KR20170096370A - 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛 - Google Patents

광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛 Download PDF

Info

Publication number
KR20170096370A
KR20170096370A KR1020160017677A KR20160017677A KR20170096370A KR 20170096370 A KR20170096370 A KR 20170096370A KR 1020160017677 A KR1020160017677 A KR 1020160017677A KR 20160017677 A KR20160017677 A KR 20160017677A KR 20170096370 A KR20170096370 A KR 20170096370A
Authority
KR
South Korea
Prior art keywords
light
recess
light emitting
optical lens
axis
Prior art date
Application number
KR1020160017677A
Other languages
English (en)
Other versions
KR102550461B1 (ko
Inventor
강민수
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160017677A priority Critical patent/KR102550461B1/ko
Priority to US15/433,714 priority patent/US10203086B2/en
Priority to EP17156224.2A priority patent/EP3208533B1/en
Priority to CN201710083158.3A priority patent/CN107085252B/zh
Priority to JP2017027303A priority patent/JP6879770B6/ja
Priority to TW106105038A priority patent/TWI725121B/zh
Publication of KR20170096370A publication Critical patent/KR20170096370A/ko
Application granted granted Critical
Publication of KR102550461B1 publication Critical patent/KR102550461B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Abstract

실시 예는 광학 렌즈 및 이를 갖는 발광 모듈이 개시된다.
실시 예에 따른 광학 렌즈는, 실시 예에 따른 광학 렌즈는, 바닥면; 상기 바닥면의 센터 영역에 상 방향으로 볼록한 리세스; 상기 리세스의 둘레에 입사면; 상기 바닥면 및 입사면의 반대측에 배치되며 상기 리세스에 대응되는 센터 영역이 볼록한 곡면을 갖는 제1광 출사면; 및 상기 제1광 출사면과 상기 바닥면 사이에 수직 방향으로 연결된 제2광 출사면을 포함하며, 상기 리세스는 제1축 방향의 바닥 너비와 제2축 방향의 바닥 너비가 다르다.

