WO2020186587A1 - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
WO2020186587A1
WO2020186587A1 PCT/CN2019/083135 CN2019083135W WO2020186587A1 WO 2020186587 A1 WO2020186587 A1 WO 2020186587A1 CN 2019083135 W CN2019083135 W CN 2019083135W WO 2020186587 A1 WO2020186587 A1 WO 2020186587A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
optical
sag
Prior art date
Application number
PCT/CN2019/083135
Other languages
English (en)
French (fr)
Inventor
王义龙
曾昊杰
刘绪明
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2020186587A1 publication Critical patent/WO2020186587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the present invention relates to the technical field of optical lenses, and more specifically, to an optical imaging lens and imaging equipment.
  • the camera lens has become the standard configuration of electronic equipment (such as smart phones, cameras), and the camera lens has even become the primary consideration for consumers when purchasing electronic equipment.
  • electronic equipment such as smart phones, cameras
  • the camera lens has even become the primary consideration for consumers when purchasing electronic equipment.
  • the optical imaging lens has a periscope imaging structure, which can meet the requirements of a lighter and thinner body, and has the advantage of not requiring autofocus under temperature changes.
  • an embodiment of the present invention provides an optical imaging lens, which includes in order from the object side to the image side along the optical axis: a first lens with positive refractive power, the image side surface of which is concave; and a second lens with negative refractive power.
  • the optical imaging lens satisfies the conditional formula: (dn/dt) 1 ⁇ -5.506 ⁇ 10 -6 /°C; (dn/dt) 2 ⁇ 2.97 ⁇ 10 -6 /°C; (dn/dt) 3 ⁇ -1.22 ⁇ 10 -4 /°C, where (dn/dt) 1 represents the temperature coefficient of refractive index of the first lens in the range of 0-60°C; (dn/dt ) 2 represents the temperature coefficient of refractive index of the second lens in the range of 0-60°C; (dn/dt) 3 represents the temperature coefficient of the refractive index of the third lens in the range of 0-60°C.
  • the lenses are reasonably matched, and the offset of the imaging plane caused by temperature changes between each other will cancel each other or minimize the effect of this phenomenon, and it can be applied at different temperatures.
  • the optical imaging lens further includes a diaphragm close to the object side surface of the first lens.
  • the optical imaging lens satisfies the conditional formula: -1.7 ⁇ f 2 /F ⁇ -0.61; where f 2 represents the effective focal length of the second lens, and F represents the effective focal length of the optical imaging lens.
  • Satisfying the above conditions can effectively reduce the projection height of the lens, effectively reduce the projection height of the light on the third lens, and reduce the difference in the overall field of view aberration, and reduce the vertical axis chromatic aberration.
  • the optical imaging lens satisfies the conditional formula: 0.7 ⁇ (TC 1 +TC 2 +TC 3 )/(AC 1 +AC 2 ) ⁇ 10; wherein, TC 1 represents the thickness of the first lens, TC 2 represents the thickness of the second lens element, TC 3 represents the thickness of the third lens element, AC 1 represents the distance between the first lens and the second lens, and AC 2 represents the distance between the second lens and the second lens.
  • the pitch of the third lens is the conditional formula: 0.7 ⁇ (TC 1 +TC 2 +TC 3 )/(AC 1 +AC 2 ) ⁇ 10; wherein, TC 1 represents the thickness of the first lens, TC 2 represents the thickness of the second lens element, TC 3 represents the thickness of the third lens element, AC 1 represents the distance between the first lens and the second lens, and AC 2 represents the distance between the second lens and the second lens.
  • the pitch of the third lens is the conditional formula: 0.7 ⁇ (TC 1 +TC 2 +TC 3 )/(AC 1 +AC 2 ) ⁇ 10;
  • the optical imaging lens structure is uniform, the mechanism is easier to design, and the optical imaging lens has excellent sensitivity, which is conducive to mass production.
  • the optical imaging lens satisfies the conditional formula: 0.7 ⁇ SAG 11- SAG 22 ⁇ 1.3; where SAG 11 represents the vector height of the object side surface of the first lens, and SAG 22 represents the image side of the second lens The vector height of the surface.
  • the optical imaging lens satisfies the conditional formula: -0.26 ⁇ R 11 /R 12 ⁇ 0.31; wherein, R 11 represents the radius of curvature of the object side surface of the first lens, and R 12 represents the curvature of the first lens The radius of curvature of the image side surface.
  • the first lens shape is the shape that produces the relatively smallest spherical aberration, so the spherical aberration can be better corrected.
  • the optical imaging lens satisfies the conditional formula: -1.5 ⁇ f 3 /F ⁇ -0.86; wherein f 3 represents the effective focal length of the third lens, and F represents the effective focal length of the optical imaging lens.
  • the third lens assumes a larger negative refractive power, the image side NA is increased, and the overall resolution of the optical imaging lens is improved.
  • the optical imaging lens satisfies the conditional formula: 1.17 ⁇ TTL/F ⁇ 1.35; wherein TTL represents the total length of the optical imaging lens, and F represents the effective focal length of the optical imaging lens.
  • the aspheric lens of the optical imaging lens satisfies the following equation:
  • z represents the distance of the surface from the surface vertex in the optical axis direction
  • c represents the curvature of the surface vertex
  • k represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, F, G, H represents the fourth, sixth, eighth, tenth, twelfth, fourteenth, and sixteenth order surface coefficients respectively.
  • the optical imaging lens further includes: a filter disposed between the third lens and the imaging surface.
  • the object side surface of the first lens is convex.
  • first lens and the second lens are glass lenses
  • third lens is a plastic lens
  • the second lens is a spherical lens
  • the first lens and the third lens are aspheric lenses.
  • the present invention also provides an imaging device.
  • the imaging device includes the optical imaging lens provided by any of the above embodiments and an imaging element for converting an optical image formed by the optical imaging lens into an electrical signal.
  • the optical imaging lens provided by the embodiment of the present invention through a reasonable combination of the lens shape and the optical power between the lenses, makes that when the temperature changes, the changes between the dn/dt lenses are compensated for each other, and no autofocus is required.
