WO2020185046A1 - 비등방 렌즈를 포함하는 발광모듈 - Google Patents

비등방 렌즈를 포함하는 발광모듈 Download PDF

Info

Publication number
WO2020185046A1
WO2020185046A1 PCT/KR2020/003561 KR2020003561W WO2020185046A1 WO 2020185046 A1 WO2020185046 A1 WO 2020185046A1 KR 2020003561 W KR2020003561 W KR 2020003561W WO 2020185046 A1 WO2020185046 A1 WO 2020185046A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
axis direction
light emitting
incident
emitting device
Prior art date
Application number
PCT/KR2020/003561
Other languages
English (en)
French (fr)
Inventor
김은주
박재은
Original Assignee
서울반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체주식회사 filed Critical 서울반도체주식회사
Publication of WO2020185046A1 publication Critical patent/WO2020185046A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a light-emitting module including an anisotropic lens, and more particularly, to a light-emitting module including an anisotropic lens capable of specifying the light emission distribution of light emitted from the light emitting device to the outside through the anisotropic lens.
  • Light-emitting diodes are inorganic semiconductor devices that emit light generated through recombination of electrons and holes. Recently, light emitting diodes are used in various fields such as display devices, vehicle lamps, and general lighting. Light-emitting diodes have long lifespan, low power consumption, and fast response speed compared to existing light sources, and are rapidly replacing existing light sources due to these advantages.
  • light-emitting diodes When using such light-emitting diodes for display devices or general lighting, several to tens of light-emitting diodes may be used. When using so many light emitting diodes, it is important that the light emitted from the light emitting diodes is uniformly emitted to the light emitting surface of the display device. Otherwise, the light emitted from each light emitting diode may interfere with each other, resulting in a hot spot that is shaded or partially brighter than the surroundings.
  • the problem to be solved by the present invention is to provide an anisotropic lens capable of uniformly emitting light from each light emitting device on the light emitting surface of the display device or general lighting when a plurality of light emitting devices are used for a display device or general lighting. It is to provide a light emitting module including.
  • a light emitting module including an anisotropic lens includes a light emitting device having a long axis and a short axis; And an anisotropic lens disposed above the light-emitting device and dispersing light emitted from the light-emitting device, wherein the anisotropic lens includes a light-incident portion to which light emitted from the light-emitting device is incident, and an incident light to be emitted.
  • a light-exiting part wherein the light-incident part and the light-exiting part have a long axis and a short axis, respectively, a long axis of the light-incident part and a long axis of the light-emitting part are disposed perpendicular to each other,
  • the major axes of the can be arranged parallel to each other.
  • the light emitting device may include a light emitting diode chip formed of one or more light emitting cells.
  • the light emitting device may include a light emitting diode chip that emits light from an upper surface and a side surface.
  • the length ratio (y/x) of the long axis (x) and the short axis (y) of the light emitting device may be 40% to 54%.
  • the light-emitting element may be emitted so that light emitted from the light-emitting portion is relatively wider as the distance between the light-emitting element and the entrance of the light-incident portion decreases in a short axis direction of the light-emitting element.
  • a distance between the light-emitting element and the entrance of the light-incident portion in the short axis direction of the light-emitting element may be shorter than a distance between the light-emitting element and the entrance of the light-incident portion in the long-axis direction of the light-emitting element.
  • the light-incident portion may be formed to be concave upward from a lower surface of the anisotropic lens, and the concave inner surface may be an incident surface through which light emitted from the light emitting device enters the anisotropic lens.
  • the anisotropic lens may have a protruding surface protruding downward from the bottom surface of the anisotropic lens so as to have a predetermined curvature on the bottom surface of the anisotropic lens.
  • the light receiving part may be formed to be concave upward from the protruding surface.
  • the light emitting device is formed to have a long axis and a short axis, and light is emitted from the top and side of the light emitting device, light emitted from the light emitting device can be widely incident in the long axis direction and the short axis direction of the light-emitting unit. , There is an effect that the light emitted to the outside through the anisotropic lens is emitted more widely.
  • the distance between the light-emitting device and the light-incident part of the anisotropic lens decreases, and as the section where light is refracted in the anisotropic lens increases, the light-emitting part of the anisotropic lens There is an effect that the light emitted in the direction of the long axis is emitted more widely.
  • FIG. 1 is a view showing a light emitting module including an anisotropic lens according to an embodiment of the present invention.
  • FIG. 2 is a view showing an anisotropic lens according to an embodiment of the present invention.
  • FIG 3 is a side view showing a direction of a major axis of a light emitting part of an anisotropic lens according to an embodiment of the present invention.
  • FIG. 4 is a side view illustrating a short axis direction of a light exit part of an anisotropic lens according to an embodiment of the present invention.
  • FIG. 5 is a plan view showing a light emitting module including an anisotropic lens according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the intensity of light emitted from a light emitting module including an anisotropic lens according to an embodiment of the present invention in a major axis direction and a minor axis direction of a light emitting portion of the anisotropic lens.
  • FIG. 7 is a view for comparing the width of the light incident portion in the short axis direction of the anisotropic lens of the light emitting module according to an exemplary embodiment of the present invention.
  • FIG. 8 is a graph showing the distribution of light emitted in the long axis direction and the minor axis direction of the light exit portion of the anisotropic lens as the width of the light incident portion in the minor axis direction of the anisotropic lens of the light emitting module according to an embodiment of the present invention is changed.
  • FIG. 1 is a view showing a light emitting module including an anisotropic lens according to an embodiment of the present invention
  • Figure 2 is a view showing an anisotropic lens according to an embodiment of the present invention
  • Figure 3 is a side view showing the direction of the long axis of the light exit portion of the anisotropic lens according to an embodiment of the present invention
  • Figure 4 is a short axis direction of the light exit portion of the anisotropic lens according to an embodiment of the present invention. It is a side view.
  • 5 is a plan view showing a light emitting module including an anisotropic lens according to an embodiment of the present invention.
  • a light emitting module 100 includes a light emitting device 110 and an anisotropic lens 120.
  • the light emitting device 110 is disposed on the substrate.
  • the substrate has insulating properties, and a conductive circuit or the like may be formed thereon.
  • the substrate serves to support the light emitting device 110 and the anisotropic lens 120.
  • the substrate may be a printed circuit board, and may have a mounting groove in which the light emitting device 110 is mounted.
  • the light emitting device 110 may be mounted in the mounting groove.
  • the light emitting device 110 may have a package shape in which a light emitting diode chip is mounted on a housing or a sub-substrate, or a molded part including at least one kind of phosphor is covered on the light emitting diode chip. have.
