WO2020187189A1 - 数据传输的方法及装置 - Google Patents

数据传输的方法及装置 Download PDF

Info

Publication number
WO2020187189A1
WO2020187189A1 PCT/CN2020/079542 CN2020079542W WO2020187189A1 WO 2020187189 A1 WO2020187189 A1 WO 2020187189A1 CN 2020079542 W CN2020079542 W CN 2020079542W WO 2020187189 A1 WO2020187189 A1 WO 2020187189A1
Authority
WO
WIPO (PCT)
Prior art keywords
service data
video service
priority
data
transmission
Prior art date
Application number
PCT/CN2020/079542
Other languages
English (en)
French (fr)
Inventor
吴涛
陈特彦
于健
贾嘉
刘应状
彭媛媛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20773737.0A priority Critical patent/EP3930277A4/en
Publication of WO2020187189A1 publication Critical patent/WO2020187189A1/zh
Priority to US17/478,305 priority patent/US20220007386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43637Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6175Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving transmission via Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/631Multimode Transmission, e.g. transmitting basic layers and enhancement layers of the content over different transmission paths or transmitting with different error corrections, different keys or with different transmission protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • This application relates to the field of wireless transmission, and in particular to methods and devices for data transmission.
  • the sending end When transmitting service data based on wireless fidelity (Wireless-Fidelity, WiFi), the sending end determines the transmission mode of the service data based on the service type of the service data to perform the transmission of the service data. Taking the service data as video service data as an example, according to the transmission mode of the video service, the sending end sends the video service data.
  • the video service data can only be transmitted based on one transmission method, resulting in poor data transmission flexibility.
  • a data transmission method including:
  • the sender generates data packets
  • the sending end sends the data packet to the receiving end, where the data packet includes at least two video service data with different priorities, and the video service data with different priorities is carried on different communication resources for transmission.
  • the data packet is a physical layer data packet, which may be referred to as a data packet, and is also generally referred to as a physical protocol data unit (PPDU).
  • PPDU physical protocol data unit
  • Each data packet includes a preamble and a data field.
  • the data field may include multiple different physical layer service data units (PSDU), and each PSDU is encapsulated by video service data.
  • PSDU physical layer service data units
  • the main function of the preamble is to assist the transmission of the data field, carrying information such as the transmission parameters of the data field, and making it easy for the receiving end to parse the data field.
  • the preamble can include a variety of different fields.
  • the fields can include resource unit allocation information, modulation coding, and spatial stream information, so that the data field in the data packet can be sent on the corresponding communication resource and the received end receive.
  • the video service data in the aforementioned data packet can be divided into multiple different priorities.
  • the priority of video service data is the level of dividing the video service data according to the importance of the video service data. The greater the importance of the video service data, the more important the video service data is. The higher the priority of the data.
  • communication resources are carriers for data transmission, and may include frequency domain resources, space resources, time-frequency resources, and so on.
  • communication resources mainly include frequency domain resources and space resources.
  • Frequency domain resources may include RU (Resource Unit) and frequency bands.
  • the space resource can be a space stream, and the number of space streams M is generally less than or equal to the number of transmitting and receiving antennas. If the transmitting and receiving antennas are not equal, it is equal to or less than the smallest antenna number at the transmitting and receiving end.
  • multiple resources are allocated to each terminal, so that the terminal can transmit data through multiple resources, and to a certain extent reduce the degree of data transmission blocked.
  • it can ensure that high-priority video service data can obtain better resources, improve the transmission quality of video service data, and reduce jams.
  • the communication resources include spatial streams, RUs or frequency bands.
  • the frequency domain resource may include an RU
  • the correspondence between the frequency domain resource and the priority of the video service data may be the correspondence between the RU and the priority of the video service data.
  • the correspondence between RU and the priority of video service data is determined based on the correspondence between RU’s transmission capability and priority. There are many ways to determine the RU’s transmission capability. One possible way is that the sender is based on receiving The feedback information sent by the terminal is determined.
  • the method to determine the transmission capability of the RU can be: the transmitting end sends the sounding signal to the receiving end, and the receiving end determines to receive the sounding on each RU when receiving the sounding signal The power of the signal, the receiving end sends the power of the probe signal received on each RU to the sending end, and the sending end uses this to determine the transmission capability of the RU.
  • the method to determine the transmission capability of an RU can be: the receiving end sends a probe signal to the sending end, and the sending end determines the power of the probe signal received on each RU when receiving the probe signal, and then determines each RU transmission capacity.
  • the transmission capability of the RU can also be determined by other methods, which is not limited in this application.
  • the frequency domain resource may also include a frequency band
  • the correspondence between the frequency domain resource and the priority of the video service data may be the correspondence between the frequency domain and the priority of the video service data.
  • the corresponding relationship between the frequency band and the priority of the video service data is determined based on the corresponding relationship between the transmission capacity of the frequency band and the priority.
  • the sender is based on the receiving
  • the feedback information sent by the terminal is determined.
  • the feedback information may include the signal quality of each frequency band, or the received signal power of the probe signal received in each frequency band, and so on.
  • the video service data with different priorities are carried on different communication resources for transmission, including: video service data with different priorities based on the correspondence between the communication resource and the priority of the video service data
  • the bearer is transmitted on different communication resources, wherein the correspondence between the communication resource and the priority of the video service data is determined based on the feedback information of the receiving end.
  • the corresponding relationship between the priority of the spatial stream and the video service data may be determined by the sending end based on the feedback information sent by the receiving end. Based on different feedback information, the corresponding relationship can be determined in many different ways.
  • the feedback information can include a detection signal, the power value of each transmitting antenna, one or more indicator bits, and so on. In this way, based on the feedback information sent by the receiving end, the sending end can obtain the signal quality of different resources more accurately, so that the sending end can allocate resources with higher signal quality to high-priority video service data, ensuring transmission quality.
  • the communication resource includes a spatial stream
  • the feedback information includes a sounding signal
  • the correspondence between the spatial stream and the priority of the video service data is based on the sending end
  • the received signal power of the probe signal detected by multiple transmitting antennas is determined.
  • the sounding signal may be a signal specially used for channel detection, or a signal for sending regular service data, and so on.
  • the detection signal can be sent periodically or triggered by a preset event.
  • the probe signal is the signal transmitted from the receiving end to the transmitting end.
  • a data transmission channel is established between each antenna at the transmitting end and each antenna at the receiving end.
  • the receiving end transmits probe signals to the transmitting end through each channel of each antenna.
  • the sounding signal is received through different channels, and the channel state information of receiving the sounding signal through different channels is determined, and then, according to the channel state information of different channels, the transmitting antenna is determined to receive the sounding signal on each channel Determine the total power of the probe signal received by the transmitting antenna on all corresponding channels, that is, the received signal power of the probe signal detected by each transmitting antenna.
  • the correspondence between the spatial stream and the priority can be that the spatial stream of the transmitting antenna with high received signal power corresponds to the space of the transmitting antenna with low received signal power. Flow corresponds to low priority. In this way, the receiving end feeds back the detection signal to the transmitting end, and the transmitting end can obtain the received signal power of different spatial streams, and the transmission process takes less time, making the transmitting end more efficient in obtaining the received signal power of the spatial stream.
  • the communication resource includes a spatial stream
  • the feedback information includes a plurality of indicator bits, and one indicator bit in the plurality of indicator bits corresponds to one of the multiple frequency bands, and the one The indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data in a frequency band; or, the sent feedback information includes an indicator bit that is used to indicate the correspondence between the antenna and the priority of the video service data .
  • one indicator bit in the multiple indicator bits corresponds to one frequency band in the multiple frequency bands, and one indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data in one frequency band.
  • An indicator bit can be represented by one bit, each bit corresponds to a frequency band, and each bit is used to indicate the correspondence between the antenna and the priority on the corresponding frequency band, and the value of each bit can include 0 Or 1, 0 and 1 respectively correspond to the correspondence between different antennas and priorities.
  • An indicator bit can also be represented by multiple bits. One indicator bit corresponding to the multiple bits corresponds to a frequency band, and the values of the multiple bits collectively indicate the correspondence between antennas and priorities on different frequency bands.
  • one indicator bit corresponds to the entire frequency domain resource between the transmitting end and the receiving end, and the indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data.
  • the indicator bit can be represented by a bit, and the bit is used to indicate the corresponding relationship between the antenna and the priority.
  • the value of the bit can include 0 or 1, and 0 and 1 respectively correspond to the corresponding relationship between different antennas and priorities.
  • the indicator bit can also be represented by multiple bits. The values of multiple bits collectively indicate the correspondence between the antenna and the priority. For example, assuming that two bits represent one indicator bit, 00, 01, 10, and 11 can be respectively Indicates the different correspondence between antennas and priorities.
  • the receiving end According to the corresponding relationship between the antenna and the priority corresponding to the value of the indicator bit, the receiving end generates the corresponding indicator bit according to the power value of each transmitting antenna, and the transmitting end determines the corresponding relationship between the antenna and the priority after receiving the indicator bit. In this way, the receiving end directly determines the corresponding relationship between the antenna and the priority of the video service data, and the transmitting end does not need to determine the received signal power of the antenna, which reduces the resource occupation of the transmitting end.
  • the preamble of the data packet includes indication information of different communication resources, and the indication information is used to indicate the video service data carried by the corresponding communication resource.
  • indication information of different communication resources may be generated, and each indication information is used to indicate the video service data carried by the corresponding communication resource.
  • the indication information of different communication resources can be carried in the preamble of the data packet.
  • An alternative method is that the EHT-SIG-B field of the preamble carries indication information of different communication resources. According to the indication information of each communication resource, the video service data of different priorities are carried on different communication resources for transmission.
  • the video service data of different priorities includes at least two of I frame, P frame and B frame.
  • I frames a completely coded video frame, also known as key frames
  • P frames a reference to the previous I frame that only contains
  • the video frame encoded by the difference part is also called the prediction frame
  • the B frame a video frame encoded with reference to the adjacent frames before and after, is also called the bidirectional prediction frame.
  • the importance of the I frame is greater than that of the P frame and the B frame. Therefore, in general, the priority of the I frame can be greater than the priority of the P frame and the priority of the B frame.
  • I frame, P frame, and B frame there are multiple methods for prioritizing the video service data according to the data type, and one of the feasible ways of division may be divided by I frame, P frame, and B frame.
  • I frame, P frame and B frame Take the way of dividing data types of video service data according to I frame, P frame and B frame as an example, introduce several feasible ways to determine the priority: the first one, I frame corresponds to the first priority, and P frame corresponds to the second Priority, B frame corresponds to the third priority; the second type, I frame corresponds to the first priority, B and P frames correspond to the second priority, where the first priority is higher than the second priority, and the second priority Level is higher than the third priority. In this way, it can be ensured that the more important I frames are carried on resources with higher signal quality for transmission, which improves the transmission quality of video services and reduces stalls.
  • the video service data of different priorities includes retransmitted video service data and newly transmitted video service data, and the retransmitted video service data has a higher priority than the newly transmitted video service data Priority
  • the data packet further includes indication information used to indicate that each video service data is retransmitted video service data or newly transmitted video service data.
  • the data field includes the retransmitted video service data and the newly transmitted video service data.
  • the preamble may include multiple fields, and at least one field may include indication information.
  • the indication information is used to indicate that each video service data is a retransmitted video.
  • the lost video service data needs to be retransmitted.
  • the retransmitted video service data and the newly transmitted video service data can be divided For video service data of different priorities, in order to ensure the transmission quality of the retransmitted video service data, the priority of the retransmitted video service data can be set higher than the priority of the newly transmitted video service data. In this way, the retransmitted video service data can be carried on resources with higher signal quality for transmission, which ensures the transmission quality of the retransmitted video service data.
  • the method further includes: one-to-one correspondence between multiple priority video service data and multiple service identifiers or multiple access categories.
  • the access category may include video services (AC_Video, AC_VI), voice services (AC_Voice, AC_VO), best effort transmission services (AC_Best Effort, AC_BE), and background services (AC_Background, AC_BK).
  • video services AC_Video, AC_VI
  • voice services AC_Voice, AC_VO
  • best effort transmission services AC_Best Effort, AC_BE
  • background services AC_Background, AC_BK
  • the video service data with higher priority can correspond to the access category with stronger competitive transmission capability, and the video service data with lower priority It can correspond to access categories with weaker competing transmission capabilities.
  • I-frame, P-frame, and B-frame correspond to different access categories respectively.
  • the priority of I-frame, P-frame, and B-frame video service data In descending order, for example, I frames correspond to the access type AC_VI, and P frames and B frames correspond to the access type AC_BE. In this way, different video service data carried in the same data packet are transmitted independently of each other on different communication resources without increasing mutual delay.
  • a data transmission device which includes:
  • a data transmission device characterized in that the device includes:
  • the generating module is used for the sending end to generate data packets
  • the sending module is used for the sending end to send the data packet to the receiving end, where the data packet includes at least two video service data with different priorities, and the video service data with different priorities are carried and transmitted on different communication resources.
  • the communication resources include spatial streams, RUs or frequency bands.
  • the sending module is configured to:
  • video service data of different priorities are carried on different communication resources for transmission.