Description

광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛{OPTICAL LENS, LIGHT EMITTING MODULE AND LIGHT UNIT HAVING THEREOF}
본 발명은 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛에 관한 것이다.
발광 소자, 예컨대 발광 다이오드(Light Emitting Diode)는 전기 에너지를 빛으로 변환하는 반도체 소자의 일종으로, 기존의 형광등, 백열등을 대체하여 차세대 광원으로서 각광받고 있다.
발광 다이오드는 반도체 소자를 이용하여 빛을 생성하므로, 텅스텐을 가열하여 빛을 생성하는 백열등이나, 또는 고압 방전을 통해 생성된 자외선을 형광체에 충돌시켜 빛을 생성하는 형광등에 비해 매우 낮은 전력만을 소모한다.
또한, 발광 다이오드는 반도체 소자의 전위 갭을 이용하여 빛을 생성하므로 기존의 광원에 비해 수명이 길고 응답특성이 빠르며, 친환경적 특징을 갖는다.
이에 따라, 기존의 광원을 발광 다이오드로 대체하기 위한 많은 연구가 진행되고 있으며, 발광 다이오드는 실내외에서 사용되는 각종 램프, 표시장치, 전광판, 가로등 등의 조명 장치의 광원으로서 사용이 증가하고 있다.
실시 예는 서로 다른 축 방향의 길이가 다른 광 출사면을 갖는 광학 렌즈를 제공한다.
실시 예는 서로 다른 축 방향의 길이가 다른 입사면 및 광 출사면을 갖는 광학 렌즈를 제공한다.
실시 예는 비대칭 형상의 리세스 및 입사면을 갖는 광학 렌즈를 제공한다.
실시 예는 서로 다른 축 방향의 길이가 다른 광 출사면의 정점이 플랫하거나 볼록한 광학 렌즈를 제공한다.
실시 예는 입사면의 둘레에 곡면의 제1광 출사면과 플랫한 제2광 출사면을 갖는 광학 렌즈를 제공한다.
실시 예는 입사면의 정점이 입사면의 바닥보다 제1광 출사면의 정점에 더 인접한 광학 렌즈를 제공한다.
실시 예는 발광 소자의 둘레에 경사진 바닥면이 배치된 광학 렌즈를 제공한다.
실시 예는 적어도 5면으로 발광하는 발광 소자로부터 입사된 광의 출사각을 변화시켜 주는 광학 렌즈를 제공한다.
실시 예는 발광 소자의 상면 및 측면으로부터 방출된 광을 광학 렌즈의 입사면으로 입사시켜 줄 수 있는 발광 모듈을 제공한다.
실시 예는 광학 렌즈의 서로 다른 출사면으로 출사된 광의 방출 각도를 변화시켜 주어 휘도 분포를 제어할 수 있는 발광 모듈을 제공한다.
실시 예는 광학 렌즈의 바닥면이 발광 소자의 둘레에 배치되므로 광의 손실을 방지할 수 있는 발광 모듈을 제공한다.
실시 예는 광학 렌즈의 바닥면을 경사진 면 또는 곡면으로 배치하여, 중심부의 휘도 분포를 개선한 발광 모듈을 제공한다.
실시 예는 출사된 광의 휘도 분포를 제어할 수 있는 광학 렌즈 및 이를 구비한 발광 모듈을 제공한다.
실시 예는 광학 렌즈의 측면 돌출부는 상기 광학 렌즈의 출사면보다 외측으로 돌출되는 발광 모듈을 제공한다.
실시 예에 따른 광학 렌즈는, 바닥면; 상기 바닥면의 센터 영역에 상 방향으로 볼록한 리세스; 상기 리세스의 둘레에 입사면; 상기 바닥면 및 입사면의 반대측에 배치되며 상기 리세스에 대응되는 센터 영역이 볼록한 곡면을 갖는 제1광 출사면; 및 상기 제1광 출사면과 상기 바닥면 사이에 수직 방향으로 연결된 제2광 출사면을 포함하며, 상기 리세스는 제1축 방향의 바닥 너비와 제2축 방향의 바닥 너비가 다르다.
실시 예에 따른 광학 렌즈를 갖는 발광 모듈 또는 라이트 유닛을 포함할 수 있다.
실시 예는 서로 다른 축 방향의 휘도 분포가 다른 광학 렌즈를 제공할 수 잇다.
실시 예는 광학 렌즈의 개수를 줄일 수 있다.
실시 예는 광학 렌즈로부터 추출된 광에 의한 핫 스팟과 같은 노이즈를 줄일 수 있다.
실시 예는 회로 기판 상에 배치된 광학 렌즈 간의 간섭을 줄여줄 수 있다.
실시 예는 백라이트 유닛 내에 배치되는 발광 소자 및 광학 렌즈의 개수를 줄일 수 있다.
실시 예는 광학 렌즈를 갖는 발광 모듈 및 라이트 유닛의 신뢰성을 개선시켜 줄 수 있다.
실시 예는 인접한 광학 렌즈 간의 간섭을 최소화하여 화상을 개선할 수 있다.
실시 예는 발광 모듈을 갖는 조명 시스템의 신뢰성을 개선시켜 줄 수 있다.
도 1은 제1실시 예에 따른 광학 렌즈의 평 단면도이다.
도 2는 도 1의 광학 렌즈의 배면도이다.
도 3은 도 1의 광학 렌즈의 제1측면도이다.
도 4는 도 1의 광학 렌즈의 제2측면도이다.
도 5는 도 1의 광학 렌즈의 A-A측 단면도이다.
도 6은 도 1의 광학 렌즈의 B-B측 단면도이다.
도 7은 제2실시 예에 따른 광학 렌즈의 배면도이다.
도 8은 도 7의 광학 렌즈의 C-C측 단면도이다.
도 9는 도 7의 광학 렌즈의 D-D측 단면도이다.
도 10은 제3실시 예에 따른 광학 렌즈의 측 단면도이다.
도 11은 도 10의 광학 렌즈의 다른 측 단면도이다.
도 12는 제4실시 예에 따른 광학 렌즈의 사시도이다.
도 13은 도 12의 광학 렌즈의 측면도이다.
도 14는 도 12의 광학 렌즈의 F-F측 단면도이다.
도 15는 도 12의 광학 렌즈의 E-E측 단면도이다.
도 16은 실시 예에 따른 광학 렌즈를 갖는 발광 모듈을 나타낸 도면이다.
도 17은 도 16의 발광 모듈의 G-G측 단면도이다.
도 18은 도 16의 발광 모듈의 H-H측 단면도이다.
도 19는 도 16의 발광 모듈을 갖는 라이트 유닛을 나타낸 평면도이다.
도 20은 실시 예에 따른 광학 렌즈의 리세스 내에 배치된 발광 소자의 일 예를 나타낸 도면이다.
도 21은 실시 예에 따른 광학 렌즈의 리세스 내에 배치된 발광 소자의 다른 예를 나타낸 도면이다.
도 22는 실시 예에 따른 광학 렌즈의 측면 돌출부의 일 예를 나타낸 도면이다.
도 23은 실시 예에 따른 광학 렌즈의 측면 돌출부의 다른 예를 나타낸 도면이다.
도 24는 제5실시 예에 따른 광학 렌즈 및 지지 플레트의 결합 측 단면도의 예이다.
도 25는 실시 예에 따른 발광 소자의 상세 구성을 나타낸 제1예이다.
도 26은 실시 예에 따른 발광 소자의 제2예이다.
도 27은 실시 예에 따른 발광 소자의 제3예를 나타낸 도면이다.
도 28의 (A)(B)는 비교 예 및 실시 예에 따른 광학 렌즈의 휘도 분포를 비교한 도면이다.
도 29의 (A)(B)는 비교 예 및 실시 예에 다른 광학 렌즈의 방사 패턴을 비교한 도면이다.
도 30은 도 28의 (A)(B)의 X-X'축 방향에서의 휘도 분포를 나타낸 그래프이다.
도 31은 도 28의 (A)(B)의 Y-Y'축 방향에서의 휘도 분포를 나타낸 그래프이다.
도 32는 실시 예에 따른 광학 렌즈의 X-X'및 Y-Y'축 방향의 광도와 비교 예의 광도를 비교한 도면이다.
도 33의 (A)(B)(C)은 제2실시 예에 따른 광학 렌즈를 갖는 발광 모듈에서의 휘도 분포 및 각 축 방향의 광도를 나타낸 도면이다.
도 34는 도 33의 광학 렌즈를 갖는 라이트 유닛에서의 휘도 분포 및 각 축 방향에서의 광도를 나타낸 도면이다.
도 35의 (A)(B)(C)은 제3실시 예에 따른 광학 렌즈를 갖는 발광 모듈에서의 휘도 분포 및 각 축 방향의 광도를 나타낸 도면이다.
도 36은 도 35의 광학 렌즈를 갖는 라이트 유닛에서의 휘도 분포 및 각 축 방향에서의 광도를 나타낸 도면이다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
이하, 첨부된 도면을 참조하여 실시 예에 따른 광학 렌즈 및 이를 구비한 발광 모듈을 설명한다.
도 1은 제1실시 예에 따른 광학 렌즈의 평 단면도이고, 도 2는 도 1의 광학 렌즈의 배면도이며, 도 3은 도 1의 광학 렌즈의 제1측면도이며, 도 4는 도 1의 광학 렌즈의 제2측면도이고, 도 5는 도 1의 광학 렌즈의 A-A측 단면도이고, 도 6은 도 1의 광학 렌즈의 B-B측 단면도이다.
도 1 내지 도 5를 참조하면, 광학 렌즈(300)는, 바닥면(310), 상기 바닥면(310)의 센터 영역에 상기 바닥면(310)으로부터 위로 볼록한 리세스(recess)(315), 상기 리세스(315)의 둘레에 입사면(320), 상기 바닥면(310) 및 상기 입사면(320)의 반대측에 배치된 제1광 출사면(330), 및 상기 제1광 출사면(330)의 하부에 배치된 제2광 출사면(335)을 포함한다.
상기 광학 렌즈(300)는 상기 리세스(315)의 바닥 중심(P0)에 대해 수직한 축 방향은 중심 축(Z0) 또는 광 축으로 정의할 수 있다. 상기 리세스(315)의 바닥 중심(P0)에 대해 수평한 두 축 방향은 제1축(X0) 및 제2축(Y0) 방향일 수 있으며, 상기 제1축(X0) 및 제2축(Y0) 방향은 상기 중심 축(Z0) 또는 광축과 직교하는 두 축 방향이 될 수 있다. 상기 리세스(315)의 바닥 중심(P0)은 광학 렌즈(300)의 하부 중심일 수 있으며, 기준 점으로 정의될 수 있다.
상기 광학 렌즈(300)는 투광성 재료를 포함할 수 있다. 상기 광학 렌즈(300)는 폴리카보네이트(PC), 폴리메타크릴산메틸(PMMA), 실리콘 또는 에폭시 수지, 또는 글래스(Glass) 중 적어도 하나를 포함할 수 있다. 상기 광학 렌즈(300)는 굴절률이 1.4 내지 1.7 범위의 투명 재료를 포함할 수 있다.
실시 예에 따른 광학 렌즈(300)의 바닥면(310)은 리세스(315)의 둘레에 배치될 수 있다. 상기 바닥면(310)은 수평한 제1축(X0)에 대해 경사진 면을 포함하거나 곡면을 포함하거나 경사진 면과 곡면을 모두 포함할 수 있다. 상기 바닥면(310)은 리세스(315)에 인접한 영역은 플랫하고 제2광 출사면(335)에 인접한 영역은 경사진 면일 수 있다. 상기 리세스(315)는 상기 바닥면(310)의 센터 영역으로부터 수직 상 방향으로 함몰된 형태를 갖는다.
상기 광학 렌즈(300)의 바닥면(310)은 리세스(315)에 인접한 제1에지(23) 및 제2광 출사면(335)에 인접한 제2에지(25)를 포함한다. 상기 제1에지(23)는 상기 입사면(320)과 상기 바닥면(310) 사이의 경계 영역이며, 광학 렌즈(300)의 저점 영역을 포함할 수 있다. 상기 제1에지(23)는 상기 바닥면(310)의 영역 중에서 가장 낮은 지점을 포함할 수 있다. 상기 제1에지(23)의 위치는 수평한 제1축(XO)을 기준으로 제2에지(25)의 위치보다 낮게 위치될 수 있다. 상기 제1에지(23)는 상기 입사면(320)의 하부 둘레를 커버할 수 있다. 상기 제2에지(25)는 상기 바닥면(310)의 외곽 영역이거나 상기 제2광 출사면(335)의 하부 영역이 될 수 있다. 상기 제2에지(25)는 상기 바닥면(310)과 상기 제2광 출사면(335) 사이의 경계 영역일 수 있다.
상기 제1에지(23)는 상기 바닥면(310)의 내측 영역이거나 상기 입사면(320)과의 경계 라인일 수 있다. 상기 제2에지(25)는 상기 바닥면(310)의 외측 영역이거나 제2광 출사면(335)과의 경계 라인일 수 있다. 상기 제1에지(23)는 내측 모서리이거나 곡면을 포함할 수 있다. 상기 제2에지(25)는 외측 모서리이거나 곡면을 포함할 수 있다. 상기 제1에지(23)와 제2에지(25)는 상기 바닥면(310)의 양 단부일 수 있다. 상기 제1에지(23)는 바텀 뷰 형상이 원 형상 또는 타원 형상일 수 있으며, 상기 제2에지(25)는 바텀 뷰 형상이 원 형상 또는 타원 형상일 수 있다.
상기 바닥면(310)은 상기 제1에지(23)에 가까울수록 상기 제1축(X0) 및 제2축(Y0)과의 간격이 점차 좁아질 수 있다. 상기 바닥면(310)은 상기 제1에지(23)로부터 멀어질수록 상기 제1축(X0) 및 제2축(Y0)과의 간격이 점차 커질 수 있다. 상기 바닥면(310)에서 상기 제2에지(25)는 상기 제1축(X0) 및 제2축(Y0)과의 간격이 최대이고, 상기 제1에지(23)는 상기 제1축(X0) 및 제2축(Y0)사이의 간격이 최소일 수 있다. 상기 바닥면(310)은 상기 제1에지(23)와 상기 제2에지(25) 사이에 경사진 면 또는 곡면을 포함하거나 경사진 면과 곡면을 모두 포함할 수 있다. 상기 바닥면(310)은 상기 제1축(X0) 및 제2축(Y0)을 기준으로 외측으로 갈수록 점차 멀어지게 됨으로써, 상기 리세스(315)에서 바라 볼 때는 전 반사면이 될 수 있다. 예를 들면, 상기 리세스(315) 내에서 상기 리세스(315)의 바닥 위에 임의의 광원이 배치된 경우, 상기 바닥면(310)은 경사진 면을 제공할 수 있다. 상기 바닥면(310)은 상기 리세스(315)를 통해 입사되는 광에 대해 반사하게 되므로, 광의 손실을 줄여줄 수 있다. 또한 상기 입사면(320)을 거치지 않고 바닥면(310)으로 직접 입사되는 광들을 제거할 수 있다. 상기 광학 렌즈(300)는 입사면(320)을 통해 반사면(310)으로 입사된 광의 광량이 증가될 수 있고, 지향각 분포를 개선시켜 줄 수 있다.
상기 바닥면(310)이 상기 리세스(315)의 제1에지(23)에 인접할수록 더 낮아지게 되므로, 제1축(X0) 및 제2축(Y0)에 점차 가까워질 수 있다. 이에 따라 상기 바닥면(310)의 면적은 증가될 수 있다. 상기 리세스(315)의 입사면(320)의 면적은 상기 바닥면(310)이 낮아진 만큼 더 넓어질 수 있다. 상기 리세스(315)의 깊이는 상기 제1에지(23)로부터의 높이가 되므로, 더 깊어질 수 있다. 상기 바닥면(310)의 면적이 증가함으로써, 반사 면적을 증가시켜 줄 수 있다. 상기 리세스(315)의 바닥은 더 낮아지게 되므로, 바닥 면적을 증가시켜 줄 수 있다.
상기 바닥면(310)의 제1에지(23)는 상기 리세스(315)의 바닥과 수평한 제1축(X0) 및 제2축(Y0) 상에 배치되며, 상기 제2에지(25)는 상기 제1축(X0) 및 제2축(Y0)으로부터 소정 간격으로 이격된다. 상기 제2에지(25)와 상기 제1축(X0) 또는 제2축(Y0)간의 간격은 입사 면(320)의 하부 영역(22)으로 입사된 광을 반사하도록 경사진 면을 제공할 수 있는 거리일 수 있다. 상기 입사면(320)의 하부 영역(22)은 상기 제2에지(25)에 수평한 선이 교차되는 입사면(320)의 하부 지점과 제1에지(23) 사이의 영역일 수 있다.
상기 제2에지(25)와 상기 제1축(X0) 또는 제2축(Y0) 간의 간격은 500㎛ 이하일 수 있으며, 예컨대 450㎛ 이하일 수 있다. 상기 제2에지(25)와 상기 제1축(X0) 또는 제2축(Y0)간의 간격은 200㎛ 내지 450㎛ 범위일 수 있으며, 상기 간격이 상기 범위보다 작은 경우 상기 제2광 출사면(335)의 저점 위치가 낮아져 상기 제2광 출사면(335)으로 방출된 광들의 간섭 문제가 발생될 수 있고, 상기 범위보다 큰 경우 상기 제2광 출사면(335)의 고점 위치가 높아져 제1광 출사면(330)의 곡률이 변경되는 문제가 발생되고 광학 렌즈(300)의 두께(D5)가 증가되는 문제가 있다.
상기 바닥면(310)은 베지어(Bezier) 곡선을 갖는 곡면으로 형성될 수 있다. 상기 바닥면(310)의 곡선은 스플라인(Spline) 예컨대, 큐빅(cubic), B-스플라인, T-스플라인으로 구현될 수 있다. 상기 바닥면(310)의 곡선은 베지어 곡선(Bezier curve)로 구현될 수 있다.
상기 광학 렌즈(300)의 바닥면(310)에는 복수의 지지 돌기(350)를 포함할 수 있다. 상기 복수의 지지 돌기(350)는 상기 광학 렌즈(300)의 바닥면(310)으로부터 하 방향으로 돌출되고 상기 광학 렌즈(300)를 지지하게 된다. 도 2를 참조하면, 복수의 지지 돌기(350)는 리세스(315)의 중심으로부터 동일한 거리(D11)로 배치될 수 있다. 다른 예로서, 복수의 지지 돌기(350) 중 적어도 하나는 상기 리세스(315)의 중심으로부터 다른 거리를 가고 배치될 수 있다. 상기 복수의 지지 돌기(350)는 제1축(X) 방향에서의 간격(D13)이 제2축(Y) 방향에서의 간격(D12)보다 작을 수 있다.
상기 바닥면(310)의 바텀 뷰 형상은 타원 형상을 포함할 수 있다. 상기 바닥 면(310)의 길이는 제1축(X) 방향의 제1길이(D1)와 제2축(Y) 방향의 제2길이(D2)가 다를 수 있다. 상기 제1길이(D1)는 제1광 출사면(330)의 제1축(X) 방향의 길이이며, 제2길이(D2)는 제2광 출사면(330)의 제2축(Y) 방향의 길이일 수 있다. 상기 제1길이(D1)는 광학 렌즈(300)의 제1축(X) 방향의 길이이며, 제2길이(D2)는 제2축(Y) 방향의 길이일 수 있다. 상기 제1길이(D1)는 제2길이(D2)보다 길게 배치될 수 있으며, 상기 제1길이(D1)가 제2길이(D2) 보다 0.5mm 이상 예컨대, 1mm 이상 클 수 있다. 상기 길이는 D2<D1의 조건을 만족하며, 상기 길이 비율(D2:D1)의 비율은 1:1.03 ~ 1:1.1의 범위일 수 있다. 실시 예에 따른 광학 렌즈(300)는 제1길이(D1)가 제2길이(D2)보다 길게 배치되므로, 제1축(X) 방향의 휘도 분포가 감소되지 않도록 할 수 있다.
도 2와 같이, 상기 리세스(315)의 바닥 형상은 타원 형상을 포함할 수 있다. 도 3 내지 도 6과 같이, 상기 리세스(315)는 측 단면이 종(bell) 형상, 포탄(shell) 형상 또는 타원 형상을 포함할 수 있다. 상기 리세스(315)는 위로 올라갈수록 너비가 점차 좁아지는 형상을 가질 수 있다. 상기 리세스(315)는 바닥 둘레의 제1에지(23)로부터 상단의 제1정점(21)을 향해 점진적으로 수렴되는 형상을 가질 수 있다. 상기 리세스(315)의 바텀 뷰가 타원 형상인 경우, 상기 제1정점(21)을 향해 직경이 점진적으로 감소될 수 있다. 상기 리세스(315)는 중심 축(Z0)을 기준으로 축 대칭 형상으로 제공될 수 있다. 상기 입사면(320)의 제1정점(21)은 도트 형상으로 제공될 수 있다.
상기 리세스(315)의 바닥 너비(D3,D4)는 광원 즉, 후술되는 발광 소자가 삽입될 수 있는 너비를 가질 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 발광 소자의 너비의 3배 이하 예컨대, 2.5배 이하일 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 상기 발광 소자의 너비의 1.2배 내지 2.5배 범위일 수 있으며, 상기 범위보다 작은 경우 발광 소자의 삽입이 용이하지 않고 상기 범위보다 큰 경우 상기 발광 소자와 제1에지(23) 사이의 영역을 통한 광 손실 또는 광 간섭을 줄 수 있다.
상기 리세스(315)의 바닥 너비를 보면, 제1축(X) 방향의 너비(D3)는 제2축(Y) 방향의 너비(D4)와 다를 수 있다. 예컨대, 제1축(X) 방향의 너비(D3)는 제2축 방향의 너비(D4)보다 작을 수 있다. 상기 리세스(315)의 바닥 너비는 D3<D4의 조건을 만족하며, 그 차이는 0.5mm 이상 5mm 이하 예컨대, 1mm 이상 2mm 이하의 차이를 가질 수 있다. 상기 너비 D4는 D3의 4배 이하 예컨대, 2배 이하일 수 있다. 상기 리세스(315)의 바닥 너비의 비율(D3:D4)은 1:1.3 내지 1:2의 범위의 차이를 가질 수 있다. 이러한 제2축(Y) 방향의 너비(D4)가 제1축(X) 방향의 너비(D3)보다 상기 범위보다 작을 경우, Y축 방향의 휘도 개선이 미미하고 상기 범위보다 큰 경우 X축 방향의 휘도 분포가 상대적으로 작아질 수 있다.
실시 예에 따른 광학 렌즈(300)는 외형적으로 제1축(X) 방향의 제1길이(D1)가 제2축(Y) 방향의 제2길이(D2)보다 길고, 상기 리세스(315)이 너비는 제1축(X) 방향의 너비(D3)가 제2축(Y) 방향의 너비(D4)보다 좁게 배치될 수 있다. 이에 따라 광학 렌즈(300)는 외형적인 길이 차이로 인해 제2축(Y) 방향의 휘도 분포를 확보할 수 있고, 휘도 분포 측면에서 상기 리세스(315)에 의해 제1축(X) 방향 및 모서리 영역으로 넓게 확산시켜 줄 수 있다.
상기 광학 렌즈(300)가 배열된 발광 모듈의 바 개수를 2개 이하 예컨대, 1개로 줄여줄 수 있으며, 백라이트 유닛에서의 상/하 코너부의 휘도 분포를 개선시켜 줄 수 있다.
상기 입사면(320)은 상기 바닥면(310)의 센터 영역으로부터 위로 볼록한 곡면을 가지며, 상기 리세스(315)의 둘레 면 또는 내부면일 수 있다. 상기 입사면(320)은 상기 리세스(315)의 바닥 중심(P0)과의 거리가 위로 올라갈수록 점차 멀어질 수 있다. 상기 입사면(320)은 볼록한 곡면으로 제공되므로, 전 영역에서 광을 굴절시켜 줄 수 있다. 상기 입사면(320)의 하부 영역(22)은 상기 제2광 출사면(335)보다 낮은 위치에 배치되어, 직접 또는 간접으로 광을 입사받을 수 있다. 상기 입사면(320)의 하부 영역(22)은 상기 리세스(315)의 바닥에서 반사된 광을 입사받을 수 있다. 상기 입사면(320)은 베지어(Bezier) 곡선을 갖는 회전체로 형성될 수 있다. 상기 입사면(320)의 곡선은 스플라인(Spline) 예컨대, 큐빅(cubic), B-스플라인, T-스플라인으로 구현될 수 있다. 상기 입사면(320)의 곡선은 베지어 곡선(Bezier curve)로 구현될 수 있다.
도 5 및 도 6과 같이, 광학 렌즈(300)는 제1광 출사면(330)과 제2광 출사면(335)을 포함한다. 상기 제1광 출사면(330)은 렌즈 몸체를 기준으로 상기 입사면(320) 및 상기 바닥면(310)의 반대측 면일 수 있다. 상기 제1광 출사면(330)은 곡면을 포함한다. 상기 제1광 출사면(330)은 중심 축(Z0)에 대응되는 지점이 제2정점(31)이 될 수 있으며, 상기 제2정점(31)은 렌즈 몸체의 정점일 수 있다. 상기 제1광 출사면(330)은 위로 볼록한 곡면을 포함할 수 있다. 상기 제1광 출사면(330)은 전 영역이 곡면 예컨대, 서로 다른 양의 곡률을 갖는 곡면으로 형성될 수 있다. 상기 제1광 출사면(330)은 상기 중심 축(Z0)을 기준으로 축대칭 형상 예컨대, 제1축(X) 또는 제2축(Y) 대칭 형상을 가질 수 있다. 상기 제2광 출사면(335)에서 상기 제2정점(31)에 인접한 센터측 제1영역(A1,A2)은 음의 곡률을 가지지 않을 수 있다. 상기 제2광 출사면(335)에서 상기 제2정점(31)에 인접한 제1영역(A1,A2)은 서로 다른 양의 곡률 반경을 가질 수 있다. 상기 제1영역(A1,A2)의 외측 사이드 영역인 제2영역(A3,A4)은 서로 다른 곡률 반경을 갖는 곡면으로 형성될 수 있다.
상기 제1광 출사면(330)은 상기 리세스(315)의 바닥 중심(P0)과의 거리가 중심 축(Z0)으로부터 멀어질수록 점차 커질 수 있다. 상기 제1광 출사면(330) 중에서 상기 중심 축(Z0) 즉, 상기 제2정점(31)에 인접할수록 수평한 축에 대해 기울기가 없거나 미세한 기울기 차이를 가질 수 있다. 즉, 상기 제1광 출사면(330)의 센터측 제1영역(A1,A2)은 완만한 곡선이거나 평탄한 직선을 포함할 수 있다. 상기 제1광 출사면(330)의 제1영역(A1,A2)은 상기 리세스(315)와 수직하게 오버랩되는 영역을 포함할 수 있다. 상기 제1광 출사면(330)의 사이드측 제2영역(A3,A4)은 상기 제1영역(A1,A2)보다 급격한 곡면을 가질 수 있다. 상기 제1광 출사면(330)과 상기 입사면(320)은 볼록한 곡면을 가지므로, 상기 리세스(315)의 바닥 중심(P0)으로부터 방출되는 광에 대해 측 방향으로 확산시켜 줄 수 있다. 상기 제1광 출사면(330)과 상기 입사면(320)은 상기 중심 축(Z0)으로부터 70±4 이내의 각도 범위에서 상기 중심 축(Z0)으로부터 멀어질수록 광이 굴절되는 각도가 커질 수 있다.
상기 제1광 출사면(330)의 제1영역(A1,A2)의 곡률 반경은 상기 입사면(320)의 곡률 반경 보다는 클 수 있다. 상기 제1광 출사면(330)의 제1영역(A1,A2)의 곡률 반경은 상기 제2영역(A3,A4)의 곡률 반경보다 클 수 있다. 상기 제1축(X) 방향과 제2축(Y) 방향의 제1영역(A1,A2)은 서로 동일한 또는 서로 다른 곡률 반경을 가질 수 있으며, 이에 대해 한정하지는 않는다. 상기 제1축(X) 방향과 제2축(Y) 방향의 제2영역(A3,A4)은 서로 동일한 또는 서로 다른 곡률 반경을 가질 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1광 출사면(330)의 기울기는 상기 입사면(320)의 기울기보다는 작을 수 있다. 상기 광학 렌즈(300)의 제1광 출사면(330)은 지향각 내에서 중심축(Z0)을 기준으로 거리가 멀어짐에 따라 단조가 증가하게 되며, 상기 제2광 출사면(335)은 광의 지향각 분포를 벗어난 영역을 포함하며, 상기 중심축(Z0)을 기준으로 거리가 멀어짐에 따라 단조가 동일하거나 감소하게 된다.
상기 제1광 출사면(330)과 상기 제2광 출사면(335) 사이의 경계 영역에서는 광이 굴절되는 각도가 감소될 수 있으며, 예컨대 2도 이하의 각도 범위로 감소될 수 있다. 이는 상기 제1광 출사면(330) 중에서 상기 제2광 출사면(335)에 가까운 면이 접선에 가까워지거나 수직한 면으로 제공될 수 있으므로, 광이 굴절되는 각도가 점차 감소될 수 있다.
상기 광학 렌즈(300)의 제2광 출사면(335)은 상기 리세스(315)의 바닥에 수평한 제1축(X0) 및 제2축(Y0)보다 높은 위치에 배치될 수 있다. 상기 제2광 출사면(335)은 평평한 면이거나 경사진 면일 수 있으며, 플랜지(Flange)로 정의될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(Y0)에 대해 수직하거나 경사지게 배치될 수 있다. 상기 제2광 출사면(335)은 상기 제1광 출사면(330)의 외곽 라인으로부터 수직하게 연장되거나 경사지게 연장될 수 있다. 상기 제2광 출사면(335)는 제1광 출사면(330)에 인접한 제3에지(35)를 포함하며, 상기 제3에지(35)는 상기 제1광 출사면(330)의 외곽 라인과 동일한 위치이거나 상기 제1광 출사면(330)의 외곽 라인보다 내부 또는 외부에 위치할 수 있다.
상기 제2광 출사면(335)의 제3에지(35)와 상기 중심축(Z0)을 연결한 직선는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심 축(Z0)으로부터 74±2도 이하의 각도에 위치될 수 있다. 상기 제2광 출사면(335)의 제3에지(35)는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 수평한 제1축(X0) 및 제2축(YO)에 대해 20도 이하 예컨대, 16±2도의 각도로 위치할 수 있다. 상기 리세스(315)의 바닥 중심(P0)으로 상기 제2광 출사면(335)의 제2에지(25)와 제3에지(35) 사이의 각도는 16도 이하 예컨대, 13±2도의 각도를 가질 수 있다. 이러한 제2광 출사면(335)의 제3에지(35)를 지나는 직선에 대한 각도은 상기 광학 렌즈(300)의 외부 각도이다. 상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(YO)으로부터 이격된 영역에서 입사되는 광을 굴절시켜 방사할 수 있다. 상기 제2광 출사면(335)에 의해 굴절된 광은 중심 축(Z0)을 기준으로 굴절 전의 각도보다 작은 각도로 방사될 수 있다. 이에 따라 제2광 출사면(335)은 굴절된 광이 수평한 축 또는 수평한 축보다 낮은 방향으로 방사되는 것을 억제할 수 있고 인접한 광학 부재에 간섭을 주거나 광이 손실되는 것을 방지할 수 있다.
