WO2020186754A1 - 一种多排超声成像装置以及超声成像仪器 - Google Patents

一种多排超声成像装置以及超声成像仪器 Download PDF

Info

Publication number
WO2020186754A1
WO2020186754A1 PCT/CN2019/112998 CN2019112998W WO2020186754A1 WO 2020186754 A1 WO2020186754 A1 WO 2020186754A1 CN 2019112998 W CN2019112998 W CN 2019112998W WO 2020186754 A1 WO2020186754 A1 WO 2020186754A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
ultrasonic
housing
imaging device
row
Prior art date
Application number
PCT/CN2019/112998
Other languages
English (en)
French (fr)
Inventor
邱维宝
苏敏
张志强
蔡蕊琳
李飞
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020186754A1 publication Critical patent/WO2020186754A1/zh
Priority to US17/476,431 priority Critical patent/US11937980B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe

Definitions

  • This application relates to the technical field of medical equipment, and in particular to a multi-row ultrasonic imaging device and an ultrasonic imaging instrument.
  • the purpose of this application is to provide a multi-row ultrasonic imaging device that can accurately change the position of the confocal point, and the multiple rows of transducers will not affect each other, which is practical and efficient.
  • Another object of the present application is to provide an ultrasound imaging instrument that can accurately change the position of the confocal point, and multiple rows of transducers will not affect each other, which is practical, efficient, and cost-effective.
  • a multi-row ultrasonic imaging device includes a housing and a first ultrasonic transducer, a second ultrasonic transducer, and an adjusting mechanism installed in the housing.
  • the ultrasonic waves emitted by the first ultrasonic transducer and the second ultrasonic transducer can be The intersection forms a confocal point, and at least one of the first ultrasonic transducer and the second ultrasonic transducer is connected with the adjustment mechanism to move relative to the housing under the action of the adjustment mechanism, thereby adjusting the position of the confocal point.
  • the technical solution adopted in the embodiment of the application further includes that the adjustment mechanism includes a displacement mechanism, the first ultrasonic transducer is fixedly installed in the housing, and the second ultrasonic transducer is connected to the housing through the displacement mechanism.
  • the technical solution adopted in the embodiment of the application further includes that the displacement mechanism includes a screw rod and a nut.
  • the screw rod extends into the housing, is rotatably connected with the housing, and is matched with the nut.
  • the second ultrasonic transducer is movably connected with the nut, and the nut can The second ultrasonic transducer is driven to approach or be far away from the first ultrasonic transducer.
  • the technical solution adopted in the embodiment of the present application further includes that the displacement mechanism further includes a driving member, which is fixedly installed on the housing and connected with the screw rod.
  • the technical solution adopted in the embodiment of the present application further includes that the adjustment mechanism includes a limiting shaft and a rotating mechanism, and the second ultrasonic transducer is connected to the limiting shaft through the rotating mechanism.
  • the technical solution adopted in the embodiment of the application further includes that the rotating mechanism includes a rotating electric machine and a transmission member, the transmission member includes a first gear and a second gear, the rotating electric machine is fixedly mounted on the second ultrasonic transducer, and the first gear is sleeved on The output shaft of the rotating electric machine is outside and fixedly connected to the output shaft.
  • the second ultrasonic transducer is sleeved outside the limit shaft and can rotate relative to the limit shaft.
  • the second gear is sleeved outside the limit shaft and is connected to the The limit shaft is fixedly connected, and the first gear meshes with the second gear.
  • the technical solution adopted in the embodiment of the present application further includes that a limit slot is provided on the housing, and the limit shaft extends into the limit slot and is in sliding fit with the limit slot.
  • the technical solution adopted in the embodiment of the application further includes that the multi-row ultrasonic imaging device further includes a third ultrasonic transducer, the first ultrasonic transducer is arranged in the middle of the housing, and the third ultrasonic transducer is arranged on the first ultrasonic transducer.
  • the device is far away from the side of the second ultrasonic transducer and is connected with the adjusting mechanism.
  • the technical solution adopted in the embodiment of the present application also includes that the first ultrasonic transducer and the second ultrasonic transducer are both array ultrasonic transducers, and the number of array elements of the first ultrasonic transducer and the second ultrasonic transducer are both Between 96-256.
  • An ultrasonic imaging instrument includes a control system and the above-mentioned multi-row ultrasonic imaging device.
  • the multi-row ultrasonic imaging device includes a housing and a first ultrasonic transducer, a second ultrasonic transducer, and an adjustment mechanism installed in the housing.
  • the ultrasonic waves emitted by an ultrasonic transducer and the second ultrasonic transducer can cross to form a confocal point, and at least one of the first ultrasonic transducer and the second ultrasonic transducer is connected with the adjustment mechanism to be under the action of the adjustment mechanism It moves relative to the housing to adjust the position of the confocal point, and the control system is respectively connected with the first ultrasonic transducer and the second ultrasonic transducer.
  • the ultrasonic waves emitted by the first ultrasonic transducer and the second ultrasonic transducer can intersect to form a confocal point, and at least one of the first ultrasonic transducer and the second ultrasonic transducer and The adjustment mechanism is connected to move relative to the housing under the action of the adjustment mechanism to adjust the position of the confocal point.
