WO2020184767A1 - Water purification system using solar heat - Google Patents

Water purification system using solar heat Download PDF

Info

Publication number
WO2020184767A1
WO2020184767A1 PCT/KR2019/003337 KR2019003337W WO2020184767A1 WO 2020184767 A1 WO2020184767 A1 WO 2020184767A1 KR 2019003337 W KR2019003337 W KR 2019003337W WO 2020184767 A1 WO2020184767 A1 WO 2020184767A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
water
condensation
water tank
evaporation chamber
Prior art date
Application number
PCT/KR2019/003337
Other languages
French (fr)
Korean (ko)
Inventor
윤정훈
서호영
이경원
김종언
이순환
Original Assignee
주식회사 브리콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 브리콘 filed Critical 주식회사 브리콘
Publication of WO2020184767A1 publication Critical patent/WO2020184767A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the following embodiment relates to a water purification system using solar heat.
  • the stand-alone power generation system is a system that can generate and store power using sunlight or solar heat without being linked to the power grid. Since the standalone power generation system utilizes sustainable solar energy, it is possible to build an independent grid even in areas not connected to the grid. Therefore, the independent power generation system can be used for various purposes, such as building an independent energy production facility in remote areas such as Africa, or building an emergency energy supply facility for disaster or military use. In order to increase the energy utilization efficiency of the independent power generation system, a structure that can efficiently store solar power generation modules and an energy storage system (ESS) that can efficiently store and manage the generated power is required. Actually. In addition, there is a need for a package-key independent power generation system including a water purification system to produce and supply not only electric power but also water essential to life using solar heat.
  • ESS energy storage system
  • An object of an embodiment is to provide a water purification system capable of producing and supplying purified water and hot water using solar heat.
  • An object of an embodiment is to provide a water purification system capable of efficiently circulating heat to improve productivity of purified water and hot water.
  • a water purification system includes: a raw water tank in which raw water is stored; An evaporation chamber disposed below the raw water tank and in which the raw water supplied from the raw water tank is evaporated; A condensing part formed on the bottom of the raw water tank so that the water vapor generated in the evaporation chamber is condensed; And a water purification tank in which purified water formed by condensation in the condensation part is stored.
  • the condensation portion may be formed integrally with the bottom surface of the raw water tank.
  • At least a portion of the condensation portion may be formed to be inclined downward.
  • the condensation portion may be formed to be inclined downward from the central portion toward the edge.
  • a water collecting chamber disposed at an edge of the condensation part may be further included, and the purified water formed by condensation in the condensation part may flow to the edge along an inclination of the condensation part to be collected in the collecting chamber.
  • a raw water supply line connected to the central portion of the bottom of the raw water tank and supplying raw water from the raw water tank to the evaporation chamber may be further included.
  • the raw water filter unit may further include a raw water filter receiving raw water from a raw water supply source and supplying raw water from which contaminants have been removed through a filter to the raw water tank.
  • a solar heat collector that collects solar heat to heat the internal heat circulation medium; And a heat exchange circulation line through which the thermal circulation medium is circulated and heat exchange with raw water in the evaporation chamber.
  • a hot water tank receiving raw water from which pollutants have been removed from the raw water filter unit;
  • a solar heat collector for collecting solar heat to heat a thermal circulation medium;
  • a heat exchange circulation line through which the thermal circulation medium is circulated and heat exchange with raw water in the evaporation chamber and the hot water tank.
  • a water purification system includes: a raw water tank in which raw water is stored; An evaporation chamber in which the raw water supplied from the raw water tank is evaporated; A condensation part connected to the upper side of the evaporation chamber so that the water vapor generated in the evaporation chamber condenses; A raw water supply line configured to supply raw water from the raw water tank to the evaporation chamber and surround at least a portion of the condensation portion; And a water purification tank in which purified water formed by condensation in the condensation part is stored.
  • the raw water supply line may include a winding portion for spirally winding at least a portion of the condensation portion.
  • the raw water supply line may include a through portion through which the condensation portion directly passes.
  • the water purification system may produce and supply purified water and hot water using solar heat.
  • the water purification system may improve productivity of purified water and hot water by efficiently circulating heat.
  • FIG. 1 is a schematic diagram of a module combination package system according to an exemplary embodiment.
  • FIG. 2 is a block diagram of a module combination package system according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a purified water-hot water system according to an embodiment.
  • FIG. 4 is a schematic diagram of a purified water-hot water system according to an embodiment.
  • FIG. 5 is a schematic diagram of a raw water supply line according to an embodiment.
  • first, second, A, B, (a) and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
  • a standalone power generation system is a system that can generate and store power using sustainable energy such as sunlight or solar heat.
  • sustainable energy such as sunlight or solar heat.
  • each module and component must be stored in an export-type container, and there may be a limit on the number of solar panels that can be stored due to a limitation of space inside the container.
  • a method of purifying water distillation, reverse osmosis, deionization, or filter purification may be used.
  • a distilled water purification method that can completely remove bacteria, chlorine, mercury and nitrate, and even viruses and microorganisms may be the most suitable.
  • Solar heat can be used to distill water, and hot water can be produced using collected solar heat.
  • a module combination package system capable of producing both purified water and hot water at the same time while generating power using solar heat or the like.
  • a modular package system capable of producing all of power, purified water, and hot water using solar heat or the like can be stored in one container and exported and transported.
  • a modular package system When a modular package system is installed in remote areas such as Africa, it can be efficient in that it can produce all of the electricity, purified water, and hot water required for living in one package system.
  • 1 is a schematic diagram of a module combination package system according to an exemplary embodiment.
  • 2 is a block diagram of a module combination package system according to an exemplary embodiment.
  • a module combination package system 1 includes a solar power generation system 11, an energy storage system 12, a purified water-hot water system 13, and a solar thermal composite module. (14) and a waste heat recovery unit 15 may be included.
  • the module-combined package system 1 is a single package system, and may be a system that independently produces and stores electric power, purified water, and hot water using sunlight and solar heat.
  • the modular combination package system 1 can be supplied to areas where electric power, purified water, and hot water are required, such as Africa, developing countries or military areas.
  • the module combination type package system 1 may be stored in one container C so that export and transport are conveniently performed.
  • the solar power generation system 11 may generate electric power using sunlight.
  • the energy storage system 12 may store power produced by the solar power generation system 11.
  • the energy storage system 12 may be disposed under the container C. According to this arrangement, the storage efficiency of the energy storage system 12 can be increased while maintaining the center of gravity of the container C.
  • the purified water-hot water system 13 may produce purified water and hot water using solar heat.
  • the solar thermal composite module 14 may generate electric power using sunlight and solar heat, and supply the collected solar heat to the purified water-hot water system 13 to assist in the production of electric power, purified water, and hot water.
  • the waste heat recovery unit 15 supplies waste heat generated from the energy storage system 12 to the purified water-hot water system 13 to maximize the use of wasted heat. According to such a configuration, it is possible to produce and supply all of power, purified water and hot water with one module combination package system 1, and thus, it is possible to provide an independent and comprehensive solution in remote areas such as Africa.
  • FIG. 3 is a schematic diagram of a purified water-hot water system according to an embodiment.
  • the purified water-hot water system 13 may produce and supply purified water and hot water using solar heat.
  • the purified water-hot water system 13 When the purified water-hot water system 13 is installed in a remote area such as Africa, purified water and hot water required for living may be simultaneously produced by using natural energy such as solar heat. In remote areas, such as Africa, where health and medical facilities are scarce, it can be particularly important to completely remove contaminants from raw water to make drinking water available. To this end, the purified water-hot water system 13 may purify raw water by distillation.
  • the purified water-hot water system 13 efficiently circulates and uses heat, thereby increasing the productivity of purified water and hot water.
  • the purified water-hot water system 13 may include a structure in which hot water vapor is condensed with cold raw water in a raw water tank, and heat is supplied from the hot water vapor to preheat raw water.
  • the purified water-hot water system 13 includes a raw water tank 131, an evaporation chamber 132, a condensation part 133, a collection chamber 134, a water purification tank 135, a raw water supply line 136, A raw water filter unit 137, a hot water tank 138, a solar heat collector 1391, a heat exchange circulation line 1392, and an auxiliary raw water tank 1301 may be included.
  • the raw water tank 131 may store raw water.
  • the raw water tank 131 may be disposed above the evaporation chamber 132.
  • the bottom surface of the raw water tank 131 may be an upper surface of the evaporation chamber 132.
  • the raw water tank 131 may supply raw water to the evaporation chamber 132.
  • the evaporation chamber 132 may evaporate raw water.
  • the evaporation chamber 132 may be disposed below the raw water tank 131.
  • the evaporation chamber 132 may receive and store raw water from the raw water tank 131.
  • the evaporation chamber 132 may evaporate the supplied raw water.
  • the evaporation chamber 132 may receive heat from a heat exchange circulation line 1392 to be described later in order to promote evaporation.
  • raw water may be evaporated to generate water vapor.
  • the condensation part 133 may be a region in which water vapor generated in the evaporation chamber 132 is condensed. Water vapor generated in the evaporation chamber 132 may move upward and condensate in the condensation part 133. As water vapor is condensed in the condensation part 133, purified water from which contaminants are removed may be formed.
  • the condensation part 133 may be formed on the bottom of the raw water tank 131.
  • the condensation part 133 may be integrally formed with the bottom surface of the raw water tank 131. That is, the condensation part 133 may correspond to the bottom surface of the raw water tank 131. According to this structure, by the cold raw water stored in the raw water tank 131, hot water vapor can be rapidly condensed.
  • At least a portion of the condensation portion 133 may be formed to be inclined downward so that the purified water formed by condensation in the condensation portion 133 can be collected in one place.
  • the condensation portion 133 may be formed to be inclined downward from the central portion toward the edge. That is, the condensation portion 133 may be formed in a shape in which the center rises higher than the edge. According to this structure, even if the raw water tank 131 is disposed on the upper side of the evaporation chamber 132, structural stability can be obtained. Meanwhile, an inclined space S may be formed in a lower portion of the raw water tank 131 to be inclined from the center of the bottom to the edge. Since cold water is denser than warm water, relatively cold raw water may be located in the inclined space S formed under the raw water tank 131.
  • the cold raw water stored in the inclined space S may perform heat exchange with hot steam through the condensing part 133. That is, the hot water vapor is condensed into purified water while taking heat to the cold raw water in the inclined space (S) through the condensation unit 133, and the cold raw water in the inclined space (S) receives heat from the hot water vapor to increase the temperature. I can.
  • the raw water whose temperature has risen in the inclined space S moves to the upper portion of the raw water tank 131 due to a convection phenomenon, and cold raw water may be filled in the inclined space S again. Therefore, since cold raw water is continuously located in the inclined space S where heat exchange with hot steam is performed, condensation of steam can be efficiently promoted.
  • the water collecting chamber 134 may collect purified water formed by condensation in the condensation part 133.
  • the collection chamber 134 may be disposed at an end of the condensation portion 133 in a direction in which the slope is low. For example, when the central portion of the condensation portion 133 is formed high, the collection chamber 134 may be disposed at the edge of the condensation portion 133.
  • the purified water formed by condensation in the condensation part 133 may flow to the edge along the inclination of the condensation part 133 and may be collected in the water collecting chamber 134 disposed at the edge.
  • the water purification tank 135 may store purified water formed by condensation in the condensation part 133. To this end, the water collection chamber 134 may deliver the collected purified water to the water purification tank 135. The user may receive purified water from the purification tank 135 and use it as drinking water.
  • the raw water supply line 136 may supply raw water from the raw water tank 131 to the evaporation chamber 132.
  • the raw water supply line 136 may be connected to a higher slope of the bottom of the raw water tank 131. For example, when the central portion of the raw water tank 131 is formed high, the raw water supply line 136 may be connected to the central portion of the bottom of the raw water tank 131. Due to the difference in density between cold and warm water, relatively warm raw water may be located in the center, rising high from the bottom. Accordingly, the raw water supply line 136 may supply raw water having a relatively high temperature among raw water stored in the raw water tank 131 to the evaporation chamber 132.
  • the raw water supply line 136 can continuously supply the raw water having a high temperature to the evaporation chamber 132. . According to such a structure, since the raw water preheated in advance by receiving heat from the steam can be supplied to the evaporation chamber 132, evaporation in the evaporation chamber 132 can be promoted.
  • the raw water supply line 136 is connected to the side with a higher slope, it is possible to structurally filter the sediment deposited in the raw water tank 131. For example, sediment may settle on the lower slope of the raw water tank 131. However, since the raw water supply line 136 is connected to the central portion having a high slope from the bottom surface, raw water without sediment may be supplied to the evaporation chamber 132.
  • the raw water supply valve 1361 may be applied to the raw water supply line 136.
  • the raw water supply valve 1361 may adjust the amount of raw water supplied from the raw water tank 131 to the evaporation chamber 132.
  • the raw water supply valve 1361 considers at least one of the raw water storage amount of the raw water tank 131, the raw water storage amount of the evaporation chamber 132, the purified water storage amount, and the purified water demand amount of the purified water tank 135 to the evaporation chamber 132.
  • the amount of raw water supplied can be adjusted.
  • the raw water filter unit 137 may receive raw water from a raw water supply source.
  • the raw water filter unit 137 may remove pollutants of raw water through a filter.
  • the raw water filter unit 137 may supply raw water from which contaminants have been removed to the raw water tank 131. That is, the raw water filter unit 137 may primarily filter contaminants and supply them to the raw water tank 131.
  • the raw water filter unit 137 may include various filters such as a carbon filter, a precipitation filter, a reverse osmosis filter, or a deionization filter. According to this structure, hygiene and cleanliness of the raw water tank 131 can be maintained higher, and the efficiency of purified water can be increased.
  • the auxiliary raw water tank 1301 may be connected between the raw water filter unit 137 and the raw water tank 131.
  • the auxiliary raw water tank 1301 may receive and store raw water from which contaminants have been removed from the raw water filter unit 137.
  • the auxiliary raw water tank 1301 may supply the stored raw water to the raw water tank 131.
  • the hot water tank 138 may be a tank in which hot water is generated and stored.
  • the hot water tank 138 may receive and store raw water from which contaminants have been removed from the raw water filter unit 137.
  • the hot water tank 138 may receive heat from a heat exchange circulation line 1392 to be described later. Accordingly, the raw water stored in the hot water tank 138 may become hot water by increasing the temperature. The user can use the hot water stored in the hot water tank 138.
  • the solar collector 1391 may collect solar heat to heat a thermal circulation medium.
  • the solar collector 1391 is provided with a transparent cover that transmits sunlight rays and prevents heat loss at the upper end, and an absorber plate that absorbs the transmitted sunlight rays and converts it into thermal energy. Is provided, and a heat insulating material may be provided on the bottom surface. A tube through which a thermal circulating medium for collecting heat can pass may be attached to the absorber plate. The heated thermal circulating medium may be circulated and transferred to a device requiring heat along the heat exchange circulation line 1392. If necessary, the solar collector 1391 may further include a Fresnel lens to further increase the heat collection temperature.
  • a thermal circulation medium may be circulated along the heat exchange circulation line 1392.
  • the heat exchange circulation line 1392 may perform heat exchange with raw water in the evaporation chamber 132 and the hot water tank 138.
  • the heat exchange circulation line 1392 may include heat exchangers respectively disposed in the evaporation chamber 132 and the hot water tank 138.
  • the thermal circulating medium heated by solar heat passes through a heat exchanger disposed in the evaporation chamber 132, and supplies heat to the raw water in the evaporation chamber 132 to promote evaporation.
  • the thermal circulating medium heated by solar heat passes through a heat exchanger disposed in the hot water tank 138, and supplies heat to raw water in the hot water tank 138 to generate hot water.
  • the heat exchange circulation line 1392 may be connected to the evaporation chamber 132 and the hot water tank 138 in series or in parallel. As shown in FIG. 32, when the heat exchange circulation line 1392 is connected in series with the evaporation chamber 132 and the hot water tank 138, the direction in which the thermal circulation medium circulates may be appropriately set according to the situation. For example, when the production of hot water is further required, the thermal circulation medium may be circulated in a direction toward the hot water tank 138 so that the thermal circulation medium performs heat exchange with the hot water tank 138 first.
  • the thermal circulation medium may be circulated in a direction toward the evaporation chamber 132 so that the thermal circulation medium performs heat exchange with the evaporation chamber 132 first.
  • purified water and hot water can be simultaneously produced by using solar heat.
  • FIG. 4 is a schematic diagram of a purified water-hot water system according to an embodiment.
  • the purified water-hot water system 23 may produce and supply purified water and hot water using solar heat.
  • the purified water-hot water system 23 efficiently circulates and uses heat, thereby increasing the productivity of purified water and hot water.
  • the purified water-hot water system 23 may include a structure in which hot water vapor is condensed with cold raw water in a raw water tank, and heat is supplied from the hot water vapor to preheat raw water.
  • the purified water-hot water system 23 includes a raw water tank 231, an evaporation chamber 232, a condensation part 233, a collection chamber 234, a water purification tank 235, a raw water supply line 236, A raw water filter unit 237, a hot water tank 238, a solar heat collector 2391, a heat exchange circulation line 2392, and an auxiliary raw water tank 2301 may be included.
  • the raw water tank 231 may store raw water.
  • the raw water tank 231 may supply raw water to the evaporation chamber 232 through the raw water supply line 236.
  • the raw water tank 231 is disposed above the evaporation chamber 232, so that raw water can be supplied to the evaporation chamber 232 using gravity.
  • Raw water may be evaporated in the evaporation chamber 232.
  • the evaporation chamber 232 may receive and store raw water from the raw water tank 231.
  • the evaporation chamber 232 may evaporate the supplied raw water.
  • the evaporation chamber 232 may receive heat from the heat exchange circulation line 2392 to promote evaporation.
  • raw water may be evaporated to generate water vapor.
  • the condensation part 233 may be a region in which water vapor generated in the evaporation chamber 232 is condensed.
  • the condensation part 233 may be connected to the upper side of the evaporation chamber.
  • the condensation portion 233 may include a pipe.
  • the water vapor generated in the evaporation chamber 232 moves upward and collects into the condensation part 233, and may be condensed while passing through the condensation part 233.
  • purified water from which contaminants have been removed may be formed.
  • the condensation portion 233 may be formed to be inclined downward so that the purified water formed by condensation in the condensation portion 233 can be collected in one place.
  • the water collecting chamber 234 may collect purified water formed by condensation in the condensation part 233.
  • the collection chamber 234 may be disposed at an end of the condensation portion 233 in a direction in which the slope is low.
  • the purified water formed by condensation in the condensation portion 233 may flow along the slope of the condensation portion 233 and may be collected in the water collecting chamber 234.
  • the raw water supply line 236 may supply raw water from the raw water tank 231 to the evaporation chamber 232.
  • the raw water supply line 236 may be configured to perform heat exchange with the condensation unit 233.
  • the raw water supply line 236 may be formed to surround at least a portion of the condensation part 233.
  • the raw water supply line 236 may include a winding portion 2362a winding around at least a portion of the condensing portion 233.
  • the winding portion 2362a may be formed in a spiral shape.
  • Cold raw water supplied through the raw water supply line 236 may perform heat exchange with hot steam passing through the condensing portion 233 while passing through the winding portion 2362a. That is, the hot water vapor is condensed into purified water while passing through the condensation unit 233 while taking heat from the cold raw water passing through the winding unit 2362a, and the cold raw water passing through the winding unit 2362a receives heat from the hot water vapor and receives the temperature. Can rise.
  • the cold raw water supplied to the evaporation chamber 232 can be preheated with the heat of hot water vapor.
  • heat exchange between raw water and steam is performed in the raw water supply line 236, cold raw water can always be stored in the raw water tank 231, and cold raw water can be continuously supplied to the raw water supply line 236.
  • the winding portion 2362a may be wound from a lower inclined side to a higher side of the condensed portion 233. According to this structure, the raw water passing through the winding portion 2362a and the steam passing through the condensing portion 233 may flow in opposite directions, so that the raw water and the steam may be continuously heat-exchanged.
  • FIG. 5 is a schematic diagram of a raw water supply line according to an exemplary embodiment.
  • the raw water supply line 236 may include a through part 2362b through which the condensation part 233 directly penetrates.
  • the through part 2362b is a pipe through which raw water is supplied and may be a part of the raw water supply line 236.
  • the through portion 2362b may be a portion having a larger cross-sectional area than other portions of the raw water supply line 236.
  • the condensation portion 233 may be formed to directly penetrate the through portion 2362b. According to this structure, cold raw water passing through the through portion 2362b can be directly contacted around the condensation portion 233. Thus, heat exchange between cold raw water and hot steam can be efficiently performed.
  • the through part 2362b may be formed to be inclined upward with respect to the flow direction of the raw water. According to this structure, the raw water passing through the through portion 2362b and the water vapor passing through the condensing portion 233 can flow in opposite directions, so that the raw water and the steam can be continuously heat-exchanged.
  • the purified water tank 235 Since the description of the purified water tank 235, the raw water filter unit 237, the hot water tank 238, the solar heat collector 2391, the heat exchange circulation line 2392, and the auxiliary raw water tank 2301 are overlapped with the above It should be omitted.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

