WO2020186896A1 - 塔筒段、塔架及风力发电机组 - Google Patents

塔筒段、塔架及风力发电机组 Download PDF

Info

Publication number
WO2020186896A1
WO2020186896A1 PCT/CN2020/070248 CN2020070248W WO2020186896A1 WO 2020186896 A1 WO2020186896 A1 WO 2020186896A1 CN 2020070248 W CN2020070248 W CN 2020070248W WO 2020186896 A1 WO2020186896 A1 WO 2020186896A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower section
tower
axial direction
reinforcing
section body
Prior art date
Application number
PCT/CN2020/070248
Other languages
English (en)
French (fr)
Inventor
刘金磊
张克
韩军杰
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US17/441,195 priority Critical patent/US11814856B2/en
Priority to AU2020243633A priority patent/AU2020243633B2/en
Priority to EP20773976.4A priority patent/EP3929432B1/en
Priority to DK20773976.4T priority patent/DK3929432T3/da
Priority to ES20773976T priority patent/ES2946891T3/es
Publication of WO2020186896A1 publication Critical patent/WO2020186896A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/20Side-supporting means therefor, e.g. using guy ropes or struts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/34Arrangements for erecting or lowering towers, masts, poles, chimney stacks, or the like
    • E04H12/342Arrangements for stacking tower sections on top of each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • This application relates to the field of wind power technology, in particular to a tower section, a tower and a wind power generating set.
  • a wind turbine is a device that converts wind energy into electrical energy.
  • the tower is the main component of the entire wind turbine and is the foundation of the wind turbine.
  • the wall thickness of each tower section or the radial size of the tower section is usually increased to increase the strength of the corresponding tower section, thereby increasing the overall carrying capacity of the tower.
  • the above method can improve the load-bearing requirements of the corresponding tower section, it also brings corresponding shortcomings.
  • the main manifestation is that the material used for the tower section is increased, the cost is increased, and it is not conducive to the power generation efficiency of the wind turbine.
  • the embodiments of the present application provide a tower section, a tower, and a wind power generator.
  • the tower section has a strong bearing capacity and is low in cost, which can meet the power generation benefits of the wind power generator.
  • a tower tube section which includes: a tower section body; a reinforcing component, including a support member connected to the tower section body and a plurality of reinforcing cables connected to the support member, and a plurality of reinforcing cable edges
  • the tower section bodies are arranged at intervals in the circumferential direction, and each reinforcing cable extends along the axial direction of the tower section body and is respectively spaced a predetermined distance from the outer circumferential surface of the tower section body in the radial direction of the tower section body.
  • an embodiment of the present application provides a tower connected to a wind turbine foundation, wherein the tower includes: two or more tower sections, and the two or more tower sections are stacked on each other and located at the outermost side in the stacking direction
  • the tower section can be connected to the fan foundation, wherein at least one tower section is the above-mentioned tower section.
  • a wind power generating set which includes the tower as described above.
  • the tower section includes a tower section body and a reinforcing component
  • the reinforcing component includes a support member connected to the tower section body and a plurality of reinforcing cables connected to the support member . Since multiple reinforcing cables are spaced apart from each other in the circumferential direction of the tower section body and each reinforcing cable extends along the axial direction of the tower section body, when the tower section is applied to the tower tube and bears the load, it will act on the tower section body.
  • the load can be transmitted to multiple reinforcing cables through the support, and the multiple reinforcing cables share the load borne by the tower body, thereby improving the overall bearing capacity of the tower section.
  • the radial direction of the defined tower section body is separated from the tower section body by a predetermined distance, so that the tower section body and the reinforcement components can be processed separately without damaging the original structure of the tower section body. Under the premise of improving the bearing capacity of the tower section , Can reduce processing difficulty and processing cost.
  • Fig. 1 is a schematic diagram of the structure of a wind power generating set according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a tower according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a tower section of an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the support plate of the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of the connection between the reinforcing cable and the connecting position according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the connection between the reinforcing cable and the connecting position according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a locking member of an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of the support plate of the second embodiment of the present application.
  • FIG. 9 is a schematic diagram of the connection between the reinforcing cable and the connecting position according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of the connection between the reinforcing cable and the connecting position according to another embodiment of the present application.
  • Figure 11 is a partial structural diagram of a reinforcing cable according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the connection of a reinforcing cable and a rigging screw buckle according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of the connection between a reinforcing cable and a rigging screw buckle according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of the support plate of the third embodiment of the present application.
  • 15 is a schematic diagram of the structure of the support plate of the fourth embodiment of the present application.
  • FIG. 16 is a schematic diagram of the structure of the support plate of the fifth embodiment of the present application.
  • Figure 17 is a partial cross-sectional view of the connection between the support plate and the tower section body of the embodiment of the present application.
  • FIG. 19 is a schematic diagram of the structure of the support plate of the seventh embodiment of the present application.
  • 20 is a schematic diagram of the structure of the support plate of the eighth embodiment of the present application.
  • FIG. 21 is a schematic diagram of the structure of the support plate of the ninth embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a tower section of another embodiment of the present application.
  • Fig. 23 is a partial structural diagram of a tower section according to another embodiment of the present application.
  • Fig. 24 is a partial structural diagram of a tower section of another embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a tower according to another embodiment of the present application.
  • Fig. 26 is a schematic structural diagram of a tower according to another embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a wind power generator set according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a tower according to an embodiment of the present application.
  • the embodiment of the application provides a wind power generator set, which mainly includes a wind turbine base 2, a tower 1, a nacelle 3, a generator (not shown), and an impeller 4.
  • the tower 1 is connected to the wind turbine base 2, and the nacelle 3 is arranged on the tower At the top of 1, the generator is installed in nacelle 3.
  • the impeller 4 includes a hub 401 and a plurality of blades 402 connected to the hub 401.
  • the impeller 4 is connected to the rotating shaft of the generator through the hub 401. When the wind acts on the blade 402, it drives the entire impeller 4 and the rotating shaft of the generator to rotate, thereby meeting the power generation requirements of the wind turbine.
  • the embodiment of the present application also provides a tower 1 that can be used for the above-mentioned wind power generator.
  • the tower 1 includes two or more tower sections 100, Two or more tower sections 100 are stacked on each other and the tower section 100 on the bottom side in the stacking direction can be connected to the wind turbine foundation 2.
  • the tower 1 can be a steel tower, and each tower section 100 is Made of steel.
  • FIG. 3 shows a schematic structural diagram of a tower section according to an embodiment of the present application
  • FIG. 4 shows a structural schematic diagram of a supporting plate according to the first embodiment of the present application.
  • the embodiment of the present application also provides a new tower section 100, which has a better bearing capacity.
  • the tower section 100 provided by the embodiment of the present application includes a tower section body 10 and a reinforcing component 20, and the tower section body 10 is a cylindrical structure.
  • the reinforcement assembly 20 includes a support member 21 connected to the tower section body 10 and a plurality of reinforcement cables 22 connected to the support member 21.
  • the multiple reinforcement cables 22 are spaced apart from each other along the circumferential direction X of the tower section body 10. It extends along the axial direction Y of the tower section body 10 and is respectively spaced a predetermined distance from the outer peripheral surface 13 of the tower section body 10 in the radial direction Z of the tower section body 10.
  • the tower section 100 provided by the embodiment of the present application has strong carrying capacity and low cost, and can meet the power generation benefits of a wind turbine.
  • the tower section body 10 has a cylindrical structure as a whole, and may include a section of cylinder 11 with flanges 12 connected to both ends of the cylinder 11.
  • the predetermined distance mentioned above is the minimum distance from the outer circumferential surface of each reinforcing cable 22 to the outer circumferential surface of the cylinder 11 in the radial direction Z of the tower section body 10.
  • the predetermined distance is greater than zero.
  • the support plate 211 is at least partially stacked with the tower section body 10 in the axial direction Y of the tower section body 10.
  • the support plate 211 and the tower section body 10 are stacked on each other
  • the part is called the laminated part 2112.
  • the laminated part 2112 is provided with a through hole 2115 penetrating in the axial direction Y to connect the laminated part 2112 of the support plate 211 with the flange 12 at the end of the cylinder 11 by bolts and other fasteners. The connection is fixed.
  • the protrusion 2111 of each support plate 211 is provided with a plurality of connecting positions 2113 through which each reinforcing cable 22 passes.
  • the corresponding connecting position 2113 is connected to the protrusion 2111 of the corresponding supporting plate 211.