상기 중심 축(Z0)과 상기 바닥면(310)의 제2에지(25)를 지나는 직선은 상기 제1축(X0) 또는 제2축(YO)과의 각도(θ1)가 5도 이하 예컨대, 0.4도 내지 4도 범위에 있을 수 있다. 이러한 각도(θ1)는 상기 중심 축(Z0)과의 거리와 상기 제2에지(25)의 높이에 따라 달라질 수 있으며, 상기 범위를 벗어날 경우 광학 렌즈의 두께가 변경될 수 있으며 광의 손실이 증가될 수 있다. 상기 제2광 출사면(335)은 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심축(Z0)으로부터 반치각을 벗어나는 광들을 굴절시켜 주게 되므로, 광 손실을 줄여줄 수 있다.
상기 광학 렌즈(300)의 길이(D1,D2)는 두께(D5)보다 크게 배치될 수 있다. 상기 광학 렌즈(300)의 길이(D1,D2)는 상기 두께(D5)의 2.5배 이상 예컨대, 3배 이상이 될 수 있다. 상기 광학 렌즈(300)의 길이 중 제1길이(D1)는 15mm 이상 예컨대, 16mm 내지 25mm 범위일 수 있으며, 제2길이(D2)는 16mm 이상 예컨대, 17mm 내지 30mm의 범위일 수 있다. 상기 광학 렌즈(300)의 두께(D5)는 6.5mm 이상 예컨대, 6.5mm 내지 9mm 이하의 범위일 수 있다. 이러한 광학 렌즈(300)의 서로 다른 길이(D1,D2)가 두께(D5)보다 크게 배치되므로, 조명 장치나 라이트 유닛의 전 영역에 균일한 휘도 분포를 제공할 수 있다. 또한 라이트 유닛 내에서 커버하는 영역이 개선되므로 광학 렌즈의 개수는 줄일 수 있고, 광학 렌즈(300)의 두께는 줄여줄 수 있다.
상기 리세스(315)의 깊이(D8)는 바닥 중심(P0)부터 제1정점(21)까지의 간격을 가진다. 여기서, 상기 제1정점(21)은 입사면(320)의 정점이거나 리세스(315)의 상단 지점일 수 있다. 상기 리세스(315)의 깊이(D8)는 5mm 이상 예컨대, 6mm 이상일 수 있으며, 광학 렌즈(300)의 두께(D5)의 75% 이상 예컨대, 80% 이상의 깊이를 가질 수 있다. 상기 리세스(315)의 깊이(D8)는 상기 제1광 출사면(330)의 제2정점(31)과 바닥 중심(P0) 또는 제1에지(23) 사이의 거리의 80% 이상일 수 있다. 상기 리세스(315)의 깊이(D8)가 깊게 배치됨으로써, 제1광 출사면(330)의 센터 영역이 전 반사면 또는 음의 곡률을 갖지 않더라도, 입사면(320)의 제1정점(21)의 인접 영역에서도 측 방향으로 광을 확산시켜 줄 수 있다. 상기 리세스(315)이 깊은 깊이(D8)를 가지므로, 상기 입사면(320)은 제2정점(31)에 가까운 영역에서 상기 제1정점(21)의 주변 영역으로 입사된 광을 측 방향으로 굴절시켜 줄 수 있다.
상기 리세스(315)와 상기 제1광 출사면(330) 사이의 최소 거리(D9)는 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330)의 제2정점(31) 사이의 간격일 수 있다. 상기 거리(D9)는 3mm 이하일 수 있으며, 예컨대, 0.6mm 내지 3mm 범위 또는 0.6mm 내지 2mm의 범위일 수 있다. 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330) 제2정점(31) 사이의 거리(D9)가 3mm 이상인 경우 상기 제1광 출사면(330)의 제1영역(A1,A2)과 제2영역(A3,A4)으로 진행하는 광량 차이가 커질 수 있고, 광 분포가 균일하지 않을 수 있다. 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330)의 제2정점(31) 사이의 거리(D9)가 0.6mm 미만인 경우 광학 렌즈(300)의 센터 측 강성이 약해지는 문제가 있다. 이러한 리세스(315) 및 제1광 출사면(330) 사이의 거리(D9)를 상기 범위로 배치함으로써, 제2광 출사면(335)의 제1영역(A1,A2)이 전 반사면 또는 음의 곡률을 갖지 않더라도, 광의 경로를 외측 방향으로 확산시켜 줄 수 있다. 이는 입사면(320)의 제1정점(21)이 상기 제1광 출사면(330)의 볼록한 제2정점(31)에 인접할수록 상기 입사면(320)을 통해 제1광 출사면(330)의 측 방향으로 진행하는 광의 광량이 증가될 수 있다. 따라서, 광학 렌즈(300)의 측 방향으로 확산하는 광량을 증가시켜 줄 수 있다.
상기 입사면(320)의 제1정점(21)은 상기 제2광 출사면(335)의 제3에지(35)로부터 수평하게 연장한 직선보다는 제1광 출사면(330)의 센터인 제2정점(31)에 더 인접하게 배치될 수 있다.
상기 제2광 출사면(335)의 너비(D7)는 제2에지(25) 및 제3에지(35) 사이의 직선 거리로서, 상기 리세스(315)의 깊이(D8)보다 작을 수 있다. 상기 제2광 출사면(335)의 너비(D7)는 예컨대, 1.8mm 내지 2.3mm 범위일 수 있다. 상기 제2광 출사면(335)의 너비(D7)가 상기 범위를 초과할 경우 제2광 출사면(335)으로 출사되는 광량이 증가되어 광 분포 제어가 어려운 문제가 있으며, 상기 범위보다 작을 경우 렌즈 몸체를 제조할 때, 게이트(Gate) 영역의 확보가 어려울 수 있다.
도 5 및 도 6과 같이, 상기 제1광 출사면(330)의 제1영역(A1,A2)은 상기 리세스(315)와 수직하게 오버랩되는 영역으로서, 상기 바닥 중심(P0)을 기준으로 상기 중심 축(Z0)으로부터 20도 이하의 각도 예컨대, 14도 내지 18도의 영역에 위치할 수 있다. 상기 제1광 출사면(330)의 제1영역(A1,A2)이 상기의 각도 범위를 초과할 경우 상기 리세스(315) 내의 반경이 더 커지게 되고, 상기 제1영역(A1,A2)과 상기 제2영역(A3,A4)의 광량 차이가 커지는 문제가 있다. 또한 상기 제1광 출사면(330)의 제1영역(A1,A2)이 상기 각도 범위보다 작은 경우 상기 리세스(315) 내의 반경이 더 줄어들어 광원의 삽입이 용이하지 않을 수 있으며 제1광 출사면(330)의 제1영역(A1,A2)과 제2영역(A3,A4)의 광 분포가 균일하지 않을 수 있다.
상기 광학 렌즈(300)에서 제2광 출사면(335)은 제1광 출사면(330)의 하부 둘레에 배치되며, 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)보다 아래에 배치될 수 있다. 상기 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)의 수평 선상보다 아래로 돌출될 수 있다.
상기 광학 렌즈(300)는 다른 예로서, 상기 제2광 출사면(335)에 요철 면을 구비할 수 있다. 상기 요철 면은 표면이 거친 헤이즈(Haze) 면으로 형성될 수 있다. 상기 요철 면은 산란 입자가 형성된 면일 수 있다. 상기 광학 렌즈(300)는 다른 예로서, 상기 바닥면(310)에 요철 면을 구비할 수 있다. 상기 바닥면(310)의 요철 면은 표면이 거친 헤이즈 면으로 형성되거나, 산란 입자가 형성될 수 있다.
실시 예에 따른 광학 렌즈(300)는 도 16과 같이, 회로 기판(400) 상에서 제2축(Y) 방향으로 소정 간격을 갖고 배열될 수 있다. 이러한 광학 렌즈(300)는 도 2, 도 5 및 도 6과 같이, 리세스(315)의 너비(D4>D3)가 넓은 제2축(Y) 방향으로 배열되므로, 광학 렌즈(300) 간의 간격은 넓게 하면서 광학 렌즈(300)의 개수를 줄여줄 수 있고, 상기 리세스(315)의 비대칭 구조에 의해 제1축(X) 방향으로의 휘도 분포를 개선시켜 줄 수 있다.
도 7은 제2실시 예에 따른 광학 렌즈의 배면도이며, 도 8은 도 7의 광학 렌즈의 C-C측 단면도이고, 도 9는 도 7의 광학 렌즈의 D-D측 단면도이다. 제1실시 예를 설명함에 있어서, 제1실시 예와 동일한 부분의 설명은 생략하기로 한다.
도 7 내지 도 9를 참조하면, 제2실시 예에 따른 광학 렌즈는, 바닥면(310), 상기 바닥면(310)의 센터 영역에 상기 바닥면(310)으로부터 위로 볼록한 리세스(recess)(315), 상기 리세스(315)의 둘레에 입사면(320), 상기 바닥면(310) 및 상기 입사면(320)의 반대측에 배치된 제1광 출사면(330), 및 상기 제1광 출사면(330)의 하부에 배치된 제2광 출사면(335)을 포함한다. 이러한 제2실시 예에 따른 광학 렌즈는 제1실시 예의 광학 렌즈에 비해, 제1,2길이(D1,D2)와, 리세스(315)의 너비(D3,D4)와, 리세스(315)의 깊이를 상이하게 한 구조이다.
상기 광학 렌즈(300)의 바닥면(310)에는 복수의 지지 돌기(350)를 포함할 수 있다. 상기 복수의 지지 돌기(350)는 상기 광학 렌즈(300)의 바닥면(310)으로부터 하 방향으로 돌출되고 상기 광학 렌즈(300)를 지지하게 된다.
상기 바닥면(310)의 바텀 뷰 형상은 타원 형상을 포함할 수 있다. 상기 바닥 면(310), 또는 제1광 출사면(330)의 길이는 제1축(X) 방향의 제1길이(D1)와 제2축(Y) 방향의 제2길이(D2)가 다를 수 있다. 상기 제1길이(D1)는 광학 렌즈(300)의 제1축(X) 방향의 길이이며, 제2길이(D2)는 제2축(Y) 방향의 길이일 수 있다. 상기 제1길이(D1)는 제2길이(D2)보다 길게 배치될 수 있으며, 상기 제1길이(D1)가 제2길이(D2) 보다 0.5mm 이상 예컨대, 1mm 이상 클 수 있다. 상기 길이는 D2<D1의 조건을 만족하며, 상기 길이 비율(D2:D1)의 비율은 1:1.03 ~ 1:1.1의 범위일 수 있다. 실시 예에 따른 광학 렌즈(300)는 제1길이(D1)가 제2길이(D2)보다 길게 배치되므로, 제1축(X) 방향의 휘도 분포가 감소되지 않도록 할 수 있다.
도 7과 같이, 상기 리세스(315)의 바닥 형상은 타원 형상을 포함할 수 있다. 도 8 및 도 도 9와 같이, 상기 리세스(315)는 측 단면이 종(bell) 형상, 포탄(shell) 형상 또는 타원 형상을 포함할 수 있다. 상기 리세스(315)는 위로 올라갈수록 너비가 점차 좁아지는 형상을 가질 수 있다. 상기 리세스(315)는 바닥 둘레의 제1에지(23)로부터 상단의 제1정점(21)을 향해 점진적으로 수렴되는 형상을 가질 수 있다. 상기 리세스(315)의 바텀 뷰가 타원 형상인 경우, 상기 제1정점(21)을 향해 직경이 점진적으로 감소될 수 있다. 상기 리세스(315)는 중심 축(Z0)을 기준으로 축 대칭 형상으로 제공될 수 있다. 상기 입사면(320)의 제1정점(21)은 도트 형상으로 제공될 수 있다.
상기 리세스(315)의 바닥 너비(D3,D4)는 광원 즉, 후술되는 발광 소자가 삽입될 수 있는 너비를 가질 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 발광 소자의 너비의 3배 이하 예컨대, 2.5배 이하일 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 상기 발광 소자의 너비의 1.2배 내지 2.5배 범위일 수 있으며, 상기 범위보다 작은 경우 발광 소자의 삽입이 용이하지 않고 상기 범위보다 큰 경우 상기 발광 소자와 제1에지(23) 사이의 영역을 통한 광 손실 또는 광 간섭을 줄 수 있다.
상기 리세스(315)의 바닥 너비를 보면, 제1축(X) 방향의 너비(D3)는 제2축(Y) 방향의 너비(D4)와 다를 수 있다. 예컨대, 제1축(X) 방향의 너비(D3)는 제2축 방향의 너비(D4)보다 작을 수 있다. 상기 리세스(315)의 바닥 너비는 D3<D4의 조건을 만족하며, 그 차이는 2mm 이상 5mm 이하 예컨대, 3mm 이상 5mm 이하의 차이를 가질 수 있다. 상기 너비 D4는 D3의 4배 이하일 수 있다. 상기 리세스(315)의 바닥 너비의 비율(D3:D4)은 1:1.5 내지 1:3의 범위의 차이를 가질 수 있다. 이러한 제2축(Y) 방향의 너비(D4)가 제1축(X) 방향의 너비(D3)보다 상기 범위보다 작을 경우, Y축 방향의 휘도 개선이 미미하고 상기 범위보다 큰 경우 X축 방향의 휘도 분포가 상대적으로 작아질 수 있다. 또한 리세스(315)의 바닥 너비(D3,D4) 간의 너비 차이가 크게 됨으로써, 광원 예컨대, 발광 소자로부터 방출된 광이 리세스 너비가 넓은 방향 예컨대, Y축 방향으로의 광 추출 효율의 개선을 유도할 수 있다.
실시 예에 따른 광학 렌즈(300)는 외형적으로 제1축(X) 방향의 제1길이(D1)가 제2축(Y) 방향의 제2길이(D2)보다 길고, 상기 리세스(315)이 너비는 제1축(X) 방향의 너비(D3)가 제2축(Y) 방향의 너비(D4)보다 좁게 배치될 수 있다. 이에 따라 광학 렌즈(300)는 외형적인 길이 차이로 인해 제2축(Y) 방향의 휘도 분포를 확보할 수 있고, 휘도 분포 측면에서 상기 리세스(315)에 의해 제1축(X) 방향 및 모서리 영역으로 넓게 확산시켜 줄 수 있다.
상기 광학 렌즈(300)가 배열된 발광 모듈의 바 개수를 2개 이하 예컨대, 1개로 줄여줄 수 있으며, 백라이트 유닛에서의 상/하 코너부의 휘도 분포를 개선시켜 줄 수 있다.
상기 광학 렌즈(300)의 제2광 출사면(335)은 상기 리세스(315)의 바닥에 수평한 제1축(X0) 및 제2축(Y0)보다 높은 위치에 배치될 수 있다. 상기 제2광 출사면(335)은 평평한 면이거나 경사진 면일 수 있으며, 플랜지(Flange)로 정의될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(Y0)에 대해 수직하거나 경사지게 배치될 수 있다. 상기 제2광 출사면(335)은 상기 제1광 출사면(330)의 외곽 라인으로부터 수직하게 연장되거나 경사지게 연장될 수 있다. 상기 제2광 출사면(335)는 제1광 출사면(330)에 인접한 제3에지(35)를 포함하며, 상기 제3에지(35)는 상기 제1광 출사면(330)의 외곽 라인과 동일한 위치이거나 상기 제1광 출사면(330)의 외곽 라인보다 내부 또는 외부에 위치할 수 있다.
상기 제2광 출사면(335)의 제3에지(35)와 상기 중심축(Z0)을 연결한 직선는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심 축(Z0)으로부터 74±2도 이하의 각도에 위치될 수 있다. 상기 제2광 출사면(335)의 제3에지(35)는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 수평한 제1축(X0) 및 제2축(YO)에 대해 20도 이하 예컨대, 16±2도의 각도로 위치할 수 있다. 상기 리세스(315)의 바닥 중심(P0)으로 상기 제2광 출사면(335)의 제2에지(25)와 제3에지(35) 사이의 각도는 16도 이하 예컨대, 13±2도의 각도를 가질 수 있다. 이러한 제2광 출사면(335)의 제3에지(35)를 지나는 직선에 대한 각도은 상기 광학 렌즈(300)의 외부 각도이다. 상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(YO)으로부터 이격된 영역에서 입사되는 광을 굴절시켜 방사할 수 있다. 상기 제2광 출사면(335)에 의해 굴절된 광은 중심 축(Z0)을 기준으로 굴절 전의 각도보다 작은 각도로 방사될 수 있다. 이에 따라 제2광 출사면(335)은 굴절된 광이 수평한 축 또는 수평한 축보다 낮은 방향으로 방사되는 것을 억제할 수 있고 인접한 광학 부재에 간섭을 주거나 광이 손실되는 것을 방지할 수 있다.
상기 중심 축(Z0)과 상기 바닥면(310)의 제2에지(25)를 지나는 직선은 상기 제1축(X0) 또는 제2축(YO)과의 각도(θ1)가 5도 이하 예컨대, 0.4도 내지 4도 범위에 있을 수 있다. 이러한 각도(θ1)는 상기 중심 축(Z0)과의 거리와 상기 제2에지(25)의 높이에 따라 달라질 수 있으며, 상기 범위를 벗어날 경우 광학 렌즈의 두께가 변경될 수 있으며 광의 손실이 증가될 수 있다. 상기 제2광 출사면(335)은 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심축(Z0)으로부터 반치각을 벗어나는 광들을 굴절시켜 주게 되므로, 광 손실을 줄여줄 수 있다.
상기 광학 렌즈(300)의 길이(D1,D2)는 두께(D5)보다 크게 배치될 수 있다. 상기 광학 렌즈(300)의 길이(D1,D2)는 상기 두께(D5)의 2.5배 이상 예컨대, 3배 이상이 될 수 있다. 상기 광학 렌즈(300)의 길이 중 제1길이(D1)는 15mm 이상 예컨대, 16mm 내지 25mm 범위일 수 있으며, 제2길이(D2)는 16mm 이상 예컨대, 17mm 내지 30mm의 범위일 수 있다. 상기 광학 렌즈(300)의 두께(D5)는 6.5mm 이상 예컨대, 6.5mm 내지 9mm 이하의 범위일 수 있다. 이러한 광학 렌즈(300)의 서로 다른 길이(D1,D2)가 두께(D5)보다 크게 배치되므로, 조명 장치나 라이트 유닛의 전 영역에 균일한 휘도 분포를 제공할 수 있다. 또한 라이트 유닛 내에서 커버하는 영역이 개선되므로 광학 렌즈의 개수는 줄일 수 있고, 광학 렌즈(300)의 두께는 줄여줄 수 있다.
상기 리세스(315)의 깊이(D8)는 바닥 중심(P0)부터 제1정점(21)까지의 간격을 가진다. 여기서, 상기 제1정점(21)은 입사면(320)의 정점이거나 리세스(315)의 상단 지점일 수 있다. 상기 리세스(315)의 깊이(D8)는 5mm 이상 예컨대, 6mm 이상일 수 있으며, 상기 광학 렌즈(300)의 두께(D5)의 75% 이상 예컨대, 80% 이상의 깊이를 가질 수 있다. 상기 리세스(315)의 깊이(D8)는 상기 제1광 출사면(330)의 제2정점(31)과 바닥 중심(P0) 또는 제1에지(23) 사이의 거리의 80% 이상일 수 있다. 상기 리세스(315)의 깊이(D8)가 깊게 배치됨으로써, 제1광 출사면(330)의 센터 영역이 전 반사면 또는 음의 곡률을 갖지 않더라도, 입사면(320)의 제1정점(21)의 인접 영역에서도 측 방향으로 광을 확산시켜 줄 수 있다. 상기 리세스(315)이 깊은 깊이(D8)를 가지므로, 상기 입사면(320)은 제2정점(31)에 가까운 영역에서 상기 제1정점(21)의 주변 영역으로 입사된 광을 측 방향으로 굴절시켜 줄 수 있다.
상기 리세스(315)와 상기 제1광 출사면(330) 사이의 최소 거리(D9)는 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330)의 제2정점(31) 사이의 간격일 수 있다. 상기 거리(D9)는 3mm 이하일 수 있으며, 예컨대, 0.6mm 내지 3mm 범위 또는 0.6mm 내지 2mm의 범위일 수 있다. 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330) 제2정점(31) 사이의 거리(D9)가 3mm 이상인 경우 상기 제1광 출사면(330)의 센터 영역과 사이드 영역으로 진행하는 광량 차이가 커질 수 있고, 광 분포가 균일하지 않을 수 있다. 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330)의 제2정점(31) 사이의 거리(D9)가 0.6mm 미만인 경우 광학 렌즈(300)의 센터 측 강성이 약해지는 문제가 있다. 이러한 리세스(315) 및 제1광 출사면(330) 사이의 거리(D9)를 상기 범위로 배치함으로써, 제2광 출사면(335)의 센터 영역이 전 반사면 또는 음의 곡률을 갖지 않더라도, 광의 경로를 외측 방향으로 확산시켜 줄 수 있다. 이는 입사면(320)의 제1정점(21)이 상기 제1광 출사면(330)의 볼록한 제2정점(31)에 인접할수록 상기 입사면(320)을 통해 제1광 출사면(330)의 측 방향으로 진행하는 광의 광량이 증가될 수 있다. 따라서, 광학 렌즈(300)의 측 방향 예컨대, Y축 방향으로 확산하는 광량을 증가시켜 줄 수 있다.
상기 입사면(320)의 제1정점(21)은 상기 제2광 출사면(335)의 제3에지(35)로부터 수평하게 연장한 직선보다는 제1광 출사면(330)의 센터인 제2정점(31)에 더 인접하게 배치될 수 있다.
상기 제2광 출사면(335)의 너비(D7)는 제2에지(25) 및 제3에지(35) 사이의 직선 거리로서, 상기 리세스(315)의 깊이(D8)보다 작을 수 있다. 상기 제2광 출사면(335)의 너비(D7)는 예컨대, 1.8mm 내지 2.3mm 범위일 수 있다. 상기 제2광 출사면(335)의 너비(D7)가 상기 범위를 초과할 경우 제2광 출사면(335)으로 출사되는 광량이 증가되어 광 분포 제어가 어려운 문제가 있으며, 상기 범위보다 작을 경우 렌즈 몸체를 제조할 때, 게이트(Gate) 영역의 확보가 어려울 수 있다.
상기 광학 렌즈(300)에서 제2광 출사면(335)은 제1광 출사면(330)의 하부 둘레에 배치되며, 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)보다 아래에 배치될 수 있다. 상기 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)의 수평 선상보다 아래로 돌출될 수 있다. 상기 광학 렌즈(300)는 다른 예로서, 상기 제2광 출사면(335)에 요철 면을 구비할 수 있다. 상기 요철 면은 표면이 거친 헤이즈(Haze) 면으로 형성될 수 있다. 상기 요철 면은 산란 입자가 형성된 면일 수 있다. 상기 광학 렌즈(300)는 다른 예로서, 상기 바닥면(310)에 요철 면을 구비할 수 있다. 상기 바닥면(310)의 요철 면은 표면이 거친 헤이즈 면으로 형성되거나, 산란 입자가 형성될 수 있다.
실시 예에 따른 광학 렌즈(300)는 도 16과 같이, 회로 기판(400) 상에서 제2축(Y) 방향으로 소정 간격을 갖고 배열될 수 있다. 이러한 광학 렌즈(300)는 도 7 내지 도 9와 같이, 리세스(315)의 너비(D4>D3)가 넓은 제2축(Y) 방향으로 배열되므로, 광학 렌즈(300) 간의 간격은 넓게 하면서 광학 렌즈(300)의 개수를 줄여줄 수 있고, 상기 리세스(315)의 비대칭 구조에 의해 제1축(X) 방향으로의 휘도 분포를 개선시켜 줄 수 있다.
도 10은 제3실시 예에 따른 광학 렌즈의 측 단면도이며, 도 11은 도 10의 광학 렌즈의 다른 측 단면도이다.
도 10 내지 도 11을 참조하면, 제3실시 예에 따른 광학 렌즈는, 바닥면(310), 상기 바닥면(310)의 센터 영역에 상기 바닥면(310)으로부터 위로 볼록한 리세스(recess)(315), 상기 리세스(315)의 둘레에 입사면(320), 상기 바닥면(310) 및 상기 입사면(320)의 반대측에 배치된 제1광 출사면(330), 및 상기 제1광 출사면(330)의 하부에 배치된 제2광 출사면(335)을 포함한다. 이러한 제3실시 예에 따른 광학 렌즈는 제1실시 예의 광학 렌즈에 비해, 제1,2길이(D1,D2)와, 리세스(315)의 너비(D3,D4)와, 리세스(315)의 깊이를 상이하게 한 구조이다. 또한 제3실시 예에 따른 광학 렌즈는 제2광 출사면(335)의 너비(B1,B2)가 영역에 따라 상이한 구조로 제공될 수 있다.
상기 광학 렌즈의 바닥면(310)의 바텀 뷰 형상은 타원 형상을 포함할 수 있다. 상기 바닥 면(310), 또는 제1광 출사면(330)의 길이는 제1축(X) 방향의 제1길이(D1)와 제2축(Y) 방향의 제2길이(D2)가 다를 수 있다. 상기 제1길이(D1)는 광학 렌즈(300)의 제1축(X) 방향의 길이이며, 제2길이(D2)는 제2축(Y) 방향의 길이일 수 있다. 상기 제1길이(D1)는 제2길이(D2)보다 길게 배치될 수 있으며, 상기 제1길이(D1)가 제2길이(D2) 보다 0.5mm 이상 예컨대, 0.5mm 이상 2mm 이하의 차이를 가질 수 있다. 상기 길이는 D2<D1의 조건을 만족하며, 상기 길이 비율(D2:D1)의 비율은 1:1.03 ~ 1:1.1의 범위일 수 있다. 실시 예에 따른 광학 렌즈(300)는 제1길이(D1)가 제2길이(D2)보다 길게 배치되므로, 제1축(X) 방향의 휘도 분포가 감소되지 않도록 할 수 있다.
상기 리세스(315)의 바닥 형상은 타원 형상을 포함할 수 있다. 상기 리세스(315)는 측 단면이 종(bell) 형상, 포탄(shell) 형상 또는 타원 형상을 포함할 수 있다. 상기 리세스(315)는 위로 올라갈수록 너비가 점차 좁아지는 형상을 가질 수 있다. 상기 리세스(315)는 바닥 둘레의 제1에지(23)로부터 상단의 제1정점(21)을 향해 점진적으로 수렴되는 형상을 가질 수 있다. 상기 리세스(315)의 바텀 뷰가 타원 형상인 경우, 상기 제1정점(21)을 향해 직경이 점진적으로 감소될 수 있다. 상기 리세스(315)는 중심 축(Z0)을 기준으로 축 대칭 형상으로 제공될 수 있다. 상기 입사면(320)의 제1정점(21)은 도트 형상으로 제공될 수 있다.
상기 리세스(315)의 바닥 너비(D3,D4)는 광원 즉, 후술되는 발광 소자가 삽입될 수 있는 너비를 가질 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 발광 소자의 너비의 3배 이하 예컨대, 2.5배 이하일 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 상기 발광 소자의 너비의 1.2배 내지 2.5배 범위일 수 있으며, 상기 범위보다 작은 경우 발광 소자의 삽입이 용이하지 않고 상기 범위보다 큰 경우 상기 발광 소자와 제1에지(23) 사이의 영역을 통한 광 손실 또는 광 간섭을 줄 수 있다.
상기 리세스(315)의 바닥 너비를 보면, 제1축(X) 방향의 너비(D3)는 제2축(Y) 방향의 너비(D4)와 다를 수 있다. 예컨대, 제1축(X) 방향의 너비(D3)는 제2축 방향의 너비(D4)보다 작을 수 있다. 상기 리세스(315)의 바닥 너비는 D3<D4의 조건을 만족하며, 그 차이는 1.5mm 이상 5mm 이하 예컨대, 1.5mm 이상 3mm 이하의 차이를 가질 수 있다. 상기 너비 D4는 D3의 3배 이하 예컨대, 2배 이하일 수 있다. 상기 리세스(315)의 바닥 너비의 비율(D3:D4)은 1:1.5 내지 1:3의 범위의 차이를 가질 수 있다. 이러한 제2축(Y) 방향의 너비(D4)가 제1축(X) 방향의 너비(D3)보다 상기 범위보다 작을 경우, Y축 방향의 휘도 개선이 미미하고 상기 범위보다 큰 경우 X축 방향의 휘도 분포가 상대적으로 작아질 수 있다. 또한 리세스(315)의 바닥 너비(D3,D4) 간의 너비 차이가 크지 않더라도 광원 예컨대, 발광 소자로부터 방출된 광이 리세스 너비가 넓은 방향 예컨대, Y축 방향으로의 광 추출 효율의 개선을 유도할 수 있다.
실시 예에 따른 광학 렌즈(300)는 외형적으로 제1축(X) 방향의 제1길이(D1)가 제2축(Y) 방향의 제2길이(D2)보다 길고, 상기 리세스(315)이 너비는 제1축(X) 방향의 너비(D3)가 제2축(Y) 방향의 너비(D4)보다 좁게 배치될 수 있다. 이에 따라 광학 렌즈(300)는 외형적인 길이 차이로 인해 제2축(Y) 방향의 휘도 분포를 확보할 수 있고, 휘도 분포 측면에서 상기 리세스(315)에 의해 제1축(X) 방향 및 모서리 영역으로 넓게 확산시켜 줄 수 있다.
상기 광학 렌즈(300)가 배열된 발광 모듈의 바 개수를 2개 이하 예컨대, 1개로 줄여줄 수 있으며, 백라이트 유닛에서의 상/하 코너부의 휘도 분포를 개선시켜 줄 수 있다.