A water purification system according to an embodiment comprises: a raw water tank in which raw water is stored; an evaporation chamber which is disposed below the raw water tank and in which raw water supplied from the raw water tank is evaporated; a condensation part formed at the bottom surface of the raw water tank so as to condense water vapor generated by the evaporation chamber; and a purified water tank in which purified water formed by the water vapor condensed by the condensation part is stored.

Description

태양열을 이용한 정수 시스템Water purification system using solar heat
아래의 실시 예는 태양열을 이용한 정수 시스템에 관한 것이다.The following embodiment relates to a water purification system using solar heat.
전력망 접근이 어려운 아프리카나 농촌 지역을 중심으로 독립형(off-grid) 발전 시스템이 점차 이용되고 있다. 독립형 발전 시스템은 전력망과 연계되지 않고, 태양광 또는 태양열을 이용하여 전력을 생산하고 저장할 수 있는 시스템이다. 독립형 발전 시스템은 지속 가능한 태양 에너지를 활용하기 때문에, 전력망과 연계되지 않는 지역에서도 독립적인 전력망을 구축할 수 있다. 따라서, 독립형 발전 시스템은 아프리카와 같은 오지에 독립형 에너지 생산 시설을 구축하거나, 재난용 또는 군사용으로 긴급 에너지 공급 시설을 구축하는 등의 다양한 용도로 활용될 수 있다. 독립형 발전 시스템의 에너지 활용 효율을 높이기 위하여, 태양광 발전 모듈을 효율적으로 격납할 수 있는 구조와, 생산된 전력을 효율적으로 저장 및 관리할 수 있는 에너지 저장 시스템(ESS, Energy Storage System)이 요구되는 실정이다. 또한, 태양열 등을 이용하여 전력뿐만 아니라 생활에 필수적인 정수를 생산하고 공급할 수 있도록, 정수 시스템이 포함된 패지키형 독립형 발전 시스템이 요구되는 실정이다.Off-grid power generation systems are increasingly being used in rural areas such as Africa where access to the power grid is difficult. The stand-alone power generation system is a system that can generate and store power using sunlight or solar heat without being linked to the power grid. Since the standalone power generation system utilizes sustainable solar energy, it is possible to build an independent grid even in areas not connected to the grid. Therefore, the independent power generation system can be used for various purposes, such as building an independent energy production facility in remote areas such as Africa, or building an emergency energy supply facility for disaster or military use. In order to increase the energy utilization efficiency of the independent power generation system, a structure that can efficiently store solar power generation modules and an energy storage system (ESS) that can efficiently store and manage the generated power is required. Actually. In addition, there is a need for a package-key independent power generation system including a water purification system to produce and supply not only electric power but also water essential to life using solar heat.
전술한 배경기술은 발명자가 본 발명의 도출과정에서 보유하거나 습득한 것으로서, 반드시 본 발명의 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.The above-described background technology is possessed or acquired by the inventor in the process of deriving the present invention, and is not necessarily a known technology disclosed to the general public prior to filing the present invention.
일 실시 예의 목적은, 태양열을 이용하여 정수 및 온수를 생산 및 공급할 수 있는 정수 시스템을 제공하는 것이다.An object of an embodiment is to provide a water purification system capable of producing and supplying purified water and hot water using solar heat.
일 실시 예의 목적은, 정수 및 온수의 생산성이 향상되도록 열을 효율적으로 순환시킬 수 있는 정수 시스템을 제공하는 것이다.An object of an embodiment is to provide a water purification system capable of efficiently circulating heat to improve productivity of purified water and hot water.
일 실시 예에 따른 정수 시스템은, 원수가 저장되는 원수 탱크; 상기 원수 탱크의 하측에 배치되고, 상기 원수 탱크로부터 공급받은 원수의 증발이 이루어지는 증발 챔버; 상기 증발 챔버에서 발생된 수증기가 응결되도록, 상기 원수 탱크의 저면에 형성되는 응결부; 및 상기 응결부에서 응결되어 형성되는 정수가 저장되는 정수 탱크를 포함할 수 있다.A water purification system according to an embodiment includes: a raw water tank in which raw water is stored; An evaporation chamber disposed below the raw water tank and in which the raw water supplied from the raw water tank is evaporated; A condensing part formed on the bottom of the raw water tank so that the water vapor generated in the evaporation chamber is condensed; And a water purification tank in which purified water formed by condensation in the condensation part is stored.
상기 응결부는 상기 원수 탱크의 저면과 일체로 형성될 수 있다.The condensation portion may be formed integrally with the bottom surface of the raw water tank.
상기 응결부의 적어도 일부는 하향 경사지게 형성될 수 있다.At least a portion of the condensation portion may be formed to be inclined downward.
상기 응결부는 중앙부에서 가장자리를 향할수록 하향 경사지게 형성될 수 있다.The condensation portion may be formed to be inclined downward from the central portion toward the edge.
상기 응결부의 가장자리에 배치되는 집수 챔버를 더 포함하고, 상기 응결부에서 응결되어 형성되는 정수는, 상기 응결부의 경사를 따라 가장자리로 유동되어 상기 집수 챔버에 집수될 수 있다.A water collecting chamber disposed at an edge of the condensation part may be further included, and the purified water formed by condensation in the condensation part may flow to the edge along an inclination of the condensation part to be collected in the collecting chamber.
상기 원수 탱크의 저면의 중앙부에 연결되고, 상기 원수 탱크로부터 상기 증발 챔버로 원수를 공급하는 원수 공급 라인을 더 포함할 수 있다.A raw water supply line connected to the central portion of the bottom of the raw water tank and supplying raw water from the raw water tank to the evaporation chamber may be further included.
원수 공급원으로부터 원수를 공급받고, 필터를 통해 오염 물질을 제거한 원수를 상기 원수 탱크로 공급하는 원수 필터부를 더 포함할 수 있다.The raw water filter unit may further include a raw water filter receiving raw water from a raw water supply source and supplying raw water from which contaminants have been removed through a filter to the raw water tank.
태양열을 집열하여 내부의 열순환 매체를 가열하는 태양열 집열기; 및 상기 열순환 매체가 순환되고, 상기 증발 챔버 내의 원수와 열교환을 수행하는 열교환 순환 라인을 더 포함할 수 있다.A solar heat collector that collects solar heat to heat the internal heat circulation medium; And a heat exchange circulation line through which the thermal circulation medium is circulated and heat exchange with raw water in the evaporation chamber.
상기 원수 필터부로부터 오염 물질이 제거된 원수를 공급받는 온수 탱크; 태양열을 집열하여 열순환 매체를 가열하는 태양열 집열기; 및 상기 열순환 매체가 순환되고, 상기 증발 챔버 및 온수 탱크 내의 원수와 열교환을 수행하는 열교환 순환 라인을 더 포함할 수 있다.A hot water tank receiving raw water from which pollutants have been removed from the raw water filter unit; A solar heat collector for collecting solar heat to heat a thermal circulation medium; And a heat exchange circulation line through which the thermal circulation medium is circulated and heat exchange with raw water in the evaporation chamber and the hot water tank.
일 실시 예에 따른 정수 시스템은, 원수가 저장되는 원수 탱크; 상기 원수 탱크로부터 공급받은 원수의 증발이 이루어지는 증발 챔버; 상기 증발 챔버에서 발생된 수증기가 응결되도록, 상기 증발 챔버의 상측에 연결되는 응결부; 상기 원수 탱크로부터 상기 증발 챔버로 원수를 공급하고, 상기 응결부의 적어도 일부를 감싸도록 형성되는 원수 공급 라인; 및 상기 응결부에서 응결되어 형성되는 정수가 저장되는 정수 탱크를 포함할 수 있다.A water purification system according to an embodiment includes: a raw water tank in which raw water is stored; An evaporation chamber in which the raw water supplied from the raw water tank is evaporated; A condensation part connected to the upper side of the evaporation chamber so that the water vapor generated in the evaporation chamber condenses; A raw water supply line configured to supply raw water from the raw water tank to the evaporation chamber and surround at least a portion of the condensation portion; And a water purification tank in which purified water formed by condensation in the condensation part is stored.
상기 원수 공급 라인은 상기 응결부의 적어도 일부를 나선형으로 권취하는 권취부를 포함할 수 있다.The raw water supply line may include a winding portion for spirally winding at least a portion of the condensation portion.
상기 원수 공급 라인은 상기 응결부가 직접 관통하는 관통부를 포함할 수 있다.The raw water supply line may include a through portion through which the condensation portion directly passes.
일 실시 예에 따른 정수 시스템은, 태양열을 이용하여 정수 및 온수를 생산 및 공급할 수 있다.The water purification system according to an embodiment may produce and supply purified water and hot water using solar heat.
일 실시 예에 따른 정수 시스템은, 열을 효율적으로 순환시킴으로써 정수 및 온수의 생산성을 향상시킬 수 있다.The water purification system according to an embodiment may improve productivity of purified water and hot water by efficiently circulating heat.
일 실시 예에 따른 정수 시스템의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the water purification system according to an embodiment are not limited to those mentioned above, and other effects that are not mentioned will be clearly understood by those skilled in the art from the following description.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to the present specification illustrate a preferred embodiment of the present invention, and serve to further understand the technical idea of the present invention together with the detailed description of the present invention, so the present invention is limited to the matters described in such drawings. It is limited and should not be interpreted.
도 1은 일 실시 예에 따른 모듈 조합형 패키지 시스템의 모식도이다.1 is a schematic diagram of a module combination package system according to an exemplary embodiment.
도 2는 일 실시 예에 따른 모듈 조합형 패키지 시스템의 블록도이다.2 is a block diagram of a module combination package system according to an exemplary embodiment.
도 3은 일 실시 예에 따른 정수-온수 시스템의 개략도이다.3 is a schematic diagram of a purified water-hot water system according to an embodiment.
도 4는 일 실시 예에 따른 정수-온수 시스템의 개략도이다.4 is a schematic diagram of a purified water-hot water system according to an embodiment.