  • the protruding portion 2111 and the laminated portion 2112 may be an integral structure, and both are closed loops extending around the circumference X of the tower section body 10.
  • FIG. 5 shows a schematic diagram of the connection between the reinforcing cable 22 and the connecting position 2113 according to an embodiment of the present application.
  • the connecting position 2113 provided by the embodiment of the present application can adopt a variety of structural forms.
  • the connecting position 2113 may be a through hole that penetrates the support plate 211 along the axial Y of the tower section body 10, and each through hole A locking member 212 is provided at the position to fix the reinforcing cable 22 to the corresponding connecting position 2113.
  • the connecting position 2113 adopts a through-hole structure, which is easy to process, and only needs to open a corresponding size opening at the preset position of the protrusion 2111.
  • each reinforcing cable 22 may be a rigid rod
  • each locking member 212 may include more than two lock nuts 2121, and at least two lock nuts 2121 are arranged in the axial direction Y of the tower section body 10.
  • the upper part is oppositely arranged on both sides of the protrusion 2111 and is threadedly connected with the reinforcing cord 22. When the reinforcing cord 22 is locked, the locking nuts 2121 on both sides of the same protrusion 2111 abut against the protrusion 2111.
  • FIG. 6 shows a schematic diagram of the connection between the reinforcing cable 22 and the connecting position 2113 according to another embodiment of the present application
  • FIG. 7 shows the structure of the locking member 212 according to an embodiment of the present application Schematic. It can be understood that fixing the reinforcing cable 22 to the corresponding connecting position 2113 through the locking nut 2121 is only an optional implementation, but is not limited to this way.
  • the locking member 212 may also include more than two arc-shaped locking plugs 2122, and the two or more arc-shaped locking plugs 2122 are spliced with each other to form a conical ring body and At least part of it extends into the through hole to clamp and fix the reinforcing cable 22.
  • Each arc-shaped locking plug 2122 can be made of high-strength materials such as steel and alloy, and multiple arc-shaped locking plugs 2122 are used to provide a large squeezing force to the reinforcement cable to fix it, and then to better hold the reinforcement cable 22 is fixed to the corresponding connecting position 2113, the number of arc-shaped locking plugs 2122 included in the locking member 212 can be set according to requirements, for example, it can be two, three, or even more. The overall size of the selection, as long as it can meet the fixing requirements between the reinforcing cable 22 and the corresponding connecting position 2113.
  • FIG. 8 shows a schematic structural diagram of the support plate 211 according to the second embodiment of the present application.
  • the connecting position 2113 adopts the structure of a connecting hole
  • at least one connecting A protective sleeve 2117 is detachably connected to the inside of the position 2113.
  • the protective sleeve 2117 extends in the axial direction.
  • the shape of the protective sleeve 2117 matches the shape of the connecting position 2113.
  • the protective sleeve 2117 and the connecting position 2113 can be connected to each other in an interference fit.
  • the two can also be connected to each other in a threaded connection, and the protective sleeve 2117 can be a copper sleeve.
  • the side wall of the connecting body enclosed to form the connecting position 2113 can be protected, avoiding the connecting body from being worn, improving the carrying capacity of the connecting body, and preventing the connecting body from being pulled in the radial direction of the annular body. It will affect the safety of wind turbines.
  • the support plate can be reused by replacing the protective sleeve 2117 without replacing the entire support plate, which improves the service life of the support plate and saves the maintenance cost of the tower.
  • a protective sleeve 2117 may be provided inside each connecting position 2113.
  • a flange may be provided on the outer periphery of the protective sleeve 2117, so that The flange abuts against the surface of the support plate away from the fan foundation.
  • FIG. 9 shows a schematic diagram of the connection between the reinforcing cable 22 and the connecting position 2113 according to another embodiment of the present application.
  • each reinforcing cable 22 may be a flexible rod, such as a steel wire.
  • the connecting position 2113 may also be an ear seat with a rotating shaft 2114, and the reinforcing cable 22 is rotatably connected with the rotating shaft 2114.
  • the ends of the reinforcing cable 22 can be bent, and the bent portions are fixed to the other unbent parts of the reinforcing cable 22 to form a collar 221 on the reinforcing cable 22, and the collar 221 is sleeved on the corresponding ear
  • the rotating shaft 2114 on the seat makes the reinforcing cable 22 tensioned as a whole, which can also realize the connection with the connecting position 2113, ensuring the load-bearing requirements of the tower section 100.
  • FIG. 10 shows a schematic diagram of the connection between the reinforcing cable 22 and the connecting position 2113 according to another embodiment of the present application.
  • the collar 221 on the reinforcing cord 22 can be directly connected with the rotating shaft 2114 on the ear base.
  • the reinforcing cable 22 is respectively fixed by the wedge block 23 and the unbent part of the reinforcing cable 22 after bending.
  • the wedge block 23 is rotatably connected with the rotating shaft 2114 on the corresponding ear seat, which can also meet the connection with the connecting position 2113 and realize the enhancement of the bearing capacity of the tower section 100.
  • FIG. 11 shows a partial structural diagram of the reinforcing cable 22 according to an embodiment of the present application.
  • the whole reinforcing cable 22 can be formed by connecting multiple rods.
  • Two adjacent rods can be connected to each other through a connecting sleeve 24, and each rod of the reinforcing cable 22 can be threadedly connected with the connecting sleeve 24.
  • FIG. 12 and FIG. 13 show the connection diagrams of the reinforcing cord 22 and the rigging screw buckle 25 in two different embodiments of the present application.
  • a rigging screw buckle 25 can be provided on the reinforcing cable 22, and the rigging screw buckle 25 can be adjusted to achieve The degree of tension of 22 further ensures the bearing capacity of the tower section 100 of this form.
  • FIG. 14 shows a schematic structural diagram of a supporting plate 211 according to a third embodiment of the present application
  • FIG. 15 shows a schematic structural diagram of the supporting plate 211 according to a fourth embodiment of the present application.
  • the number of connecting positions 2113 on the support plate 211 provided in the foregoing embodiments of the present application can be determined according to the number of reinforcing cables 22.
  • the number of connecting positions 2113 on each support plate 211 can be selected to be greater than or equal to the number of reinforcing cables 22.
  • the connecting positions 2113 are divided into two or more connecting position groups arranged at intervals along the radial direction Z, and the connecting positions 2113 included in each connecting position group are arranged at intervals along the circumferential direction X of the supporting plate 211, and may be evenly distributed. Further, the connecting positions 2113 of the same group are located on the same index circle, so that the bearing capacity of the tower section 100 is more uniform. As shown in FIG. 14, the connecting positions 2113 of different groups can be arranged in a one-to-one correspondence in the radial direction Z of the tower section body 10. Of course, they can be arranged alternately as shown in FIG. 15.
  • the plurality of reinforcing cables 22 are in one-to-one correspondence with part or all of the connecting positions 2113 of at least one group of connecting positions 2113 and are connected to each other.
  • the distance between the reinforcing cable 22 and the tower section body 10 can be adjusted according to requirements, so as to adjust the bearing capacity of the tower section 100.
  • the connecting positions 2113 in each group of connecting positions 2113 can be uniformly provided with reinforcing cables 22, and the tower section can be improved by increasing the number of reinforcing cables 22 The carrying capacity of 100.
  • the extending direction of the reinforcing cable 22 and the axial Y of the tower section body 10 may be parallel to each other. Through the above arrangement, the carrying capacity of each reinforcing cable 22 can be maximized.
  • FIG. 16 shows a schematic structural diagram of a support plate 211 according to a fifth embodiment of the present application
  • FIG. 17 shows a partial cross-sectional view of the connection between the support plate and the tower section body.
  • the at least one supporting plate 211 further includes a limiting portion 2116.
  • the limiting portion 2116 is arranged opposite to the protruding portion 2111 in the radial direction Z of the tower section body 10 and connected to the laminated portion 2112.
  • the position portion 2116 at least partially protrudes from the laminated portion 2112 in the axial direction Y of the tower section body 10.
  • the support plate 211 when the support plate 211 is connected to the tower section body 10, it can be connected to the flange 12 of the corresponding tower section body 10 through the through hole 2115 on the laminated portion 2112. 10 at least partially protrudes from the laminated portion 2112 in the axial direction, so that the limiting portion 2116 can abut against the inner surface of the end flange 12 of the corresponding tower section body 10, so that when the reinforcing cable 22 pulls the support plate 211, the limit The position 2116 can restrict the support plate 211 as a whole from being pulled by the reinforcing cable 22 to deviate from its predetermined position in the radial direction Z of the tower section body 10, avoiding the support plate 211 from separating from the flange 12 of the tower section body 10, and further ensuring that the support plate 211 and the tower The reliability of the connection between the segment bodies 10.
  • the limiting portion 2116 may include a plurality of limiting monomers 2116a that are arranged at intervals around the axis of the tower section body 10 and respectively connected to the laminated portion 2112, and each limiting monomer 2116a is at least One end protrudes from the laminated portion 2112, of course, both ends may protrude from the laminated portion 2112.
  • This arrangement can also ensure the reliability of the connection between the support plate 211 and the tower section body 10, and at the same time can reduce the weight of the support plate 211 and reduce its cost.
  • FIG. 18 shows a schematic structural diagram of a support plate according to a sixth embodiment of the present application.
  • the limiting portion 2116 is not limited to include a plurality of limiting monomers 2116a that are arranged at intervals around the axis of the tower section body 10 and are respectively connected to the stacking portion. In some optional examples, the limiting portion 2116 is also along the tower section.