  • the multi-row ultrasonic imaging device provided by the present application adopts the adjustment mechanism connected with the first ultrasonic transducer and/or the second ultrasonic transducer, so it can accurately change the position of the confocal point. And the multiple rows of transducers will not affect each other, which is practical and efficient.
  • the ultrasound imaging instrument provided by the present application including a multi-row ultrasound imaging device, can accurately change the position of the confocal point, and the multi-row transducers will not affect each other, which is practical, efficient, and cost-effective.
  • FIG. 1 is a schematic structural diagram of an ultrasound imaging instrument provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a multi-row ultrasonic imaging device provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the ultrasonic waves emitted by the multiple rows of transducers in the multi-row ultrasonic imaging device provided by the embodiment of the application converging at one point after translation;
  • FIG. 4 is a schematic diagram of the ultrasonic waves emitted by the multiple rows of transducers in the multiple rows of ultrasonic imaging device provided by the embodiment of the application converging at one point after rotation;
  • FIG. 5 is a schematic structural diagram of a first displacement mechanism in a multi-row ultrasonic imaging device provided by an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a first rotating mechanism in a multi-row ultrasonic imaging device provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a housing in a multi-row ultrasonic imaging device provided by an embodiment of the application.
  • Icon 10-ultrasound imaging instrument; 100-multi-row ultrasonic imaging device; 110-housing; 111-limit slot; 112-scale line; 113-first side wall; 114-second side wall; 115-third side Wall; 116-fourth side wall; 117-bottom wall; 120-first ultrasonic transducer; 121-groove; 122-limiting table; 130-second ultrasonic transducer; 140-third ultrasonic transducer 150-first displacement mechanism; 151-drive member; 152-moving member; 154-screw rod; 155-nut; 160-first rotating mechanism; 161-rotating motor; 162-transmission member; 163-first gear 164-second gear; 165-output shaft; 170-second displacement mechanism; 180-second rotation mechanism; 190-limit shaft; 200-control system.
  • an embodiment of the present application provides an ultrasonic imaging instrument 10 for obtaining images of the internal organs of a patient. It can accurately change the position of the confocal point. It can obtain multi-angle imaging at the same time. It can also be excited by one transducer and received by another transducer to achieve harmonic or radiation force imaging, and between multiple rows of transducers It does not affect each other, is practical, efficient, and cost-effective. At the same time, because multiple rows of transducers are used, and the frequency of each transducer can be different, ultrasonic waves of different frequencies can also be applied to one focus at the same time to achieve multiple Frequency ultrasound focusing purpose.
  • the ultrasonic imaging apparatus 10 includes a control system 200 and a multi-row ultrasonic imaging device 100.
  • the multi-row ultrasonic imaging device 100 can emit multiple rows of ultrasonic waves and form a confocal point, and can also adjust the position of the confocal point.
  • the control system 200 is connected to the multi-row ultrasonic imaging device 100.
  • the control system 200 can use the multiple rows of transducers in the multi-row ultrasonic imaging device 100 to obtain multiple imaging sections, or the control system 200 can also use the multi-row ultrasonic imaging device 100. Some of the transducers send ultrasonic waves, and then use the remaining transducers to receive ultrasonic waves for frequency conversion imaging.
  • FIG. 2 Please refer to FIG. 2, FIG. 3 and FIG. 4 in combination (the dotted lines in FIG. 3 respectively indicate the positions of the second ultrasonic transducer 130 and the third ultrasonic transducer 140 before translation and the extension direction of the ultrasonic waves emitted by the multiple rows of transducers.
  • the dotted lines in FIG. 4 respectively indicate the positions of the second ultrasonic transducer 130 and the third ultrasonic transducer 140 before rotation and the extension direction of the ultrasonic waves emitted by the multiple rows of transducers
  • the multiple rows of ultrasonic imaging device 100 includes a housing 110 , The first ultrasonic transducer 120, the second ultrasonic transducer 130, the third ultrasonic transducer 140 and two adjustment mechanisms (not marked).
  • the number of transducers is three.
  • the first ultrasonic transducer 120 is fixedly installed in the housing 110 and arranged in the middle of the housing 110, and the second ultrasonic transducer 130 is arranged at the center of the first ultrasonic transducer 120.
  • One side is connected to an adjusting mechanism to move relative to the housing 110 under the action of the adjusting mechanism.
  • the third ultrasonic transducer 140 is arranged on a side of the first ultrasonic transducer 120 far away from the second ultrasonic transducer 130 and is connected to another adjustment mechanism to move relative to the housing 110 under the action of the adjustment mechanism.
  • the ultrasonic waves emitted by the first ultrasonic transducer 120, the second ultrasonic transducer 130, and the third ultrasonic transducer 140 can cross at a point, which is the confocal point.
  • the movement of the second ultrasonic transducer 130 relative to the housing 110 means that the second ultrasonic transducer 130 translates and/or rotates relative to the housing 110, that is, the second ultrasonic transducer 130 can translate relative to the housing 110, It can also rotate relative to the housing 110, and can also translate and rotate relative to the housing 110.
  • the movement of the third ultrasonic transducer 140 relative to the housing 110 means that the third ultrasonic transducer 140 translates and/or rotates relative to the housing 110.