도 5는 일 실시 예에 따른 원수 공급 라인의 개략도이다.5 is a schematic diagram of a raw water supply line according to an embodiment.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments will be described in detail through exemplary drawings. In adding reference numerals to elements of each drawing, it should be noted that the same elements are assigned the same numerals as possible even if they are indicated on different drawings. In addition, in describing the embodiment, if it is determined that a detailed description of a related known configuration or function interferes with the understanding of the embodiment, a detailed description thereof will be omitted.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the constituent elements of the embodiment, terms such as first, second, A, B, (a) and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but another component between each component It should be understood that may be “connected”, “coupled” or “connected”.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in one embodiment and components including common functions will be described using the same name in other embodiments. Unless otherwise stated, descriptions in one embodiment may be applied to other embodiments, and detailed descriptions in the overlapping range will be omitted.
아프리카와 같은 오지, 개발 도상국 또는 농촌 지역 등은 기존에 설비된 전력망을 직접 연계하기 어려울 수 있다. 따라서, 독립적으로 발전 가능한 독립형(off-grid) 발전 시스템을 설치하는 것이 효과적일 수 있다. 독립형 발전 시스템은 태양광 또는 태양열과 같은 지속 가능한 에너지를 이용하여 전력을 생산하고 저장할 수 있는 시스템이다. 독립형 발전 시스템의 효율성 및 충분한 발전 용량 확보를 위하여, 태양광 에너지를 최대한으로 포집하고 활용하는 것이 중요할 수 있다. 이를 위하여, 태양광 패널의 개수를 증가시켜, 얻을 수 있는 에너지를 증가시킬 수 있다. 다만, 독립형 발전 시스템의 수출 또는 이송 과정에서, 각 모듈 및 구성들은 수출형 컨테이너 등에 격납되어야 하고, 컨테이너 내부 공간의 한계로 인해 격납될 수 있는 태양광 패널의 개수에 한계가 있을 수 있다. 따라서, 최대한 많은 태양광 패널을 한정된 공간에 격납하기 위하여, 태양광 패널을 효율적으로 격납할 수 있는 구조가 요구된다. 한편, 독립형 발전 시스템을 컨테이너에 패키징하여 해당 지역으로 이송한 뒤에, 격납된 태양광 패널을 전개하는 등의 설치 과정이 필요하다. 설치 비용 및 설치 인력을 절감하기 위하여, 효율적인 전개 구조가 요구된다. 또한, 태양광 패널을 적절한 각도로 설치하면서도 구조적인 안정성이 확보되어야 할 것이다. 한편, 독립형 발전 시스템의 설치가 필요한 지역은, 일반적으로 전력망뿐만 아니라 생활에 필수적인 정수와 온수의 직접적인 공급이 어려울 수 있다. 예를 들어, 아프리카와 같은 오지나 군사 지역과 같은 곳은 기존 수도망을 연계하여 정수 및 온수를 직접 공급하기 어려울 수 있다. 물을 정수하는 방법으로, 증류식, 역삼투압식, 탈이온식 또는 필터식 정수가 이용될 수 있다. 아프리카와 같은 오지는 의료 체계가 발달되어 있지 않은 점을 감안할 때, 박테리아, 염소 수은 및 질산염을 완벽하게 제거할 수 있고, 바이러스와 미생물까지 제거할 수 있는 증류식 정수 방법이 가장 적합할 수 있다. 물을 증류하기 위해서 태양열을 이용할 수 있고, 포집한 태양열을 이용하여 온수를 생산할 수 있다. 또한, 독립형 발전 시스템과 정수 시스템을 서로 연계하여, 태양열 등을 이용하여 전력을 생산함과 동시에 정수 및 온수를 모두 생산할 수 있는 모듈 조합형 패키지 시스템을 구성할 수 있다. 태양열 등을 이용하여 전력, 정수 및 온수를 모두 생산할 수 있는 모듈 조합형 패키지 시스템은 하나의 컨테이너에 격납되어 수출 및 이송될 수 있다. 모듈 조합형 패키지 시스템이 아프리카 등의 오지에 설치되면, 생활에 필요한 전력, 정수 및 온수를 하나의 패키지 시스템에서 모두 생산할 수 있다는 점에서 효율적일 수 있다.In remote areas such as Africa, developing countries or rural areas, it may be difficult to directly link the existing power grid. Therefore, it may be effective to install an off-grid power generation system capable of independently generating power. A standalone power generation system is a system that can generate and store power using sustainable energy such as sunlight or solar heat. In order to secure the efficiency and sufficient power generation capacity of the stand-alone power generation system, it may be important to collect and utilize solar energy to the maximum. To this end, it is possible to increase the energy that can be obtained by increasing the number of solar panels. However, in the process of exporting or transferring the independent power generation system, each module and component must be stored in an export-type container, and there may be a limit on the number of solar panels that can be stored due to a limitation of space inside the container. Accordingly, in order to store as many solar panels as possible in a limited space, a structure capable of efficiently storing solar panels is required. On the other hand, after packaging the stand-alone power generation system in a container and transferring it to a corresponding area, an installation process such as deploying the stored solar panel is required. In order to reduce installation cost and installation manpower, an efficient deployment structure is required. In addition, structural stability should be secured while installing the solar panel at an appropriate angle. On the other hand, in an area where an independent power generation system needs to be installed, it may be difficult to directly supply purified water and hot water essential for life as well as a power grid. For example, in remote areas such as Africa or in military areas, it may be difficult to directly supply purified water and hot water by connecting existing water networks. As a method of purifying water, distillation, reverse osmosis, deionization, or filter purification may be used. In remote areas such as Africa, given that the medical system is not developed, a distilled water purification method that can completely remove bacteria, chlorine, mercury and nitrate, and even viruses and microorganisms may be the most suitable. Solar heat can be used to distill water, and hot water can be produced using collected solar heat. In addition, by connecting the independent power generation system and the water purification system to each other, it is possible to construct a module combination package system capable of producing both purified water and hot water at the same time while generating power using solar heat or the like. A modular package system capable of producing all of power, purified water, and hot water using solar heat or the like can be stored in one container and exported and transported. When a modular package system is installed in remote areas such as Africa, it can be efficient in that it can produce all of the electricity, purified water, and hot water required for living in one package system.
도 1은 일 실시 예에 따른 모듈 조합형 패키지 시스템의 모식도이다. 도 2는 일 실시 예에 따른 모듈 조합형 패키지 시스템의 블록도이다.1 is a schematic diagram of a module combination package system according to an exemplary embodiment. 2 is a block diagram of a module combination package system according to an exemplary embodiment.
도 1 및 도 2를 참조하면, 일 실시 예에 따른 모듈 조합형 패키지 시스템(1)은, 태양광 발전 시스템(11), 에너지 저장 시스템(12), 정수-온수 시스템(13), 태양광열 복합 모듈(14) 및 폐열 회수부(15)를 포함할 수 있다.1 and 2, a module combination package system 1 according to an embodiment includes a solar power generation system 11, an energy storage system 12, a purified water-hot water system 13, and a solar thermal composite module. (14) and a waste heat recovery unit 15 may be included.
모듈 조합형 패키지 시스템(1)은 하나의 패키지 시스템으로, 태양광 및 태양열을 이용하여 독립적으로 전력, 정수 및 온수를 생산 및 저장하는 시스템일 수 있다. 모듈 조합형 패키지 시스템(1)은 아프리카, 개발 도상국 또는 군사 지역과 같이, 전력과 정수 및 온수가 필요한 지역으로 공급될 수 있다. 모듈 조합형 패키지 시스템(1)은 수출 및 이송이 편리하게 수행되도록, 하나의 컨테이너(C)에 격납될 수 있다. 태양광 발전 시스템(11)은 태양광을 이용하여 전력을 생산할 수 있다. 에너지 저장 시스템(12)은 태양광 발전 시스템(11)에서 생산된 전력을 저장할 수 있다. 에너지 저장 시스템(12)은 컨테이너(C)의 하부에 배치될 수 있다. 이와 같은 배치에 의하면, 컨테이너(C)의 무게 중심을 유지하면서 에너지 저장 시스템(12)의 격납 효율을 상승시킬 수 있다. 정수-온수 시스템(13)은 태양열을 이용하여 정수 및 온수를 생산할 수 있다. 태양광열 복합 모듈(14)은 태양광 및 태양열을 이용하여 전력을 생산할 수 있고, 집열한 태양열을 정수-온수 시스템(13)에 공급하여, 전력과 정수 및 온수의 생산을 보조할 수 있다. 폐열 회수부(15)는 에너지 저장 시스템(12)에서 발생되는 폐열을 정수-온수 시스템(13)에 공급하여 낭비되는 열을 최대한으로 활용할 수 있다. 이와 같은 구성에 의하면, 모듈 조합형 패키지 시스템(1) 하나로 전력, 정수 및 온수를 모두 생산하고 공급할 수 있으므로, 아프리카와 같은 오지에 독립적이면서 종합적인 솔루션을 제공할 수 있다.The module-combined package system 1 is a single package system, and may be a system that independently produces and stores electric power, purified water, and hot water using sunlight and solar heat. The modular combination package system 1 can be supplied to areas where electric power, purified water, and hot water are required, such as Africa, developing countries or military areas. The module combination type package system 1 may be stored in one container C so that export and transport are conveniently performed. The solar power generation system 11 may generate electric power using sunlight. The energy storage system 12 may store power produced by the solar power generation system 11. The energy storage system 12 may be disposed under the container C. According to this arrangement, the storage efficiency of the energy storage system 12 can be increased while maintaining the center of gravity of the container C. The purified water-hot water system 13 may produce purified water and hot water using solar heat. The solar thermal composite module 14 may generate electric power using sunlight and solar heat, and supply the collected solar heat to the purified water-hot water system 13 to assist in the production of electric power, purified water, and hot water. The waste heat recovery unit 15 supplies waste heat generated from the energy storage system 12 to the purified water-hot water system 13 to maximize the use of wasted heat. According to such a configuration, it is possible to produce and supply all of power, purified water and hot water with one module combination package system 1, and thus, it is possible to provide an independent and comprehensive solution in remote areas such as Africa.
도 3은 일 실시 예에 따른 정수-온수 시스템의 개략도이다.3 is a schematic diagram of a purified water-hot water system according to an embodiment.
도 3을 참조하면, 일 실시 예에 따른 정수-온수 시스템(13)은 태양열을 이용하여 정수 및 온수를 생산 및 공급할 수 있다. 정수-온수 시스템(13)이 아프리카와 같은 오지에 설치되는 경우, 태양열 등의 자연에너지를 이용하여 생활에 필요한 정수와 온수를 동시에 생산할 수 있다. 보건 및 의료 시설이 부족한 아프리카와 같은 오지에서는, 원수에서 오염 물질을 완벽히 제거하여 마실 수 있는 식수를 만드는 것이 특히 중요할 수 있다. 이를 위하여, 정수-온수 시스템(13)은 증류식으로 원수를 정수할 수 있다. 증류식 정수를 이용하면, 비소, 박테리아, 카드뮴, 칼슘, 염화물질, 염소, 구리, 크립토스포리디움, 세제류, 플로오르화물, 납, 마그네슘, 수은, 질산염, 무기물, 살충제, 인산염, 라돈, 침전물, 나트륨, 솔파티아졸 및 바이러스를 포함하는 오염 물질을 원수로부터 완벽하게 제거할 수 있다. 증류식 정수를 위해 태양열을 이용할 수 있다. 또한 태양열로 원수를 가열하여 온수를 생산할 수 있다. 정수-온수 시스템(13)은 열을 효율적으로 순환시키고 이용하여, 정수 및 온수의 생산성을 높일 수 있다. 정수-온수 시스템(13)은 원수 탱크 내의 차가운 원수로 뜨거운 수증기를 응결시키고, 뜨거운 수증기로부터 열을 공급받아 원수를 예열하는 구조를 포함할 수 있다.Referring to FIG. 3, the purified water-hot water system 13 according to an embodiment may produce and supply purified water and hot water using solar heat. When the purified water-hot water system 13 is installed in a remote area such as Africa, purified water and hot water required for living may be simultaneously produced by using natural energy such as solar heat. In remote areas, such as Africa, where health and medical facilities are scarce, it can be particularly important to completely remove contaminants from raw water to make drinking water available. To this end, the purified water-hot water system 13 may purify raw water by distillation. Using distilled water, arsenic, bacteria, cadmium, calcium, chloride, chlorine, copper, cryptosporidium, detergents, fluorides, lead, magnesium, mercury, nitrates, minerals, pesticides, phosphates, radon, precipitates, sodium, Contaminants including sorbatiazole and viruses can be completely removed from raw water. Solar heat can be used for distillation water purification. In addition, hot water can be produced by heating raw water with solar heat. The purified water-hot water system 13 efficiently circulates and uses heat, thereby increasing the productivity of purified water and hot water. The purified water-hot water system 13 may include a structure in which hot water vapor is condensed with cold raw water in a raw water tank, and heat is supplied from the hot water vapor to preheat raw water.
일 실시 예에 따른 정수-온수 시스템(13)은 원수 탱크(131), 증발 챔버(132), 응결부(133), 집수 챔버(134), 정수 탱크(135), 원수 공급 라인(136), 원수 필터부(137), 온수 탱크(138), 태양열 집열기(1391), 열교환 순환 라인(1392) 및 보조 원수 탱크(1301)를 포함할 수 있다.The purified water-hot water system 13 according to an embodiment includes a raw water tank 131, an evaporation chamber 132, a condensation part 133, a collection chamber 134, a water purification tank 135, a raw water supply line 136, A raw water filter unit 137, a hot water tank 138, a solar heat collector 1391, a heat exchange circulation line 1392, and an auxiliary raw water tank 1301 may be included.
원수 탱크(131)는 원수를 저장할 수 있다. 원수 탱크(131)는 증발 챔버(132)의 상측에 배치될 수 있다. 원수 탱크(131)의 저면은 증발 챔버(132)의 상면일 수 있다. 원수 탱크(131)는 증발 챔버(132)에 원수를 공급할 수 있다.The raw water tank 131 may store raw water. The raw water tank 131 may be disposed above the evaporation chamber 132. The bottom surface of the raw water tank 131 may be an upper surface of the evaporation chamber 132. The raw water tank 131 may supply raw water to the evaporation chamber 132.
증발 챔버(132)에서는 원수의 증발이 이루어질 수 있다. 증발 챔버(132)는 원수 탱크(131)의 하측에 배치될 수 있다. 증발 챔버(132)는 원수 탱크(131)로부터 원수를 공급받고 저장할 수 있다. 증발 챔버(132)는 공급받은 원수를 증발시킬 수 있다. 증발 챔버(132)는 증발을 촉진시키기 위하여, 후술하는 열교환 순환 라인(1392)으로부터 열을 공급받을 수 있다. 증발 챔버(132)에서는 원수가 증발되어 수증기가 발생될 수 있다.The evaporation chamber 132 may evaporate raw water. The evaporation chamber 132 may be disposed below the raw water tank 131. The evaporation chamber 132 may receive and store raw water from the raw water tank 131. The evaporation chamber 132 may evaporate the supplied raw water. The evaporation chamber 132 may receive heat from a heat exchange circulation line 1392 to be described later in order to promote evaporation. In the evaporation chamber 132, raw water may be evaporated to generate water vapor.
응결부(133)는 증발 챔버(132)에서 발생된 수증기가 응결되는 영역일 수 있다. 증발 챔버(132)에서 발생된 수증기는 상측으로 이동하다가 응결부(133)에서 응결될 수 있다. 응결부(133)에서 수증기가 응결됨으로써, 오염 물질이 제거된 정수가 형성될 수 있다. 응결부(133)는 원수 탱크(131)의 저면에 형성될 수 있다. 예를 들어, 응결부(133)는 원수 탱크(131)의 저면과 일체로 형성될 수 있다. 즉, 응결부(133)는 원수 탱크(131)의 저면에 해당할 수 있다. 이와 같은 구조에 의하면, 원수 탱크(131)에 저장된 차가운 원수에 의하여, 뜨거운 수증기가 빠르게 응결될 수 있다. 응결부(133)에서 응결되어 형성된 정수가 한 곳으로 모일 수 있도록, 응결부(133)의 적어도 일부는 하향 경사지게 형성될 수 있다. 예를 들어, 응결부(133)는 중앙부에서 가장자리를 향할수록 하향 경사지게 형성될 수 있다. 즉, 응결부(133)는 중앙이 가장자리보다 더 높게 솟은 형상으로 형성될 수 있다. 이와 같은 구조에 의하면, 원수 탱크(131)가 증발 챔버(132)의 상측에 배치되더라도, 구조적으로 안정성을 갖출 수 있다. 한편, 원수 탱크(131)의 하부에는 저면의 중앙부에서 가장자리까지 경사지게 형성되는 경사 공간(S)이 형성될 수 있다. 차가운 물이 따뜻하 물보다 밀도가 높기 때문에, 원수 탱크(131)의 하부에 형성되는 경사 공간(S)에는 비교적 차가운 원수가 자리잡을 수 있다. 경사 공간(S)에 저장된 차가운 원수는 응결부(133)를 통하여 뜨거운 수증기와 열교환을 수행할 수 있다. 즉, 뜨거운 수증기는 응결부(133)를 통해 경사 공간(S) 내의 차가운 원수에게 열을 뺏기면서 정수로 응결되고, 경사 공간(S) 내의 차가운 원수는 뜨거운 수증기로부터 열을 공급받아 온도가 상승할 수 있다. 경사 공간(S) 내에서 온도가 상승된 원수는 대류 현상에 의하여 원수 탱크(131)의 상부로 이동하고, 경사 공간(S)에는 다시 차가운 원수가 채워질 수 있다. 따라서, 뜨거운 수증기와 열교환을 수행하게되는 경사 공간(S)에는 지속적으로 차가운 원수가 자리잡게 되므로, 수증기의 응결이 효율적으로 촉진될 수 있다.The condensation part 133 may be a region in which water vapor generated in the evaporation chamber 132 is condensed. Water vapor generated in the evaporation chamber 132 may move upward and condensate in the condensation part 133. As water vapor is condensed in the condensation part 133, purified water from which contaminants are removed may be formed. The condensation part 133 may be formed on the bottom of the raw water tank 131. For example, the condensation part 133 may be integrally formed with the bottom surface of the raw water tank 131. That is, the condensation part 133 may correspond to the bottom surface of the raw water tank 131. According to this structure, by the cold raw water stored in the raw water tank 131, hot water vapor can be rapidly condensed. At least a portion of the condensation portion 133 may be formed to be inclined downward so that the purified water formed by condensation in the condensation portion 133 can be collected in one place. For example, the condensation portion 133 may be formed to be inclined downward from the central portion toward the edge. That is, the condensation portion 133 may be formed in a shape in which the center rises higher than the edge. According to this structure, even if the raw water tank 131 is disposed on the upper side of the evaporation chamber 132, structural stability can be obtained. Meanwhile, an inclined space S may be formed in a lower portion of the raw water tank 131 to be inclined from the center of the bottom to the edge. Since cold water is denser than warm water, relatively cold raw water may be located in the inclined space S formed under the raw water tank 131. The cold raw water stored in the inclined space S may perform heat exchange with hot steam through the condensing part 133. That is, the hot water vapor is condensed into purified water while taking heat to the cold raw water in the inclined space (S) through the condensation unit 133, and the cold raw water in the inclined space (S) receives heat from the hot water vapor to increase the temperature. I can. The raw water whose temperature has risen in the inclined space S moves to the upper portion of the raw water tank 131 due to a convection phenomenon, and cold raw water may be filled in the inclined space S again. Therefore, since cold raw water is continuously located in the inclined space S where heat exchange with hot steam is performed, condensation of steam can be efficiently promoted.
집수 챔버(134)는 응결부(133)에서 응결되어 형성된 정수를 집수할 수 있다. 집수 챔버(134)는 응결부(133)의 경사가 낮은 방향의 단부에 배치될 수 있다. 예를 들어, 응결부(133)의 중앙부가 높게 형성되는 경우, 집수 챔버(134)는 응결부(133)의 가장자리에 배치될 수 있다. 응결부(133)에서 응결되어 형성된 정수가 응결부(133)의 경사를 따라 가장자리로 유동될 수 있고, 가장자리에 배치된 집수 챔버(134)에 집수될 수 있다.The water collecting chamber 134 may collect purified water formed by condensation in the condensation part 133. The collection chamber 134 may be disposed at an end of the condensation portion 133 in a direction in which the slope is low. For example, when the central portion of the condensation portion 133 is formed high, the collection chamber 134 may be disposed at the edge of the condensation portion 133. The purified water formed by condensation in the condensation part 133 may flow to the edge along the inclination of the condensation part 133 and may be collected in the water collecting chamber 134 disposed at the edge.
정수 탱크(135)는 응결부(133)에서 응결되어 형성되는 정수를 저장할 수 있다. 이를 위해, 집수 챔버(134)는 집수된 정수를 정수 탱크(135)로 전달할 수 있다. 사용자는 정수 탱크(135)로부터 정수를 공급받아 식수로 사용할 수 있다.The water purification tank 135 may store purified water formed by condensation in the condensation part 133. To this end, the water collection chamber 134 may deliver the collected purified water to the water purification tank 135. The user may receive purified water from the purification tank 135 and use it as drinking water.