  • the body 10 is a closed ring extending in the circumferential direction X. This arrangement can ensure the reliability of the connection between the support plate 211 and the tower section body 10, and can also make the force of the support plate 211 more uniform and improve its service life.
  • FIG. 19 shows a schematic structural diagram of a support plate 211 according to a seventh embodiment of the present application.
  • the protruding part 2111 of the support plate 211 is a closed ring body extending along the circumferential direction X of the tower section body 10. This is only an optional way, but not limited to this way.
  • the protruding portion 2111 may also include a plurality of connecting units 2111a that are arranged at intervals around the axis of the tower section body 10 and are respectively connected to the laminated portion 2112, and each connecting unit 2111a is provided with at least one connection position. 2113.
  • This arrangement can be better applied to the tower section 100 with a small number of reinforcement cables 22, and can further reduce the weight of the support plate 211 and reduce the weight of the support plate 211 on the basis of meeting the requirements for the connection of the reinforcement cables 22 and the tower section body 10.
  • the number of connecting monomers 211a can be set according to the number of connecting positions 2113 and the number of reinforcing cables 22 to be connected.
  • the limiting portion 2116 when the limiting portion 2116 also includes a plurality of limiting monomers 2116a that are spaced apart from each other around the axis of the tower section body 10 and are respectively connected to the laminated portion 2112, the number of the connecting monomers 2111a can be equal to The number of the limiting monomers 2116a is the same and they are arranged in a one-to-one correspondence in the radial direction Z of the tower section body 10. This arrangement can not only meet the reliability of the connection between the reinforcing cable 22 and the tower section body 10, but also enable The structure of the support plate 211 is more optimized.
  • FIG. 20 shows a schematic structural diagram of a support plate 211 according to an eighth embodiment of the present application.
  • at least one supporting plate 211 is formed by splicing more than two arc-shaped plates 211a, and the number of the arc-shaped plates 211a may be three, four or even More than two arc-shaped plates 211a are arranged in sequence along the circumferential direction X of the tower section body 10 and joined to each other. Two adjacent arc-shaped plates 211a can be connected by welding after being transported to a predetermined position.
  • two adjacent arc-shaped plates 211a can be detachably connected to each other through an adapter 211b
  • the adapter 211b may be a plate-shaped body, and the adapter 211b and the corresponding arc-shaped plate 211a may be connected to each other by fasteners such as bolts.
  • the supporting plate 211 can be provided with an adapter 211b at one end of the tower section body 10 in the axial direction Y, of course, an adapter 211b can also be provided at both ends of the tower section body 10 in the axial direction Y, as long as it can meet the requirements of two adjacent arcs.
  • the connection requirements between the plates 211a are acceptable.
  • FIG. 21 shows a schematic structural diagram of the support plate 211 of the ninth embodiment of the present application.
  • the support plate 211 may be opposite to it.
  • the flange 12 on the cylinder 11 is an integral structure.
  • Fig. 22 shows a schematic structural diagram of a tower section 100 according to another embodiment of the present application.
  • the tower section 100 including a section of the cylinder 11 as an example. It can be understood that this is an optional implementation.
  • the tower The cylinder section 100 may also include more than two cylinder bodies 11, and the two or more cylinder bodies 11 are stacked in the axial direction Y.
  • the supporting member 21 is not limited to include two supporting plates 211, and may also include a plurality of supporting plates 211 arranged at intervals along the axial direction Y.
  • a supporting plate 211 is provided on the surfaces of the two outermost cylinders 11 in the axial direction Y away from each other, and a supporting plate 211 is clamped between two adjacent sections of cylinders 11.
  • each reinforcing cable 22 includes the same number of rod units 222 as the cylinder 11, and a plurality of rod units 222 are arranged on the outer circumference of each cylinder 11.
  • the rod units 222 arranged around the same cylinder 11 are all connected to the protrusions 2111 of the support plates 211 at both ends of the cylinder 11, and specifically connected to the connecting positions 2113 on the protrusions 2111.
  • the structure of the connecting positions 2113 Same as the above embodiments. Because each of the above embodiments only includes one cylinder 11, each reinforcing cable 22 includes one rod unit 222.
  • each reinforcing cable 22 may include more than two rod unit 222, and the connection form between the rod unit 222 and the connecting position 2113 is the same as that of the above-mentioned embodiment, and will not be repeated here.
  • FIGS. 23 and 24 show partial structural diagrams of the tower section 100 of two different embodiments of the present application.
  • the rod unit 222 on the outer circumference of one of the two adjacent cylinders 11 is arranged in a one-to-one correspondence with the rod unit 222 on the outer circumference of the other.
  • the component unit 222 may be an integral structure.
  • the rod unit 222 on the outer periphery of one of the two adjacent cylinders 11 and the rod unit 222 on the outer periphery of the other are not limited to one-to-one corresponding arrangement, and can also be arranged in the tower section body 10. They are arranged alternately in the circumferential direction X. At this time, along the axis Y of the tower section body 10, the two adjacent rod units 222 may have a split structure, which can be set according to the overall bearing requirements of the tower section 100.
  • the tower section 100 provided by the embodiment of the present application includes a tower section body 10 and a reinforcement assembly 20.
  • the reinforcement assembly 20 includes a support 21 connected to the tower section body 10 and a plurality of reinforcements connected to the support 21 At the same time, because multiple reinforcing cables 22 are spaced apart from each other along the circumferential direction X of the tower section body 10 and each reinforcing cable 22 extends along the axial direction Y of the tower section body 10, when the tower section 100 is applied to the tower tube And when it bears the load, the load acting on the tower section body 10 can be transmitted to the multiple reinforcement cables 22 through the support 21, and the multiple reinforcement cables 22 share the load borne by the tower section body 10, thereby improving the overall performance of the tower section 100 Carrying capacity.
  • each reinforcing cable 22 is defined to be separated from the tower section body 10 by a predetermined distance in the radial direction Z of the tower section body 10, so that the tower section body 10 and the reinforcing assembly 20 can be processed separately, and will not affect the original structure of the tower section body 10. Under the premise of improving the bearing capacity of the tower section 100, the processing difficulty and processing cost can be reduced.
  • the embodiment of the present application provides a tower section 100 with a new idea, and has a stronger bearing capacity than the tower section 100 in the prior art. More importantly, in the tower section 100 provided by the embodiment of the present application, the reinforcement assembly 20 and the tower section body 10 can be manufactured separately, and no structure may be added to the tower section body 10 to facilitate the reinforcement assembly 20 and the tower section body. 10 Separate manufacturing and transportation. At the same time, when the tower 1 is installed, the support 21 and the reinforcing cable 22 of the reinforcing assembly 20 can be installed at the same time as the tower section body 10 is installed. No additional equipment is required to install the reinforcing cable 22, which is easier to install.
  • any one of the plurality of tower sections 100 included in the tower section 100 can adopt the tower section 100 of each of the above embodiments, so it has a better bearing capacity. It can ensure the power generation benefits of wind turbines and is conducive to the development of wind turbines to a higher megawatt level.
  • FIG. 25 and FIG. 26 show schematic structural diagrams of the tower 1 according to two other different embodiments of the present application.
  • the tower 1 provided in the embodiment of the present application starts from the wind turbine foundation 2, and the second tower section 100 along the stacking direction is the tower section 100 of any of the above embodiments.
  • the remaining tower sections 100 of the frame 1 may be the tower sections 100 of any of the above embodiments, and of course, may also be ordinary tower sections that only include the tower section body 10.
  • the tower 1 further includes a diagonal tie rod group 30.
  • the diagonal tie rod group 30 includes a plurality of diagonal tie rods 31.
  • One end of the multiple diagonal tie rods 31 is connected to the support 21, and can be optionally arranged close to the fan foundation 2 with the support 21
  • the supporting plate 211 is connected, and the other ends of the plurality of inclined tie rods 22 are connected to the fan foundation 2.
  • the other ends of the multiple diagonal tie rods 31 are not limited to be connected to the fan foundation 2, and an independent tie rod foundation can also be provided for connecting with the other ends of the multiple diagonal tie rods 31.
  • the tie rod foundation can be a structure such as anchor bolts or a concrete foundation partially buried in the ground.
  • some of the multiple inclined tie rods 31 are connected to the fan foundation 2, and the rest are connected to the tie rod foundation, which can be set according to requirements.
  • the overall bearing capacity of the tower 1 can be further improved.
  • the embodiment of the present application The tower 1 provided with the use of diagonal tie rods 31 and the tower section 100 with the reinforcement assembly 20 can be connected with the support plate 211 on the tower section 100 close to the wind turbine foundation 2 to meet the load-bearing capacity of the tower 1 Therefore, under the condition of the same bearing capacity, the tower section 100 provided by the embodiment of the present application has a smaller footprint, and is more suitable for wind turbines in densely populated areas with high land acquisition pressure than the prior art. The overall cost is lower.
  • the wind turbine generator set provided by the embodiment of the present application includes the tower 1 of the above-mentioned embodiments, so it has better stability, small footprint, wide application range, and can ensure that it has a higher megabit Watt level and power generation efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Wind Motors (AREA)
  • Catching Or Destruction (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Toys (AREA)

