WO2020186582A1 - 高功率热电转换模块及热电转换系统 - Google Patents

高功率热电转换模块及热电转换系统 Download PDF

Info

Publication number
WO2020186582A1
WO2020186582A1 PCT/CN2019/082481 CN2019082481W WO2020186582A1 WO 2020186582 A1 WO2020186582 A1 WO 2020186582A1 CN 2019082481 W CN2019082481 W CN 2019082481W WO 2020186582 A1 WO2020186582 A1 WO 2020186582A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
electrode
conversion element
substrate
type thermoelectric
Prior art date
Application number
PCT/CN2019/082481
Other languages
English (en)
French (fr)
Inventor
王洪超
王雪
苏文斌
王春雷
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/629,036 priority Critical patent/US20210296553A1/en
Publication of WO2020186582A1 publication Critical patent/WO2020186582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections

Definitions

  • the present disclosure belongs to the technical field of semiconductor thermoelectric power generation, and particularly relates to a laminated high-power thermoelectric conversion module with single-arm electricity and heat in parallel and a thermoelectric conversion system thereof.
  • Thermoelectric device is a new type of energy conversion device that can directly realize the mutual conversion between heat and electric energy. It has the advantages of clean and environmental protection, no mechanical moving parts, low noise, fast response, light weight, small size, easy maintenance, safe and reliable, etc. It can improve energy utilization, alleviate resource depletion and environmental degradation, and has very high potential application value.
  • thermoelectric devices are usually formed by connecting n-type and p-type thermoelectric arms with metal electrodes in electrical series and thermal parallel connections.
  • the n-type and p-type thermoelectric arms are usually rectangular parallelepipeds or cylinders.
  • the heat flux density in the thermoelectric material is uniform, and it is easy to realize a large temperature difference, and then obtain a high output voltage.
  • the working current of the traditional thermoelectric element is small, so the output power is always low, which cannot meet the needs of industry.
  • thermoelectric devices still lack effective technical solutions for the problem of low output power.
  • thermoelectric conversion module proposed in the present disclosure has an electric and thermal conduction mode of electrical parallel and thermal parallel, which can simultaneously obtain a large output voltage and working current, and achieve a very high output power under a certain temperature difference.
  • thermoelectric conversion module includes:
  • a second substrate made of ceramics and arranged opposite to the first substrate
  • thermoelectric conversion elements A plurality of third electrodes and thermoelectric conversion elements that are arranged in a matrix crosswise and arranged between the first substrate and the second substrate;
  • thermoelectric conversion element A first electrode arranged between the first substrate and the thermoelectric conversion element
  • thermoelectric conversion element A second electrode arranged between the second substrate and the thermoelectric conversion element
  • the first electrode is respectively connected to a third electrode whose one side and top end of the thermoelectric conversion element are flush with one end of the thermoelectric conversion element;
  • the second electrode is respectively connected to a third electrode whose other side and bottom end of the thermoelectric conversion element are flush with the other end of the thermoelectric conversion element.
  • thermoelectric conversion module when there is a certain temperature difference between the upper and lower ends of the thermoelectric conversion module, the thermoelectric conversion module has electric parallel and thermal parallel electric heat conduction modes, which can obtain a large output voltage and working current at the same time, and achieve a very high output power.
  • thermoelectric conversion element is composed of only one of the n-type or p-type thermoelectric conversion elements constitute.
  • two adjacent third electrodes have a certain displacement in the height direction, the top end of a third electrode is flush with one end of the thermoelectric conversion element and is connected to the first electrode, and the bottom end of a third electrode is connected to the first electrode. There is a gap between the two electrodes; there is a gap between the top end of the other third electrode and the first electrode, and the bottom end of the other third electrode is flush with the other end of the thermoelectric conversion element and is in line with the second electrode connection.
  • the third electrode connected to the second electrode is used to transfer heat from the second electrode to one side of the thermoelectric material sheet
  • the third electrode connected to the first electrode is used to transfer heat from the thermoelectric material sheet
  • the other side is passed to the first electrode.
  • the two third electrodes on both sides of the thermoelectric material respectively serve as the hot end and the cold end of the thermoelectric material, providing a horizontal temperature difference for the thermoelectric material.
  • the third electrode is also used to connect multiple pieces of thermoelectric material in a single thermoelectric element, so that the pieces of thermoelectric material are electrically connected in parallel between the first and second substrates, and their electrical functions are similar to wires.
  • first electrode, the second electrode and the third electrode are made of the same material.
  • thermoelectric conversion module includes:
  • a second substrate made of ceramics and facing the first substrate
  • thermoelectric conversion elements A plurality of first internal electrodes and n-type thermoelectric conversion elements arranged in a matrix crosswise arranged between the first substrate and the second substrate;
  • thermoelectric conversion elements A plurality of second internal electrodes and p-type thermoelectric conversion elements arranged in a matrix crosswise arranged between the first substrate and the second substrate;
  • a first external electrode arranged between the first substrate and the n-type thermoelectric conversion element and the p-type thermoelectric conversion element;
  • thermoelectric conversion element A second external electrode arranged between the second substrate and the n-type thermoelectric conversion element
  • a third external electrode arranged between the second substrate and the p-type thermoelectric conversion element.
  • the ⁇ -type thermoelectric conversion module is formed by connecting an n-type thermoelectric conversion element and a p-type thermoelectric conversion element in series, adopting the electric heat conduction method of series-parallel electric transmission and parallel heat transmission, and has high output voltage and high working current.
  • the output power has been greatly improved.
  • first inner electrodes are misaligned in the height direction, and the top end of one first inner electrode is flush with one end of the n-type thermoelectric conversion element, and is connected to the first outer electrode; A gap is left between the outer electrodes; a gap is left between the top end of the other first inner electrode and the first outer electrode, and the bottom end is flush with the other end of the n-type thermoelectric conversion element and is connected to the second outer electrode.
  • two adjacent second inner electrodes are misaligned in the height direction, and the top end of one second inner electrode is flush with one end of the p-type thermoelectric conversion element and is connected to the first outer electrode; There is a gap between the external electrodes; there is a gap between the top end of the second internal electrode and the first external electrode, and the bottom end is flush with the other end of the p-type thermoelectric conversion element and connected to the third external electrode .
  • the second external electrode is connected to the second ceramic substrate (hot end) to provide heat for the thermoelectric material and the internal electrode connected to it;
  • the first external electrode is connected to the first ceramic substrate (cold end) to absorb
  • the thermoelectric material and the heat of the inner electrode, the outer electrode plays a role in transferring heat;
  • the metal inner electrode connected to the first outer electrode, the thermoelectric material and the metal inner electrode connected to the second outer electrode form a branch
  • the four branches are connected in parallel to the first and second external electrodes to form an electrical parallel connection, and the external electrodes play the role of connecting the circuit.
  • the gap in the middle is to avoid the disappearance of the temperature difference in the horizontal direction.