  • control system 200 is respectively connected with the first ultrasonic transducer 120, the second ultrasonic transducer 130, and the third ultrasonic transducer 140 to utilize the first ultrasonic transducer 120 and the second ultrasonic transducer.
  • the third ultrasonic transducer 130 and the third ultrasonic transducer 140 obtain three imaging sections, but they are not limited to this.
  • the control system 200 may also use the first ultrasonic transducer 120 to send ultrasonic waves, and then use the second ultrasonic transducer
  • the energy generator 130 and the third ultrasonic transducer 140 receive ultrasonic waves to perform frequency conversion imaging.
  • control system 200 is respectively connected with two adjustment mechanisms to electrically control the position of the second ultrasonic transducer 130 and the third ultrasonic transducer 140 to change, thereby controlling the first ultrasonic transducer 120 and the second ultrasonic transducer 120.
  • the position of the confocal point formed by the second ultrasonic transducer 130 and the third ultrasonic transducer 140 changes.
  • the second ultrasonic transducer 130 and the third ultrasonic transducer 140 may be manually translated or rotated, so as to compare the second ultrasonic transducer 130 and the third ultrasonic transducer.
  • the position of 140 is adjusted to adjust the position of the confocal point.
  • a sliding rail is arranged in the housing 110, and the second ultrasonic transducer 130 and the third ultrasonic transducer 140 are slidably arranged on the sliding rail.
  • the user can manually push the The second ultrasonic transducer 130 and the third ultrasonic transducer 140 are translated.
  • two rotating columns capable of rotating relative to the housing 110 are arranged in the housing 110, and the second ultrasonic transducer 130 is installed on a rotating column.
  • the third ultrasonic transducer 140 is installed on another rotating column, and the user can manually twist the rotating column to make the second ultrasonic transducer 130 and the third ultrasonic transducer 140 rotate.
  • the adjustment mechanism includes a limit shaft 190, a displacement mechanism, and a rotation mechanism.
  • the two adjustment mechanisms include two limit shafts 190, two displacement mechanisms, and two rotation mechanisms.
  • the displacement mechanism and the rotation mechanism connected to the second ultrasonic transducer 130 are respectively named the first displacement mechanism 150 and the first rotation mechanism 160
  • the displacement mechanism and the rotation mechanism connected to the third ultrasonic transducer 140 are respectively named second
  • the displacement mechanism 170 and the second rotation mechanism 180, the first displacement mechanism 150 and the first rotation mechanism 160 are both connected to the second ultrasonic transducer 130 through a limit shaft 190
  • the second displacement mechanism 170 and the second rotation mechanism 180 are both connected It is connected to the third ultrasonic transducer 140 through another limiting shaft 190.
  • the movements of the first displacement mechanism 150 and the second displacement mechanism 170 are kept in reverse synchronization, and the movements of the first rotation mechanism 160 and the second rotation mechanism 180 are kept in reverse synchronization, so that the first ultrasonic transducer 120
  • the distance between the second ultrasonic transducer 130 and the distance between the first ultrasonic transducer 120 and the third ultrasonic transducer 140 are always kept equal, and the first ultrasonic transducer 120 and the second ultrasonic transducer
  • the included angle formed by the transducer 130 and the included angle formed by the first ultrasonic transducer 120 and the third ultrasonic transducer 140 are always kept equal, so that the first ultrasonic transducer 120, the second ultrasonic transducer 130 and the first ultrasonic transducer 120
  • the ultrasonic waves emitted by the three ultrasonic transducers 140 always converge at a common focal point.
  • the third ultrasonic transducer 140, the second displacement mechanism 170, and the second rotation mechanism 180 may not be included.
  • the first displacement mechanism 150 and the first rotation mechanism 160 can drive The second ultrasonic transducer 130 moves so that the position of the confocal point formed by the first ultrasonic transducer 120 and the second ultrasonic transducer 130 changes.
  • the first displacement mechanism 150 includes a driving member 151 and a moving member 152.
  • the driving member 151 is fixedly installed on the housing 110 and connected with the moving member 152 to drive the moving member 152 to translate.
  • the moving part 152 extends into the housing 110 and is fixedly connected to the limiting shaft 190.
  • the moving part 152 can be driven by the driving part 151 to approach or move away from the first ultrasonic transducer 120.
  • the second ultrasonic transducer 130 is sleeved outside the limiting shaft 190 and can rotate relative to the limiting shaft 190.
  • the moving part 152 can drive the second ultrasonic transducer 130 to approach or move away from the first ultrasonic transducer through the limiting shaft 190 During this process, the second ultrasonic transducer 130 is translated along the extension direction of the moving part 152, so that the confocal position formed by the first ultrasonic transducer 120 and the second ultrasonic transducer 130 occurs Variety.
  • the control system 200 is connected with the driving member 151 to control the driving member 151 to start or pause.
  • the driving member 151 is a motor
  • the moving member 152 includes a screw rod 154 and a nut 155
  • the driving member 151 is connected with the screw rod 154 to drive the screw rod 154 to rotate.
  • the screw rod 154 extends into the housing 110 and is rotatably connected with the housing 110 and is matched with the nut 155.
  • the nut 155 can translate along the axial direction of the screw rod 154 during the rotation of the screw rod 154, and the limit shaft 190 is fixedly connected to
  • the nut 155 can drive the limiting shaft 190 to move, thereby driving the second ultrasonic transducer 130 to translate along the axial direction of the screw rod 154. But it is not limited to this.