  • the correspondence between the communication resources and the priority of video service data is based on all
  • the feedback information of the receiving end is determined.
  • the communication resource includes a spatial stream
  • the feedback information includes a sounding signal
  • the correspondence between the spatial stream and the priority of the video service data is based on the sending end
  • the received signal power of the probe signal detected by multiple transmitting antennas is determined.
  • the communication resource includes a spatial stream
  • the feedback information includes a plurality of indicator bits, and one indicator bit in the plurality of indicator bits corresponds to one of the multiple frequency bands, and the one The indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data in a frequency band; or, the sent feedback information includes an indicator bit that is used to indicate the correspondence between the antenna and the priority of the video service data .
  • the preamble of the data packet includes indication information of different communication resources, and the indication information is used to indicate the video service data carried by the corresponding communication resource.
  • the video service data of different priorities includes at least two of I frame, P frame and B frame.
  • the video service data of different priorities includes retransmitted video service data and newly transmitted video service data, and the retransmitted video service data has a higher priority than the newly transmitted video service data Priority
  • the data packet further includes indication information used to indicate that each video service data is retransmitted video service data or newly transmitted video service data.
  • the device further includes:
  • the corresponding module is used for one-to-one correspondence between multiple priority video service data and multiple service identifiers or multiple access categories.
  • a data transmission device in a third aspect, includes a processor and a memory; the memory stores one or more programs, and the one or more programs are configured to be executed by the processor, Instructions for implementing the method according to any one of the above-mentioned first aspects.
  • a computer-readable storage medium includes instructions that, when the computer-readable storage medium runs on a device, cause the device to execute the method described in the first aspect.
  • a computer program product containing instructions which when the computer program product runs on a device, causes the device to execute the method described in the first aspect.
  • the sending end generates data packets, and when sending the data packets to the receiving end, the video service data of different priorities is carried on different resources for transmission.
  • multiple resources are allocated to each terminal, so that the terminal Data can be transmitted through multiple resources, which improves the flexibility of transmission.
  • data transmission through multiple resources can reduce the degree of obstruction of data transmission to a certain extent and improve the efficiency of data transmission.
  • FIG. 1 is a schematic diagram of a system structure framework provided by an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a sending end provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a receiving end provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of a data packet provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a data transmission scenario provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a data transmission scenario provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a data transmission scenario provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a data transmission scenario provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data packet provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a data transmission scenario provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a data packet provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method.
  • the method involves data communication between one or more nodes and one or more nodes.
  • the main scenario involves an access point (Access Point, AP). ) And the station (Station, STA), but the same applies to the communication between AP and AP, STA and STA.
  • the method can be implemented by the sending end and the receiving end together, where the sending end can be an AP or STA, and the receiving end can be an AP or STA.
  • the sending end and the receiving end can be, but not limited to, communication servers, routers, switches, bridges, computers, mobile phones, etc.
  • the sending end may at least include a network interface 201, a processor 202, and a memory 203.
  • the network interface 201 is used to send and receive data packets, and may include Ethernet media access controller (Media Access Control, MAC) 2011, physical interface transceiver (Port Physical Layer, PHY) 2012, radio frequency/antenna 2013, etc.
  • the processor 202 is configured to process corresponding operations for data transmission.
  • the processor 202 may include a control unit 2021, a processing unit 2022, and a scheduling unit 2023.
  • the control unit 2021 is used to control the execution of operations corresponding to the signaling information; the processing unit 2022 is used to parse the signaling information and process related data; the scheduling unit 2023 is used to determine transmission resources for different data, used modulation parameters, and the like.
  • the memory 203 is used to store service data, signaling information, preset values, etc., received or sent through the network interface 201.
  • the receiving end may at least include a network interface 301, a processor 302, and a memory 303.
  • the network interface 301 is used to send and receive data packets, and may include an Ethernet Media Access Control (MAC) 3011, a physical interface transceiver (Port Physical Layer, PHY) 3012, and a radio frequency/antenna 3013, etc. .
  • the processor 302 is configured to process corresponding operations for data transmission.
  • the processor 302 may include a control unit 3021, a processing unit 3022, and a scheduling unit 3023.
  • the control unit 3021 is used to control the execution of operations corresponding to the signaling information; the processing unit 3022 is used to parse the signaling information and process related data; the scheduling unit 3023 is used to determine the transmission resources of different data and the modulation parameters used.
  • the memory 303 is used to store service data, signaling information, preset values, etc., received or sent through the network interface 301.
  • Step 401 The sending end generates a data packet.
  • the data packet is a physical layer data packet, which may be referred to as a data packet, and is also generally referred to as a physical protocol data unit (PPDU).
  • PPDU physical protocol data unit
  • Each data packet includes a preamble and a data field.
  • the data field may include multiple different physical layer service data units (PSDU), and each PSDU is encapsulated by video service data.
  • PSDU physical layer service data units
  • the main function of the preamble is to assist the transmission of the data field, carrying information such as the transmission parameters of the data field, and making it easy for the receiving end to parse the data field.
  • the preamble can include a variety of different fields.
  • the fields can include resource unit allocation information, modulation coding, and spatial stream information, so that the data field in the data packet can be sent on the corresponding communication resource and the received end receive.
  • the following is a brief introduction to the different fields of the preamble.
  • the fields in the preamble can include: traditional short training field (Legacy-Short Training Field, L-STF), traditional long training field ((Legacy-Long Training Field, L-LTF), traditional Signaling field (Legacy-Signal Field, L-SIG), automatic detection symbol (Symbol for auto-detection), extremely high throughput signaling field A (Extreme High-Throughput-signaling-A, EHT-SIG-A), Extreme High-Throughput-Signaling-B (EHT-SIG-B), Extreme High-Throughput-Short Training Field (EHT-STF), Extreme High-Throughput-Short Training Field (EHT-STF) Rate long training field (Extreme High-Throughput-Long Training Field, EHT-LTF), and data packet extension (Packet Extension, PE).
  • traditional short training field Legacy-Short Training Field, L-STF
  • traditional long training field ((Legacy-Long Training Field, L-LTF)
  • the video service data in the aforementioned data packets can be divided into multiple different priorities.
  • the priority of video service data is the level of dividing the video service data according to the importance of the video service data. The greater the importance of the video service data, the more important the video service data is. The higher the priority of the data.
  • feasible priority division methods are some examples of feasible priority division methods:
  • I frame a completely encoded video frame, also known as key frame
  • P frame a reference to the previous I frame generated only contains the difference part
  • the coded video frame is also called a prediction frame
  • B frame a video frame that is coded with reference to the adjacent frames before and after it, is also called a bidirectional prediction frame.
  • the importance of the I frame is greater than that of the P frame and the B frame. Therefore, in general, the priority of the I frame can be greater than the priority of the P frame and the priority of the B frame.
  • I frame corresponds to the first priority
  • P frame corresponds to the second Priority
  • B frame corresponds to the third priority
  • the second type I frame corresponds to the first priority
  • B and P frames correspond to the second priority, where the first priority is higher than the second priority
  • the second priority Level is higher than the third priority.
  • each data group includes at least two of I frame, P frame, and B frame.
  • each data packet includes any of I frame and P frame, I frame and B frame, or I frame and P frame and B frame. A combination.
  • the lost video service data needs to be retransmitted.
  • the retransmitted video service data and the newly transmitted video service data can be divided into video service data of different priorities.
  • a feasible priority division method may be to set the priority of the retransmitted video service data to be higher than the priority of the newly transmitted video service data.
  • Step 402 The sending end sends a data packet to the receiving end, where the data packet includes at least two video service data with different priorities, and the video service data with different priorities is carried on different communication resources for transmission.
  • communication resources are carriers for data transmission, and may include frequency domain resources, space resources, time-frequency resources, and so on.
  • communication resources mainly include frequency domain resources and space resources.
  • Frequency domain resources may include resource units (Resource Unit, RU) and frequency bands.
  • the space resource can be a space stream, and the number of space streams M is generally less than or equal to the number of transmitting and receiving antennas. If the transmitting and receiving antennas are not equal, it is equal to or less than the smallest antenna number at the transmitting and receiving end.
  • the correspondence between the communication resources and the priority of the video service data may be determined based on the transmission performance of the communication resource.
  • the transmission performance of the communication resource can be used to measure the transmission quality of the service data transmitted by the communication resource. The higher the transmission performance of the communication resource, the higher the transmission quality of the video service data it carries.
  • One feasible way is that the transmission performance of the communication resource is determined based on the feedback information of the receiving end.
  • the feedback information of the receiving end may include multiple types, such as probe signals, indicator bits, and channel quality of the channel, which are not limited in this application.
  • the sending end determines the communication resources corresponding to the video service data of different priorities according to the correspondence between the communication resources and the priority of the video service data, and the video service data of different priorities, so that the video service data of different priorities are carried in different Transmission on the communication resources.
  • a feasible way is, in the correspondence between communication resources and the priority of video service data, the higher the priority of the video service data, the corresponding communication resource transmission The higher the performance.
  • indication information of different communication resources may be generated, and each indication information is used to indicate the video service data carried by the corresponding communication resource.
  • the indication information of different communication resources can be carried in the preamble of the data packet.
  • An alternative method is that the EHT-SIG-B field of the preamble carries indication information of different communication resources. According to the indication information of each communication resource, the video service data of different priorities are carried on different communication resources for transmission.
  • multiple priority video service data correspond to multiple service identities or multiple access categories one-to-one, based on the service identities or access categories corresponding to different priority video service data, and different priority video services Data is carried on different communication resources for transmission.
  • the access category may include video services (AC_Video, AC_VI), voice services (AC_Voice, AC_VO), best effort transmission services (AC_Best Effort, AC_BE), and background services (AC_Background, AC_BK).
  • video services AC_Video, AC_VI
  • voice services AC_Voice, AC_VO
  • best effort transmission services AC_Best Effort, AC_BE
  • background services AC_Background, AC_BK
  • high-priority video service data corresponds to service identification or access category with strong resource competitiveness
  • low-priority video service data Corresponding to the service identification or access category with weak resource competitiveness
  • the receiving end receives the data packet containing the video service data. If the high-priority video service data and the low-priority video service data are correctly received, the receiving end merges the high-priority video service data and the low-priority video service data. If only the high-priority video service data is received and the low-priority video service data is not received correctly, the receiving end can discard the low-priority video service data, or it can feed back a retransmission request to the sending end, and wait until the sending end retransmits. Transmission of low-priority video service data is not limited in this application.
  • the communication resource is a spatial stream
  • the correspondence between the priority of the communication resource and the video service data includes the priority of the spatial stream and the video service data
  • Step 601 The sending end generates a data packet.
  • Step 602 The sending end sends a data packet to the receiving end.
  • the data packet includes video service data of at least two priorities. Based on the correspondence between the spatial stream and the priority of the video service data, the video service data of different priorities are carried in different Transmission on the spatial stream.
  • MIMO multiple-input multiple-output
  • the feedback information includes the sounding signal, and the correspondence between the spatial stream and the priority of the video service data is determined by the transmitting end based on the received signal power of the sounding signal detected by the multiple transmitting antennas of the transmitting end.
  • the sounding signal may be a signal specially used for channel detection, or a signal for sending regular service data, and so on.
  • the detection signal can be sent periodically or triggered by a preset event. In mode one, the detection signal is a signal transmitted from the receiving end to the transmitting end.
  • a data transmission channel is established between each antenna at the transmitting end and each antenna at the receiving end.
  • the receiving end transmits probe signals to the transmitting end through each channel of each antenna.
  • the sounding signal is received through different channels, and the channel state information of receiving the sounding signal through different channels is determined, and then, according to the channel state information of different channels, the transmitting antenna is determined to receive the sounding signal on each channel
  • the correspondence between the spatial stream and the priority can be that the spatial stream of the transmitting antenna with high received signal power corresponds to the space of the transmitting antenna with low received signal power. Flow corresponds to low priority.
  • the transmitter uses two antennas to transmit video service data.
  • the way to determine the received signal power of multiple transmit antennas at the transmitting end can be as follows: the receiving end sends a sounding signal to the transmitting end, and the transmitting end determines the channel matrix according to the received sounding signal as Among them, h 11 is the channel from the first receiving antenna to the first transmitting antenna, h 12 is the channel from the first receiving antenna to the second transmitting antenna, h 21 is the channel from the second receiving antenna to the first transmitting antenna, and h 22 is Channel from the second receiving antenna to the second transmitting antenna.
  • ⁇ 2, and the received signal power of the second transmitting antenna P 2
  • the video service data to be sent is divided into two priority levels, for example, I frame is the first priority, P frame and B frame are the second priority, if P 1 > P 2 , determine the spatial stream and video service data
  • the priority correspondence relationship is that the spatial stream of the first transmitting antenna corresponds to the video service data of the first priority, and the spatial stream of the second transmitting antenna corresponds to the video service data of the second priority; if P 1 ⁇ P 2 , the space is determined
  • the corresponding relationship between the priority of the stream and the video service data is that the spatial stream of the second transmitting antenna corresponds to the video service data of the first priority, and the spatial stream of the first transmitting antenna corresponds to the video service data of the second priority.
  • the feedback information includes the power value of each transmitting antenna.
  • the power value of a transmitting antenna is the sum of the power of the sounding signal sent by the receiving end to the transmitting antenna on all channels.