  • the small gap is to make the height of the inner electrode as close as possible to the height of the thermoelectric material, thereby giving the thermoelectric material a larger horizontal temperature difference.
  • first external electrode is respectively flush with one end of the n-type thermoelectric conversion element, a first internal electrode whose top end is flush with one end of the n-type thermoelectric conversion element, one end of the p-type thermoelectric conversion element, The top end is connected to the second inner electrode of the p-type thermoelectric conversion element that is flush with one end;
  • the second outer electrode is respectively connected to the other end of the n-type thermoelectric conversion element, and the first inner electrode whose bottom end is flush with the other end of the n-type thermoelectric conversion element;
  • the third external electrode is respectively connected with the other end of the p-type thermoelectric conversion element and the second internal electrode whose bottom end is flush with the other end of the p-type thermoelectric conversion element.
  • first external electrode, the second external electrode and the third external electrode are made of the same material; the first internal electrode and the second internal electrode are made of the same material.
  • thermoelectric conversion system includes:
  • thermoelectric conversion module as described above.
  • thermoelectric conversion module can achieve higher output power without considering the performance matching of n and p thermoelectric materials.
  • the present disclosure can optimize the heat flow and current transmission by increasing the thickness of the metal electrode, and can also balance the heat flow and current transmission between different materials by optimizing the thermoelectric material geometric structure, thereby increasing the output power of the thermoelectric conversion module.
  • Figure 1 is a perspective view of a thermoelectric conversion module of this embodiment
  • FIG. 2 is a front view of a thermoelectric conversion module of this embodiment
  • FIG. 3 is a top view of a thermoelectric conversion module of this embodiment
  • FIG. 4 is a side view of a thermoelectric conversion module of this embodiment
  • Figure 5 is a perspective view of a thermoelectric conversion module of the second embodiment
  • Figure 6 is a front view of a thermoelectric conversion module of the second embodiment
  • Figure 7 is a top view of a thermoelectric conversion module of the second embodiment
  • Figure 8 is a side view of the thermoelectric conversion module of the second embodiment
  • thermoelectric conversion module of the second embodiment is a schematic diagram showing the performance comparison between the thermoelectric conversion module of the second embodiment and the conventional thermoelectric conversion module of the same material and volume;
  • FIG. 10 is a schematic diagram of the performance of the thermoelectric conversion module with different metal electrode thicknesses in the second embodiment.
  • thermoelectric conversion module which can achieve high output power under a certain temperature difference.
  • FIG. 1 is a perspective view of a thermoelectric conversion module of this embodiment.
  • 2 is a front view of FIG. 1
  • FIG. 3 is a top view of FIG. 1
  • FIG. 4 is a side view of FIG. 1.
  • the thermoelectric conversion module of this embodiment includes a first substrate 2, a first electrode 4, a plurality of thermoelectric conversion elements 1, a second electrode 7, a second substrate 8 made of ceramic, and a plurality of third electrodes 3 made of ceramic.
  • thermoelectric conversion elements 1 are arranged in a matrix across the width direction and are arranged on the first substrate 2 and the second substrate 8.
  • a thermoelectric conversion element 1 is arranged between two adjacent third electrodes 3, one end of the thermoelectric conversion element 1 is flush with the top of a third electrode 3, and the other end is flush with the top of another third electrode 3.
  • the bottom ends are flush
  • the first electrode 4 is arranged on the inner surface of the first substrate 2, and is flush with one end of the plurality of thermoelectric conversion elements 1, and the top end is flush with the third end of the plurality of thermoelectric conversion elements 1.
  • the electrodes 3 are electrically connected in parallel; the second electrodes 7 are arranged on the inner side of the second substrate 8 and are respectively flush with the other ends of the plurality of thermoelectric conversion elements 1 and the bottom ends of the plurality of thermoelectric conversion elements 1
  • the third electrode 3 is electrically connected in parallel.
  • thermoelectric conversion module when there is a certain temperature difference between the upper and lower ends of the module, if the upper end is the hot end, the heat flow in a single thermoelectric conversion element 1 is in accordance with the first substrate 2, the first electrode 4, and the first substrate 2.
  • the third electrode 3 connected to the electrodes, the thermoelectric conversion element 1, the third electrode 3 connected to the second electrode 7, the second electrode 7, and the second substrate 8 flow in sequence; if the lower end is the hot end, a single thermoelectric conversion element 1
  • the heat flow in the second substrate 8, the second electrode 7, the third electrode 3 connected to the second electrode, the thermoelectric conversion element 1, the third electrode 3 connected to the first electrode 4, the first electrode 4, and the first substrate The sequence of 2 flows.
  • thermoelectric conversion element 1 is formed in a plate shape, for example, and the thermoelectric conversion element 1 is made of an n-type or p-type thermoelectric material. Due to the Seebeck effect, both the carrier electrons in the n-type thermoelectric material and the carrier holes in the p-type thermoelectric material move from the hot end to the cold end, thereby generating a potential difference between the two ends of the thermoelectric material. After the load resistance is added, current will be generated in the loop composed of the thermoelectric module and the load resistance. The current in the p-type thermoelectric material is conducted in the direction of heat flow, and the current in the n-type thermoelectric material is conducted in the opposite direction of the heat flow. The current in the thermoelectric conversion module And heat flow are conducted in parallel.
  • the first substrate 2 is formed in, for example, a plate shape, is electrically insulated and has good thermal conductivity, and covers one end of a plurality of thermoelectric conversion elements 1.
  • the second substrate 8 is formed into a plate shape, for example, is electrically insulated and has good thermal conductivity, and covers the other ends of the plurality of thermoelectric conversion elements 1.
  • the material of the first electrode 4, the second electrode 7 and the third electrode 3 is silver and other metals with high thermal conductivity and electrical conductivity.
  • the first electrode 4, the second electrode 7 and the The thickness of the third electrode 3 optimizes heat flow and current transmission, and increases the output power of the thermoelectric module.
  • the third electrode 3 is formed in a plate shape, for example, the length of the third electrode 3 and the thermoelectric conversion element 1 are the same, and the height and width of the thermoelectric conversion element 1 are both larger than the third electrode 3;
  • the electrode 3 is misaligned in the height direction.
  • the top ends of the third electrodes 31, 33, 35 are flush with one end of the thermoelectric conversion element 1 and are connected to the first electrode 4; the bottom ends of the third electrodes 31, 33, 35
  • thermoelectric conversion module Taking an n-type thermoelectric conversion module as an example, the working principle of the thermoelectric conversion module proposed in this embodiment is:
  • thermoelectric module The lower bottom surface of the thermoelectric module is the hot end, and the upper top surface is the cold end.
  • the lower bottom surface of the thermoelectric module is in contact with the heat source, and the upper bottom surface is in contact with air or cooling equipment, thus establishing a temperature gradient field between the hot and cold ends of the thermoelectric module.
  • thermoelectric module When there is a certain temperature difference between the upper and lower bottom surfaces of the thermoelectric module, the heat flow will follow the second substrate 8, the second electrode 7, the third electrode 32, 34, the n-type thermoelectric conversion element 1, the third electrode 31, 33 and 35, The first electrode 4 and the first substrate 2 flow sequentially.
  • the temperature of the third electrodes 32 and 34 is higher than that of the n-type thermoelectric conversion element in the same horizontal plane when it reaches a steady state. 1, the temperature of the third electrodes 31, 33, and 35 is lower than the temperature of the n-type thermoelectric conversion element 1 in the same horizontal position, that is, a temperature difference is formed on the left and right sides of a single flat n-type thermoelectric conversion element 1.