  • the driving part 151 can be an electric push rod, a hydraulic cylinder or a hydraulic motor, etc.
  • the moving part 152 can be a gear and a rack, which can also drive the limit shaft 190 to move in the housing 110. , So that the second ultrasonic transducer 130 is translated, changing the position of the confocal point.
  • the side surface of the first ultrasonic transducer 120 is fixedly connected to a limiting table 122.
  • the limiting table 122 is provided with a groove 121, and the screw rod 154 extends into the groove 121 and can rotate relative to the groove 121 .
  • the driving member 151 drives the screw 154 to rotate.
  • One end of the screw 154 rotates relative to the housing 110, and the other end of the screw 154 rotates relative to the groove 121.
  • 154 is restricted to prevent the screw rod 154 from falling off.
  • the nut 155 rotates relative to the screw rod 154 to translate in the axial direction of the screw rod 154, and the second ultrasonic transducer 130 is driven by the limit shaft 190 Close to or away from the first ultrasonic transducer 120.
  • the second displacement mechanism 170 can drive the third ultrasonic transducer 140 to approach or move away from the first ultrasonic transducer. Transducer 120.
  • the first rotating mechanism 160 includes a rotating motor 161 and a transmission member 162.
  • the rotating motor 161 is fixedly installed on the second ultrasonic transducer 130 and is connected to the limiting shaft 190 through the transmission member 162.
  • the rotating motor 161 can drive the second ultrasonic transducer 130 to rotate relative to the limiting shaft 190 through the transmission member 162 ,
  • the control system 200 is connected to the rotating electric machine 161 to control the rotation speed and the rotation direction of the rotating electric machine 161.
  • the rotation range of the second ultrasonic transducer 130 is between 0 and 90 degrees.
  • the transmission member 162 includes a first gear 163 and a second gear 164.
  • the first gear 163 is sleeved outside the output shaft 165 of the rotating electric machine 161 and is fixedly connected to the output shaft 165.
  • the second gear 164 is sleeved on The limiting shaft 190 is outside and fixedly connected to the limiting shaft 190, and the first gear 163 meshes with the second gear 164.
  • the rotating motor 161 is activated to rotate the output shaft 165, and the output shaft 165 drives the first gear 163 to rotate.
  • the second rotating mechanism 180 can drive the third ultrasonic transducer 140 relative to the first rotating mechanism. 160 rotates.
  • the first ultrasonic transducer 120, the second ultrasonic transducer 130, and the third ultrasonic transducer 140 are all array ultrasonic transducers, and the first ultrasonic transducer 120, the second ultrasonic transducer The number of array elements of 130 and the third ultrasonic transducer 140 are both 96-256.
  • the frequency of the first ultrasonic transducer 120 is higher than the frequency of the second ultrasonic transducer 130, and the frequency of the second ultrasonic transducer 130 is equal to the frequency of the third ultrasonic transducer 140.
  • the frequencies of the multiple rows of transducers may also be different, or all may be the same, to adapt to different scenarios.
  • the housing 110 is provided with a limiting groove 111
  • the extending direction of the limiting groove 111 is the same as the extending direction of the moving part 152
  • the limiting shaft 190 passes through the second ultrasonic transducer 130
  • the limit groove 111 can limit the limit shaft 190 to prevent the nut 155 from rotating with the screw rod 154
  • the limit groove 111 can The limit position of the limit shaft 190 is limited to prevent the limit shaft 190 from leaving the housing 110.
  • the limiting slot 111 is a through slot, and the limiting shaft 190 can pass through the limiting slot 111 to facilitate the user to observe the position of the limiting shaft 190.
  • the housing 110 is provided with a scale line 112, and the scale line 112 is arranged on one side of the limit groove 111. The user can know the specific position of the limit shaft 190 through the scale line 112, and thus observe the depth of the confocal point.
  • the housing 110 has a rectangular shape.
  • the housing 110 includes a first side wall 113, a second side wall 114, a third side wall 115, a fourth side wall 116 and a bottom wall 117.
  • the first side wall 113, the second side wall 114, the third side wall 115 and the fourth side wall 116 are connected end to end, and are all connected to the bottom wall 117.
  • the first ultrasonic transducer 120 is fixedly connected to the bottom wall 117
  • the driving member 151 is fixedly installed outside the first side wall 113
  • the moving member 152 extends into the first side wall 113.
  • the ultrasonic waves emitted by the first ultrasonic transducer 120 and the second ultrasonic transducer 130 can cross to form a confocal point
  • the first ultrasonic transducer 120 and the second ultrasonic transducer At least one of the actuators 130 is connected with the adjustment mechanism to translate and/or rotate relative to the housing 110 under the action of the adjustment mechanism, so as to adjust the position of the confocal point.
  • the multi-row ultrasonic imaging device 100 provided by the present application adopts the adjustment mechanism connected with the first ultrasonic transducer 120 and/or the second ultrasonic transducer 130, so it can accurately change the confocal point. It is practical and efficient, making the ultrasonic imaging instrument 10 cost-effective, good user experience, and convenient for users to quickly observe the depth of the confocal point, which is convenient and practical.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种医疗器械技术领域的多排超声成像装置(100)以及超声成像仪器(10),多排超声成像装置(100)包括外壳(110)以及安装于外壳(110)内的第一超声换能器(120)、第二超声换能器(130)和调节机构。第一超声换能器(120)和第二超声换能器(130)发出的超声波能够交叉形成共焦点,第一超声换能器(120)和第二超声换能器(130)中的至少一个与调节机构连接,以在调节机构的作用下相对于外壳(110)发生运动,从而调整共焦点的位置。多排超声成像装置(100)由于采用了与第一超声换能器(120)和/或第二超声换能器(130)连接的调节机构,所以能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效。