  • the method of determining the power value of a transmitting antenna may include: the transmitting end sends a sounding signal to the receiving end, and the receiving end can determine the power of the sounding signal received on each channel when receiving the sounding signal, according to all channels corresponding to the transmitting antenna , The receiving end determines the sum of the received power of the transmitting antenna on all channels, that is, the power value of the transmitting antenna is determined.
  • an alternative method is that the spatial stream corresponding to the transmitting antenna with higher received signal power corresponds to the high-priority, and the transmitting antenna with lower received signal power corresponds to Spatial flow corresponds to low priority.
  • the transmitting end uses two antennas to transmit video service data.
  • the power value of each transmitting antenna can be determined as follows: the transmitting end sends a sounding signal to the receiving end, and the receiving end determines the channel matrix according to the received sounding signal as Among them, h 33 is the channel between the third transmitting antenna and the third receiving antenna, h 34 is the channel between the third transmitting antenna and the fourth receiving antenna, and h 43 is the channel between the fourth transmitting antenna and the third receiving antenna. H 44 is the channel between the fourth transmitting antenna and the fourth receiving antenna.
  • the receiving end sends P 3 and P 4 to the receiving end, and the receiving end compares P 3 and P 4 .
  • the video service data to be sent is divided into two priority levels, for example, I frame is the first priority, P and B frames are the second priority, if P 3 > P 4 , determine the spatial stream and video service data
  • the priority correspondence relationship is that the spatial stream of the third transmitting antenna corresponds to the video service data of the first priority, and the spatial stream of the fourth transmitting antenna corresponds to the video service data of the second priority; if P 3 ⁇ P 4 , the space is determined
  • the corresponding relationship between the priority of the stream and the video service data is that the spatial stream of the fourth transmitting antenna corresponds to the video service data of the first priority, and the spatial stream of the third transmitting antenna corresponds to the video service data of the second priority.
  • the feedback information includes one or more indicator bits, and the indicator bits are used to indicate the correspondence between the antenna and the priority of the video service data.
  • Case 1 The feedback information includes multiple indicator bits.
  • one indicator bit in the multiple indicator bits corresponds to one frequency band in the multiple frequency bands, and one indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data in one frequency band.
  • An indicator bit can be represented by one bit, each bit corresponds to a frequency band, and each bit is used to indicate the correspondence between the antenna and the priority on the corresponding frequency band, and the value of each bit can include 0 Or 1, 0 and 1 respectively correspond to the correspondence between different antennas and priorities.
  • An indicator bit can also be represented by multiple bits. One indicator bit corresponding to multiple bits corresponds to a frequency band. The values of multiple bits together indicate the correspondence between antennas and priorities on different frequency bands.
  • the receiving end According to the corresponding relationship between the antenna and priority corresponding to the value of the indicator bit, the receiving end generates the corresponding indicator bit according to the power value of each transmitting antenna on each frequency band. After receiving the indicator bit, the transmitting end determines the antenna and priority of each frequency band. Correspondence of priority.
  • the power value relationship of different transmitting antennas on different frequency bands may be different.
  • the frequency domain selection characteristics of the frequency domain channel take Fig. 9 as an example.
  • the power value of the first transmitting antenna is higher than the power value of the second transmitting antenna.
  • the power value is lower than the power value of the second transmitting antenna.
  • the indicator bits corresponding to different frequency bands may be different.
  • the sender informs the receiver to use layered 2x2MIMO to send the video service data of the first priority and the video service data of the second priority.
  • each channel is divided into N frequency bands evenly, and the indicator bits are bits.
  • the receiving end uses a bitmap method to feed back the correspondence between the antenna and the priority of the video service data on different frequency bands.
  • the transmitting end sends a detection signal to the receiving end, and the receiving end determines the power value relationship between the first transmitting antenna and the second transmitting antenna on each frequency band.
  • the power value of the transmitting antenna is the reception of the detection signal sent by the receiving end receiving transmitting antenna power.
  • the indicator corresponding to the frequency band is determined If the power value of the first transmitting antenna is lower than the power value of the second transmitting antenna, it can be determined that the second transmitting antenna corresponds to the high priority, and the first transmitting antenna corresponds to the low priority, then it is determined that the frequency band corresponds to The indicator bit is 0.
  • the receiving end sends the determined bitmap and the number of frequency bands N to the sending end.
  • the transmitting end receives the bitmap and the number of frequency bands N, for the bit value corresponding to each frequency band, if the bit value is 1, then Indicates that the first transmitting antenna corresponds to high priority and the second transmitting antenna corresponds to low priority in this frequency band; if the bit value is 0, the second transmitting antenna corresponds to high priority, and the first transmitting antenna corresponds to Corresponds to low priority.
  • Case 2 The feedback information includes an indicator bit.
  • the indicator bit corresponds to the entire frequency domain resource between the sending end and the receiving end, and the indicator bit is used to indicate the correspondence between the antenna and the priority of the video service data.
  • the indicator bit can be represented by a bit, and the bit is used to indicate the corresponding relationship between the antenna and the priority.
  • the value of the bit can include 0 or 1, and 0 and 1 respectively correspond to the corresponding relationship between different antennas and priorities.
  • the indicator bit can also be represented by multiple bits. The values of multiple bits collectively indicate the correspondence between the antenna and the priority. For example, assuming that two bits represent one indicator bit, 00, 01, 10, and 11 can be respectively Indicates the different correspondence between antennas and priorities.
  • the receiving end According to the corresponding relationship between the antenna and the priority corresponding to the value of the indicator bit, the receiving end generates the corresponding indicator bit according to the power value of each transmitting antenna, and the transmitting end determines the corresponding relationship between the antenna and the priority after receiving the indicator bit.
  • the feedback information includes one or more indicator bits, and the indicator bits are used to indicate the relationship between the transmission performance of different transmitting antennas.
  • Case 1 The feedback information includes multiple indicator bits.
  • one indicator bit in the multiple indicator bits corresponds to a frequency band in the multiple frequency bands, and one indicator bit is used to indicate the relationship between the transmission performance of different transmitting antennas on a frequency band, and the transmission performance of the transmitting antenna can be based on the receiving end versus the transmitting antenna The received power of the sent probe signal is determined.
  • An indicator bit can be represented by a bit, and each bit corresponds to a frequency band. Each bit is used to indicate the relationship between the transmission performance of different transmitting antennas. The value of each bit can include 0 or 1, 0 and 1 respectively correspond to the relationship between the transmission performance of different transmitting antennas.
  • the transmission performance relationship corresponding to 0 is that the transmission performance of the first transmitting antenna is higher than that of the second transmitting antenna
  • the transmission performance relationship corresponding to 1 is that the transmission performance of the first transmitting antenna is lower than that of the second transmitting antenna.
  • An indicator bit can also be represented by multiple bits. One indicator bit corresponding to multiple bits corresponds to a frequency band. The values of multiple bits together indicate the relationship between the transmission performance of different transmitting antennas on a frequency band, for example, Assuming that two bits represent an indicator bit, 00, 01, 10, and 11 can respectively represent the relationship between different transmission performance levels of different transmitting antennas in a certain frequency band.
  • the receiving end According to the transmission performance relationship corresponding to the indicator bit, the receiving end generates corresponding indicator bits according to the transmission performance relationship of different transmitting antennas on different frequency bands. After receiving the indicator bit, the transmitting end determines the transmission performance of the different transmitting antennas corresponding to the indicator bit. Relationship, and then determine the corresponding relationship between the spatial stream and the priority of the video service data.
  • Case 2 The feedback information includes an indicator bit.
  • this indicator bit corresponds to the entire frequency band between the transmitting end and the receiving end, and one indicator bit is used to indicate the relationship between the transmission performance of different transmitting antennas.
  • the transmission performance of the transmitting antenna can be based on the detection signal sent by the receiving end to the transmitting antenna.
  • the received power is determined.
  • the indicator bit can be represented by one bit, and the bit is used to indicate the transmission performance relationship of different transmitting antennas.
  • the value of the bit can include 0 or 1, and 0 and 1 respectively correspond to the transmission performance relationship of different transmitting antennas.
  • the indicator bit can also be represented by multiple bits. The values of multiple bits collectively indicate the relationship between the transmission performance of different transmitting antennas. For example, assuming that two bits represent one indicator bit, 00, 01, 10, and 11 can be They respectively indicate the relationship between the transmission performance of different transmitting antennas in a certain frequency band.
  • the indication bit can also be represented in various other ways, such as using the power value of each transmitting antenna to indicate the indicator bit, and using the antenna identification with the highest power value of the transmitting antenna Etc., this application does not limit this.
  • the feedback information includes the channel matrix of the channel.
  • the receiving end performs channel estimation to obtain a channel matrix, and the receiving end sends the channel matrix to the sending end.
  • the method of channel estimation may be that the transmitting end sends a detection signal to the receiving end, and after receiving the detection signal, the receiving end determines the channel of all channels between each transmitting antenna and each receiving antenna according to the received detection signal. matrix.
  • the transmitting end determines the precoding matrix according to the channel matrix.
  • the channel matrix can be subjected to Singular Value Decomposition (SVD) to obtain the precoding matrix, as shown in the following formula (1):
  • H is the channel matrix
  • U and V are unitary matrices
  • S is a diagonal matrix. Assuming that the transmitting end uses two antennas to transmit video service data, S can be expressed as
  • V is the precoding matrix
  • S can represent the virtual equivalent channel matrix after the signal is equalized by the receiving end.
  • the spatial stream of the first transmitting antenna corresponds For high-priority video service data
  • the spatial stream of the second transmitting antenna corresponds to low-priority video service data.
  • the spatial stream of the first transmitting antenna corresponds For low-priority video service data
  • the spatial stream of the second transmitting antenna corresponds to high-priority video service data
  • the sending end When sending the video service data included in the data packet, the sending end pre-encodes the video service data according to the precoding matrix V. Assuming that the data packet includes two priority video service data, the high priority video service data is represented by x, The low-priority video service data is represented by y. If s 1 >s 2 , the order of the two priority video service data sent can be: If s 1 ⁇ s 2 , the sequence of the two priority video service data sent can be
  • the feedback information includes the sounding signal, and the corresponding relationship between the spatial stream and the priority of the video service data is determined by the transmitting end based on the channel state information of each channel detected by multiple transmitting antennas.
  • the receiving end sends a detection signal to the sending end.
  • the sending end detects the channel state information of each channel based on each transmitting antenna to obtain the channel matrix, and then determines the precoding matrix based on the channel matrix.
  • the channel matrix can be decomposed by SVD to get
  • SVD decomposition processing in the fifth mode above please refer to the SVD decomposition processing in the fifth mode above, which will not be repeated here.
  • the transmitting end determines the precoding matrix and the diagonal matrix, and determines the signal quality relationship of different transmitting antennas according to the relationship between the eigenvalues in the diagonal matrix. According to the signal quality relationship of different transmitting antennas, the corresponding relationship between the spatial stream and the priority of the video service data is determined, and the corresponding processing can refer to the processing of establishing the corresponding relationship in the above-mentioned mode five, which is not repeated here.
  • the video service data in the above embodiment is only an illustrative example in this embodiment.
  • the embodiment of the present application can also realize the transmission of other types of service data.
  • the service data can be It is voice service data, etc., which is not limited in the embodiment of the present application.
  • the communication resource is a frequency domain resource
  • the correspondence between the communication resource and the priority of video service data may include frequency domain resources and video Correspondence of business data priority. Description will be given below in conjunction with FIG. 10.
  • Step 1001 The sending end generates a data packet.
  • Step 1002 The sending end sends a data packet to the receiving end.
  • the data packet includes video service data of at least two priorities. Based on the correspondence between frequency domain resources and the priority of the video service data, the video service data of different priorities are carried in different On the frequency domain resources.
  • the frequency domain resource may include an RU
  • the correspondence between the frequency domain resource and the priority of the video service data may be the correspondence between the RU and the priority of the video service data.
  • the correspondence between the priority of RU and video service data is determined based on the correspondence between the transmission capacity and priority of the RU.
  • the correspondence between RU and the priority of video service data The relationship may include that an RU with a high transmission capability corresponds to a high priority, and an RU with a low transmission capability corresponds to a low priority.
  • One feasible method is that the sender determines it based on the feedback information sent by the receiver.
  • the method to determine the transmission capability of the RU can be: the transmitting end sends the sounding signal to the receiving end, and the receiving end determines to receive the sounding on each RU when receiving the sounding signal The power of the signal, the receiving end sends the power of the probe signal received on each RU to the sending end, and the sending end uses this to determine the transmission capability of the RU.
  • the method to determine the transmission capability of an RU can be: the receiving end sends a probe signal to the sending end, and the sending end determines the power of the probe signal received on each RU when receiving the probe signal, and then determines each RU transmission capacity.
  • the transmission capability of the RU can also be determined by other methods, which is not limited in this application.
  • Frequency domain resources may also include frequency bands.
  • the correspondence between frequency domain resources and the priority of video service data may be the correspondence between frequency bands and the priority of video service data.
  • the correspondence between the frequency band and the priority of the video service data is determined based on the correspondence between the transmission capacity of the frequency band and the priority.