  • thermoelectric conversion element 1 Due to the Seebeck effect, electrons in the n-type thermoelectric conversion element 1 at the high temperature end begin to diffuse toward the low temperature end under the drive of the temperature field, thereby forming a potential difference on the left and right sides of the n-type thermoelectric conversion element 1. After the load resistance is connected, a current that is transmitted against the direction of heat flow will be generated in the circuit, and a plurality of n-type thermoelectric conversion elements 1 are connected in a thermoelectric transmission mode of thermal parallel and electrical parallel.
  • thermoelectric conversion module For the p-type thermoelectric conversion module, the heat flow transmission method and direction are the same as the n-type thermoelectric conversion module, but the flow direction of the current is consistent with the flow direction of the heat flow.
  • thermoelectric conversion module proposed in this embodiment adopts an electric and thermal conduction method of electric parallel and thermal parallel, has a high output voltage and a high working current, and realizes a large increase in output power.
  • the module only uses one n-type or p-type thermoelectric material, without considering the performance matching of n and p-type thermoelectric materials, and can achieve higher output power.
  • thermoelectric conversion module which can achieve high output power under a certain temperature difference.
  • Fig. 5 is a perspective view of a thermoelectric conversion module of the second embodiment.
  • Fig. 6 is a front view of Fig. 5
  • Fig. 7 is a plan view of Fig. 5
  • Fig. 8 is a side view of Fig. 5.
  • the thermoelectric conversion module of this embodiment includes a first substrate 2, a first outer electrode 15, a plurality of n-type thermoelectric conversion elements 11, a plurality of first inner electrodes 12, a plurality of p-type thermoelectric conversion elements 13, a plurality of A second internal electrode 14, a second external electrode 9, a third external electrode 10 and a second substrate 8 made of ceramic.
  • first substrate 2 and the second substrate 8 are arranged facing each other, and the plurality of first internal electrodes 12 and the n-type thermoelectric conversion elements 11 are arranged in a matrix across the width direction and are arranged on the first substrate 2 and the second substrate.
  • An n-type thermoelectric conversion element 11 is arranged between the two substrates 8 and between two adjacent first internal electrodes 12, one end of the n-type thermoelectric conversion element 11 is flush with the top of a first internal electrode 12, and the other One end is flush with the bottom end of the other first inner electrode 12; the plurality of second outer electrodes 14 and p-type thermoelectric conversion elements 13 are arranged in a matrix across the width direction and are arranged on the first substrate 2 and the second substrate 2 A p-type thermoelectric conversion element 13 is arranged between the substrates 8 and between two adjacent second internal electrodes 14.
  • thermoelectric conversion element 13 One end of the p-type thermoelectric conversion element 13 is flush with the top of a second internal electrode 14, and the other end It is flush with the bottom end of the other second inner electrode 14; the first outer electrode 15 is disposed on the inner side of the first substrate 2, and is connected to one end, the top end and the n-type thermoelectric conversion element 11 respectively.
  • the first internal electrodes 121, 123, 125 of which one end of the type thermoelectric conversion element 11 is flush, one end of the plurality of p-type thermoelectric conversion elements 13, and the second internal electrode 141, the top end of which is flush with the end of the p-type thermoelectric conversion element 13, 143 and 145 are electrically connected in parallel; the second external electrode 9 and the third external electrode 10 are arranged on the inner side of the second substrate 8, and the second external electrode 9 is connected to the other end and bottom of the plurality of n-type thermoelectric conversion elements 11, respectively.
  • the first inner electrodes 122, 124 whose ends are flush with the other end of the n-type thermoelectric conversion element 11 are electrically connected in parallel; the third outer electrode 10 is connected to the other ends, bottom ends, and p-type ends of the plurality of p-type thermoelectric conversion elements 13 respectively.
  • the second inner electrodes 142 and 144 whose other ends are flush with the thermoelectric conversion element 13 are electrically connected in parallel.
  • thermoelectric conversion module proposed in this embodiment consists of a first internal electrode and an n-type thermoelectric conversion element to form an n-type thermoelectric arm, and a second internal electrode and a p-type thermoelectric conversion element to form a p-type thermoelectric arm.
  • first substrate 2 the first outer electrode 15, the first inner electrode 121, 123, 125, and the n-type thermoelectric conversion element 11.
  • the first internal electrodes 122, 124, the second external electrode 9 and the second substrate 8 flow in sequence, and the heat flow in a single p-type thermoelectric arm follows the first substrate 2, the first external electrode 15, the second internal electrode 141, 143 , 145, the p-type thermoelectric conversion element 13, the second internal electrodes 142, 144, the third external electrode 10 and the second substrate 8 flow sequentially;
  • the heat flow in a single n-type thermoelectric arm is in accordance with the second substrate 8, the second external electrode 9, the first internal electrodes 122, 124, the n-type thermoelectric conversion element 11, the first internal electrodes 121, 123, 125.
  • the first external electrode 15 and the first substrate 2 flow sequentially, and the heat flow in a single p-type thermoelectric arm follows the second substrate 8, the third external electrode 10, the second internal electrodes 142, 144, and the p-type thermoelectric conversion element 13 ,
  • the second internal electrodes 141, 143, 145, the first external electrode 15 and the first substrate 2 flow sequentially.
  • the n-type thermoelectric conversion element 11 is formed in a plate shape, for example, and the thermoelectric conversion element 11 is made of an n-type thermoelectric material. Due to the Seebeck effect, the carrier electrons in the n-type thermoelectric material move from the hot end to the cold end, thereby generating a potential difference between the two ends of the thermoelectric material. After the load resistance is added, a current will be generated in the loop composed of the thermoelectric module and the load resistance. The current in the n-type thermoelectric material conducts in the direction of heat flow, and multiple n-type thermoelectric conversion elements 11 are connected in electrical parallel and thermal parallel.
  • the p-type thermoelectric conversion element 13 is formed, for example, in a plate shape, and the thermoelectric conversion element 13 is made of a p-type thermoelectric material. Due to the Seebeck effect, the carrier holes in the p-type thermoelectric material move from the hot end to the cold end, thereby generating a potential difference between the two ends of the thermoelectric material. After the load resistance is added, current will be generated in the loop composed of the thermoelectric module and the load resistance. The current in the p-type thermoelectric material is conducted in the direction of heat flow, and multiple p-type thermoelectric conversion elements 13 are connected in electrical parallel and thermal parallel.
  • the size of the n-type thermoelectric conversion element 11 and the p-type thermoelectric conversion element 13 is 0.5 ⁇ 2 ⁇ 5 mm 3 , and the size is not fixed.
  • the first substrate 2 is formed in a plate shape, for example, is electrically insulated and has good thermal conductivity, and covers one end of a plurality of thermoelectric conversion elements.
  • the second substrate 8 is formed in a plate shape, for example, is electrically insulated and has good thermal conductivity, and covers the other end of the plurality of thermoelectric conversion elements.
  • the size of the first substrate and the second substrate is 5.5 ⁇ 2 ⁇ 0.2 mm 3 , and the size is not fixed.
  • the material of the first external electrode 15, the second external electrode 9 and the third external electrode 10 is a metal with high thermal conductivity and electrical conductivity, such as silver; the size of the first external electrode 15 is 5.5 ⁇ 2 ⁇ 0.1mm 3 , the size of the second external electrode 9 and the third external electrode 10 is 2.5 ⁇ 2 ⁇ 0.1mm 3 , the size is not fixed, add the first external electrode 15, the second external electrode 9 and the third external electrode