상기 광학 렌즈(300)의 제2광 출사면(335)은 상기 리세스(315)의 바닥에 수평한 제1축(X0) 및 제2축(Y0)보다 높은 위치에 배치될 수 있다. 상기 제2광 출사면(335)은 평평한 면이거나 경사진 면일 수 있으며, 플랜지(Flange)로 정의될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(Y0)에 대해 수직하거나 경사지게 배치될 수 있다. 상기 제2광 출사면(335)은 상기 제1광 출사면(330)의 외곽 라인으로부터 수직하게 연장되거나 경사지게 연장될 수 있다. 상기 제2광 출사면(335)는 제1광 출사면(330)에 인접한 제3에지(35)를 포함하며, 상기 제3에지(35)는 상기 제1광 출사면(330)의 외곽 라인과 동일한 위치이거나 상기 제1광 출사면(330)의 외곽 라인보다 내부 또는 외부에 위치할 수 있다.
상기 제2광 출사면(335)의 제3에지(35)와 상기 중심축(Z0)을 연결한 직선는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심 축(Z0)으로부터 74±2도 이하의 각도에 위치될 수 있다. 상기 제2광 출사면(335)의 제3에지(35)는 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 수평한 제1축(X0) 및 제2축(YO)에 대해 20도 이하 예컨대, 16±2도의 각도로 위치할 수 있다. 상기 리세스(315)의 바닥 중심(P0)으로 상기 제2광 출사면(335)의 제2에지(25)와 제3에지(35) 사이의 각도는 16도 이하 예컨대, 13±2도의 각도를 가질 수 있다. 이러한 제2광 출사면(335)의 제3에지(35)를 지나는 직선에 대한 각도은 상기 광학 렌즈(300)의 외부 각도이다. 상기 제2광 출사면(335)은 상기 수평한 제1축(X0) 및 제2축(YO)으로부터 이격된 영역에서 입사되는 광을 굴절시켜 방사할 수 있다. 상기 제2광 출사면(335)에 의해 굴절된 광은 중심 축(Z0)을 기준으로 굴절 전의 각도보다 작은 각도로 방사될 수 있다. 이에 따라 제2광 출사면(335)은 굴절된 광이 수평한 축 또는 수평한 축보다 낮은 방향으로 방사되는 것을 억제할 수 있고 인접한 광학 부재에 간섭을 주거나 광이 손실되는 것을 방지할 수 있다.
상기 중심 축(Z0)과 상기 바닥면(310)의 제2에지(25)를 지나는 직선은 상기 제1축(X0) 또는 제2축(YO)과의 각도(θ1, θ2)가 5도 이하 예컨대, 0.4도 내지 4도 범위에 있을 수 있다. 상기 제1축(X0) 또는 제2축(Y0)과의 각도(θ1, θ2)는 서로 동일하거나 1도 이하의 차이를 가질 수 있다. 이러한 각도(θ1, θ2)는 상기 중심 축(Z0)과의 거리와 상기 제2에지(25)의 높이에 따라 달라질 수 있으며, 상기 범위를 벗어날 경우 광학 렌즈의 두께가 변경될 수 있으며 광의 손실이 증가될 수 있다. 상기 제2광 출사면(335)은 상기 리세스(315)의 바닥 중심(P0)을 기준으로 상기 중심축(Z0)으로부터 반치각을 벗어나는 광들을 굴절시켜 주게 되므로, 광 손실을 줄여줄 수 있다.
상기 광학 렌즈(300)의 길이(D1,D2)는 두께(D5)보다 크게 배치될 수 있다. 상기 광학 렌즈(300)의 길이(D1,D2)는 상기 두께(D5)의 2.5배 이상 예컨대, 3배 이상이 될 수 있다. 상기 광학 렌즈(300)의 길이 중 제1길이(D1)는 15mm 이상 예컨대, 16mm 내지 25mm 범위일 수 있으며, 제2길이(D2)는 16mm 이상 예컨대, 17mm 내지 30mm의 범위일 수 있다. 상기 광학 렌즈(300)의 두께(D5)는 6.5mm 이상 예컨대, 6.5mm 내지 9mm 이하의 범위일 수 있다. 이러한 광학 렌즈(300)의 서로 다른 길이(D1,D2)가 두께(D5)보다 크게 배치되므로, 조명 장치나 라이트 유닛의 전 영역에 균일한 휘도 분포를 제공할 수 있다. 또한 라이트 유닛 내에서 커버하는 영역이 개선되므로 광학 렌즈의 개수는 줄일 수 있고, 광학 렌즈(300)의 두께는 줄여줄 수 있다.
상기 리세스(315)의 깊이(D8)는 바닥 중심(P0)부터 제1정점(21)까지의 간격을 가진다. 여기서, 상기 제1정점(21)은 입사면(320)의 정점이거나 리세스(315)의 상단 지점일 수 있다. 상기 리세스(315)의 깊이(D8)는 3mm 이상 예컨대, 3.5mm 이상일 수 있으며, 상기 광학 렌즈(300)의 두께(D5)의 55% 이상 예컨대, 57% 이상의 깊이를 가질 수 있다. 상기 리세스(315)의 깊이(D8)는 상기 제1광 출사면(330)의 제2정점(31)과 바닥 중심(P0) 또는 제1에지(23) 사이의 거리의 80% 이상일 수 있다. 상기 리세스(315)의 깊이(D8)가 제1실시 예에 비해 깊지 않더라도, 제1광 출사면(330)의 센터 영역이 전 반사면 또는 음의 곡률을 갖지 않게 된 경우, 입사면(320)의 제1정점(21)의 인접 영역에서도 측 방향으로 광을 확산시켜 줄 수 있다. 상기 리세스(315)가 낮은 깊이(D8)를 가지고, 리세스(315)의 너비 차이에 의해 Y축 방향으로의 광 추출 효율을 개선시켜 줄 수 있다.
상기 리세스(315)와 상기 제1광 출사면(330) 사이의 최소 거리(D9)는 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330)의 제2정점(31) 사이의 간격일 수 있다. 상기 거리(D9)는 5mm 미만일 수 있으며, 예컨대, 1mm 내지 3.5mm의 범위일 수 있다. 상기 입사면(320)의 제1정점(21)과 제1광 출사면(330) 제2정점(31) 사이의 거리(D9)가 5mm 이상인 경우 리세스(315)의 낮은 깊이로 인해 광 추출 효율이 저하될 수 있다. 상기한 구조를 갖는 리세스(315)에 의해 상기 제1광 출사면(330)의 제1축(X) 방향에 비해 제2축(Y) 방향으로의 광 확산을 효과적으로 수행할 수 있다.
상기 입사면(320)의 제1정점(21)은 상기 제2광 출사면(335)의 제3에지(35)로부터 수평하게 연장한 직선보다는 제1광 출사면(330)의 센터인 제2정점(31)에 더 인접하게 배치될 수 있다.
상기 제2광 출사면(335)의 너비(B1, B2)는, 제2에지(25) 및 제3에지(35) 사이의 직선 거리이다. 상기 제2광 출사면(335)의 너비(B1, B2)를 보면, 수평한 제1축(X0) 방향의 제2에지(25)에 가까운 영역의 너비(B2)가 가장 넓고 제2축(Y0) 방향의 제2에지(25)에 가까운 영역의 너비(B1)가 가장 좁을 수 있다. 또한 상기 수평한 제1축(X0) 방향의 제2에지(25)에 가까울수록 너비(B2)가 점차 넓어지고 제2축(Y0) 방향의 제2에지(25)에 가까울수록 너비(B1)가 점차 좁아질 수 있다.
상기 제2광 출사면(335)의 너비(B1, B2) 중 최대 너비(B2)는 상기 리세스(315)의 깊이(D8)보다 작을 수 있다. 상기 제2광 출사면(335)의 너비(B1,B2)는 예컨대, 1.5mm 내지 2.3mm 범위일 수 있다. 상기 제2광 출사면(335)의 너비(B2)가 상기 범위를 초과할 경우 제2광 출사면(335)으로 출사되는 광량이 증가되어 광 분포 제어가 어려운 문제가 있다. 여기서, 제2광 출사면(335)은 너비(B2)를 갖는 영역이 렌즈 몸체를 제조할 때, 게이트(Gate) 영역으로 사용될 수 있다.
상기 광학 렌즈(300)에서 제2광 출사면(335)은 제1광 출사면(330)의 하부 둘레에 배치되며, 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)보다 아래에 배치될 수 있다. 상기 바닥면(310)은 상기 제2광 출사면(335)의 제2에지(25)의 수평 선상보다 아래로 돌출될 수 있다. 상기 광학 렌즈(300)는 다른 예로서, 상기 제2광 출사면(335)에 요철 면을 구비할 수 있다. 상기 요철 면은 표면이 거친 헤이즈(Haze) 면으로 형성될 수 있다. 상기 요철 면은 산란 입자가 형성된 면일 수 있다. 상기 광학 렌즈(300)는 다른 예로서, 상기 바닥면(310)에 요철 면을 구비할 수 있다. 상기 바닥면(310)의 요철 면은 표면이 거친 헤이즈 면으로 형성되거나, 산란 입자가 형성될 수 있다.
실시 예에 따른 광학 렌즈(300)는 도 16과 같이, 회로 기판(400) 상에서 제2축(Y) 방향으로 소정 간격을 갖고 배열될 수 있다. 이러한 광학 렌즈(300)는 도 10 및 도 11와 같이, 리세스(315)의 너비(D4>D3)가 넓은 제2축(Y) 방향으로 배열되므로, 광학 렌즈(300) 간의 간격은 넓게 하면서 광학 렌즈(300)의 개수를 줄여줄 수 있고, 상기 리세스(315)의 비대칭 구조에 의해 제1축(X) 방향으로의 휘도 분포를 개선시켜 줄 수 있다.
도 12는 제4실시 예에 따른 광학 렌즈의 사시도이고, 도 13은 도 12의 광학 렌즈의 측면도이고, 도 14는 도 12의 광학 렌즈의 F-F측 단면도이며, 도 15는 도 12의 광학 렌즈의 E-E측 단면도이다.
도 12 내지 도 15를 참조하면, 제4실시 예에 따른 광학 렌즈(300A)는, 바닥면(310), 상기 바닥면(310)의 센터 영역에 상기 바닥면(310)으로부터 위로 볼록한 리세스(recess)(315A), 상기 리세스(315A)의 둘레에 입사면(320A), 상기 바닥면(310A) 및 상기 입사면(320A)의 반대측에 배치된 제1광 출사면(330A,330B), 및 상기 제1광 출사면(330A,330B)의 하부에 배치된 제2광 출사면(335A,335B)을 포함한다.
상기 광학 렌즈(300A)는 바닥면(310)의 중심을 지나는 2개의 축(X,Y) 중 제1축(X) 방향의 제1길이(D23)가 최대값을 가지도록 형성하고, 제2축(Y) 방향의 제2길이(D22)가 최소 값을 가지도록 형성될 수 있다. 상기 광학 렌즈(300A)의 바닥면(310)은 제1,2축(X,Y) 방향으로 제1길이(D23) 및 제2길이(D22)를 가질 수 있으며, 그 외 형상이 반 원 형상을 2개 연결한 형상을 가질 수 있다. 상기 바닥 면(310)에 인접한 제2광 출사면(335A,335B)는 센터 측 예컨대, 2개의 반원 형상에 의해 구분되는 경계를 따라 1개 이상의 변곡점을 가질 수 있다. 이에 의해, 상기 바닥면(310)은 외곽 형상이 "8"자 형상을 가지거나 두 개의 반구 형상이 겹쳐진 형상일 수 있다. 상기 바닥 면(310)은 플랫한 내측 영역(312)와 경사진 외측 영역(314)를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 리세스(315A)는 상기 바닥 면(310)의 센터 영역으로부터 상 방향으로 함몰되며, 상기 리세스(315A)의 바닥 너비는 제1축(X) 방향의 너비(D3)는 제2축(Y) 방향의 너비(D4)보다 작을 수 있다. 즉, 너비(D4)는 너비(D3)보다 넓을 수 있다. 상기 리세스(315A)의 바닥 너비는 D3<D4의 조건을 만족하며, 그 차이는 1.5mm 이상 5mm 이하 예컨대, 1.5mm 이상 3mm 이하의 차이를 가질 수 있다. 상기 너비 D4는 D3의 3배 이하 예컨대, 2배 이하일 수 있다. 상기 리세스(315)의 바닥 너비의 비율(D3:D4)은 1:1.5 내지 1:3의 범위의 차이를 가질 수 있다. 이러한 제2축(Y) 방향의 너비(D4)가 제1축(X) 방향의 너비(D3)보다 상기 범위보다 작을 경우, Y축 방향의 휘도 개선이 미미하고 상기 범위보다 큰 경우 X축 방향의 휘도 분포가 상대적으로 작아질 수 있다. 또한 리세스(315)의 바닥 너비(D3,D4) 간의 너비 차이가 크지 않더라도 광원 예컨대, 발광 소자로부터 방출된 광이 리세스 너비가 넓은 방향 예컨대, Y축 방향으로의 광 추출 효율의 개선을 유도할 수 있다.
실시 예에 따른 광학 렌즈(300A)는 외형적으로 제1축(X) 방향의 제1길이(D22)가 제2축(Y) 방향의 제2길이(D23)보다 길고, 상기 리세스(315)이 너비는 제1축(X) 방향의 너비(D3)가 제2축(Y) 방향의 너비(D4)보다 좁게 배치될 수 있다. 이에 따라 광학 렌즈(300A)는 외형적인 길이 차이로 인해 제2축(Y) 방향의 휘도 분포를 확보할 수 있고, 휘도 분포 측면에서 상기 리세스(315A)에 의해 제1축(X) 방향 및 모서리 영역으로 넓게 확산시켜 줄 수 있다. 상기 광학 렌즈(300A)가 배열된 발광 모듈의 바 개수를 2개 이하 예컨대, 1개로 줄여줄 수 있으며, 백라이트 유닛에서의 상/하 코너부의 휘도 분포를 개선시켜 줄 수 있다.
상기 입사면(320A)는 상기 리세스(315A)의 둘레에 배치되며, 정점(21)을 갖는다. 상기 리세스(315)의 바닥 형상은 타원 형상을 포함할 수 있다. 상기 리세스(315)는 측 단면이 종(bell) 형상, 포탄(shell) 형상 또는 타원 형상을 포함할 수 있다. 상기 리세스(315)는 위로 올라갈수록 너비가 점차 좁아지는 형상을 가질 수 있다. 상기 리세스(315)는 바닥 둘레의 제1에지(23)로부터 상단의 제1정점(21)을 향해 점진적으로 수렴되는 형상을 가질 수 있다. 상기 리세스(315)의 바텀 뷰가 타원 형상인 경우, 상기 제1정점(21)을 향해 직경이 점진적으로 감소될 수 있다. 상기 리세스(315)는 중심 축(Z0)을 기준으로 축 대칭 형상으로 제공될 수 있다. 상기 입사면(320)의 제1정점(21)은 도트 형상으로 제공될 수 있다.
상기 리세스(315)의 바닥 너비(D3,D4)는 광원 즉, 후술되는 발광 소자가 삽입될 수 있는 너비를 가질 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 발광 소자의 너비의 3배 이하 예컨대, 2.5배 이하일 수 있다. 상기 리세스(315)의 바닥 너비(D3,D4)는 상기 발광 소자의 너비의 1.2배 내지 2.5배 범위일 수 있으며, 상기 범위보다 작은 경우 발광 소자의 삽입이 용이하지 않고 상기 범위보다 큰 경우 상기 발광 소자와 제1에지(23) 사이의 영역을 통한 광 손실 또는 광 간섭을 줄 수 있다.
상기 제1광 출사면(330A,330B)는 Y축 방향의 센터 영역(336)의 변곡 부분에 의해 2개의 곡면 또는 구면 형상을 가질 수 있다. 상기 센터 영역(336)의 너비 및 정점(31A)이 제1,2광 출사면(330A,330B)의 너비 및 정점보다는 낮을 수 있다. 상기 제1출사면(330A,330B)은 유효경을 기준으로 30% 내지 70% 사이에 적어도 1개 이상의 만곡점을 가지고 있다. 또한, 상기 광학 렌즈(300A)의 중심의 두께가 항상 최소값을 가질 수 있다. 상기 제2광 출사면(335A)는 상기 광학 렌즈(300A)의 외측 둘레에 평탄한 면으로 형성되거나 경사진 면으로 형성될 수 있다.
상기 광학 렌즈(300)의 제2광 출사면(335A,335B)은 상기 리세스(315A)의 바닥에 수평한 축보다 높은 위치에 배치될 수 있다. 상기 제2광 출사면(335)은 평평한 면이거나 경사진 면일 수 있으며, 플랜지(Flange)로 정의될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2광 출사면(335A,335B)은 상기 수평한 축에 대해 수직하거나 경사지게 배치될 수 있다. 상기 제2광 출사면(335A,335B)은 상기 제1광 출사면(330A,330B)의 외곽 라인으로부터 수직하게 연장되거나 경사지게 연장될 수 있다. 상기 제2광 출사면(335A)는 제1광 출사면(330A,330B)에 인접한 제3에지(35)를 포함하며, 상기 제3에지(35)는 상기 제1광 출사면(330A,330B)의 외곽 라인과 동일한 위치이거나 상기 제1광 출사면(330A,330B)의 외곽 라인보다 내부 또는 외부에 위치할 수 있다.
도 14 및 도 15와 같이, 상기 리세스(315A)의 깊이(D8)는 바닥 중심(P0)부터 제1정점(21)까지의 간격을 가진다. 여기서, 상기 제1정점(21)은 입사면(320A)의 정점이거나 리세스(315A)의 상단 지점일 수 있다. 상기 리세스(315A)의 깊이(D8)는 5mm 이상 예컨대, 6mm 이상일 수 있으며, 상기 광학 렌즈(300A)의 두께(D5)의 75% 이상 예컨대, 80% 이상의 깊이를 가질 수 있다. 상기 리세스(315A)의 깊이(D8)는 상기 제1광 출사면(330A,330B) 사이의 제2정점(31A)과 바닥 중심(P0) 또는 제1에지(23) 사이의 거리의 80% 이상일 수 있다. 상기 리세스(315A)의 깊이(D8)가 깊게 배치됨으로써, 제1광 출사면(330A,330B)의 센터 영역이 전 반사면 또는 음의 곡률을 갖지 않더라도, 입사면(320A)의 제1정점(21)의 인접 영역에서도 측 방향으로 광을 확산시켜 줄 수 있다. 상기 리세스(315A)이 깊은 깊이(D8)를 가지므로, 상기 입사면(320A)은 제2정점(31A)에 가까운 영역에서 상기 제1정점(21)의 주변 영역으로 입사된 광을 측 방향으로 굴절시켜 줄 수 있다.
상기 리세스(315A)와 상기 제1광 출사면(330A,330B) 사이의 최소 거리(D9)는 상기 입사면(320A)의 제1정점(21)과 제1광 출사면(330A,330B) 사이의 제2정점(31A) 사이의 간격일 수 있다. 상기 거리(D9)는 3mm 이하일 수 있으며, 예컨대, 0.6mm 내지 3mm 범위 또는 0.6mm 내지 2mm의 범위일 수 있다. 상기 입사면(320A)의 제1정점(21)과 제2정점(31A) 사이의 거리(D9)가 3mm 이상인 경우 영역에 따라 광량 차이가 커질 수 있고, 광 분포가 균일하지 않을 수 있다. 상기 입사면(320A)의 제1정점(21)과 제1광 출사면(330A,330B)의 제2정점(31A) 사이의 거리(D9)가 0.6mm 미만인 경우 광학 렌즈(300A)의 센터 측 강성이 약해지는 문제가 있다. 이러한 리세스(315A) 및 제1광 출사면(330A,330B) 사이의 거리(D9)를 상기 범위로 배치함으로써, 광의 경로를 외측 방향으로 확산시켜 줄 수 있다. 이는 입사면(320A)의 제1정점(21)이 상기 제1광 출사면(330A,330B) 사이의 제2정점(31A)에 인접할수록 상기 입사면(320A)을 통해 제1광 출사면(330A,330B)의 측 방향으로 진행하는 광의 광량이 증가될 수 있다. 따라서, 광학 렌즈(300A)의 측 방향 예컨대, X축 방향으로 확산하는 광량을 증가시켜 줄 수 있다.
상기 입사면(320A)의 제1정점(21)은 상기 제2광 출사면(335A)의 제3에지(35)로부터 수평하게 연장한 직선보다는 제1광 출사면(330A,330B) 사이의 제2정점(31A)에 더 인접하게 배치될 수 있다.
상기 광학 렌즈(300A)에서 제2광 출사면(335A,335B)은 제1광 출사면(330A,330B)의 하부 둘레에 배치되며, 바닥면(310)은 상기 제2광 출사면(335A,335B)의 제2에지(25)보다 아래에 배치될 수 있다. 상기 바닥면(310)은 상기 제2광 출사면(335A,335B)의 제2에지(25)의 수평 선상보다 아래로 돌출될 수 있다. 상기 광학 렌즈(300A)는 다른 예로서, 상기 제2광 출사면(335)에 요철 면을 구비할 수 있다. 상기 요철 면은 표면이 거친 헤이즈(Haze) 면으로 형성될 수 있다. 상기 요철 면은 산란 입자가 형성된 면일 수 있다. 상기 광학 렌즈(300A)는 다른 예로서, 상기 바닥면(310)에 요철 면을 구비할 수 있다. 상기 바닥면(310)의 요철 면은 표면이 거친 헤이즈 면으로 형성되거나, 산란 입자가 형성될 수 있다.
실시 예에 따른 광학 렌즈(300A)는 도 16과 같이, 회로 기판(400) 상에서 제2축(Y) 방향으로 소정 간격을 갖고 배열될 수 있다. 이러한 광학 렌즈(300A)는 도 14 내지 도 15와 같이, 리세스(315A)의 너비(D4>D3)가 넓은 제2축(Y) 방향으로 배열되므로, 광학 렌즈(300A) 간의 간격은 넓게 하면서 광학 렌즈(300A)의 개수를 줄여줄 수 있고, 상기 리세스(315A)의 비대칭 구조에 의해 제1축(X) 방향으로의 휘도 분포를 개선시켜 줄 수 있다.
도 16은 실시 예에 따른 광학 렌즈를 갖는 발광 모듈을 나타낸 도면이며, 도 17은 도 16의 발광 모듈의 G-G측 단면도이고, 도 18은 도 16의 발광 모듈의 H-H측 단면도이다.
도 16 내지 도 18을 참조하면, 발광 모듈(400A)은 회로 기판(400) 상에 복수의 광학 렌즈(300)이 배치되며, 상기 광학 렌즈(300) 내에는 적어도 하나의 발광 소자(100)가 배치될 수 있다.
상기 발광 소자(100)는 하나 또는 복수개가 상기 회로 기판(400) 상에 소정의 간격을 갖고 배열될 수 있다. 상기 발광 소자(100)는 상기 광학 렌즈(300)와 상기 회로 기판(400) 사이에 배치되고, 상기 회로 기판(400)으로부터 전원을 공급받아 구동하며 광을 방출하게 된다.
상기 회로 기판(400)은 상기 발광 소자(100)와 전기적으로 연결되는 회로 층을 포함할 수 있다. 상기 회로 기판(400)은 수지 재질의 PCB, 금속 코어를 갖는 PCB(MCPCB, Metal Core PCB), 연성 PCB(FPCB, Flexible PCB) 중 적어도 하나를 포함할 수도 있으며, 이에 대해 한정하지는 않는다.
상기 광학 렌즈(300)는 상기 발광 소자(100)로부터 방출된 광을 입사면(320)으로 입사받아 제1 및 제2광 출사면(330,335)으로 방출하게 된다. 상기 입사면(320)으로부터 입사된 일부 광은 소정의 경로를 거쳐 상기 바닥면(310)에 의해 반사되어 제1 또는 제2광 출사면(330,335)으로 방출될 수 있다.
여기서, 상기 발광 소자(100)의 지향각은 발광 소자(100)가 가지는 고유한 지향각으로서, 130도 이상 예컨대, 136도 이상으로 방출될 수 있다. 상기 발광 소자(100)는 상면과 복수의 측면을 통해 광을 방출할 수 있다. 즉, 상기 발광 소자(100)는 적어도 5면 이상의 광 출사면을 가질 수 있다. 이러한 발광 소자(100)로부터 방출된 광은 제1 및 제2광 출사면(330,335)을 통해 확산된 지향각으로 방사할 수 있다.
상기 광학 렌즈(300)에서 입사면(320)은 상기 발광 소자(100)의 상면 및 측면의 외측에 배치될 수 있다. 상기 광학 렌즈(300)의 입사면(320)의 하부 영역(22)은 상기 발광 소자(100)의 다수의 측면과 서로 대면하게 배치될 수 있다. 이에 따라 상기 발광 소자(100)의 각 측면을 통해 방출된 광은 상기 입사면(320)에 누설 없이 입사될 수 있다.
상기 발광 소자(100)는 5면 이상의 발광 면을 제공하므로, 측면을 통해 방출된 광에 의해 발광 소자(100)의 지향각 분포는 넓어질 수 있다. 이러한 발광 소자(100)의 지향각 분포가 넓게 제공됨으로써, 상기 광학 렌즈(300)를 이용한 광 확산이 보다 용이한 효과가 있다. 상기 광학 렌즈(300)로부터 방출된 지향각 분포는 중심 축(P0)으로부터 상기 광학 렌즈(300)의 제2광 출사면(335)의 제3에지(35)를 지나는 두 직선이 이루는 각도보다 클 수 있다. 이러한 광학 렌즈(300)로부터 방출된 지향각 분포는 상기 제2광 출사면(335)을 통해 방출된 광의 지향 분포를 포함함으로써, 상기 제2광 출사면(335)으로부터 방출된 광 분포에 의해 광 손실을 줄이고 휘도 분포를 개선시켜 줄 수 있다.
여기서, 상기 발광 소자(100)는 사이즈(C0)가 제1,2축(X,Y) 방향이 동일한 길이를 가질 수 있으며, 예컨대 도 20과 같이 리세스(315) 내에 배치될 수 있다. 다른 예로서, 도 21과 같이 상기 발광 소자(100A)는 리세스(315)의 너비에 대응되도록 제1축(X) 방향의 길이(C1)보다는 제2축(Y) 방향의 길이(C2)가 더 클 수 있다. 이러한 발광 소자(100A)는 측면의 길이 차이(C1,C2)에 의해 리세스(315)의 입사면(320)에 더 인접하게 되므로, 광의 입사 효율을 개선시켜 줄 수 있다.
상기 광학 렌즈(300)의 바닥면(310)은 상기 회로 기판(400)의 상면에 대해 경사진 면을 제공할 수 있다. 상기 광학 렌즈(300)의 바닥면(310)은 제1축(X)을 기준으로 경사진 면으로 제공될 수 있다. 상기 바닥면(310)은 80% 이상의 영역 예컨대, 전 영역이 상기 회로 기판(400)의 상면에 대해 경사지게 배치될 수 있다. 상기 바닥면(310)은 전 반사면을 포함할 수 있다. 상기 회로 기판(400)의 상면은 광학 렌즈(300)의 바닥면(310)의 제2에지(25)보다 제1에지(23)에 더 인접하게 배치될 수 있다. 상기 바닥면(310)의 제1에지(23)는 상기 회로 기판(400)의 상면에 접촉될 수 있고, 상기 제2에지(25)는 회로 기판(400)의 상면으로부터 최대 간격으로 이격될 수 있다. 상기 제1에지(23)는 발광 소자(100) 내의 활성층보다 낮은 위치에 배치될 수 있어, 광의 손실을 방지할 수 있다.
상기 광학 렌즈(300)의 제1 및 제2광 출사면(330,335)은 입사된 광을 굴절시켜 방출하게 된다. 상기 제1광 출사면(330)은 전 영역이 광이 출사되는 곡면으로 형성될 수 있다. 상기 제1광 출사면(330)은 제2정점(31)으로부터 연속적으로 연결되는 곡면 형상을 포함한다. 상기 제1광 출사면(330)은 입사되는 광을 반사하거나 굴절시켜 외부로 출사시켜 줄 수 있다. 상기 제1광 출사면(330)은 중심 축(Z0)을 기준으로, 제1광 출사면(330)으로 방출된 광의 굴절 후의 방출 각도는 굴절 전에 입사된 입사 각도보다 클 수 있다.
상기 제2광 출사면(335)은 중심 축(Z0)을 기준으로, 굴절 후의 광의 각도가 굴절 전에 입사된 광의 각도보다 작게 굴절시켜 준다. 이에 따라 인접한 광학 렌즈(300)간의 광 간섭 거리를 길게 제공할 수 있고, 제2광 출사면(335)을 통해 출사된 일부 광과 제1광 출사면(330)으로 출사된 광이 광학 렌즈(300)의 주변에서 서로 혼색될 수 있다.
상기 제2광 출사면(335)은 제1광 출사면(330)의 하부 둘레에 배치되어 입사된 광을 굴절시켜 방출하게 된다. 상기 제2광 출사면(335)은 경사진 면 또는 플랫(flat) 면을 포함한다. 상기 제2광 출사면(335)은 예컨대 상기 회로 기판(400)의 상면에 대해 수직한 면이거나 경사진 면일 수 있다. 상기 제2광 출사면(335)이 경사진 면으로 형성될 경우, 사출 성형시 분리가 용이한 효과가 있다. 상기 제2광 출사면(335)은 발광 소자(100)의 측면으로 방출된 일부 광을 입사받아 굴절시켜 추출하게 된다. 이때 제2광 출사면(335)은 중심축(Z0)을 기준으로, 방출된 광의 출사 각이 굴절 전의 입사각보다 작을 수 있다. 이에 따라 인접한 광학 렌즈(300) 간의 광 간섭 거리를 길게 제공할 수 있다.
실시 예에 따른 광학 렌즈(300)는 리세스(315)의 바닥 너비가 제2축(Y) 방향이 제1축(X) 방향보다 더 넓은 구조를 갖고, 회로 기판(400) 상에 Y축 방향으로 배열될 수 있다. 이에 따라 리세스(315) 내로 방출된 발광 소자(100)의 광은 리세스(315) 내에서 제2축(Y) 방향으로 확산된 후, 제1축(X) 방향 및 모서리 영역으로 퍼질 수 있다. 실시 예는 비대칭 구조의 리세스(315)에 의해 특정 축 방향으로의 광을 더 확산시켜 줄 수 있어, 발광 모듈의 바(Bar)이 개수를 줄여줄 수 있다.
한편, 상기 광학 렌즈(300)의 하부에 배치된 하나 또는 복수의 지지 돌기(350)는 바닥면(310)으로부터 하 방향 즉, 회로 기판(400) 방향으로 돌출된다. 상기 지지 돌기(350)는 복수개가 회로 기판(400) 상에 고정되며, 상기 광학 렌즈(300)가 틸트되는 것을 방지할 수 있다.
도 19는 실시 예에 따른 광학 렌즈를 갖는 라이트 유닛을 나타낸 도면이다.
도 19를 참조하면, 라이트 유닛은 바텀 커버(510), 상기 바텀 커버(510) 내에 발광 모듈(400A)로서 복수의 회로 기판(400), 발광 소자(100) 및 상기 복수의 회로 기판(400) 상에 배치된 광학 렌즈(300)를 포함한다. 상기 복수의 회로 기판(400)은 바텀 커버(510)의 바닥(511) 내에 배열될 수 있다.