  • the correspondence between the frequency band and the priority of the video service data The relationship may include that a frequency band with a high transmission capability corresponds to a high priority, and a frequency band with a low transmission capability corresponds to a low priority.
  • One feasible method is that the sending end determines it based on the feedback information sent by the receiving end.
  • the feedback information may include the signal quality of each frequency band, or the received signal power of the probe signal received in each frequency band, and so on.
  • service data of different priorities includes retransmitted service data and newly transmitted service data, which is described below with reference to FIG. 12.
  • Step 1201 The sending end generates a data packet.
  • Step 1202 The sending end sends a data packet to the receiving end.
  • the data packet includes service data of different priorities. Based on the correspondence between the communication resources and the priority of the service data, the service data of different priorities are carried on different communication resources for transmission.
  • the business data of different priorities includes retransmitted business data and newly transmitted business data.
  • the data field in the data packet includes retransmitted service data and newly transmitted service data.
  • the preamble in the data packet may include multiple fields, at least one field may include indication information, and the indication information is used to indicate each service data. It is the retransmitted business data or the business data.
  • the fields in the preamble may include: L-STF, L-LTF, L-SIG, EHT-SIG-A, EHT-SIG-B, EHT-STF, EHT-LTF, PE.
  • the EHT-SIG-B field may include resource unit allocation information and multiple user information. Each user information corresponds to one service data. Each user information includes multiple subfields.
  • the subfields include spatial stream information of different users, Code modulation information and instruction information, etc.
  • the retransmission method can include the automatic repeat request (ARQ) method or the hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) method.
  • ARQ automatic repeat request
  • HARQ hybrid Automatic Repeat reQuest
  • the retransmission method is HARQ as an example.
  • the specific subfields and subfields correspond to See Table 3 below for its functions.
  • the above-mentioned retransmitted or newly transmitted service data may be multiple types of service data.
  • the retransmitted or newly transmitted service data may be retransmitted or newly transmitted video service data, or the service data may be retransmitted service data.
  • This application does not limit the transmitted or newly transmitted voice service data.
  • the scheme of retransmission or newly transmitted service data can be combined with the scheme of other embodiments of the present application to jointly implement the method of data transmission, which is not repeated here.
  • video service data of different priorities corresponds to different service identifiers or access categories in a one-to-one correspondence. This will be described with reference to FIG. 14 below.
  • Step 1401 The sending end generates a data packet.
  • Step 1402 The sending end sends a data packet to the receiving end.
  • the data packet includes at least two priority levels of video service data, and the multiple priority levels of video service data are in one-to-one correspondence with multiple service identifiers or multiple access categories.
  • the access category may include video services (AC_Video, AC_VI), voice services (AC_Voice, AC_VO), best effort transmission services (AC_Best Effort, AC_BE), and background services (AC_Background, AC_BK).
  • video services AC_Video, AC_VI
  • voice services AC_Voice, AC_VO
  • best effort transmission services AC_Best Effort, AC_BE
  • background services AC_Background, AC_BK
  • the video service data with higher priority can correspond to the access category with stronger competitive transmission capacity
  • the video service data with lower priority can correspond to the competitive transmission capacity.
  • Weak access category For example, for different video service data in the same data packet, I-frame, P-frame, and B-frame correspond to different access categories respectively.
  • the priority of I-frame, P-frame, and B-frame video service data In descending order, for example, I frames correspond to the access type AC_VI, and P frames and B frames correspond to the access type AC_BE.
  • the media intervention control protocol data unit (MAC Protocol Data Unit, Multi-TID A-MPDU) of multiple service identifiers can be used to simultaneously transmit I frames. , P frame, B frame.
  • the sending end generates data packets, and when sending the data packets to the receiving end, the video service data of different priorities is carried on different resources for transmission.
  • multiple resources are allocated to each terminal, so that the terminal Data can be transmitted through multiple resources, which improves the flexibility of transmission.
  • data transmission through multiple resources can reduce the degree of obstruction of data transmission to a certain extent and improve the efficiency of data transmission.
  • an embodiment of the present application also provides a data transmission device.
  • the device includes a generating module 1510 and a sending module 1520, wherein:
  • the generating module 1510 is used for the sending end to generate a data packet, which can specifically implement the generating function in step 401 and other implicit steps;
  • the sending module 1520 is used for the sending end to send the data packet to the receiving end, the data packet including at least two video service data with different priorities, and the video service data with different priorities are carried on different communication resources for transmission Specifically, the sending function in step 402 above and other implicit steps can be implemented.
  • the communication resources include spatial streams, RUs or frequency bands.
  • the sending module 1520 is configured to:
  • video service data of different priorities are carried on different communication resources for transmission.
  • the correspondence between the communication resources and the priority of video service data is based on all
  • the feedback information of the receiving end is determined.
  • the communication resource includes a spatial stream
  • the feedback information includes a sounding signal
  • the correspondence between the spatial stream and the priority of the video service data is detected by the transmitting end based on multiple transmitting antennas of the transmitting end. The received signal power of the detected probe signal is determined.
  • the communication resource includes a spatial stream
  • the feedback information includes multiple indicator bits, one indicator bit in the multiple indicator bits corresponds to one frequency band of multiple frequency bands, and the one indicator bit is used to indicate The correspondence between the antenna and the priority of the video service data in a frequency band; or, the sent feedback information includes an indicator bit used to indicate the correspondence between the antenna and the priority of the video service data.
  • the preamble of the data packet includes indication information of different communication resources, and the indication information is used to indicate the video service data carried by the corresponding communication resource.
  • the video service data of different priorities includes at least two of I frame, P frame and B frame.