  • the thickness of 10 is conducive to the transmission of heat flow and current, and improves the output power of the thermoelectric module.
  • the material of the first internal electrode 12 and the second internal electrode 14 is a metal with high thermal conductivity and electrical conductivity, such as silver.
  • the thickness of the first internal electrode 12 and the second internal electrode 14 can be increased to optimize the heat flow and current transmission.
  • the output power of the thermoelectric module is a metal with high thermal conductivity and electrical conductivity, such as silver.
  • the first internal electrode 12 is formed in, for example, a plate shape, the length of the first internal electrode 12 and the n-type thermoelectric conversion element 11 are the same, and the height and width of the n-type thermoelectric conversion element 11 are both larger than the first internal electrode 12 ;
  • Two adjacent first inner electrodes 12 have a certain displacement in the height direction, the top ends of the first inner electrodes 121, 123, 125 are flush with one end of the n-type thermoelectric conversion element 11, and are connected to the first outer electrode 15 ,
  • a gap 6 of 0.1 mm is left between the bottom ends of the first internal electrodes 121, 123, 125 and the second external electrode 9, and the bottom ends of the first internal electrodes 122, 124 are opposite to the other end of the n-type thermoelectric conversion element 11. They are flush and connected to the second outer electrode 9.
  • a gap 6 of 0.1 mm is left between the top ends of the first inner electrodes 122 and 124 and the first outer electrode 15.
  • the second internal electrode 14 is formed in a plate shape, for example, the length of the second internal electrode 14 and the p-type thermoelectric conversion element 13 are the same, and the height and width of the p-type thermoelectric conversion element 13 are both larger than the second internal electrode 14 ;
  • Two adjacent second internal electrodes 14 have a certain displacement in the height direction, the top ends of the second internal electrodes 141, 143, 145 are flush with one end of the p-type thermoelectric conversion element 13, and are connected to the first external electrode 14 ,
  • the bottom ends of the second internal electrodes 141, 143, 145 and the third external electrode 10 leave a gap of 0.1 mm 6 between the bottom ends of the fourth internal electrodes 142, 144 and the other end of the p-type thermoelectric conversion element 13 It is flush and connected to the third outer electrode 10, and a gap 6 of 0.1 mm is left between the top ends of the second inner electrodes 142, 144 and the first outer electrode 15.
  • thermoelectric module The lower bottom surface of the thermoelectric module is the hot end, and the upper top surface is the cold end.
  • the lower bottom surface of the thermoelectric module is in contact with the heat source, and the upper bottom surface is in contact with air or cooling equipment, thus establishing a temperature gradient field between the hot and cold ends of the thermoelectric module.
  • thermoelectric module When there is a certain temperature difference between the upper and lower bottom surfaces of the thermoelectric module, the heat flow according to the second substrate 8, the second outer electrode 9, the second outer electrode 10, the first inner electrode 122, 124, the second inner electrode 142, 144, The n-type thermoelectric conversion element 11, the p-type thermoelectric conversion element 13, the first internal electrodes 121, 123, 125, the second internal electrodes 141, 143, 145, the first external electrode 15 and the first substrate 2 flow in this order.
  • thermoelectric module Set the second external electrode 9 and the third external electrode 10 as the ground terminal and the terminal respectively, and connect the load resistance between the ground terminal and the terminal to form a loop. Due to the Seebeck effect, the internal current of the thermoelectric module will change from the p-type thermoelectric arm to the n-type The thermoelectric arm flows, and the thermoelectric module will form a thermoelectric conduction method of parallel heat transmission and series-parallel electric transmission.
  • thermoelectric conversion module proposed in this embodiment is formed by connecting an n-type thermoelectric arm and a p-type thermoelectric arm in series, and adopts the electric heat conduction method of series-parallel electric transmission and parallel heat transmission. It has high output voltage and high working current, and realizes the output The power is greatly increased. Under the same conditions, the maximum output power of the thermoelectric module can reach five times the output power of the traditional thermoelectric module.
  • thermoelectric conversion elements Taking Bi 0.8 Sb 1.5 Te 3 (Science, 2008; 320:634-8) and Bi 2 Te 2.79 Se 0.21 (Adv. Energy Mater. 2015; 5: 1500411) as p-type thermoelectric conversion elements and n-type thermoelectric conversion elements
  • Thermoelectric material Ag is the first external electrode, the second external electrode, the third external electrode, the first internal electrode and the second internal electrode material
  • Al 2 O 3 is the first substrate and the second substrate as an example
  • this embodiment proposes The comparison between the thermoelectric conversion module and the traditional thermoelectric conversion module further proves the superiority of the thermoelectric conversion module of this embodiment.
  • thermoelectric conversion element of the traditional thermoelectric conversion module is usually a rectangular parallelepiped or a cylinder, and has a thermoelectric transmission mode of thermal parallel and electrical series.
  • the thermoelectric conversion element of the thermoelectric conversion module of this embodiment is formed by stacking plate-shaped thermoelectric materials equipped with metal internal electrodes, and has a thermoelectric transmission mode of thermal parallel and electrical parallel.
  • the thermoelectric transmission mode of thermal parallel and electrical parallel enables the thermoelectric conversion module to obtain lower internal resistance and larger operating current.
  • the output voltage of the thermoelectric conversion module of this embodiment is 40% of that of the conventional thermoelectric conversion module of the same material and volume, but its internal resistance is only 3% of the internal resistance of the conventional thermoelectric conversion module.
  • the slightly lower output voltage and extremely small internal resistance result in the thermoelectric conversion module of this embodiment having a higher operating current in the working state.
  • the thermoelectric conversion module of this embodiment can obtain a higher maximum output power, which is about five times that of the traditional thermoelectric module.
  • thermoelectric conversion module of this embodiment has a unique thermal parallel and electrical parallel thermoelectric transmission mode, has a smaller internal resistance and a larger working current, and can be used under the same conditions. Achieve higher output power.
  • thermoelectric conversion module of this embodiment decreases, and the output voltage and working current increase at the same time, resulting in a substantial increase in the maximum output power.
  • thick electrodes are good for heat flow and current transmission.
  • the thicker the electrode the greater the temperature difference between the two sides of the thermoelectric material, which in turn leads to the above results.
  • optimizing the size ratio can also improve the performance of the thermoelectric conversion module of this embodiment.
  • thermoelectric conversion system includes a thermoelectric conversion module of the second embodiment and a heat source arranged on the second substrate side. According to the above system, the above effects can be achieved. In addition, the thermoelectric conversion module of the first embodiment can also be applied to this system.
  • thermoelectric conversion module and the thermoelectric conversion system proposed in this embodiment have a unique thermoelectric transmission mode of thermal parallel and electrical parallel, with smaller internal resistance and larger working current, and can be used under the same conditions. To achieve higher output power.
  • thermoelectric conversion module and system of the present disclosure can realize the recycling and utilization of low-quality heat sources such as industrial waste heat, geothermal heat, and automobile tail heat, and has advantages in a working environment with low heat source temperature and sufficient heat flow. In addition, it can also provide a steady stream of power for the operation of spacecraft for deep space exploration.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Resistance Heating (AREA)