원수 공급 라인(136)은 원수 탱크(131)로부터 증발 챔버(132)로 원수를 공급할 수 있다. 원수 공급 라인(136)은 원수 탱크(131)의 저면 중 경사가 높은 쪽에 연결될 수 있다. 예를 들어, 원수 탱크(131)의 저면에서 중앙부가 높게 형성된 경우, 원수 공급 라인(136)은 원수 탱크(131)의 저면의 중앙부에 연결될 수 있다. 차가운 물과 따뜻한 물의 밀도 차이로 인해, 저면에서 높게 솟아오른 중앙부에는 비교적 따뜻한 원수가 자리잡고 있을 수 있다. 따라서, 원수 공급 라인(136)은 원수 탱크(131)에 저장된 원수 중 비교적 온도가 높은 원수를 증발 챔버(132)로 공급할 수 있다. 또한, 경사 공간(S)에서 뜨거운 수증기로부터 열을 공급받아 온도가 상승된 원수가 상부로 이동되게 되므로, 원수 공급 라인(136)은 지속적으로 온도가 높은 원수를 증발 챔버(132)로 공급할 수 있다. 이와 같은 구조에 의하면, 수증기로부터 열을 공급받아 미리 예열된 원수를 증발 챔버(132)로 공급할 수 있으므로, 증발 챔버(132) 내에서 증발을 촉진시킬 수 있다. 한편, 원수 공급 라인(136)은 경사가 높은 쪽에 연결되므로, 원수 탱크(131) 내에서 침전되는 침전물을 구조적으로 필터링할 수 있다. 예를 들어, 원수 탱크(131)의 저면에서 경사가 낮은 쪽에는 침전물이 가라앉을 수 있다. 다만, 원수 공급 라인(136)은 저면에서 경사가 높은 중앙부에 연결되므로, 침전물이 포함되지 않은 원수를 증발 챔버(132)로 공급할 수 있다.The raw water supply line 136 may supply raw water from the raw water tank 131 to the evaporation chamber 132. The raw water supply line 136 may be connected to a higher slope of the bottom of the raw water tank 131. For example, when the central portion of the raw water tank 131 is formed high, the raw water supply line 136 may be connected to the central portion of the bottom of the raw water tank 131. Due to the difference in density between cold and warm water, relatively warm raw water may be located in the center, rising high from the bottom. Accordingly, the raw water supply line 136 may supply raw water having a relatively high temperature among raw water stored in the raw water tank 131 to the evaporation chamber 132. In addition, since the raw water whose temperature has risen by receiving heat from the hot steam in the inclined space S is moved to the upper portion, the raw water supply line 136 can continuously supply the raw water having a high temperature to the evaporation chamber 132. . According to such a structure, since the raw water preheated in advance by receiving heat from the steam can be supplied to the evaporation chamber 132, evaporation in the evaporation chamber 132 can be promoted. On the other hand, since the raw water supply line 136 is connected to the side with a higher slope, it is possible to structurally filter the sediment deposited in the raw water tank 131. For example, sediment may settle on the lower slope of the raw water tank 131. However, since the raw water supply line 136 is connected to the central portion having a high slope from the bottom surface, raw water without sediment may be supplied to the evaporation chamber 132.
원수 공급 라인(136)에는 원수 공급 밸브(1361)가 적용될 수 있다. 원수 공급 밸브(1361)는 원수 탱크(131)에서 증발 챔버(132)로 공급되는 원수의 양을 조절할 수 있다. 원수 공급 밸브(1361)는 원수 탱크(131)의 원수 저장량, 증발 챔버(132)의 원수 저장량, 정수 탱크(135)의 정수 저장량 및 정수 수요량 중 적어도 어느 하나를 고려하여, 증발 챔버(132)로 공급되는 원수의 양을 조절할 수 있다.The raw water supply valve 1361 may be applied to the raw water supply line 136. The raw water supply valve 1361 may adjust the amount of raw water supplied from the raw water tank 131 to the evaporation chamber 132. The raw water supply valve 1361 considers at least one of the raw water storage amount of the raw water tank 131, the raw water storage amount of the evaporation chamber 132, the purified water storage amount, and the purified water demand amount of the purified water tank 135 to the evaporation chamber 132. The amount of raw water supplied can be adjusted.
원수 필터부(137)는 원수 공급원으로부터 원수를 공급받을 수 있다. 원수 필터부(137)는 필터를 통해 원수의 오염 물질을 제거할 수 있다. 원수 필터부(137)는 오염 물질이 제거된 원수를 원수 탱크(131)로 공급할 수 있다. 즉, 원수 필터부(137)는 1차적으로 오염 물질을 필터링하여 원수 탱크(131)로 공급할 수 있다. 원수 필터부(137)는 카본 필터, 침전식 필터, 역삼투압 필터 또는 탈이온식 필터 등 다양한 필터를 포함할 수 있다. 이와 같은 구조에 의하면, 원수 탱크(131)의 위생 및 청결을 보다 더 높게 유지할 수 있고, 정수의 효율을 상승시킬 수 있다.The raw water filter unit 137 may receive raw water from a raw water supply source. The raw water filter unit 137 may remove pollutants of raw water through a filter. The raw water filter unit 137 may supply raw water from which contaminants have been removed to the raw water tank 131. That is, the raw water filter unit 137 may primarily filter contaminants and supply them to the raw water tank 131. The raw water filter unit 137 may include various filters such as a carbon filter, a precipitation filter, a reverse osmosis filter, or a deionization filter. According to this structure, hygiene and cleanliness of the raw water tank 131 can be maintained higher, and the efficiency of purified water can be increased.
보조 원수 탱크(1301)는 원수 필터부(137)와 원수 탱크(131)의 사이에 연결될 수 있다. 보조 원수 탱크(1301)는 원수 필터부(137)로부터 오염 물질이 제거된 원수를 공급받아 저장할 수 있다. 보조 원수 탱크(1301)는 저장된 원수를 원수 탱크(131)로 공급할 수 있다.The auxiliary raw water tank 1301 may be connected between the raw water filter unit 137 and the raw water tank 131. The auxiliary raw water tank 1301 may receive and store raw water from which contaminants have been removed from the raw water filter unit 137. The auxiliary raw water tank 1301 may supply the stored raw water to the raw water tank 131.
온수 탱크(138)는 온수가 생성되고 저장되는 탱크일 수 있다. 온수 탱크(138)는 원수 필터부(137)로부터 오염 물질이 제거된 원수를 공급받고, 저장할 수 있다. 온수 탱크(138)는 후술하는 열교환 순환 라인(1392)으로부터 열을 공급받을 수 있다. 따라서, 온수 탱크(138) 내에 저장된 원수는 온도가 상승되어 온수가 될 수 있다. 사용자는 온수 탱크(138)에 저장된 온수를 사용할 수 있다.The hot water tank 138 may be a tank in which hot water is generated and stored. The hot water tank 138 may receive and store raw water from which contaminants have been removed from the raw water filter unit 137. The hot water tank 138 may receive heat from a heat exchange circulation line 1392 to be described later. Accordingly, the raw water stored in the hot water tank 138 may become hot water by increasing the temperature. The user can use the hot water stored in the hot water tank 138.
태양열 집열기(1391)는 태양열을 집열하여 열순환 매체를 가열할 수 있다. 태양열 집열기(1391)는 상단부에 일사광선을 투과시키고 열손실을 방지할 수 있는 투과체(transparent cover)가 구비되고, 하단부에 투과된 일사광선을 흡수해 열에너지로 변환시키는 흡수판(absorber plate)이 구비되고, 바닥면에는 단열재가 구비될 수 있다. 흡수판에는 집열을 위한 열순환 매체가 지나갈 수 있는 관이 부착될 수 있다. 가열된 열순환 매체는 열교환 순환 라인(1392)을 따라 열이 필요한 장치로 순환 이송될 수 있다. 필요에 따라, 태양열 집열기(1391)는 집열 온도를 보다 높이기 위해 프레넬 렌즈(fresnel lens)를 더 구비할 수 있다.The solar collector 1391 may collect solar heat to heat a thermal circulation medium. The solar collector 1391 is provided with a transparent cover that transmits sunlight rays and prevents heat loss at the upper end, and an absorber plate that absorbs the transmitted sunlight rays and converts it into thermal energy. Is provided, and a heat insulating material may be provided on the bottom surface. A tube through which a thermal circulating medium for collecting heat can pass may be attached to the absorber plate. The heated thermal circulating medium may be circulated and transferred to a device requiring heat along the heat exchange circulation line 1392. If necessary, the solar collector 1391 may further include a Fresnel lens to further increase the heat collection temperature.
열교환 순환 라인(1392)을 따라 열순환 매체가 순환될 수 있다. 열교환 순환 라인(1392)은 증발 챔버(132) 및 온수 탱크(138) 내의 원수와 열교환을 수행할 수 있다. 열교환 순환 라인(1392)은 증발 챔버(132) 및 온수 탱크(138) 내에 각각 배치되는 열교환기를 포함할 수 있다. 태양열에 의해 가열된 열순환 매체는 증발 챔버(132) 내에 배치된 열교환기를 지나면서, 증발 챔버(132) 내의 원수에 열을 공급하여 증발을 촉진시킬 수 있다. 또한, 태양열에 의해 가열된 열순환 매체는 온수 탱크(138) 내에 배치된 열교환기를 지나면서, 온수 탱크(138) 내의 원수에 열을 공급하여 온수를 생성할 수 있다. 열교환 순환 라인(1392)은 증발 챔버(132) 및 온수 탱크(138)와 직렬 또는 병렬로 연결될 수 있다. 도 32와 같이, 열교환 순환 라인(1392)은 증발 챔버(132) 및 온수 탱크(138)와 직렬로 연결된 경우, 열순환 매체가 순환하는 방향은, 상황에 따라 적절하게 설정될 수 있다. 예를 들어, 온수의 생산이 더 필요한 경우, 열순환 매체가 온수 탱크(138)와 먼저 열교환을 수행하도록, 온수 탱크(138)를 향하는 방향으로 열순환 매체를 순환시킬 수 있다. 또는, 정수의 생산이 필요한 더 경우, 열순환 매체가 증발 챔버(132)와 먼저 열교환을 수행하도록, 증발 챔버(132)를 향하는 방향으로 열순환 매체를 순환시킬 수 있다. 이와 같은 구조에 의하면, 태양열을 이용하여 정수와 온수를 동시에 생산할 수 있다.A thermal circulation medium may be circulated along the heat exchange circulation line 1392. The heat exchange circulation line 1392 may perform heat exchange with raw water in the evaporation chamber 132 and the hot water tank 138. The heat exchange circulation line 1392 may include heat exchangers respectively disposed in the evaporation chamber 132 and the hot water tank 138. The thermal circulating medium heated by solar heat passes through a heat exchanger disposed in the evaporation chamber 132, and supplies heat to the raw water in the evaporation chamber 132 to promote evaporation. In addition, the thermal circulating medium heated by solar heat passes through a heat exchanger disposed in the hot water tank 138, and supplies heat to raw water in the hot water tank 138 to generate hot water. The heat exchange circulation line 1392 may be connected to the evaporation chamber 132 and the hot water tank 138 in series or in parallel. As shown in FIG. 32, when the heat exchange circulation line 1392 is connected in series with the evaporation chamber 132 and the hot water tank 138, the direction in which the thermal circulation medium circulates may be appropriately set according to the situation. For example, when the production of hot water is further required, the thermal circulation medium may be circulated in a direction toward the hot water tank 138 so that the thermal circulation medium performs heat exchange with the hot water tank 138 first. Alternatively, when the production of purified water is further required, the thermal circulation medium may be circulated in a direction toward the evaporation chamber 132 so that the thermal circulation medium performs heat exchange with the evaporation chamber 132 first. According to this structure, purified water and hot water can be simultaneously produced by using solar heat.
도 4는 일 실시 예에 따른 정수-온수 시스템의 개략도이다.4 is a schematic diagram of a purified water-hot water system according to an embodiment.
도 4를 참조하면, 일 실시 예에 따른 정수-온수 시스템(23)은 태양열을 이용하여 정수 및 온수를 생산 및 공급할 수 있다. 정수-온수 시스템(23)은 열을 효율적으로 순환시키고 이용하여, 정수 및 온수의 생산성을 높일 수 있다. 정수-온수 시스템(23)은 원수 탱크 내의 차가운 원수로 뜨거운 수증기를 응결시키고, 뜨거운 수증기로부터 열을 공급받아 원수를 예열하는 구조를 포함할 수 있다.Referring to FIG. 4, the purified water-hot water system 23 according to an embodiment may produce and supply purified water and hot water using solar heat. The purified water-hot water system 23 efficiently circulates and uses heat, thereby increasing the productivity of purified water and hot water. The purified water-hot water system 23 may include a structure in which hot water vapor is condensed with cold raw water in a raw water tank, and heat is supplied from the hot water vapor to preheat raw water.
일 실시 예에 따른 정수-온수 시스템(23)은 원수 탱크(231), 증발 챔버(232), 응결부(233), 집수 챔버(234), 정수 탱크(235), 원수 공급 라인(236), 원수 필터부(237), 온수 탱크(238), 태양열 집열기(2391), 열교환 순환 라인(2392) 및 보조 원수 탱크(2301)를 포함할 수 있다.The purified water-hot water system 23 according to an embodiment includes a raw water tank 231, an evaporation chamber 232, a condensation part 233, a collection chamber 234, a water purification tank 235, a raw water supply line 236, A raw water filter unit 237, a hot water tank 238, a solar heat collector 2391, a heat exchange circulation line 2392, and an auxiliary raw water tank 2301 may be included.
원수 탱크(231)는 원수를 저장할 수 있다. 원수 탱크(231)는 원수 공급 라인(236)을 통해 증발 챔버(232)에 원수를 공급할 수 있다. 원수 탱크(231)는 증발 챔버(232)의 상측에 배치되어서, 중력을 이용하여 증발 챔버(232)로 원수를 공급할 수 있다.The raw water tank 231 may store raw water. The raw water tank 231 may supply raw water to the evaporation chamber 232 through the raw water supply line 236. The raw water tank 231 is disposed above the evaporation chamber 232, so that raw water can be supplied to the evaporation chamber 232 using gravity.
증발 챔버(232)에서는 원수의 증발이 이루어질 수 있다. 증발 챔버(232)는 원수 탱크(231)로부터 원수를 공급받고 저장할 수 있다. 증발 챔버(232)는 공급받은 원수를 증발시킬 수 있다. 증발 챔버(232)는 증발을 촉진시키기 위하여, 열교환 순환 라인(2392)로부터 열을 공급받을 수 있다. 증발 챔버(232)에서는 원수가 증발되어 수증기가 발생될 수 있다.Raw water may be evaporated in the evaporation chamber 232. The evaporation chamber 232 may receive and store raw water from the raw water tank 231. The evaporation chamber 232 may evaporate the supplied raw water. The evaporation chamber 232 may receive heat from the heat exchange circulation line 2392 to promote evaporation. In the evaporation chamber 232, raw water may be evaporated to generate water vapor.
응결부(233)는 증발 챔버(232)에서 발생된 수증기가 응결되는 영역일 수 있다. 응결부(233)는 증발 챔버의 상측에 연결될 수 있다. 응결부(233)는 파이프를 포함할 수 있다. 증발 챔버(232)에서 발생된 수증기는 상측으로 이동하다가 응결부(233)로 모이게 되고, 응결부(233)를 통과하면서 응결될 수 있다. 응결부(233)에서 수증기가 응결됨으로써, 오염 물질이 제거된 정수가 형성될 수 있다. 응결부(233)에서 응결되어 형성된 정수가 한 곳으로 모일 수 있도록, 응결부(233)는 하향 경사지게 형성될 수 있다.The condensation part 233 may be a region in which water vapor generated in the evaporation chamber 232 is condensed. The condensation part 233 may be connected to the upper side of the evaporation chamber. The condensation portion 233 may include a pipe. The water vapor generated in the evaporation chamber 232 moves upward and collects into the condensation part 233, and may be condensed while passing through the condensation part 233. By condensing water vapor in the condensing portion 233, purified water from which contaminants have been removed may be formed. The condensation portion 233 may be formed to be inclined downward so that the purified water formed by condensation in the condensation portion 233 can be collected in one place.
집수 챔버(234)는 응결부(233)에서 응결되어 형성된 정수를 집수할 수 있다. 집수 챔버(234)는 응결부(233)의 경사가 낮은 방향의 단부에 배치될 수 있다. 응결부(233)에서 응결되어 형성된 정수는 응결부(233)의 경사를 따라 유동되어 집수 챔버(234)에 집수될 수 있다.The water collecting chamber 234 may collect purified water formed by condensation in the condensation part 233. The collection chamber 234 may be disposed at an end of the condensation portion 233 in a direction in which the slope is low. The purified water formed by condensation in the condensation portion 233 may flow along the slope of the condensation portion 233 and may be collected in the water collecting chamber 234.
원수 공급 라인(236)은 원수 탱크(231)로부터 증발 챔버(232)로 원수를 공급할 수 있다. 원수 공급 라인(236)은 응결부(233)와 열교환을 수행하도록 구성될 수 있다. 원수 공급 라인(236)은 응결부(233)의 적어도 일부를 감싸도록 형성될 수 있다.The raw water supply line 236 may supply raw water from the raw water tank 231 to the evaporation chamber 232. The raw water supply line 236 may be configured to perform heat exchange with the condensation unit 233. The raw water supply line 236 may be formed to surround at least a portion of the condensation part 233.
도 4를 참조하면, 원수 공급 라인(236)은 응결부(233)의 적어도 일부의 주위를 권취하는 권취부(2362a)를 포함할 수 있다. 권취부(2362a)는 나선형으로 형성될 수 있다. 원수 공급 라인(236)을 통해 공급되는 차가운 원수는 권취부(2362a)를 지나면서 응결부(233)를 지나는 뜨거운 수증기와 열교환을 수행할 수 있다. 즉, 뜨거운 수증기는 응결부(233)를 지나면서 권취부(2362a)를 지나는 차가운 원수에 열을 뺏기면서 정수로 응결되고, 권취부(2362a)를 지나는 차가운 원수는 뜨거운 수증기로부터 열을 공급받아 온도가 상승할 수 있다. 이러한 구조에 의하면, 차가운 원수를 이용하여 응결부(233)에서 수증기의 응결을 촉진할 수 있으면서, 동시에 증발 챔버(232)로 공급되는 차가운 원수를 뜨거운 수증기의 열로 예열할 수 있다. 또한, 원수와 수증기의 열교환이 원수 공급 라인(236)에서 이루어지므로, 원수 탱크(231)에는 항상 차가운 원수가 저장될 수 있고, 원수 공급 라인(236)으로는 지속적으로 차가운 원수가 공급될 수 있다. 권취부(2362a)는 응결부(233)의 경사가 낮은 쪽부터 높은 쪽으로 권취될 수 있다. 이러한 구조에 의하면, 권취부(2362a)를 지나는 원수와 응결부(233)를 지나는 수증기가 서로 반대 방향으로 유동할 수 있으므로, 원수 및 수증기는 지속적으로 열교환이 가능할 수 있다.Referring to FIG. 4, the raw water supply line 236 may include a winding portion 2362a winding around at least a portion of the condensing portion 233. The winding portion 2362a may be formed in a spiral shape. Cold raw water supplied through the raw water supply line 236 may perform heat exchange with hot steam passing through the condensing portion 233 while passing through the winding portion 2362a. That is, the hot water vapor is condensed into purified water while passing through the condensation unit 233 while taking heat from the cold raw water passing through the winding unit 2362a, and the cold raw water passing through the winding unit 2362a receives heat from the hot water vapor and receives the temperature. Can rise. According to this structure, it is possible to promote condensation of water vapor in the condensing unit 233 using cold raw water, and at the same time, the cold raw water supplied to the evaporation chamber 232 can be preheated with the heat of hot water vapor. In addition, since heat exchange between raw water and steam is performed in the raw water supply line 236, cold raw water can always be stored in the raw water tank 231, and cold raw water can be continuously supplied to the raw water supply line 236. . The winding portion 2362a may be wound from a lower inclined side to a higher side of the condensed portion 233. According to this structure, the raw water passing through the winding portion 2362a and the steam passing through the condensing portion 233 may flow in opposite directions, so that the raw water and the steam may be continuously heat-exchanged.
한편, 도 5는 일 실시 예에 따른 원수 공급 라인의 개략도이다. 도 5를 참조하면, 원수 공급 라인(236)은 응결부(233)가 직접 관통하는 관통부(2362b)를 포함할 수도 있다. 관통부(2362b)는 내부로 원수가 공급되는 파이프로서, 원수 공급 라인(236)의 일부분일 수 있다. 예를 들어, 관통부(2362b)는 원수 공급 라인(236)의 다른 부분에 비하여 단면적이 크게 형성된 부분일 수 있다. 응결부(233)는 관통부(2362b)를 직접 관통하도록 형성될 수 있다. 이와 같은 구조에 의하면, 관통부(2362b)를 지나는 차가운 원수가 응결부(233) 주위에 직접 접촉될 수 있다. 따라서, 차가운 원수와 뜨거운 수증기 간의 열교환이 효율적으로 수행될 수 있다. 관통부(2362b)는 원수의 유동 방향에 대하여 상향 경사지게 형성될 수 있다. 이러한 구조에 의하면, 관통부(2362b)를 지나는 원수와 응결부(233)를 지나는 수증기가 서로 반대 방향으로 유동할 수 있으므로, 원수 및 수증기는 지속적으로 열교환이 가능할 수 있다.Meanwhile, FIG. 5 is a schematic diagram of a raw water supply line according to an exemplary embodiment. Referring to FIG. 5, the raw water supply line 236 may include a through part 2362b through which the condensation part 233 directly penetrates. The through part 2362b is a pipe through which raw water is supplied and may be a part of the raw water supply line 236. For example, the through portion 2362b may be a portion having a larger cross-sectional area than other portions of the raw water supply line 236. The condensation portion 233 may be formed to directly penetrate the through portion 2362b. According to this structure, cold raw water passing through the through portion 2362b can be directly contacted around the condensation portion 233. Thus, heat exchange between cold raw water and hot steam can be efficiently performed. The through part 2362b may be formed to be inclined upward with respect to the flow direction of the raw water. According to this structure, the raw water passing through the through portion 2362b and the water vapor passing through the condensing portion 233 can flow in opposite directions, so that the raw water and the steam can be continuously heat-exchanged.
정수 탱크(235), 원수 필터부(237), 온수 탱크(238), 태양열 집열기(2391), 열교환 순환 라인(2392) 및 보조 원수 탱크(2301)에 대한 설명은 상술한 내용과 중복되는 내용이므로 생략하도록 한다.Since the description of the purified water tank 235, the raw water filter unit 237, the hot water tank 238, the solar heat collector 2391, the heat exchange circulation line 2392, and the auxiliary raw water tank 2301 are overlapped with the above It should be omitted.
이상과 같이 비록 한정된 도면에 의해 실시 예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described by the limited drawings, various modifications and variations are possible from the above description to those of ordinary skill in the art. For example, the described techniques are performed in a different order from the described method, and/or components such as the described structure, device, etc. are combined or combined in a form different from the described method, or in other components or equivalents. Even if substituted or substituted by, appropriate results can be achieved.

Claims (12)

  1. 원수가 저장되는 원수 탱크;A raw water tank in which raw water is stored;
    상기 원수 탱크의 하측에 배치되고, 상기 원수 탱크로부터 공급받은 원수의 증발이 이루어지는 증발 챔버;An evaporation chamber disposed below the raw water tank and in which the raw water supplied from the raw water tank is evaporated;
    상기 증발 챔버에서 발생된 수증기가 응결되도록, 상기 원수 탱크의 저면에 형성되는 응결부; 및A condensing part formed on the bottom of the raw water tank so that the water vapor generated in the evaporation chamber is condensed; And
    상기 응결부에서 응결되어 형성되는 정수가 저장되는 정수 탱크를 포함하는, 정수 시스템.A water purification system comprising a water purification tank storing purified water formed by condensation in the condensation part.
  2. 제1항에 있어서,The method of claim 1,
    상기 응결부는 상기 원수 탱크의 저면과 일체로 형성되는, 정수 시스템.The condensation portion is formed integrally with the bottom of the raw water tank, water purification system.
  3. 제2항에 있어서,The method of claim 2,
    상기 응결부의 적어도 일부는 하향 경사지게 형성되는, 정수 시스템.At least a portion of the condensation portion is formed to be inclined downward.
  4. 제3항에 있어서,The method of claim 3,
    상기 응결부는 중앙부에서 가장자리를 향할수록 하향 경사지게 형성되는, 정수 시스템.The condensation portion is formed to be inclined downward toward the edge from the central portion, water purification system.
  5. 제4항에 있어서,The method of claim 4,
    상기 응결부의 가장자리에 배치되는 집수 챔버를 더 포함하고,Further comprising a collecting chamber disposed at the edge of the condensation portion,
    상기 응결부에서 응결되어 형성되는 정수는, 상기 응결부의 경사를 따라 가장자리로 유동되어 상기 집수 챔버에 집수되는, 정수 시스템.The purified water formed by condensation in the condensation part flows to an edge along the slope of the condensation part and is collected in the water collecting chamber.
  6. 제5항에 있어서,The method of claim 5,
    상기 원수 탱크의 저면의 중앙부에 연결되고, 상기 원수 탱크로부터 상기 증발 챔버로 원수를 공급하는 원수 공급 라인을 더 포함하는, 정수 시스템.The water purification system further comprises a raw water supply line connected to the central part of the bottom of the raw water tank and supplying raw water from the raw water tank to the evaporation chamber.
  7. 제1항에 있어서,The method of claim 1,
    원수 공급원으로부터 원수를 공급받고, 필터를 통해 오염 물질을 제거한 원수를 상기 원수 탱크로 공급하는 원수 필터부를 더 포함하는, 정수 시스템.A water purification system further comprising a raw water filter unit receiving raw water from a raw water supply source and supplying raw water from which pollutants have been removed through a filter to the raw water tank.
  8. 제1항에 있어서,The method of claim 1,
    태양열을 집열하여 내부의 열순환 매체를 가열하는 태양열 집열기; 및A solar heat collector that collects solar heat to heat the internal heat circulation medium; And
    상기 열순환 매체가 순환되고, 상기 증발 챔버 내의 원수와 열교환을 수행하는 열교환 순환 라인을 더 포함하는, 정수 시스템.The water purification system further comprises a heat exchange circulation line through which the heat circulation medium is circulated and performs heat exchange with raw water in the evaporation chamber.
  9. 제7항에 있어서,The method of claim 7,
    상기 원수 필터부로부터 오염 물질이 제거된 원수를 공급받는 온수 탱크;A hot water tank receiving raw water from which pollutants have been removed from the raw water filter unit;
    태양열을 집열하여 열순환 매체를 가열하는 태양열 집열기; 및A solar heat collector for collecting solar heat to heat a thermal circulation medium; And
    상기 열순환 매체가 순환되고, 상기 증발 챔버 및 온수 탱크 내의 원수와 열교환을 수행하는 열교환 순환 라인을 더 포함하는, 정수 시스템.The water purification system further comprises a heat exchange circulation line through which the thermal circulation medium is circulated and performs heat exchange with raw water in the evaporation chamber and the hot water tank.
  10. 원수가 저장되는 원수 탱크;A raw water tank in which raw water is stored;
    상기 원수 탱크로부터 공급받은 원수의 증발이 이루어지는 증발 챔버;An evaporation chamber in which the raw water supplied from the raw water tank is evaporated;
    상기 증발 챔버에서 발생된 수증기가 응결되도록, 상기 증발 챔버의 상측에 연결되는 응결부;A condensation part connected to the upper side of the evaporation chamber so that the water vapor generated in the evaporation chamber condenses;
    상기 원수 탱크로부터 상기 증발 챔버로 원수를 공급하고, 상기 응결부의 적어도 일부를 감싸도록 형성되는 원수 공급 라인; 및A raw water supply line configured to supply raw water from the raw water tank to the evaporation chamber and surround at least a portion of the condensation portion; And
    상기 응결부에서 응결되어 형성되는 정수가 저장되는 정수 탱크를 포함하는 정수 시스템.A water purification system comprising a water purification tank for storing purified water formed by condensation in the condensation part.
  11. 제10항에 있어서,The method of claim 10,
    상기 원수 공급 라인은 상기 응결부의 적어도 일부를 나선형으로 권취하는 권취부를 포함하는, 정수 시스템.The raw water supply line includes a winding portion for spirally winding at least a portion of the condensation portion.
  12. 제10항에 있어서,The method of claim 10,
    상기 원수 공급 라인은 상기 응결부가 직접 관통하는 관통부를 포함하는, 정수 시스템.The raw water supply line includes a through portion through which the condensation portion directly passes.
PCT/KR2019/003337 2019-03-12 2019-03-22 Water purification system using solar heat WO2020184767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190028247A KR102223348B1 (en) 2019-03-12 2019-03-12 Water purification system using solar power
KR10-2019-0028247 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184767A1 true WO2020184767A1 (en) 2020-09-17

Family

ID=72426088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003337 WO2020184767A1 (en) 2019-03-12 2019-03-22 Water purification system using solar heat

Country Status (2)

Country Link
KR (1) KR102223348B1 (en)
WO (1) WO2020184767A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441919B1 (en) * 2021-12-17 2022-09-13 박미정 Pollution prevention apparatus for fresh water tank of water purification plant
KR102422891B1 (en) * 2022-01-26 2022-07-20 (주)셀시스템 Integrated solar hot water and battery charging device with AI-based priority control function and charging method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005848Y1 (en) * 1994-09-17 1997-06-16 이세희 Distilled water manufacturing apparatus
JP2010269211A (en) * 2009-05-19 2010-12-02 Mitaka Koki Co Ltd Seawater desalination apparatus
KR20110000772A (en) * 2009-06-29 2011-01-06 (주)램피스 Desalination apparatus by solar thermal system
KR20130122828A (en) * 2012-05-01 2013-11-11 대우조선해양 주식회사 Electrical power generation and seawater desalination system using solar energy for off-shore facilities
KR101610596B1 (en) * 2015-08-13 2016-04-07 박정원 The sea water desalination apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0117591Y1 (en) * 1995-07-12 1998-05-15 이상재 A sewing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005848Y1 (en) * 1994-09-17 1997-06-16 이세희 Distilled water manufacturing apparatus
JP2010269211A (en) * 2009-05-19 2010-12-02 Mitaka Koki Co Ltd Seawater desalination apparatus
KR20110000772A (en) * 2009-06-29 2011-01-06 (주)램피스 Desalination apparatus by solar thermal system
KR20130122828A (en) * 2012-05-01 2013-11-11 대우조선해양 주식회사 Electrical power generation and seawater desalination system using solar energy for off-shore facilities
KR101610596B1 (en) * 2015-08-13 2016-04-07 박정원 The sea water desalination apparatus

Also Published As

Publication number Publication date
KR20200109126A (en) 2020-09-22
KR102223348B1 (en) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2013191362A1 (en) Normal pressure-type multiple-effect desalination device using solar heat and multiple heat sources
US4487659A (en) Solar distillation apparatus
US4270981A (en) Solar distillation apparatus
KR101109535B1 (en) Evaporative Desalination System of Sea Water using Solar Energy
WO2020184767A1 (en) Water purification system using solar heat
CN102381796B (en) Solar photovoltaic photothermal integrated device for seawater desalination
CN108910996B (en) Solar seawater desalination salt extraction and power generation integrated system
CN105174339A (en) Forward-condensing multiple-effect back-heating array type humidification and dehumidification solar-powered seawater desalination device
Moustafa et al. Performance of a self-regulating solar multistage flash desalination system
CN107324426A (en) A kind of residual heat from boiler fume coupling evaporation concentrates desulfurization wastewater system
CN102329035B (en) Fresh water collecting and supplying system
CN102849813B (en) Solar multi-effect distillation system
CN110776034A (en) Modularized solar distillation desalination device
WO2017026621A1 (en) Seawater desalination apparatus
WO2016085154A1 (en) New renewable energy supply system for implementing zero energy building and control method thereof
WO2012070786A2 (en) Apparatus for desalinating seawater and filtering wastewater using solar heat energy
Hamed et al. Overview of solar desalination
WO2010104273A2 (en) Purified water-producing device and purified water production method using solar energy
CN211141579U (en) Solar energy seawater distilling device
US10414670B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
WO1980000077A1 (en) Solar distillation apparatus
Mkhize et al. A comparative study of the multistage solar stills with stacked stages (MSS-SS)
CN2084932U (en) Multi-effect solar seawater desalter with honeycomb light-gathering structure
CN106145489A (en) A kind of based on the coupled low temperature multi-effect sea water desalting system provided multiple forms of energy to complement each other
WO2015016432A1 (en) Fresh water generator for ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918692

Country of ref document: EP

Kind code of ref document: A1