  • the video service data of different priorities includes retransmitted video service data and newly transmitted video service data, and the priority of the retransmitted video service data is higher than the priority of the newly transmitted video service data;
  • the data packet further includes indication information used to indicate that each video service data is retransmitted video service data or newly transmitted video service data.
  • the device further includes:
  • the corresponding module 1530 is used for one-to-one correspondence between multiple priority video service data and multiple service identifiers or multiple access categories.
  • generating module 1510 and sending module 1520 may be implemented by a processor, or implemented by a processor in cooperation with a memory and a network interface.
  • the sending end generates data packets, and when sending the data packets to the receiving end, the video service data of different priorities is carried on different resources for transmission.
  • multiple resources are allocated to each terminal, so that the terminal Data can be transmitted through multiple resources, which improves the flexibility of transmission.
  • data transmission through multiple resources can reduce the degree of obstruction of data transmission to a certain extent and improve the efficiency of data transmission.
  • the data transmission device provided in the above embodiment performs data transmission
  • only the division of the above functional modules is used as an example.
  • the above functions can be allocated by different functional modules according to needs.
  • the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the data transmission device provided in the foregoing embodiment and the data transmission method embodiment belong to the same concept. For the specific implementation process, please refer to the method embodiment, which will not be repeated here.
  • the computer program product includes one or more computer instructions, and when the computer program instructions are loaded and executed on a device, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by the device or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape), an optical medium (such as a digital video disk (Digital Video Disk, DVD), etc.), or a semiconductor medium (such as a solid-state hard disk, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输的方法及装置,属于无线传输领域。所述方法包括:发送端生成数据分组;所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级的视频业务数据,不同优先级的视频业务数据承载在不同的资源上传输。采用本申请实施例的方案,可以提高数据传输的灵活度。

Description

数据传输的方法及装置
本申请要求于2019年03月19日提交的申请号为201910207982.4、发明名称为“数据传输的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线传输领域,特别涉及数据传输的方法及装置。
背景技术
在基于无线保真(Wireless-Fidelity,WiFi)传输业务数据时,发送端基于业务数据的业务类型确定业务数据的传输方式,以进行业务数据的传输。以业务数据为视频业务数据为例,依据视频业务的传输方式,发送端发送视频业务数据。但视频业务数据仅有一种传输方式,只能基于一种传输方式传输视频业务数据,导致数据传输的灵活度较差。
发明内容
为了解决相关技术的问题,本申请实施例提供了一种数据传输的方法及装置。所述技术方案如下:
第一方面,提供了一种数据传输的方法,该方法包括:
发送端生成数据分组;
所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输。
其中,数据分组为物理层数据分组,可称为数据包,一般也称为物理层协议数据单元(Physical Protocol Data Unit,PPDU)。每个数据分组中包括前导码和数据字段。数据字段可以包括多个不同的物理层服务数据单元(Physical layer Service Data Unit,PSDU),每个PSDU是由视频业务数据进行封装而成。前导码的主要功能是辅助数据字段的传输,携带数据字段的传输参数等信息,便于接收端解析数据字段。前导码中可以包括多种不同的字段,字段中可以包括资源单元的分配信息、调制编码以及空间流等信息,使得数据分组中的数据字段可以在相应的通信资源上进行发送、以及被接收端接收。
其中,上述提到的数据分组中的视频业务数据可以分为多个不同优先级。视频业务数据的优先级的划分规则可以有多种,例如,视频业务数据的优先级是按照视频业务数据的重要性将视频业务数据划分的等级,视频业务数据的重要性越大,则视频业务数据的优先级越高。
其中,通信资源是进行数据传输的载体,可以包括频域资源、空间资源、时频资源等。本申请实施例中,通信资源主要包括频域资源以及空间资源。频域资源可以包括RU(Resource Unit,资源单元)和频段。空间资源可以是空间流,空间流M的数目一般小于或等于收发天线的数目。如果收发天线之间并不相等,那么等于或小于收发端最小的天线数目。
这样,为每个终端分配多个资源,使得终端可以通过多个资源进行数据传输,在一定程度上降低数据传输受阻的程度。另外,可以保障高优先级的视频业务数据能够获得较好的资 源,提升视频业务数据的传输质量,减少卡顿。
在一种可能的实现方式中,所述通信资源包括空间流、RU或频段。
其中,频域资源可以包括RU,则频域资源与视频业务数据的优先级的对应关系,可以为RU与视频业务数据的优先级的对应关系。RU与视频业务数据的优先级的对应关系是基于RU的传输能力与优先级的对应关系确定的,确定RU的传输能力的方法可以有多种,其中一种可行的方式为,发送端基于接收端发送的反馈信息确定的。以反馈信息为在每个RU上接收探测信号的功率为例,确定RU的传输能力的方法可以是:发送端向接收端发送探测信号,接收端接收探测信号时确定在每个RU上接收探测信号的功率,接收端将在每个RU上接收探测信号的功率发送给发送端,发送端以此来确定RU的传输能力。以反馈信息为探测信号为例,确定RU的传输能力的方法可以是:接收端向发送端发送探测信号,发送端接收探测信号时确定在每个RU上接收探测信号的功率,进而确定每个RU的传输能力。除此之外,还可以通过其它方法确定RU的传输能力,本申请对此不做限定。
其中,频域资源还可以包括频段,频域资源与视频业务数据的优先级的对应关系,可以为频段与视频业务数据的优先级的对应关系。频段与视频业务数据的优先级的对应关系是基于频段的传输能力与优先级的对应关系确定的,确定频段的传输能力的方法可以有多种,其中一种可行的方式为,发送端基于接收端发送的反馈信息确定的。其中,反馈信息可以包括每个频段的信号质量、或在每个频段上接收探测信号的接收信号功率等。
在一种可能的实现方式中,所述不同优先级的视频业务数据承载在不同的通信资源上传输,包括:基于通信资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的通信资源上传输,其中,所述通信资源与视频业务数据的优先级的对应关系,是基于所述接收端的反馈信息确定的。
其中,多输入多输出系统中(Multiple-Input Multiple-Output,MIMO)中可以存在多个空间流。空间流与视频业务数据的优先级的对应关系可以是发送端基于接收端发送的反馈信息确定的。基于不同的反馈信息,该对应关系可以有多种不同的确定方式,反馈信息可以包括探测信号、每个发送天线的功率值、一个或多个指示位等。样,基于接收端发送的反馈信息,发送端可以较为准确地获取不同资源的信号质量,使得发送端可以为高优先级的视频业务数据分配信号质量较高的资源,保证了传输质量。
在一种可能的实现方式中,所述通信资源包括空间流,所述反馈信息包括探测信号,所述空间流与视频业务数据的优先级的对应关系,是所述发送端基于所述发送端的多个发送天线检测到的所述探测信号的接收信号功率确定的。
其中,探测信号可以是专门用于信道检测的信号,也可以是发送常规业务数据的信号,等。探测信号可以周期性发送也可以由预设的事件触发发送。探测信号是接收端向发送端发射的信号。
本申请实施例所示的方案,发送端的每个天线与接收端的每个天线之间分别建立有数据传输的信道。接收端通过各天线的各信道向发送端发射探测信号。对于发送端的每个发送天线,通过不同信道接收到探测信号,并确定通过不同信道接收探测信号的信道状态信息,进而,根据不同信道的信道状态信息,确定发送天线在每个信道上接收探测信号的功率,确定发送天线在对应的所有信道上接收探测信号的功率的总和,即为每个发送天线检测到的探测信号的接收信号功率。确定不同发送天线的接收信号功率的高低关系,确定发送天线的空间 流与视频业务数据的优先级的对应关系。为了保证高优先级的视频业务数据的传输质量,空间流与优先级的对应关系可以是,接收信号功率高的发送天线的空间流与高优先级相对应,接收信号功率低的发送天线的空间流与低优先级相对应。这样,接收端向发送端反馈探测信号,发送端即可获取不同空间流的接收信号功率,传输的过程耗时较少,使得发送端获取空间流的接收信号功率的效率较高。
在一种可能的实现方式中,所述通信资源包括空间流,所述反馈信息包括多个指示位,所述多个指示位中的一个指示位对应多个频段中的一个频段,所述一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系;或者,所送反馈信息包括一个指示位,所述指示位用于指示天线与视频业务数据的优先级的对应关系。
其中,多个指示位中的一个指示位对应多个频段中的一个频段,一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系。一个指示位可以用一个比特位来表示,每个比特位与一个频段相对应,每个比特位用于指示对应的频段上天线与优先级的对应关系,每个比特位的取值可以包括0或1,0和1分别对应不同的天线与优先级的对应关系。一个指示位还可以用多个比特位表示,多个比特位对应的一个指示位与一个频段相对应,多个比特位的取值共同指示不同频段上天线与优先级的对应关系。
其中,一个指示位对应发送端与接收端之间的整个频域资源,该指示位用于指示天线与视频业务数据的优先级的对应关系。该指示位可以用一个比特位表示,该比特位用于指示天线与优先级的对应关系,比特位的取值可以包括0或1,0和1分别对应不同的天线与优先级的对应关系。指示位还可以用多个比特位表示,多个比特位的取值共同指示天线与优先级的对应关系,例如,假设两个比特位表示一个指示位,则00、01、10、11可以分别表示天线与优先级的不同的对应关系。依据指示位的取值对应的天线与优先级的对应关系,接收端根据每个发送天线的功率值生成对应的指示位,发送端接收到指示位后确定天线与优先级的对应关系。这样,接收端直接确定天线与视频业务数据的优先级的对应关系,无需发送端确定天线的接收信号功率,减少了对发送端的资源占用。
在一种可能的实现方式中,所述数据分组的前导码中包括不同通信资源的指示信息,所述指示信息用于指示对应的通信资源承载的视频业务数据。
本申请实施例所示的方案,为了便于不同优先级的视频业务数据的传输,可以生成不同通信资源的指示信息,每个指示信息用于指示对应的通信资源承载的视频业务数据。不同通信资源的指示信息可以承载在数据分组的前导码中。可选的一种方式为,在前导码的EHT-SIG-B字段中承载有不同通信资源的指示信息。根据每个通信资源的指示信息,不同优先级的视频业务数据承载在不同的通信资源上传输。
在一种可能的实现方式中,所述不同优先级的视频业务数据包括I帧、P帧和B帧中的至少两种。
其中,在重要的视频编解码标准H.264中定义了三种帧:I帧,一种完整编码的视频帧,又称为关键帧;P帧,一种参考之前的I帧生成的只包含差异部分编码的视频帧,又称为预测帧;B帧,一种参考前后的相邻帧编码的视频帧,又称为双向预测帧。相对来说,I帧的重要性大于P帧和B帧,因此通常来说,I帧的优先级可以大于P帧的优先级以及B帧的优先级。
本申请实施例所示的方案,根据视频业务数据的数据类型划分优先级的方法有多种,其中一种可行的划分方式可以是通过I帧、P帧以及B帧来划分。以视频业务数据按照I帧、P 帧以及B帧来划分数据类型的方式为例,介绍几种可行的确定优先级的方式:第一种,I帧对应第一优先级,P帧对应第二优先级,B帧对应第三优先级;第二种,I帧对应第一优先级,B帧以及P帧对应第二优先级,其中,第一优先级高于第二优先级,第二优先级高于第三优先级。这样,可以保证重要性更高的I帧承载在信号质量较高的资源上进行传输,提升视频业务的传输质量,减少卡顿。
在一种可能的实现方式中,所述不同优先级的视频业务数据包括重传的视频业务数据和新传的视频业务数据,重传的视频业务数据的优先级高于新传的视频业务数据的优先级;
所述数据分组还包括指示信息,所述指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
其中,数据字段包括重传的视频业务数据和新传的视频业务数据,前导码可以包括多个字段,至少一个字段可以包括指示信息,指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
本申请实施例所示的方案,数据传输过程中,由于网络不稳定可能存在丢包的情况,丢失的视频业务数据需要进行重传,重传的视频业务数据和新传的视频业务数据可以划分为不同优先级的视频业务数据,为了保证重传的视频业务数据的传输质量,可以设置重传的视频业务数据的优先级高于新传的视频业务数据的优先级。这样,可以使重传的视频业务数据承载在信号质量较高的资源上传输,保证了重传的视频业务数据的传输质量。
在一种可能的实现方式中,所述方法还包括:多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
其中,接入类别可以包括视频业务(AC_Video,AC_VI)、语音业务(AC_Voice,AC_VO)、尽最大努力传输的业务(AC_Best Effort,AC_BE)、背景业务(AC_Background,AC_BK)。4种接入类别的竞争传输能力依次递减。
本申请实施例所示的方案,为了保证高优先级的视频业务数据的传输性能,优先级较高的视频业务数据可以对应竞争传输能力较强的接入类别,优先级较低的视频业务数据可以对应竞争传输能力较弱的接入类别。举例来说,对于同一个数据分组中的不同视频业务数据,I帧、P帧、B帧分别与不同的接入类别相对应,I帧、P帧、B帧三种视频业务数据的优先级依次递降,例如,I帧与接入类型AC_VI相对应,P帧与B帧与接入类型AC_BE相对应。这样,实现同一个数据分组中不同的视频业务数据承载在不同的通信资源上相互独立的传输,不互相增加延迟。
第二方面,提供了一种数据传输的装置,该装置包括:
一种数据传输的装置,其特征在于,所述装置包括:
生成模块,用于发送端生成数据分组;
发送模块,用于所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输。
在一种可能的实现方式中,所述通信资源包括空间流、RU或频段。
在一种可能的实现方式中,所述发送模块,用于:
基于通信资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的通信资源上传输,其中,所述通信资源与视频业务数据的优先级的对应关系,是基于所述接收端的反馈信息确定的。
在一种可能的实现方式中,所述通信资源包括空间流,所述反馈信息包括探测信号,所述空间流与视频业务数据的优先级的对应关系,是所述发送端基于所述发送端的多个发送天线检测到的所述探测信号的接收信号功率确定的。