Abstract

本发明公开了一种高效率热电转换模块及热电转换系统。该热电转换模块,包括:由陶瓷构成的第一基板;由陶瓷构成的并与所述第一基板相向配置的第二基板;配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第三电极和热电转换元件;配置于所述第一基板与热电转换元件之间的第一电极;及配置于所述第二基板与热电转换元件之间的第二电极,所述第一电极分别与所述热电转换元件的一端、顶端与所述热电转换元件一端相平齐的第三电极相连接;所述第二电极分别与所述热电转换元件的另一端、底端与所述热电转换元件另一端相平齐的第三电极相连接。

Description

高功率热电转换模块及热电转换系统 技术领域
本公开属于半导体热电发电技术领域,具体涉及一种单臂电、热并联的层压式高功率热电转换模块及其热电转换系统。
背景技术
在过去的几个世纪,煤炭、石油和天然气等化石燃料的大量使用促进了工业社会的快速发展,同时也造成了严重的能源危机和环境恶化问题。热电器件是一种可以直接实现热能和电能之间相互转化的新型能源转换器件,具有清洁环保、无机械运动部件、噪声小、响应速度快、轻便、体积小、易于维护和安全可靠等优点,能够提高能源的利用率,缓解资源枯竭和环境恶化,具有非常高的潜在应用价值。
发明人在研究中发现传统热电器件通常由金属电极将n型和p型热电臂以电串联、热并联的方式连接构成。其中,n型和p型热电臂通常为长方体或者圆柱体。在工作状态下,热电材料内的热流密度均匀,容易实现大的温差,进而得到高输出电压。但是,传统热电元件的工作电流较小,因此输出功率始终较低,不能满足工业的需求。
综上所述,现有的热电器件对于输出功率较低的问题,尚缺乏有效技术方案。
发明内容
为了克服上述现有技术的不足,本公开提供了一种高功率热电转换模块及热电转换系统。本公开提出的热电转换模块具有电并联、热并联的电热传导方式,能够同时获得较大的输出电压和工作电流,在一定温差下实现非常高的输 出功率。
本公开所采用的技术方案是:
一种热电转换模块,包括:
由陶瓷构成的第一基板;
由陶瓷构成的并与所述第一基板相向配置的第二基板;
配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第三电极和热电转换元件;
配置于所述第一基板与热电转换元件之间的第一电极;及
配置于所述第二基板与热电转换元件之间的第二电极,
所述第一电极分别与所述热电转换元件的一侧、顶端与所述热电转换元件一端相平齐的第三电极相连接;
所述第二电极分别与所述热电转换元件的另一侧、底端与所述热电转换元件另一端相平齐的第三电极相连接。
通过上述技术方案,在热电转换模块的上、下端存在一定温差时,该热电转换模块具有电并联、热并联的电热传导方式,能够同时获得较大的输出电压和工作电流,实现非常高的输出功率。
进一步的,所述第三电极和热电转换元件的长度相同,所述热电转换元件的高度和宽度均大于第三电极;所述热电转换元件仅由n型或p型热电转换元件中的一者构成。
进一步的,相邻两个第三电极在高度方向有一定错位,一第三电极的顶端与热电转换元件的一端相平齐,且与第一电极相连接,一第三电极的底端与第二电极之间留有间隙;另一第三电极的顶端与第一电极之间留有间隙,另一第 三电极的底端与热电转换元件的另一端相平齐,且与第二电极相连接。
通过上述技术方案,与第二电极相连接的第三电极用于将热量从第二电极传递到热电材料片的一侧,与第一电极相连接的第三电极用于将热量从热电材料片的另一侧传递到第一电极。进而热电材料两侧的两个第三电极分别作为热电材料的热端和冷端,为热电材料提供了一个水平方向的温差。除此之外,第三电极也被用于连接单个热电元件中的多个热电材料片,使热电材料片电并联于第一和第二基板中间,在电学方面的作用类似于导线。
进一步的,所述第一电极、第二电极和第三电极为相同材料。
一种热电转换模块,包括:
由陶瓷构成的第一基板;
由陶瓷构成的并与所述第一基板相向的第二基板;
配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第一内电极和n型热电转换元件;
配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第二内电极和p型热电转换元件;
配置于所述第一基板与n热电转换元件、p型热电转换元件之间的第一外电极;
配置于所述第二基板与n型热电转换元件之间的第二外电极,及
配置于所述第二基板与p型热电转换元件之间的第三外电极。
通过上述技术方案,π型热电转换模块由n型热电转换元件和p型热电转换元件串联形成,采用串并联电传输、并联热传输的电热传导方式,具有高的输出电压以及高的工作电流,实现了输出功率的大幅度提高。
进一步的,相邻两个第一内电极在高度方向有一定错位,一第一内电极的顶端与n型热电转换元件的一端相平齐,且与第一外电极连接;底端与第二外电极之间留有间隙;另一第一内电极的顶端与第一外电极之间留有间隙,底端与n型热电转换元件的另一端相平齐,且与第二外电极连接。
进一步的,相邻两个第二内电极在高度方向有一定错位,一第二内电极的顶端与p型热电转换元件的一端相平齐,且与第一外电极连接;底端与第三外电极之间留有间隙;另一第二内电极的的顶端与第一外电极之间留有间隙,底端与p型热电转换元件的另一端相平齐,且与第三外电极连接。
通过上述技术方案,第二外电极连接第二陶瓷基板(热端),为与其相接的热电材料和内电极提供热量;第一外电极连接第一陶瓷基板(冷端),吸收来自于与其相接的热电材料和内电极的热量,外电极起到传递热量的作用;与第一外电极相连接的金属内电极、热电材料和与第二外电极相连接的金属内电极即形成一个支路,四个支路并联于第一和第二外电极中形成电并联,外电极起到连接电路的作用。中间的缝隙是避免水平方向温差的消失,缝隙较小是想使内电极高度尽量与热电材料高度接近,进而给热电材料一个更大的水平方向温差。
进一步的,所述第一外电极分别与所述n型热电转换元件的一端、顶端与所述n型热电转换元件一端相平齐的第一内电极、所述p型热电转换元件的一端、顶端与所述p型热电转换元件一端相平齐的第二内电极相连接;
第二外电极分别与所述n型热电转换元件的另一端、底端与所述n型热电转换元件另一端相平齐的第一内电极相连接;
第三外电极分别与所述p型热电转换元件的另一端、底端与所述p型热电转换元件另一端相平齐的第二内电极相连接。
进一步的,所述第一外电极、第二外电极和第三外电极为相同材料;第一内电极和第二内电极为相同材料。
一种热电转换系统,包括:
如上所述的热电转换模块;及
配置于所述第二基板侧的热源。
通过上述技术方案,本公开的有益效果是:
(1)本公开采用电并联、热并联的电热传导方式,具有高的输出电压以及高的工作电流,实现了输出功率的大幅度提高;在同等条件下,仅由n型或p型热电材料组成的热电转换模块不必考虑n、p型热电材料性能匹配的问题,就可实现较高的输出功率。将n型和p型热电转换模块串联构成π型热电转换模块,其输出功率可达到传统热电模块输出功率的五倍;
(2)本公开可通过增加金属电极的厚度优化热流和电流的传输,也可通过优化热电材料几何结构平衡不同材料间热流和电流的传输,进而提高热电转换模块的输出功率。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本申请,并不构成对本公开的不当限定。
图1是本实施例一热电转换模块的立体图;
图2是本实施例一热电转换模块的主视图;
图3是本实施例一热电转换模块的俯视图;
图4是本实施例一热电转换模块的侧视图;
图5是本实施例二热电转换模块的立体图;
图6是本实施例二热电转换模块的主视图;
图7是本实施例二热电转换模块的俯视图;
图8是本实施例二热电转换模块的侧视图;
图9是本实施例二热电转换模块与同材料体积的传统热电转换模块的性能比较示意图;
图10是本实施例二不同金属电极厚度的热电转换模块的性能示意图。
具体实施方式
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本公开使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
针对现有热电模块输出功率较低的问题,本实施例提供了一种热电转换模块,该热电转换模块能在一定温差下实现高输出功率。
图1是本实施例一热电转换模块的立体图。图2是图1的主视图,图3是图1的俯视图,图4是图1的侧视图。本实施例的热电转换模块包括由陶瓷构成的第一基板2、第一电极4、多个热电转换元件1、第二电极7、由陶瓷构成 的第二基板8及多个第三电极3。
具体的,所述第一基板2和第二基板8相向配置,所述多个第三电极3和热电转换元件1沿宽度方向交叉排列成矩阵状且配置在第一基板2和第二基板8之间,相邻两个第三电极3之间配置有热电转换元件1,所述热电转换元件1的一端与一第三电极3的顶端相平齐,另一端与另一第三电极3的底端相平齐,所述第一电极4设置在第一基板2的内侧面上,且分别与多个热电转换元件1的一端、顶端与多个热电转换元件1一端相平齐的第三电极3进行电并联连接;第二电极7设置在第二基板8的内侧面上,且分别与多个热电转换元件1的另一端、底端与多个热电转换元件1另一端相平齐的第三电极3进行电并联连接。