Abstract

一种塔筒段(100)、塔架(1)及风力发电机组,塔筒段(100),包括:塔段本体(10);加强组件(20),包括与塔段本体(10)连接的支撑件(21)以及连接于支撑件(21)的多根加强索(22),多根加强索(22)沿塔段本体(10)的周向彼此间隔设置,各加强索(22)均沿塔段本体(10)的轴向延伸并在塔段本体(10)的径向上分别与塔段本体(10)的外周表面相距预定距离。塔筒段(100)的承载能力强,成本低廉,能够满足风力发电机组的发电效益。

Description

塔筒段、塔架及风力发电机组
相关申请的交叉引用
本申请要求享有于2019年03月20日提交的名称为“塔筒段、塔架及风力发电机组”的中国专利申请201910212957.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种塔筒段、塔架及风力发电机组。
背景技术
风力发电机组是将风能转化为电能的设备,塔筒是支撑整个风力发电机主体部件,是风力发电机组的基础。随着风电技术领域的发展,风力发电机组逐渐向更大兆瓦等级发展,相应塔筒承受载荷的能力需要提高。
现有技术中,为了增加塔筒的承载能力,通常通过增加塔筒各塔筒段的壁厚或塔筒段的径向尺寸来提高相应塔筒段的强度,进而提高塔筒整体的承载能力。上述方式虽然能够提高相应塔筒段的承载要求,但也带来了相应的不足,主要表现为增加了塔筒段的用料,提高成本,不利于风力发电机组的发电效益。
因此,亟需一种新的塔筒段、塔架及风力发电机组。
发明内容
本申请实施例提供一种塔筒段、塔架及风力发电机组,塔筒段的承载能力强,成本低廉,能够满足风力发电机组的发电效益。
一方面,根据本申请实施例提出了一种塔筒段,包括:塔段本体;加强组件,包括与塔段本体连接的支撑件以及连接于支撑件的多根加强索,多根加强索沿塔段本体的周向彼此间隔设置,各加强索均沿塔段本体的轴向延伸并在塔段本体的径向上分别与塔段本体的外周表面相距预定距离。
另一个方面,根据本申请实施例提供一种塔架,连接于风机基础,其中,塔架包括:两个以上塔筒段,两个以上塔筒段相互层叠且在层叠方向上位于最外侧的塔筒段能够与风机基础连接,其中,至少一个塔筒段为上述的塔筒段。
又一个方面,根据本申请实施例提供一种风力发电机组,包括如权利上述的塔架。
根据本申请实施例提供的塔筒段、塔架及风力发电机组,塔筒段包括塔段本体以及加强组件,加强组件包括与塔段本体连接的支撑件以及连接于支撑件的多根加强索。由于多根加强索沿塔段本体的周向彼此间隔设置且各加强索均沿塔段本体的轴向延伸,当塔筒段在应用至塔筒并承受载荷时,作用于塔段本体上的载荷能够通过支撑件传递至多根加强索,通过多根加强索共同分担塔段本体所承受载荷,进而提高塔筒段整体的承载能力。而限定塔段本体的径向上分别与塔段本体相距预定距离,使得塔段本体与加强组件可以分开加工,不会对塔段本体的原始结构产生破坏,在提高塔筒段承载能力的前提下,能够降低加工难度及加工成本。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的风力发电机组的结构示意图;
图2是本申请一个实施例的塔架的结构示意图;
图3是本申请一个实施例的塔筒段的结构示意图;
图4是本申请第一实施例的支撑板的结构示意图;
图5是本申请一个实施例的加强索与连接位的连接示意图;
图6是本申请另一个实施例的加强索与连接位的连接示意图;
图7是本申请一个实施例的锁紧件的结构示意图;
图8是本申请第二实施例的支撑板的结构示意图;
图9是本申请又一个实施例的加强索与连接位的连接示意图;
图10是本申请再一个实施例的加强索与连接位的连接示意图;
图11是本申请一个实施例的加强索的局部结构示意图;
图12是本申请一个实施例的加强索与索具螺旋扣的连接示意图;
图13是本申请另一个实施例的加强索与索具螺旋扣的连接示意图;
图14是本申请第三实施例的支撑板的结构示意图;
图15是本申请第四实施例的支撑板的结构示意图;
图16是本申请第五实施例的支撑板的结构示意图;
图17是本申请实施例的支撑板与塔段本体连接的局部剖视图;
图18是本申请第六实施例的支撑板的结构示意图;
图19是本申请第七实施例的支撑板的结构示意图;
图20是本申请第八实施例的支撑板的结构示意图;
图21是本申请第九实施例的支撑板的结构示意图;
图22是本申请另一个实施例的塔筒段的结构示意图;
图23是本申请又一个实施例的塔筒段的局部结构示意图;
图24是本申请再一个实施例的塔筒段的局部结构示意图;
图25是本申请另一个实施例的塔架的结构示意图;
图26是本申请再一个实施例的塔架的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。下述描述中出现的方位词均为图中示出的方向,并不是对本申请的塔筒段、塔架及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图26根据本申请实施例的塔筒段、塔架及风力发电机组进行详细描述。
请参阅图1及图2,图1示出了本申请一个实施例的风力发电机组的结构示意图,图2示出了本申请一个实施例的塔架的结构示意图。
本申请实施例提供一种风力发电机组,主要包括风机基础2、塔架1、机舱3、发电机(图未示)以及叶轮4,塔架1连接于风机基础2,机舱3设置于塔架1的顶端,发电机设置于机舱3。叶轮4包括轮毂401以及连接于轮毂401上的多个叶片402,叶轮4通过其轮毂401与发电机的 转轴连接。风力作用于叶片402时,带动整个叶轮4以及发电机的转轴转动,进而满足风力发电机组的发电要求。
由上述对风力发电机组的结构介绍可知,机舱3、发电机及叶轮4等重型设备均支撑于塔架1的上方,当风力发电机组的高度较高或者兆瓦级别较大时,对塔架1的承载能力具有更高的要求,为了更好的满足上述要求,本申请实施例还提供一种塔架1,能够用于上述风力发电机组,塔架1包括两段以上塔筒段100,两段以上塔筒段100相互层叠且在层叠方向上位于最底侧的塔筒段100能够与风机基础2连接,具体实施时,塔架1可以采用钢塔,其各塔筒段100均采用钢材质制成。
请一并参阅图3,图3示出了本申请一个实施例的塔筒段的结构示意图,图4示出了本申请第一实施例的支撑板的结构示意图。为了更好的提高塔架1整体的承载能力,本申请实施例还提供一种新的塔筒段100,该塔筒段100具有更好的承载能力。如图3所示,本申请实施例提供的塔筒段100包括塔段本体10以及加强组件20,塔段本体10为筒状结构体。加强组件20包括与塔段本体10连接的支撑件21以及连接于支撑件21的多根加强索22,多根加强索22沿塔段本体10的周向X彼此间隔设置,各加强索22均沿塔段本体10的轴向Y延伸并在塔段本体10的径向Z上分别与塔段本体10的外周表面13相距预定距离。
本申请实施例提供的塔筒段100,承载能力强,成本低廉,能够满足风力发电机组的发电效益。
请继续参阅图3及图4,在一些可选的示例中,塔段本体10整体呈圆筒状结构,可以包括一段筒体11,筒体11的两端连接有法兰12。以上所提及的预定距离为在塔段本体10的径向Z上,各加强索22的外周面至筒体11的外周面的最小距离。可选的,预定距离大于零。
为了便于支撑板211与塔段本体10连接,支撑板211在塔段本体10的轴向Y上至少部分与塔段本体10相互层叠设置,为了便于描述,支撑板211与塔段本体10相互层叠的部分称之为层叠部2112,层叠部2112上设置有沿轴向Y贯通的通孔2115,以通过螺栓等紧固件将支撑板211的层叠部2112与筒体11端部的法兰12连接固定。
在一些可选的实施例中,为了便于加强索22与支撑件21的各支撑板211相互连接,各支撑板211的凸出部2111上设置有多个连接位2113,各加强索22通过其所对应的连接位2113与相应支撑板211的凸出部2111连接。
具体实施时,凸出部2111与层叠部2112可以为一体式结构,且二者均为围绕塔段本体10的周向X延伸的闭合环体。