在一种可能的实现方式中,所述通信资源包括空间流,所述反馈信息包括多个指示位,所述多个指示位中的一个指示位对应多个频段中的一个频段,所述一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系;或者,所送反馈信息包括一个指示位,所述指示位用于指示天线与视频业务数据的优先级的对应关系。
在一种可能的实现方式中,所述数据分组的前导码中包括不同通信资源的指示信息,所述指示信息用于指示对应的通信资源承载的视频业务数据。
在一种可能的实现方式中,所述不同优先级的视频业务数据包括I帧、P帧和B帧中的至少两种。
在一种可能的实现方式中,所述不同优先级的视频业务数据包括重传的视频业务数据和新传的视频业务数据,重传的视频业务数据的优先级高于新传的视频业务数据的优先级;
所述数据分组还包括指示信息,所述指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
在一种可能的实现方式中,所述装置还包括:
对应模块,用于多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
第三方面,提供了一种数据传输的装置,所述装置包括处理器和存储器;所述存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,用于实现如上述第一方面中任一项所述的方法的指令。
第四方面,提供了一种计算机可读存储介质,计算机可读存储介质包括指令,当所述计算机可读存储介质在设备上运行时,使得所述设备执行上述第一方面所述的方法。
第五方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在设备上运行时,使得所述设备执行上述第一方面所述的方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
本申请实施例中,发送端生成数据分组,在向接收端发送数据分组时,使不同优先级的视频业务数据承载在不同的资源上传输,这样,为每个终端分配多个资源,使得终端可以通过多个资源进行数据传输,提高了传输的灵活度。而且,通过多个资源进行数据传输,可以在一定程度上降低数据传输受阻的程度,提高了数据传输的效率。
附图说明
图1是本申请实施例提供的一种系统结构框架示意图;
图2是本申请实施例提供的一种发送端的结构框图;
图3是本申请实施例提供的一种接收端的结构框图;
图4是本申请实施例提供的一种数据传输的方法流程示意图;
图5是本申请实施例提供的一种数据分组的结构示意图;
图6是本申请实施例提供的一种数据传输的方法流程示意图;
图7是本申请实施例提供的一种数据传输的场景示意图;
图8是本申请实施例提供的一种数据传输的场景示意图;
图9是本申请实施例提供的一种数据传输的场景示意图;
图10是本申请实施例提供的一种数据传输的方法流程示意图;
图11是本申请实施例提供的一种数据传输的场景示意图;
图12是本申请实施例提供的一种数据分组的结构示意图;
图13是本申请实施例提供的一种数据传输的场景示意图;
图14是本申请实施例提供的一种数据分组的结构示意图;
图15是本申请实施例提供的一种数据传输的装置结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
为了便于对本申请实施例的理解,下面首先介绍本申请实施例涉及的系统架构。
本申请实施例提供了一种数据传输的方法,如图1所示,该方法涉及一个或多个节点同一个或多个节点之间的数据通信,主要场景涉及接入点(Access Point,AP)与站点(Station,STA)之间的通信,但同样适用于AP与AP、STA与STA之间的通信。该方法可以由发送端和接收端共同实现,其中,发送端可以是AP或STA,接收端可以是AP或STA。
发送端和接收端可以是但不限于通信服务器、路由器、交换机、网桥、计算机、手机等。如图2所示,发送端至少可以包括网络接口201、处理器202以及存储器203。网络接口201,用于对数据分组进行发送以及接收,可以包括以太网媒体接入控制器(Media Access Control,MAC)2011、物理接口收发器(Port Physical Layer,PHY)2012以及射频/天线2013等。处理器202,用于处理数据传输的相应操作,可选地,处理器202可以包括控制单元2021、处理单元2022以及调度单元2023。控制单元2021,用于控制执行信令信息相应的操作;处理单元2022,用于解析信令信息,处理相关数据等;调度单元2023,用于决定不同数据的传输资源、使用的调制参数等。存储器203用于存储通过网络接口201接收或发送的业务数据、信令信息以及预设值等。
如图3所示,接收端至少可以包括网络接口301、处理器302以及存储器303。网络接口301,用于对数据分组进行发送以及接收,可以包括以太网媒体接入控制器(Media Access Control,MAC)3011、物理接口收发器(Port Physical Layer,PHY)3012以及射频/天线3013等。处理器302,用于处理数据传输的相应操作,可选地,处理器302可以包括控制单元3021、处理单元3022以及调度单元3023。控制单元3021,用于控制执行信令信息相应的操作;处理单元3022,用于解析信令信息,处理相关数据等;调度单元3023,用于决定不同数据的传输资源、使用的调制参数等。存储器303用于存储通过网络接口301接收或发送的业务数据、信令信息以及预设值等。
下面将结合具体实施方式,对图4所示的处理流程进行详细的说明,内容可以如下:
步骤401,发送端生成数据分组。
其中,数据分组为物理层数据分组,可称为数据包,一般也称为物理层协议数据单元(Physical Protocol Data Unit,PPDU)。每个数据分组中包括前导码和数据字段。数据字段可以包括多个不同的物理层服务数据单元(Physical layer Service Data Unit,PSDU),每个 PSDU是由视频业务数据进行封装而成。前导码的主要功能是辅助数据字段的传输,携带数据字段的传输参数等信息,便于接收端解析数据字段。前导码中可以包括多种不同的字段,字段中可以包括资源单元的分配信息、调制编码以及空间流等信息,使得数据分组中的数据字段可以在相应的通信资源上进行发送、以及被接收端接收。下面对前导码的不同字段进行简单介绍。
以图5所示为例,前导码中的字段可以包括:传统短训练字段(Legacy-Short Training Field,L-STF)、传统长训练字段((Legacy-Long Training Field,L-LTF)、传统信令字段(Legacy-Signal Field,L-SIG)、自动检测符号(Symbol for auto-detection)、极高吞吐率信令字段A(Extreme High-Throughput-signaling-A,EHT-SIG-A)、极高吞吐率信令字段B(Extreme High-Throughput-signaling-B,EHT-SIG-B)、极高吞吐率短训练字段(Extreme High-Throughput-Short Training Field,EHT-STF)、极高吞吐率长训练字段(Extreme High-Throughput-Long Training Field,EHT-LTF)、数据包扩展(Packet Extension,PE)。
上述提到的数据分组中的视频业务数据可以分为多个不同优先级。视频业务数据的优先级的划分规则可以有多种,例如,视频业务数据的优先级是按照视频业务数据的重要性将视频业务数据划分的等级,视频业务数据的重要性越大,则视频业务数据的优先级越高。下面例举几种可行的优先级的划分方式:
1)按照视频业务数据的数据类型,确定每个视频业务数据的优先级。
在重要的视频编解码标准H.264中定义了三种帧:I帧,一种完整编码的视频帧,又称为关键帧;P帧,一种参考之前的I帧生成的只包含差异部分编码的视频帧,又称为预测帧;B帧,一种参考前后的相邻帧编码的视频帧,又称为双向预测帧。相对来说,I帧的重要性大于P帧和B帧,因此通常来说,I帧的优先级可以大于P帧的优先级以及B帧的优先级。
根据视频业务数据的数据类型划分优先级的方法有多种,其中一种可行的划分方式可以是通过I帧、P帧以及B帧来划分。以视频业务数据按照I帧、P帧以及B帧来划分数据类型的方式为例,介绍几种可行的确定优先级的方式:第一种,I帧对应第一优先级,P帧对应第二优先级,B帧对应第三优先级;第二种,I帧对应第一优先级,B帧以及P帧对应第二优先级,其中,第一优先级高于第二优先级,第二优先级高于第三优先级。采用对应关系表的方式来表示时,可以分别采用下述表1和表2来表示。
表1
I帧 第一优先级
P帧 第二优先级
B帧 第三优先级
表2
I帧 第一优先级
B帧和P帧 第二优先级
这样,如果采用表1的对应关系,则在确定每个视频业务数据的优先级时,如果视频业务数据为I帧,则确定视频业务数据的优先级为第一优先级,如果视频业务数据为P帧,则确定视频业务数据的优先级为第二优先级,如果视频业务数据为B帧,则确定视频业务数据的优先级为第三优先级。这种情况下,在按照预设的分组规则对视频业务数据进行分组时,每个数据分组中至少包括I帧、P帧和B帧中的至少两种。
如果采用表2的对应关系,则在确定每个视频业务数据的优先级时,如果视频业务数据为I帧,则确定视频业务数据的优先级为第一优先级,如果视频业务数据为P帧或B帧,则确定视频业务数据的优先级为第二优先级。这种情况下,在按照预设的分组规则对视频业务数据进行分组时,每个数据分组中包括I帧和P帧、I帧和B帧、或者I帧和P帧以及B帧中的任一种组合。
需要说明的是,上述根据I帧、P帧和B帧划分视频业务数据的优先级的方法仅为例举出的一种划分方式,除此之外,还可以采用其它的划分方式划分优先级,本申请实施例对此不做限定。
2)按照视频业务数据是重传的视频业务数据或者新传的视频业务数据,确定视频业务数据的优先级。
数据传输过程中,由于网络不稳定可能存在丢包的情况,丢失的视频业务数据需要进行重传,重传的视频业务数据和新传的视频业务数据可以划分为不同优先级的视频业务数据。为了保证重传的视频业务数据的传输质量,一种可行的优先级划分方式可以是,设置重传的视频业务数据的优先级高于新传的视频业务数据的优先级。
需要说明的是,上述仅为本申请实施例列举出的两种可行的优先级划分方式,除此之外还可以有其它的划分方式,本申请对此不做限定。
步骤402,发送端向接收端发送数据分组,数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输。
其中,通信资源是进行数据传输的载体,可以包括频域资源、空间资源、时频资源等。本申请实施例中,通信资源主要包括频域资源以及空间资源。频域资源可以包括资源单元(Resource Unit,RU)和频段。空间资源可以是空间流,空间流M的数目一般小于或等于收发天线的数目。如果收发天线之间并不相等,那么等于或小于收发端最小的天线数目。
下面介绍确定不同优先级的视频业务数据承载在不同的通信资源上传输的方法:
基于通信资源与视频业务数据的优先级的对应关系,确定不同优先级的视频业务数据承载在不同的通信资源上传输。其中,通信资源与视频业务数据的优先级的对应关系,可以是基于通信资源的传输性能确定的。通信资源的传输性能可以用于衡量通信资源传输业务数据的传输质量,传输性能越高的通信资源,其承载的视频业务数据的传输质量越高。通信资源的传输性能的确定方式有多种,其中一种可行的方式是,通信资源的传输性能是基于接收端的反馈信息确定的。接收端的反馈信息可以包括多种,例如探测信号、指示位、信道的信道质量等,本申请对此不做限定。发送端根据通信资源与视频业务数据的优先级的对应关系、以及不同优先级的视频业务数据,确定不同优先级的视频业务数据分别对应的通信资源,使得不同优先级的视频业务数据承载在不同的通信资源上传输。为了优先保证高优先级的视频业务数据的传输质量,可行的一种方式是,通信资源与视频业务数据的优先级的对应关系中,优先级越高的视频业务数据,对应的通信资源的传输性能越高。
可选地,为了便于不同优先级的视频业务数据的传输,可以生成不同通信资源的指示信息,每个指示信息用于指示对应的通信资源承载的视频业务数据。不同通信资源的指示信息可以承载在数据分组的前导码中。可选的一种方式为,在前导码的EHT-SIG-B字段中承载有不同通信资源的指示信息。根据每个通信资源的指示信息,不同优先级的视频业务数据承载在不同的通信资源上传输。
可选地,多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应,基于不同优先级的视频业务数据对应的业务标识或接入类别,不同优先级的视频业务数据承载在不同的通信资源上传输。其中,接入类别可以包括视频业务(AC_Video,AC_VI)、语音业务(AC_Voice,AC_VO)、尽最大努力传输的业务(AC_Best Effort,AC_BE)、背景业务(AC_Background,AC_BK)。4种接入类别的竞争传输能力依次递减。为了优先保证高优先级的视频业务数据的传输质量,可选的一种方式为,高优先级的视频业务数据对应资源竞争能力较强的业务标识或接入类别,低优先级的视频业务数据对应资源竞争能力较弱的业务标识或接入类别。
需要说明的是,上述列举的几种方式仅为本申请中示例性的实现方式,除此之外还可以有其它实现方式,本申请对此不做限定。
在上述步骤402之后,发送端将不同优先级的视频业务数据承载在不同的通信资源上进行传输后,接收端接收包含视频业务数据的数据分组。如果正确接收了高优先级的视频业务数据和低优先级的视频业务数据,则接收端将高优先级的视频业务数据和低优先级的视频业务数据进行合并。如果只接收到了高优先级的视频业务数据,没有正确接收低优先级的视频业务数据,则接收端可以舍弃低优先级的视频业务数据,也可以向发送端反馈重传请求,等到发送端重传低优先级的视频业务数据,本申请对此不做限定。
本申请实施例中,还提供了一种数据传输的方法,在该实施例中,通信资源为空间流,通信资源与视频业务数据的优先级的对应关系包括空间流与视频业务数据的优先级的对应关系,下面结合图6进行说明。
步骤601,发送端生成数据分组。
步骤602,发送端向接收端发送数据分组,数据分组包括至少两个优先级的视频业务数据,基于空间流与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的空间流上传输。
其中,多输入多输出系统中(Multiple-Input Multiple-Output,MIMO)中可以存在多个空间流。空间流与视频业务数据的优先级的对应关系可以是发送端基于接收端发送的反馈信息确定的。基于不同的反馈信息,该对应关系可以有多种不同的确定方式,下面列举几种可行的方式。
方式一,反馈信息包括探测信号,空间流与视频业务数据的优先级的对应关系,是发送端基于发送端的多个发送天线检测到的探测信号的接收信号功率确定的。
其中,探测信号可以是专门用于信道检测的信号,也可以是发送常规业务数据的信号,等。探测信号可以周期性发送也可以由预设的事件触发发送。在方式一中探测信号是接收端向发送端发射的信号。
下面简单介绍一下发送端基于接收端发射的探测信号确定空间流与视频业务数据的优先级的对应关系的方法:
发送端的每个天线与接收端的每个天线之间分别建立有数据传输的信道。接收端通过各天线的各信道向发送端发射探测信号。对于发送端的每个发送天线,通过不同信道接收到探测信号,并确定通过不同信道接收探测信号的信道状态信息,进而,根据不同信道的信道状态信息,确定发送天线在每个信道上接收探测信号的功率,确定发送天线在对应的所有信道 上接收探测信号的功率的总和,即为每个发送天线检测到的探测信号的接收信号功率。确定不同发送天线的接收信号功率的高低关系,确定发送天线的空间流与视频业务数据的优先级的对应关系。为了保证高优先级的视频业务数据的传输质量,空间流与优先级的对应关系可以是,接收信号功率高的发送天线的空间流与高优先级相对应,接收信号功率低的发送天线的空间流与低优先级相对应。
举例来说,如图7所示,发送端采用两天线发送视频业务数据。基于此装置,发送端的多个发送天线的接收信号功率的确定方式可以是,接收端向发送端发送探测信号,发送端根据接收到的探测信号确定信道矩阵为
Figure PCTCN2020079542-appb-000001
其中,h 11是第一接收天线到第一发送天线的信道,h 12是第一接收天线到第二发送天线的信道,h 21是第二接收天线到第一发送天线的信道,h 22是第二接收天线到第二发送天线的信道。
根据上述信道矩阵,可以确定第一发送天线的接收信号功率可以为P 1=|h _11|^2+|h _21|^2,第二发送天线的接收信号功率P 2=|h _12|^2+|h _22|^2。假定待发送的视频业务数据分为两个优先级,比如I帧为第一优先级,P帧和B帧为第二优先级,如果P 1>P 2,则确定空间流与视频业务数据的优先级的对应关系为第一发送天线的空间流对应第一优先级的视频业务数据、第二发送天线的空间流对应第二优先级的视频业务数据;如果P 1<P 2,则确定空间流与视频业务数据的优先级的对应关系为第二发送天线的空间流对应第一优先级的视频业务数据、第一发送天线的空间流对应第二优先级的视频业务数据。
方式二,反馈信息包括每个发送天线的功率值。
其中,一个发送天线的功率值为接收端对该发送天线在所有信道上发送的探测信号的功率总和。确定一个发送天线的功率值的方法可以包括:发送端向接收端发送探测信号,接收端在接收探测信号时,可以确定在每个信道上接收探测信号的功率,根据该发送天线对应的所有信道,接收端确定该发送天线在所有信道上的接收功率总和,即确定出了该发送天线的功率值。
根据发送端的多个发送天线的接收信号功率,建立空间流与优先级的对应关系的方法有多种。为了保证高优先级的视频业务数据的传输质量,可选的一种方式为,接收信号功率较高的发送天线对应的空间流与高优先级相对应,接收信号功率较低的发送天线对应的空间流与低优先级相对应。
举例来说,如图8所示,发送端采用两天线发送视频业务数据。基于此装置,每个发送天线的功率值的确定方式可以是,发送端向接收端发送探测信号,接收端根据接收到的探测信号确定信道矩阵为
Figure PCTCN2020079542-appb-000002
其中,h 33是第三发送天线到第三接收天线之间的信道,h 34是第三发送天线到第四接收天线之间的信道,h 43是第四发送天线到第三接收天线之间的信道,h 44是第四发送天线到第四接收天线之间的信道。