Description

一种多排超声成像装置以及超声成像仪器 技术领域
本申请涉及医疗器械技术领域,特别涉及一种多排超声成像装置以及超声成像仪器。
背景技术
目前,在肿瘤消融和超声给药等治疗过程中,需要精确控制超声的共焦点,以免健康的组织细胞被破坏造成内出血或其他负面症状。然而现在的超声装置大多都是共焦点固定的双频共聚焦换能器,其仅能够通过手动移动换能器的位置来实现共焦点的变化,操作复杂,精准度低,并且将高频换能器叠放在低频换能器的前面时,由于高频换能器的遮挡,会对低频换能器发出声波的传播造成影响,降低低频换能器的性能。
有鉴于此,设计制造出一种精准变焦的多排超声成像装置以及超声成像仪器特别是在医疗器械生产中显得尤为重要。
发明内容
本申请的目的在于提供一种多排超声成像装置,能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效。
本申请的另一目的在于提供一种超声成像仪器,能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效,性价比高。
为了解决上述问题,本申请提供了如下技术方案:
一种多排超声成像装置,包括外壳以及安装于外壳内的第一超声换能器、第二超声换能器和调节机构,第一超声换能器和第二超声换能器发出的超声波能够交叉形成共焦点,第一超声换能器和第二超声换能器中的至少一个与调节机构连接,以在调节机构的作用下相对于外壳发生运动,从而调整共焦点的位置。
本申请实施例采取的技术方案还包括,调节机构包括位移机构,第一超声换能器固定安装于外壳内,第二超声换能器通过位移机构与外壳连接。
本申请实施例采取的技术方案还包括,位移机构包括丝杆和螺母,丝杆伸入外壳内,且与外壳转动连接,并与螺母配合,第二超声换能器与螺母活动连接,螺母能够带动第二超声换能器靠近或者远离第一超声换能器。
本申请实施例采取的技术方案还包括,位移机构还包括驱动件,驱动件固定安装于外壳上,且与丝杆连接。
本申请实施例采取的技术方案还包括,调节机构包括限位轴和旋转机构,第二超声换能器通过旋转机构与限位轴连接。
本申请实施例采取的技术方案还包括,旋转机构包括旋转电机和传动件,传动件包括第一齿轮和第二齿轮,旋转电机固定安装于第二超声换能器上,第一齿轮套设于旋转电机的输出轴外,且与输出轴固定连接,第二超声换能器套设于限位轴外,且能够相对于限位轴转动,第二齿轮套设于限位轴外,且与限位轴固定连接,第一齿轮与第二齿轮啮合。
本申请实施例采取的技术方案还包括,外壳上开设有限位槽,限位轴伸入限位槽,且与限位槽滑动配合。
本申请实施例采取的技术方案还包括,多排超声成像装置还包括第三超 声换能器,第一超声换能器设置于外壳的中部,第三超声换能器设置于第一超声换能器远离第二超声换能器的一侧,且与调节机构连接。
本申请实施例采取的技术方案还包括,第一超声换能器和第二超声换能器均为阵列超声换能器,第一超声换能器和第二超声换能器的阵元数均在96-256之间。
一种超声成像仪器,包括控制系统和上述的多排超声成像装置,该多排超声成像装置包括外壳以及安装于外壳内的第一超声换能器、第二超声换能器和调节机构,第一超声换能器和第二超声换能器发出的超声波能够交叉形成共焦点,第一超声换能器和第二超声换能器中的至少一个与调节机构连接,以在调节机构的作用下相对于外壳发生运动,从而调整共焦点的位置,控制系统分别与第一超声换能器和第二超声换能器连接。
本申请提供的多排超声成像装置以及超声成像仪器具有以下有益效果:
本申请提供的多排超声成像装置,第一超声换能器和第二超声换能器发出的超声波能够交叉形成共焦点,第一超声换能器和第二超声换能器中的至少一个与调节机构连接,以在调节机构的作用下相对于外壳发生运动,从而调整共焦点的位置。与现有技术相比,本申请提供的多排超声成像装置由于采用了与第一超声换能器和/或第二超声换能器连接的调节机构,所以能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效。
本申请提供的超声成像仪器,包括多排超声成像装置,能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效,性价比高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的超声成像仪器的结构示意图;
图2为本申请实施例提供的多排超声成像装置的结构示意图;
图3为本申请实施例提供的多排超声成像装置中多排换能器平移后发出的超声波汇聚于一点的示意图;
图4为本申请实施例提供的多排超声成像装置中多排换能器旋转后发出的超声波汇聚于一点的示意图;
图5为本申请实施例提供的多排超声成像装置中第一位移机构的结构示意图;
图6为本申请实施例提供的多排超声成像装置中第一旋转机构的结构示意图;
图7为本申请实施例提供的多排超声成像装置中外壳的结构示意图。
图标:10-超声成像仪器;100-多排超声成像装置;110-外壳;111-限位槽;112-刻度线;113-第一侧壁;114-第二侧壁;115-第三侧壁;116-第四侧壁;117-底壁;120-第一超声换能器;121-凹槽;122-限位台;130-第二超声换能器;140-第三超声换能器;150-第一位移机构;151-驱动件;152-运动件;154-丝杆;155-螺母;160-第一旋转机构;161-旋转电机;162-传动件;163-第一齿轮;164-第二齿轮;165-输出轴;170-第二位移机构;180-第二旋转机构;190-限位轴;200-控制系统。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“内”、“外”、“上”、“下”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以 是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
实施例
请参照图1,本申请实施例提供了一种超声成像仪器10,用于获得患者体内器官的图像。其能够精准地改变共焦点的位置,既可以同时获得多角度成像,又可以采用一个换能器激励,另外一个换能器接收,实现谐波或辐射力成像,并且多排换能器之间不会互相影响,实用高效,性价比高,同时,由于采用了多排换能器,且每个换能器的频率可以不同,因此也可以实现不同频率的超声波同时作用在一个焦点上,达到多频率超声聚焦目的。
该超声成像仪器10包括控制系统200和多排超声成像装置100。多排超声成像装置100能够发出多排超声波并形成共焦点,还能够调整共焦点的位置。控制系统200与多排超声成像装置100连接,控制系统200能够利用多排超声成像装置100中的多排换能器获得多个成像截面,或者控制系统200还能够利用多排超声成像装置100中的部分换能器发送超声波,再利用剩余的换能器接收超声波,从而进行变频成像。