  • the light emitting device 110 may be a multi-faceted light emitting device capable of emitting light from the top and side surfaces of the light emitting device 110.
  • the light emitting diode chip included in the light emitting device 110 may include a light emitting structure including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer.
  • the light emitting diode chip may include an n-type electrode electrically connected to the n-type semiconductor layer and a p-type electrode electrically connected to the p-type semiconductor layer.
  • the light emitting diode chip may be a flip chip type in which an n-type electrode and a p-type electrode are disposed in one direction, and if necessary, the light emitting diode chip is a vertical type in which the n-type electrode and p-type electrode are disposed in different directions. May be.
  • the n-type semiconductor layer, the active layer, and the p-type semiconductor layer may each include a III-V group compound semiconductor, and for example, may include a nitride semiconductor such as (Al, Ga, In)N.
  • the n-type semiconductor layer may be a conductivity-type semiconductor layer including n-type impurities (eg, Si), and the p-type semiconductor layer may be a conductivity-type semiconductor layer including p-type impurities (eg, Mg).
  • the active layer may be interposed between the n-type semiconductor layer and the p-type semiconductor layer, and may include a multiple quantum well structure (MQW).
  • MQW multiple quantum well structure
  • the light emitting diode chip included in the light emitting device 110 may be configured as one light emitting cell, and may include a plurality of light emitting cells as necessary.
  • the light emitting diode chip including two light emitting cells may have a shape in which each light emitting cell is formed in an approximately square shape, so that the two light emitting cells are connected side by side in one direction.
  • a light emitting diode chip including three light emitting cells may have a shape in which each light emitting cell is formed in a substantially square shape, and three light emitting cells are arranged side by side in one direction.
  • the light emitting diode chip included in the light emitting device 110 may be an MJT light emitting diode chip including a plurality of light emitting cells, and the plurality of light emitting cells may be connected to each other by wires.
  • the anisotropic lens 120 is provided to disperse light emitted from the light emitting device 110, and is disposed on the light emitting device 110, as shown in FIG. 1, to cover the light emitting device 110. Is placed.
  • the anisotropic lens 120 includes a light-incident portion 121 to which light emitted from the light emitting device 110 is incident, and a light-exit portion 123 for emitting light from the anisotropic lens 120 to the outside.
  • the light incident part 121 is formed in a concave shape under the anisotropic lens 120, and the inner surface of the light incident part 121 may be an incident surface.
  • the light incident part 121 may be formed under the anisotropic lens 120 and may be disposed at the center of the anisotropic lens 120.
  • the shape of the light incident part 121 may have a concave shape in a vertical direction (z-axis direction), like a bell shape.
  • the shape of the light incident part 121 may have an elliptical shape having a long axis in the x-axis direction in the horizontal direction and a short axis in the y-axis direction.
  • the long axis direction of the light incident unit 121 is defined as the x-axis direction
  • the short axis direction of the light incident unit 121 is defined as the y-axis direction.
  • the incident surface which is an inner surface of the light incident part 121, may have a curved surface as a whole, and the incident surface may be a curved surface having a shape narrowing from the bottom to the top.
  • the light exit part 123 of the anisotropic lens 120 includes a light exit surface through which light incident on the anisotropic lens 120 is emitted to the outside, and forms an outer shape of the anisotropic lens 120.
  • the cross section of the light emitting part 123 has a long axis in a y-axis direction and an ellipse shape having a short axis in the x-axis direction, and may be a shape in which a curve and a straight line are combined.
  • the direction of the long axis of the light exit part 123 may be a shape arranged perpendicular to the direction of the long axis of the light input part 121.
  • the elliptical shape of the light emitting portion 123 may have a different ratio between the elliptical shape of the light incident portion 121 and the major axis direction and the minor axis direction. That is, the elliptical shape of the light emitting portion 123 may be an elliptical shape closer to a circular shape than the elliptical shape of the light incident portion 121.
  • the light incident on the anisotropic lens 120 through the light-incident unit 121 is incident light in the minor axis direction of the light-incident unit 121 through the anisotropic lens 120 is incident in the long axis direction of the light-incident unit 121
  • the light emitted to the outside of the anisotropic lens 120 may be relatively wider than the light.
  • the anisotropic lens 120 may further include a flange 127 connecting the light exit part 123 and the lower surface 125 of the anisotropic lens 120.
  • the flange 127 may be disposed along the outer periphery of the light exit part 123, and the longitudinal section of the flange 127 may be perpendicular to the lower surface 125 of the anisotropic lens 120.
  • the thickness of the flange 127 may vary depending on the position of the light exit part 123, and the thickness of the flange 127 located in the long axis direction of the light exit part 123 is a flange located in the short axis direction of the light exit part 123 It can be relatively thicker than the thickness of (127).
  • the thickness of the flange 127 may be the thickest in the long axis direction of the light exit part 123 and the thinnest in the short axis direction of the light exit part 123.
  • the flange boundary portion 127a which is the boundary between the flange 127 and the light exit portion 123, may be formed in a curved shape, as shown.
  • the flange boundary portion 127a between the light emitting portion 123 of the anisotropic lens 120 and the flange 127 is not limited to a curved shape, and the flange boundary portion 127a may be formed in a straight line as necessary. .
  • the lower surface 125 of the anisotropic lens 120 may be formed in a planar shape.
  • a protruding surface 131 may be formed on the lower surface 125 of the anisotropic lens 120 around the entrance of the light incident part 121. As shown in FIG. 4, the protruding surface 131 may be formed in a shape in which a part of the spherical shape is coupled to the lower surface 125 of the anisotropic lens 120, and the protruding surface 131 is cut in a spherical shape. Some may be integrally formed coupled to the lower surface 125 of the lens.
  • the light incident part 121 may be disposed at the center of the protruding surface 131, and the protruding surface 131 may be connected to the incident surface of the light incident part 121.
  • the protruding surface 131 may be the center of the protruding surface 131 and the center of the light incident part 121 when viewed through a plan view of the anisotropic lens 120.
  • a plurality of leg portions 129 may be disposed on the lower surface 125 of the anisotropic lens 120.
  • the leg portion 129 may be disposed around the light-incident portion 121 and has a predetermined thickness.
  • some of the plurality of leg portions 129 may have a leg protrusion partially protruding downward from the leg portion 129.
  • a portion of the leg protrusion may protrude downward from the leg portion 129, and in this case, the width of the leg portion 129 in which the leg protrusion is formed may be larger than the width of the leg protrusion.
  • the width of the leg portion 129 in which the leg protrusion is not formed may be equal to or greater than the width of the leg protrusion.
  • leg protrusion may be inserted into the hole formed in the substrate, and accordingly, the leg protrusion may be inserted into the hole formed in the substrate, and the plurality of leg portions 129 may each contact the substrate.