根据上述信道矩阵,可以确定第三发送天线的功率值可以为P 3=|h _33|^2+|h _34|^2,第四发送天线的功率值可以为P 4=|h _43|^2+|h _44|^2。接收端将P 3和P 4发送给接收端,接收端将P 3和P 4进行比对。假定待发送的视频业务数据分为两个优先级,比如I帧为第一优先级,P帧和B帧为第二优先级,如果P 3>P 4,则确定空间流与视频业务数据的优先级的对应关系为第三发送天线的空间流对应第一优先级的视频业务数据、第四发送天线的空间流对应第二优先级的视频业务数据;如果P 3<P 4,则确定空间流与视频业务数据的优先级的对应关系为第四发送天线的空间流对应第一优先级的视频业务数据、第三发送天线的空间流对应第二优先级的视频业务数据。
方式三,反馈信息包括一个或多个指示位,指示位用于指示天线与视频业务数据的优先级的对应关系。
情况一,反馈信息包括多个指示位。
其中,多个指示位中的一个指示位对应多个频段中的一个频段,一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系。一个指示位可以用一个比特位来表示,每个比特位与一个频段相对应,每个比特位用于指示对应的频段上天线与优先级的对应关系,每个比特位的取值可以包括0或1,0和1分别对应不同的天线与优先级的对应关系。一个指示位还可以用多个比特位表示,多个比特位对应的一个指示位与一个频段相对应,多个比特位的取值共同指示不同频段上天线与优先级的对应关系,例如,假设两个比特位表示一个指示位,则00、01、10、11可以分别表示在某个频段上天线与优先级的不同的对应关系。依据指示位的取值对应的天线与优先级的对应关系,接收端根据每个频段上每个发送天线的功率值生成对应的指示位,发送端接收到指示位后确定每个频段上天线与优先级的对应关系。
举例来说,如果采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)方式发送视频业务数据,则不同频段上不同发送天线的功率值高低关系可能不同。根据频域信道的频域选择特性,以图9为例,在左边的频段上,第一发送天线的功率值高于第二发送天线的功率值,在右边的频段上,第一发送天线的功率值低于第二发送天线的功率值。基于频域信道的频域选择特性,不同的频段对应的指示位可能不同。假设发送端通知接收端采用分层方式2x2MIMO发送第一优先级的视频业务数据以及第二优先级的视频业务数据,假定采用均分的方式将每个信道平均分成N个频段,指示位为比特位图的形式,即接收端采用比特位图(bitmap)方式反馈不同频段上天线与视频业务数据的优先级的对应关系。发送端向接收端发送探测信号,接收端确定每个频段上第一发送天线与第二发送天线之间的功率值高低关系,发送天线的功率值为接收端接收发送天线发送的探测信号的接收功率。如果第一发送天线的功率值高于第二发送天线的功率值,可以确定第一发送天线与高优先级相对应,第二发送天线与低优先级相对应,则确定该频段对应的指示位为1;如果第一发送天线的功率值低于第二发送天线的功率值,可以确定第二发送天线与高优先级相对应,第一发送天线与低优先级相对应,则确定该频段对应的指示位为0。
接收端将确定出的比特位图以及频段个数N发送给发送端,发送端接收到比特位图以及频段个数N后,对于每个频段对应的比特值,如果该比特值为1,则表示该频段上第一发送 天线与高优先级相对应,第二发送天线与低优先级相对应;如果该比特值为0,则第二发送天线与高优先级相对应,第一发送天线与低优先级相对应。
情况二,反馈信息包括一个指示位。
其中,指示位对应发送端与接收端之间的整个频域资源,该指示位用于指示天线与视频业务数据的优先级的对应关系。该指示位可以用一个比特位表示,该比特位用于指示天线与优先级的对应关系,比特位的取值可以包括0或1,0和1分别对应不同的天线与优先级的对应关系。指示位还可以用多个比特位表示,多个比特位的取值共同指示天线与优先级的对应关系,例如,假设两个比特位表示一个指示位,则00、01、10、11可以分别表示天线与优先级的不同的对应关系。依据指示位的取值对应的天线与优先级的对应关系,接收端根据每个发送天线的功率值生成对应的指示位,发送端接收到指示位后确定天线与优先级的对应关系。
方式四,反馈信息包括一个或多个指示位,指示位用于指示不同发送天线的传输性能高低关系。
情况一,反馈信息包括多个指示位。
其中,多个指示位中的一个指示位对应多个频段中的一个频段,一个指示位用于指示一个频段上不同发送天线的传输性能高低关系,发送天线的传输性能可以根据接收端对发送天线发送的探测信号的接收功率确定。一个指示位可以用一个比特位来表示,每个比特位与一个频段相对应,每个比特位用于指示不同发送天线的传输性能高低关系,每个比特位的取值可以包括0或1,0和1分别对应不同发送天线的传输性能高低关系。例如,0对应的传输性能高低关系是,第一发送天线的传输性能高于第二发送天线的传输性能,1对应的传输性能高低关系是,第一发送天线的传输性能低于第二发送天线的传输性能。一个指示位还可以用多个比特位表示,多个比特位对应的一个指示位与一个频段相对应,多个比特位的取值共同指示一个频段上不同发送天线的传输性能高低关系,例如,假设两个比特位表示一个指示位,则00、01、10、11可以分别表示在某个频段上不同发送天线的不同传输性能高低关系。依据指示位对应的传输性能高低关系,接收端根据不同频段上不同发送天线的传输性能高低关系生成对应的指示位,发送端接收到指示位后,确定指示位对应的不同发送天线的传输性能高低关系,进而确定空间流与视频业务数据的优先级的对应关系。
情况二,反馈信息包括一个指示位。
其中,这一个指示位对应发送端与接收端之间的整个频段,一个指示位用于指示不同发送天线的传输性能高低关系,发送天线的传输性能可以根据接收端对发送天线发送的探测信号的接收功率确定。指示位可以用一个比特位来表示,比特位用于指示不同发送天线的传输性能高低关系,比特位的取值可以包括0或1,0和1分别对应不同发送天线的传输性能高低关系。指示位还可以用多个比特位表示,多个比特位的取值共同指示不同发送天线的传输性能高低关系,例如,假设两个比特位表示一个指示位,则00、01、10、11可以分别表示在某个频段上不同发送天线的传输性能高低关系。
需要说明的是,指示位除了上述的表示方式外,指示位的表示方法还可以是其它多种方式,如用每个发送天线的功率值表示指示位、用发送天线的功率值最高的天线标识等,本申请对此不做限定。
方式五,反馈信息包括信道的信道矩阵。
接收端进行信道估计,得到信道矩阵,接收端将信道矩阵发送给发送端。其中,信道估 计的方法可以是,发送端向接收端发送探测信号,接收端接到探测信号后,根据接收到的探测信号,确定每个发送天线与每个接收天线之间的所有信道的信道矩阵。
发送端接收到信道矩阵后,根据信道矩阵确定出预编码矩阵,例如,可以通过对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD),得到预编码矩阵,如下述公式(1)所示:
H=U*S*V……(1)
其中,H为信道矩阵,U和V均为酉矩阵,S是一个对角矩阵,假设发送端采用两天线发送视频业务数据,则S可以表示为
Figure PCTCN2020079542-appb-000003
V即为预编码矩阵,S可以表示接收端对信号做了均衡处理后的虚拟等效信道矩阵。通过S中的奇异值s 1与s 2的大小关系,可以大致确定不同发送天线的信号质量高低关系。
如果s 1>s 2,则说明第一发送天线的信号质量高于第二发送天线的信号质量,则确定空间流与视频业务数据的优先级的对应关系为,第一发送天线的空间流对应高优先级的视频业务数据,第二发送天线的空间流对应低优先级的视频业务数据。
如果s 1<s 2,则说明第一发送天线的信号质量低于第二发送天线的信号质量,则确定空间流与视频业务数据的优先级的对应关系为,第一发送天线的空间流对应低优先级的视频业务数据,第二发送天线的空间流对应高优先级的视频业务数据。
发送端在发送数据分组包括的视频业务数据时,根据预编码矩阵V对视频业务数据进行预编码,假设数据分组包括两个优先级的视频业务数据,高优先级的视频业务数据用x表示,低优先级的视频业务数据用y表示,则如果s 1>s 2,则发送的两个优先级的视频业务数据的顺序可以为:
Figure PCTCN2020079542-appb-000004
如果s 1<s 2,则发送的两个优先级的视频业务数据的顺序可以为
Figure PCTCN2020079542-appb-000005
方式六,反馈信息包括探测信号,空间流与视频业务数据的优先级的对应关系,是发送端基于多个发送天线检测到的每个信道的信道状态信息确定的。
接收端向发送端发送探测信号,发送端基于每个发送天线检测每个信道的信道状态信息,得到信道矩阵,根据信道矩阵确定出预编码矩阵,例如,可以通过对信道矩阵进行SVD分解,得到预编码矩阵以及对角矩阵,相应的处理可以参照上述方式五中的SVD分解处理,此处不做赘述。
发送端确定预编码矩阵以及对角矩阵,根据对角矩阵中的特征值的大小关系,确定不同发送天线的信号质量高低关系。根据不同发送天线的信号质量高低关系,确定空间流与视频业务数据的优先级的对应关系,相应的处理可以参照上述方式五中的建立对应关系的处理,此处不做赘述。
需要说明的是,除了上述列举出的几种方式外,还可以有其它的方式,本申请对此不做限定。而且,上述实施例中的视频业务数据仅为本实施例中一个示例性的例子,除了视频业务数据之外,本申请实施例还可以实现对其它类型的业务数据进行传输,例如,业务数据可以是语音业务数据等,本申请实施例对此不做限定。
本申请实施例中,还提供了一种数据传输的方法,在该实施例中,通信资源为频域资源, 则通信资源与视频业务数据的优先级的对应关系,可以包括频域资源与视频业务数据的优先级的对应关系。下面结合图10进行说明。
步骤1001,发送端生成数据分组。
步骤1002,发送端向接收端发送数据分组,数据分组包括至少两个优先级的视频业务数据,基于频域资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的频域资源上传输。
其中,频域资源可以包括RU,则频域资源与视频业务数据的优先级的对应关系,可以为RU与视频业务数据的优先级的对应关系。RU与视频业务数据的优先级的对应关系是基于RU的传输能力与优先级的对应关系确定的,为了优先保证高优先级的视频业务数据的传输质量,RU与视频业务数据的优先级的对应关系可以包括,传输能力高的RU与高优先级相对应,传输能力低的RU与低优先级相对应。确定RU的传输能力的方法可以有多种,其中一种可行的方式为,发送端基于接收端发送的反馈信息确定的。以反馈信息为在每个RU上接收探测信号的功率为例,确定RU的传输能力的方法可以是:发送端向接收端发送探测信号,接收端接收探测信号时确定在每个RU上接收探测信号的功率,接收端将在每个RU上接收探测信号的功率发送给发送端,发送端以此来确定RU的传输能力。以反馈信息为探测信号为例,确定RU的传输能力的方法可以是:接收端向发送端发送探测信号,发送端接收探测信号时确定在每个RU上接收探测信号的功率,进而确定每个RU的传输能力。除此之外,还可以通过其它方法确定RU的传输能力,本申请对此不做限定。
频域资源还可以包括频段,如图11所示,则频域资源与视频业务数据的优先级的对应关系,可以为频段与视频业务数据的优先级的对应关系。频段与视频业务数据的优先级的对应关系是基于频段的传输能力与优先级的对应关系确定的,为了优先保证高优先级的视频业务数据的传输质量,频段与视频业务数据的优先级的对应关系可以包括,传输能力高的频段与高优先级相对应,传输能力低的频段与低优先级相对应。确定频段的传输能力的方法可以有多种,其中一种可行的方式为,发送端基于接收端发送的反馈信息确定的。其中,反馈信息可以包括每个频段的信号质量、或在每个频段上接收探测信号的接收信号功率等。
本申请实施例中,还提供了一种数据传输的方法,在该实施例中,不同优先级的业务数据包括重传的业务数据和新传的业务数据,下面以图12进行说明。
步骤1201,发送端生成数据分组。
步骤1202,发送端向接收端发送数据分组,数据分组包括不同优先级的业务数据,基于通信资源与业务数据的优先级的对应关系,不同优先级的业务数据承载在不同的通信资源上传输,不同优先级的业务数据包括重传的业务数据和新传的业务数据。
其中,数据分组中的数据字段包括重传的业务数据和新传的业务数据,数据分组中的前导码可以包括多个字段,至少一个字段可以包括指示信息,指示信息用于指示每个业务数据为重传的业务数据或的业务数据。可选地,如13图所示,前导码中的字段可以包括:L-STF、L-LTF、L-SIG、EHT-SIG-A、EHT-SIG-B、EHT-STF、EHT-LTF、PE。其中,EHT-SIG-B字段可以包括资源单元分配信息以及多个用户信息,每个用户信息对应一个业务数据,每个用户信息中包括多个子字段,子字段中包括不同用户的空间流信息、编码调制信息以及指示信息等。重传的方式可以包括自动重传请求(Automatic Repeat Request,ARQ)方式或混合 自动重传请求(Hybrid Automatic Repeat reQuest,HARQ),以重传方式为HARQ为例,具体的子字段以及子字段对应的功能详见下表3。
表3
Figure PCTCN2020079542-appb-000006
需要说明的是,上述重传或新传的业务数据可以是多种业务数据,例如,重传或新传的业务数据可以是重传或新传的视频业务数据,或者,业务数据可以是重传或新传的语音业务数据等,本申请对此不做限定。而且,重传或新传的业务数据的方案可以结合本申请其它实施例的方案共同实现数据传输的方法,此处不做赘述。
本申请实施例中,还提供了一种数据传输的方法,在该实施例中,不同优先级的视频业务数据与不同的业务标识或接入类别一一对应。下面结合图14进行说明。
步骤1401,发送端生成数据分组。
步骤1402,发送端向接收端发送数据分组,数据分组包括至少两个优先级的视频业务数据,多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
其中,接入类别可以包括视频业务(AC_Video,AC_VI)、语音业务(AC_Voice,AC_VO)、尽最大努力传输的业务(AC_Best Effort,AC_BE)、背景业务(AC_Background,AC_BK)。4种接入类别的竞争传输能力依次递减。
可选地,为了保证高优先级的视频业务数据的传输性能,优先级较高的视频业务数据可以对应竞争传输能力较强的接入类别,优先级较低的视频业务数据可以对应竞争传输能力较弱的接入类别。举例来说,对于同一个数据分组中的不同视频业务数据,I帧、P帧、B帧分 别与不同的接入类别相对应,I帧、P帧、B帧三种视频业务数据的优先级依次递降,例如,I帧与接入类型AC_VI相对应,P帧与B帧与接入类型AC_BE相对应。
另外,对于不同数据分组中的I帧、P帧、B帧,可以利用多个业务标识的媒体介入控制协议数据单元(MAC Protocol Data Unit,Multi-TID A-MPDU)聚合的方式同时传输I帧、P帧、B帧。
需要说明的是,上述不同优先级的视频业务数据与不同的接入类别的处理,可以结合到上述不同优先级的视频业务数据承载到不同的通信资源上传输的处理中,上述将视频业务数据映射到不同的接入类别的处理也可以单独使用,本申请对此不做限定。
本申请实施例中,发送端生成数据分组,在向接收端发送数据分组时,使不同优先级的视频业务数据承载在不同的资源上传输,这样,为每个终端分配多个资源,使得终端可以通过多个资源进行数据传输,提高了传输的灵活性。而且,通过多个资源进行数据传输,可以在一定程度上降低数据传输受阻的程度,提高了数据传输的效率。
基于相同的技术构思,本申请实施例还提供了一种数据传输的装置,如图15所示,该装置包括生成模块1510以及发送模块1520,其中:
生成模块1510,用于发送端生成数据分组,具体可以实现上述步骤401中的生成功能,以及其他隐含步骤;
发送模块1520,用于所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输,具体可以实现上述步骤402中的发送功能,以及其他隐含步骤。
可选地,所述通信资源包括空间流、RU或频段。
可选地,所述发送模块1520,用于:
基于通信资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的通信资源上传输,其中,所述通信资源与视频业务数据的优先级的对应关系,是基于所述接收端的反馈信息确定的。
可选地,所述通信资源包括空间流,所述反馈信息包括探测信号,所述空间流与视频业务数据的优先级的对应关系,是所述发送端基于所述发送端的多个发送天线检测到的所述探测信号的接收信号功率确定的。
可选地,所述通信资源包括空间流,所述反馈信息包括多个指示位,所述多个指示位中的一个指示位对应多个频段中的一个频段,所述一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系;或者,所送反馈信息包括一个指示位,所述指示位用于指示天线与视频业务数据的优先级的对应关系。
可选地,所述数据分组的前导码中包括不同通信资源的指示信息,所述指示信息用于指示对应的通信资源承载的视频业务数据。
可选地,所述不同优先级的视频业务数据包括I帧、P帧和B帧中的至少两种。
可选地,所述不同优先级的视频业务数据包括重传的视频业务数据和新传的视频业务数据,重传的视频业务数据的优先级高于新传的视频业务数据的优先级;
所述数据分组还包括指示信息,所述指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
可选地,所述装置还包括:
对应模块1530,用于多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
需要说明的是,上述生成模块1510、和发送模块1520可以由处理器实现,或者由处理器配合存储器、网络接口来实现。
本申请实施例中,发送端生成数据分组,在向接收端发送数据分组时,使不同优先级的视频业务数据承载在不同的资源上传输,这样,为每个终端分配多个资源,使得终端可以通过多个资源进行数据传输,提高了传输的灵活性。而且,通过多个资源进行数据传输,可以在一定程度上降低数据传输受阻的程度,提高了数据传输的效率。