상기 바텀 커버(510)의 측면 커버(512)는 상기 발광 모듈(400A)로부터 방출된 광을 반사시켜 주거나, 표시 패널 방향으로 반사할 수 있다.
상기 발광 모듈(301)의 회로 기판(400)은 바텀 커버(510) 내에 2개 이하 예컨대, 1개가 배열될 수 있다. 상기 회로 기판(400)은 상기 발광 소자(100)와 전기적으로 연결되는 회로 층을 포함할 수 있다.
상기 바텀 커버(510)는 방열을 위한 금속 또는 열 전도성 수지 재질을 포함할 수 있다. 상기 바텀 커버(510)는 수납부를 구비할 수 있으며, 상기 수납부의 둘레에는 측면 커버를 구비할 수 있다. 실시예에 따른 회로 기판(400) 상에는 반사 시트(미도시)가 배치될 수 있다. 상기 반사 시트는 예를 들어, PET, PC, PVC 레진 등으로 형성될 수 있으나, 이에 대해 한정하지는 않는다.
실시 예에 다른 바텀 커버(510) 상에는 광학 시트(미도시)가 배치될 수 있으며, 상기 광학 시트는, 분산된 광을 모으는 프리즘 시트들, 휘도강화시트 및 광을 다시 확산시키는 확산 시트 중 적어도 하나를 포함할 수 있다. 상기 광학 시트와 발광 모듈 사이의 영역에는 투명한 재질의 도광층(미도시)이 배치될 수 있으며, 이에 대해 한정하지는 않는다.
도 28의 (A)는 비교 예의 광학 렌즈의 휘도 분포이며, (B)는 실시 예에 따른 광학 렌즈의 휘도 분포를 나타낸 도면이다. 도 28의(B)와 같이, 실시 예에 따른 광학 렌즈의 휘도 분포가 Y-Y'축 방향으로 넓은 분포를 갖고 X-X'축 방향으로 확산하는 것을 알 수 있다.
도 29의 (A)(B)는 비교 예 및 실시 예에 다른 광학 렌즈의 방사 패턴을 비교한 도면으로서, 비교 예의 광학 렌즈는 방사 패턴이 동일하지만, 실시 예에 따른 광학 렌즈의 방사 패턴은 Y-Y'축 방향(도 28의 B)과 X-X'축 방향(도 28의 B)의 방사 패턴의 크기가 상이함을 알 수 있다. 이는 특정 축 방향으로 확산시킨 후 다른 축 방향으로 확산시켜 줄 수 있음을 알 수 있다.
도 30은 비교 예 및 실시 예에 따른 광학 렌즈의 Y-Y'축 휘도 분포를 나타낸 것이며, 도 31은 비교 예 및 실시 예에 따른 광학 렌즈의 X-X'축 휘도 분포를 나타낸 것이다. 실시 예에 따른 광학 렌즈의 휘도 분포가 도 28의 Y-Y'축 방향으로 더 높게 나타나고, X-X'축 방향에서는 특정 거리 이내에서 더 높게 나타남을 알 수 있다. 도 30 및 도 31과 같이, Y-Y'축은 리세스의 길이가 긴 방향으로서 상대적으로 높은 광 분포를 나타내며, X-X'축은 리세스의 길이가 짧은 축 방향으로서, 상대적으로 좁은 광 분포를 나타내고 있음을 알 수 있다.
도 32는 실시 예에 따른 광학 렌즈의 X-X'및 Y-Y'축 방향의 광도와 비교 예의 광학 렌즈(도 28의 A)의 광도를 비교한 도면으로서, 실시 예에 따른 광학 렌즈의 X-X'축 방향의 광도는 높고 Y-Y'축 방향의 광도는 분산됨을 알 수 있다. 여기서, 대칭형 방사 패턴은 156도 이하이며, 실시 예에 따른 비대칭형 렌즈의 방사 패턴은 160도 이상일 수 있다. 또한 비대칭형 렌즈는 사이드측 빔의 반치 폭이 더 넓게 나타남을 알 수 있다.
도 33의 (A)(B)(C)은 제2실시 예에 따른 광학 렌즈를 갖는 발광 모듈에서의 휘도 분포 및 각 축 방향의 광도를 나타낸 도면이며, 도 34는 도 33의 광학 렌즈를 갖는 라이트 유닛에서의 휘도 분포 및 각 축 방향에서의 광도를 나타낸 도면이다. 여기서, 라이트 유닛에서의 발광 모듈은 1바(Bar)로 구현한 예로서, 전 영역으로 균일한 광 분포로 분산됨을 알 수 있다. 여기서, 상기 1바 내에는 예컨대, 15개 이하 예컨대, 10개 이하의 발광 소자가 배치될 수 있다.
도 35의 (A)(B)(C)은 제3실시 예에 따른 광학 렌즈를 갖는 발광 모듈에서의 휘도 분포 및 각 축 방향의 광도를 나타낸 도면이며, 도 36는 도 35의 광학 렌즈를 갖는 라이트 유닛에서의 휘도 분포 및 각 축 방향에서의 광도를 나타낸 도면이다. 여기서, 라이트 유닛에서의 발광 모듈은 1바로 구현한 예로서, 전 영역으로 균일한 광 분포로 분산됨을 알 수 있다.
실시 예에 따른 광학 렌즈는, 제2광 출사면(335)에 적어도 하나 또는 복수의 측면 돌출부를 구비할 수 있다. 도 22와 같이, 상기 측면 돌출부(360,361)는 제2축(Y) 방향으로 리세스(315)의 바닥 중심을 지나는 선 상에 배열될 수 있다. 상기 측면 돌출부(360,361)는 도 16의 회로 기판(400)의 영역을 따라 배치될 수 있다. 상기 복수의 광학 렌즈의 측면 돌출부(360,361)들은 서로 동일한 축 방향으로 돌출될 수 있다. 상기한 측면 돌출부(360,361)은 게이트 영역일 수 있다.
다른 예로서, 도 23과 같이, 광학 렌즈의 측면 돌출부(362,363)는 제1축(X) 방향을 기준으로 제2광 출사면(335)의 서로 반대측 방향으로 돌출될 수 있다. 상기 광학 렌즈의 측면 돌출부(360)는 도 16과 같은 회로 기판(400)의 영역을 벗어날 수 있다. 상기한 측면 돌출부(362,363)은 게이트 영역일 수 있다.
도 24는 실시 예에 따른 광학 렌즈를 갖는 광원 유닛으로서, 제5실시 예를 나타낸 도면이다.
도 24를 참조하면, 광원 유닛은 발광 소자(100), 고정 플레이트(650) 및 광학 렌즈(300)를 포함할 수 있다.
상기 고정 플레이트(650)는 금속 재질의 판으로 형성될 수 있다. 상기 금속 재질은 Ag, Al, Au, Cr, Co, Cu, Fe, Hf, In, Mo, Ni, Si, Sn, Ta, Ti, W 및 이들 금속의 선택적 합금 중 어느 하나로 형성될 수 있다. 상기 고정 플레이트(650)는 단층 또는 다층으로 형성될 수 있다.
상기 고정 플레이트(650)는 광학 렌즈(300)의 너비 예컨대, 타원 형상의 길이와 동일하거나 더 크게 되므로, 광의 누설을 방지할 수 있다. 상기 고정 플레이트(650)는 개구부(652)를 포함하며, 상기 개구부(652)는 하부 너비(D15)가 상부 너비(D16)보다 좁을 수 있다. 상기 개구부(652)는 바닥 면적이 상면 면적보다 좁을 수 있다. 상기 개구부(652)의 높이는 상기 고정 플레이트(650)의 두께보다 클 수 있다. 상기 고정 플레이트(650)의 두께는 0.35mm 이하 예컨대, 0.2mm 내지 0.3mm의 범위를 가질 수 있으며, 상기 고정 플레이트(650)의 두께가 상기 범위보다 두꺼운 경우 재질 낭비가 크며, 상기 범위보다 작은 경우 지지 부재로서의 기능이 약화될 수 있다.
상기 고정 플레이트(650)는 상기 발광 소자(100)와 물리적으로 이격되게 배치될 수 있다. 상기 고정 플레이트(650)는 상기 발광 소자(100)와 전기적으로 분리되게 배치될 수 있다. 상기 고정 플레이트(650)는 상기 발광 소자(100)의 둘레에 배치되어, 상기 발광 소자(100)로부터 방출된 광을 반사시키고 상기 발광 소자(100)를 보호하며 상기 광학 렌즈(300)를 지지하게 된다.
상기 고정 플레이트(650)의 지지부(651)의 상면 면적은 상기 광학 렌즈(300)의 바닥 면적보다 클 수 있어, 상기 광학 렌즈(300)로부터 고정 플레이트(650)의 상면으로 진행되는 광의 누설을 방지할 수 있다.
상기 고정 플레이트(650)의 개구부(652)를 보면, 상기 지지부(651)로부터 절곡된 측벽(653) 및 상기 측벽(653)로부터 절곡된 연장부(654)를 포함하며, 상기 측벽(653)은 상기 고정 플레이트(650)의 지지부(651)로부터 하 방향 또는 수직 방향로부터 절곡되며, 상기 연장부(654)는 상기 측벽(653)으로부터 발광 소자(100)의 방향 또는 개구부(652)의 중심 방향 즉, 수평 방향으로 돌출된다.
상기 개구부(652)는 탑뷰 형상이 다각형 형상일 수 있으며, 예컨대 사각 형상일 수 있다. 상기 개구부(652)의 탑뷰 형상은 상기 발광 소자(100)의 형상과 동일한 형상일 수 있다. 상기 개구부(652)의 탑뷰 형상은 다른 형상 예컨대, 원 형상, 또는 타원 형상일 수 있으며, 이에 대해 한정하지는 않는다. 상기 개구부(652)의 상부 및 하부는 오픈된 구조이다.
상기 개구부(652)의 바텀 뷰 형상은 다각형 형상 예컨대, 사각 형상일 수 있다. 상기 개구부(652)는 바텀 뷰 형상이 상기 발광 소자(100)의 형상과 동일한 형상일 수 있다. 상기 개구부(652)의 바닥 너비(D15)는 상기 연장부(654)가 없을 경우, 상부 너비(D16)와 같거나 좁을 수 있고, 상기 발광 소자(100)의 너비(C1)보다는 클 수 있다.
상기 개구부(652)의 상부 너비(D16)는 바닥 너비(D15)에 비해 1배 이상 예컨대, 1.2배 내지 1.5배 범위에 배치될 수 있고, 상기 상부 너비(D15)가 바닥 너비(D16)에 비해 상기 범위보다 작은 경우 광의 추출 효율이 저하될 수 있고, 상기 범위보다 큰 경우 광학 렌즈(300)의 리세스(315)의 바닥 너비가 커지는 문제가 있다. 상기 개구부(652)의 상부 너비(D16)는 2mm 이하 예컨대, 1.4mm 내지 1.8mm의 범위일 수 있다. 상기 개구부(652)의 상부 너비(D16)가 상기 범위보다 작은 경우 상기 개구부(652)의 연장부(654)의 면적이 줄어들어 개구부(652)의 지지 기능이 저하될 수 있고, 상기 범위보다 큰 경우 상기 광학 렌즈(300)의 리세스(315)의 바닥 면적이 커질 수 있다.
여기서, 상기 광학 렌즈(300)의 리세스(315)의 바닥 너비는 상기 고정 플레이트(650)의 개구부(652)의 상부 너비(D16)와 같거나 작을 수 있다. 이에 따라 상기 고정 플레이트(650)의 개구부(652)를 통해 방출된 광은 상기 광학 렌즈(300)의 리세스(315)로 입사되고, 일부는 바닥 면의 제1바닥부(312)를 통해 입사될 수 있다. 상기 광학 렌즈(300)의 바닥면(310)의 제1바닥부(312)의 일부는 상기 고정 플레이트(650)의 개구부(652)에 수직 방향으로 오버랩될 수 있다.
상기 개구부(652)의 연장부(654)의 상면 위치는, 상기 발광 소자(100) 내의 활성층보다 낮은 위치에 배치되어, 상기 활성층의 측면으로 방출된 광의 손실을 줄여줄 수 있다. 상기 개구부(652)의 연장부(654)의 상면 위치는, 상기 발광 소자(100)의 두께의 1/3 이하의 위치에 배치될 수 있다. 상기 개구부(652)의 연장부(654)의 상면 위치가 상기 범위보다 높을 경우, 상기 발광 소자(100)의 측면으로 방출된 광의 손실이 증가될 수 있다.
상기 고정 플레이트(650)는 결합 수단으로서, 고정 홈(665) 또는 지지 돌기(350)를 포함할 수 있다. 상기 고정 플레이트(650)의 결합 수단으로서, 예컨대 고정 홈(665)이 배치된 경우, 상기 고정 홈(665)은 상기 고정 플레이트(650)의 두께의 1/2 이하의 깊이로 배치될 수 있다. 상기 고정 홈(665)은 탑뷰 형상이 원 형상이거나 다각형 형상 또는 타원 형상일 수 있다. 상기 고정 홈(665)은 측 단면이 다각형 형상이거나 반구형 형상일 수 있으며, 이에 대해 한정하지는 않는다. 상기 고정 홈(665)의 측 단면 형상이 다각형 형상이거나 반구형 형상인 경우 상기 광학 렌즈(300)의 지지 돌기(350)와 결합이 용이할 수 있다. 상기 광학 렌즈(300)의 지지 돌기(350)는 측 단면이 상기 고정 홈(665)에 결합되는 형상 예컨대, 다각형 형상이거나 반구형 형상일 수 있다. 상기 광학 렌즈(300)의 지지 돌기(350)는 상기 고정 플레이트(650)의 고정 홈(665)에 접착제(미도시)로 접착될 수 있다.
상기 고정 홈(665) 및 상기 지지 돌기(350)는 탑뷰 형상이, 연속적인 형상이거나 불 연속적인 형상일 수 있다. 여기서, 상기 불 연속적인 형상은 원을 따라 2개 이상의 고정 홈(665) 또는 지지 돌기(350)이 서로 이격된 형태로 배치될 수 있다. 다른 예로서, 결합 수단은 상기 고정 플레이트(650)에 지지 돌기(350) 및 상기 광학 렌즈(300)에 고정 홈(665)에 배치될 수 있다.
상기 고정 플레이트(650)는 광원 렌즈(300)를 지지하는 지지부(651)로부터 하 방향으로 절곡된 다리부(661,663)를 포함하며, 상기 다리부(661,663)는 상기 고정 플레이트(650)의 위치를 높여줄 수 있다. 상기 다리부(661,663)는 고정 플레이트(650)의 서로 반대측에 배치된 제1,2다리부(661,663)를 포함하며, 상기 제1,2다리부(661,663)는 상기 고정 플레이트(650)로부터 하 방향으로 절곡될 수 있다. 상기 제1,2다리부(661,663)는 상기 고정 플레이트(650)로부터 수직 방향 또는 90±10도의 범위 내에서 경사지게 절곡될 수 있다.
상기 고정 플레이트(650)는 상기 각 다리부(661,663)로부터 절곡된 고정부(662,664)를 포함할 수 있다. 상기 고정부(662,664)는 상기 제1다리부(661)로부터 수평 방향으로 절곡된 제1고정부(662), 및 상기 제2다리부(663)로부터 수평 방향으로 절곡된 제2고정부(664)를 포함할 수 있다. 상기 제1,2고정부(662,664)는 상기 제1,2다리부(661,663)로부터 외측 방향으로 절곡됨으로써, 수평한 바닥 면을 제공할 수 있다. 상기 제1,2고정부(662,664)는 접착 부재에 의해 다른 구조물(예: 회로 기판)에 접착될 수 있다. 상기 제1,2고정부(662,664)는 상기 고정 플레이트(650)와 평행한 방향으로 배열될 수 있다. 상기 제1,2고정부(662,664)는 상기 고정 플레이트(650)의 양 바닥을 고정시켜 줌으로써, 상기 고정 플레이트(650)가 유동하는 것을 차단할 수 있다.
상기 고정 플레이트(650)는 제1축(X) 방향의 양단부에 제1,2고정부(662,664)가 배치될 수 있고, 제1축(X) 방향에 대해 직교하는 제2축 방향의 양단부에 고정부(662,664) 및 다리부(661,663)는 배치되지 않을 수 있다.
다른 예로서, 상기 제1,2고정부(662,664)는 상기 제1,2다리부(661,663)로부터 내측 방향 또는 내측/외측 방향으로 절곡될 수 있다. 상기 제1,2고정부(662,664)가 상기 제1,2다리부(661,663)로부터 내측 방향으로 절곡되면 상기 고정 플레이트(650)가 하 방향으로 쳐지는 것을 방지할 수 있다. 상기 제1,2고정부(662,664)가 상기 제1,2다리부(661,663)로부터 내측 방향 또는 외측 방향으로 절곡된 경우, 상기 제1,2고정부(662,664)의 일부는 내측 방향으로 절곡되고 다른 부분은 외측 방향으로 절곡되어, 상기 고정 플레이트(650)가 쳐지는 것을 방지할 수 있다.
실시 예는 고정 플레이트(650) 내에서 절곡된 부분은 각진 구조이거나 곡면을 갖고 절곡될 수 있으며, 이에 대해 한정하지는 않는다.
상기 고정 플레이트(650)는 개구부(652)의 측벽(654)과, 상기 제1,2다리부(661,663) 사이의 갭 영역(655)이 배치될 수 있고, 상기 갭 영역(655)은 상기 고정 플레이트(650)를 소정 간격으로 이격시켜 줄 수 있다.
상기 고정 플레이트(650)의 상면 높이는 1mm 이하 예컨대, 0.6mm 내지 0.9mm 범위일 수 있으며, 상기 고정 플레이트(650)의 높이가 상기 범위보다 작은 경우 고정 플레이트(650)의 두께가 얇아져 고정 플레이트(650)로서의 기능이 저하될 수 있으며, 상기 범위보다 큰 경우 광원 유닛의 높이가 커질 수 있다. 상기 고정 플레이트(650)의 상면 높이는 상기 발광 소자(100)의 상면 보다 높게 배치되어, 상기 고정 플레이트(650) 내에 배치된 발광 소자(100)를 보호하고 상기 발광 소자(100)로부터 방출된 광을 광학 렌즈(300)로 가이드할 수 있다.
상기 고정 플레이트(650)의 상면에는 백색 층(미도시)이 형성될 수 있으며, 상기 백색 층은 수지 재질 내에 금속 산화물 예컨대, SiO2, Al2O3, TiO2와 같은 금속 산화물이 첨가된 층이 형성될 수 있다. 상기 백색 층은 상기 광학 렌즈(300)의 바닥면(310) 중 제1바닥부(312)에 접촉될 수 있다. 상기 백색 층은 상기 광학 렌즈(300)의 바닥면(310)로부터 누설된 광을 반사시켜 줄 수 있다.
상기 광학 렌즈(300)의 바닥 면(310)은 제1바닥부(312)가 상기 고정 플레이트(650)의 고정 홈(665)과 개구부(652) 사이의 영역 상에 배치될 수 있으며, 상기 제2바닥부(314)가 상기 고정 플레이트(650)의 상면으로부터 이격될 수 있다. 실시 예에 따른 광학 렌즈(300)의 구성은 제1실시 예의 구성을 참조하기로 한다. 상기 발광 소자(100)로부터 방출된 광은 대부분이 상기 고정 플레이트(650)의 개구부(652)를 통해 상기 광학 렌즈(300)의 리세스(315)로 가이드될 수 있어, 상기 광학 렌즈(300)의 바닥 면(310)으로 진행하여 손실되는 광이 줄어들 수 있다. 이에 따라 상기 광학 렌즈(300)의 너비를 상기 고정 플레이트(650)의 상면보다 크게 할 수 있다. 상기 발광 소자(100)는 상기 고정 플레이트(650)의 개구부(652)에 배치될 수 있다. 상기 개구부(652)의 측벽(654)이 상기 발광 소자(100)의 둘레에 배치되므로, 상기 발광 소자(100)로부터 방출된 광을 반사할 수 있다.
상기 발광 소자(100)와 상기 광학 렌즈(300)의 리세스(315)의 바닥 간의 거리(G5)는 1mm 이하 예컨대, 0.7mm 이하일 수 있다. 이에 따라 상기 발광 소자(100)로부터 방출된 광이 상기 광학 렌즈(300)의 리세스(315)에 효과적으로 입사될 수 있다.
상기 고정 플레이트(650)는 도 16의 회로 기판(400) 상에 하나 또는 복수개가 배열될 수 있다. 상기 복수개의 고정 플레이트(650)는 1열 이상으로 배열될 수 있다. 상기 발광 소자(100)는 상기 회로 기판(400)과 연결될 수 있다. 상기 고정 플레이트(650)는 상기 회로 기판(400)과 전기적으로 연결되지 않을 수 있다. 상기 고정 플레이트(650)의 제1,2고정부(662,664)는 상기 회로 기판(400)에 접착 부재에 의해 접착될 수 있다. 상기 접착 부재는 솔더와 같은 재질을 포함할 수 있다.
실시 예에 따른 발광 소자(100)는 표면에 형광 필름이 배치될 수 있다. 상기 형광 필름은 청색 형광체, 시안 형광체, 녹색 형광체, 황색 형광체, 및 적색 형광체 중 적어도 하나 또는 복수를 포함하며, 단층 또는 다층으로 배치될 수 있다. 상기 형광 필름은 투광성 수지 재료 내에 형광체가 첨가된다. 상기 투광성 수지 재료는 실리콘 또는 에폭시와 같은 물질을 포함하며, 상기 형광체는 YAG, TAG, Silicate, Nitride, Oxy-nitride 계 물질 중에서 선택적으로 형성될 수 있다. 상기 형광 필름은 양자점(quantum dot)과 같은 형광체를 포함할 수 있다. 상기 양자점은 II-VI 화합물, 또는 III-V족 화합물 반도체를 포함할 수 있으며, 적색, 녹색, 황색, 적색 양자점 중 적어도 하나 또는 서로 다른 종류를 포함할 수 있다. 상기 양자점은 양자 구속(quantum confinement)으로부터 발생하는 광학 특성을 가질 수 있는 나노미터 크기의 입자이다. 특정 여기원(excitation source)으로 자극시 원하는 파장의 광이 양자점으로부터 발광되도록 하기 위해 양자점의 특정 조성(들), 구조 및/또는 크기를 선택할 수 있다. 양자점은 크기를 변화시킴으로써, 가시 스펙트럼 전반에 걸쳐 발광하도록 조정될 수 있다. 상기 양자점은 하나 이상의 반도체 재료를 포함할 수 있으며, 상기 반도체 재료의 예는, IV족 원소, II-VI족 화합물, II-V족 화합물, III-VI족 화합물, III-V족 화합물, IV-VI족 화합물, I-III-VI족 화합물, II-IV-VI족 화합물, II-IV-V족 화합물, 상술한 임의의 것을 포함하는 합금, 및/또는 3원 및 4원 혼합물 또는 합금을 포함하는, 상술한 임의의 것을 포함하는 혼합물을 포함할 수 있다. 상기 양자점은 예컨대, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, AlS, AlP, AlAs, PbS, PbSe, Ge, Si, CuInS2, CuInSe2, MgS, MgSe, MgTe등과 같은 것들 및 이들의 조합이 될 수 있다.
실시 예에 따른 발광 소자의 예는 도 25 내지 도 27을 참조하여 설명하기로 한다. 도 25는 실시 예에 따른 발광 소자의 제1예를 나타낸 도면이다. 도 25을 참조하여 발광 소자 및 회로 기판의 일 예를 설명하기로 한다.
도 25를 참조하면, 발광 소자(100)는 발광 칩(100A)을 포함한다. 상기 발광 소자(100)는 발광 칩(100A)과 상기 발광 칩(100A) 상에 배치된 형광체층(150)을 포함할 수 있다. 상기 형광체층(150)은 청색, 녹색, 황색, 적색 형광체 중 적어도 하나 또는 복수를 포함하며, 단층 또는 다층으로 배치될 수 있다. 상기 형광체층(150)은 투광성 수지 재료 내에 형광체가 첨가된다. 상기 투광성 수지 재료는 실리콘 또는 에폭시와 같은 물질을 포함하며, 상기 형광체는 YAG, TAG, Silicate, Nitride, Oxy-nitride 계 물질 중에서 선택적으로 형성될 수 있다.
상기 형광체층(150)은 상기 발광 칩(100A)의 상면에 배치되거나, 상기 발광 칩(100A)의 상면 및 측면에 배치될 수 있다. 상기 형광체층(150)은 상기 발광 칩(100A)의 표면 중에서 광이 방출되는 영역 상에 배치되어, 광의 파장을 변환시켜 줄 수 있다.
상기 형광체층(150)은 단층 또는 서로 다른 형광체층을 포함할 수 있으며, 상기 서로 다른 형광체층은 제1층이 적색, 황색, 녹색 형광체 중 적어도 한 종류의 형광체를 가질 수 있고, 제2층이 상기 제1층 위에 형성되며 적색, 황색, 녹색 형광체 중 상기 제1층과 다른 형광체를 가질 수 있다. 다른 예로서, 상기 서로 다른 형광체층은 3층 이상의 형광체층을 포함할 수 있으며, 이에 대해 한정하지는 않는다.
다른 예로서, 상기 형광체층(150)은 필름 타입을 포함할 수 있다. 상기 필름 타입의 형광체층은 균일한 두께를 제공함으로써, 파장 변환에 따른 색 분포가 균일할 수 있다.
상기 발광 칩(100A)에 대해 설명하면, 상기 발광 칩(100A)은 기판(111), 제1반도체층(113), 발광 구조물(120), 전극층(131), 절연층(133), 제1전극(135), 제2전극(137), 제1연결 전극(141), 제2연결 전극(143), 및 지지층(140)을 포함할 수 있다.
상기 기판(111)은 투광성, 절연성 또는 도전성 기판을 이용할 수 있으며, 예컨대, 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga2O3 중 적어도 하나를 이용할 수 있다. 상기 기판(111)의 탑 면 및 바닥면 중 적어도 하나 또는 모두에는 복수의 볼록부(미도시)가 형성되어, 광 추출 효율을 개선시켜 줄 수 있다. 각 볼록부의 측 단면 형상은 반구형 형상, 반타원 형상, 또는 다각형 형상 중 적어도 하나를 포함할 수 있다. 여기서, 상기 기판(111)은 발광 칩(100A) 내에서 제거될 수 있으며, 이 경우 상기 제1반도체층(113) 또는 제1도전형 반도체층(115)이 발광 칩(100A)의 탑 층으로 배치될 수 있다.
상기 기판(111) 아래에는 제1반도체층(113)이 형성될 수 있다. 상기 제1반도체층(113)은 II족 내지 V족 원소의 화합물 반도체를 이용하여 형성될 수 있다. 상기 제1반도체층(113)은 II족 내지 V족 원소의 화합물 반도체를 이용하여 적어도 한 층 또는 복수의 층으로 형성될 수 있다. 상기 제1반도체층(113)은 예컨대, III족-V족 원소의 화합물 반도체를 이용한 반도체층 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, GaP 중 적어도 하나를 포함할 수 있다. 상기 제1반도체층(113)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖고, 버퍼층 및 언도프드(undoped) 반도체층 중 적어도 하나로 형성될 수 있다. 상기 버퍼층은 상기 기판과 질화물 반도체층 간의 격자 상수의 차이를 줄여줄 수 있고, 상기 언도프드 반도체층은 반도체의 결정 품질을 개선시켜 줄 수 있다. 여기서, 상기 제1반도체층(113)은 형성하지 않을 수 있다.
상기 제1반도체층(113) 아래에는 발광 구조물(120)이 형성될 수 있다. 상기 발광 구조물(120)은 II족 내지 V족 원소 및 III족-V족 원소의 화합물 반도체 중에서 선택적으로 형성되며, 자외선 대역부터 가시 광선 대역의 파장 범위 내에서 소정의 피크 파장을 발광할 수 있다.
상기 발광 구조물(120)은 제1도전형 반도체층(115), 제2도전형 반도체층(119), 상기 제1도전형 반도체층(115)과 상기 제2도전형 반도체층(119) 사이에 형성된 활성층(117)을 포함하며, 상기 각 층(115,117,119)의 위 및 아래 중 적어도 하나에는 다른 반도체층이 더 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1도전형 반도체층(115)은 제1반도체층(113) 아래에 배치되며, 제1도전형 도펀트가 도핑된 반도체 예컨대, n형 반도체층으로 구현될 수 있다. 상기 제1도전형 반도체층(115)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함한다. 상기 제1도전형 반도체층(115)은 III족-V족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중에서 선택될 수 있다. 상기 제1도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te 등과 같은 도펀트를 포함한다.
상기 활성층(117)은 제1도전형 반도체층(115) 아래에 배치되고, 단일 양자 우물, 다중 양자 우물(MQW), 양자 선(quantum wire) 구조 또는 양자 점(quantum dot) 구조를 선택적으로 포함하며, 우물층과 장벽층의 주기를 포함한다. 상기 우물층/장벽층의 주기는 예컨대, InGaN/GaN, GaN/AlGaN, AlGaN/AlGaN, InGaN/AlGaN, InGaN/InGaN, AlGaAs/GaA, InGaAs/GaAs, InGaP/GaP, AlInGaP/InGaP, InP/GaAs의 페어 중 적어도 하나를 포함한다.
상기 제2도전형 반도체층(119)은 활성층(117) 아래에 배치된다. 상기 제2도전형 반도체층(119)은 제2도전형 도펀트가 도핑된 반도체 예컨대, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함한다. 상기 제2도전형 반도체층(119)은, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP와 같은 화합물 반도체 중 적어도 하나로 이루어질 수 있다. 상기 제2도전형 반도체층(119)이 p형 반도체층이고, 상기 제1도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba을 포함할 수 있다.
상기 발광 구조물(120)은 다른 예로서, 상기 제1도전형 반도체층(115)이 p형 반도체층, 상기 제2도전형 반도체층(119)은 n형 반도체층으로 구현될 수 있다. 상기 제2도전형 반도체층(119) 위에는 상기 제2도전형과 반대의 극성을 갖는 제3도전형 반도체층이 형성할 수도 있다. 또한 상기 발광 구조물(120)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