  • Portable electronic devices have good applicability and can effectively improve the user's camera experience.
  • Fig. 1 shows a schematic structural diagram of an optical imaging lens provided by a first embodiment of the present invention
  • FIG. 2 shows a schematic structural diagram of an imaging device provided by the first embodiment of the present invention
  • FIG. 3 shows a field curvature curve diagram of the optical imaging lens provided by the first embodiment of the present invention
  • FIG. 4 shows a distortion curve diagram of the optical imaging lens provided by the first embodiment of the present invention
  • FIG. 5 shows a curve diagram of on-axis point spherical aberration of the optical imaging lens provided by the first embodiment of the present invention
  • Fig. 6 shows a lateral chromatic aberration curve diagram of the optical imaging lens provided by the first embodiment of the present invention
  • Fig. 7 shows a field curvature curve diagram of an optical imaging lens provided by a second embodiment of the present invention.
  • FIG. 8 shows a distortion curve diagram of the optical imaging lens provided by the second embodiment of the present invention.
  • FIG. 9 shows a curve diagram of on-axis point spherical aberration of the optical imaging lens provided by the second embodiment of the present invention.
  • FIG. 10 shows a graph of lateral chromatic aberration of the optical imaging lens provided by the second embodiment of the present invention.
  • FIG. 11 shows a curve diagram of field curvature of an optical imaging lens provided by a third embodiment of the present invention.
  • FIG. 12 shows a distortion curve diagram of an optical imaging lens provided by a third embodiment of the present invention.
  • FIG. 13 shows a curve diagram of on-axis point spherical aberration of the optical imaging lens provided by the third embodiment of the present invention.
  • FIG. 14 shows a graph of lateral chromatic aberration of the optical imaging lens provided by the third embodiment of the present invention.
  • FIG. 16 shows a distortion curve diagram of the optical imaging lens provided by the fourth embodiment of the present invention.
  • FIG. 17 shows a curve diagram of on-axis point spherical aberration of the optical imaging lens provided by the fourth embodiment of the present invention.
  • FIG. 18 shows a graph of lateral chromatic aberration of the optical imaging lens provided by the fourth embodiment of the present invention.
  • Optical imaging lens 100 First lens L1 Second lens L2 Third lens L3 Filter G Imaging surface P
  • the lens currently configured on portable electronic equipment needs to auto-focus again when the temperature changes.
  • the lens on the existing electronic equipment will be greatly affected by the temperature.
  • Focusing means slow response and poor user experience, and it cannot avoid the influence of temperature changes on the focus of the lens.
  • a schematic structural diagram of an optical imaging lens 100 provided in the first embodiment of the present application may include a first lens L1, a second lens L2, and a third lens L3 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power, and its object side surface S3 is convex, that is, the object side surface S3 of the first lens L1 is convex toward the object side.
  • the image side surface S4 of the first lens is concave, that is, the image side surface S4 of the first lens L1 is concave toward the image side direction.
  • the first lens L1 may be a glass aspheric lens, thereby converging the incident light beam from the light source, and providing sufficient positive refractive power to effectively control the overall size of the optical imaging lens 100, and the glass
  • the material can effectively improve the imaging resolution of the optical imaging lens 100.
  • the imaging resolution of the optical imaging lens 100 refers to the degree of recognition of the characteristic density of line pairs or lines in the captured analytical image, that is, the imaging resolution refers to It is "the ability to distinguish the details of the original subject.”
  • the second lens L2 has negative refractive power.
  • the second lens L2 reduces the projection height of the light on the image side surface of the third lens L3, and has a good control of the vertical chromatic aberration of the optical imaging lens 100.
  • the vertical chromatic aberration here can also be called chromatic aberration of magnification. , It mainly refers to the change of the refractive index of the material caused by the wavelength change, and then the magnification of the optical system changes, and the size of the image changes accordingly.
  • the vertical axis chromatic aberration in this embodiment is the magnification of the optical imaging lens 100 for different colors of light; on the other hand, the divergence effect of the second lens L2 on the light can increase the overall image square aperture angle of the optical imaging lens 100, so that the optical imaging lens 100 The resolution is improved.
  • the third lens L3 has negative refractive power.
  • the second lens L2 is a glass spherical lens, which provides greater deflection power to the light emitted by the first lens L1
  • the third lens L3 is a plastic aspheric lens, which has an overall aberration for the optical imaging lens 100 There is a good balance
  • L3 is a plastic lens, which can save production costs.
  • the optical imaging lens 100 may further include a stop ST arranged on the object side of the first lens L1 and a filter G arranged between the third lens L3 and the imaging plane P.
  • the filter G can be used to selectively filter part of the light to meet the needs of imaging in different wavelength bands.
  • the imaging plane P may be a plane on which light incident from the object side passes through the optical imaging lens 100 to clearly image on the image side.
  • the optical imaging lens 100 may satisfy the conditional formula: (dn/dt) 1 ⁇ -5.506 ⁇ 10 -6 /°C; (dn/dt) 2 ⁇ 2.97 ⁇ 10 -6 /°C; dn/dt) 3 ⁇ -1.22 ⁇ 10 -4 /°C; where (dn/dt) 1 represents the temperature coefficient of refractive index of the first lens L1 in the range of 0-60°C; (dn/dt) 2 represents The temperature coefficient of refractive index of the second lens L2 in the range of 0-60°C; (dn/dt) 3 represents the temperature coefficient of the refractive index of the third lens L3 in the range of 0-60°C.
  • the lenses are reasonably matched, and the offset of the imaging surface P caused by temperature changes between each other will cancel each other or minimize the effect of this phenomenon, and it can be at different temperatures Next application.
  • the optical imaging lens 100 may satisfy the conditional formula: 0.7 ⁇ SAG 11 -SAG 22 ⁇ 1.3; where SAG 11 is the saggital height of the object surface S3 of the first lens L1, and the saggital depth is also It is called sag, which refers to the vertical distance between the geometric center of the rear surface of the lens and the plane of the lens diameter. SAG 22 is the sagittal height of the image side surface S6 of the second lens L2, and SAG 11 /SAG 22 is greater than 0.7, which can be balanced.
  • the optical path difference of the field of view is conducive to the planarization of the actual focal plane, and the field curvature is better corrected; the SAG 11 /SAG 22 is less than 1.3, which reduces the difficulty of field curvature correction and reduces the sensitivity.
  • the optical imaging lens 100 may satisfy the conditional formula: -0.26 ⁇ R 11 /R 12 ⁇ 0.31; where R 11 is the radius of curvature of the object side surface S3 of the first lens L1, and R 12 is The radius of curvature of the image side surface S4 of the first lens L1 satisfies this condition and can better correct the spherical aberration.
  • the optical imaging lens 100 may satisfy the conditional formula: -1.7 ⁇ f 2 /F ⁇ -0.61; where f 2 represents the effective focal length of the second lens L2 of the optical imaging lens 100, and F represents optical The effective focal length of the imaging lens 100, where the effective focal length is the distance from the front and rear principal planes to the corresponding focal point. Satisfying the above conditional formula can reduce the vertical axis chromatic aberration, reduce the projection height of the light on the third lens L3, and balance the various field of view aberrations.
  • the optical imaging lens 100 may satisfy the conditional formula: 0.7 ⁇ (TC 1 +TC 2 +TC 3 )/(AC 1 +AC 2 ) ⁇ 10; where TC 1 is the first lens L1 The thickness of the lens, TC 2 is the thickness of the second lens L2, TC 3 is the thickness of the third lens L3, AC 1 is the distance between the first lens L1 and the second lens L2, and AC 2 is the second lens L2 to the second lens.
  • the optical imaging lens 100 has a uniform structure, and the mechanism is easier to design.
  • the optical imaging lens 100 has excellent sensitivity and is conducive to mass production.
  • the sensitivity here can also be called illuminance, which refers to the aperture of the optical imaging lens 100 Under certain circumstances, obtain the minimum target surface illumination required for the specified signal level.
  • the optical imaging lens 100 satisfies the conditional formula: -1.5 ⁇ f 3 /F ⁇ -0.86; where f 3 is the effective focal length of the third lens L3, and F is the effective focal length of the optical imaging lens 100
  • the third lens L3 assumes a negative refractive power and increases the image side NA, that is, increases the numerical aperture (NA) of the optical imaging lens, which can increase the overall resolution of the optical imaging lens 100.
  • the optical imaging lens 100 satisfies the conditional formula: 1.17 ⁇ TTL/F ⁇ 1.35; where F is the focal length of the optical imaging lens 100, and TTL is the total length of the optical imaging lens 100. If this condition is met, The total length of the optical imaging lens 100 is effectively reduced.
  • each aspheric surface type of the optical imaging lens 100 may all satisfy the equation:
  • z is the height of the distance vector from the apex of the aspheric surface when the aspheric surface is at the height of h along the optical axis
  • c is the paraxial curvature radius of the surface
  • k is the conic coefficient conic
  • a 2i is the 2i-th order aspheric surface Surface coefficient.
  • the optical imaging lens 100 provided by this embodiment and the imaging device 200 in FIG. 2 can effectively reduce the optical imaging lens through a reasonable combination of the first lens L1, the second lens L2, and the third lens L3.
  • the overall size of 100 It can be seen from FIGS. 1 and 2 that the imaging device 200 may include the optical imaging lens 100 provided in any of the above embodiments and an imaging element for converting the optical image formed by the optical imaging lens 100 into electrical signals.
  • the imaging element may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (charge coupled device) image sensor.
  • the imaging device 200 may be a vehicle-mounted device, a monitoring device, etc., which has the beneficial effects that the optical imaging lens 100 provided by the present invention can bring.
  • the optical imaging lens 100 provided in this embodiment can compensate each other after the temperature changes, and does not require auto-focusing. That is, in order to make the resolution of the optical imaging lens 100 higher, the second lens L2 of the present application has a negative light
  • the first lens L1 in this application is a glass aspheric lens, which can not only effectively control the overall size of the optical imaging lens 100, but also can effectively improve the resolution of the optical imaging lens 100.
  • the second lens L2 is a glass spherical lens, which can provide greater deflection power for the light emitted by the first lens L1
  • the third lens L3 is a plastic aspheric lens, which can affect the aberration of the optical imaging lens 100 There is a good balance. Through a reasonable combination of these lenses, the lens of the electronic device does not need to be auto-focused after the temperature changes, which can improve the user's camera experience to a certain extent.
  • FIG. 1 is a structural diagram of the optical imaging lens 100 provided in the first embodiment of the present application. Related parameters of the optical imaging lens are shown in Table 1-1.
  • the coordinate breakpoints in Table 1-1 are commonly used in tilted optical systems. They are usually used to indicate rotation, that is, the coordinate breakpoints represent a virtual plane.
  • the aspheric parameters of each lens in the optical imaging lens 100 are shown in Table 1-2:
  • the field curvature curve, distortion curve of the optical imaging lens 100 (f- ⁇ distortion in the figure is a percentage, ⁇ is the field of view), the on-axis point spherical aberration curve, and the lateral chromatic aberration curve Figures are shown in Figure 3, Figure 4, Figure 5 and Figure 6. From Figure 3 to Figure 6, it can be seen that curvature of field, distortion and chromatic aberration can be well corrected.
  • the structural diagram of the optical imaging lens 100 provided in this embodiment is substantially the same as the above-mentioned first embodiment, and the biggest difference lies in the design parameters. Specifically, the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 2-1:
  • the field curvature curve, distortion curve, on-axis point spherical aberration curve, and lateral chromatic aberration curve of the optical imaging lens 100 are shown in FIGS. 7, 8, 9 and 10, respectively. It can be seen from Figure 7 to Figure 10 that curvature of field, distortion and chromatic aberration can be well corrected.
  • the structural diagram of the optical imaging lens 100 provided in this embodiment is substantially the same as the above-mentioned first embodiment, and the biggest difference lies in the design parameters. Specifically, the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 3-1:
  • the aspheric parameters of each lens in the optical imaging lens 100 are shown in Table 3-2:
  • the field curvature curve, the distortion curve, the on-axis point spherical aberration curve, and the lateral chromatic aberration curve of the optical imaging lens 100 are shown in FIG. 11, FIG. 12, FIG. 13 and FIG. 14, respectively. From Figure 11 to Figure 14, it can be seen that curvature of field, distortion and chromatic aberration can be well corrected.
  • the structural diagram of the optical imaging lens 100 provided in this embodiment is substantially the same as the above-mentioned first embodiment, and the biggest difference lies in the design parameters. Specifically, the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 4-1:
  • the aspheric parameters of each lens in the optical imaging lens 100 are shown in Table 4-2:
  • the field curvature curve, distortion curve, on-axis point spherical aberration curve, and lateral chromatic aberration curve of the optical imaging lens 100 are shown in FIG. 15, FIG. 16, FIG. 17, and FIG. 18, respectively. It can be seen from Figure 15 to Figure 18 that curvature of field, distortion and chromatic aberration can be well corrected.
  • Table 5 shows the corresponding optical characteristics of the optical imaging lens 100 in the above four embodiments, including the focal length f of the optical imaging lens 100, the number of aperture F#, the total optical length of the lens TTL and the field of view 2 ⁇ , and Correlation values corresponding to each of the aforementioned conditional expressions.
  • the thickness, radius of curvature, and material of each lens in the optical imaging lens 100 are different.
  • the above-mentioned embodiments are only preferred embodiments of the present invention, but the embodiments of the present invention are not only limited by the above-mentioned embodiments, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovative points of the present invention are all The replacement methods that should be regarded as equivalent are all included in the protection scope of the present invention.
  • the optical imaging lens and imaging device provided by the embodiments of the present invention, through a reasonable combination of lens shape and refractive power between the lenses, effectively reduce the overall size of the optical imaging lens, and is miniaturized. At the same time, it achieves the effect of clear imaging with a large aperture, and has the advantages of miniaturization, large aperture and high imaging quality. It has good applicability to portable electronic devices and can effectively improve the user's camera experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头及成像设备,涉及光学镜头技术领域。光学成像镜头(100)沿光轴从物侧到像侧依次包括:具有正光焦度的第一透镜(L1),其像侧表面(S4)为凹面;具有负光焦度的第二透镜(L2);具有负光焦度的第三透镜(L3);光学成像镜头(100)满足条件式:(dn/dt) 1<-5.506×10 -6/℃;(dn/dt) 2<2.97×10 -6/℃;(dn/dt) 3<-1.22×10 -4/℃,其中,(dn/dt) 1表示第一透镜(L1)在0~60℃范围内的折射率温度系数;(dn/dt) 2表示第二透镜(L2)在0~60℃范围内的折射率温度系数;(dn/dt) 3表示第三透镜(L3)在0~60℃范围内的折射率温度系数。光学成像镜头(100)通过合理搭配各透镜之间的镜片形状与光焦度组合,使得当温度改变后,dn/dt各镜片之间变化相互补偿,不需要自动对焦。

Description

光学成像镜头及成像设备
相关申请的交叉引用
本申请要求于2019年03月20日提交中国专利局的申请号为201910214053.6、名称为“一种光学成像镜头”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学镜头技术领域,更具体地,涉及一种光学成像镜头及成像设备。
背景技术
目前,摄像镜头已经成为电子设备(如智能手机、相机)的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。近年来,随着智能手机的设计水平、制造加工技术的进步,长焦系统已广为旗舰手机所追捧,但是长焦镜头一般组件较多,而在机身轻薄化的趋势下,智能手机没有足够的深度以容纳长焦镜头的组件。
发明内容
鉴于上述问题,本发明提出了一种光学成像镜头及成像设备,该光学成像镜头具有潜望式成像结构,可满足机身轻薄化的要求,并具有温度变化的情况下无需自动对焦的优点。
一方面,本发明实施例提供了一种光学成像镜头,沿光轴从物侧到像侧依次包括:具有正光焦度的第一透镜,其像侧表面为凹面;具有负光焦度的第二透镜;具有负光焦度的第三透镜;所述光学成像镜头满足条件式:(dn/dt) 1<-5.506×10 -6/℃;(dn/dt) 2<2.97×10 -6/℃;(dn/dt) 3<-1.22×10 -4/℃,其中,(dn/dt) 1表示所述第一透镜在0~60℃范围内的折射率温度系数;(dn/dt) 2表示所述第二透镜在0~60℃范围内的折射率温度系数;(dn/dt) 3表示所述第三透镜在0~60℃范围内的折射率温度系数。
满足上述条件,各透镜合理的搭配,彼此之间因温度变化而引起的成像面偏移量将相互抵消或使这种现象影响降至最低,便可在不同温度下应用。
进一步的,所述光学成像镜头还包括靠近第一透镜物侧表面的光阑。
进一步的,所述光学成像镜头满足条件式:-1.7<f 2/F<-0.61;其中,f 2表示所述第二透镜的有效焦距,F表示所述光学成像镜头的有效焦距。
满足上述条件,能对透镜的投射高度有效的减小,有效减小光线在第三透镜上的投射高度,对于整体视场像差的差异,减小垂轴色差。
进一步的,所述光学成像镜头满足条件式:0.7<(TC 1+TC 2+TC 3)/(AC 1+AC 2)<10;其中,TC 1表示所述第一透镜镜片的厚度,TC 2表示所述第二透镜镜片的厚度,TC 3表示所述第三透镜镜片的厚度,AC 1表示所述第一透镜到所述第二透镜的间距,AC 2表示所述 第二透镜到所述第三透镜的间距。
满足上述条件,光学成像镜头结构均匀,机构更容易设计,且该光学成像镜头敏感度极佳,利于量产。
进一步的,所述光学成像镜头满足条件式:0.7<SAG 11-SAG 22<1.3;其中,SAG 11表示所述第一透镜的物侧表面的矢高,SAG 22表示所述第二透镜的像侧表面的矢高。
满足上述条件,可以均衡各视场的光程差,利于实际焦平面的平面化,场曲较好校正。
进一步的,所述光学成像镜头满足条件式:-0.26<R 11/R 12<0.31;其中,R 11表示所述第一透镜的物侧表面的曲率半径,R 12表示所述第一透镜的像侧表面的曲率半径。
满足上述条件,第一透镜形状为产生球差相对最小的形状,故可较好的校正球差。
进一步的,所述光学成像镜头满足条件式:-1.5<f 3/F<-0.86;其中,f 3表示所述第三透镜的有效焦距,F表示光所述学成像镜头的有效焦距。
满足上述条件,因所述第三透镜承担较大负光焦度,增加像方NA,提高光学成像镜头整体的分辨率。
进一步的,所述光学成像镜头满足条件式:1.17<TTL/F<1.35;其中,TTL表示所述光学成像镜头的总长度,F表示所述光学成像镜头的有效焦距。
满足上述条件,可有效缩短光学成像镜头的总长。
进一步的,所述光学成像镜头的非球面透镜满足下列方程:
Figure PCTCN2019083135-appb-000001
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶曲面系数。
进一步的,所述光学成像镜头还包括:设置于所述第三透镜与成像面之间的滤光片。
进一步的,所述第一透镜的物侧表面为凸面。
进一步的,所述第一透镜和所述第二透镜为玻璃透镜,所述第三透镜为塑胶透镜。
进一步的,所述第二透镜为球面透镜,所述第一透镜和所述第三透镜为非球面透镜。
另一方面,本发明还提供了一种成像设备,成像设备包括上述任一种实施方式所提供的光学成像镜头及用于将光学成像镜头形成的光学图像转换为电信号的成像元件。
本发明实施例提供的光学成像镜头,通过合理搭配各透镜之间的镜片形状与光焦度组合,使得当温度改变后,dn/dt各镜片之间变化相互补偿,不需要自动对焦,其对便携式电子设备具有良好的适用性,能够有效提升用户的摄像体验。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明第一实施例提供的光学成像镜头的结构示意图;
图2示出了本发明第一实施例提供的成像设备的结构示意图;
图3示出了本发明第一实施例提供的光学成像镜头的场曲曲线图;
图4示出了本发明第一实施例提供的光学成像镜头的畸变曲线图;
图5示出了本发明第一实施例提供的光学成像镜头的轴上点球差曲线图;
图6示出了本发明第一实施例提供的光学成像镜头的横向色差曲线图;
图7示出了本发明第二实施例提供的光学成像镜头的场曲曲线图;
图8示出了本发明第二实施例提供的光学成像镜头的畸变曲线图;
图9示出了本发明第二实施例提供的光学成像镜头的轴上点球差曲线图;
图10示出了本发明第二实施例提供的光学成像镜头的横向色差曲线图;
图11示出了本发明第三实施例提供的光学成像镜头的场曲曲线图;
图12示出了本发明第三实施例提供的光学成像镜头的畸变曲线图;
图13示出了本发明第三实施例提供的光学成像镜头的轴上点球差曲线图;
图14示出了本发明第三实施例提供的光学成像镜头的横向色差曲线图;
图15示出了本发明第四实施例提供的光学成像镜头的场曲曲线图;
图16示出了本发明第四实施例提供的光学成像镜头的畸变曲线图;
图17示出了本发明第四实施例提供的光学成像镜头的轴上点球差曲线图;
图18示出了本发明第四实施例提供的光学成像镜头的横向色差曲线图。
主要元件符号说明:
光学成像镜头 100 第一透镜 L1
第二透镜 L2 第三透镜 L3
滤光片 G 成像面 P
光阑 ST 成像设备 200
棱镜 J    
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
目前配置在便携式电子设备上的镜头,当温度改变后,需要再次自动对焦,换句话说,现有的电子设备上的镜头会极大的受温度的影响,只要温度发生变化其就可能需要重新对焦,即响应慢,用户体验差,其无法避免温度变化对镜头对焦的影响。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,本申请第一实施例提供的光学成像镜头100的结构示意图,沿光轴从物侧到像侧依次可以包括第一透镜L1、第二透镜L2、第三透镜L3。
其中,第一透镜L1具有正光焦度,其物侧表面S3为凸面,即第一透镜L1的物侧表面S3朝向物侧方向是凸出的。另外。第一透镜的像侧表面S4为凹面,即第一透镜L1的像侧表面S4朝向像侧方向是凹进去的。
作为一种实施方式,第一透镜L1可以是玻璃非球面透镜,借此汇聚来自光源的入射光束,且可提供足够的正光焦度,以有效的控制光学成像镜头100的整体尺寸大小,且玻璃材质能够有效提高光学成像镜头100的成像解析力,光学成像镜头100的成像解析力是指在所拍摄的解析图成像中,对特点密度的线对或线条的辨识程度,即成像解析力指的是“分辨被摄原物细节的能力”。
第二透镜L2具有负光焦度。一方面,第二透镜L2减小了光线在第三透镜L3像侧表面光线的投射高度,对光学成像镜头100的垂轴色差有很好的控制,这里的垂轴色差也可以称为倍率色差,其主要指的是波长变化引起材料的折射率变化,继而引起光学系统的放大倍率变化,像的大小随之变化。即本实施例中垂轴色差为光学成像镜头100对不同色光的放大率;另一方面,第二透镜L2对光线的发散作用,提高光学成像镜头100整体像方孔径角,使光学成像镜头100的分辨率得到提高。
第三透镜L3具有负光焦度。
在一些实施方式中,第二透镜L2为玻璃球面透镜,对第一透镜L1出射的光线提供较大的偏折力,第三透镜L3为塑胶非球面透镜,对光学成像镜头100整体的像差有很好的平衡,且L3为塑胶透镜,可节约生产成本。
如图1所示,本实施例中,光学成像镜头100还可以包括设置于第一透镜L1物侧的光阑ST,以及设置于第三透镜L3与成像面P之间的滤光片G。该滤光片G可用于选择性地对部分光进行过滤,从而达到不同波段成像的需求。
本实施例中,成像面P可以是由物侧入射的光,经过光学成像镜头100在像侧清晰成像的平面。
进一步的,在一些实施方式中,光学成像镜头100可以满足条件式:(dn/dt) 1<-5.506×10 -6/℃;(dn/dt) 2<2.97×10 -6/℃;(dn/dt) 3<-1.22×10 -4/℃;其中,(dn/dt) 1表示所述第一透镜L1在0~60℃范围内的折射率温度系数;(dn/dt) 2表示所述第二透镜L2在0~60℃范围内的折射率温度系数;(dn/dt) 3表示所述第三透镜L3在0~60℃范围内的折射率温度系数。
其中,三者条件同时满足的情况下,各透镜合理的搭配,彼此之间因温度变化而引起的成像面P偏移量将相互抵消或使这种现象影响降至最低,便可在不同温度下应用。
进一步的,在一些实施方式中,光学成像镜头100可以满足条件式:0.7<SAG 11-SAG 22<1.3;其中,SAG 11为第一透镜L1物测表面S3的矢高,矢高(saggital depth)也叫垂度,其指的是透镜后表面几何中心到透镜直径平面之间的垂直距离,SAG 22为第二透镜L2的像侧表面S6的矢高,SAG 11/SAG 22大于0.7,则可以均衡各视场的光程差,利于实际焦平面的平面化,场曲较好校正;SAG 11/SAG 22小于1.3,则降低了场曲的修正难度,降低敏感度。
进一步的,在一些实施方式中,光学成像镜头100可以满足条件式:-0.26<R 11/R 12<0.31;其中,R 11为第一透镜L1的物侧表面S3的曲率半径,R 12为第一透镜L1的像侧表面S4的曲率半径,满足此条件,可以较好的校正球差。
进一步的,在一些实施方式中,光学成像镜头100可以满足条件式:-1.7<f 2/F<-0.61;其中,f 2表示光学成像镜头100的第二透镜L2的有效焦距,F表示光学成像镜头100的有效焦距,这里的有效焦距为前后主平面至对应的焦点的距离。满足上述条件式,可以减小垂轴色差,降低第三透镜L3上光线的投射高度,均衡各视场像差。
进一步的,在一些实施方式中,光学成像镜头100可以满足条件式:0.7< (TC 1+TC 2+TC 3)/(AC 1+AC 2)<10;其中,TC 1为第一透镜L1镜片的厚度,TC 2为第二透镜L2镜片的厚度,TC 3为第三透镜L3镜片的厚度,AC 1为第一透镜L1到第二透镜L2的间距,AC 2为第二透镜L2到第三透镜L3的间距。满足上述条件式,光学成像镜头100结构均匀,机构更容易设计,光学成像镜头100敏感度极佳,利于量产,这里的敏感度也可以称为照度,其指的是在光学成像镜头100光圈一定的情况下,获取规定信号电平所需要的最低靶面照度。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:-1.5<f 3/F<-0.86;其中,f 3为第三透镜L3的有效焦距,F为光学成像镜头100的有效焦距,第三透镜L3承担负光焦度,增加像方NA,即提高光学成像镜头的数值孔径(Numerical Aperture,NA),可以提高光学成像镜头100整体的分辨率。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:1.17<TTL/F<1.35;其中,F为光学成像镜头100的焦距,TTL为光学成像镜头100的总长,满足此条件,可有效减小光学成像镜头100的总长。
本实施例中,作为一种实施方式,当光学成像镜头100中的各个透镜均为非球面透镜时,光学成像镜头100的各个非球面面型可以均满足方程式:
Figure PCTCN2019083135-appb-000002
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为圆锥系数conic,A 2i为第2i阶的非球面面型系数。
本实施例提供的光学成像镜头100及图2中的成像设备200通过合理的搭配第一透镜L1、第二透镜L2、第三透镜L3镜片形状与光焦度组合,有效的减少了光学成像镜头100的整体尺寸大小。通过图1和图2可知成像设备200,可以包括如上述任一种实施方式提供的光学成像镜头100及用于将光学成像镜头100形成的光学图像转换为电信号的成像元件。成像元件可以是CMOS(Complementary Metal Oxide Semiconductor)图像传感器或者CCD(charge coupled device)图像传感器。成像设备200可以是车载设备、监控设备等设备,其具备本发明提供的光学成像镜头100能够带来的有益效果。
本实施例提供的光学成像镜头100可以使得温度改变后各透镜镜片之间相互补偿,不需要自动对焦,即为了使光学成像镜头100的分辨率更高,本申请的第二透镜L2具有负光焦度,同时本申请中第一透镜L1是玻璃非球面透镜,其不仅可以有效控制光学成像镜头100的整体尺寸大小,而且可以有效提高光学成像镜头100的解析力。另外,第二透镜L2 为玻璃球面透镜,其可以为第一透镜L1出射的光线提供较大的偏折力,且第三透镜L3为塑胶非球面透镜,其可以对光学成像镜头100的像差有很好的平衡。通过对这些透镜的合理组合,就可以使得电子设备的镜头在温度发生改变后不需要自动对焦,在一定程度上可以提升用户的摄像体验。
实施例1
请参阅图1,为本申请第一实施例中提供的光学成像镜头100的结构图,该光学成像镜头的相关参数如表1-1所示。
表1-1
Figure PCTCN2019083135-appb-000003
表1-1中的坐标断点常用在倾斜的光学系统中,其通常用来表示旋转,即坐标断点表示的是虚拟的平面。本实施例中,光学成像镜头100中各个透镜的非球面参数如表1-2所示:
表1-2
Figure PCTCN2019083135-appb-000004
Figure PCTCN2019083135-appb-000005
在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图(图中f-θ畸变中的f为百分比,θ为视场角)、轴上点球差曲线图以及横向色差曲线图分别如图3、图4、图5及图6所示。从图3至图6可以看出场曲、畸变和色差都能被很好的校正。
实施例2
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。具体的,本实施例提供的光学成像镜头100的设计参数如表2-1所示:
表2-1
Figure PCTCN2019083135-appb-000006
Figure PCTCN2019083135-appb-000007
本实施例中,光学成像镜头100中各个透镜的非球面参数如表2-2所示:
表2-2
Figure PCTCN2019083135-appb-000008
在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图7、图8、图9及图10所示。从图7至图10可以看出场曲、畸变和色差都能被很好的校正。
实施例3
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。具体的,本实施例提供的光学成像镜头100的设计参数如表3-1所示:
表3-1
Figure PCTCN2019083135-appb-000009
Figure PCTCN2019083135-appb-000010
本实施例中,光学成像镜头100中各个透镜的非球面参数如表3-2所示:
表3-2
Figure PCTCN2019083135-appb-000011
在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图11、图12、图13及图14所示。从图11至图14可以看出,场曲、畸变和色差都能被很好的校正。
实施例4
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。具体的,本实施例提供的光学成像镜头100的设计参数如表4-1所示:
表4-1
Figure PCTCN2019083135-appb-000012
Figure PCTCN2019083135-appb-000013
本实施例中,光学成像镜头100中各个透镜的非球面参数如表4-2所示:
表4-2
Figure PCTCN2019083135-appb-000014
在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图15、图16、图17及图18所示。从图15至图18可以看出场曲、畸变和色差都能被很好的校正。
请参阅表5,表5为上述四个实施例中的光学成像镜头100分别对应的光学特性,包括光学成像镜头100的焦距f、光圈数F#、镜头的光学总长TTL和视场角2θ,以及与前述的每个条件式对应的相关数值。
表5
Figure PCTCN2019083135-appb-000015
Figure PCTCN2019083135-appb-000016
在以上每个实施例中,光学成像镜头100中的各个透镜的厚度、曲率半径、材质部分有所不同,具体不同可参见各实施例中的参数表。上述的实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受上述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
综上,本发明实施例提供的光学成像镜头及成像设备,通过合理的搭配各透镜之间的镜片形状与光焦度组合,有效的减小了光学成像镜头整体的尺寸大小,且在小型化的同时实现了大光圈清晰成像的效果,具有小型化、大光圈和成像品质高的优点,其对便携式电子设备具有良好的适用性,能够有效提升用户的摄像体验。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种光学成像镜头,其特征在于,从物侧到像侧依次包括:
    具有正光焦度的第一透镜,其像侧表面为凹面;
    具有负光焦度的第二透镜;
    具有负光焦度的第三透镜;
    所述光学成像镜头满足条件式:
    (dn/dt) 1<-5.506×10 -6/℃;
    (dn/dt) 2<2.97×10 -6/℃;
    (dn/dt) 3<-1.22×10 -4/℃;
    其中,(dn/dt) 1表示所述第一透镜在0~60℃范围内的折射率温度系数;
    (dn/dt) 2表示所述第二透镜在0~60℃范围内的折射率温度系数;
    (dn/dt) 3表示所述第三透镜在0~60℃范围内的折射率温度系数。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头还包括靠近第一透镜物侧表面的光阑。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -1.7<f 2/F<-0.61;
    其中,f 2表示所述第二透镜的有效焦距,F表示所述光学成像镜头的有效焦距。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    0.7<(TC 1+TC 2+TC 3)/(AC 1+AC 2)<10;
    其中,TC 1表示所述第一透镜镜片的厚度,TC 2表示所述第二透镜镜片的厚度,TC 3表示所述第三透镜镜片的厚度,AC 1表示所述第一透镜到所述第二透镜的间距,AC 2表示所述第二透镜到所述第三透镜的间距。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    0.7<SAG 11-SAG 22<1.3;
    其中,SAG 11表示所述第一透镜的物侧表面的矢高,SAG 22表示所述第二透镜的像侧表面的矢高。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -0.26<R 11/R 12<0.31;
    其中,R 11表示所述第一透镜的物侧表面的曲率半径,R 12表示所述第一透镜的像侧表面 的曲率半径。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -1.5<f 3/F<-0.86;
    其中,f 3表示所述第三透镜的有效焦距,F表示所述光学成像镜头的有效焦距。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    1.17<TTL/F<1.35;
    其中,TTL表示所述光学成像镜头的总长度,F表示所述光学成像镜头的有效焦距。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的非球面透镜满足下列方程:
    Figure PCTCN2019083135-appb-100001
    其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶曲面系数。
  10. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头还包括:设置于所述第三透镜与成像面之间的滤光片。
  11. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧表面为凸面。
  12. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第一透镜为玻璃透镜。
  13. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第二透镜为玻璃透镜。
  14. 据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第三透镜为塑胶透镜。
  15. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第二透镜为球面透镜。
  16. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第一透镜为非球面透镜。
  17. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,所述第三透镜为非球面透镜。
  18. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,SAG 11-SAG 22为0.99, f 2/F为-1.4,(TC 1+TC 2+TC 3)/(AC 1+AC 2)为6,f 3/F为-1.51以及F/TTL为1.17。
  19. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,SAG 11-SAG 22为-0.85,f 2/F为-1.68,(TC 1+TC 2+TC 3)/(AC 1+AC 2)为10,f 3/F为-14.4以及F/TTL为1.28。
  20. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,SAG 11-SAG 22为0.053,f 2/F为0.669,(TC 1+TC 2+TC 3)/(AC 1+AC 2)为0.9,f 3/F为-0.47以及F/TTL为1.35。
  21. 根据权利要求1至9任一项所述的光学成像镜头,其特征在于,SAG 11-SAG 22为-0.69,f 2/F为-1.5,(TC 1+TC 2+TC 3)/(AC 1+AC 2)为0.79,f 3/F为-0.86以及F/TTL为1.33。
  22. 一种成像设备,其特征在于,包括如权利要求1至21中任一所述的光学成像镜头及用于将所述光学成像镜头形成的光学图像转换为电信号的成像元件。
PCT/CN2019/083135 2019-03-20 2019-04-18 光学成像镜头及成像设备 WO2020186587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910214053.6 2019-03-20
CN201910214053.6A CN109870787B (zh) 2019-03-20 2019-03-20 一种光学成像镜头

Publications (1)

Publication Number Publication Date
WO2020186587A1 true WO2020186587A1 (zh) 2020-09-24

Family

ID=66920871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083135 WO2020186587A1 (zh) 2019-03-20 2019-04-18 光学成像镜头及成像设备