本实施例提出的热电转换模块,当模块上、下两端存在一定温差时,若上端为热端时,单个热电转换元件1中的热流按照第一基板2、第一电极4、与第一电极连接的第三电极3、热电转换元件1、与第二电极7连接的第三电极3、第二电极7和第二基板8的顺序流动;若下端为热端时,单个热电转换元件1中的热流按照第二基板8、第二电极7、与第二电极连接的第三电极3、热电转换元件1、与第一电极4连接的第三电极3、第一电极4和第一基板2的顺序流动。
在本实施例中,所述热电转换元件1例如形成为板状,所述热电转换元件1由n型或p型热电材料制成。由于赛贝克效应,n型热电材料中的载流子电子和p型热电材料中的载流子空穴均从热端向冷端移动,进而在热电材料两端产生电势差。外加负载电阻后,由热电模块和负载电阻组成的回路中将产生电流,p型热电材料中的电流顺热流方向传导,n型热电材料中的电流逆热流方向传导,该热电转换模块中的电流和热流均为并联传导。
在本实施例中,所述第一基板2例如形成为板状,是电绝缘且具有良好导 热性,覆盖多个热电转换元件1的一端。
所述第二基板8例如形成为板状,是电绝缘且具有良好导热性,覆盖多个热电转换元件1的另一端。
在本实施例中,所述第一电极4、第二电极7和第三电极3的材料为银等具备高热导率和电导率的金属,可通过增加第一电极4、第二电极7和第三电极3的厚度优化热流和电流的传输,提高热电模块的输出功率。
所述第三电极3例如形成为板状,所述第三电极3和热电转换元件1的长度相同,所述热电转换元件1的高度和宽度均大于第三电极3;相邻两个第三电极3在高度方向有一定错位,第三电极31、33、35的顶端与热电转换元件1的一端相平齐,且与第一电极4相连接;第三电极31、33、35的底端与第二电极7间留有0.1mm的空隙6;第三电极32、34的顶端与第一电极4间存在0.1mm的空隙6,第三电极32、34的底端与热电转换元件1的另一端相平齐,并与第二电极7相连接。
以n型热电转换模块为例,本实施例提出的热电转换模块的工作原理为:
热电模块的下底面为热端,上顶面为冷端,热电模块的下底面接触热源,上底面触空气或冷却设备,于是在热电模块热端和冷端之间建立起温度梯度场。
当热电模块的上、下底面间存在一定温差时,热流将按照第二基板8、第二电极7、第三电极32、34、n型热电转换元件1、第三电极31、33和35、第一电极4和第一基板2的顺序流动。
由于第三电极3的热导率极高,大约是热电材料热导率的几百倍,所以在达到稳态时,第三电极32、34的温度高于同水平面位置的n型热电转换元件1的温度,第三电极31、33和35的温度低于同水平面位置的n型热电转换元件1 的温度,即在单个平板状n型热电转换元件1左右两侧会形成一个温差。
由于赛贝克效应,n型热电转换元件1内部位于高温端的电子在温度场的驱动下,开始向低温端扩散,从而在n型热电转换元件1左右两侧形成电势差。在接入负载电阻后,电路中便会产生逆热流流动方向传输的电流,多个n型热电转换元件1以热并联、电并联的热电传输方式连接。
对于p型热电转换模块,其热流传输方式和方向与n型热电转换模块相同,但电流的流动方向与热流的流动方向一致。
本实施例提出的热电转换模块,采用电并联、热并联的电热传导方式,具有高的输出电压以及高的工作电流,实现了输出功率的大幅度提高。且该模块只使用一种n型或p型热电材料,不必考虑n、p型热电材料性能匹配的问题,就可实现较高的输出功率。
实施例二
本实施例提供了一种热电转换模块,该热电转换模块能在一定温差下实现高输出功率。
图5是本实施例二热电转换模块的立体图。图6是图5的主视图,图7是图5的俯视图,图8是图5的侧视图。本实施例的热电转换模块包括由陶瓷构成的第一基板2、第一外电极15、多个n型热电转换元件11、多个第一内电极12、多个p型热电转换元件13、多个第二内电极14、第二外电极9、第三外电极10和由陶瓷构成的第二基板8。
具体的,所述第一基板2和第二基板8相向配置,所述多个第一内电极12和n型热电转换元件11沿宽度方向交叉排列成矩阵状且配置在第一基板2和第二基板8之间,相邻两个第一内电极12之间配置有n型热电转换元件11,所述 n型热电转换元件11的一端与一第一内电极12的顶端相平齐,另一端与另一第一内电极12的底端相平齐;所述多个第二外电极14和p型热电转换元件13沿宽度方向交叉排列成矩阵状且配置在第一基板2和第二基板8之间,相邻两个第二内电极14之间配置有p型热电转换元件13,所述p型热电转换元件13的一端与一第二内电极14的顶端相平齐,另一端与另一第二内电极14的底端相平齐;所述第一外电极15设置在第一基板2的内侧面上,且分别与多个n型热电转换元件11的一端、顶端与n型热电转换元件11一端相平齐的第一内电极121、123、125、多个p型热电转换元件13的一端、顶端与p型热电转换元件13一端相平齐的第二内电极141、143、145进行电并联连接;第二外电极9和第三外电极10设置在第二基板8的内侧面上,第二外电极9分别与多个n型热电转换元件11的另一端、底端与n型热电转换元件11另一端相平齐的第一内电极122、124进行电并联连接;第三外电极10分别与多个p型热电转换元件13的另一端、底端与p型热电转换元件13另一端相平齐的第二内电极142、144进行电并联连接。
本实施例提出的热电转换模块,由第一内电极和n型热电转换元件等组成n型热电臂,由第二内电极和p型热电转换元件等组成p型热电臂,当模块上、下两端存在一定温差时,若上端为热端时,单个n型热电臂中的热流按照第一基板2、第一外电极15、第一内电极121、123、125、n型热电转换元件11、第一内电极122、124、第二外电极9和第二基板8的顺序流动,单个p型热电臂中的热流按照第一基板2、第一外电极15、第二内电极141、143、145、p型热电转换元件13、第二内电极142、144、第三外电极10和第二基板8的顺序流动;
若下端为热端时,单个n型热电臂中的热流按照第二基板8、第二外电极9、第一内电极122、124、n型热电转换元件11、第一内电极121、123、125、第一外电极15和第一基板2的顺序流动,单个p型热电臂中的热流按照第二基板8、第三外电极10、第二内电极142、144、p型热电转换元件13、第二内电极141、143、145、第一外电极15和第一基板2的顺序流动。
在本实施例中,所述n型热电转换元件11例如形成为板状,所述热电转换元件11由n型热电材料制成。由于赛贝克效应,n型热电材料中的载流子电子从热端向冷端移动,进而在热电材料两端产生电势差。外加负载电阻后,由热电模块和负载电阻组成的回路中将产生电流,n型热电材料中的电流逆热流方向传导,多个n型热电转换元件11以电并联和热并联的方式连接。
所述p型热电转换元件13例如形成为板状,所述热电转换元件13由p型热电材料制成。由于赛贝克效应,p型热电材料中的载流子空穴从热端向冷端移动,进而在热电材料两端产生电势差。外加负载电阻后,由热电模块和负载电阻组成的回路中将产生电流,p型热电材料中的电流顺热流方向传导,多个p型热电转换元件13以电并联和热并联的方式连接。
n型热电转换元件11和p型热电转换元件13的尺寸为0.5×2×5mm 3,该尺寸并不是固定的。
在本实施例中,所述第一基板2例如形成为板状,是电绝缘且具有良好导热性,覆盖多个热电转换元件的一端。所述第二基板8例如形成为板状,是电绝缘且具有良好导热性,覆盖多个热电转换元件的另一端。第一基板和第二基板的尺寸为5.5×2×0.2mm 3,该尺寸并不是固定的。
在本实施例中,第一外电极15、第二外电极9和第三外电极10的材料为银 等具备高热导率和电导率的金属;第一外电极15的尺寸为5.5×2×0.1mm 3,第二外电极9和第三外电极10的尺寸为2.5×2×0.1mm 3,该尺寸并不是固定的,增加第一外电极15、第二外电极9和第三外电极10的厚度有利于热流和电流的传输,提高热电模块的输出功率。
第一内电极12和第二内电极14的材料为银等具备高热导率和电导率的金属,可通过增加第一内电极12和第二内电极14的厚度优化热流和电流的传输,提高热电模块的输出功率。
所述第一内电极12例如形成为板状,所述第一内电极12和n型热电转换元件11的长度相同,所述n型热电转换元件11的高度和宽度均大于第一内电极12;相邻两个第一内电极12在高度方向有一定错位,第一内电极121、123、125的顶端与n型热电转换元件11的一端相平齐,并与第一外电极15相连接,第一内电极121、123、125的底端与第二外电极9之间留有0.1mm的空隙6,第一内电极122、124的底端与n型热电转换元件11的另一端相平齐,并与第二外电极9相连接,第一内电极122、124的顶端与第一外电极15之间留有0.1mm的空隙6。