请一并参阅图5,图5示出了本申请一个实施例的加强索22与连接位2113的连接示意图。本申请实施例提供的连接位2113可以采用多种结构形式,作为一种可选的实施方式,连接位2113可以为沿塔段本体10的轴向Y贯通支撑板211的贯通孔,各贯通孔处设置有锁紧件212,以将加强索22固定于相应的连接位2113。连接位2113采用贯通孔的结构形式,易于加工,只需在凸出部2111的预设位置上开设相应尺寸的开口即可。
锁紧件212的结构形式可以根据连接强度、成本要求等选择,只要能够将加强索22固定在相应的连接位2113处均可。在一些可选的示例中,各加强索22均可以为刚性杆,每个锁紧件212可以包括两个以上锁紧螺母2121,至少两个锁紧螺母2121在塔段本体10的轴向Y上相对设置于凸出部2111的两侧并与加强索22螺纹连接,当将加强索22锁固时,同一凸出部2111两侧的锁紧螺母2121抵靠于该凸出部2111。
请一并参阅图6及图7,图6示出了本申请另一个实施例的加强索22与连接位2113的连接示意图,图7示出了本申请一个实施例的锁紧件212的结构示意图。可以理解的是,通过锁紧螺母2121将加强索22固定于相应的连接位2113只是一种可选的实施方式,但不限于该种方式。如图6及图7所示,在一些其他的示例中,锁紧件212也可以包括两个以上弧形锁紧塞2122,两个以上弧形锁紧塞2122相互拼接形成锥形环体且至少部分延伸进入贯通孔,以夹紧固定加强索22。每个弧形锁紧塞2122可以采用钢材、合金等高强度材料制成,利用多个弧形锁紧塞2122对加强索提供很大的挤压力将其固定,进而更好的将加强索22固定于相应的连接位2113,锁紧件212所包括的弧形锁紧塞2122的数量可以根据要求设定,例如可以为两个、三个甚至更多个,具体可以根据夹紧件212的整体尺寸 选择,只要能够满足加强索22与相应连接位2113之间的固定要求均可。
请一并参阅图8,图8示出了本申请第二实施例的支撑板211的结构示意图,当连接位2113采用连接孔的结构形式时,作为一种可选的实施方式,至少一个连接位2113的内部可拆卸连接有防护套2117,防护套2117沿轴向延伸,防护套2117的形状与连接位2113的形状相匹配。防护套2117可以与连接位2113采用过盈配合的方式相互连接,当然,二者之间也可以采用螺纹连接的方式相互连接,防护套2117可以为铜套。通过设置防护套2117,能够对连接体围合形成连接位2113的侧壁进行防护,避免连接体被磨损,提高连接体的承载能力,且还能够避免连接体在环状本体的径向上被拉断,影响风力发电机组的安全。当防护套2117被磨损后,可以通过更换新的防护套2117的方式实现支撑板被重复使用,无需更换整个支撑板,提高了支撑板的使用寿命,节约了塔架的维修成本。
在具体实施时,可以在每个连接位2113的内部均设置有防护套2117,为了限制防护套2117由相应的连接位2113中脱离,进一步的,可以在防护套2117的外周设置凸缘,使得凸缘抵靠于支撑板远离风机基础的表面。
请一并参阅图9,图9示出了本申请又一个实施例的加强索22与连接位2113的连接示意图。以上各实施例将连接位2113限定为贯通孔只是一种可选的方式,但不限于该种方式,在一些其他的示例中,各加强索22均可以为柔性杆,例如钢丝绳等。并且,连接位2113还可以为具有转轴2114的耳座,加强索22与转轴2114转动连接。具体可以将加强索22的端部折弯,并使得弯折部分各自与加强索22的其他未折弯部分杆体固定,以在加强索22上形成套环221,套环221套设于相应耳座上的转轴2114并使得加强索22整体张紧,同样能够实现与连接位2113之间的连接,保证塔筒段100的承载要求。
请一并参阅图10,图10示出了本申请再一个实施例的加强索22与连接位2113的连接示意图。加强索22上的套环221可以与耳座上的转轴2114直接连接。当然,为了保证加强索22与相应转轴2114的连接强度且更便于二者之间的连接,可选的,加强索22折弯后各自通过楔形块23与 加强索22未折弯部分杆体固定,然后通过楔形块23与相应耳座上的转轴2114转动连接,同样能够满足与连接位2113之间的连接并实现对塔筒段100承载能力的加强。
请一并参阅图11,图11示出了本申请一个实施例的加强索22的局部结构示意图,当加强索22的长度要求较长时,可以将加强索22整体由多个杆件连接形成,相邻两个杆件之间可以通过连接套24相互连接,加强索22的各杆件可以与连接套24螺纹连接。
请一并参阅图12及图13,图12以及图13示出了本申请两个不同实施例的加强索22与索具螺旋扣25的连接示意图。无论加强索22采用柔性拉索或者刚性拉杆,为了便于对加强索22进行张紧,进一步的,可以在加强索22上设置索具螺旋扣25,通过调整索具螺旋扣25来实现对加强索22的张紧程度,进而进一步保证该形式塔筒段100的承载能力。
请一并参阅图14及图15,图14示出了本申请第三实施例的支撑板211的结构示意图,图15示出了本申请第四实施例的支撑板211的结构示意图。本申请上述各实施例提供的支撑板211上连接位2113的数量可以根据加强索22的数量来确定,每个支撑板211上连接位2113的数量可选为大于等于加强索22的数量,多个连接位2113分成两组以上沿径向Z间隔设置的连接位组,每组连接位组所包括的连接位2113沿支撑板211的周向X间隔设置,可选为均匀分布。进一步,同一组的连接位2113位于同一分度圆上,以使得塔筒段100的承载能力更为均匀。如图14所示,不同组连接位2113之间在塔段本体10的径向Z上可以一一对应设置,当然,可以为采用图15所示的相互交错设置。
多根加强索22与至少一组连接位2113的部分或者全部连接位2113一一对应并相互连接。通过将多个连接位2113按照上述形式排布,能够根据要求调整加强索22与塔段本体10之间的距离,以调节塔筒段100的承载能力。并且,当需要承载能力更高的塔筒段100时,可以将各组连接位组2113中的连接位2113均一一对应设置有加强索22,通过增加加强索22的数量来提高塔筒段100的承载能力。
上述各实施例的塔筒段100在具体实施时,加强索22的延伸方向与 塔段本体10的轴向Y可以相互平行,通过上述设置,能够使得每个加强索22的承载能力达到最高。
请一并参阅图16及图17,图16示出了本申请第五实施例的支撑板211的结构示意图,图17示出了支撑板与塔段本体连接的局部剖视图。作为一种可选的实施方式,至少一个支撑板211进一步包括限位部2116,限位部2116在塔段本体10的径向Z上与凸出部2111相对设置并连接于层叠部2112,限位部2116在塔段本体10的轴向Y上至少部分凸出于层叠部2112。
通过上述设置,使得支撑板211在与塔段本体10连接时,可以通过其层叠部2112上的通孔2115与相应塔段本体10的法兰12相互连接,由于限位部2116在塔段本体10的轴向上至少部分凸出于层叠部2112,使得限位部2116能够抵靠于相应塔段本体10端部法兰12的内表面,使得加强索22对支撑板211拉拽时,限位部2116能够在塔段本体10的径向Z上限制支撑板211整体被加强索22拉动偏离其预定位置,避免支撑板211脱离塔段本体10的法兰12,进一步保证支撑板211与塔段本体10之间的连接的可靠性。
具体实施时,限位部2116可以包括多个共同环绕塔段本体10的轴线间隔设置并分别与层叠部2112连接的限位单体2116a,每个限位单体2116a在轴向Y上的至少一端凸出于层叠部2112,当然也可以两端均凸出于层叠部2112。该种设置方式同样能够保证支撑板211与塔段本体10之间的连接的可靠性,同时能够减轻支撑板211的重量,降低其成本。
请一并参阅图18,图18示出了本申请第六实施例的支撑板的结构示意图。限位部2116不限于为包括多个共同环绕塔段本体10的轴线间隔设置并分别与层叠部连接的限位单体2116a,在一些可选的示例中,限位部2116也为沿塔段本体10的周向X延伸的闭合环体。该种设置方式,在保证支撑板211与塔段本体10之间的连接的可靠性的基础上还能够使得支撑板211的受力更加均匀,提高其使用寿命。
请一并参阅图19,图19示出了本申请第七实施例的支撑板211的结构示意图。以上各实施例均是以支撑板211的凸出部2111为沿塔段本体 10的周向X延伸的闭合环体,此只为一种可选的方式,但不限于该种方式,在一些其他的示例中,凸出部2111还可以包括多个共同环绕塔段本体10的轴线间隔设置并分别与层叠部2112连接的连接单体2111a,每个连接单体2111a上设置有至少一个连接位2113。该种设置方式可以更好的适用于加强索22数量较少的塔筒段100,在满足对加强索22与塔段本体10连接要求的基础上能够进一步减轻支撑板211的重量,并降低其成本,在具体实施时,连接单体211a的数量可以根据连接位2113的数量以及待连接的加强索22的数量设定即可。
在该种实施方式下,当限位部2116也采用包括多个共同环绕塔段本体10的轴线间隔设置并分别与层叠部2112连接的限位单体2116a时,连接单体2111a的数量可以与限位单体2116a的数量相同且在塔段本体10的径向Z上一一对应设置,此种设置方式,既能够满足加强索22与塔段本体10之间连接的可靠性,同时能够使得支撑板211的结构形式更加优化。
请一并参阅图20,图20示出了本申请第八实施例的支撑板211的结构示意图。为了便于本申请实施例的塔筒段100的运输,可选的,至少一个支撑板211由两个以上弧形板211a相互拼接形成,弧形板211a的数量具体可以为三个、四个甚至更多个,两个以上弧形板211a沿塔段本体10的周向X依次设置并彼此相互拼接。相邻两个弧形板211a可以在运输至预定位置后通过焊接的方式连接,当然,在一些其他的示例中,相邻两个弧形板211a之间可以通过转接件211b彼此可拆卸连接,转接件211b可以为板状体,转接件211b与相应的弧形板211a之间可以通过螺栓等紧固件相互连接。支撑板211可以在塔段本体10轴向Y的一端设置转接件211b,当然也可以在塔段本体10轴向Y的两端均设置转接件211b,只要能够满足相邻两个弧形板211a之间的连接要求均可。
请一并参阅图21,图21示出了本申请第九实施例的支撑板211的结构示意图,在具体实施时,为了便于塔筒段100的装配,可选的,支撑板211可以与其相对的筒体11上的法兰12为一体式结构。
请一并参阅图22,图22示出了本申请另一个实施例的塔筒段100的 结构示意图。
以上各实施例均是以塔筒段100包括一段筒体11为例进行说明,可以理解的是,此为一种可选的实施方式,在一些其他的示例中,如图22所示,塔筒段100也可以包括两段以上筒体11,两段以上筒体11沿轴向Y层叠设置。此时,支撑件21不限于包括两个支撑板211,还可以包括多个沿轴向Y间隔设置的支撑板211。在轴向Y最外侧的两个筒体11远离彼此的表面上均设置有支撑板211,且相邻两段筒体11之间夹持有一个支撑板211。
为了保证更好的与各支撑板211进行连接,每个加强索22包括与筒体11数量相同的杆件单元222,每个筒体11的外周均设置有多根间隔设置的杆件单元222,围绕同一筒体11设置的杆件单元222均与该筒体11两端支撑板211的凸出部2111连接,具体与凸出部2111上的连接位2113相互连接,连接位2113的结构形式同上述各实施例。上述各实施例因为只包括一个筒体11,相当于每个加强索22均包括一个杆件单元222,而本实施例,由于筒体11的数量为两个以上,相应的,每个加强索22可以包括两个以上杆件单元222,杆件单元222与连接位2113之间的连接形式同上述实施例,在此就不一一赘述。
请一并参阅图23及图24,图23及图24示出了本申请两个不同实施例的塔筒段100的局部结构示意图,如图22所示,作为一种可选的实施方式,相邻两个筒体11中其中一者外周的杆件单元222与另一者外周的杆件单元222一一对应设置,此时,沿塔段本体10轴向Y上,相邻两个杆件单元222可以为一体式结构。当然,如图23所示,相邻两个筒体11中其中一者外周的杆件单元222与另一者外周的杆件单元222不限于一一对应设置,也可以在塔段本体10的周向X上相互交错设置,此时沿塔段本体10轴向Y上,相邻两个杆件单元222可以为分体式结构,具体根据塔筒段100整体的承载要求设置即可。
由此,本申请实施例提供的塔筒段100,因其包括塔段本体10以及加强组件20,加强组件20包括与塔段本体10连接的支撑件21以及连接于支撑件21的多根加强索22,同时由于多根加强索22沿塔段本体10的周 向X彼此间隔设置且各加强索22均沿塔段本体10的轴向Y延伸,使得当塔筒段100在应用至塔筒并承受载荷时,作用于塔段本体10上的载荷能够通过支撑件21传递至多根加强索22,通过多根加强索22共同分担塔段本体10所承受载荷,进而提高塔筒段100整体的承载能力。而限定各加强索22在塔段本体10的径向Z上分别与塔段本体10相距预定距离,使得塔段本体10与加强组件20可以分开加工,不会对塔段本体10的原始结构产生破坏,在提高塔筒段100承载能力的前提下,能够降低加工难度及加工成本。
相对现有技术,本申请实施例提供了一种新思路的塔筒段100,且相对于现有技术中的塔筒段100的承载能力更强。更为重要的是,本申请实施例提供的塔筒段100,其加强组件20与塔段本体10是可以分开制造,可以不在塔段本体10上增加任何结构,便于加强组件20与塔段本体10单独制造及运输。同时,在塔架1安装时,可随塔段本体10安装的同时将加强组件20的支撑件21与加强索22安装。无需额外设备安装加强索22,更易于安装。
而本申请实施例提供的塔架1,其所包括的多个塔筒段100中的任意一段塔筒段100均可以采用上述各实施例的塔筒段100,因此具有更好的承载能力,能够保证风力发电机组的发电效益,且有利于风力发电机组向更高兆瓦级别发展。
请一并参阅图25及图26,图25及图26示出了本申请另两个不同实施例的塔架1的结构示意图。作为一种可选的实施方式,本申请实施例提供的塔架1,由风机基础2起始,沿层叠方向上的第二个塔筒段100为上述任意实施例的塔筒段100,塔架1的其余塔筒段100可以为上述任意实施例的塔筒段100,当然也可以为只包括塔段本体10的普通塔筒段。
可选的,塔架1进一步包括斜拉杆组30,斜拉杆组30包括多根斜拉杆31,多根斜拉杆31的一端与支撑件21连接,可选为与支撑件21靠近风机基础2设置的支撑板211连接,多根斜拉杆22的另一端与风机基础2连接。可以理解的是,在一些示例中,多根斜拉杆31的另一端不限于与风机基础2连接,还可以设置独立的拉杆基础,用于与多根斜拉杆31的 另一端连接,在具体实施时,拉杆基础可以为地脚螺栓或者部分埋设于地下的混凝土基础等结构。当然,多斜拉杆31中的其中几根与风机基础2连接,其余的与拉杆基础连接,可以根据要求设定。
通过设置斜拉杆31,并使其与具有加强组件20的塔筒段100配合,能够进一步提高塔架1整体的承载能力,与现有技术中的拉索式塔架相比,本申请实施例提供的采用斜拉杆31与具有加强组件20的塔筒段100配合的塔架1,因其可以与靠近风机基础2的塔筒段100上的支撑板211连接即可满足塔架1的承载能力要求,因此,同等承载能力的条件下,本申请实施例提供的塔筒段100的占地面积更小,相比现有技术能够更适用于人口密集、征地压力较大地区风力发电机组,且综合成本较低。并且,因多根斜拉杆31可以与最下端的塔筒段100顶端的法兰所在处的支撑板211连接,相对现有技术,能够距离叶片402更远的距离,还可以有效的杜绝现有技术中斜拉杆31对叶片402产生干涉的问题。
而本申请实施例提供的风力发电机组,因其包括上述各实施例的塔架1,因此,具有更好的稳定性,且占地小,应用范围广,且能够保证自身具有更高的兆瓦级别及发电效益。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种塔筒段(100),包括:
    塔段本体(10);
    加强组件(20),包括与所述塔段本体(10)连接的支撑件(21)以及连接于所述支撑件(21)的多根加强索(22),多根所述加强索(22)沿所述塔段本体(10)的周向(X)彼此间隔设置,各所述加强索(22)均沿所述塔段本体(10)的轴向(Y)延伸并在所述塔段本体(10)的径向(Z)上分别与所述塔段本体(10)的外周表面(13)相距预定距离。
  2. 根据权利要求1所述的塔筒段(100),其中,所述支撑件(21)包括两个以上沿所述轴向(Y)间隔设置并分别与所述塔段本体(10)连接的支撑板(211),每个所述支撑板(211)包括与所述塔段本体(10)层叠连接的层叠部(2112)以及与所述层叠部(2112)连接并在所述径向(Z)凸出于所述塔段本体(10)的凸出部(2111),所述加强索(22)连接于所述凸出部(2111)。
  3. 根据权利要求2所述的塔筒段(100),其中,所述凸出部(2111)上设置有多个连接位(2113),每个所述加强索(22)通过所述连接位(2113)与所述凸出部(2111)连接。
  4. 根据权利要求3所述的塔筒段(100),其中,多个所述连接位(2113)分成两组以上沿所述径向(Z)间隔设置的连接位组,每组所述连接位组包括的所述连接位(2113)沿所述周向(X)间隔设置,多根所述加强索(22)与至少一组所述连接位组的部分或者全部所述连接位(2113)一一对应并相互连接。
  5. 根据权利要求3所述的塔筒段(100),其中,所述连接位(2113)为沿所述轴向(Y)贯通所述支撑板(211)的贯通孔,各所述贯通孔处设置有锁紧件(212),所述锁紧件(212)将所述加强索(22)固定于所述连接位(2113)。
  6. 根据权利要求5所述的塔筒段(100),其中,每个所述锁紧件(212)包括两个以上锁紧螺母(2121),至少两个所述锁紧螺母(2121)在所述轴向(Y)上相对设置于所述凸出部(2111)的两侧并与所述加强索(22)螺纹连接;
    或者,所述锁紧件(212)包括两个以上弧形锁紧塞(2122),两个 以上所述弧形锁紧塞(2122)相互拼接形成锥形环体,所述锁紧件(212)至少部分延伸进入所述连接位(2113),以夹紧固定所述加强索(22)。
  7. 根据权利要求5所述的塔筒段(100),其中,至少一个所述连接位(2113)的内部可拆卸连接有防护套(2117),所述防护套(2117)沿所述轴向(Y)延伸。
  8. 根据权利要求3所述的塔筒段(100),其中,所述连接位(2113)为具有转轴(2114)的耳座,所述加强索(22)与所述转轴(2114)转动连接。
  9. 根据权利要求2所述的塔筒段(100),其中,至少一个所述支撑板(211)进一步包括限位部(2116),所述限位部(2116)在所述径向(Z)上与所述凸出部(2111)相对设置并连接于所述层叠部(2112),所述限位部(2116)在所述轴向(Y)上至少部分凸出于所述层叠部(2112)。
  10. 根据权利要求9所述的塔筒段(100),其中,所述限位部(2116)为沿所述周向(X)延伸的闭合环体;
    或者,所述限位部(2116)包括多个限位单体(2116a),多个所述限位单体(2116a)共同环绕所述塔段本体(10)的轴线间隔设置并分别与所述层叠部(2112)连接,每个所述限位单体(2116a)在所述轴向(Y)上的至少一端凸出于所述层叠部(2112)。
  11. 根据权利要求2所述的塔筒段(100),其中,所述凸出部(2111)为沿所述周向(X)延伸的闭合环体;
    或者,所述凸出部(2111)包括多个连接单体(2111a),多个所述连接单体(2111a)共同环绕所述塔段本体(10)的轴线间隔设置并分别与所述层叠部(2112)连接,每个所述连接单体(2111a)上设置有至少一个连接位(2113)。
  12. 根据权利要求2所述的塔筒段(100),其中,所述塔段本体(10)包括一段筒体(11),所述支撑件(21)包括两个沿所述轴向(Y)间隔设置的所述支撑板(211),其中一个所述支撑板(211)连接于所述筒体(11)在所述轴向(Y)上的一端,另一个所述支撑板(211)连接于所述筒体(11)在所述轴向(Y)上的另一端。
  13. 根据权利要求2所述的塔筒段(100),其中,所述塔段本体 (10)包括两段以上沿所述轴向(Y)层叠设置的筒体(11);
    所述支撑件(21)包括多个沿所述轴向(Y)间隔设置的所述支撑板(211),在所述轴向(Y)最外侧的两个所述筒体(11)远离彼此的表面上均设置有所述支撑板(211),且相邻两个所述筒体(11)之间夹持有一个所述支撑板(211);
    每个所述加强索(22)包括与所述筒体(11)数量相同的杆件单元(222),每个所述筒体(11)的外周均设置有多根间隔设置的所述杆件单元(222),围绕同一所述筒体(11)设置的所述杆件单元(222)均与该所述筒体(11)两端所述支撑板(211)的所述凸出部(2111)连接。
  14. 根据权利要求13所述的塔筒段(100),其中,相邻两个所述筒体(11)中其中一者外周的所述杆件单元(222)与另一者外周的所述杆件单元(222)一一对应设置或者相互交错设置。
  15. 根据权利要求2所述的塔筒段(100),其中,两个以上所述支撑板(211)中至少一个所述支撑板(211)包括多个弧形板(211a),多个所述弧形板(211a)沿所述周向(X)相互拼接。
  16. 一种塔架(1),连接于风机基础(2),其中,所述塔架(1)包括:两个以上塔筒段(100),两个以上所述塔筒段(100)相互层叠且在层叠方向上位于最外侧的所述塔筒段(100)能够与所述风机基础(2)连接,其中,至少一个所述塔筒段(100)为如权利要求1至15任意一项所述的塔筒段(100)。
  17. 根据权利要求16所述的塔架(1),其中,所述塔架(1)进一步包括多根斜拉杆(31),多根所述斜拉杆(31)的一端与所述支撑件(21)连接,多根所述斜拉杆(31)的另一端与所述风机基础(2)和/或拉杆基础连接。
  18. 一种风力发电机组,包括如权利要求16或17所述的塔架(1)。
PCT/CN2020/070248 2019-03-20 2020-01-03 塔筒段、塔架及风力发电机组 WO2020186896A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/441,195 US11814856B2 (en) 2019-03-20 2020-01-03 Tower tube section, tower frame and wind power generator set
AU2020243633A AU2020243633B2 (en) 2019-03-20 2020-01-03 Tower barrel segment, tower frame and wind generating set
EP20773976.4A EP3929432B1 (en) 2019-03-20 2020-01-03 Tower tube section, tower frame and wind power generator set
DK20773976.4T DK3929432T3 (da) 2019-03-20 2020-01-03 Tårnrørsektion, tårnramme og vindkraftgeneratorsæt
ES20773976T ES2946891T3 (es) 2019-03-20 2020-01-03 Sección de tubo de torre, estructura de torre y grupo generador de energía eólica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910212957.5 2019-03-20
CN201910212957.5A CN111720268B (zh) 2019-03-20 2019-03-20 塔筒段、塔架及风力发电机组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/804,635 Continuation US10936715B1 (en) 2019-08-06 2020-02-28 Detecting fraudulent facial recognition

Publications (1)

Publication Number Publication Date
WO2020186896A1 true WO2020186896A1 (zh) 2020-09-24

Family

ID=72518986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070248 WO2020186896A1 (zh) 2019-03-20 2020-01-03 塔筒段、塔架及风力发电机组

Country Status (7)

Country Link
US (1) US11814856B2 (zh)
EP (1) EP3929432B1 (zh)
CN (1) CN111720268B (zh)
AU (1) AU2020243633B2 (zh)
DK (1) DK3929432T3 (zh)
ES (1) ES2946891T3 (zh)
WO (1) WO2020186896A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720268B (zh) * 2019-03-20 2023-03-24 北京金风科创风电设备有限公司 塔筒段、塔架及风力发电机组
CN112392288B (zh) * 2020-12-07 2024-06-04 福州大学 预应力frp与高强钢丝绳组合加固木梁装置及方法
CN118380193B (zh) * 2024-06-21 2024-08-30 天津正标津达线缆集团有限公司 一种耐高温电缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527424A (zh) * 2013-10-25 2014-01-22 北京金风科创风电设备有限公司 风力发电机组预制混凝土塔架
US20160215761A1 (en) * 2013-09-06 2016-07-28 youWINenergy GmbH Tower assembly for a wind turbine installation
CN205805834U (zh) * 2016-07-27 2016-12-14 三一重型能源装备有限公司 一种塔筒及使用该塔筒的风力发电机
CN205955922U (zh) * 2016-07-28 2017-02-15 广东明阳风电产业集团有限公司 一种风力发电机混凝土塔筒段结构
CN107288823A (zh) * 2017-08-23 2017-10-24 国电联合动力技术有限公司 一种风电机组新型塔架及包括该塔架的风电机组
CN107806397A (zh) * 2017-11-08 2018-03-16 许继集团有限公司 一种风力发电机组及其塔筒、塔筒单元

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070256388A1 (en) * 2006-05-08 2007-11-08 Nello Inc. Structural reinforcement member and method of utilizing the same to reinforce a longitudinal section of an antenna support tower
US20110138704A1 (en) 2010-06-30 2011-06-16 General Electric Company Tower with tensioning cables
DK2893187T3 (da) * 2012-09-03 2021-02-08 X Tower Constructions Gmbh Tårnstruktur af et vindkraftværk og metode til stabilisering af et tårnstruktur af et vindkraftværk
FI20125978A (fi) 2012-09-21 2014-03-22 Eurostal Oy Hybriditornirakenne ja menetelmä sen rakentamiseksi
ES2717780T3 (es) * 2015-01-21 2019-06-25 Vestas Wind Sys As Torre de turbina eólica
CN205578191U (zh) * 2016-04-28 2016-09-14 湖南科技大学 一种防止风机塔筒螺栓剪切的结构
US11136967B2 (en) * 2018-07-02 2021-10-05 Inventus Holdings, Llc Articulating joint for wind turbine
CN111720268B (zh) * 2019-03-20 2023-03-24 北京金风科创风电设备有限公司 塔筒段、塔架及风力发电机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215761A1 (en) * 2013-09-06 2016-07-28 youWINenergy GmbH Tower assembly for a wind turbine installation
CN103527424A (zh) * 2013-10-25 2014-01-22 北京金风科创风电设备有限公司 风力发电机组预制混凝土塔架
CN205805834U (zh) * 2016-07-27 2016-12-14 三一重型能源装备有限公司 一种塔筒及使用该塔筒的风力发电机
CN205955922U (zh) * 2016-07-28 2017-02-15 广东明阳风电产业集团有限公司 一种风力发电机混凝土塔筒段结构
CN107288823A (zh) * 2017-08-23 2017-10-24 国电联合动力技术有限公司 一种风电机组新型塔架及包括该塔架的风电机组
CN107806397A (zh) * 2017-11-08 2018-03-16 许继集团有限公司 一种风力发电机组及其塔筒、塔筒单元

Also Published As

Publication number Publication date
EP3929432A4 (en) 2022-04-20
EP3929432A1 (en) 2021-12-29
CN111720268A (zh) 2020-09-29
DK3929432T3 (da) 2023-05-30
US20220162874A1 (en) 2022-05-26
CN111720268B (zh) 2023-03-24
US11814856B2 (en) 2023-11-14
ES2946891T3 (es) 2023-07-27
AU2020243633B2 (en) 2023-07-13
EP3929432B1 (en) 2023-05-03
AU2020243633A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020186896A1 (zh) 塔筒段、塔架及风力发电机组
CN111720269B (zh) 锚固装置及塔架
US8186966B2 (en) Offshore wind turbine generator
US6364609B1 (en) Wind turbine having ground winch pivot erection support structure
CN210049990U (zh) 拉索式塔架、风力发电机组以及连接件
US10934999B2 (en) Methods for mounting or dismounting wind turbine components of a multirotor wind turbine
WO2021056923A1 (zh) 拉索式塔架、风力发电机组及连接装置
CN102312799A (zh) 具有张紧缆索的塔架
AU2014317133A1 (en) Retrofitted wind turbine installation
US20210355916A1 (en) Tower section arrangement for a guyed tower of a wind turbine, guyed wind turbine tower, wind turbine and method for assembling a wind turbine
EP4048888A1 (en) Wind-turbine tower facility and method of assembling same
EP3168390B1 (en) Structure for a wind turbine tower
US20200248672A1 (en) Hub for a wind turbine, wind turbine and method for up-grading a hub of a wind turbine
US20210285252A1 (en) Wind turbine
CN109863108B (zh) 用于操纵风力涡轮机部件的设备和组装该设备以及使用该设备操纵风力涡轮机部件的方法
CN221257010U (zh) 一种径向尺寸保护装置和风电塔筒
CN221095189U (zh) 一种用于风力发电机的基础
CN112576449A (zh) 拉索式塔架及风力发电机组
CN109458302B (zh) 风力发电机组、塔筒及其构件
CN221627805U (zh) 一种用于风电塔筒的预应力张拉索系统
CN112012890B (zh) 连接组件、拉索式塔架以及风力发电机组
CN217735662U (zh) 塔筒段及风力发电机组
CN112796954B (zh) 风电机组混凝土塔筒和钢塔筒间隙调整方法
US12037979B2 (en) Method for handling a wind turbine component and associated lifting system
CN115992802A (zh) 混凝土塔筒及其施工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773976

Country of ref document: EP

Effective date: 20210921

ENP Entry into the national phase

Ref document number: 2020243633

Country of ref document: AU

Date of ref document: 20200103

Kind code of ref document: A