WO2020184676A1 - Method for high-throughput evaluation of nmda receptor inhibition activity - Google Patents

Method for high-throughput evaluation of nmda receptor inhibition activity Download PDF

Info

Publication number
WO2020184676A1
WO2020184676A1 PCT/JP2020/010909 JP2020010909W WO2020184676A1 WO 2020184676 A1 WO2020184676 A1 WO 2020184676A1 JP 2020010909 W JP2020010909 W JP 2020010909W WO 2020184676 A1 WO2020184676 A1 WO 2020184676A1
Authority
WO
WIPO (PCT)
Prior art keywords
drebrin
nmda receptor
test substance
nerve cells
cultured
Prior art date
Application number
PCT/JP2020/010909
Other languages
French (fr)
Japanese (ja)
Inventor
智明 白尾
俊成 光岡
健次 花村
紀子 小金澤
祐子 関野
Original Assignee
国立大学法人群馬大学
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学, 国立大学法人 東京大学 filed Critical 国立大学法人群馬大学
Priority to JP2021505138A priority Critical patent/JP7536240B2/en
Publication of WO2020184676A1 publication Critical patent/WO2020184676A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a high-throughput evaluation method of NMDA receptor inhibitory activity using the linear density along the dendrites of the dendrite clusters of cultured nerve cells as an index.
  • NPS neuroactive protein
  • Non-Patent Documents 2 to 5 etc. NPS having NMDA receptor inhibitory activity such as methoxetamine and diphenidine have been reported (Non-Patent Documents 2 to 5 etc.).
  • NMDA receptors are receptors that are primarily involved in learning and memory of the central nervous system, and it is known that reduced activity of NMDA receptors causes forgetfulness, perceptual changes, hallucinations and delusions.
  • NMDA receptor inhibitors can be used as substances of abuse, and NMDA receptor inhibitors are similar to narcotics. It has been suggested that it is likely to have a dangerous effect (Non-Patent Document 6).
  • Non-Patent Documents 7 and 8 Two methods have been proposed as methods for detecting and measuring NMDA receptor inhibitory activity.
  • the first is a calcium imaging method (Non-Patent Documents 7 and 8), and the second is a substitution assay using a tritium-labeled MK801 (Non-Patent Document 9).
  • these methods cannot directly measure the action on the NMDA receptor, are complicated to operate, and may require the use of radioisotopes, so that the action on the NMDA receptor is direct and simple. , Not suitable for rapid measurement.
  • UNODC UNODC report-Global Synthetic Drugs Assessment-Amphetamine-type stimulatets and new psychoactive substances. (2017). Https://www.unodc.org/unodc/en/scientists/global-synthetic-drugs-assessment-2017.html .. Kikura-Hanajiri, R., Uchiyama, N., Kawamura, M., & Goda, Y. (2014). Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoid Testing and Analysis, 6, 832-839. Https://do.org/10.1002/dta.1584. Kikura-Hanajiri, R. (2017).
  • NMDA receptor inhibitors As mentioned above, a direct, rapid, and simple method for evaluating the inhibitory activity of NMDA receptor inhibitors has not yet been established, and new NMDA receptor inhibitors have not been regulated from the functional aspect. The current situation.
  • the present invention has been made in view of the above circumstances, and by establishing a direct, rapid, and simple high-throughput evaluation method for NMDA receptor inhibitory activity, rapid regulation of NMDA receptor inhibitor and novelty. It is intended to enable screening and activity evaluation of NMDA receptor inhibitors as therapeutic agents.
  • PCP phencyclidine
  • a high-throughput evaluation method for NMDA receptor inhibitory activity which comprises sequentially providing the following steps (A) to (E).
  • E The linear density along the dendrites of the drebrin cluster is measured, and when the linear density is higher than the linear density of the cultured nerve cells that are not in contact with the test substance, the test substance is present.
  • Steps to determine that it has an NMDA receptor inhibitory effect (2) The method according to (1) above, wherein the following step (F) is provided after the step (E). (F) A step of calculating the IC 50 of the test substance based on the correlation between the concentration of the test substance brought into contact with the cultured nerve cells in step (A) and the linear density of the drebrin cluster measured in step (E). ; (3) The method according to (1) or (2) above, wherein the following step (G) is provided after the step (F).
  • NMDA receptor inhibitory activity it is possible to provide a high-throughput evaluation method for NMDA receptor inhibitory activity, which can be carried out easily and in a short time.
  • the method for evaluating the high throughput of the NMDA receptor inhibitory activity in the present invention is (A) a step of contacting a cultured nerve cell with a test substance; (B) a step of contacting the cultured nerve cell with a glutamate solution; (C). The steps of immobilizing the cultured neurons; (D) the steps of visualizing the dendrites spine drebrin clusters of the cultured neurons; and (E) measuring the linear density along the dendrites of the cultured neurons.
  • This method is sequentially provided with a step of determining that the test substance has an NMDA receptor inhibitory action when the linear density is higher than the linear density of cultured nerve cells that are not in contact with the test substance.
  • the method of the present invention is a method for evaluating the NMDA receptor inhibitory activity of a test substance using the change in linear density of drebrin clusters formed along the dendrites of cultured nerve cells as an index.
  • the cultured nerve cell may be a cell in which the drebrin cluster is reduced by activation of the NMDA receptor, for example, a primary cultured nerve cell, a hybridoma of neuroblastoma and glioma, a neuroblastoma, or the like.
  • Cultured neurons derived from pluripotent stem cells embryonic stem cells, induced pluripotent stem cells
  • primary cultured neurons derived from Kaiba can be preferably used.
  • the origin of the cultured nerve cell is preferably one that can be used for evaluation of the inhibitory activity of the human NMDA receptor, and examples thereof include mammal origin, more preferably primate origin, and further preferably human origin.
  • cultured neurons derived from rodents such as mice and rats can also be used.
  • the cultured nerve cell may be a cultured nerve cell derived from a human fetus.
  • the test substance may be any compound that can have an inhibitory activity on the NMDA receptor, and candidate compounds for NPS and drug candidate compounds such as anesthesia can be exemplified.
  • Phencyclidine, methoxetamine, etc. It may be a known NPS analog compound such as diphenylidine, or an NMDA receptor antagonist analog compound such as ketamine.
  • the final concentration of the test substance in the above step (A) can be determined based on a conventional method at a concentration suitable for calculating the IC 50 , but for example, a concentration having an inhibition rate of 50% can be obtained. It is desirable to use a dilution series in which the test substance is serially diluted.
  • the contact time in step (A) may be a time sufficient for the test substance to reach the NMDA receptor, for example, 2 to 20 minutes, preferably 5 to 15 minutes, and more preferably 8 to 12. Minutes can be exemplified.
  • the step (B) is a step of contacting a glutamate solution in order to activate the NMDA receptor and cause a decrease in drebrin clusters.
  • the final concentration and contact time of the glutamic acid solution may be any concentration and contact time that cause appropriate NMDA receptor activation for calculating the IC 50 of the test substance.
  • the concentration may be, for example, 1 ⁇ M to 500 ⁇ M, preferably 10 ⁇ M to 300 ⁇ M, more preferably 50 ⁇ M to 200 ⁇ M, still more preferably 80 ⁇ M to 150 ⁇ M
  • the contact time may be, for example, 2 to 20 minutes, preferably 5 to 5 to. 15 minutes, more preferably 8-12 minutes can be exemplified.
  • any compound capable of inducing NMDA receptor activation may be used instead of the glutamate solution.
  • any known method may be used as long as the conditions can efficiently visualize the drebrin cluster after fixation, and examples of the fixation reagent include methanol, acetone, and the like.
  • the fixation reagent include methanol, acetone, and the like.
  • Formaldehyde, paraformaldehyde (PFA), ethanol, glutaraldehyde, dimethyl suberiminoate can be mentioned, and the fixative can be one cooled in a freezer (-20 ⁇ 2 ° C) or a refrigerator (4 ⁇ 2 ° C), or at room temperature. Can be used.
  • the visualization of the drebrin cluster of the cultured nerve cells may be visualized by any known method, and a method of visualization using a molecule capable of specifically binding to the drebrin can be exemplified. it can.
  • the molecule capable of specifically binding to the above-mentioned drebrin include anti-drebrin antibody, which is easy to detect, co-staining using another cultured neuronal marker, and 4', 6 From the viewpoint of distinguishability when cells are stained with -diamidino-2-phenylindole (DAPI), it is preferable to use a fluorescently labeled anti-drebrin antibody.
  • fluorescent label examples include fluorescent substances such as FITC, Cy3, Cy5, Rhodamine, and Alexafluor (registered trademark, manufactured by Invitrogen).
  • Anti-drebrin antibodies may be labeled directly or may be detected using secondary antibodies against them.
  • the antibody used in the present invention may be either a monoclonal antibody or a polyclonal antibody, and a commercially available antibody can be used, or it can be produced by a conventional method.
  • cultured neurons may be co-stained using other cultured neurons markers such as anti-MAP2 antibody.
  • visualization of drebrin clusters can also be performed, for example, by expressing an anti-drebrin antibody (anti-drebrin camel VHH antibody, etc.) in cultured neurons and detecting the accumulation of the anti-drebrin antibody.
  • the anti-drebrin antibody may be detected by a secondary antibody, but live cells are used by expressing the anti-drebrin antibody to which a labeling substance such as a fluorescent protein is bound in cultured nerve cells and detecting the labeling substance.
  • Real-time imaging can be performed.
  • a drebrin or a drebrin fragment to which a labeling substance such as a fluorescent protein is bound in advance is expressed in a cultured nerve cell
  • the expressed labeled drebrin or the drebrin fragment forms a drebrin cluster.
  • the drebrin cluster can be detected without additional visualization steps.
  • the cultured nerve cells in step (C) may or may not be fixed.
  • the number of drebrin positive signals visualized in the step (D) is manually or automatically counted, and the number of drebrin positive signals per unit length of the dendrite is calculated. It is measured by calculation. It is preferable to automatically measure the linear density using a known image analysis software such as IN Cell Developer Toolbox (manufactured by GE Healthcare).
  • the method of the present invention is based on the correlation between the concentration of the test substance brought into contact with the cultured nerve cells in the step (A) after the step (E) and the linear density with the drebrin cluster measured in the step (E).
  • the step (F) for calculating the IC 50 of the test substance may be provided.
  • the IC 50 can be calculated based on a conventional method. For example, an inhibition curve in which the inhibitory activity value with respect to the concentration of the test substance is plotted can be created and calculated.
  • IC 50 obtained by the method of the present invention because it is in good correlation with K i values, the IC 50 of the resultant test substance in step (F), a known NMDA receptor inhibitors By calculating the inhibitory activity ratio in comparison with the IC 50 , the activity of the test substance can be evaluated by a rapid and simple method.
  • the method of the invention can also be used for screening and evaluating activity of substances that cause NMDA receptor activation.
  • the NMDA receptor activation ability of the test substance is evaluated based on the correlation between the concentration of the test substance and the decrease in the linear density of the drebrin cluster.
  • a change in the expression level of drebrin A and / or drebrin E may be used in the activity evaluation of the test substance instead of the linear density of the drebrin cluster or together with the linear density of the drebrin cluster.
  • Such an embodiment may be useful in assessing the long-term effects of a test substance on nerve cells.
  • the present invention can evaluate the NMDA receptor inhibitory activity quickly and easily, with good quantitativeness and reproducibility, and with high accuracy as compared with the conventional method for measuring the NMDA receptor inhibitory activity. Therefore, it is expected to be applied to rapid regulation of NPS, which has been difficult to evaluate and regulate from the functional aspect, and high-throughput screening of therapeutic agents targeting NMDA receptors.
  • Cytosine ⁇ -D-arabinofuranoside (manufactured by Sigma) was added to 4DIV (in vitro culture days) to a final concentration of 0.2 ⁇ M to suppress glial cell proliferation. After 21 DIV cultures of neurons, they were treated pharmacologically.
  • test substance PCP, 3-MeO-PCMo, and 3-MeO-PCP (manufactured by Cayman Chemical Co., Ltd.) were diluted to a predetermined concentration with a 0.1% DMSO solution, and the cultured neurons in the 96-well plate were used. It was administered to the predetermined well in which the cells were cultured.
  • a glutamic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared so that the final concentration in the well was 100 ⁇ M 10 minutes after the administration of the test substance, and the solution was administered 10 minutes after the administration of the drug solution.
  • the final glutamate concentration was 1, 3, 10, 30, 50 or 100 ⁇ M for experiments to obtain a dose-response curve for the drebrin cluster density.
  • Some cultured neurons were treated with D-2-amino-5-phosphonovaleric acid (APV; 50, 100 or 500 ⁇ M), a competitive antagonist to the NMDA receptor, for 10 minutes prior to glutamate treatment.
  • AMV D-2-amino-5-phosphonovaleric acid
  • DAPI 6-diamidino-2-phenylindole dihydrochloride
  • the segmentation function localized the phosphors based on the fluorescence intensity of the MAP2-positive signal via a contrast-based segmentation algorithm with different kernel sizes and sensitivities.
  • Cell bodies of cultured neurons were identified using Erosion, Sieve, Dilation commands and DAPI-positive regions.
  • the segmentation function, as well as the Dilation and Erosion commands were used with separate parameters for MAP2-positive signals, after which the cell body region of the cultured neurons was subtracted.
  • the segmentation feature localized fluorescent objects based on the fluorescence intensity of the drebrin-positive signal via contrast-based segmentation algorithms with different kernel sizes and sensitivities.
  • the Sieve command was used to eliminate false positive background signals. In addition, only drebrin-positive spots located within a defined distance to the dendrites, as determined by the Dilation command, were counted as drebrin clusters along the dendrites. After identifying the nerve cell bodies, dendrites and dendrite clusters, number of cells per visual field, and dendrite length per visual field, the linear density of the dendrite clusters was automatically calculated.
  • PCP which is a non-competitive antagonist of the NMDA receptor
  • FIG. 2C shows that 3-MeO-PCP significantly inhibited the reduction of drebrin clusters by 100 ⁇ M glutamate at concentrations above 333 nM.
  • FIG. 2D shows that 3-MeO-PCMo significantly inhibited the reduction of drebrin clusters by 100 ⁇ M glutamate at a concentration of 3.33 ⁇ M or higher.
  • both 3-MeO-PCP and 3-MeO-PCMo inhibited the reduction of drebrin clusters in a dose-dependent manner.
  • 3-MeO-PCMo and quantitative reliability of an IC 50 value analysis of 3-MeO-PCP created the dose-response curves curve approximation based on the measured values (Figure 3). From FIG. 3, it was shown that the inhibitory activity of 3-MeO-PCP was similar to that of PCP, and the inhibitory activity of 3-MeO-PCMo was lower than that of PCP.
  • NMDA receptor inhibitory activity it is possible to provide a high-throughput evaluation method for NMDA receptor inhibitory activity, which can be carried out easily and in a short time.
  • This evaluation method enables rapid regulation of NPS, which was difficult to evaluate and regulate from the functional aspect in the past, and high-throughput screening and functional evaluation of therapeutic agents targeting NMDA receptors. Is extremely useful.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of establishing a method for the direct, rapid and simple high-throughput evaluation of an NMDA receptor inhibition activity. An NMDA receptor inhibition activity can be evaluated with high throughput by a method comprising the following steps in this order: (A) bringing a substance of interest into contact with cultured neurons; (B) bringing the cultured neurons into contact with a glutamate solution; (C) immobilizing the cultured neurons; (D) visualizing drebrin clusters of dendritic spines of the cultured neurons; and (E) measuring the line density along the dendrites of the drebrin clusters, and determining that the substance of interest has an NMDA receptor inhibition activity when the line density is higher than the line density of the cultured neurons that are not contacted with the substance of interest.