所述第二内电极14例如形成为板状,所述第二内电极14和p型热电转换元件13的长度相同,所述p型热电转换元件13的高度和宽度均大于第二内电极14;相邻两个第二内电极14在高度方向有一定错位,第二内电极141、143、145的顶端与p型热电转换元件13的一端相平齐,并与第一外电极14相连接,第二内电极141、143、145的底端与第三外电极10之间留有0.1mm的空隙6,第4内电极142、144的底端与p型热电转换元件13的另一端相平齐,并与第三外电极10相连接,第二内电极142、144的顶端与第一外电极15之间留有 0.1mm的空隙6。
本实施例提出的热电转换模块的工作原理为:
热电模块的下底面为热端,上顶面为冷端,热电模块的下底面接触热源,上底面触空气或冷却设备,于是在热电模块热端和冷端之间建立起温度梯度场。
当热电模块的上、下底面间存在一定温差时,其热流按照第二基板8、第二外电极9、第二外电极10、第一内电极122、124、第二内电极142、144、n型热电转换元件11、p型热电转换元件13、第一内电极121、123、125、第二内电极141、143、145、第一外电极15和第一基板2的顺序流动。
将第二外电极9和第三外电极10分别设置为接地端和终端,在接地端和终端间接入负载电阻形成回路,由于赛贝克效应,热电模块内部电流将从p型热电臂向n型热电臂流动,热电模块会形成并联热传输、串并联电传输的热电传导方式。
本实施例提出的热电转换模块,由n型热电臂和p型热电臂串联形成,采用串并联电传输、并联热传输的电热传导方式,具有高的输出电压以及高的工作电流,实现了输出功率的大幅度提高,在同等条件下,该热电模块的最大输出功率可达到传统热电模块输出功率的五倍。
以Bi 0.8Sb 1.5Te 3(Science,2008;320:634-8)和Bi 2Te 2.79Se 0.21(Adv.Energy Mater.2015;5:1500411)为p型热电转换元件和n型热电转换元件的热电材料,Ag为第一外电极、第二外电极、第三外电极、第一内电极和第二内电极材料,Al 2O 3为第一基板和第二基板为例,本实施例提出的热电转换模块和传统热电转换模块进行对比,进一步证明了本实施例热电转换模块的优越性。
传统热电转换模块的热电转换元件通常为长方体或圆柱体,具有热并联、 电串联的热电传输方式。而本实施例热电转换模块的热电转换元件由配置有金属内电极的板状热电材料叠合而成,具有热并联、电并联的热电传输方式。热并联、电并联的热电传输方式使热电转换模块获得较低的内阻和较大的工作电流。
如图9所示本实施例热电转换模块的输出电压为与同材料、同热电材料体积的传统热电转换模块的40%,但是其内阻仅为传统热电转换模块内阻的3%。略低的输出电压和极小的内阻导致本实施例热电转换模块在工作状态下具有较高的工作电流。最终,在一定温差下,本实施例热电转换模块可获得较高的最大输出功率,大约为传统热电模块的五倍。
综上所述,本实施例热电转换模块相比于传统热电发电模块,具有独特的热并联、电并联的热电传输方式,具有较小的内阻和较大的工作电流,可在同等条件下实现更高的输出功率。
如图10所示,随着金属电极厚度的增加,本实施例热电转换模块的内阻降低,输出电压与工作电流同时提高,进而导致最大输出功率的大幅度提高。这是由于厚电极有利于热流和电流的传输,电极越厚,热电材料两侧的温差越大,进而导致上述结果的产生。其次,对于具有不同电导率和热导率的n型和p型热电材料,优化其尺寸比也可提高本实施例热电转换模块的性能。
实施例三
本实施例提供一种热电转换系统,该热电转换系统包括实施例二热电转换模块和配置在第二基板侧的热源。根据上述系统,能够实现上述效果,另外,也可以将实施例一的热电转换模块应用于本系统。
本实施例提出的热电转换模块及热电转换系统相比于传统热电发电模块,具 有独特的热并联、电并联的热电传输方式,具有较小的内阻和较大的工作电流,可在同等条件下实现更高的输出功率。
工业上的实用性
本公开的热电转换模块及系统能够实现工业废热、地热和汽车尾热等低品质热源的回收利用,且在热源温度较低、热流量充足的工作环境中更具优势。除此之外,其还能为深太空探索的航天器运行提供源源不断的电力等。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种热电转换模块,其特征是,包括:
    由陶瓷构成的第一基板;
    由陶瓷构成的并与所述第一基板相向配置的第二基板;
    配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第三电极和热电转换元件;
    配置于所述第一基板与热电转换元件之间的第一电极;
    配置于所述第二基板与热电转换元件之间的第二电极,
    所述第一电极分别与所述热电转换元件的一侧、顶端与所述热电转换元件一端相平齐的第三电极相连接;
    所述第二电极分别与所述热电转换元件的另一侧、底端与所述热电转换元件另一端相平齐的第三电极相连接。
  2. 根据权利要求1所述的热电转换模块,其特征是,所述第三电极和热电转换元件的长度相同,所述热电转换元件的高度和宽度均大于第三电极;所述热电转换元件仅由n型或p型热电转换元件中的一者构成。
  3. 根据权利要求1所述的热电转换模块,其特征是,相邻两个第三电极在高度方向有一定错位,一第三电极的顶端与热电转换元件的一端相平齐,且与第一电极相连接,一第三电极的底端与第二电极之间留有间隙;另一第三电极的顶端与第一电极之间留有间隙,另一第三电极的底端与热电转换元件的另一端相平齐,且与第二电极相连接。
  4. 根据权利要求1所述的热电转换模块,其特征是,所述第一电极、第二电极和第三电极为相同材料。
  5. 一种热电转换模块,其特征是,包括:
    由陶瓷构成的第一基板;
    由陶瓷构成的并与所述第一基板相向的第二基板;
    配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第一内电极和n型热电转换元件;
    配置于所述第一基板和第二基板之间的多个交叉排列成矩阵状的第二内电极和p型热电转换元件;
    配置于所述第一基板与n热电转换元件、p型热电转换元件之间的第一外电极;
    配置于所述第二基板与n型热电转换元件之间的第二外电极,及
    配置于所述第二基板与p型热电转换元件之间的第三外电极。
  6. 根据权利要求5所述的热电转换模块,其特征是,相邻两个第一内电极在高度方向有一定错位,一第一内电极的顶端与n型热电转换元件的一端相平齐,底端与第二外电极之间留有间隙;另一第一内电极的顶端与第一外电极之间留有间隙,底端与n型热电转换元件的另一端相平齐。
  7. 根据权利要求5所述的热电转换模块,其特征是,相邻两个第二内电极在高度方向有一定错位,一第二内电极的顶端与p型热电转换元件的一端相平齐,底端与第三外电极之间留有间隙;另一第二内电极的的顶端与第一外电极之间留有间隙,底端与p型热电转换元件的另一端相平齐。
  8. 根据权利要求5所述的热电转换模块,其特征是,所述第一外电极分别与所述n型热电转换元件的一端、顶端与所述n型热电转换元件一端相平齐的第一内电极、所述p型热电转换元件的一端、顶端与所述p型热电转换元件一端相平齐的第二内电极相连接;
    第二外电极分别与所述n型热电转换元件的另一端、底端与所述n型热电转换元件另一端相平齐的第一内电极相连接;
    第三外电极分别与所述p型热电转换元件的另一端、底端与所述p型热电转换元件另一端相平齐的第二内电极相连接。
  9. 根据权利要求5所述的热电转换模块,其特征是,所述第一外电极、第二外电极和第三外电极为相同材料;第一内电极和第二内电极为相同材料。
  10. 一种热电转换系统,其特征是,包括:
    权利要求1-9中任一项所述的热电转换模块;及
    配置于所述第二基板侧的热源。
PCT/CN2019/082481 2019-03-20 2019-04-12 高功率热电转换模块及热电转换系统 WO2020186582A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,036 US20210296553A1 (en) 2019-03-20 2019-04-12 High-power thermoelectric conversion module and thermoelectric conversion system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910213356.6A CN109962154B (zh) 2019-03-20 2019-03-20 高功率热电转换模块及热电转换系统
CN201910213356.6 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020186582A1 true WO2020186582A1 (zh) 2020-09-24