  • the short axis direction of the light-emitting element 110 may be smaller than the distance between the light-emitting element 110 and the light-incident surface of the light-incident portion 121 in the long axis direction of the light-emitting element 110.
  • FIG. 6 is a graph showing the intensity of light emitted from a light emitting module including an anisotropic lens according to an embodiment of the present invention in a major axis direction and a minor axis direction of a light emitting portion of the anisotropic lens.
  • the intensity of light emitted in the long-axis direction (y-axis direction) of the light exit unit 123 does not become zero at a point at 90 degrees in the left-right direction. This means that the light emitted in the long axis direction (y-axis direction) of the light exit part 123 of the anisotropic lens 120 is emitted almost horizontally.
  • the intensity of light emitted in the long axis direction (y-axis direction) of the light exit part 123 is greater than the intensity of light emitted in the short axis direction (x-axis direction) of the light emission part 123 including a point at 90 degrees in the left and right direction. You can see that most of them appear large.
  • the light emitted through the anisotropic lens 120 in the present embodiment is substantially in the vertical direction (z-axis direction in FIG. 1) of the anisotropic lens 120 in the long axis direction (y-axis direction) of the light-exiting part 123 It can be seen that it does not fall on the floor and is emitted in a horizontal direction.
  • the light emitted through the anisotropic lens 120 is 90 degrees in the left-right direction in the vertical direction (z-axis direction in FIG. 1) of the anisotropic lens 120 in the short axis direction (x-axis direction) of the light exit part 123 You can see that some of them almost fall to the floor.
  • the light emitting element 110 is formed in a shape having a long axis direction and a short axis direction. Because. In addition, it is because the long axis direction of the light emitting device 110 and the long axis direction of the light incident part 121 are arranged side by side, and the short axis direction of the light emitting device 110 and the short axis direction of the light incident part 121 are arranged side by side. to be.
  • Table 1 shows the simulation results of the half width of light emitted by
  • the conventional light emitting device has the same length in the short axis direction (y-axis direction) and the major axis direction (x-axis direction), and the ratio (y/x) is 100%. It can be seen that the half-value width of) is 138, and the half-value width in the long axis direction (y-axis direction) of the light exit part 123 is 138.
  • the planar shape of the first light emitting device is a rectangular shape
  • the length ratio (y/x) of the short axis direction (y-axis direction) and the major axis direction (x-axis direction) of the first light-emitting device is 40%
  • the half width of the light exit part 123 in the minor axis direction (x-axis direction) is 132
  • the half width of the light exit part 123 in the long axis direction (y-axis direction) is 180 or more.
  • the planar shape of the second light emitting device is a rectangular shape
  • the length ratio (y/x) of the short axis direction (y-axis direction) and the long axis direction (x-axis direction) of the second light-emitting device is 54%
  • the light-emitting portion ( 123) It can be seen that the half-value width in the minor axis direction (x-axis direction) is 135, and the half-value width in the long axis direction (y-axis direction) of the light exit part 123 is 156.
  • the anisotropic lens 120 is output accordingly. It can be seen that the half width of the light emitted to the miner 123 is greater than 138.
  • the ratio (y/x) of the minor axis direction (y axis direction) to the major axis direction (x axis direction) of the light emitting device 110 becomes smaller, the half width of the light emitting part 123 in the major axis direction increases gradually. I can.
  • the half width can be more than 180.
  • the long axis of the light exit part 123 of the anisotropic lens 120 Since the half width of light emitted in the direction is 180 or more, the ratio (y/x) of the minor axis direction (y axis direction) to the major axis direction (x axis direction) of the light emitting device 110 does not need to be less than 40%.
  • the light emitting device 110 of the present invention may have a length ratio (y/x) of 40% or more and 54% or less in a short axis direction (y axis direction) to a long axis direction (x axis direction).
  • the length ratio (y/x) of the short axis direction (y axis direction) to the long axis direction (x axis direction) of the light emitting device 110 of the present invention is not limited thereto, and may be changed as necessary.
  • FIG. 7 is a view for comparing the width of the light incident portion in the short axis direction in the anisotropic lens of the light emitting module according to an embodiment of the present invention
  • FIG. 8 is It is a graph showing the distribution of light emitted in the long axis direction and the minor axis direction of the light exit part of the anisotropic lens as the width in the minor axis direction of the miner varies.
  • a long-axis direction (y-axis direction) of the anisotropic lens 120 and the light-exiting part 123 is illustrated, and accordingly, a side surface of the light-incident part 121 of the anisotropic lens 120 in the short-axis direction is illustrated.
  • the lengths of the light-incident portion 121 in the major axis direction are all the same.
  • the size of the light-emitting elements 110 are all the same, and the light-emitting elements 110 are formed of light-emitting elements 110 having different lengths in the long-axis direction and the short-axis direction formed according to the shape of the light-incident portion 121.
  • a reference light incident part 121R, a first comparison light incident part 121S, and a second comparison light incident part 121L are respectively illustrated according to the width of the entrance of the light incident part 121.
  • the intensity distribution (ref.-x) of light incident through the reference light-incident part 121R and emitted in the short axis direction of the light-exit part 123 is incident through the reference light-incident part 121R
  • the intensity distribution (ref.-y) of light emitted in the direction of the major axis is shown.
  • the light intensity distribution (x0.5-x) of light incident through the first comparison light-incident part 121S and emitted in the short axis direction of the light-exit part 123 and the first comparative light-incident part 121S are incident through the light-exiting part ( 123), the intensity distribution (x0.5-y) of light emitted in the direction of the major axis is shown.
  • the light intensity distribution (x1.5-x) of light incident through the second comparison light-incident part 121L and emitted in the short axis direction of the light-exit part 123 and the second comparative light-incident part 121L are incident through the light-exiting part.
  • the intensity distribution (x1.5-y) of light emitted in the direction of the major axis of (123) is shown.
  • the first comparison light-incident portion 121S is closer to the light-emitting element 110 from the entrance of the reference light-incident portion than the reference light-incident portion 121R, and the second comparative light-incident portion 121L is It can be seen that the distance to the light-emitting element 110 from the entrance of the light-incident portion is greater than that of the reference light-incident portion 121R.
  • the intensity distribution of light emitted in the short axis direction of the light-emitting part 123 (x0.5-x)
  • the intensity distribution (x0.5-y) of the light emitted in the long axis direction of the light-exiting part 123 is relatively larger than when the light is incident on the reference light-incident part 121R.
  • the intensity distribution of light emitted in the short axis direction of the light-emitting portion 123 (x1.5-x) and It can be seen that the intensity distribution (x1.5-y) of the light emitted in the direction of the long axis of the light-exiting part 123 is relatively smaller than when the light is incident on the reference light-incident part 121R.

Abstract

본 발명은 비등방 렌즈를 포함하는 발광모듈에 관한 것으로, 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈은, 장축 및 단축을 가지는 발광소자; 및 상기 발광소자의 상부에 배치되고, 상기 발광소자에서 방출된 광을 분산시키는 비등방 렌즈를 포함하고, 상기 비등방 렌즈는, 상기 발광소자에서 방출된 광이 입사하는 입광부 및 입사된 광이 출사되는 출광부를 포함하며, 상기 입광부와 출광부의 평면 형상은 각각 장축과 단축을 가지며, 상기 입광부의 장축과 상기 출광부의 장축은 서로 수직하게 배치되고, 상기 발광소자의 장축과 상기 입광부의 장축은 서로 평행하게 배치될 수 있다. 본 발명에 의하면, 발광소자가 발광소자의 상면과 측면에서 광이 방출되고, 장축 및 단축을 가지도록 형성됨에 따라 발광소자에서 방출되는 광이 입광부의 장축 방향 및 단축 방향에 넓게 입사될 수 있어, 비등방 렌즈를 통해 외부로 방출되는 광이 보다 넓게 방출되는 효과가 있다.

Description

비등방 렌즈를 포함하는 발광모듈
본 발명은 비등방 렌즈를 포함하는 발광모듈에 관한 것으로, 더욱 상세하게는 발광소자에서 방출된 광이 비등방 렌즈를 통해 외부로 방출되는 광의 발광 분포를 특정할 수 있는 비등방 렌즈를 포함하는 발광모듈에 관한 것이다.
발광 다이오드는 전자와 정공의 재결합을 통해 발생하는 광을 방출하는 무기 반도체 소자이다. 최근, 발광 다이오드는 디스플레이 장치, 차량용 램프, 일반 조명 등과 같은 여러 분야에 다양하게 이용된다. 발광 다이오드는 기존 광원 대비 수명이 길고, 소비 전력이 낮으며, 응답속도가 빠른 장점이 있으며, 이러한 장점으로 인해 기존 광원을 빠르게 대치하고 있다.
이러한 발광 다이오드를 이용하여 디스플레이 장치나 일반 조명 등에 사용할 때, 수 개 내지 수십 개의 발광 다이오드가 이용될 수 있다. 이렇게 많은 발광 다이오드를 사용할 때, 발광 다이오드들에서 방출된 광이 디스플레이 장치의 발광 면에 균일하게 방출되는 것이 중요하다. 그렇지 않으면, 각 발광 다이오드에서 방출된 광이 서로 간섭되어, 음영이나 부분적으로 주변보다 밝은 핫스팟이 발생할 수 있기 때문이다.
본 발명이 해결하고자 하는 과제는, 디스플레이 장치나 일반 조명에 다수의 발광소자가 이용될 때, 각 발광소자들이 방출된 광이 디스플레이 장치나 일반 조명의 발광 면에 균일하게 발광할 수 있는 비등방 렌즈를 포함하는 발광모듈을 제공하는 것이다.
본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈은, 장축 및 단축을 가지는 발광소자; 및 상기 발광소자의 상부에 배치되고, 상기 발광소자에서 방출된 광을 분산시키는 비등방 렌즈를 포함하고, 상기 비등방 렌즈는, 상기 발광소자에서 방출된 광이 입사하는 입광부 및 입사된 광이 출사되는 출광부를 포함하며, 상기 입광부와 출광부의 평면 형상은 각각 장축과 단축을 가지며, 상기 입광부의 장축과 상기 출광부의 장축은 서로 수직하게 배치되고, 상기 발광소자의 장축과 상기 입광부의 장축은 서로 평행하게 배치될 수 있다.
상기 발광소자는 하나 이상의 발광셀로 형성된 발광 다이오드 칩을 포함할 수 있다.
상기 발광소자는, 상면 및 측면에서 광을 방출하는 발광 다이오드 칩을 포함할 수 있다.
상기 발광소자의 장축(x) 및 단축(y)의 길이 비율(y/x)은 40% 내지 54%일 수 있다.
상기 발광소자는, 상기 발광소자의 단축 방향에서, 상기 발광소자와 상기 입광부의 입구의 거리가 짧아질수록 상기 출광부에서 방출되는 광이 상대적으로 넓게 퍼지도록 방출될 수 있다.
상기 발광소자의 단축 방향에서 상기 발광소자와 상기 입광부의 입구의 거리는, 상기 발광소자의 장축 방향에서 상기 발광소자와 상기 입광부의 입구의 거리보다 짧을 수 있다.
상기 입광부는 상기 비등방 렌즈의 하면에서 상부 방향으로 오목하게 형성되고, 상기 오목하게 형성된 내면은 상기 발광소자에서 방출된 광이 상기 비등방 렌즈로 입사하는 입사면일 수 있다.
상기 비등방 렌즈는, 상기 비등방 렌즈의 하면에 소정의 곡률을 가지도록 상기 비등방 렌즈의 하면에서 하부 방향으로 돌출된 돌출면을 가질 수 있다.
상기 입광부는, 상기 돌출면에서 상부 방향으로 오목하게 형성될 수 있다.
본 발명에 의하면, 발광소자가 발광소자의 상면과 측면에서 광이 방출되고, 장축 및 단축을 가지도록 형성됨에 따라 발광소자에서 방출되는 광이 입광부의 장축 방향 및 단축 방향에 넓게 입사될 수 있어, 비등방 렌즈를 통해 외부로 방출되는 광이 보다 넓게 방출되는 효과가 있다.
또한, 발광소자에서 방출된 광이 비등방 렌즈를 통해 외부로 방출될 때, 발광소자와 비등방 렌즈의 입광부 사이의 거리가 줄어들어 비등방 렌즈 내에서 광이 굴절되는 구간이 커짐에 따라 비등방 렌즈의 출광부 장축 방향으로 방출되는 광이 보다 넓게 방출되는 효과가 있다.
또한, 비등방 렌즈의 출광부 장축 방향으로 방출되는 광이 넓게 방출됨에 따라 기존의 렌즈보다 높은 성능을 구현할 수 있어, 기존과 동일하게 광이 방출되도록 하는 경우, 기존 보다 비등방 렌즈의 전체 크기를 줄일 수 있다. 그에 따라 디스플레이 장치에 적용할 때, OD(optical distance)를 줄일 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 비등방 렌즈를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 비등방 렌즈의 출광부에 대한 장축 방향을 도시한 측면도이다.
도 4는 본 발명의 일 실시예에 따른 비등방 렌즈의 출광부에 대한 단축 방향을 도시한 측면도이다.
도 5는 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈을 도시한 평면도이다.
도 6은 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈에서 방출된 광이 비등방 렌즈의 출광부 장축 방향 및 단축 방향으로 방출되는 광의 세기를 도시한 그래프이다.
도 7은 본 발명의 일 실시예에 따른 발광모듈의 비등방 렌즈에서 입광부의 단축 방향 너비가 달라지는 것을 비교하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 발광모듈의 비등방 렌즈에서 입광부의 단축 방향 너비가 달라짐에 따라 비등방 렌즈의 출광부 장축 방향 및 단축 방향으로 방출되는 광의 분포를 도시한 그래프이다.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈을 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 비등방 렌즈를 도시한 도면이다. 그리고 도 3은 본 발명의 일 실시예에 따른 비등방 렌즈의 출광부에 대한 장축 방향을 도시한 측면도이며, 도 4는 본 발명의 일 실시예에 따른 비등방 렌즈의 출광부에 대한 단축 방향을 도시한 측면도이다. 도 5는 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈을 도시한 평면도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 발광모듈(100)은, 발광소자(110) 및 비등방 렌즈(120)를 포함한다.
발광소자(110)는 기판 상에 배치된다. 이때, 기판은 절연성을 가지며 상부에 도전회로 등이 형성될 수 있다. 기판은 발광소자(110) 및 비등방 렌즈(120)를 지지하는 역할을 한다. 본 실시예에서 기판은 인쇄회로기판일 수 있으며, 발광소자(110)가 실장되는 실장 홈을 가질 수 있다.
발광소자(110)는 기판에 실장 홈이 형성되는 경우, 실장 홈 내에 실장될 수 있다. 본 실시예에서, 발광소자(110)는, 하우징 또는 서브 기판에 발광 다이오드 칩이 실장된 패키지의 형태를 가지거나 발광 다이오드 칩에 한 종류 이상의 형광체를 포함하는 몰딩부가 덮은 형상의 패키지 형태를 가질 수 있다.
본 실시예에서, 발광소자(110)는 발광소자(110)의 상면 및 측면에서 광이 방출될 수 있는 다면 발광소자일 수 있다. 이를 위해 발광소자(110)에 포함된 발광 다이오드 칩은, n형 반도체층, 활성층 및 p형 반도체층을 포함하는 발광구조체를 포함할 수 있다. 그리고 발광 다이오드 칩은, n형 반도체층과 전기적으로 연결된 n형 전극 및 p형 반도체층과 전기적으로 연결된 p형 전극을 포함할 수 있다. 본 실시예에서, 발광 다이오드 칩은, n형 전극 및 p형 전극이 일 방향에 배치되는 플립칩 타입일 수 있으며, 필요에 따라 n형 전극 및 p형 전극이 서로 다른 방향에 배치되는 수직 타입일 수도 있다. 여기서, n형 반도체층, 활성층 및 p형 반도체층은 각각 III-V족 계열의 화합물 반도체를 포함할 수 있고, 일례로, (Al, Ga, In)N과 같은 질화물 반도체를 포함할 수 있다.
n형 반도체층은 n형 불순물(예컨대, Si)을 포함하는 도전형 반도체층일 수 있고, p형 반도체층은 p형 불순물(예컨대, Mg)을 포함하는 도전형 반도체층일 수 있다. 그리고 활성층은 n형 반도체층 및 p형 반도체층 사이에 개재될 수 있으며, 다중 양자우물 구조(MQW)를 포함할 수 있다. 그리고 원하는 피크 파장의 광을 방출할 수 있게 조성비가 결정될 수 있다.
그리고 발광소자(110)에 포함된 발광 다이오드 칩은, 하나의 발광셀(cell)로 구성될 수 있고, 필요에 따라 다수의 발광셀을 포함할 수 있다. 이때, 두 개의 발광셀을 포함하는 발광 다이오드 칩은 각 발광셀이 대략 정사각형 형상으로 형성되어, 두 개의 발광셀이 일 방향으로 나란하게 연결된 형상을 가질 수 있다. 그리고 세 개의 발광셀을 포함하는 발광 다이오드 칩은 각 발광셀이 대략 정사각형 형상으로 형성되며, 세 개의 발광셀이 일 방향으로 나란하게 배치된 형상을 가질 수 있다.
즉, 본 실시예에서, 발광소자(110)에 포함된 발광 다이오드 칩은, 다수의 발광셀을 포함하는 MJT 발광 다이오드 칩일 수 있으며, 다수의 발광셀은 배선들에 의해 서로 연결될 수 있다.
비등방 렌즈(120)는, 발광소자(110)에서 방출된 광을 분산하기 위해 구비되며, 도 1에 도시된 바와 같이, 발광소자(110)의 상부에 배치되고, 발광소자(110)를 덮도록 배치된다. 이를 위해 비등방 렌즈(120)는, 발광소자(110)에서 방출된 광이 입사하는 입광부(121) 및 비등방 렌즈(120)에서 외부로 광을 출사하는 출광부(123)를 포함한다. 입광부(121)는 비등방 렌즈(120)의 하부에 오목한 형상으로 형성되고, 입광부(121)의 내면은 입사면일 수 있다.
입광부(121)는 도시된 바와 같이, 비등방 렌즈(120)의 하부에 형성되고, 비등방 렌즈(120)의 중앙에 배치될 수 있다. 입광부(121)의 형상은 종 형상과 같이, 수직 방향(z축 방향)으로 오목한 형상을 가질 수 있다. 그리고 입광부(121)의 형상은, 수평 방향으로 x축 방향으로 장축을 갖고, y축 방향으로 단축을 가지는 타원 형상을 가질 수 있다. 본 실시예에서, 수평 방향에서, 입광부(121)의 장축 방향을 x축 방향으로 정의하고, 입광부(121)의 단축 방향을 y축 방향으로 정의한다.
입광부(121)의 내측면인 입사면은 전체적으로 곡면을 가질 수 있으며, 입사면은 하부에서 상부로 갈수록 좁아지는 형상의 곡면일 수 있다.
비등방 렌즈(120)의 출광부(123)는, 비등방 렌즈(120)로 입사된 광이 외부로 방출되는 출광면을 포함하고, 비등방 렌즈(120)의 외형을 형성한다. 출광부(123)의 단면은 y축 방향으로 장축을 갖고, x축 방향으로 단축을 갖는 타원 형상으로, 곡선과 직선이 조합된 형상일 수 있다. 본 실시예에서, 출광부(123)의 장축 방향은 입광부(121)의 장축 방향과 서로 수직하게 배치된 형상일 수 있다.
이때, 본 실시예에서, 출광부(123)의 타원 형상은 입광부(121)의 타원 형상과 장축 방향과 단축 방향의 비율이 다를 수 있다. 즉, 출광부(123)의 타원 형상이 입광부(121)의 타원 형상보다 원 형상에 가까운 타원 형상일 수 있다. 그에 따라 입광부(121)를 통해 비등방 렌즈(120)에 입사된 광은 비등방 렌즈(120)를 통해 입광부(121)의 단축 방향으로 입사된 광이 입광부(121)의 장축 방향으로 입사된 광보다 상대적으로 비등방 렌즈(120)의 외부로 방출되는 광이 넓게 퍼질 수 있다.
또한, 본 실시예에의 비등방 렌즈(120)는, 출광부(123)와 비등방 렌즈(120)의 하면(125)을 연결하는 플랜지(127)를 더 포함할 수 있다. 플랜지(127)는 출광부(123)의 외곽을 따라 배치될 수 있고, 플랜지(127)의 종단면은 비등방 렌즈(120)의 하면(125)과 수직을 이룰 수 있다. 이때, 플랜지(127)의 두께는 출광부(123)의 위치에 따라 다를 수 있으며, 출광부(123)의 장축 방향에 위치한 플랜지(127)의 두께가 출광부(123)의 단축 방향에 위치한 플랜지(127)의 두께보다 상대적으로 두꺼울 수 있다. 즉, 플랜지(127)의 두께는 출광부(123) 장축 방향에서 가장 두껍고, 출광부(123) 단축 방향에서 가장 얇을 수 있다. 따라서 플랜지(127)와 출광부(123)의 경계인 플랜지 경계부(127a)는 도시된 바와 같이, 곡선으로 형성될 수 있다. 물론, 비등방 렌즈(120)의 출광부(123)와 플랜지(127) 사이의 플랜지 경계부(127a)가 곡선으로 형성된 것으로 한정하는 것은 아니며, 필요에 따라 플랜지 경계부(127a)는 직선으로 형성될 수 있다.
비등방 렌즈(120)의 하면(125)은, 평면 형상으로 형성될 수 있다. 그리고 비등방 렌즈(120)의 하면(125)에 입광부(121)의 입구를 중심으로 돌출면(131)이 형성될 수 있다. 돌출면(131)은 도 4에 도시된 바와 같이, 구형 형상의 일부가 비등방 렌즈(120)의 하면(125)에 결합된 형상으로 형성될 수 있으며, 돌출면(131)은 구 형상에서 절단된 일부가 렌즈의 하면(125)에 결합된 일체로 형성될 수 있다.
이때, 돌출면(131)의 중심에 입광부(121)가 배치될 수 있으며, 돌출면(131)은 입광부(121)의 입사면과 연결될 수 있다. 이때, 돌출면(131)은, 비등방 렌즈(120)의 평면도를 통해 보면, 돌출면(131)의 중심과 입광부(121)의 중심은 일치할 수 있다.
그리고 비등방 렌즈(120)의 하면(125)에 복수의 다리부(129)가 배치될 수 있다. 다리부(129)는 입광부(121)의 주변에 배치될 수 있으며, 소정의 두께를 가지며, 기판에 비등방 렌즈(120)를 결합할 때, 비등방 렌즈(120)가 바르게 장착될 수 있도록 기준이 될 수 있다.
이때, 복수의 다리부(129) 중 일부는, 다리부(129)에서 하부 방향으로 일부가 돌출된 다리 돌출부가 형성될 수 있다. 다리 돌출부는, 다리부(129)에서 일부가 하부 방향으로 돌출될 수 있으며, 이때, 다리 돌출부가 형성된 다리부(129)의 너비는 다리 돌출부의 너비보다 클 수 있다. 그리고 다리 돌출부가 형성되지 않은 다리부(129)의 너비는 다리 돌출부의 너비와 같거나 클 수 있다.
이렇게 다리 돌출부는 기판에 형성된 홀에 삽입될 수 있고, 그에 따라 다리 돌출부가 기판에 형성된 홀에 삽입되며, 복수의 다리부(129)는 각각 기판 상에 접촉될 수 있다.
또한, 도 3 내지 도 5를 참조하면, 본 발명의 일 실시예에서, 발광소자(110)와 비등방 렌즈(120)의 입광부(121) 사이의 거리를 보면, 발광소자(110)의 단축 방향에서 발광소자(110)와 입광부(121)의 입광면 사이의 거리는, 발광소자(110)의 장축 방향에서 발광소자(110)와 입광부(121)의 입광면 사이의 거리보다 작을 수 있다.
도 6은 본 발명의 일 실시예에 따른 비등방 렌즈를 포함하는 발광모듈에서 방출된 광이 비등방 렌즈의 출광부 장축 방향 및 단축 방향으로 방출되는 광의 세기를 도시한 그래프이다.
도 6을 참조하면, 출광부(123) 장축 방향(y축 방향)으로 방출되는 광의 세기가 좌우 방향의 90도인 지점에서 0이 되지 않은 것을 확인할 수 있다. 이는 비등방 렌즈(120) 출광부(123)의 장축 방향(y축 방향)으로 방출되는 광이 거의 수평에 가깝게 방출되는 것을 의미한다.
또한, 출광부(123)의 장축 방향(y축 방향)으로 방출되는 광의 세기는, 좌우 방향의 90도인 지점을 포함하여 출광부(123)의 단축 방향(x축 방향)으로 방출되는 광의 세기보다 대부분 크게 나타나는 것을 확인할 수 있다.
이를 통해, 본 실시예에서 비등방 렌즈(120)를 통해 방출된 광은 출광부(123)의 장축 방향(y축 방향)에서 비등방 렌즈(120)의 수직 방향(도 1에서 z축 방향)으로 거의 바닥에 떨어지지 않고, 수평 방향으로 방출되는 것을 확인할 수 있다. 반면, 비등방 렌즈(120)를 통해 방출되는 광은 출광부(123)의 단축 방향(x축 방향)에서 비등방 렌즈(120)의 수직 방향(도 1에서 z축 방향)으로 좌우 방향의 90도인 지점에서 일부가 거의 바닥에 떨어지는 것을 확인할 수 있다.
이렇게 비등방 렌즈(120) 출광부(123)의 장축 방향(y축 방향)에서 바닥으로 떨어지지 않도록 수평 방향으로 광이 방출되는 것은, 발광소자(110)가 장축 방향 및 단축 방향을 가지는 형상으로 형성되기 때문이다. 또한, 발광소자(110)의 장축 방향과 입광부(121)의 장축 방향이 나란하게 배치되기 때문이며, 그리고 발광소자(110)의 단축 방향과 입광부(121)의 단축 방향이 나란하게 배치되기 때문이다.
이때, 발광소자(110)의 단축 방향(y축 방향) 및 장축 방향(x축 방향)의 비율을 기준으로, 출광부(123)의 장축 방향(y축 방향) 및 단축 방향(x축 방향)으로 방출되는 광의 반치폭을 시뮬레이션한 결과는 표 1과 같다.
종래 발광소자 제1 발광소자 제2 발광소자
발광소자의 단축 방향(y) 및 장축 방향(x)의 길이 비율(y/x, %) 100 40 54
출광부 단축 방향의 반치폭(FWHM x, deg.) 138 132 135
출광부 장축 방향의 반치폭(FWHM y, deg.) 138 180 이상 156
종래의 발광소자는 단축 방향(y축 방향) 및 장축 방향(x축 방향)의 길이가 동일하여, 그 비율(y/x)이 100%인 것은, 출광부(123) 단축 방향(x축 방향)의 반치폭이 138이고, 출광부(123) 장축 방향(y축 방향)의 반치폭이 138인 것을 확인할 수 있다.
그에 비교하여, 제1 발광소자의 평면 형상이 직사각형 형상이고, 제1 발광소자의 단축 방향(y축 방향) 및 장축 방향(x축 방향)의 길이 비율(y/x)이 40%인 경우, 출광부(123) 단축 방향(x축 방향)의 반치폭이 132이고, 출광부(123)의 장축 방향(y축 방향)의 반치폭이 180 이상인 것을 확인할 수 있다.
그리고 제2 발광소자의 평면 형상이 직사각형 형상이고, 제2 발광소자의 단축 방향(y축 방향) 및 장축 방향(x축 방향)의 길이 비율(y/x)이 54%인 경우, 출광부(123) 단축 방향(x축 방향)의 반치폭이 135이고, 출광부(123)의 장축 방향(y축 방향)의 반치폭이 156인 것을 확인할 수 있다.
시뮬레이션 결과를 통해서, 발광소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 비율(y/x)이 100%보다 작아질수록, 그에 따라 비등방 렌즈(120)의 출광부(123)로 방출되는 광의 반치폭이 138보다 커지는 것을 알 수 있다.
또한, 발광소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 비율(y/x)이 점점 작아질수록 출광부(123)의 장축 방향의 반치폭이 점점 커지는 것을 확인할 수 있다.
이를 통해서, 발광 소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 길이 비율(y/x)이 40%보다 작은 경우 출광부(123)의 장축 방향으로 방출되는 광의 반치폭이 180이상이 될 수 있음을 도출할 수 있다.
다만, 발광소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 길이 비율(y/x)이 40%일 때, 비등방 렌즈(120)의 출광부(123)의 장축 방향으로 방출되는 광의 반치폭이 180 이상이므로, 발광소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 비율(y/x)이 40%보다 작지 않아도 된다. 예를 들어, 본원발명의 발광소자(110)는 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 길이 비율(y/x)이 40% 이상 54%이하가 일 수 있다. 하지만, 본 발명의 발광소자(110)의 장축 방향(x축 방향) 대비 단축 방향(y축 방향)의 길이 비율(y/x)이 이에 한정되는 것은 아니며, 필요에 따라 달라질 수 있다.
이를 통해, 비등방 렌즈(120)의 출광부(123)의 장축 방향(y축 방향)으로 광이 출사되는 것이 극대화되는 것을 확인할 수 있다.
도 7은 본 발명의 일 실시예에 따른 발광모듈의 비등방 렌즈에서 입광부의 단축 방향 너비가 달라지는 것을 비교하기 위한 도면이고, 도 8은 본 발명의 일 실시예에 따른 발광모듈의 비등방 렌즈에서 입광부의 단축 방향 너비가 달라짐에 따라 비등방 렌즈의 출광부 장축 방향 및 단축 방향으로 방출되는 광의 분포를 도시한 그래프이다.
도 7 및 도 8을 참조하여, 본 실시예에서, 비등방 렌즈(120)의 입광부(121)의 입구 너비가 달라짐에 따라 비등방 렌즈(120)의 출광부(123)에서 방출되는 광의 세기 분포가 달라지는 것에 대해 설명한다.
도 7을 참조하면, 비등방 렌즈(120) 출광부(123)의 장축 방향(y축 방향)을 도시하였으며, 그에 따라 비등방 렌즈(120)의 입광부(121)의 단축 방향의 측면이 도시된다. 이때, 입광부(121)의 장축 방향의 길이는 모두 동일하다. 그리고 발광소자(110)의 크기는 모두 동일하며, 발광소자(110)는 입광부(121)의 형상에 따라 형성된 장축 방향 및 단축 방향의 길이가 다른 발광소자(110)가 이용된다.
도 7에는 입광부(121)의 입구 너비에 따라 기준 입광부(121R), 제1 비교 입광부(121S) 및 제2 비교 입광부(121L)가 각각 도시된다.
도 8에는 기준 입광부(121R)를 통해 입사되어 출광부(123)의 단축 방향으로 방출된 광의 세기분포(ref.-x) 및 기준 입광부(121R)를 통해 입사되어 출광부(123)의 장축 방향으로 방출된 광의 세기분포(ref.-y)가 도시된다. 그리고 제1 비교 입광부(121S)를 통해 입사되어 출광부(123)의 단축 방향으로 방출된 광의 세기분포(x0.5-x) 및 제1 비교 입광부(121S)를 통해 입사되어 출광부(123)의 장축 방향으로 방출된 광의 세기분포(x0.5-y)가 도시된다. 또한, 제2 비교 입광부(121L)를 통해 입사되어 출광부(123)의 단축 방향으로 방출된 광의 세기분포(x1.5-x) 및 제2 비교 입광부(121L)를 통해 입사되어 출광부(123)의 장축 방향으로 방출된 광의 세기분포(x1.5-y)가 도시된다.
이때, 도 7에 도시된 바와 같이, 제1 비교 입광부(121S)는 기준 입광부(121R)보다 입광부의 입구에서 발광소자(110)와의 거리가 가깝고, 제2 비교 입광부(121L)는 기준 입광부(121R)보다 입광부의 입구에서 발광소자(110)와의 거리가 먼 것을 확인할 수 있다.
그에 따라 제1 비교 입광부(121S)와 같이, 발광소자(110)와 입광부의 입구의 거리가 가까운 경우, 출광부(123)의 단축 방향으로 방출된 광의 세기분포(x0.5-x) 및 출광부(123)의 장축 방향으로 방출된 광의 세기분포(x0.5-y)는 기준 입광부(121R)로 광이 입사되는 경우보다 상대적으로 커짐을 확인할 수 있다.
그리고 제2 비교 입광부(121L)와 같이, 발광소자(110)와 입광부의 입구의 거리가 멀어지는 경우, 출광부(123)의 단축 방향으로 방출된 광의 세기분포(x1.5-x) 및 출광부(123)의 장축 방향으로 방출된 광의 세기분포(x1.5-y)는 기준 입광부(121R)로 광이 입사되는 경우보다 상대적으로 작아짐을 확인할 수 있다.
이는 발광소자(110)와 입광부의 입구 사이의 거리가 가까워질수록 비등방 렌즈(120)에서 굴절되는 구간이 커짐에 따라 비등방 렌즈(120)의 출광부(123) 장축 방향으로 방출되는 광이 보다 넓게 방출되는 것을 확인할 수 있다.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.

Claims (9)

  1. 장축 및 단축을 가지는 발광소자; 및
    상기 발광소자의 상부에 배치되고, 상기 발광소자에서 방출된 광을 분산시키는 비등방 렌즈를 포함하고,
    상기 비등방 렌즈는, 상기 발광소자에서 방출된 광이 입사하는 입광부 및 입사된 광이 출사되는 출광부를 포함하며,
    상기 입광부와 출광부의 평면 형상은 각각 장축과 단축을 가지며, 상기 입광부의 장축과 상기 출광부의 장축은 서로 수직하게 배치되고,
    상기 발광소자의 장축과 상기 입광부의 장축은 서로 평행하게 배치된 발광모듈.
  2. 청구항 1에 있어서,
    상기 발광소자는 하나 이상의 발광셀로 형성된 발광 다이오드 칩을 포함하는 발광모듈.
  3. 청구항 1에 있어서,
    상기 발광소자는, 상면 및 측면에서 광을 방출하는 발광 다이오드 칩을 포함하는 발광모듈.
  4. 청구항 1에 있어서,
    상기 발광소자의 장축(x) 및 단축(y)의 길이 비율(y/x)은 40% 내지 54%인 발광모듈.
  5. 청구항 1에 있어서,
    상기 발광소자는, 상기 발광소자의 단축 방향에서, 상기 발광소자와 상기 입광부의 입구의 거리가 짧아질수록 상기 출광부에서 방출되는 광이 상대적으로 넓게 퍼지도록 방출되는 발광모듈.
  6. 청구항 1에 있어서,
    상기 발광소자의 단축 방향에서 상기 발광소자와 상기 입광부의 입구의 거리는, 상기 발광소자의 장축 방향에서 상기 발광소자와 상기 입광부의 입구의 거리보다 짧은 발광모듈.
  7. 청구항 1에 있어서,
    상기 입광부는 상기 비등방 렌즈의 하면에서 상부 방향으로 오목하게 형성되고, 상기 오목하게 형성된 내면은 상기 발광소자에서 방출된 광이 상기 비등방 렌즈로 입사하는 입사면인 발광모듈.
  8. 청구항 1에 있어서,
    상기 비등방 렌즈는, 상기 비등방 렌즈의 하면에 소정의 곡률을 가지도록 상기 비등방 렌즈의 하면에서 하부 방향으로 돌출된 돌출면을 갖는 발광모듈.
  9. 청구항 8에 있어서,
    상기 입광부는, 상기 돌출면에서 상부 방향으로 오목하게 형성된 발광모듈.
PCT/KR2020/003561 2019-03-14 2020-03-13 비등방 렌즈를 포함하는 발광모듈 WO2020185046A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190029472A KR20200109804A (ko) 2019-03-14 2019-03-14 비등방 렌즈를 포함하는 발광모듈
KR10-2019-0029472 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020185046A1 true WO2020185046A1 (ko) 2020-09-17

Family

ID=72253732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003561 WO2020185046A1 (ko) 2019-03-14 2020-03-13 비등방 렌즈를 포함하는 발광모듈

Country Status (3)

Country Link
KR (1) KR20200109804A (ko)
CN (1) CN211424055U (ko)
WO (1) WO2020185046A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141649A1 (en) * 2012-03-23 2013-09-26 Seoul Semiconductor Co., Ltd. Light emitting unit array and light diffusing lens suitable for the same
KR101690740B1 (ko) * 2016-01-05 2016-12-29 주식회사 에이치엘옵틱스 비대칭 확산 렌즈
KR20170096370A (ko) * 2016-02-16 2017-08-24 엘지이노텍 주식회사 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛
KR20180099486A (ko) * 2017-02-28 2018-09-05 서울반도체 주식회사 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
KR20190021689A (ko) * 2017-08-23 2019-03-06 엘지이노텍 주식회사 조명 모듈 및 이를 구비한 라이트 유닛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141649A1 (en) * 2012-03-23 2013-09-26 Seoul Semiconductor Co., Ltd. Light emitting unit array and light diffusing lens suitable for the same
KR101690740B1 (ko) * 2016-01-05 2016-12-29 주식회사 에이치엘옵틱스 비대칭 확산 렌즈
KR20170096370A (ko) * 2016-02-16 2017-08-24 엘지이노텍 주식회사 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛
KR20180099486A (ko) * 2017-02-28 2018-09-05 서울반도체 주식회사 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
KR20190021689A (ko) * 2017-08-23 2019-03-06 엘지이노텍 주식회사 조명 모듈 및 이를 구비한 라이트 유닛

Also Published As

Publication number Publication date
CN211424055U (zh) 2020-09-04
KR20200109804A (ko) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2018159977A1 (ko) 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
WO2016190644A1 (ko) 발광 장치 및 이를 포함하는 차량용 램프
US8840265B2 (en) Illumination apparatus employing light-emitting device package
WO2009157664A2 (ko) 반도체 소자 패키지
WO2019225877A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
KR20130114368A (ko) 발광 램프
KR20190109221A (ko) 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
WO2012091245A1 (en) Light emitting module having wafer with integrated power supply device
EP3591722B1 (en) Display device, backlight unit, light-emitting module and lens
KR20130114369A (ko) 발광 소자 패키지
WO2010044548A2 (ko) 발광 소자 패키지 및 그 제조방법, 발광 장치
WO2014010816A1 (en) Light emitting device, and method for fabricating the same
WO2019093713A1 (ko) 발광 소자 필라멘트
WO2013122358A1 (ko) 렌즈를 갖는 발광 모듈
WO2016178487A1 (ko) 자외선 발광 장치
WO2010074371A1 (ko) 칩온보드형 발광 다이오드 패키지 및 그것의 제조 방법
WO2019235752A1 (ko) 면발광 마이크로 엘이디 모듈
WO2015012443A1 (ko) 광 반도체 조명장치
WO2020185046A1 (ko) 비등방 렌즈를 포함하는 발광모듈
US20080158886A1 (en) Compact High-Intensity LED Based Light Source
WO2015057006A1 (en) Lighting apparatus and lighting system
WO2018155946A1 (ko) 발광모듈, 렌즈 및 이를 포함하는 튜브형 조명 장치
WO2019240461A1 (ko) 발광 다이오드 패키지
WO2022255829A1 (ko) 레이저 다이오드 패키지
WO2018016662A1 (ko) Led 조명용 기판 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770316

Country of ref document: EP

Kind code of ref document: A1