请结合参照图2、图3和图4(图3中的虚线分别表示第二超声换能器130和第三超声换能器140平移前的位置以及多排换能器发出的超声波的延伸方向;图4中的虚线分别表示第二超声换能器130和第三超声换能器140旋转前的位置以及多排换能器发出的超声波的延伸方向),多排超声成像装置100包括外壳110、第一超声换能器120、第二超声换能器130、第三超声换能器140 和两个调节机构(图未标)。换能器的数量为三个,其中,第一超声换能器120固定安装于外壳110内,且设置于外壳110的中部,第二超声换能器130设置于第一超声换能器120的一侧,且与一个调节机构连接,以在调节机构的作用下相对于外壳110发生运动。第三超声换能器140设置于第一超声换能器120远离第二超声换能器130的一侧,且与另一个调节机构连接,以在调节机构的作用下相对于外壳110发生运动。第一超声换能器120、第二超声换能器130和第三超声换能器140发出的超声波能够交叉于一点,该点即为共焦点。
具体地,第二超声换能器130相对于外壳110发生运动是指第二超声换能器130相对于外壳110平移和/或旋转,即第二超声换能器130能够相对于外壳110平移,也能够相对于外壳110旋转,还能够相对于外壳110平移并且旋转。同理,第三超声换能器140相对于外壳110发生运动是指第三超声换能器140相对于外壳110平移和/或旋转。
需要说明的是,控制系统200分别与第一超声换能器120、第二超声换能器130和第三超声换能器140连接,以利用第一超声换能器120、第二超声换能器130和第三超声换能器140获得三个成像截面,但并不仅限于此,在其他实施例中,控制系统200还可以利用第一超声换能器120发送超声波,再利用第二超声换能器130和第三超声换能器140接收超声波,从而进行变频成像。
本实施例中,控制系统200分别与两个调节机构连接,以电动控制第二超声换能器130和第三超声换能器140的位置发生改变,从而控制第一超声换能器120、第二超声换能器130和第三超声换能器140形成的共焦点的位置发生变化。但并不仅限于此,在其它实施例中,也可以手动平移或者旋转第二超声换能器130和第三超声换能器140,以对第二超声换能器130和第三超声 换能器140的位置进行调整,从而调整共焦点的位置,例如在外壳110内设置滑轨,第二超声换能器130和第三超声换能器140均滑动设置于滑轨上,用户可手动推动第二超声换能器130和第三超声换能器140发生平移,又例如在外壳110内设置两个能够相对于外壳110转动的旋转柱,第二超声换能器130安装于一个旋转柱上,第三超声换能器140安装于另一个旋转柱上,用户可手动拧转旋转柱,使得第二超声换能器130和第三超声换能器140发生旋转。
值得注意的是,调节机构包括限位轴190、位移机构和旋转机构,两个调节机构即包括两个限位轴190、两个位移机构和两个旋转机构,为了便于后文描述,将与第二超声换能器130连接的位移机构和旋转机构分别命名为第一位移机构150和第一旋转机构160,将与第三超声换能器140连接的位移机构和旋转机构分别命名为第二位移机构170和第二旋转机构180,第一位移机构150和第一旋转机构160均通过一个限位轴190与第二超声换能器130连接,第二位移机构170和第二旋转机构180均通过另一个限位轴190与第三超声换能器140连接。本实施例中,第一位移机构150和第二位移机构170的运动保持反向同步,第一旋转机构160和第二旋转机构180的运动保持反向同步,以使第一超声换能器120和第二超声换能器130之间的距离与第一超声换能器120和第三超声换能器140之间的距离始终保持相等,并且使得第一超声换能器120和第二超声换能器130形成的夹角与第一超声换能器120和第三超声换能器140形成的夹角始终保持相等,从而使得第一超声换能器120、第二超声换能器130和第三超声换能器140发出的超声波始终汇聚于共焦点。
需要说明的是,在其他实施例中,也可以不包括第三超声换能器140、第二位移机构170和第二旋转机构180,此时第一位移机构150和第一旋转机构160能够带动第二超声换能器130发生运动,以使第一超声换能器120和第二 超声换能器130形成的共焦点的位置发生变化。
请参照图5,第一位移机构150包括驱动件151和运动件152。驱动件151固定安装于外壳110上,且与运动件152连接,以带动运动件152发生平移。运动件152伸入外壳110内,且与限位轴190固定连接,运动件152能够在驱动件151的带动下靠近或者远离第一超声换能器120。第二超声换能器130套设于限位轴190外,且能够相对于限位轴190转动,运动件152能够通过限位轴190带动第二超声换能器130靠近或者远离第一超声换能器120,在此过程中,第二超声换能器130沿运动件152的延伸方向发生平移,以使第一超声换能器120和第二超声换能器130形成的共焦点的位置发生变化。控制系统200与驱动件151连接,以控制驱动件151启动或者暂停。
本实施例中,驱动件151为电机,运动件152包括丝杆154和螺母155,驱动件151与丝杆154连接,以带动丝杆154转动。丝杆154伸入外壳110内,且与外壳110转动连接,并与螺母155配合,螺母155能够在丝杆154转动的过程中沿丝杆154的轴向发生平移,限位轴190固定连接于螺母155外,螺母155能够带动限位轴190运动,从而带动第二超声换能器130沿丝杆154的轴向发生平移。但并不仅限于此,在其它实施例中,驱动件151可以为电动推杆、液压缸或者液压马达等,运动件152可以为齿轮和齿条,同样能够带动限位轴190在外壳110内运动,从而使第二超声换能器130发生平移,改变共焦点的位置。
值得注意的是,第一超声换能器120的侧面固定连接有限位台122,所述限位台122开设有凹槽121,丝杆154伸入凹槽121,且能够相对于凹槽121转动。当需要调节第二超声换能器130的位置时,驱动件151带动丝杆154转动,丝杆154的一端相对于外壳110转动,另一端相对于凹槽121转动,凹槽 121能够对丝杆154进行限位,防止丝杆154脱落,在此过程中,螺母155相对于丝杆154转动,以在丝杆154的轴向发生平移,并通过限位轴190带动第二超声换能器130靠近或者远离第一超声换能器120。
需要说明的是,第二位移机构170的具体结构与第一位移机构150的具体结构相同,在此不再赘述,第二位移机构170能够带动第三超声换能器140靠近或者远离第一超声换能器120。
请参照图6,第一旋转机构160包括旋转电机161和传动件162。旋转电机161固定安装于第二超声换能器130上,且通过传动件162与限位轴190连接,旋转电机161能够通过传动件162带动第二超声换能器130相对于限位轴190转动,以使第一超声换能器120和第二超声换能器130之间的夹角变大或者变小,以使第一超声换能器120和第二超声换能器130形成的共焦点的位置发生变化。控制系统200与旋转电机161连接,以控制旋转电机161的转速和转动方向。本实施例中,第二超声换能器130的旋转范围在0至90度之间。
本实施例中,传动件162包括第一齿轮163和第二齿轮164,第一齿轮163套设于旋转电机161的输出轴165外,且与输出轴165固定连接,第二齿轮164套设于限位轴190外,且与限位轴190固定连接,第一齿轮163与第二齿轮164啮合。旋转电机161启动,使得输出轴165转动,输出轴165带动第一齿轮163转动,此时由于限位轴190固定连接于螺母155上,限位轴190不会发生转动,同样第二齿轮164也不会发生转动,并且由于第一齿轮163与第二齿轮164啮合,所以在反作用力下使得旋转电机161发生转动,从而带动第二超声换能器130发生转动。
需要说明的是,第二旋转机构180的具体结构与第一旋转机构160的具体结构相同,在此不再赘述,第二旋转机构180能够带动第三超声换能器140相 对于第一旋转机构160发生转动。
本实施例中,第一超声换能器120、第二超声换能器130和第三超声换能器140均为阵列超声换能器,第一超声换能器120、第二超声换能器130和第三超声换能器140的阵元数均在96-256之间。第一超声换能器120的频率高于第二超声换能器130的频率,第二超声换能器130的频率等于第三超声换能器140的频率。但并不仅限于此,在其它实施例中,多排换能器的频率也可以都不相同,还可以都相同,以适应不同的场景。
请继续参照图1,值得注意的是,外壳110上开设有限位槽111,限位槽111的延伸方向与运动件152的延伸方向相同,限位轴190穿过第二超声换能器130,并伸入限位槽111,且与限位槽111滑动配合,限位槽111能够对限位轴190进行限位,以防止螺母155随着丝杆154发生转动,并且限位槽111能够对限位轴190运动的极限位置进行限定,防止限位轴190脱离外壳110。
本实施例中,限位槽111为通槽,限位轴190能够穿过限位槽111,便于用户对限位轴190的位置进行观察。外壳110上设置有刻度线112,刻度线112设置于限位槽111的一侧,用户可以通过刻度线112了解限位轴190的具体位置,从而观测共焦点的深度。
请参照图7,值得注意的是,外壳110呈矩形体状,外壳110包括第一侧壁113、第二侧壁114、第三侧壁115、第四侧壁116和底壁117。第一侧壁113、第二侧壁114、第三侧壁115和第四侧壁116首尾相连,且均与底壁117连接。第一超声换能器120固定连接于底壁117上,驱动件151固定安装于第一侧壁113外,运动件152伸入第一侧壁113。
本申请实施例提供的多排超声成像装置100,第一超声换能器120和第二超声换能器130发出的超声波能够交叉形成共焦点,第一超声换能器120和第 二超声换能器130中的至少一个与调节机构连接,以在调节机构的作用下相对于外壳110平移和/或旋转,从而调整共焦点的位置。与现有技术相比,本申请提供的多排超声成像装置100由于采用了与第一超声换能器120和/或第二超声换能器130连接的调节机构,所以能够精准地改变共焦点的位置,并且多排换能器之间不会互相影响,实用高效,使得超声成像仪器10性价比高,用户体验感好,并且便于用户快速观测共焦点的深度,方便实用。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种多排超声成像装置,其特征在于,包括外壳以及安装于所述外壳内的第一超声换能器、第二超声换能器和调节机构,所述第一超声换能器和所述第二超声换能器发出的超声波能够交叉形成共焦点,所述第一超声换能器和所述第二超声换能器中的至少一个与所述调节机构连接,以在所述调节机构的作用下相对于所述外壳发生运动,从而调整所述共焦点的位置。
  2. 根据权利要求1所述的多排超声成像装置,其特征在于,所述调节机构包括位移机构,所述第一超声换能器固定安装于所述外壳内,所述第二超声换能器通过所述位移机构与所述外壳连接。
  3. 根据权利要求2所述的多排超声成像装置,其特征在于,所述位移机构包括丝杆和螺母,所述丝杆伸入所述外壳内,且与所述外壳转动连接,并与所述螺母配合,所述第二超声换能器与所述螺母活动连接,所述螺母能够带动所述第二超声换能器靠近或者远离所述第一超声换能器。
  4. 根据权利要求3所述的多排超声成像装置,其特征在于,所述位移机构还包括驱动件,所述驱动件固定安装于所述外壳上,且与所述丝杆连接。
  5. 根据权利要求1至4任一项所述的多排超声成像装置,其特征在于,所述调节机构包括限位轴和旋转机构,所述第二超声换能器通过所述旋转机构与所述限位轴连接。
  6. 根据权利要求5所述的多排超声成像装置,其特征在于,所述旋转机构包括旋转电机和传动件,所述传动件包括第一齿轮和第二齿轮,所述旋转电机固定安装于所述第二超声换能器上,所述第一齿轮套设于所述旋转电机的输出轴外,且与所述输出轴固定连接,所述第二超声换能器套设于所述限位轴外, 且能够相对于所述限位轴转动,所述第二齿轮套设于所述限位轴外,且与所述限位轴固定连接,所述第一齿轮与所述第二齿轮啮合。
  7. 根据权利要求5所述的多排超声成像装置,其特征在于,所述外壳上开设有限位槽,所述限位轴伸入所述限位槽,且与所述限位槽滑动配合。
  8. 根据权利要求1所述的多排超声成像装置,其特征在于,所述多排超声成像装置还包括第三超声换能器,所述第一超声换能器设置于所述外壳的中部,所述第三超声换能器设置于所述第一超声换能器远离所述第二超声换能器的一侧,且与所述调节机构连接。
  9. 根据权利要求1所述的多排超声成像装置,其特征在于,所述第一超声换能器和所述第二超声换能器均为阵列超声换能器,所述第一超声换能器和所述第二超声换能器的阵元数均在96-256之间。
  10. 一种超声成像仪器,其特征在于,包括控制系统和如权利要求1至9任一项所述的多排超声成像装置,所述控制系统分别与所述第一超声换能器和所述第二超声换能器连接。
PCT/CN2019/112998 2019-03-18 2019-10-24 一种多排超声成像装置以及超声成像仪器 WO2020186754A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/476,431 US11937980B2 (en) 2019-03-18 2021-09-15 Multi-row ultrasonic imaging apparatus and ultrasonic imaging instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910204641.1 2019-03-18
CN201910204641.1A CN109770945B (zh) 2019-03-18 2019-03-18 一种多排超声成像装置以及超声成像仪器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/476,431 Continuation US11937980B2 (en) 2019-03-18 2021-09-15 Multi-row ultrasonic imaging apparatus and ultrasonic imaging instrument

Publications (1)

Publication Number Publication Date
WO2020186754A1 true WO2020186754A1 (zh) 2020-09-24

Family

ID=66489401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112998 WO2020186754A1 (zh) 2019-03-18 2019-10-24 一种多排超声成像装置以及超声成像仪器

Country Status (3)

Country Link
US (1) US11937980B2 (zh)
CN (1) CN109770945B (zh)
WO (1) WO2020186754A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109770945B (zh) 2019-03-18 2020-09-22 深圳先进技术研究院 一种多排超声成像装置以及超声成像仪器
CN111184949B (zh) * 2019-07-09 2022-04-15 重庆医科大学 一种聚焦超声消融系统及其控制方法
US11911215B2 (en) * 2021-05-26 2024-02-27 Siemens Medical Solutions Usa, Inc. Ultrasound probe with adjustable aperture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068689A2 (en) * 2004-12-20 2006-06-29 Luna Innovations Incorporated Acoustic concealed item detector
CN1901837A (zh) * 2003-12-30 2007-01-24 利普索尼克斯股份有限公司 组成式超声波换能器
CN102793980A (zh) * 2011-05-24 2012-11-28 重庆融海超声医学工程研究中心有限公司 双频聚焦超声系统
EP2636428A1 (en) * 2012-03-08 2013-09-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for determining parameters to generate ultrasound intensity and device for the same
WO2015167894A1 (en) * 2014-04-29 2015-11-05 Conocophillips Company Heterodyned downhole source
CN106730424A (zh) * 2016-12-19 2017-05-31 西安交通大学 共焦谐波叠加百微秒脉冲超声组织毁损模式控制方法
CN106964083A (zh) * 2017-03-21 2017-07-21 南京广慈医疗科技有限公司 一种带中心旋转成像探头的双曲面条状功率超声装置
CN107913477A (zh) * 2017-12-26 2018-04-17 深圳先进技术研究院 一种阵列超声换能器的激励方法、装置、设备及存储介质
CN109770945A (zh) * 2019-03-18 2019-05-21 深圳先进技术研究院 一种多排超声成像装置以及超声成像仪器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035839A (en) * 1976-01-08 1977-07-12 Indianapolis Center For Advanced Research, Inc. Ultrasonic imaging
JPS58157432A (ja) * 1982-03-15 1983-09-19 オリンパス光学工業株式会社 体腔内超音波診断装置
WO1993019705A1 (en) * 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
US9852727B2 (en) * 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US9924923B2 (en) * 2012-06-13 2018-03-27 University Of Virginia Patent Foundation Ultrasound imaging of specular-reflecting target
CN203519148U (zh) * 2013-10-09 2014-04-02 哈尔滨学院 一种用于测量液体密度的超声波声速测定装置
US11712221B2 (en) * 2016-06-20 2023-08-01 Bfly Operations, Inc. Universal ultrasound device and related apparatus and methods
CN106880908A (zh) * 2017-03-21 2017-06-23 南京广慈医疗科技有限公司 一种带中心旋转成像探头的单曲面条状功率超声装置
JP7013777B2 (ja) * 2017-09-29 2022-02-01 株式会社ソシオネクスト 超音波診断システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901837A (zh) * 2003-12-30 2007-01-24 利普索尼克斯股份有限公司 组成式超声波换能器
WO2006068689A2 (en) * 2004-12-20 2006-06-29 Luna Innovations Incorporated Acoustic concealed item detector
CN102793980A (zh) * 2011-05-24 2012-11-28 重庆融海超声医学工程研究中心有限公司 双频聚焦超声系统
EP2636428A1 (en) * 2012-03-08 2013-09-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for determining parameters to generate ultrasound intensity and device for the same
WO2015167894A1 (en) * 2014-04-29 2015-11-05 Conocophillips Company Heterodyned downhole source
CN106730424A (zh) * 2016-12-19 2017-05-31 西安交通大学 共焦谐波叠加百微秒脉冲超声组织毁损模式控制方法
CN106964083A (zh) * 2017-03-21 2017-07-21 南京广慈医疗科技有限公司 一种带中心旋转成像探头的双曲面条状功率超声装置
CN107913477A (zh) * 2017-12-26 2018-04-17 深圳先进技术研究院 一种阵列超声换能器的激励方法、装置、设备及存储介质
CN109770945A (zh) * 2019-03-18 2019-05-21 深圳先进技术研究院 一种多排超声成像装置以及超声成像仪器

Also Published As

Publication number Publication date
US11937980B2 (en) 2024-03-26
CN109770945A (zh) 2019-05-21
US20220000450A1 (en) 2022-01-06
CN109770945B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2020186754A1 (zh) 一种多排超声成像装置以及超声成像仪器
JP3307646B2 (ja) 治療・影像用体腔プローブと、それを用いた治療装置
JP6980696B2 (ja) 超音波撮像及び治療装置
JPH08336541A (ja) 音波源を有する治療装置
CN106730428B (zh) 具有力位控制保护功能的肿瘤消融治疗机械装置
JP2010515522A (ja) 3次元心内心エコー検査のためのカテーテル及びそれを有するシステム
CN101675469B (zh) 利用可调流体透镜进行微波束形成的方法和装置
CN111821589B (zh) 一种大范围目标区域聚焦的超声治疗头运动控制装置
CN110870793A (zh) 机械臂、微创手术机器人及其制造方法
CN102293626A (zh) 内窥镜夹持机械手
US20170258447A1 (en) Ultrasonic transducer and operation method therefor
CN105534597B (zh) 摩擦轮trus图像导航驱动装置及方法
CN106823164A (zh) 一种带直线移动成像探头的双曲面条状功率超声装置
KR20160068183A (ko) 초음파 프로브
EP2679162B1 (en) Ultrasonic probe using a vertically arranged motor
CN109173100B (zh) 用于小动物具备二维成像和hifu治疗一体的聚焦超声装置
KR20190026402A (ko) 고강도 집속 초음파 장치
EP4338686A1 (en) Electric endoscopic stapler
CN110666786B (zh) 一种轮系式远心点机构
CN101130125A (zh) 一种超声治疗装置及含有该超声治疗装置的超声治疗系统
CN209316856U (zh) 用于小动物具备二维成像和hifu治疗一体的聚焦超声装置
CN206913161U (zh) 一种万向调整装置及应用其的医疗机器人
CN110871159A (zh) 超声波换能器
JP2009082583A (ja) 超音波探触子
KR20240005613A (ko) 초음파 의료 장치 및 이의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920023

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19920023

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.02.2022)