Country Status (2)

Country Link
CN (1) CN109870787B (zh)
WO (1) WO2020186587A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433421A (zh) * 2019-08-23 2021-03-02 Oppo广东移动通信有限公司 一种镜头模组和电子设备
CN112526707A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 镜头模组及电子设备
JP2021071502A (ja) * 2019-10-29 2021-05-06 キヤノン株式会社 光学系、投射レンズ、画像投射装置および撮像レンズ
CN113671666A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 一种镜头及光学系统
CN113866936B (zh) * 2020-06-30 2023-04-28 华为技术有限公司 光学镜头、摄像头模组和电子设备
CN114942508A (zh) * 2020-11-16 2022-08-26 宁波舜宇车载光学技术有限公司 光学镜头及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174886A1 (en) * 2007-01-24 2008-07-24 Masae Sato Image pickup lens, image pickup apparatus, and mobile terminal
US20130155528A1 (en) * 2011-12-19 2013-06-20 Largan Precision Co., Ltd Optical lens system for image taking
US20130279025A1 (en) * 2012-04-20 2013-10-24 Largan Precision Co., Ltd. Photographing lens assembly
CN103389569A (zh) * 2012-05-08 2013-11-13 大立光电股份有限公司 成像光学系统镜组
CN104698571A (zh) * 2014-12-05 2015-06-10 瑞声声学科技(深圳)有限公司 小型成像透镜系统
CN105093492A (zh) * 2014-05-22 2015-11-25 宁波舜宇光电信息有限公司 一种摄像光学镜组及虹膜摄像模组
CN105242379A (zh) * 2014-06-25 2016-01-13 Kolen株式会社 成像镜头系统
CN106483624A (zh) * 2015-08-28 2017-03-08 今国光学工业股份有限公司 三片式镜头模块
CN107505689A (zh) * 2017-09-15 2017-12-22 江西联创电子有限公司 投影镜头系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135207B (zh) * 2012-11-15 2015-07-15 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI619984B (zh) * 2017-08-15 2018-04-01 大立光電股份有限公司 影像系統鏡頭組、取像裝置及電子裝置
CN208092311U (zh) * 2018-03-09 2018-11-13 江西联益光学有限公司 准直镜头
CN108897118A (zh) * 2018-08-01 2018-11-27 苏州马谷光学有限公司 一种红外可见波段两用型百万像素镜头
CN108983395A (zh) * 2018-08-28 2018-12-11 江西凤凰光学科技有限公司 一种大光圈玻塑混合高低温共焦光学装置
CN109324398B (zh) * 2019-01-02 2019-04-02 江西联益光学有限公司 光学成像镜头及成像设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174886A1 (en) * 2007-01-24 2008-07-24 Masae Sato Image pickup lens, image pickup apparatus, and mobile terminal
US20130155528A1 (en) * 2011-12-19 2013-06-20 Largan Precision Co., Ltd Optical lens system for image taking
US20130279025A1 (en) * 2012-04-20 2013-10-24 Largan Precision Co., Ltd. Photographing lens assembly
CN103389569A (zh) * 2012-05-08 2013-11-13 大立光电股份有限公司 成像光学系统镜组
CN105093492A (zh) * 2014-05-22 2015-11-25 宁波舜宇光电信息有限公司 一种摄像光学镜组及虹膜摄像模组
CN105242379A (zh) * 2014-06-25 2016-01-13 Kolen株式会社 成像镜头系统
CN104698571A (zh) * 2014-12-05 2015-06-10 瑞声声学科技(深圳)有限公司 小型成像透镜系统
CN106483624A (zh) * 2015-08-28 2017-03-08 今国光学工业股份有限公司 三片式镜头模块
CN107505689A (zh) * 2017-09-15 2017-12-22 江西联创电子有限公司 投影镜头系统

Also Published As

Publication number Publication date
CN109870787A (zh) 2019-06-11
CN109870787B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2020186587A1 (zh) 光学成像镜头及成像设备
KR20230019260A (ko) 촬상렌즈
CN105676419B (zh) 光学系统
CN108351493B (zh) 远摄镜头和成像设备
WO2020119278A1 (zh) 广角镜头及成像设备
WO2020140604A1 (zh) 光学成像镜头及成像设备
CN110716288B (zh) 光学成像镜头
WO2020140788A1 (zh) 长焦镜头及移动终端
CN113721350B (zh) 光学镜头及成像设备
CN105807394A (zh) 光学成像系统
CN113721345B (zh) 光学系统、镜头模组以及电子设备
CN111352212A (zh) 一种大视场角长焦距潜望透镜
TWI567416B (zh) 光學成像鏡頭
WO2022226957A1 (en) An ultra-wide-angle lens optical system
CN111929859B (zh) 长焦镜头及移动终端
TW201917441A (zh) 三片式紅外單波長投影鏡片組
TWI710789B (zh) 五片式紅外線單焦點鏡片組
KR102126411B1 (ko) 촬상 광학계
TWI662293B (zh) 五片式廣角鏡片組
CN116774407B (zh) 光学镜头
CN116931237B (zh) 光学镜头及光学系统
CN117420667B (zh) 光学镜头及光学系统
CN114265188B (zh) 光学镜头及成像设备
CN117348200B (zh) 光学镜头
CN117111273B (zh) 光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919887

Country of ref document: EP

Kind code of ref document: A1