Description

NMDA受容体阻害活性のハイスループット評価方法High-throughput evaluation method for NMDA receptor inhibitory activity
 本発明は、培養神経細胞の樹状突起スパインのドレブリンクラスターの樹状突起に沿った線密度を指標として用いる、NMDA受容体阻害活性のハイスループット評価方法に関する。 The present invention relates to a high-throughput evaluation method of NMDA receptor inhibitory activity using the linear density along the dendrites of the dendrite clusters of cultured nerve cells as an index.
 近年、新精神作用物質(New psychoactive substances;NPS、日本では「危険ドラッグ」とも呼ばれる)が、「リーガル・ハイ」、「バスソルト」、「リサーチケミカル」等の用語を使って販売されている。しかしながら、それらは国際的に規制されている薬物と同様の効果を持つ乱用物質である。NPSの出現は世界中の100以上の国と地域で報告されており、NPSの広がりが、多くの国で公衆衛生上の懸念を高めている(非特許文献1)。したがって、リスク評価プロセスを通じてこれらの物質を速やかに規制するために、NPSに対して利用可能な関連データ及び分析結果を蓄積していくことが極めて重要である。 In recent years, new psychoactive substances (NPS, also called "dangerous drugs" in Japan) have been sold using terms such as "legal high", "bath salts", and "research chemicals". However, they are abusers that have the same effect as internationally regulated drugs. The emergence of NPS has been reported in more than 100 countries and territories around the world, and the spread of NPS has raised public health concerns in many countries (Non-Patent Document 1). Therefore, it is extremely important to accumulate relevant data and analytical results available for the NPS in order to expedite the regulation of these substances through the risk assessment process.
 メトキセタミンやジフェニジン等の、NMDA受容体阻害活性を有するNPSが報告されている(非特許文献2~5等)。NMDA受容体は、中枢神経系の学習と記憶に主に関与する受容体であり、NMDA受容体の活動が低下すると、健忘症、知覚の変化、幻覚及び妄想が起こることが知られている。このように、NMDA受容体は、知覚的及び精神的現象に大いに関連しているため、NMDA受容体阻害剤が乱用薬物として使用される可能性、及び、NMDA受容体阻害剤が麻薬と同様の危険な効果を持つ可能性が高いことが示唆されている(非特許文献6)。しかしながら、中枢神経系に対して作用する化合物の安全性薬理試験法は、ネズミ個体を用いた行動解析のみであり、コスト、時間がかかるという問題点がある。そのため、規制当局は、新規化合物についてインシリコで構造の類似性を判定し、規制するか否かを判断しているのが現状である。 NPS having NMDA receptor inhibitory activity such as methoxetamine and diphenidine have been reported (Non-Patent Documents 2 to 5 etc.). NMDA receptors are receptors that are primarily involved in learning and memory of the central nervous system, and it is known that reduced activity of NMDA receptors causes forgetfulness, perceptual changes, hallucinations and delusions. Thus, because NMDA receptors are highly associated with perceptual and psychological phenomena, NMDA receptor inhibitors can be used as substances of abuse, and NMDA receptor inhibitors are similar to narcotics. It has been suggested that it is likely to have a dangerous effect (Non-Patent Document 6). However, the safety pharmacological test method for compounds that act on the central nervous system is only behavioral analysis using individual mice, and has the problem of cost and time. Therefore, the current situation is that regulators judge the structural similarity of new compounds with in silico and decide whether or not to regulate them.
 上述の状況から、NMDA受容体阻害活性を有するNPSを、機能的側面から既存の薬物との類似度を評価して迅速に規制できるようにするため、NMDA受容体阻害活性を検出、測定する方法が求められている。現状では、NMDA受容体阻害活性の検出、測定方法として、2つの方法が提案されている。第一はカルシウムイメージング法であり(非特許文献7、8)、第二はトリチウム標識したMK801を用いた置換アッセイである(非特許文献9)。しかしながら、これらの方法は、NMDA受容体に対する作用を直接測定することができないうえ、操作が煩雑であり、放射性同位体を使用しなければならない場合もあり、NMDA受容体阻害作用の直接的且つ簡便、迅速な測定には不向きである。 From the above situation, a method for detecting and measuring NMDA receptor inhibitory activity in order to evaluate the similarity with existing drugs from a functional aspect and rapidly regulate NPS having NMDA receptor inhibitory activity. Is required. At present, two methods have been proposed as methods for detecting and measuring NMDA receptor inhibitory activity. The first is a calcium imaging method (Non-Patent Documents 7 and 8), and the second is a substitution assay using a tritium-labeled MK801 (Non-Patent Document 9). However, these methods cannot directly measure the action on the NMDA receptor, are complicated to operate, and may require the use of radioisotopes, so that the action on the NMDA receptor is direct and simple. , Not suitable for rapid measurement.
 培養神経細胞は、培養を行うと樹状突起を徐々に伸ばし、ニューロン間の成熟シナプスを形成する。その後、培養3週間で、きのこ型の頭部を持つ「樹状突起スパイン」と呼ばれる構造が完成する。樹状突起スパインにおいて、ドレブリンはアクチンフィラメントに高濃度で蓄積され、樹状突起スパインにおける受容体及び足場タンパク質の動態を安定化させる(非特許文献10、11)。このように樹状突起スパインに蓄積されたドレブリンは、ドレブリンクラスターと呼ばれる。培養神経細胞に対するグルタミン酸処理は、樹状突起スパインから樹状突起への急速なドレブリン流出を誘導する(非特許文献12、13)。投与されたグルタミン酸は、AMPA型グルタミン酸レセプター(AMPAR)とNMDA受容体の両方を活性化するが、ドレブリンクラスターからのドレブリンの流出は、NMDA受容体活性化によって誘導され、定量的である(非特許文献13~15)。 Cultured nerve cells gradually extend dendrites when cultured and form mature synapses between neurons. Then, in 3 weeks of culturing, a structure called "dendritic spine" having a mushroom-shaped head is completed. In dendritic spines, drebrin accumulates in high concentrations in actin filaments and stabilizes the dynamics of receptors and scaffold proteins in dendritic spines (Non-Patent Documents 10 and 11). The drebrin accumulated in the dendrite spine in this way is called a drebrin cluster. Glutamic acid treatment of cultured neurons induces rapid outflow of drebrin from dendrite spines to dendrites (Non-Patent Documents 12 and 13). Administered glutamate activates both AMPA-type glutamate receptors (AMPAR) and NMDA receptors, but drainage of drebrin from drebrin clusters is induced by NMDA receptor activation and is quantitative (non-patent). Documents 13 to 15).
 上述したとおり、NMDA受容体阻害剤の、直接的且つ迅速、簡便な阻害活性の評価方法は未だ構築されておらず、機能面からの新規NMDA受容体阻害剤の規制は行われていないのが現状である。本発明は、以上の事情に鑑みなされたものであり、NMDA受容体阻害活性の直接的且つ迅速、簡便なハイスループット評価方法を確立することにより、NMDA受容体阻害剤の迅速な規制、及び新規治療薬としてのNMDA受容体阻害剤のスクリーニング及び活性評価を可能にすることを目的とするものである。 As mentioned above, a direct, rapid, and simple method for evaluating the inhibitory activity of NMDA receptor inhibitors has not yet been established, and new NMDA receptor inhibitors have not been regulated from the functional aspect. The current situation. The present invention has been made in view of the above circumstances, and by establishing a direct, rapid, and simple high-throughput evaluation method for NMDA receptor inhibitory activity, rapid regulation of NMDA receptor inhibitor and novelty. It is intended to enable screening and activity evaluation of NMDA receptor inhibitors as therapeutic agents.
 本発明者らは、鋭意検討を重ねた結果、既知のNMDA受容体阻害剤であるフェンシクリジン(PCP)と、PCPアナログ2種(3-MeO-PCMo及び3-MeO-PCP)を用い、これらの化合物を成熟した培養神経細胞に接触させることで、グルタミン酸処理によるドレブリンクラスターの線密度減少が抑制されることを見いだした。さらに、かかるドレブリンクラスターの線密度減少が、化合物濃度と相関すること、並びに該相関に基づいて算出した50%阻害濃度(IC50)の比が、これらの化合物の阻害定数(K)の比と良好な相関関係を示すことを見いだした。本発明は、これらの知見により完成したものである。 As a result of diligent studies, the present inventors have used phencyclidine (PCP), which is a known NMDA receptor inhibitor, and two types of PCP analogs (3-MeO-PCMo and 3-MeO-PCP). It was found that contacting these compounds with mature cultured neurons suppresses the decrease in linear density of drebrin clusters due to glutamate treatment. Furthermore, the linear density reduction of such drain Brin cluster, the ratio of to correlate with compound concentration, and 50% inhibitory concentrations were calculated based on the correlation (IC 50), the ratio of inhibition constants for these compounds (K i) It was found that it shows a good correlation with. The present invention has been completed based on these findings.
 すなわち、本発明は以下の事項により特定されるとおりのものである。
(1)以下のステップ(A)~(E)を順次備えたことを特徴とするNMDA受容体阻害活性のハイスループット評価方法。
(A)培養神経細胞に、被験物質を接触させるステップ;
(B)前記培養神経細胞に、グルタミン酸溶液を接触させるステップ;
(C)前記培養神経細胞を固定するステップ;
(D)前記培養神経細胞の樹状突起スパインのドレブリンクラスターを可視化するステップ;
(E)前記ドレブリンクラスターの樹状突起に沿った線密度を測定し、前記線密度が、前記被験物質に接触させていない培養神経細胞の線密度と比較して高い場合に、前記被験物質がNMDA受容体阻害作用を有すると判定するステップ;
(2)以下のステップ(F)を、ステップ(E)の後に備えたことを特徴とする上記(1)に記載の方法。
(F)ステップ(A)で培養神経細胞に接触させた被験物質の濃度と、ステップ(E)で測定したドレブリンクラスターの線密度との相関に基づいて、前記被験物質のIC50を算出するステップ;
(3)以下のステップ(G)を、ステップ(F)の後に備えたことを特徴とする上記(1)又は(2)に記載の方法。
(G)ステップ(F)で算出した被験物質のIC50を、既知のNMDA受容体阻害剤のIC50と比較することにより、前記被験物質と、前記既知のNMDA受容体阻害剤とのNMDA受容体阻害活性比を算出するステップ;
(4)培養神経細胞が、海馬神経細胞由来であることを特徴とする上記(1)~(3)のいずれかに記載の方法。
(5)培養神経細胞が、げっ歯類由来であることを特徴とする上記(1)~(4)のいずれかに記載の方法。
(6)ステップ(D)の可視化が、抗ドレブリン抗体による免疫染色であることを特徴とする上記(1)~(5)のいずれかに記載の方法。
That is, the present invention is as specified by the following matters.
(1) A high-throughput evaluation method for NMDA receptor inhibitory activity, which comprises sequentially providing the following steps (A) to (E).
(A) Step of contacting the cultured nerve cells with the test substance;
(B) A step of contacting the cultured nerve cells with a glutamic acid solution;
(C) Step of fixing the cultured nerve cells;
(D) A step of visualizing the drebrin cluster of the dendritic spine of the cultured nerve cell;
(E) The linear density along the dendrites of the drebrin cluster is measured, and when the linear density is higher than the linear density of the cultured nerve cells that are not in contact with the test substance, the test substance is present. Steps to determine that it has an NMDA receptor inhibitory effect;
(2) The method according to (1) above, wherein the following step (F) is provided after the step (E).
(F) A step of calculating the IC 50 of the test substance based on the correlation between the concentration of the test substance brought into contact with the cultured nerve cells in step (A) and the linear density of the drebrin cluster measured in step (E). ;
(3) The method according to (1) or (2) above, wherein the following step (G) is provided after the step (F).
The IC 50 of the test substance calculated in (G) Step (F), by comparing the IC 50 of the known NMDA receptor inhibitors, NMDA receptor of said analyte, and the known NMDA receptor inhibitors Steps to calculate body inhibitory activity ratio;
(4) The method according to any one of (1) to (3) above, wherein the cultured nerve cells are derived from hippocampal nerve cells.
(5) The method according to any one of (1) to (4) above, wherein the cultured nerve cells are derived from rodents.
(6) The method according to any one of (1) to (5) above, wherein the visualization in step (D) is immunostaining with an anti-drebrin antibody.
 本発明によれば、簡便且つ短時間で実施することのできる、NMDA受容体阻害活性のハイスループット評価方法を提供することができる。 According to the present invention, it is possible to provide a high-throughput evaluation method for NMDA receptor inhibitory activity, which can be carried out easily and in a short time.
実施例のセクション2-1の結果を示す図である。It is a figure which shows the result of section 2-1 of an Example. 実施例のセクション2-2の結果を示す図である。It is a figure which shows the result of Section 2-2 of an Example. 実施例のセクション2-3の結果を示す図である。It is a figure which shows the result of Section 2-3 of an Example.
 本発明におけるNMDA受容体阻害活性のハイスループット評価方法とは、(A)培養神経細胞に、被験物質を接触させるステップ;(B)前記培養神経細胞に、グルタミン酸溶液を接触させるステップ;(C)前記培養神経細胞を固定するステップ;(D)前記培養神経細胞の樹状突起スパインのドレブリンクラスターを可視化するステップ;及び(E)前記ドレブリンクラスターの樹状突起に沿った線密度を測定し、前記線密度が、前記被験物質に接触させていない培養神経細胞の線密度と比較して高い場合に、前記被験物質がNMDA受容体阻害作用を有すると判定するステップ;を順次備えた方法である。 The method for evaluating the high throughput of the NMDA receptor inhibitory activity in the present invention is (A) a step of contacting a cultured nerve cell with a test substance; (B) a step of contacting the cultured nerve cell with a glutamate solution; (C). The steps of immobilizing the cultured neurons; (D) the steps of visualizing the dendrites spine drebrin clusters of the cultured neurons; and (E) measuring the linear density along the dendrites of the cultured neurons. This method is sequentially provided with a step of determining that the test substance has an NMDA receptor inhibitory action when the linear density is higher than the linear density of cultured nerve cells that are not in contact with the test substance.
 本発明の方法は、培養神経細胞の樹状突起に沿って形成されたドレブリンクラスターの線密度変化を指標として、被験物質のNMDA受容体阻害活性を評価する方法である。ここで、培養神経細胞としては、NMDA受容体の活性化によりドレブリンクラスターが減少する細胞であればよく、例えば、初代培養神経細胞、神経芽細胞腫と神経膠腫のハイブリドーマ、神経芽細胞腫や、多能性幹細胞(胚性幹細胞、人工多能性幹細胞)に由来する培養神経細胞等を挙げることができ、海馬由来の初代培養神経細胞を好適に使用することができる。また、培養神経細胞の由来は、ヒトのNMDA受容体の阻害活性評価に用いることができるものであることが好ましく、例えば哺乳類由来、より好ましくは霊長類由来、さらに好ましくはヒト由来を挙げることができるが、マウスやラット等、げっ歯類由来の培養神経細胞を用いることもできる。また、上記培養神経細胞は、ヒト胎児由来の培養神経細胞であってもよい。 The method of the present invention is a method for evaluating the NMDA receptor inhibitory activity of a test substance using the change in linear density of drebrin clusters formed along the dendrites of cultured nerve cells as an index. Here, the cultured nerve cell may be a cell in which the drebrin cluster is reduced by activation of the NMDA receptor, for example, a primary cultured nerve cell, a hybridoma of neuroblastoma and glioma, a neuroblastoma, or the like. , Cultured neurons derived from pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells) and the like can be mentioned, and primary cultured neurons derived from Kaiba can be preferably used. Further, the origin of the cultured nerve cell is preferably one that can be used for evaluation of the inhibitory activity of the human NMDA receptor, and examples thereof include mammal origin, more preferably primate origin, and further preferably human origin. However, cultured neurons derived from rodents such as mice and rats can also be used. Further, the cultured nerve cell may be a cultured nerve cell derived from a human fetus.
 本発明において、被験物質とは、NMDA受容体の阻害活性を有し得る化合物であればよく、NPSの候補化合物や、麻酔等の医薬品候補化合物を例示することができ、フェンシクリジン、メトキセタミン、ジフェニジン等の既知のNPSの類縁化合物や、ケタミン等のNMDA受容体拮抗薬の類縁化合物であってもよい。上記ステップ(A)における被験物質の終濃度は、IC50を算出するために適した濃度を常法に基づいて決定することができるが、例えば阻害率50%を挟む濃度が得られるように、被験物質を段階希釈した希釈系列を用いることが望ましい。また、上記ステップ(A)における接触時間は、被験物質がNMDA受容体まで到達するために十分な時間であればよく、例えば2~20分間、好ましくは5~15分間、より好ましくは8~12分間を例示することができる。 In the present invention, the test substance may be any compound that can have an inhibitory activity on the NMDA receptor, and candidate compounds for NPS and drug candidate compounds such as anesthesia can be exemplified. Phencyclidine, methoxetamine, etc. It may be a known NPS analog compound such as diphenylidine, or an NMDA receptor antagonist analog compound such as ketamine. The final concentration of the test substance in the above step (A) can be determined based on a conventional method at a concentration suitable for calculating the IC 50 , but for example, a concentration having an inhibition rate of 50% can be obtained. It is desirable to use a dilution series in which the test substance is serially diluted. The contact time in step (A) may be a time sufficient for the test substance to reach the NMDA receptor, for example, 2 to 20 minutes, preferably 5 to 15 minutes, and more preferably 8 to 12. Minutes can be exemplified.
 上記ステップ(B)は、NMDA受容体を活性化させ、ドレブリンクラスターの減少を引き起こすために、グルタミン酸溶液を接触させるステップである。ここで、グルタミン酸溶液の終濃度及び接触時間は、被験物質のIC50を算出するために適切なNMDA受容体活性化を引き起こす濃度及び接触時間であればよい。上記濃度としては例えば1μM~500μM、好ましくは10μM~300μM、より好ましくは50μM~200μM、さらに好ましくは80μM~150μMを挙げることができ、上記接触時間としては、例えば2~20分間、好ましくは5~15分間、より好ましくは8~12分間を例示することができる。また、グルタミン酸溶液に代えて、NMDA受容体活性化を引き起こすことのできるいかなる化合物を用いてもよい。 The step (B) is a step of contacting a glutamate solution in order to activate the NMDA receptor and cause a decrease in drebrin clusters. Here, the final concentration and contact time of the glutamic acid solution may be any concentration and contact time that cause appropriate NMDA receptor activation for calculating the IC 50 of the test substance. The concentration may be, for example, 1 μM to 500 μM, preferably 10 μM to 300 μM, more preferably 50 μM to 200 μM, still more preferably 80 μM to 150 μM, and the contact time may be, for example, 2 to 20 minutes, preferably 5 to 5 to. 15 minutes, more preferably 8-12 minutes can be exemplified. Also, instead of the glutamate solution, any compound capable of inducing NMDA receptor activation may be used.
 上記ステップ(C)における培養神経細胞の固定は、固定後のドレブリンクラスターの可視化が効率的に行える条件であればいかなる公知の方法を用いてもよく、固定化試薬としては、例えばメタノール、アセトン、ホルムアルデヒド、パラホルムアルデヒド(PFA)、エタノール、グルタルアルデヒド、スベルイミノ酸ジメチルを挙げることができ、固定化試薬は、冷凍庫(-20±2℃)又は冷蔵庫(4±2℃)で冷却したものや、室温のものを使用することができる。 For the fixation of the cultured nerve cells in the above step (C), any known method may be used as long as the conditions can efficiently visualize the drebrin cluster after fixation, and examples of the fixation reagent include methanol, acetone, and the like. Formaldehyde, paraformaldehyde (PFA), ethanol, glutaraldehyde, dimethyl suberiminoate can be mentioned, and the fixative can be one cooled in a freezer (-20 ± 2 ° C) or a refrigerator (4 ± 2 ° C), or at room temperature. Can be used.
 上記ステップ(D)において、培養神経細胞のドレブリンクラスターの可視化は、いかなる公知の方法により可視化してもよく、ドレブリンに対して特異的に結合し得る分子を用いて可視化する方法を例示することができる。上記ドレブリンに対して特異的に結合し得る分子としては、例えば抗ドレブリン抗体を挙げることができ、検出の簡便性や、他の培養神経細胞マーカーを用いて共染色した場合や、4’,6-ジアミジノ-2-フェニルインドール(DAPI)を用いて細胞を染色した場合における識別性の観点から、蛍光標識された抗ドレブリン抗体を用いることが好ましい。ここで、蛍光標識としては、FITC、Cy3、Cy5、Rhodamine、Alexa fluor(登録商標、インビトロジェン社製)等の蛍光物質を挙げることができる。抗ドレブリン抗体は、直接標識してもよく、これらに対する二次抗体を用いて検出してもよい。本発明で用いる抗体は、モノクローナル抗体、ポリクローナル抗体のいずれであってもよく、市販のものを使用できる他、常法により作製することもできる。また、抗MAP2抗体等の他の培養神経細胞マーカーを用いて、培養神経細胞を共染色してもよい。 In the above step (D), the visualization of the drebrin cluster of the cultured nerve cells may be visualized by any known method, and a method of visualization using a molecule capable of specifically binding to the drebrin can be exemplified. it can. Examples of the molecule capable of specifically binding to the above-mentioned drebrin include anti-drebrin antibody, which is easy to detect, co-staining using another cultured neuronal marker, and 4', 6 From the viewpoint of distinguishability when cells are stained with -diamidino-2-phenylindole (DAPI), it is preferable to use a fluorescently labeled anti-drebrin antibody. Here, examples of the fluorescent label include fluorescent substances such as FITC, Cy3, Cy5, Rhodamine, and Alexafluor (registered trademark, manufactured by Invitrogen). Anti-drebrin antibodies may be labeled directly or may be detected using secondary antibodies against them. The antibody used in the present invention may be either a monoclonal antibody or a polyclonal antibody, and a commercially available antibody can be used, or it can be produced by a conventional method. In addition, cultured neurons may be co-stained using other cultured neurons markers such as anti-MAP2 antibody.
 一態様では、ドレブリンクラスターの可視化は、例えば培養神経細胞において抗ドレブリン抗体(抗ドレブリンラクダVHH抗体等)を発現させ、該抗ドレブリン抗体の集積を検出することにより行うこともできる。抗ドレブリン抗体は、二次抗体で検出してもよいが、蛍光タンパク質等の標識物質を結合させた抗ドレブリン抗体を培養神経細胞内で発現させ、標識物質を検出することにより、生細胞を用いたリアルタイムイメージングを行うことができる。また、一態様において、あらかじめ蛍光タンパク質等の標識物質を結合させたドレブリン又はドレブリン断片を培養神経細胞内で発現させると、発現した標識ドレブリン又はドレブリン断片がドレブリンクラスターを形成する。この態様においては、該標識ドレブリン又はドレブリン断片を検出することにより、追加の可視化ステップなしにドレブリンクラスターを検出することができる。これらの態様においては、ステップ(C)における培養神経細胞の固定は行っても行わなくてもよい。 In one aspect, visualization of drebrin clusters can also be performed, for example, by expressing an anti-drebrin antibody (anti-drebrin camel VHH antibody, etc.) in cultured neurons and detecting the accumulation of the anti-drebrin antibody. The anti-drebrin antibody may be detected by a secondary antibody, but live cells are used by expressing the anti-drebrin antibody to which a labeling substance such as a fluorescent protein is bound in cultured nerve cells and detecting the labeling substance. Real-time imaging can be performed. Further, in one embodiment, when a drebrin or a drebrin fragment to which a labeling substance such as a fluorescent protein is bound in advance is expressed in a cultured nerve cell, the expressed labeled drebrin or the drebrin fragment forms a drebrin cluster. In this embodiment, by detecting the labeled drebrin or drebrin fragment, the drebrin cluster can be detected without additional visualization steps. In these embodiments, the cultured nerve cells in step (C) may or may not be fixed.
 上記ステップ(E)におけるドレブリンクラスターの線密度は、上記ステップ(D)により可視化されたドレブリン陽性シグナルの個数を手動又は自動で計数し、樹状突起の単位長さ当たりのドレブリン陽性シグナルの個数を算出することにより測定される。かかる線密度の測定は、IN Cell Developer Toolbox(GEヘルスケア社製)等の公知の画像解析ソフトウェアを用いて自動測定することが好ましい。 For the linear density of the drebrin cluster in the step (E), the number of drebrin positive signals visualized in the step (D) is manually or automatically counted, and the number of drebrin positive signals per unit length of the dendrite is calculated. It is measured by calculation. It is preferable to automatically measure the linear density using a known image analysis software such as IN Cell Developer Toolbox (manufactured by GE Healthcare).
 本発明の方法は、上記ステップ(E)の後に、上記ステップ(A)で培養神経細胞に接触させた被験物質の濃度と、ステップ(E)で測定したドレブリンクラスターとの線密度の相関に基づいて、前記被験物質のIC50を算出するステップ(F)を備えてもよい。IC50の算出は、常法に基づいて行うことができ、例えば、被験物質の濃度に対する阻害活性値をプロットした阻害曲線を作成して算出することができる。また、本発明の方法により得られたIC50は、K値と良好な相関関係にあるため、上記ステップ(F)で得られた被験物質のIC50を、既知のNMDA受容体阻害剤のIC50と比較して阻害活性比を算出することで、前記被験物質の活性を迅速且つ簡便な方法にて評価することができる。 The method of the present invention is based on the correlation between the concentration of the test substance brought into contact with the cultured nerve cells in the step (A) after the step (E) and the linear density with the drebrin cluster measured in the step (E). The step (F) for calculating the IC 50 of the test substance may be provided. The IC 50 can be calculated based on a conventional method. For example, an inhibition curve in which the inhibitory activity value with respect to the concentration of the test substance is plotted can be created and calculated. Further, IC 50 obtained by the method of the present invention, because it is in good correlation with K i values, the IC 50 of the resultant test substance in step (F), a known NMDA receptor inhibitors By calculating the inhibitory activity ratio in comparison with the IC 50 , the activity of the test substance can be evaluated by a rapid and simple method.
 本発明の一態様において、本発明の方法は、NMDA受容体活性化を引き起こす物質のスクリーニング及び活性評価に用いることもできる。かかる態様において、被験物質の濃度とドレブリンクラスターの線密度の減少との相関に基づいて、被験物質のNMDA受容体活性化能が評価される。 In one aspect of the invention, the method of the invention can also be used for screening and evaluating activity of substances that cause NMDA receptor activation. In such an embodiment, the NMDA receptor activation ability of the test substance is evaluated based on the correlation between the concentration of the test substance and the decrease in the linear density of the drebrin cluster.
 本発明の一態様において、ドレブリンクラスターの線密度に代えて、或いはドレブリンクラスターの線密度と共に、ドレブリンA及び/又はドレブリンEの発現量変化を、被験物質の活性評価に用いてもよい。かかる態様は、被験物質が神経細胞に与える長期的影響を評価するのに有効である可能性がある。 In one aspect of the present invention, a change in the expression level of drebrin A and / or drebrin E may be used in the activity evaluation of the test substance instead of the linear density of the drebrin cluster or together with the linear density of the drebrin cluster. Such an embodiment may be useful in assessing the long-term effects of a test substance on nerve cells.
 本発明は、従来のNMDA受容体阻害活性の測定方法と比較して迅速且つ簡便に、定量性、再現性良く、高精度にNMDA受容体阻害活性の評価を行うことができる。そのため、従来は機能面からの評価及び規制が困難であったNPSの迅速な規制や、NMDA受容体をターゲットとした治療薬のハイスループットスクリーニングへの応用が期待される。 The present invention can evaluate the NMDA receptor inhibitory activity quickly and easily, with good quantitativeness and reproducibility, and with high accuracy as compared with the conventional method for measuring the NMDA receptor inhibitory activity. Therefore, it is expected to be applied to rapid regulation of NPS, which has been difficult to evaluate and regulate from the functional aspect, and high-throughput screening of therapeutic agents targeting NMDA receptors.
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these examples.
1.方法
1-2 動物実験
 動物実験は、群馬大学昭和キャンパス(群馬県前橋市)の動物実験委員会によって設定されたガイドラインに従って行い、研究における動物の使用に関するNIHガイドラインに準拠した。動物の苦しみを最小限に抑え、使用される動物の数を減らすためにあらゆる努力を払った。妊娠ウィスターラットは、日本チャールス・リバー株式会社から入手した。動物は標準的な動物施設条件下で飼料と水を自由に摂取させて飼育した。
1. 1. Method 1-2 Animal Experiments Animal experiments were conducted in accordance with the guidelines set by the Animal Experiment Committee of Gunma University Showa Campus (Maebashi City, Gunma Prefecture), and were based on the NIH guidelines on the use of animals in research. Every effort has been made to minimize animal suffering and reduce the number of animals used. Pregnant Wistar Rats were obtained from Charles River Laboratories, Japan. Animals were bred with free feed and water under standard animal facility conditions.
1-2 海馬神経細胞培養
 18日目胚のラットの海馬から調製した凍結ニューロンを、ポリリジンであらかじめコーティングした96ウェルプレート(Thermo 96 Well Black Poly Bottom Poly-Lysine、Thermo Fisher Scientific社製)に、3.0×10細胞/cmの密度で播種した。B27サプリメント、ペニシリン/ストレプトマイシン、及びL-アラニル-L-グルタミン(Glutamax-I;Thermo Fisher Scientific社製)を含むNeurobasal Medium(Thermo Fisher Scientific社製)を使用して、37℃、5%CO環境下でインキュベートした。
4DIV(インビトロでの培養日数)に、シトシンβ-D-アラビノフラノシド(Sigma社製)を最終濃度0.2μMになるように加えてグリア細胞の増殖を抑制した。ニューロンを21DIV培養した後、それらを薬理学的に処理した。
1-2 Hippocampal neuron culture Day 18 Frozen neurons prepared from rat hippocampus were placed on a 96-well plate (Thermo 96 Well Black Poly Bottom Poly-Lysine, manufactured by Thermo Fisher Scientific) pre-coated with polylysine. Seeded at a density of 0.0 × 10 4 cells / cm 2 . 37 ° C, 5% CO 2 environment using Neurobasal Medium (Thermo Fisher Scientific) containing B27 supplement, penicillin / streptomycin, and L-alanyl-L-glutamine (Glutamax-I; Thermo Fisher Scientific) Incubated below.
Cytosine β-D-arabinofuranoside (manufactured by Sigma) was added to 4DIV (in vitro culture days) to a final concentration of 0.2 μM to suppress glial cell proliferation. After 21 DIV cultures of neurons, they were treated pharmacologically.
1-3 被験物質の投与
 PCP、3-MeO-PCMo、及び3-MeO-PCP(Cayman Chemical社製)を0.1%DMSO溶液により所定の濃度に希釈し、96ウェルプレートのうち、培養神経細胞が培養されている所定のウェルに投与した。被験物質の投与から10分後に、ウェル内の最終濃度が100μMとなるようにグルタミン酸溶液(和光純薬株式会社製)を調製し、薬液投与10分後に投与した。ドレブリンクラスター密度の用量反応曲線を得るための実験のために、最終グルタメート濃度は1、3、10、30、50又は100μMであった。いくつかの培養神経細胞は、グルタミン酸塩処理の前に、NMDA受容体に対する競合アンタゴニストであるD-2-アミノ-5-ホスホノバレリン酸(APV;50、100又は500μM)で10分間処理した。
1-3 Administration of test substance PCP, 3-MeO-PCMo, and 3-MeO-PCP (manufactured by Cayman Chemical Co., Ltd.) were diluted to a predetermined concentration with a 0.1% DMSO solution, and the cultured neurons in the 96-well plate were used. It was administered to the predetermined well in which the cells were cultured. A glutamic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared so that the final concentration in the well was 100 μM 10 minutes after the administration of the test substance, and the solution was administered 10 minutes after the administration of the drug solution. The final glutamate concentration was 1, 3, 10, 30, 50 or 100 μM for experiments to obtain a dose-response curve for the drebrin cluster density. Some cultured neurons were treated with D-2-amino-5-phosphonovaleric acid (APV; 50, 100 or 500 μM), a competitive antagonist to the NMDA receptor, for 10 minutes prior to glutamate treatment.
1-4 免疫細胞化学
 培養神経細胞を、リン酸緩衝液中4%パラホルムアルデヒドで固定した。リン酸緩衝生理食塩水(PBS)中0.1%トリトンX-100で5分間浸透処理した後、培養神経細胞をPBS中3%ウシ血清アルブミン(PBSA) で室温(RT)にて1時間ブロッキングし、次いで一次抗体と共に4℃で一晩インキュベートした。抗ドレブリン抗体(マウスモノクローナル、M2F6、1:1)及び抗MAP2抗体(ウサギポリクローナル、1:2000)(Merck Millipore社製)を一次抗体として使用した。PBSで洗浄した後、細胞を二次抗体及び4’,6-ジアミジノ-2-フェニルインドール二塩酸塩(DAPI、1:1000、Thermo Fisher Scientific社製)と共に室温で1時間インキュベートした。使用した二次抗体は、Alexa Fluor 488ロバ抗マウスIgG(1:250)及びAlexa Fluor 594ロバ抗ウサギIgG(1:250、Jackson Immuno Research Laboratories社製)であった。
1-4 Immunocytochemistry Cultured neurons were fixed with 4% paraformaldehyde in phosphate buffer. After permeation with 0.1% Triton X-100 in phosphate buffered saline (PBS) for 5 minutes, cultured neurons are blocked with 3% bovine serum albumin (PBSA) in PBS for 1 hour at room temperature (RT). Then, it was incubated with the primary antibody at 4 ° C. overnight. Anti-drebrin antibody (mouse monoclonal, M2F6, 1: 1) and anti-MAP2 antibody (rabbit polyclonal, 1: 2000) (manufactured by Merck Millipore) were used as primary antibodies. After washing with PBS, cells were incubated with secondary antibody and 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI, 1: 1000, Thermo Fisher Scientific) at room temperature for 1 hour. The secondary antibodies used were Alexa Fluor 488 donkey anti-mouse IgG (1: 250) and Alexa Fluor 594 donkey anti-rabbit IgG (1: 250, manufactured by Jackson Immuno Research Laboratories).
1-5 画像の自動取得と解析
 96ウェルプレートで培養された海馬神経細胞の三重染色像は、IN Cell Analyzer 2200(GE Healthcare社製)の自動焦点機能を使用することによって自動的に取得された(20倍レンズ、開口数0.45)。全てのデータは16ビット/ピクセルで2048×2048の解像度で収集された。画像内の単一の画素は、標本面内の325nmの正方形に対応していた。Zスタック画像は、ハイコンテント画像ソフトウェアであるIN Cell Developer Toolbox v1.9(GE Healthcare社製)を用いて拡張焦点変換プロトコル(extended focus transformation protocol)により処理され、Zシリーズスタックからの焦点があった単一の2次元画像を生成した。培養神経細胞の細胞体は、MAP2及びDAPI染色に基づいて認識された。培養神経細胞の細胞体を特定するために、セグメンテーション機能により、異なるカーネルサイズ及び感度を有するコントラストベースのセグメンテーションアルゴリズムを介して、MAP2陽性シグナルの蛍光強度に基づいて蛍光体を局在化させた。Erosion(収縮)、Sieve(ふるい)、Dilation(拡張)のコマンド及びDAPI陽性領域を用いて、培養神経細胞の細胞体を同定した。培養神経細胞の樹状突起を識別するために、セグメンテーション機能、並びにDilation及びErosionコマンドを、MAP2陽性シグナルについての別個のパラメーターと共に使用し、その後培養神経細胞の細胞体領域を差し引いた。ドレブリンクラスターを同定するために、セグメンテーション機能により、異なるカーネルサイズ及び感度を有するコントラストベースのセグメンテーションアルゴリズムを介して、ドレブリン陽性シグナルの蛍光強度に基づいて蛍光物体を局在化させた。偽陽性のバックグラウンドシグナルを除去するためにSieveコマンドを使用した。加えて、Dilationコマンドによって決定される、樹状突起までの定義された距離内に位置するドレブリン陽性斑点のみを、樹状突起に沿ったドレブリンクラスターとしてカウントした。神経細胞体、樹状突起及びドレブリンクラスター、視野当たりの細胞数、視野当たりの樹状突起長を同定した後、ドレブリンクラスターの線密度が自動的に算出された。
1-5 Automatic acquisition and analysis of images Triple-stained images of hippocampal neurons cultured in 96-well plates were automatically acquired by using the autofocus function of IN Cell Analyzer 2200 (GE Healthcare). (20x lens, numerical aperture 0.45). All data was collected at 16 bits / pixel with a resolution of 2048 x 2048. A single pixel in the image corresponded to a 325 nm square in the specimen plane. Z-stack images were processed by the extended focus transformation protocol using IN Cell Developer Toolbox v1.9 (GE Healthcare), a high-content image software, and had focus from the Z-series stack. A single 2D image was generated. Cell bodies of cultured neurons were recognized based on MAP2 and DAPI staining. To identify the cell bodies of cultured neurons, the segmentation function localized the phosphors based on the fluorescence intensity of the MAP2-positive signal via a contrast-based segmentation algorithm with different kernel sizes and sensitivities. Cell bodies of cultured neurons were identified using Erosion, Sieve, Dilation commands and DAPI-positive regions. To identify the dendrites of cultured neurons, the segmentation function, as well as the Dilation and Erosion commands, were used with separate parameters for MAP2-positive signals, after which the cell body region of the cultured neurons was subtracted. To identify drebrin clusters, the segmentation feature localized fluorescent objects based on the fluorescence intensity of the drebrin-positive signal via contrast-based segmentation algorithms with different kernel sizes and sensitivities. The Sieve command was used to eliminate false positive background signals. In addition, only drebrin-positive spots located within a defined distance to the dendrites, as determined by the Dilation command, were counted as drebrin clusters along the dendrites. After identifying the nerve cell bodies, dendrites and dendrite clusters, number of cells per visual field, and dendrite length per visual field, the linear density of the dendrite clusters was automatically calculated.
1-6 統計
 データは、ANOVA(エクセル統計Statcel4、有限会社オーエムエス出版製)に従ってt検定又はターキー-クレイマー検定によって統計的に分析した。全てのデータは平均値±平均値の標準誤差(SEM)として示した。市販のソフトウェア(GraphPad Prism 8、GraphPad Software社製)を用いて用量適合曲線を描き、IC50を計算した。 
1-6 Statistical data was statistically analyzed by t-test or turkey-kramer test according to ANOVA (Excel Statistics Statcel4, manufactured by OS Publishing Co., Ltd.). All data are shown as mean ± standard error of mean (SEM). A dose matching curve was drawn using commercially available software (GraphPad Prism 8, manufactured by GraphPad Software), and the IC 50 was calculated.
2.結果
2-1 グルタミン酸処理は、NMDA受容体活性化を介してドレブリンクラスター密度を減少させた
 まず、グルタミン酸がドレブリンクラスター密度に及ぼす影響を、ハイスループットイメージングシステムを用いて調べた。21インビトロ培養日数(DIV)のラット海馬培養神経細胞を、いくつかの濃度のグルタミン酸溶液(1μM、N=61;3μM、N=97;10μM、N=88;30μM、N=97;50μM、N=20;100μM、N=106)で処理した。上記1-4の免疫細胞化学の処理を行った後、画像取得及び分析は自動的に行われた。得られたドレブリンクラスター密度のグルタミン酸用量反応曲線を図1Aに示す。EC50は10.4μMであり、95%信頼区間(CI)は6.29μM~17.4μMの範囲であった。
2. 2. Results 2-1 Glutamic acid treatment reduced drebrin cluster density through NMDA receptor activation First, the effect of glutamate on drebrin cluster density was investigated using a high-throughput imaging system. 21 In vitro culture days (DIV) rat hippocampal cultured neurons were subjected to several concentrations of glutamate solution (1 μM, N = 61; 3 μM, N = 97; 10 μM, N = 88; 30 μM, N = 97; 50 μM, N. = 20; 100 μM, N = 106). After the immunocytochemistry treatment of 1-4 above, image acquisition and analysis were performed automatically. The glutamic acid dose-response curve of the obtained drebrin cluster density is shown in FIG. 1A. The EC 50 was 10.4 μM and the 95% confidence interval (CI) ranged from 6.29 μM to 17.4 μM.
 また、グルタミン酸刺激によるドレブリンクラスター密度の減少は、APV(50μM、N=4;100μM、N=7;500μM、N=6)によって阻害されることを確認した(図1B)。ここでの結果により、当該実験系が、グルタミン酸刺激によるドレブリンクラスター密度の減少、及び、NMDA受容体競合的アンタゴニストによるドレブリンクラスター密度減少の阻害を検出することができることが示された。 It was also confirmed that the decrease in drebrin cluster density due to glutamate stimulation was inhibited by APV (50 μM, N = 4; 100 μM, N = 7; 500 μM, N = 6) (Fig. 1B). The results here indicate that the experimental system can detect glutamate-stimulated reduction in drebrin cluster density and inhibition of NMDA receptor-competitive antagonist-induced reduction in drebrin cluster density.
2-2 グルタミン酸誘発ドレブリンクラスター密度の減少に対するPCP、3-MeO-PCMo及び3-MeO-PCPの阻害効果
 まず、本発明者らは、100μMグルタミン酸溶液を用いてドレブリンクラスターの密度をどの程度減少させるかを決定した(対照、N=95;グルタミン酸100μM、N=77)。図2Aに示されるように、100μMグルタミン酸溶液処理により、対照群と比較してドレブリンクラスター密度が約40%減少した(対照0.538±0.0143;100μMグルタミン酸0.319±0.0035)。
2-2 Inhibitory effect of PCP, 3-MeO-PCMo and 3-MeO-PCP on reduction of glutamate-induced drebrin cluster density First, we use a 100 μM glutamate solution to reduce the density of drebrin clusters. (Control, N = 95; glutamic acid 100 μM, N = 77). As shown in FIG. 2A, treatment with a 100 μM glutamate solution reduced the drebrin cluster density by about 40% compared to the control group (control 0.538 ± 0.0143; 100 μM glutamate 0.319 ± 0.0035).
 次に、グルタミン酸を用いたNMDA受容体刺激によるドレブリンクラスターの密度の低下に対する、NMDA受容体の非競合的拮抗薬であるPCPの抑制効果を調べた(0~10 μM、N=18)。対照群に対する各投与群の平均阻害率を計算することにより、用量依存的効果を分析した。図2Bより、PCPが100μMグルタメートのNMDAR刺激によって1μM以上の濃度でドレブリンクラスターの減少を有意に抑制し、PCPが用量依存的にドレブリンクラスターの減少を抑制することが示された。 Next, the inhibitory effect of PCP, which is a non-competitive antagonist of the NMDA receptor, on the decrease in the density of drebrin clusters by NMDA receptor stimulation with glutamate was investigated (0 to 10 μM, N = 18). Dose-dependent effects were analyzed by calculating the mean inhibition rate of each treatment group relative to the control group. From FIG. 2B, it was shown that PCP significantly suppressed the decrease of drebrin cluster at a concentration of 1 μM or more by NMDAR stimulation of 100 μM glutamate, and PCP suppressed the decrease of drebrin cluster in a dose-dependent manner.
 同様の方法により、PCPアナログである3-MeO-PCMo及び3-MeO-PCPの阻害作用を調べた(0~10μM;3-MeO-PCMo、N=29;3-MeO-PCMo、N=30)。図2Cは、3-MeO-PCPが、333nM以上の濃度で100μMグルタミン酸によるドレブリンクラスターの減少を有意に阻害したことを示す。図2Dは、3 -MeO-PCMoが、3.33μM以上の濃度で100μMグルタミン酸によるドレブリンクラスターの減少を有意に阻害したことを示す。さらに、3-MeO-PCP及び3-MeO-PCMoの両方が、用量依存的にドレブリンクラスターの減少を阻害した。 The inhibitory effect of the PCP analogs 3-MeO-PCMo and 3-MeO-PCP was investigated by the same method (0 to 10 μM; 3-MeO-PCMo, N = 29; 3-MeO-PCMo, N = 30. ). FIG. 2C shows that 3-MeO-PCP significantly inhibited the reduction of drebrin clusters by 100 μM glutamate at concentrations above 333 nM. FIG. 2D shows that 3-MeO-PCMo significantly inhibited the reduction of drebrin clusters by 100 μM glutamate at a concentration of 3.33 μM or higher. In addition, both 3-MeO-PCP and 3-MeO-PCMo inhibited the reduction of drebrin clusters in a dose-dependent manner.
2-3 PCP、3-MeO-PCMo及び3-MeO-PCPのIC50
 分析の定量的信頼性を高めるために、測定値に基づいて曲線近似した用量作用曲線を作成した(図3)。図3より、3-MeO-PCPの阻害活性がPCPの阻害活性と同程度であり、3-MeO-PCMoの阻害活性がPCPのそれよりも低いことが示された。IC50は、PCP=2.02μM(95%CI:1.39~2.97μM)、3-MeO-PCP=1.51μM(95%CI:1.16~1.99μM)、3-MeO-PCMo=26.7μM(95%CI:20.0~37.3μM)であった。
To increase the 2-3 PCP, 3-MeO-PCMo and quantitative reliability of an IC 50 value analysis of 3-MeO-PCP, created the dose-response curves curve approximation based on the measured values (Figure 3). From FIG. 3, it was shown that the inhibitory activity of 3-MeO-PCP was similar to that of PCP, and the inhibitory activity of 3-MeO-PCMo was lower than that of PCP. The IC 50 has PCP = 2.02 μM (95% CI: 1.39 to 2.97 μM), 3-MeO-PCP = 1.51 μM (95% CI: 1.16 to 1.99 μM), 3-MeO-. PCMo = 26.7 μM (95% CI: 20.0 to 37.3 μM).
3.考察
 上記2-3で算出したIC50に基づく阻害活性の順は、活性が大きい方から3-MeO-PCP>PCP>3-MeO-PCMoであった。最近なされたNMDA受容体に対する結合アッセイの報告によれば、PCPの阻害定数(K)値は22.1nM(Colestock et al. (2018)、Drug Testing and Analysis, 10, 272-283)及び57.9nM(Wallach, J. (2014). Structure activity relationship (SAR) studies of arylcyclohexylamines as N-methyl-D-aspartate receptor antagonists. PhD dissertation. University of the Sciences, Philadelphia)であると報告されており、3-MeO-PCPのK値は38.1nMであると報告されている(Wallach, J. (2014))。これは、3-MeO-PCPが、PCPの平均よりもNMDA受容体に対してわずかに高い親和性を有することを示す。一方で、3-MeO-PCMoのK値は252.9nMであり、PCPのK値と比べて1/12であると報告されている(Colestock et al. (2018))。
3. 3. Discussion The order of inhibitory activity based on IC 50 calculated in 2-3 above was 3-MeO-PCP>PCP> 3-MeO-PCMo in descending order of activity. According to reports of the binding assay on recently made the NMDA receptor, PCP inhibition constant (K i) values 22.1nM (Colestock et al. (2018 ), Drug Testing and Analysis, 10, 272-283) and 57 . 9nM (Wallach, J. (2014). Structure activity relationship (SAR) studies of arylcyclohexylamines as N-methyl-D-aspartate receptor antagonists. PhD dissertation. University of the Sciences, Philadelphia). K i values of -MeO-PCP has been reported to be 38.1nM (Wallach, J. (2014) ). This indicates that 3-MeO-PCP has a slightly higher affinity for the NMDA receptor than the average of PCP. On the other hand, K i values of 3-MeO-PCMo is 252.9NM, compared to the K i values of PCP has been reported to be 1/12 (Colestock et al. (2018 )).
 上記のK値からPCPに対する親和性比を計算したところ、PCP=1としたときに、3-MeO-PCP=0.73(Wallach, J. (2014)のK値からの再計算)、3-MeO-PCMo=11.4(Colestock et al. (2018)のK値からの再計算)であった。まとめると、親和性の順序は、3-MeO-PCP>PCP>3-MeO-PCMoで、本発明の方法により得られたIC50に基づく活性の順序と同じであった。 Was calculated affinity ratio for PCP from the K i values of, when the PCP = 1, (recalculated from K i value of Wallach, J. (2014)) 3 -MeO-PCP = 0.73 was 3-MeO-PCMo = 11.4 (recalculated from K i value of Colestock et al. (2018)) . In summary, the affinity of the order, in 3-MeO-PCP>PCP> 3-MeO-PCMo, was the same as the order of activity based on IC 50 obtained by the method of the present invention.
 同一の作用機序を有する阻害剤の場合、それらのIC50値を比較することにより、相対的な阻害活性を評価するのに有用であるとの報告がある(Cheng&Prusoff (1973) Biochemical Pharmacology, 22(23), 3099-3108;Cer et al. (2009) Nucleic Acids Res. 1(37): W441-W445)。PCP及び他の高親和性NMDA受容体アンタゴニストは、NMDARと同様の阻害メカニズムを有することが示唆されている(Lodge&Mercier (2015) Br. J. Pharmacol, 172, 4254-4276)。かかる知見に基づいて、本研究で得られたIC50値からPCPに対する効力比を計算したところ、PCP=1としたときに、3-MeO-PCP=0.75、3-MeO-PCMo=13.2であり、上記K値から計算した効力比と類似していた。この結果より、本発明によって得られるIC50値は、NMDA受容体阻害作用を反映しており、NMDA受容体阻害活性を有する化合物(NPS候補化合物や、新規治療剤等)の薬理学的評価(毒性評価)に使用することができることが明らかになった。 For inhibitors which have the same mechanism of action, by comparing their IC 50 values, it has been reported to be useful to assess the relative inhibitory activity (Cheng & Prusoff (1973) Biochemical Pharmacology, 22 (23), 3099-3108; Cer et al. (2009) Nucleic Acids Res. 1 (37): W441-W445). PCP and other high-affinity NMDA receptor antagonists have been suggested to have an inhibitory mechanism similar to NMDAR (Lodge & Mercier (2015) Br. J. Pharmacol, 172, 4254-4276). Based on such findings, the calculated efficacy ratio PCP from IC 50 values obtained in this study, when a PCP = 1, 3-MeO- PCP = 0.75,3-MeO-PCMo = 13 It was .2, which was similar to the efficacy ratio calculated from the above Ki value. This result, IC 50 values obtained by the present invention reflects the NMDA receptor inhibitory action, (or NPS candidate compounds, novel therapeutic agents, and the like) compounds having an NMDA receptor inhibitory activity Pharmacological Evaluation of ( It became clear that it can be used for toxicity evaluation).
 本発明によれば、簡便且つ短時間で実施することのできる、NMDA受容体阻害活性のハイスループット評価方法を提供することができる。かかる評価方法により、従来は機能面からの評価及び規制が困難であったNPSの迅速な規制や、NMDA受容体をターゲットとした治療薬のハイスループットスクリーニング及び機能評価が可能になるため、産業上の有用性は極めて高い。 According to the present invention, it is possible to provide a high-throughput evaluation method for NMDA receptor inhibitory activity, which can be carried out easily and in a short time. This evaluation method enables rapid regulation of NPS, which was difficult to evaluate and regulate from the functional aspect in the past, and high-throughput screening and functional evaluation of therapeutic agents targeting NMDA receptors. Is extremely useful.

Claims (6)

  1.  以下のステップ(A)~(E)を順次備えたことを特徴とするNMDA受容体阻害活性のハイスループット評価方法。
    (A)培養神経細胞に、被験物質を接触させるステップ;
    (B)前記培養神経細胞に、グルタミン酸溶液を接触させるステップ;
    (C)前記培養神経細胞を固定するステップ;
    (D)前記培養神経細胞の樹状突起スパインのドレブリンクラスターを可視化するステップ;
    (E)前記ドレブリンクラスターの樹状突起に沿った線密度を測定し、前記線密度が、前記被験物質に接触させていない培養神経細胞の線密度と比較して高い場合に、前記被験物質がNMDA受容体阻害作用を有すると判定するステップ;
    A high-throughput evaluation method for NMDA receptor inhibitory activity, which comprises sequentially providing the following steps (A) to (E).
    (A) Step of contacting the cultured nerve cells with the test substance;
    (B) A step of contacting the cultured nerve cells with a glutamic acid solution;
    (C) Step of fixing the cultured nerve cells;
    (D) A step of visualizing the drebrin cluster of the dendritic spine of the cultured nerve cell;
    (E) The linear density along the dendrites of the drebrin cluster is measured, and when the linear density is higher than the linear density of the cultured nerve cells that are not in contact with the test substance, the test substance is present. Steps to determine that it has an NMDA receptor inhibitory effect;
  2.  以下のステップ(F)を、ステップ(E)の後に備えたことを特徴とする請求項1に記載の方法。
    (F)ステップ(A)で培養神経細胞に接触させた被験物質の濃度と、ステップ(E)で測定したドレブリンクラスターの線密度との相関に基づいて、前記被験物質のIC50を算出するステップ;
    The method according to claim 1, wherein the following step (F) is provided after the step (E).
    (F) A step of calculating the IC 50 of the test substance based on the correlation between the concentration of the test substance brought into contact with the cultured nerve cells in step (A) and the linear density of the drebrin cluster measured in step (E). ;
  3.  以下のステップ(G)を、ステップ(F)の後に備えたことを特徴とする請求項1又は2に記載の方法。
    (G)ステップ(F)で算出した被験物質のIC50を、既知のNMDA受容体阻害剤のIC50と比較することにより、前記被験物質と、前記既知のNMDA受容体阻害剤とのNMDA受容体阻害活性比を算出するステップ;
    The method according to claim 1 or 2, wherein the following step (G) is provided after the step (F).
    The IC 50 of the test substance calculated in (G) Step (F), by comparing the IC 50 of the known NMDA receptor inhibitors, NMDA receptor of said analyte, and the known NMDA receptor inhibitors Steps to calculate body inhibitory activity ratio;
  4.  培養神経細胞が、海馬神経細胞由来であることを特徴とする請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the cultured nerve cells are derived from hippocampal nerve cells.
  5.  培養神経細胞が、げっ歯類由来であることを特徴とする請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the cultured nerve cells are derived from rodents.
  6.  ステップ(D)の可視化が、抗ドレブリン抗体による免疫染色であることを特徴とする請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the visualization in step (D) is immunostaining with an anti-drebrin antibody.
PCT/JP2020/010909 2019-03-13 2020-03-12 Method for high-throughput evaluation of nmda receptor inhibition activity WO2020184676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505138A JP7536240B2 (en) 2019-03-13 2020-03-12 High-throughput evaluation method for NMDA receptor inhibitory activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046531 2019-03-13
JP2019-046531 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184676A1 true WO2020184676A1 (en) 2020-09-17

Family

ID=72426657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010909 WO2020184676A1 (en) 2019-03-13 2020-03-12 Method for high-throughput evaluation of nmda receptor inhibition activity

Country Status (2)

Country Link
JP (1) JP7536240B2 (en)
WO (1) WO2020184676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001838A (en) * 2020-06-19 2022-01-06 アルメッド株式会社 Method of determining disease caused by, or accompanied by, synaptic dysfunction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080976A1 (en) * 2004-02-20 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. Method of in vivo screening of therapeutic agent for memory/learning dysfunction by schizophrenia
JP2016040540A (en) * 2014-08-13 2016-03-24 国立大学法人群馬大学 Specific determination of drebrin a and drebrin e

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080976A1 (en) * 2004-02-20 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. Method of in vivo screening of therapeutic agent for memory/learning dysfunction by schizophrenia
JP2016040540A (en) * 2014-08-13 2016-03-24 国立大学法人群馬大学 Specific determination of drebrin a and drebrin e

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HANAMURA KENJI; KOGANEZAWA NORIKO; KAMIYAMA KAZUMI; TANAKA NATSUME; OKA TAKERO; YAMAMURA MAI; SEKINO YUKO; SHIRAO TOMOAKI: "High-content imaging analysis for detecting the loss of drebrin clusters along dendrites in cultured hippocampal neurons", JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, vol. 99, no. 106607, 1 September 2019 (2019-09-01), pages 1 - 8, XP085864741 *
KOGANEZAWA, NORIKO ET AL.: "The role of drebrin in dendritic spines", MOLECULAR AND CELLULAR NEUROSCIENCE, vol. 84, 2017, pages 85 - 92, XP085274653, DOI: 10.1016/j.mcn.2017.01.004 *
MITSUOKA TOSHINARI; HANAMURA KENJI; KOGANEZAWA NORIKO; KIKURA-HANAJIRI RURI; SEKINO YUKO; SHIRAO TOMOAKI: "Assessment of NMDA receptor inhibition of phencyclidine analogues using a high-throughput drebrin immunocytochemical assay", JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, vol. 99, no. 106583, 10 May 2019 (2019-05-10) - September 2019 (2019-09-01), pages 1 - 6, XP085864747 *
SEKINO Y; TANAKA S; HANAMURA K; YAMAZAKI H; SASAGAWA Y; XUE Y; HAYASHI K; SHIRAO T: "Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: Disappearance from dendritic spines and appearance in dendritic shafts", MOLECULAR AND CELLULAR NEUROSCIENCE, vol. 31, no. 3, 20 December 2005 (2005-12-20) - March 2006 (2006-03-01), pages 493 - 504, XP024908217 *
SHUCHUAN MIAO, KOGANEZAWA NORIKO, HANAMURA KENJI, PUSPITASARI ANGGRAEINI, SHIRAO TOMOAKI: "N-methyl-D-aspartate receptor mediates X-irradiation-induced drebrin decrease in hippocampus", THE KITAKANTO MEDICAL JOURNAL, vol. 68, no. 2, 2018, pages 111 - 115, XP055738602 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001838A (en) * 2020-06-19 2022-01-06 アルメッド株式会社 Method of determining disease caused by, or accompanied by, synaptic dysfunction
JP7244931B2 (en) 2020-06-19 2023-03-23 アルメッド株式会社 Method for determining diseases caused by or associated with synaptic dysfunction

Also Published As

Publication number Publication date
JPWO2020184676A1 (en) 2020-09-17
JP7536240B2 (en) 2024-08-20

Similar Documents

Publication Publication Date Title
US20240192228A1 (en) Detection of biomarkers on vesicles for the diagnosis and prognosis of diseases and disorders
Harrill et al. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons
Weiss et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression
Margolis et al. Reliability in the identification of midbrain dopamine neurons
Wang-Dietrich et al. The amyloid-β oligomer count in cerebrospinal fluid is a biomarker for Alzheimer's disease
JP6994469B2 (en) Compositions and Methods Related to K180 Dimethylized H1.0 Protein
US8981066B2 (en) Epigenetic mechanisms related to DNA damage and aging
Diaz‐Romero et al. S100A1 and S100B expression patterns identify differentiation status of human articular chondrocytes
Murtaza et al. Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders
Narayan et al. High content analysis of histone acetylation in human cells and tissues
Salvador et al. Senescence and associated blood–brain barrier alterations in vitro
CN102348982A (en) Method for detecting muscle degenerative diseases, and method for determining therapeutic efficacy on the diseases
WO2020184676A1 (en) Method for high-throughput evaluation of nmda receptor inhibition activity
Tokita et al. Contraction of gut smooth muscle cells assessed by fluorescence imaging
JP2011523710A (en) Screening method for heat shock response regulator
Dukic et al. A cell-based high-throughput assay for gap junction communication suitable for assessing connexin 43–ezrin interaction disruptors using IncuCyte ZOOM
Hanamura et al. High-content imaging analysis for detecting the loss of drebrin clusters along dendrites in cultured hippocampal neurons
US10254273B2 (en) Method and kit for assessment of sodium channel-related anti- or pro-arrhythmic potential of compounds
Gilligan et al. Paraneoplastic Calmodulin Kinase‐Like Vesicle‐Associated Protein (CAMKV) Autoimmune Encephalitis
KR20200101991A (en) Mobilization of pluripotent stem cells for ischemic cerebral infarction
US20160109430A1 (en) Methods for drug discovery
US9758809B2 (en) RNA splicing alterations and U1 small nuclear ribonucleoproteins in neurodegenerative diseases
US10690681B2 (en) Methods to detect myocardial injury and uses thereof
WO2017170986A1 (en) Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease
JP7497851B2 (en) Assays for diagnosing Alzheimer's disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20768924

Country of ref document: EP

Kind code of ref document: A1