Family

ID=67024694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082481 WO2020186582A1 (zh) 2019-03-20 2019-04-12 高功率热电转换模块及热电转换系统

Country Status (3)

Country Link
US (1) US20210296553A1 (zh)
CN (1) CN109962154B (zh)
WO (1) WO2020186582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399186A1 (en) * 2020-06-19 2021-12-23 Embr Labs Inc. Low power thermoelectric systems
CN112542963A (zh) * 2020-12-04 2021-03-23 中国电力科学研究院有限公司 一种温差发电器及发电模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790167A (zh) * 2011-05-17 2012-11-21 株式会社丰田自动织机 热电转换模块
CN104714539A (zh) * 2015-03-09 2015-06-17 山东大学 一种冷热电联供系统测试平台及测试方法
CN108140713A (zh) * 2015-09-28 2018-06-08 三菱综合材料株式会社 热电转换模块及热电转换装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193709B2 (ja) * 2013-09-30 2017-09-06 日本サーモスタット株式会社 熱電変換モジュール
CN105789426A (zh) * 2016-04-13 2016-07-20 中国华能集团清洁能源技术研究院有限公司 微型热电模块及其制造方法
US10096761B1 (en) * 2017-05-30 2018-10-09 Anthony Paul Bellezza Thermoelectric device assembly with fusion layer structure suitable for thermoelectric Seebeck and Peltier devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790167A (zh) * 2011-05-17 2012-11-21 株式会社丰田自动织机 热电转换模块
CN104714539A (zh) * 2015-03-09 2015-06-17 山东大学 一种冷热电联供系统测试平台及测试方法
CN108140713A (zh) * 2015-09-28 2018-06-08 三菱综合材料株式会社 热电转换模块及热电转换装置

Also Published As

Publication number Publication date
CN109962154B (zh) 2020-09-01
CN109962154A (zh) 2019-07-02
US20210296553A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
CN101471337B (zh) 具良好散热性能的光源模组
WO2004061982A1 (ja) 熱電変換材料を利用した電子部品の冷却装置
KR102111604B1 (ko) 열전환장치
WO2020186582A1 (zh) 高功率热电转换模块及热电转换系统
JP7104684B2 (ja) 光熱変換基板を備えた熱電変換モジュール
CN101477981A (zh) 光源模组及其制造方法
CN102263196B (zh) 一种半导体温差发电组件
JP2015115590A (ja) 熱電変換モジュール
CN113676118A (zh) 一种具有电压匹配的光伏热电一体化器件及其制备方法
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
CN101887944A (zh) 半导体接触四极管电荷数密度差式热电转换装置
CN102025295A (zh) 一种高效集成半导体温差发电模块及制造方法
CN101840989B (zh) 热电转换装置
CN207117506U (zh) 一种层叠式的热能电能转换模组及其发电装置
CN101562415A (zh) 发电装置
CN205123620U (zh) 相变抑制传热温差发电器件
CN202217708U (zh) 一种半导体温差发电组件
CN110260556B (zh) 热电制冷器件及其制备方法
CN101719747A (zh) 一种冷、热端分离式新л型温差发电模块及其制作方法
CN110729393A (zh) 高温差环形分段热电材料发电器及其径向等截面积热电偶单元
CN105633264A (zh) 一种串联电腿结构的温差电池
CN210535693U (zh) 高温差环形分段热电材料发电器及其径向等截面积热电偶单元
JP2013084874A (ja) 熱電モジュール
CN202308071U (zh) 导热式半导体热电堆
CN207885048U (zh) 保护盖板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920033

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19920033

Country of ref document: EP

Kind code of ref document: A1