상기 제2도전형 반도체층(119) 아래에는 전극층(131)이 형성된다. 상기 전극층(131)은 반사층을 포함할 수 있다. 상기 전극층(131)은 상기 발광 구조물(120)의 제2도전형 반도체층(119)에 접촉된 오믹 접촉층을 포함할 수 있다. 상기 반사층은 반사율이 70% 이상인 물질 예컨대, Al, Ag, Ru, Pd, Rh, Pt, Ir의 금속과 상기의 금속 중 둘 이상의 합금 중에서 선택될 수 있다. 상기 반사층의 금속은 상기 제2도전형 반도체층(119) 아래에 접촉될 수 있다. 상기 오믹 접촉층은 투광성 재질, 금속 또는 비 금속 재질 중에서 선택될 수 있다.
상기 전극층(131)은 투광성 전극층/반사층의 적층 구조를 포함할 수 있으며, 상기 투광성 전극층은 예컨대 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 상기 투광성 전극층의 아래에는 금속 재질의 반사층이 배치될 수 있으며, 예컨대 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 상기 반사층은 다른 예로서, 서로 다른 굴절률을 갖는 두 층이 교대로 배치된 DBR(distributed bragg reflection) 구조로 형성될 수 있다.
상기 제2도전형 반도체층(119) 및 상기 전극층(131) 중 적어도 한 층의 표면에는 러프니스와 같은 광 추출 구조가 형성될 수 있으며, 이러한 광 추출 구조는 입사되는 광의 임계각을 변화시켜 주어, 광 추출 효율을 개선시켜 줄 수 있다.
상기 절연층(133)은 상기 전극층(131) 아래에 배치되며, 상기 제2도전형 반도체층(119)의 하면, 상기 제2도전형 반도체층(119) 및 상기 활성층(117)의 측면, 상기 제1도전형 반도체층(115)의 일부 영역에 배치될 수 있다. 상기 절연층(133)은 상기 발광 구조물(120)의 하부 영역 중에서 상기 전극층(131), 제1전극(135) 및 제2전극(137)을 제외한 영역에 형성되어, 상기 발광 구조물(120)의 하부를 전기적으로 보호하게 된다.
상기 절연층(133)은 Al, Cr, Si, Ti, Zn, Zr 중 적어도 하나를 갖는 산화물, 질화물, 불화물, 및 황화물 중 적어도 하나로 형성된 절연물질 또는 절연성 수지를 포함한다. 상기 절연층(133)은 예컨대, SiO2, Si3N4, Al2O3, TiO2 중에서 선택적으로 형성될 수 있다. 상기 절연층(133)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 절연층(133)은 발광 구조물(120)의 아래에 플립 본딩을 위한 금속 구조물을 형성할 때, 상기 발광 구조물(120)의 층간 쇼트를 방지하기 위해 형성된다.
상기 절연층(133)은 서로 다른 굴절률을 갖는 제1층과 제2층이 교대로 배치된 DBR(distributed bragg reflector) 구조로 형성될 수 있으며, 상기 제1층은 SiO2, Si3N4, Al2O3, TiO2 중에서 어느 하나이며, 상기 제2층은 상기 제1층 이외의 물질 중 어느 하나로 형성될 수 있으나 이에 한정하지 않으며, 또는 상기 제1층 및 제2층이 동일한 물질로 형성되거나 3층 이상의 층을 갖는 페어(Pair)로 형성될 수도 있다. 이 경우, 상기 전극층은 형성하지 않을 수 있다.
상기 제1도전형 반도체층(115)의 일부 영역 아래에는 제1전극(135)이 배치되며, 상기 전극층(131)의 일부 아래에는 제2전극(137)이 배치될 수 있다. 상기 제1전극(135) 아래에는 제1연결 전극(141)이 배치되며, 상기 제2전극(137) 아래에는 제2연결 전극(143)이 배치된다.
상기 제1전극(135)은 상기 제1도전형 반도체층(115)과 상기 제1연결 전극(141)에 전기적으로 연결되며, 상기 제2전극(137)은 상기 전극층(131)을 통해 상기 제2도전형 반도체층(119)과 제2연결 전극(143)에 전기적으로 연결될 수 있다.
상기 제1전극(135) 및 제2전극(137)은 Cr, Ti, Co, Ni, V, Hf, Ag, Al, Ru, Rh, Pt, Pd, Ta, Mo, W 중 적어도 하나 또는 합금으로 형성될 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 제1전극(135)과 상기 제2전극(137)은 동일한 적층 구조이거나 다른 적층 구조로 형성될 수 있다. 상기 제1전극(135) 및 상기 제2전극(137) 중 적어도 하나는 암(arm) 또는 핑거(finger) 구조와 같은 전류 확산 패턴이 더 형성될 수 있다. 또한 상기 제1전극(135) 및 상기 제2전극(137)은 하나 또는 복수로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 제1 및 제2연결 전극(141,143) 중 적어도 하나는 복수로 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1연결 전극(141) 및 상기 제2연결 전극(143)은 전원을 공급하는 리드(lead) 기능과 방열 경로를 제공하게 된다. 상기 제1연결 전극(141) 및 상기 제2연결 전극(143)은 원 형상, 다각 형상, 원 기둥 또는 다각 기둥과 같은 형상 중 적어도 하나를 포함할 수 있다. 상기 제1연결 전극(141) 및 제2연결 전극(143)은 금속 파우더의 재질 예컨대, Ag, Al, Au, Cr, Co, Cu, Fe, Hf, In, Mo, Ni, Si, Sn, Ta, Ti, W 및 이들 금속의 선택적 합금 중 어느 하나로 형성될 수 있다. 상기 제1연결 전극(141) 및 제2연결 전극(143)은 상기 제1전극(135) 및 제2전극(137)과의 접착력 향상을 위하여 In, Sn, Ni, Cu 및 이들의 선택적인 합금 중의 어느 한 금속으로 도금될 수 있다.
상기 지지층(140)은 열 전도성 재질을 포함하며, 상기 제1전극(135), 상기 제2전극(137), 상기 제1연결 전극(141) 및 상기 제2연결 전극(143)의 둘레에 배치될 수 있다. 상기 지지층(140)의 하면에는 상기 제1 및 제2연결 전극(141,143)의 하면이 노출될 수 있다.
상기 지지층(140)은 발광 소자(100)를 지지하는 층으로 사용된다. 상기 지지층(140)은 절연성 재질로 형성되며, 상기 절연성 재질은 예컨대, 실리콘 또는 에폭시와 같은 수지층으로 형성된다. 다른 예로서, 상기 절연성 재질은 페이스트 또는 절연성 잉크를 포함할 수 있다. 상기 절연성 재질의 재질은 그 종류는 polyacrylate resin, epoxy resin, phenolic resin, polyamides resin, polyimides rein, unsaturated polyesters resin, polyphenylene ether resin (PPE), polyphenilene oxide resin (PPO), polyphenylenesulfides resin, cyanate ester resin, benzocyclobutene (BCB), Polyamido-amine Dendrimers (PAMAM), 및 Polypropylene-imine, Dendrimers (PPI), 및 PAMAM 내부 구조 및 유기-실리콘 외면을 갖는 PAMAM-OS(organosilicon)를 단독 또는 이들의 조합을 포함한 수지로 구성될 수 있다. 상기 지지층(140)은 상기 절연층(133)과 다른 물질로 형성될 수 있다.
상기 지지층(140) 내에는 Al, Cr, Si, Ti, Zn, Zr 중 적어도 하나를 갖는 산화물, 질화물, 불화물, 황화물과 같은 화합물들 중 적어도 하나가 첨가될 수 있다. 여기서, 상기 지지층(140) 내에 첨가된 화합물은 열 확산제일 수 있으며, 상기 열 확산제는 소정 크기의 분말 입자, 알갱이, 필러(filler), 첨가제로 사용될 수 있다. 상기 열 확산제는 세라믹 재질을 포함하며, 상기 세라믹 재질은 동시 소성되는 저온 소성 세라믹(LTCC: low temperature co-fired ceramic), 고온 소성 세라믹(HTCC: high temperature co-fired ceramic), 알루미나(alumina), 수정(quartz), 칼슘지르코네이트(calcium zirconate), 감람석(forsterite), SiC, 흑연, 용융실리카(fusedsilica), 뮬라이트(mullite), 근청석(cordierite), 지르코니아(zirconia), 베릴리아(beryllia), 및 질화알루미늄(aluminum nitride) 중 적어도 하나를 포함한다. 상기 세라믹 재질은 질화물 또는 산화물과 같은 절연성 물질 중에서 열 전도도가 질화물이나 산화물보다 높은 금속 질화물로 형성될 수 있으며, 상기 금속 질화물은 예컨대, 열 전도도가 140 W/mK 이상의 물질을 포함할 수 있다. 상기 세라믹 재질은 예컨대, SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, BN, Si3N4, SiC(SiC-BeO), BeO, CeO, AlN와 같은 세라믹 (Ceramic) 계열일 수 있다. 상기 열 전도성 물질은 C (다이아몬드, CNT)의 성분을 포함할 수 있다.
상기 발광 칩(100A)은 상기 회로 기판(400) 상에 플립 방식으로 탑재된다. 상기 회로 기판(400)은 금속층(471), 상기 금속층(471) 위에 절연층(472), 상기 절연층(472) 위에 복수의 리드 전극(473,474)을 갖는 회로 층(미도시) 및 상기 회로 층을 보호하는 보호층(475)을 포함한다. 상기 금속층(471)은 방열 층으로서, 열 전도성이 높은 금속 예컨대, Cu 또는 Cu-합금와 같은 금속을 포함하며, 단층 또는 다층 구조로 형성될 수 있다.
상기 절연층(472)은 상기 금속층(471)과 회로 층 사이를 절연시켜 준다. 상기 절연층은 에폭시, 실리콘, 유리섬유, 프리 프레그(prepreg), 폴리프탈아미드(PPA: Polyphthalamide), LCP(Liquid Crystal Polymer), PA9T(Polyamide9T)와 같은 수지 재질 중 적어도 하나를 포함할 수 있다. 또한 상기 절연층(472) 내에는 금속 산화물 예컨대, TiO2, SiO2, Al2O3와 같은 첨가제가 첨가될 수 있으며, 이에 대해 한정하지는 않는다. 다른 예로서, 상기 절연층(472)은 그라핀과 같은 재질을 실리콘 또는 에폭시와 같은 절연 물질 내에 첨가하여 사용할 수 있으며, 이에 대해 한정하지는 않는다.
상기 절연층(472)은 상기 금속층(471)이 양극 산화(anodizing) 과정에 의해 형성된 아노다이징(anodizing)된 영역일 수 있다. 여기서, 상기 금속층(471)은 알루미늄 재질이고, 상기 아노다이징된 영역은 Al2O3와 같은 재질로 배치될 수 있다.
상기 제1 및 제2리드 전극(473,474)은 발광 칩(100A)의 제1 및 제2연결 전극(141,143)과 전기적으로 연결된다. 상기 제1 및 제2리드 전극(473,474)과 상기 발광 칩(100A)의 연결 전극(141,143) 사이에는 전도성 접착제(461,462)가 배치될 수 있다. 상기 전도성 접착제(461,462)는 솔더 재질과 같은 금속 재질을 포함할 수 있다. 상기 제1리드 전극(473) 및 제2리드 전극(474)은 회로 패턴으로서, 전원을 공급해 주게 된다.
상기 보호층(475)은 상기 회로층 상에 배치될 수 있다. 상기 보호층(475)은 반사 재질을 포함하며, 예컨대 레지스트 재질 예컨대, 백색의 레지스트 재질로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 보호층(475)은 반사층으로 기능할 수 있으며, 예컨대 흡수율보다 반사율이 더 높은 재질로 형성될 수 있다. 다른 예로서, 상기 보호층(475)은 광을 흡수하는 재질로 배치될 수 있으며, 상기 광 흡수 재질은 흑색 레지스트 재질을 포함할 수 있다.
도 26을 참조하여 발광 소자의 제2예를 설명하기로 한다.
도 26을 참조하면, 발광 소자(100)는 발광 칩(100B)을 포함한다. 상기 발광 소자(100)는 발광 칩(100B)과 상기 발광 칩(100B) 상에 배치된 형광체층(150)을 포함할 수 있다. 상기 형광체층(150)은 청색, 녹색, 황색, 적색 형광체 중 적어도 하나 또는 복수를 포함하며, 단층 또는 다층으로 배치될 수 있다. 상기 형광체층(150)은 투광성 수지 재료 내에 형광체가 첨가된다. 상기 투광성 수지 재료는 실리콘 또는 에폭시와 같은 물질을 포함하며, 상기 형광체는 YAG, TAG, Silicate, Nitride, Oxy-nitride 계 물질 중에서 선택적으로 형성될 수 있다.
상기 형광체층(150)은 상기 발광 칩(100B)의 상면에 배치되거나, 상기 발광 칩(100B)의 상면 및 측면에 배치될 수 있다. 상기 형광체층(150)은 상기 발광 칩(100B)의 표면 중에서 광이 방출되는 영역 상에 배치되어, 광의 파장을 변환시켜 줄 수 있다.
상기 발광 칩(100B)은 기판(111), 제1반도체층(113), 발광 구조물(120), 전극층(131), 절연층(133), 제1전극(135), 제2전극(137), 제1연결 전극(141), 제2연결 전극(143), 및 지지층(140)을 포함할 수 있다. 상기 기판(111) 및 제2반도체층(113)은 제거될 수 있다.
발광 소자(100)의 발광 칩(100B)과 회로 기판(400)은 연결 전극(161,162)으로 연결될 수 있으며, 상기 연결 전극(161,162)은 전도성 펌프 즉, 솔더 범프를 포함할 수 있다. 상기 전도성 펌프는 각 전극(135,137) 아래에 하나 또는 복수로 배열될 수 있으며, 이에 대해 한정하지는 않는다. 상기 절연층(133)은 제1 및 제2전극(135,137)을 노출시켜 줄 수 있으며, 상기 제1 및 제2전극(135,137)은 연결 전극(161,162)와 전기적으로 연결될 수 있다.
도 27을 참조하여, 발광 소자의 제3예를 설명하기로 한다.
도 27을 참조하면, 발광 소자(100)는 회로 기판(400)에 연결된 발광 칩(200A)을 포함한다. 상기 발광 소자(100)는 발광 칩(200A)의 표면에 배치된 형광체층(250)을 포함할 수 있다. 상기 형광체층(250)은 입사되는 광의 파장을 변환하게 된다. 상기 발광 소자(100) 상에는 도 4와 같이 광학 렌즈(도 4의 300)가 배치되어 상기 발광 칩(200A)으로부터 방출된 광의 지향 특성을 조절하게 된다.
상기 발광 칩(200A)은 발광 구조물(225), 및 복수의 패드(245,247)를 포함한다. 상기 발광 구조물(225)은 II족 내지 VI족 원소의 화합물 반도체층 예컨대, III족-V족 원소의 화합물 반도체층 또는 II족-VI족 원소의 화합물 반도체층으로 형성될 수 있다. 상기 복수의 패드(245,247)는 상기 발광 구조물(225)의 반도체층에 선택적으로 연결되며, 전원을 공급하게 된다.
상기 발광 구조물(225)은 제1도전형 반도체층(222), 활성층(223) 및 제2도전형 반도체층(224)을 포함한다. 상기 발광 칩(200A)은 기판(221)을 포함할 수 있다. 상기 기판(221)은 상기 발광 구조물(225) 위에 배치된다. 상기 기판(221)은 예컨대, 투광성, 절연성 기판, 또는 전도성 기판일 수 있다. 이러한 구성은 도 4의 발광 구조물 및 기판에 대한 설명을 참조하기로 한다.
상기 발광 칩(200A)은 하부에 패드(245,247)가 배치되며, 상기 패드(245,247)는 제1 및 제2패드(245,247)를 포함한다. 상기 제1 및 제2패드(245,247)는 상기 발광 칩(200A)의 아래에 서로 이격되어 배치된다. 상기 제1패드(245)는 상기 제1도전형 반도체층(222)과 전기적으로 연결되며, 상기 제2패드(247)는 제2도전형 반도체층(224)과 전기적으로 연결된다. 상기 제1 및 제2패드(245,247)은 바닥 형상이 다각형 또는 원 형상이거나, 회로 기판(400)의 제1 및 제2리드 전극(415,417)의 형상과 대응되도록 형성될 수 있다. 상기 제1 및 제2패드(245,247) 각각의 하면 면적은 예컨대, 제1 및 제2리드 전극(415,417) 각각의 상면 크기와 대응되는 크기로 형성될 수 있다.
상기 발광 칩(200A)은 상기 기판(221)과 상기 발광 구조물(225) 사이에 버퍼층(미도시) 및 언도프드 반도체층(미도시) 중 적어도 하나를 포함할 수 있다. 상기 버퍼층은 상기 기판(221)과 반도체층과의 격자 상수 차이를 완화시켜 주기 위한 층으로서, II족 내지 VI족 화합물 반도체 중에서 선택적으로 형성될 수 있다. 상기 버퍼층 아래에는 언도핑된 III족-V족 화합물 반도체층이 더 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 기판(221)은 제거될 수 있다. 상기 기판(221)이 제거된 경우 형광체층(250)은 상기 제1도전형 반도체층(222)의 상면이나 다른 반도체층의 상면에 접촉될 수 있다.
상기 발광 칩(200A)은 제1 및 제2전극층(241,242), 제3전극층(243), 절연층(231,233)을 포함한다. 상기 제1 및 제2전극층(241,242) 각각은 단층 또는 다층으로 형성될 수 있으며, 전류 확산층으로 기능할 수 있다. 상기 제1 및 제2전극층(241,242)은 상기 발광 구조물(225)의 아래에 배치된 제1전극층(241); 및 상기 제1전극층(241) 아래에 배치된 제2전극층(242)을 포함할 수 있다. 상기 제1전극층(241)은 전류를 확산시켜 주게 되며, 상기 제2전극층(241)은 입사되는 광을 반사하게 된다.
상기 제1 및 제2전극층(241,242)은 서로 다른 물질로 형성될 수 있다. 상기 제1전극층(241)은 투광성 재질로 형성될 수 있으며, 예컨대 금속 산화물 또는 금속 질화물로 형성될 수 있다. 상기 제1전극층은 예컨대 ITO(indium tin oxide), ITON(ITO nitride), IZO(indium zinc oxide), IZON(IZO nitride), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide) 중에서 선택적으로 형성될 수 있다. 상기 제2전극층(242)은 상기 제1전극층(241)의 하면과 접촉되며 반사 전극층으로 기능할 수 있다. 상기 제2전극층(242)은 금속 예컨대, Ag, Au 또는 Al를 포함한다. 상기 제2전극층(242)은 상기 제1전극층(241)이 일부 영역이 제거된 경우, 상기 발광 구조물(225)의 하면에 부분적으로 접촉될 수 있다.
다른 예로서, 상기 제1 및 제2전극층(241,242)의 구조는 무지향성 반사(ODR: Omni Directional Reflector layer) 구조로 적층될 수 있다. 상기 무지향성 반사 구조는 낮은 굴절률을 갖는 제1전극층(241)과, 상기 제1전극층(241)과 접촉된 고 반사 재질의 금속 재질인 제2전극층(242)의 적층 구조로 형성될 수 있다. 상기 전극층(241,242)은, 예컨대, ITO/Ag의 적층 구조로 이루어질 수 있다. 이러한 상기 제1전극층(241)과 제2전극층(242) 사이의 계면에서 전 방위 반사각을 개선시켜 줄 수 있다.
다른 예로서, 상기 제2전극층(242)은 제거될 수 있으며, 다른 재질의 반사층으로 형성될 수 있다. 상기 반사층은 분산형 브래그 반사(distributed bragg reflector: DBR) 구조로 형성될 수 있으며, 상기 분산형 브래그 반사 구조는 서로 다른 굴절률을 갖는 두 유전체층이 교대로 배치된 구조를 포함하며, 예컨대, SiO2층, Si3N4층, TiO2층, Al2O3층, 및 MgO층 중 서로 다른 어느 하나를 각각 포함할 수 있다. 다른 예로서, 상기 전극층(241,242)은 분산형 브래그 반사 구조와 무지향성 반사 구조를 모두 포함할 수 있으며, 이 경우 98% 이상의 광 반사율을 갖는 발광 칩(200A)을 제공할 수 있다. 상기 플립 방식으로 탑재된 발광 칩(200A)은 상기 제2전극층(242)로부터 반사된 광이 기판(221)을 통해 방출하게 되므로, 수직 상 방향으로 대부분의 광을 방출할 수 있다. 또한 상기 발광 칩(200A)의 측면으로 방출된 광은 반사 시트(600)에 의해 광학 렌즈의 입사면 영역으로 반사될 수 있다.
상기 제3전극층(243)은 상기 제2전극층(242)의 아래에 배치되며, 상기 제1 및 제2전극층(241,242)과 전기적으로 절연된다. 상기 제3전극층(243)은 금속 예컨대, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P) 중 적어도 하나를 포함한다. 상기 제3전극층(243) 아래에는 제1패드(245) 및 제2패드(247)가 배치된다. 상기 절연층(231,233)은 제1 및 제2전극층(241,242), 제3전극층(243), 제1 및 제2패드(245,247), 발광 구조물(225)의 층 간의 불필요한 접촉을 차단하게 된다. 상기 절연층(231,233)은 제1 및 제2절연층(231,233)을 포함한다. 상기 제1절연층(231)은 상기 제3전극층(243)과 제2전극층(242) 사이에 배치된다. 상기 제2절연층(233)은 상기 제3전극층(243)과 제1/2패드(245,247) 사이에 배치된다. 상기 제1 및 제2패드(245,247)는 상기 제1 및 제2리드 전극(415,417)과 동일한 물질을 포함할 수 있다.
상기 제3전극층(243)은 상기 제1도전형 반도체층(222)과 연결된다. 상기 제3전극층(243)의 연결부(244)는 상기 제1, 2전극층(241, 242) 및 발광 구조물(225)의 하부를 통해 비아 구조로 돌출되며 제1도전형 반도체층(222)과 접촉된다. 상기 연결부(244)는 복수로 배치될 수 있다. 상기 제3전극층(243)의 연결부(244)의 둘레에는 상기 제1절연층(231)의 일부(232)가 연장되어 제3전극층(243과 상기 제1 및 제2전극층(241,242), 제2도전형 반도체층(224) 및 활성층(223) 간의 전기적인 연결을 차단한다. 상기 발광 구조물(225)의 측면에는 측면 보호를 위해 절연 층이 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2패드(247)는 상기 제2절연층(233) 아래에 배치되고 상기 제2절연층(233)의 오픈 영역을 통해 상기 제1 및 제2전극층(241, 242) 중 적어도 하나와 접촉되거나 연결된다. 상기 제1패드(245)는 상기 제2절연층(233)의 아래에 배치되며 상기 제2절연층(233)의 오픈 영역을 통해 상기 제3전극층(243)과 연결된다. 이에 따라 상기 제1패드(247)의 돌기(248)는 제1,2전극층(241,242)을 통해 제2도전형 반도체층(224)에 전기적으로 연결되며, 제2패드(245)의 돌기(246)는 제3전극층(243)을 통해 제1도전형 반도체층(222)에 전기적으로 연결된다.
상기 제1 및 제2패드(245,247)는 상기 발광 칩(200A)의 하부에 서로 이격되며, 상기 회로 기판(400)의 제1 및 제2리드 전극(415,417)와 대면하게 된다. 상기 제1 및 제2패드(245,247)에는 다각형 형상의 리세스(271,273)를 포함할 수 있으며, 상기 리세스(271,273)는 상기 발광 구조물(225)의 방향으로 볼록하게 형성된다. 상기 리세스(271,273)는 상기 제1 및 제2패드(245,247)의 두께와 같거나 작은 깊이를 갖고 형성될 수 있으며, 이러한 리세스(271,273)의 깊이는 상기 제1 및 제2패드(245,247)의 표면적을 증가시켜 줄 수 있다.
상기 제1패드(245) 및 제1리드 전극(415) 사이의 영역 및 상기 제2패드(247) 및 제2리드 전극(417) 사이의 영역에는 접합 부재(255,257)가 배치된다. 상기 접합 부재(255,257)는 전기 전도성 물질을 포함할 수 있으며, 일부는 상기 리세스(271,273)에 배치된다. 상기 제1 및 제2패드(215,217)는 상기 접합 부재(255,257)가 리세스(271,273)에 배치되므로, 상기 접합 부재(255,257)와 제1 및 제2패드(245,247) 간의 접착 면적은 증가될 수 있다. 이에 따라 제1 및 제2패드(245,247)와 제1 및 제2리드 전극(415,417)가 접합되므로 발광 칩(200A)의 전기적인 신뢰성 및 방열 효율을 개선시켜 줄 수 있다.
상기 접합 부재(255,257)는 솔더 페이스트 재질을 포함할 수 있다. 상기 솔더 페이스트 재질은 금(Au), 주석(Sn), 납(Pb), 구리(Cu), 비스무트(Bi), 인듐(In), 은(Ag) 중 적어도 하나를 포함한다. 상기 접합 부재(255,257)는 열 전달을 회로 기판(400)에 직접 전도하기 때문에 열 전도 효율이 패키지를 이용한 구조보다는 개선될 수 있다. 또한 상기 접합 부재(255,257)는 발광 칩(200A)의 제1 및 제2패드(245,247)와의 열 팽창계수의 차이가 적은 물질이므로, 열 전도 효율을 개선시켜 줄 수 있다.
상기 접합 부재(255,257)는 다른 예로서, 전도성 필름을 포함할 수 있으며, 상기 전도성 필름은 절연성 필름 내에 하나 이상의 도전성 입자를 포함한다. 상기 도전성 입자는 예컨대, 금속이나, 금속 합금, 탄소 중 적어도 하나를 포함할 수 있다. 상기 도전성 입자는 니켈, 은, 금, 알루미늄, 크롬, 구리 및 탄소 중 적어도 하나를 포함할 수 있다. 상기 전도성 필름은 이방성(Anisotropic) 전도 필름 또는 이방성 도전 접착제를 포함할 수 있다.
상기 발광 칩(200A)과 상기 회로 기판(400) 사이에는 접착 부재 예컨대, 열전도성 필름을 포함할 수 있다. 상기 열전도성 필름은 폴리에틸렌테레프탈레이트, 폴리부티렌테레프탈레이드, 폴리에틸렌나프탈레이트, 폴리부티렌나프탈레이트 등의 폴리에스터 수지; 폴리이미드 수지; 아크릴 수지; 폴리스티렌 및 아크릴로니트릴-스티렌 등의 스티렌계 수지; 폴리카보네이트 수지; 폴리락트산 수지; 폴리우레탄 수지; 등을 사용할 수 있다. 또한, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 공중합체와 같은 폴리올레핀 수지; 폴리비닐클로라이드, 폴리비닐리덴클로라이드 등의 비닐 수지; 폴리아미드 수지; 설폰계 수지; 폴리에테르-에테르케톤계 수지; 알릴레이트계 수지; 또는 상기 수지들의 블렌드 중에서 적어도 하나를 포함할 수 있다.
상기 발광 칩(200A)은 회로 기판(400)의 표면 및 발광 구조물(225)의 측면 및 상면을 통해 광을 방출함으로써, 광 추출 효율을 개선시켜 줄 수 있다. 이러한 회로 기판(400) 상에 발광 칩(200A)을 직접 본딩할 수 있어 공정이 간소화될 수 있다. 또한 발광 칩(200A)의 방열이 개선됨으로써, 조명 분야 등에 유용하게 활용될 수 있다.
실시예에 따른 발광 모듈은 각종 표시 장치의 라이트 유닛에 적용될 수 있다. 상기 라이트 유닛은 하나 또는 복수의 발광 모듈을 갖는 구조를 포함하며, 3차원 디스플레이, 각종 조명등, 신호등, 차량 전조등, 전광판 등이 포함될 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
100: 발광 소자 100A, 110B, 200A: 발광 칩
400A: 발광 모듈 150,250: 형광체층
300: 광학 렌즈 315: 리세스
320: 입사면 310: 바닥면
330: 제1광 출사면 335: 제2광 출사면
350: 지지 돌기
360,361,362,363: 측면 돌출부
400: 회로 기판

