可以判断该室内机换热器处于严重污浊状态;当室内空气湿度T位于第二预设湿度值和第一预设湿度值之间时,判断当 前室内的湿度为一般湿度状态。在该情形下,将标准自清洁模式的结霜时间增加第二预设时间,并将标准自清洁模式的化霜时间增加第一预设时间。该第一预设时间和第二预设时间可以由本领域技术人员根据试验获得,例如该第一预设时间可以为1分钟,或者为0.5-1.5分钟之间的任意时间,该第二预设时间可以为5分钟,或者为4.5-5.5分钟之间的任意时间。
情形五:当C≥第二预设阈值,且T≥第一预设湿度值,将标准自清洁模式的化霜时间增加第一预设时间。具体地,当冷凝水浊度C高于第二预设阈值时,可以判断该室内机换热器处于严重污浊状态;当室内空气湿度T高于第一预设湿度值时,可以判断当前室内空气湿度为潮湿状态。在该情形下,将标准自清洁模式的化霜时间增加第一预设时间,结霜时间保持不变。该第一预设时间可以由本领域技术人员根据试验获得,例如该第一预设时间可以为1分钟,或者为0.5-1.5分钟之间的任意时间。
情形六:当C≥第二预设阈值,且T≤第二预设湿度值,将标准自清洁模式的结霜时间增加第三预设时间,并将标准自清洁模式的化霜时间增加第一预设时间。具体地,当冷凝水浊度C高于第二预设阈值时,可以判断该室内机换热器处于严重污浊状态;当室内空气湿度T低于第二预设湿度值时,可以判断当前室内空气湿度为干燥状态。在该情形下,将标准自清洁模式的结霜时间增加第三预设时间,并将标准自清洁模式的化霜时间增加第一预设时间。该第三预设时间和第一预设时间可以由本领域技术人员根据试验获得,例如该第三预设时间可以为10分钟,或者为9-11分钟之间的任意时间,该第一预设时间可以为1分钟,或者为0.5-1.5分钟之间的任意时间。
需要再次说明的是,上述中的第一预设阈值和第二预设阈值可以由本领域技术人员通过试验的方式得到,具体为通过试验数据获取室内机的换热器处于一般污浊状态时的冷凝水浊度的最高值,当冷凝水浊度C高于该最高值时,判断室内机的换热器处于严重污浊状态。同理,第一预设湿度值和第二预设湿度值也可以由本领域技术人员通过试验的方式得到,具体为通过试验数据获取室内空气湿度处于一般湿度时的区间范围,在确定该区间范围之后,室内空气湿度高于该区间范围的上限,则说明室内空气湿度为潮湿状态,室内空气湿度低于该区间范围的下限, 则说明室内空气湿度为干燥状态。另外,第一预设时间、第二预设时间和第三预设时间也可以由本领域技术人员通过试验的方式获得最佳值。
本发明还提供了一种空调器,该空调器包括控制器,控制器配置成能够执行上述的空调器自清洁控制方法。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器自清洁控制方法,所述空调器包括室内换热器并且通过先结霜后化霜的方式对所述室内换热器进行自清洁,所述空调器还包括冷凝水管路,所述室内换热器产生的冷凝水经过所述冷凝水管路排出,其特征在于,所述空调器自清洁控制方法包括下列步骤:
    S110、在所述空调器运行标准自清洁模式的过程中,检测所述冷凝水管路内的冷凝水的浊度C;
    S120、检测当前的室内空气湿度T;
    S130、根据所述浊度C和所述室内空气湿度T选择性地调整在所述标准自清洁模式的结霜时间和/或化霜时间。
  2. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当第一预设阈值<C<第二预设阈值且第二预设湿度值<T<第一预设湿度值时,执行所述空调器的标准自清洁模式。
  3. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当第一预设阈值<C<第二预设阈值且T≥第一预设湿度值时,将所述标准自清洁模式的结霜时间减少第一预设时间。
  4. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当第一预设阈值<C<第二预设阈值且T≤第二预设湿度值时,将所述标准自清洁模式的结霜时间增加第二预设时间。
  5. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当C≥第二预设阈值且第二预设湿度值<T<第一预设湿度值时,将所述标准自清洁模式的结霜时间增加第二预设时间,并将所述标准自清洁模式的化霜时间增加第一预设时间。
  6. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当C≥第二预设阈值且T≥第一预设湿度值时,将所述标准自清洁模式的化霜时间增加第一预设时间。
  7. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S130具体包括:
    当C≥第二预设阈值且T≤第二预设湿度值时,将所述标准自清洁模式的结霜时间增加第三预设时间,并将所述标准自清洁模式的化霜时间增加第一预设时间。
  8. 根据权利要求3至7中任一项所述的空调器自清洁控制方法,其特征在于,
    所述第一预设时间为0.5-1.5分钟之间的任意时间;所述第二预设时间为4.5-5.5分钟之间的任意时间;所述第三预设时间为9-11分钟之间的任意时间;并且/或者
    所述第一预设时间为1分钟;所述第二预设时间为5分钟,所述第三预设时间为10分钟。
  9. 根据权利要求1至7中任一项所述的空调器自清洁控制方法,其特征在于,所述空调器还包括设置于所述冷凝水管路上的水质浊度传感器,
    在步骤S110中,利用所述水质浊度传感器检测所述冷凝水管路内的冷凝水的浊度。
  10. 一种空调器,包括控制器,其特征在于,所述控制器配置成能够执行权利要求1至8中任一项所述的空调器自清洁控制方法。
PCT/CN2020/079907 2019-03-21 2020-03-18 空调器自清洁控制方法和空调器 WO2020187230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910218227.6 2019-03-21
CN201910218227.6A CN109916046B (zh) 2019-03-21 2019-03-21 空调器自清洁控制方法和空调器

Publications (1)

Publication Number Publication Date
WO2020187230A1 true WO2020187230A1 (zh) 2020-09-24

Family

ID=66966219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079907 WO2020187230A1 (zh) 2019-03-21 2020-03-18 空调器自清洁控制方法和空调器

Country Status (2)

Country Link
CN (1) CN109916046B (zh)
WO (1) WO2020187230A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916046B (zh) * 2019-03-21 2021-04-20 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器
CN109916040A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器
CN110736195B (zh) * 2019-09-30 2021-11-23 青岛海尔空调器有限总公司 空调自清洁控制的方法及装置、空调
CN111380151B (zh) * 2020-03-26 2021-07-27 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN114061099A (zh) * 2020-08-03 2022-02-18 广东美的制冷设备有限公司 空调器控制方法、装置、空调器和存储介质
CN114440399B (zh) * 2022-02-25 2023-09-05 四川长虹空调有限公司 空调自清洁控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205481470U (zh) * 2015-12-31 2016-08-17 深圳市蓝云科学技术有限公司 冷却装置及具该冷却装置的空调
CN106322663A (zh) * 2016-08-24 2017-01-11 青岛海尔空调器有限总公司 一种空调自清洁控制方法
CN107514681A (zh) * 2017-07-26 2017-12-26 青岛海尔空调器有限总公司 空调器室内机
CN109916046A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708197A (en) * 1985-11-01 1987-11-24 Robbins R Ralph Air to air heat exchanger
CN105268694A (zh) * 2015-10-30 2016-01-27 苏州腾辉环保科技有限公司 一种空调除尘器
WO2017151046A1 (en) * 2016-03-02 2017-09-08 Enjay Filtration Ab System, method and a filter for ventilation
CN105945008B (zh) * 2016-06-07 2018-12-18 珠海格力电器股份有限公司 一种用于空调的清洁装置、空调及其清洁方法
CN106594976B (zh) * 2016-11-11 2018-12-18 青岛海尔空调器有限总公司 空调内外机清洗方法
CN107023954A (zh) * 2017-04-10 2017-08-08 青岛海尔空调器有限总公司 一种空调器及清洁控制方法
CN107514683B (zh) * 2017-07-31 2020-11-03 青岛海尔空调器有限总公司 空调器及其室内机自清洁控制方法
CN109469965B (zh) * 2017-09-08 2020-10-23 奥克斯空调股份有限公司 一种空调器的清洗方法
CN108870713B (zh) * 2018-06-25 2023-09-12 珠海格力电器股份有限公司 空调换热器、空调室内机、空调及空调换热器的清洁方法
CN109237746B (zh) * 2018-09-12 2021-04-20 青岛海尔空调器有限总公司 空调器及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205481470U (zh) * 2015-12-31 2016-08-17 深圳市蓝云科学技术有限公司 冷却装置及具该冷却装置的空调
CN106322663A (zh) * 2016-08-24 2017-01-11 青岛海尔空调器有限总公司 一种空调自清洁控制方法
CN107514681A (zh) * 2017-07-26 2017-12-26 青岛海尔空调器有限总公司 空调器室内机
CN109916046A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器

Also Published As

Publication number Publication date
CN109916046A (zh) 2019-06-21
CN109916046B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2020187230A1 (zh) 空调器自清洁控制方法和空调器
WO2020187228A1 (zh) 空调器自清洁控制方法和空调器
WO2020187233A1 (zh) 空调器自清洁控制方法
CN109916002B (zh) 空调器自清洁加湿控制方法
CN108444044B (zh) 用于空调器的自清洁控制方法
WO2020187235A1 (zh) 空调器自清洁控制方法和空调器
WO2020187227A1 (zh) 空调器自清洁控制方法和空调器
WO2020248414A1 (zh) 一拖多空调器及其自清洁控制方法
WO2018086176A1 (zh) 空调换热器自清洁方法
WO2021203978A1 (zh) 空调器滤网清洗提示方法以及空调器
CN109916007B (zh) 空调器自清洁加湿控制方法
WO2020187243A1 (zh) 空调器自清洁加湿控制方法
WO2020187236A1 (zh) 空调器自清洁控制方法
CN109990441B (zh) 空调器自清洁控制方法
CN107702283B (zh) 空调器自清洁控制方法
CN108413578B (zh) 用于空调器的自清洁控制方法
WO2020187229A1 (zh) 空调器自清洁控制方法和空调器
CN109916049B (zh) 空调器自清洁控制方法
WO2021000944A1 (zh) 空调器及其控制方法
WO2020187246A1 (zh) 空调器自清洁加湿控制方法
WO2020187224A1 (zh) 空调器自清洁控制方法和空调器
WO2020187252A1 (zh) 空调器自清洁加湿控制方法
WO2020187253A1 (zh) 空调器自清洁加湿控制方法
WO2020187247A1 (zh) 空调器自清洁加湿控制方法
WO2020187241A1 (zh) 空调器自清洁控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773311

Country of ref document: EP

Kind code of ref document: A1