需要说明的是:上述实施例提供的数据传输的装置在进行数据传输时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的数据传输的装置与数据传输的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在设备上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴光缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(如软盘、硬盘和磁带等),也可以是光介质(如数字视盘(Digital Video Disk,DVD)等),或者半导体介质(如固态硬盘等)。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    发送端生成数据分组;
    所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输。
  2. 根据权利要求1所述的方法,其特征在于,所述通信资源包括空间流、RU或频段。
  3. 根据权利要求1所述的方法,其特征在于,所述不同优先级的视频业务数据承载在不同的通信资源上传输,包括:
    基于通信资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的通信资源上传输,其中,所述通信资源与视频业务数据的优先级的对应关系,是基于所述接收端的反馈信息确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述通信资源包括空间流,所述反馈信息包括探测信号,所述空间流与视频业务数据的优先级的对应关系,是所述发送端基于所述发送端的多个发送天线检测到的所述探测信号的接收信号功率确定的。
  5. 根据权利要求3所述的方法,其特征在于,所述通信资源包括空间流,所述反馈信息包括多个指示位,所述多个指示位中的一个指示位对应多个频段中的一个频段,所述一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系;或者,所送反馈信息包括一个指示位,所述指示位用于指示天线与视频业务数据的优先级的对应关系。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述数据分组的前导码中包括不同通信资源的指示信息,所述指示信息用于指示对应的通信资源承载的视频业务数据。
  7. 根据权利要求1-5任一所述的方法,其特征在于,所述不同优先级的视频业务数据包括I帧、P帧和B帧中的至少两种。
  8. 根据权利要求1-5任一所述的方法,其特征在于,所述不同优先级的视频业务数据包括重传的视频业务数据和新传的视频业务数据,重传的视频业务数据的优先级高于新传的视频业务数据的优先级;
    所述数据分组还包括指示信息,所述指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
  9. 根据权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
  10. 一种数据传输的装置,其特征在于,所述装置包括:
    生成模块,用于发送端生成数据分组;
    发送模块,用于所述发送端向接收端发送所述数据分组,所述数据分组包括至少两个优先级不同的视频业务数据,不同优先级的视频业务数据承载在不同的通信资源上传输。
  11. 根据权利要求10所述的装置,其特征在于,所述通信资源包括空间流、RU或频段。
  12. 根据权利要求10所述的装置,其特征在于,所述发送模块,用于:
    基于通信资源与视频业务数据的优先级的对应关系,不同优先级的视频业务数据承载在不同的通信资源上传输,其中,所述通信资源与视频业务数据的优先级的对应关系,是基于所述接收端的反馈信息确定的。
  13. 根据权利要求12所述的装置,其特征在于,所述通信资源包括空间流,所述反馈信息包括探测信号,所述空间流与视频业务数据的优先级的对应关系,是所述发送端基于所述发送端的多个发送天线检测到的所述探测信号的接收信号功率确定的。
  14. 根据权利要求12所述的装置,其特征在于,所述通信资源包括空间流,所述反馈信息包括多个指示位,所述多个指示位中的一个指示位对应多个频段中的一个频段,所述一个指示位用于指示在一个频段上天线与视频业务数据的优先级的对应关系;或者,所送反馈信息包括一个指示位,所述指示位用于指示天线与视频业务数据的优先级的对应关系。
  15. 根据权利要求10-14任一所述的装置,其特征在于,所述数据分组的前导码中包括不同通信资源的指示信息,所述指示信息用于指示对应的通信资源承载的视频业务数据。
  16. 根据权利要求10-14任一所述的装置,其特征在于,所述不同优先级的视频业务数据包括I帧、P帧和B帧中的至少两种。
  17. 根据权利要求10-14任一所述的装置,其特征在于,所述不同优先级的视频业务数据包括重传的视频业务数据和新传的视频业务数据,重传的视频业务数据的优先级高于新传的视频业务数据的优先级;
    所述数据分组还包括指示信息,所述指示信息用于指示每个视频业务数据为重传的视频业务数据或新传的视频业务数据。
  18. 根据权利要求10-14任一所述的装置,其特征在于,所述装置还包括:
    对应模块,用于多个优先级的视频业务数据与多个业务标识或多个接入类别一一对应。
  19. 一种数据传输的装置,其特征在于,所述装置包括处理器和存储器;
    所述存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述处理器执行, 用于实现如权利要求1-9中任一项所述的方法的指令。
  20. 一种计算机可读存储介质,其特征在于,包括指令,当所述计算机可读存储介质在设备上运行时,使得所述设备执行所述权利要求1-9中任一权利要求所述的方法。
  21. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在设备上运行时,使得所述设备执行所述权利要求1-9中任一权利要求所述的方法。
PCT/CN2020/079542 2019-03-19 2020-03-16 数据传输的方法及装置 WO2020187189A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773737.0A EP3930277A4 (en) 2019-03-19 2020-03-16 METHOD AND DEVICE FOR DATA TRANSMISSION
US17/478,305 US20220007386A1 (en) 2019-03-19 2021-09-17 Data Transmission Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910207982.4A CN111726882A (zh) 2019-03-19 2019-03-19 数据传输的方法及装置
CN201910207982.4 2019-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/478,305 Continuation US20220007386A1 (en) 2019-03-19 2021-09-17 Data Transmission Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2020187189A1 true WO2020187189A1 (zh) 2020-09-24

Family

ID=72518964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079542 WO2020187189A1 (zh) 2019-03-19 2020-03-16 数据传输的方法及装置

Country Status (4)

Country Link
US (1) US20220007386A1 (zh)
EP (1) EP3930277A4 (zh)
CN (1) CN111726882A (zh)
WO (1) WO2020187189A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532342B (zh) * 2019-09-17 2023-05-16 华为技术有限公司 一种背反射通信中的数据传输方法和装置
CN113840385A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种业务传输方法及装置
CN115474239A (zh) * 2021-06-10 2022-12-13 维沃移动通信有限公司 数据控制方法、装置、通信设备及可读存储介质
CN114500884B (zh) * 2022-01-06 2023-12-01 杭州海康威视数字技术股份有限公司 资源单元的分配方法、装置、设备及系统
WO2023169474A1 (zh) * 2022-03-11 2023-09-14 维沃移动通信有限公司 业务处理方法、装置、通信设备及可读存储介质
CN117749694A (zh) * 2022-09-22 2024-03-22 华为技术有限公司 一种多路径的数据流引流方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340592A (zh) * 2008-08-14 2009-01-07 上海交通大学 混合无线环境下视频传输的能量控制系统
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法
CN104092643A (zh) * 2014-07-29 2014-10-08 重庆邮电大学 2x2MIMO系统中基于HQAM的H.264/SVC视频传输方法
US20150349915A1 (en) * 2014-05-29 2015-12-03 Electronics And Telecommunications Research Institute Method and apparatus for generating frames for error correction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580158B1 (ko) * 1999-06-12 2006-05-15 삼성전자주식회사 화상 패킷 전송을 위한 무선통신 시스템
KR100704676B1 (ko) * 2005-06-24 2007-04-06 한국전자통신연구원 이동통신 시스템에서 전송 안테나의 전력 할당을 제어하는다이버서티 전송 방법 및 기지국 전송기
KR100937040B1 (ko) * 2007-12-03 2010-01-15 한국전자통신연구원 다중 송수신 안테나 시스템에서의 자동 재전송 요구 처리장치 및 그 방법
US8462797B2 (en) * 2009-11-30 2013-06-11 Alcatel Lucent Method of priority based transmission of wireless video
CN102545989B (zh) * 2010-12-17 2015-04-15 华为技术有限公司 用于分布式天线系统的通信方法、装置和系统
US9490948B2 (en) * 2011-06-20 2016-11-08 Vid Scale, Inc. Method and apparatus for video aware bandwidth aggregation and/or management
TW201513653A (zh) * 2013-05-07 2015-04-01 Vid Scale Inc 視訊應用QOE-知覺WiFi增強
CN103442391A (zh) * 2013-09-12 2013-12-11 华为终端有限公司 一种数据传输的方法及用户终端、系统
US10009110B2 (en) * 2015-09-09 2018-06-26 Futurewei Technologies, Inc. Channel bonding in passive optical networks
CN106612159B (zh) * 2015-10-23 2020-06-26 华为技术有限公司 基于业务类型指示的确认方法及装置
US10531452B2 (en) * 2016-07-11 2020-01-07 Qualcomm Incorporated Hybrid automatic repeat request feedback and multiple transmission time interval scheduling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340592A (zh) * 2008-08-14 2009-01-07 上海交通大学 混合无线环境下视频传输的能量控制系统
US20150349915A1 (en) * 2014-05-29 2015-12-03 Electronics And Telecommunications Research Institute Method and apparatus for generating frames for error correction
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法
CN104092643A (zh) * 2014-07-29 2014-10-08 重庆邮电大学 2x2MIMO系统中基于HQAM的H.264/SVC视频传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG, NINA ET AL.: "GOP-Level Video Transmission Method Using Data Partitioning in H.264/AVC", JOURNAL OF XIDIAN UNIVERSITY (NATURAL SCIENCE), vol. 38, no. 3, 30 June 2011 (2011-06-30), DOI: 20200416142118X *

Also Published As

Publication number Publication date
EP3930277A1 (en) 2021-12-29
US20220007386A1 (en) 2022-01-06
CN111726882A (zh) 2020-09-29
EP3930277A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2020187189A1 (zh) 数据传输的方法及装置
US10938454B2 (en) Method and apparatus for uplink orthogonal frequency division multiple access
KR102457607B1 (ko) 무선 로컬 영역 네트워크(wlan)에서의 버퍼 상태 보고
US10819471B2 (en) Protocols for multiple user frame exchanges
US9961510B2 (en) Protocols for multiple user frame exchanges
US9853791B2 (en) Medium access protection and bandwidth negotiation in a wireless local area network
CN103039029B (zh) 用于信道状态信息反馈的协议
US8594007B2 (en) Sequential ACK for multi-user transmissions
TWI773413B (zh) 來自複數個發送接收點(m-trp)的下行鏈路控制資訊(dci)接收可靠性增強
US20070097205A1 (en) Video transmission over wireless networks
US11411627B1 (en) Explicit multiuser beamforming training in a wireless local area network
US11438188B2 (en) Multicast packets for a wireless local area network
WO2020164590A1 (zh) 传输资源检测方法、传输资源确定方法和通信设备
US10812244B2 (en) Acknowledgment of uplink orthogonal frequency division multiple access transmission
US11917547B2 (en) Power save for multi-user (MU) operation
TW201935898A (zh) Wlan傳輸中用於單個用戶站的基於分組的不同mcs方案
US11108503B2 (en) Multiple traffic class data aggregation in a wireless local area network
US20220271800A1 (en) Communication devices and methods
WO2020135534A1 (zh) 预编码方法和装置及信息传输方法和装置
US20160183252A1 (en) Immediate response resource allocation with mixed phy and mac signaling
CN103391148A (zh) 数据的发送方法、接收方法和站点
WO2016138824A1 (zh) 数据发送方法、接收方法、发送装置及接收装置
WO2022206455A1 (zh) 信道质量信息确定方法及装置
US20240236859A1 (en) Power save for multi-user (mu) operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773737

Country of ref document: EP

Effective date: 20210923