Claims (17)

  1. 바닥면;
    상기 바닥면의 센터 영역에 상 방향으로 볼록한 리세스;
    상기 리세스의 둘레에 입사면;
    상기 바닥면 및 입사면의 반대측에 배치되며 상기 리세스에 대응되는 센터 영역이 볼록한 곡면을 갖는 제1광 출사면; 및
    상기 제1광 출사면과 상기 바닥면 사이에 수직 방향으로 연결된 제2광 출사면을 포함하며,
    상기 리세스는 제1축 방향의 바닥 너비와 제2축 방향의 바닥 너비가 다른 광학 렌즈.
  2. 제1항에 있어서,
    상기 리세스는 상기 제2축 방향의 바닥 너비가 상기 제1축 방향의 바닥 너비보다 넓은 광학 렌즈.
  3. 제2항에 있어서,
    상기 바닥 면은 상기 리세스의 바닥 중심을 지나는 제1축 방향의 길이가 상기 제2축 방향의 길이보다 긴 광학 렌즈.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 리세스의 바텀 뷰 형상은 타원 형상을 갖는 광학 렌즈.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 리세스는 제1 및 제2축 방향에 대해 하나의 제1정점을 가지며,
    상기 리세스의 제1정점은 상기 제1광 출사면의 제2정점에 인접한 광학 렌즈.
  6. 제5항에 있어서,
    상기 제2광 출사면은 센터 영역이 볼록한 곡면 또는 플랫한 면을 갖는 광학 렌즈.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 바닥면은 상기 리세스의 둘레에 제1에지 및 상기 제2광 출사면의 하부에 제2에지를 포함하며,
    상기 바닥면의 제1에지와 제2에지를 연결한 직선은 상기 제1에지를 지나는 수평한 축에 대해 경사지며,
    상기 바닥면의 제1에지는 상기 제2에지를 지나는 수평한 직선보다 아래에 배치되며,
    상기 입사면의 하부 영역은 상기 제2에지를 지나는 수평한 직선보다 아래에 배치되는 광학 렌즈.
  8. 제7항에 있어서,
    상기 바닥면은 곡면을 포함하는 광학 렌즈.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제2광 출사면은 상기 바닥 중심에 수평한 제1축에 대해 수직한 면 또는 경사진 면을 포함하는 광학 렌즈.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 바닥면에 상기 리세스의 바닥 중심으로부터 동일한 간격을 갖는 복수의 지지 돌기를 포함하는 광학 렌즈.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제2광 출사면의 일부에 상기 제2광 출사면보다 외측으로 돌출된 측면 돌출부를 포함하는 광학 렌즈.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 리세스의 깊이는 상기 리세스의 바닥 너비보다 크고, 상기 제2광 출사면의 너비의 2배 이상인 광학 렌즈.
  13. 제12항에 있어서,
    상기 리세스의 깊이는 상기 광학 렌즈의 두께의 80% 이상으로 배치된 광학 렌즈.
  14. 상면 및 복수의 측면을 통해 광을 방출하는 발광 소자;
    상기 발광 소자 상에 배치된 광학 렌즈; 및
    상기 광학 렌즈 아래에 배치된 회로 기판을 포함하며,
    상기 광학 렌즈는, 제1항 내지 제3항 중 어느 하나를 포함하는 발광 모듈.
  15. 제14항에 있어서,
    상기 발광 소자는 상기 광학 렌즈의 리세스 내에 배치되며,
    상기 발광 소자는 5면 발광하는 발광 모듈.
  16. 제14항에 있어서,
    상기 회로 기판과 상기 광학 렌즈 사이에 고정 플레이트를 포함하며,
    상기 고정 플레이트는 상기 발광 소자가 배치된 개구부를 갖고, 상기 회로 기판 상에 접착되는 발광 모듈.
  17. 청구항 14의 발광 모듈을 갖는 라이트 유닛.
KR1020160017677A 2016-02-16 2016-02-16 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛 KR102550461B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020160017677A KR102550461B1 (ko) 2016-02-16 2016-02-16 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛
US15/433,714 US10203086B2 (en) 2016-02-16 2017-02-15 Optical lens, light emitting module, and light unit including the same
EP17156224.2A EP3208533B1 (en) 2016-02-16 2017-02-15 Optical lens and light emitting module including the same
CN201710083158.3A CN107085252B (zh) 2016-02-16 2017-02-16 光学透镜和包括光学透镜的发光模块
JP2017027303A JP6879770B6 (ja) 2016-02-16 2017-02-16 光学レンズ、光源モジュールおよびこれを備えたライトユニット
TW106105038A TWI725121B (zh) 2016-02-16 2017-02-16 光學透鏡及包括其的發光模組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160017677A KR102550461B1 (ko) 2016-02-16 2016-02-16 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛

Publications (2)

Publication Number Publication Date
KR20170096370A true KR20170096370A (ko) 2017-08-24
KR102550461B1 KR102550461B1 (ko) 2023-07-03

Family

ID=59758105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160017677A KR102550461B1 (ko) 2016-02-16 2016-02-16 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛

Country Status (1)

Country Link
KR (1) KR102550461B1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177310A1 (ko) * 2018-03-15 2019-09-19 서울반도체주식회사 발광모듈 및 렌즈
KR102030406B1 (ko) * 2018-08-02 2019-10-10 주식회사 에이치엘옵틱스 광 확산렌즈 및 이를 포함하는 라이트 모듈
KR102053010B1 (ko) * 2019-05-07 2019-12-06 주식회사 에이치엘옵틱스 광 확산렌즈
WO2020013404A1 (ko) * 2018-07-09 2020-01-16 (주)에이치엘옵틱스 광 확산렌즈
WO2020185046A1 (ko) * 2019-03-14 2020-09-17 서울반도체주식회사 비등방 렌즈를 포함하는 발광모듈
US11022274B2 (en) 2018-03-15 2021-06-01 Seoul Semiconductor Co., Ltd. Light emitting module and lens
WO2023075099A1 (ko) * 2021-10-27 2023-05-04 삼성전자주식회사 디스플레이 장치 및 그 제조 방법
US11719976B2 (en) 2021-10-27 2023-08-08 Samsung Electronics Co., Ltd. Display apparatus and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651709B2 (ko) * 1976-04-06 1981-12-07
US20100195335A1 (en) * 2009-02-03 2010-08-05 Osram Sylvania, Inc. Beam spreading optics for light emitting diodes
US20140119027A1 (en) * 2012-10-25 2014-05-01 Enplas Corporation Light flux controlling member, light emitting device, surface light source device, and display apparatus
US20140254134A1 (en) * 2012-03-05 2014-09-11 Elizabeth M. Parkyn Wide- Angle Non- Imaging Illumination Lens Arrayable for Close Planar Targets

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168194A (zh) * 2010-12-16 2013-06-19 松下电器产业株式会社 背光装置和液晶显示装置以及透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651709B2 (ko) * 1976-04-06 1981-12-07
US20100195335A1 (en) * 2009-02-03 2010-08-05 Osram Sylvania, Inc. Beam spreading optics for light emitting diodes
US20140254134A1 (en) * 2012-03-05 2014-09-11 Elizabeth M. Parkyn Wide- Angle Non- Imaging Illumination Lens Arrayable for Close Planar Targets
US20140119027A1 (en) * 2012-10-25 2014-05-01 Enplas Corporation Light flux controlling member, light emitting device, surface light source device, and display apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177310A1 (ko) * 2018-03-15 2019-09-19 서울반도체주식회사 발광모듈 및 렌즈
US11022274B2 (en) 2018-03-15 2021-06-01 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US11499696B2 (en) 2018-03-15 2022-11-15 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US11815258B2 (en) 2018-03-15 2023-11-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens
WO2020013404A1 (ko) * 2018-07-09 2020-01-16 (주)에이치엘옵틱스 광 확산렌즈
KR102030406B1 (ko) * 2018-08-02 2019-10-10 주식회사 에이치엘옵틱스 광 확산렌즈 및 이를 포함하는 라이트 모듈
WO2020185046A1 (ko) * 2019-03-14 2020-09-17 서울반도체주식회사 비등방 렌즈를 포함하는 발광모듈
KR102053010B1 (ko) * 2019-05-07 2019-12-06 주식회사 에이치엘옵틱스 광 확산렌즈
WO2023075099A1 (ko) * 2021-10-27 2023-05-04 삼성전자주식회사 디스플레이 장치 및 그 제조 방법
US11719976B2 (en) 2021-10-27 2023-08-08 Samsung Electronics Co., Ltd. Display apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
KR102550461B1 (ko) 2023-07-03

Similar Documents

Publication Publication Date Title
JP6879770B6 (ja) 光学レンズ、光源モジュールおよびこれを備えたライトユニット
US10139077B2 (en) Optical lens, light emitting module and light unit having the same
KR102558280B1 (ko) 광원 유닛 및 이를 구비한 라이트 유닛
KR102294163B1 (ko) 발광 모듈
KR102550461B1 (ko) 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛
US10641442B2 (en) Optical lens, and light unit and lighting device having same
KR102538448B1 (ko) 조명 모듈
KR20220047961A (ko) 발광 모듈 및 이를 구비한 라이트 유닛
KR20180036272A (ko) 광학 렌즈, 광원 모듈 및 이를 구비한 라이트 유닛
KR102425317B1 (ko) 광학 렌즈, 조명 모듈 및 이를 구비한 라이트 유닛
KR20180034929A (ko) 광학 렌즈, 광원 모듈 및 이를 구비한 라이트 유닛
US10907775B2 (en) Optical lens, lighting module and light unit having the same
KR102140273B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102450726B1 (ko) 광학 렌즈, 발광 모듈 및 이를 구비한 라이트 유닛

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant