WO2017170986A1 - Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease - Google Patents

Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease Download PDF

Info

Publication number
WO2017170986A1
WO2017170986A1 PCT/JP2017/013543 JP2017013543W WO2017170986A1 WO 2017170986 A1 WO2017170986 A1 WO 2017170986A1 JP 2017013543 W JP2017013543 W JP 2017013543W WO 2017170986 A1 WO2017170986 A1 WO 2017170986A1
Authority
WO
WIPO (PCT)
Prior art keywords
neurodegenerative disease
cell
disease model
protein
cells
Prior art date
Application number
PCT/JP2017/013543
Other languages
French (fr)
Japanese (ja)
Inventor
瑞恵 小川
智雄 岡村
尚義 山本
康文 後藤
幾雄 林
戒能 美枝
克彦 伊関
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017518171A priority Critical patent/JPWO2017170986A1/en
Publication of WO2017170986A1 publication Critical patent/WO2017170986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells

Definitions

  • the present invention relates to an accumulation inducer of insolubilized TDP-43 protein, a method for producing a neurodegenerative disease model cell, and a screening method for a therapeutic or prophylactic agent for neurodegenerative disease.
  • TDP-43 protein element DNA-binding protein of 43 kDa; hereinafter referred to as TDP-43 protein
  • TDP-43 gene a gene encoding TDP-43 protein
  • model cells that reproduce the pathological characteristics of neurodegenerative diseases is indispensable for understanding the pathological conditions of the diseases and developing therapeutic methods, and thus various model cells have been provided so far.
  • Patent Documents 1 and 2 For example, a model that reproduces the pathological characteristics of familial FTLD and familial ALS by introducing a TDP-43 gene having a mutation into cultured cells, and a method for screening therapeutic and / or prophylactic drugs using the model are reported. (Patent Documents 1 and 2).
  • nerve cells obtained by differentiating human iPS cells prepared from patients having mutations in the pathogenic genes of neurodegenerative diseases are also produced based on mutations in the pathogenic genes, sporadic diseases It is not a model for neurodegenerative diseases including Furthermore, when differentiating from a human iPS cell to produce a target nerve cell, it may be difficult to control the synchronization of differentiation depending on the origin of the human iPS cell. Therefore, it may be difficult to obtain a cell population exhibiting uniform pathological characteristics, which is indispensable for use in screening for therapeutic and preventive drugs for neurodegenerative diseases.
  • neurodegenerative diseases such as FTLD, ALS, and Alzheimer's disease, which have pathological features characterized by the accumulation of specific proteins, are considered to be human-specific diseases because there are no reports of corresponding diseases in animals. Therefore, in the past, model cells using cells derived from mammals other than humans have been difficult to sufficiently reproduce the pathological characteristics of human-specific diseases. It was considered unsuitable for screening. In addition, since the expression of TDP-43 protein changes depending on the growth phase of cancer, model cells using cell lines derived from cancer cells are not suitable for screening for therapeutic and preventive drugs for neurodegenerative diseases.
  • neurodegenerative disease model cells that do not rely on the introduction of gene mutations and that can uniformly reproduce the pathology in the nerve cells of disease patients and the model cells were used.
  • a screening method was eagerly desired.
  • the present invention provides a neurodegenerative disease model cell inducer, a neurodegenerative disease model cell preparation method, and a therapeutic or prophylactic agent for neurodegenerative disease that cause accumulation of insoluble TDP-43 protein in the nerve cell. It aims to provide a method.
  • the present invention provides an inducer of a neurodegenerative disease model cell that has an inhibitory action on vitamin B1 uptake and causes accumulation of insoluble TDP-43 protein in nerve cells.
  • the above-mentioned inducer is preferably amprolium or a pharmacologically acceptable salt thereof, or oxythiamine or a pharmacologically acceptable salt thereof.
  • the above-mentioned neurodegenerative disease model cell is preferably a model cell of frontotemporal lobar degeneration or amyotrophic lateral sclerosis.
  • the above-described nerve cell is preferably a non-cancerous nerve cell of a mammal.
  • the present invention also provides a method for producing a neurodegenerative disease model cell comprising a culturing step of culturing a mammalian non-cancerous nerve cell in the presence of the above inducer.
  • the above inducer is preferably 2 to 12 mmol / L of amprolium or a pharmacologically acceptable salt thereof.
  • the above culturing step is preferably a step of culturing mammalian non-cancerous neurons for 6 hours to 21 days.
  • the mammalian non-cancerous neuron is preferably a mammalian pluripotent stem cell-derived neuron, more preferably a human iPS cell-derived neuron, and a human normal iPS cell-derived neuron. More preferably, it is particularly preferably a human normal iPS cell-derived cholinergic neuron or a human normal iPS cell-derived choline acetyltransferase positive neuron.
  • the present invention provides a contact step of bringing a test substance into contact with a neurodegenerative disease model cell prepared by the above preparation method, an accumulation amount of insoluble TDP-43 protein in the cell of the neurodegenerative disease model cell, An experimental group measurement step for measuring one or more evaluation items selected from the group consisting of the number of surviving degenerative disease model cells and the morphology of the neurodegenerative disease model cells, and an evaluation item measured in the experimental group measurement step as an index
  • a determination step (A) for determining that the substance is a drug and / or prophylactic drug candidate substance.
  • the present invention provides a contact step of bringing a test substance into contact with a neurodegenerative disease model cell prepared by the above preparation method, an accumulated amount of insoluble TDP-43 protein in the neurodegenerative disease model cell, the neurodegeneration
  • An experimental group measurement step for measuring one or more evaluation items selected from the group consisting of the number of survival of the disease model cells and the morphology of the neurodegenerative disease model cells, and the neurodegenerative disease model cells not contacted with the test substance
  • a control group measurement step for measuring one or more evaluation items selected from the group consisting of the accumulated amount of insoluble TDP-43 protein in the cell, the number of surviving neurodegenerative disease model cells and the morphology of the neurodegenerative disease model cells;
  • the results of the evaluation items measured in the experimental group measurement step are insolubilized compared to the results of the evaluation items serving as the controls measured in the control group measurement step.
  • the test substance is a therapeutic agent for neurodegenerative diseases and / or And a determination step (B) for determining that the substance is a prophylactic drug candidate substance.
  • the above form is preferably the length and / or density of neurites.
  • the neurodegenerative disease is preferably FTLD or ALS.
  • the inducer of a neurodegenerative disease model cell that causes accumulation of TDP-43 protein insolubilized in nerve cells of the present invention the pathology in nerve cells of patients with neurodegenerative diseases that does not depend on the introduction of gene mutations can be uniformly reproduced, and a neurodegenerative disease model cell in which insoluble TDP-43 protein accumulates in the cell can be produced. Moreover, if the neurodegenerative disease model cell is used, a therapeutic or prophylactic agent for neurodegenerative disease can be screened.
  • FIG. 2A is a Western blot image of expression of full-length TDP-43 and fragmented TDP-43 in the insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with amprolium.
  • FIG. 2B is a graph showing expression levels quantified from Western blot images of full-length TDP-43 and fragmented TDP-43 in an insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with amprolium.
  • FIG. 2A is a Western blot image of expression of full-length TDP-43 and fragmented TDP-43 in the insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with amprolium.
  • FIG. 3A Western blot image of expression of full-length TDP-43 and fragmented TDP-43 in the insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with oxythiamine.
  • FIG. 3B is a graph showing expression levels quantified from Western blot images of full-length TDP-43 and fragmented TDP-43 in an insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with oxythiamine.
  • FIG. 4A is a diagram showing an image analysis result of the number of surviving human normal iPS cell-derived cholinergic neurons by amprolium treatment.
  • FIG. 4B is a diagram showing an image analysis result of neurite length of cholinergic neurons derived from human normal iPS cells by amprolium treatment.
  • FIG. 4C is an example of images used for image analysis of human normal iPS cell-derived cholinergic neurons by solvent treatment and amprolium treatment.
  • FIG. 5A is a graph showing the effect of existing ALS therapeutic agents (edaravone and riluzole) on the survival number of human normal iPS cell-derived cholinergic neurons by amprolium treatment.
  • FIG. 5B shows the effect of existing ALS therapeutics (edaravone and riluzole) on the neurite length of human normal iPS cell-derived cholinergic neurons treated with amprolium.
  • the inducer of a neurodegenerative disease model cell that causes accumulation of TDP-43 protein insolubilized in nerve cells of the present invention is characterized by having an inhibitory action on vitamin B1 uptake.
  • Vitamin B1 uptake inhibitory action means an action of inhibiting or suppressing vitamin B1 uptake into cells and reducing the amount of vitamin B1 in the cells.
  • the substance having an inhibitory action on vitamin B1 uptake include amprolium or a pharmacologically acceptable salt thereof, oxythiamine or a pharmacologically acceptable salt thereof, or pyrithiamine.
  • Pharmaceutically acceptable salt or oxythiamine or a pharmacologically acceptable salt thereof is preferable, and amprolium or a pharmacologically acceptable salt thereof is more preferable.
  • Vitamin B1 uptake inhibitors such as amprolium or a pharmacologically acceptable salt thereof, oxythiamine or a pharmacologically acceptable salt thereof or pyrithiamine are commercially available.
  • mammals include humans, mice, rats, rabbits, dogs, cats, cows, horses, pigs, and monkeys, with humans being particularly preferred.
  • Non-cancerous neuron means a non-cancerous neuron.
  • the nerve cell is preferably a cultured cell, and more preferably a nerve cell cultured in a state that retains properties close to those of a normal in vivo nerve cell.
  • mammalian non-cancerous nerve cells include, for example, mammalian primary cultured neurons, mammalian tissue stem cell-derived neurons, or mammalian pluripotent stem cell-derived neurons. It is preferably an animal pluripotent stem cell-derived neuron, more preferably a human pluripotent stem cell-derived neuron.
  • a pluripotent stem cell means a cell having both the ability to differentiate into all cells existing in a living body and the ability to self-proliferate.
  • pluripotent stem cells include artificial pluripotent stem cells (hereinafter referred to as iPS cells), embryonic stem cells, reproductive stem cells, and Muse cells, and iPS cells are preferred.
  • a pluripotent stem cell-derived neuron means a neuron obtained by inducing differentiation from a pluripotent stem cell.
  • the pluripotent stem cell-derived neuron is preferably an iPS cell-derived neuron, and more preferably a human iPS cell-derived neuron.
  • iPS cell is a stem cell artificially prepared by introducing a specific reprogramming factor into a somatic cell in the form of DNA, mRNA or protein, and has properties similar to embryonic stem cells, such as various biological tissues. It is a cell having the ability to differentiate into cells and the ability to self-proliferate.
  • the human iPS cell-derived nerve cell is preferably a human normal iPS cell-derived nerve cell.
  • the human normal iPS cell-derived neuron is preferably a human normal iPS cell-derived cholinergic neuron or a human normal iPS cell-derived choline acetyltransferase positive neuron.
  • Primary cultured neurons can be purchased from ATCC or Lonza, for example. Moreover, it is prepared by removing the brain of a mammalian fetus and isolating and culturing it by the method described in the literature (Kaech et al., Nature Protocols, 2006, Vol. 1, No. 5, p. 2406-2415). You can also.
  • Human normal iPS cell-derived cholinergic neuron or human normal iPS cell-derived choline acetyltransferase positive neuron for example, after culturing human normal iPS cell in F12 / DMEM / N2 medium and inducing neural progenitor cell, A method of culturing for 20 days in the presence of retinoic acid and sonic hedgehog (Briscoe et al., Current Opinion in Neurobiology, 2001, Vol. 11, No. 1, p.
  • F12 / DMEM After culturing normal human iPS cells in / N2 medium and inducing neural progenitor cells, three transcription factors Ngn2, Isl-1 and Lhx3 were forced to be expressed in neural progenitor cells, and then retinoic acid and sonic hedgehog were also present
  • Ngn2, Isl-1 and Lhx3 were forced to be expressed in neural progenitor cells, and then retinoic acid and sonic hedgehog were also present
  • retinoic acid and sonic hedgehog were also present
  • human normal iPS cell-derived choline acetyltransferase positive neurons can be purchased as cell kits from Reprocell in Japan.
  • TDP-43 protein is a heterogeneous nuclear riboprotein that is localized in the nucleus and binds to ribonucleic acid and other riboproteins to stabilize ribonucleic acid, alternative splicing, and / or transcriptional regulation. It is a protein involved in such processes. In addition to trans-activation response element DNA-binding protein of 43 kDa, TDP-43 protein is also known as transactive response DNA binding binding binding 43 kDa, transactivation response-43. It is also written as 43 kDa TAR DNA-binding protein. In the present specification, unless otherwise specified, “TDP-43 protein” includes all insolubilized TDP-43 protein, full-length TDP-43 protein, and fragmented TDP-43 protein.
  • the “insolubilized TDP-43 protein” means a protein that has been changed to a non-solubilized property under normal protein extraction conditions (for example, conditions using a surfactant, etc.) in which the TDP-43 protein is solubilized.
  • insolubilized TDP-43 protein include fragmented TDP-43 protein, abnormally phosphorylated TDP-43 protein, and ubiquitinated TDP-43 protein.
  • “Fragmented TDP-43 protein” means that the full-length TDP-43 protein has been broken down into smaller fragments by the action of proteolytic enzymes and the like. Although it will not specifically limit if it is small, For example, TDP-43 protein cut
  • “Abnormally phosphorylated TDP-43 protein” means a protein in which a part of amino acid residues of TDP-43 protein is phosphorylated by a phosphorylase reaction, for example, a plurality of sites in the C-terminal region. Examples thereof include TDP-43 protein in which (Ser403, Ser404, Ser409, Ser410 and the like) are phosphorylated.
  • the “ubiquitinated TDP-43 protein” is a TDP-43 protein in which the ubiquitin protein is added by an isopeptide bond by the action of ubiquitin ligase or the like.
  • “Accumulation of insolubilized TDP-43 protein in nerve cells” means that the insolubilized TDP-43 protein increases in nerve cells. In particular, it is preferably in the cytoplasm of a nerve cell.
  • the present invention is characterized by providing a method for producing a neurodegenerative disease model cell comprising a culturing step of culturing a mammal's non-cancerous nerve cell in the presence of the above inducer.
  • Neurodegenerative disease is a general term for progressive diseases in which a specific type of nerve cell group gradually degenerates and causes cell death in the central nervous system.
  • the above-mentioned neurodegenerative disease model cell is preferably a neurodegenerative disease model cell in which insolubilized TDP-43 protein is accumulated in the cell.
  • a neurodegenerative disease model cell in which insolubilized TDP-43 protein is accumulated in the cell is a cell in which the insolubilized TDP-43 protein is accumulated in the cell (preferably in the cytoplasm). It is a cell that mimics the pathological features of neurodegenerative diseases that are known to accumulate insoluble TDP-43 protein at any stage of the pathological state. Therefore, the neurodegenerative disease is not particularly limited as long as accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state. Examples of neurodegenerative diseases in which accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state include FTLD and ALS, with ALS being particularly preferred.
  • the above pathological features include accumulation of insolubilized TDP-43 protein in neurons, decrease in the survival number of neurons (cell death), and change in neuronal morphology (neurite abnormality). Include.
  • the change in the morphology of the nerve cell is a change in neurite length and / or density.
  • the inducer is preferably 0.01 to 1000 mmol / L, more preferably 0.1 to 100 mmol / L. Further, the above-mentioned inducer is preferably 0.01 to 1000 mmol / L amprolium or a pharmacologically acceptable salt thereof, and 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof. More preferably 2 to 12 mmol / L amprolium or a pharmacologically acceptable salt thereof, and 6 to 12 mmol / L amprolium or a pharmacologically acceptable salt thereof.
  • the inducer is preferably 0.01 to 100 mmol / L oxythiamine or a pharmaceutically acceptable salt thereof, and 0.1 to 10 mmol / L oxythiamine or a pharmacologically salt thereof.
  • An acceptable salt is more preferable, and 0.6 to 3 mmol / L oxythiamine or a pharmacologically acceptable salt thereof is more preferable.
  • the above inducer is preferably added and dissolved in, for example, a cell culture medium.
  • Various buffer solutions for example, HEPES buffer solution, phosphate buffer solution, phosphate buffer physiology
  • Saline Tris-HCl buffer, borate buffer, acetate buffer, etc.
  • the culture step is preferably a step of culturing for 6 hours to 21 days, more preferably a step of culturing for 1 to 14 days, further preferably a step of culturing for 3 to 14 days.
  • the step of culturing for 7 days is particularly preferable.
  • the above-described method for producing a neurodegenerative disease model cell is obtained by treating mammalian non-cancerous nerve cells with 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof or 0.1 to 10 mmol / L.
  • the above-mentioned method for producing a neurodegenerative disease model cell comprises a method wherein human normal iPS cell-derived nerve cells are mixed with 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof or 0.1 to 10 mmol / L. More preferably, the method further comprises a step of culturing for 1 to 14 days in the presence of L oxythiamine or a pharmaceutically acceptable salt thereof. It is particularly preferable to provide a step of culturing for 3 to 7 days in the presence of a pharmacologically acceptable salt or 0.6 to 3 mmol / L oxythiamine or a pharmacologically acceptable salt thereof.
  • the present invention is also characterized by providing a screening method for therapeutic and / or prophylactic agents for neurodegenerative diseases using the neurodegenerative disease model cells prepared by the above method.
  • the screening method includes a step of contacting a test substance with a neurodegenerative disease model cell prepared by the above method, an accumulation amount of insolubilized TDP-43 protein in the neurodegenerative disease model cell, the neurodegenerative disease model
  • the experimental group measurement step of measuring one or more evaluation items selected from the group consisting of the number of cells surviving and the form of the neurodegenerative disease model cell, and the evaluation items measured in the experimental group measurement step as indicators,
  • the test substance is a therapeutic agent for neurodegenerative diseases and / or Or the determination process (A) determined with it being a candidate substance of a preventive drug is provided.
  • the screening method preferably includes the following steps (1) to (5).
  • a neurodegenerative disease model cell production step comprising the above method of producing a neurodegenerative disease model cell; (2) a contact step of bringing a test substance into contact with a neurodegenerative disease model cell; (3) One or more evaluations selected from the group consisting of the accumulation amount of insoluble TDP-43 protein in the neurodegenerative disease model cell, the number of survival of the neurodegenerative disease model cell, and the morphology of the neurodegenerative disease model cell An experimental group measurement process for measuring items; (4) A group consisting of the accumulated amount of insolubilized TDP-43 protein in the neurodegenerative disease model cells not contacted with the test substance, the number of surviving neurodegenerative disease model cells, and the form of the neurodegenerative disease model cells A control group measurement step for measuring one or more evaluation items selected from (5) In the case where the accumulated amount of the insolubilized TDP-43 protein is suppressed in comparison with the result of the target evaluation item measured in the control group measurement step The step
  • the screening method includes a step of measuring one or more evaluation items selected from the group consisting of the amount of insoluble TDP-43 protein in a neurodegenerative disease model cell, the number of viable cells, and the cell morphology.
  • the survival number and / or morphology of neurodegenerative disease model cells can be easily measured, and it is more preferable to measure both the survival number and morphology of neurodegenerative disease model cells. preferable.
  • test substance is not limited to, but is not limited to, an in-vivo substance, a genetically modified substance, a natural product, or a chemically synthesized compound. Moreover, said test substance can be added after dissolving or suspending in a solvent.
  • the solvent can be any suitable pharmaceutically acceptable carrier.
  • the addition amount, the number of additions, and the addition period of the test substance can be appropriately set according to the type of cells, the type of test substance, and the like.
  • the therapeutic agent or preventive agent of the known neurodegenerative disease for comparing efficacy may be sufficient.
  • the contact between the test substance and the above-mentioned neurodegenerative disease model cell is, for example, a cell culture medium or various buffer solutions (for example, HEPES buffer, phosphate buffer, phosphate buffered saline, Tris-HCl buffer,
  • the test substance can be added to an acid buffer, an acetate buffer, etc.), and the cells can be incubated for a certain period of time. What is necessary is just to set suitably the addition period, timing, frequency
  • the timing of adding the above-mentioned test substance may be added before, simultaneously with, or after adding the above inducer (preferably, amprolium, oxythiamine or a pharmacologically acceptable salt thereof).
  • the above inducer preferably, amprolium, oxythiamine or a pharmacologically acceptable salt thereof.
  • it is simultaneous addition with said inducer.
  • Neurodegenerative disease model cell not contacted with test substance means a corresponding neurodegenerative disease model cell to which the test substance is not added, and the neurodegenerative disease model cell is referred to as “contacted with test substance” It may be a different cell from the “neurodegenerative disease model cell” or the same cell.
  • the neurodegenerative disease model cell before adding the test substance corresponds to “a neurodegenerative disease model cell not contacted with the test substance”
  • the neurodegenerative disease after adding the test substance The model cell corresponds to “a neurodegenerative disease model cell contacted with a test substance”.
  • the neurodegenerative disease model cell of the present invention is a neurodegenerative disease model cell capable of uniformly reproducing the pathology in the neuronal cell of a neurodegenerative disease patient (preferably, FTLD and ALS), it is a nerve not contacted with a test substance.
  • the degenerative disease model cell it is preferable to use a cell that is cultured under the same conditions, using a different cell from the neurodegenerative disease model cell contacted with the test substance. “No test substance contacted” means that the same amount of solvent (blank) as the test substance is added instead of the test substance or a negative control substance that does not affect the measurement item is added. included.
  • the experiment group measurement step and the control group measurement step may be performed at the same time or at different times.
  • the amount of insoluble TDP-43 protein in the cell of the neurodegenerative disease model cell not contacted with the test substance as a control, the number of surviving neurodegenerative disease model cells and / or the form of the neurodegenerative disease model cells A value measured in advance may be used.
  • the experiment group measurement step and the control group measurement step are preferably performed at the same time.
  • the method for measuring the insolubilized TDP-43 protein amount may be any method as long as the amount of TDP-43 protein can be quantitatively detected.
  • a method may be mentioned in which a protein solution of an insoluble fraction is prepared from cells, and TDP-43 protein in the protein solution of the insoluble fraction is detected by an immunological technique.
  • the cells may be directly immunostained to detect the amount of cytoplasmic inclusions where the insolubilized TDP-43 protein is localized.
  • a method of detecting TDP-43 protein in the protein solution of the insoluble fraction by an immunological technique is preferred.
  • the protein solution of the insoluble fraction from the cell may be prepared immediately after the collection of the cell, or the protein of the cell May be carried out at a later date after being properly stored (for example, after cryopreservation) under conditions that are not degraded or denatured.
  • the protein can be extracted by, for example, a tissue disruption method or a method using a protein extraction buffer.
  • the cells are disrupted by ultrasonic waves, centrifuged, and then the supernatant is recovered to extract the protein of the soluble fraction.
  • the precipitate after the centrifugation is further suspended using a buffer capable of dissolving the insoluble fraction, and the protein of the insoluble fraction can be extracted by sonication again (see Example 1).
  • Protein extraction may be performed immediately after cell recovery, or may be extracted at a later date after appropriate storage (eg, after cryopreservation) under conditions where the protein is not degraded or denatured.
  • the protein extract may be appropriately stored (for example, cryopreserved) under conditions where the protein is not decomposed or denatured until the next operation.
  • the immunological technique for measuring the amount of TDP-43 protein in the protein solution of the insoluble fraction is not particularly limited, but an immunological technique for detection with an anti-TDP-43 antibody is preferred.
  • an immunological technique for detection with an anti-TDP-43 antibody is preferred.
  • it can be measured using Western blot, dot blot, immunoprecipitation, RIA, protein array, ELISA, etc., but using anti-TDP-43 antibody, full-length TDP-43 protein and fragmented TDP-43 Measurement by Western blotting in which protein is detected as a band is preferred.
  • the method for measuring the amount of TDP-43 protein insolubilized by Western blotting is a known method, and is not particularly limited.
  • the same amount of the above protein extract is applied to a well of a polyacrylamide gel, and SDS- After electrophoresis by PAGE, it is transferred to a PVDF membrane, and the TDP-43 protein transferred on the membrane is used with an anti-TDP-43 antibody and a labeled secondary antibody that recognizes the anti-TDP-43 antibody.
  • the anti-TDP-43 antibody may be any antibody that can detect the TDP-43 protein, and may be a monoclonal antibody or a polyclonal antibody. In some cases, an antibody fragment, for example, Fab ', Fab, F (ab') 2 can be used. Moreover, these antibodies can be produced by a known method.
  • the method for measuring the number of surviving neurodegenerative disease model cells is not particularly limited, but can be measured using a known method. For example, absorbance measurement using MTT method, WST-1 method, WST-8 method or Almer Blue method, staining using PI (propidium iodide), counting using a flow cytometer, microscope Examples include a method of measuring the number of cell nuclei by analyzing visual measurements or capturing captured images below, or a method of measuring the number of cells by identifying only nerve cells from the coexistence of nerve-like cell morphology and nuclear morphology, etc. However, a method of identifying only nerve cells from the coexistence of nerve-like cell morphology and nuclear morphology and measuring the number of cells is preferred.
  • the method for identifying only nerve cells from the coexistence of neuronal cell morphology and nuclear morphology and measuring the number of cells is not particularly limited.
  • the neuronal cell morphology and nuclear morphology coexist under a microscope.
  • a method of visually measuring cells or nuclear staining with a nuclear-specific marker and cell labeling with a neuron-specific marker, measuring the overlapping portion between the nuclear staining and the cell label, and measuring the nerve cell (having the overlapping portion) A method in which cells are the main body of nerve cells).
  • Nuclear staining and cell labeling may be observed visually under a microscope, or an image taken with a cell image acquisition device may be analyzed with image analysis software, but an image taken with a cell image acquisition device may be analyzed. It is preferable to analyze by.
  • the cell labeling method is not particularly limited, and a known method can be used. For example, a method of labeling by immunostaining using an antibody that binds to a neuron-specific marker protein, or a reporter gene that is expressed by introducing a vector linking a reporter gene downstream of the promoter region of a protein that is specifically expressed in a neuron into the cell. There is a method of detecting a protein as a label.
  • the above-described cell labeling method is preferably a method of labeling by immunostaining using an antibody that binds to a nerve cell-specific marker protein.
  • the above immunostaining can be performed by a known method. For example, a method in which a primary antibody that binds to a neuron-specific marker is directly labeled with a labeling substance is added to a cell sample and immunostaining is performed, or an unlabeled primary antibody and the primary antibody specifically A method of performing immunostaining using a secondary antibody that is recognized and labeled with a labeling substance is exemplified. An unlabeled primary antibody and a labeled substance that specifically recognizes the primary antibody are labeled. A method of performing immunostaining using a secondary antibody is preferred (see Examples 1 and 2 below).
  • the primary antibody that binds to the above neuron-specific marker is not particularly limited, and examples thereof include anti- ⁇ III-tubulin antibody, anti-NeuN antibody, anti-MAP2 antibody, and anti-Neurofilament antibody.
  • an anti- ⁇ III-tubulin antibody is preferable. These antibodies may be monoclonal antibodies or polyclonal antibodies.
  • the secondary antibody labeled with a label substance that specifically recognizes the primary antibody may be a monoclonal antibody or a polyclonal antibody.
  • the above-mentioned label substance is not particularly limited, and examples of the fluorescent label substance include FITC, TEXAS RED, Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 568, CY3 or CY5. Moreover, Horse radish peroxidase, Alkaline phosphatase, etc. can be used as an enzyme label substance. As the label substance, a fluorescent label substance is preferable.
  • the method for nuclear staining is not particularly limited as long as it is a method that can be distinguished from the color of immunostaining of a neuron-specific marker.
  • fluorescent nuclear staining include staining methods using DAPI, PI, or Hoechst.
  • nuclear staining for bright field observation include staining methods such as hematoxylin staining or methyl green staining. As the above-mentioned nuclear staining method, fluorescent nuclear staining is preferable.
  • Measurement items of “morphology of neurodegenerative disease model cell” include, for example, neurite length, degree of neurite fragmentation, neurite count, neurite density, neurite swelling degree, or neurite bead
  • the length of the neurite and / or the density are preferable.
  • the density of neurites may be measured as the product of fluorescence intensity and area on the neurite image.
  • the method for measuring the morphology of the above-mentioned neurodegenerative disease model cell is not particularly limited.
  • the method of analyzing by the image analysis software is preferable.
  • the cell image acquisition device is not particularly limited, and examples thereof include ToxInsight, CellInsight, IN Cell Analyzer, Image Xpress, Opera, and Operata.
  • the above-described image analysis software is not particularly limited, and examples thereof include Cellomics Scan, In Cell Investigator, Meta Xpress, Harmony, Image J, or NIH Image.
  • “Changes in the morphology of neurodegenerative disease model cells” include shortening of neurites, fragmentation of neurites, decrease in the number of neurites, decrease in neurite density, swelling of neurites, and changes in neurite beads Although mentioned, shortening of neurites and reduction of density are preferred. “Suppression of morphological change” means, for example, that the degree of shortening of neurites is small compared to neurodegenerative disease model cells not contacted with the above test substance, neurite fragmentation is small, neurite It means that the decrease in the number is suppressed, the decrease in the density of neurites is suppressed, the swelling of neurites is suppressed, or the bead-like change of neurites is suppressed.
  • the method for screening a therapeutic agent or preventive agent for a neurodegenerative disease described above is a therapeutic agent for a neurodegenerative disease, which is known to cause accumulation of insolubilized TDP-43 protein in nerve cells at any stage of the disease state.
  • a screening method for prophylactic drugs is preferred.
  • neurodegenerative diseases in which accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state include FTLD and ALS, with ALS being particularly preferred.
  • Example 1 Changes in nerve cells by treatment with an inducer having an inhibitory action on vitamin B1 uptake Neuronal differentiation ReproNeuro Ach (ReproCell, RCESDA001) was used as a cholinergic neuron derived from normal human iPS cells.
  • the coating plate was produced according to the protocol of ReproCell. That is, 0.02% poly-L-lysine solution (0.1% solution was diluted 5 times with PBS) was added to a polystyrene 96-well plate or 12-well plate and incubated at 37 ° C. for 2 hours or more. After removing the Poly-L-lysine solution from the plate, the plate was washed twice with PBS, then the coating solution (Repro Coat) was added to the plate, incubated overnight at 37 ° C., and used within one week. The coating solution was removed before cell seeding.
  • Cell seeding was performed according to the protocol of ReproCell. That is, the cell vial was taken out of dry ice or liquid nitrogen, immediately heated for 90 seconds in a 37 ° C. water bath, then transferred to Whating Medium, and centrifuged at 350 ⁇ g for 5 minutes at room temperature. After centrifugation, the supernatant was removed, and the cells were suspended in a medium (added with Culture medium, ACh Additive, and Penicillin / Streptomycin) and seeded on the coating plate. The seeding date was day 0, and thereafter, medium was changed by half each for day 3 and day 7, and day 14 cells in which sufficient extension of neurites was observed were used in the following experiments.
  • Fresh medium was added to the cells (this is referred to as the “solvent treatment group”).
  • the cells were further cultured for 3 days.
  • the cells were further cultured for 7 days (after 4 days from the start of cell treatment, half of the old medium was removed and half of the new medium containing each additive was added).
  • TDP-43 cell protein fraction and Western blot
  • the culture supernatant is removed from the cells cultured for 3 days in a 12-well plate, and the cells are washed with ice-cold PBS, followed by addition of RIPA Buffer mixture (including Protease inhibitor cocktail, Pho Stop and UREA buffer), and ice-cooled. Then, the mixture was allowed to stand for 30 minutes, and then sonicated to recover the cell disruption solution. The amount of protein in the cell lysate at this point was quantified by the BCA method. The cell lysate was centrifuged at 100,000 ⁇ g at 4 ° C., and the supernatant was recovered as a soluble fraction. Furthermore, the pellet was similarly centrifuged twice with RIPA Buffer mixture (4 ° C, 100,000 xg), and UREA buffer was added to the resulting pellet, and the lysate dissolved was recovered as an insoluble fraction. did.
  • RIPA Buffer mixture including Protease inhibitor cocktail, Pho Stop and UREA buffer
  • the recovered insoluble fraction was subjected to electrophoresis by SDS-PAGE and then transferred from the gel to the PVDF membrane.
  • the PVDF membrane is immersed in a blocking solution (Blocking One, Nacalai Tesque), blocked at room temperature for 30 minutes, and then incubated overnight at 4 ° C. with a rabbit anti-TDP-43 antibody (Protein Tech, diluted 1000 times with an antibody diluent). And reacted.
  • the PVDF membrane was washed 3 times with TBST and then reacted with HRP-labeled rabbit IgG antibody (GE Healthcare, diluted 10000 times with antibody diluent) at room temperature for 1 hour.
  • the culture supernatant was removed from the cells cultured in a 96-well plate for 7 days, the cells were washed twice with PBS, 4% PFA was added, and the mixture was fixed at room temperature for 30 minutes. The cells were washed twice with PBS, then PBS containing 0.1% Triton X-100 was added, and permeabilization was performed at room temperature for 30 minutes. After washing the cells twice with PBS, blocking solution (Blockng One, Nacalai Tesque) was added and blocked at room temperature for 30 minutes, then mouse anti- ⁇ III-tubulin antibody (diluted with blocking solution) and 2 hours at room temperature.
  • blocking solution Blockng One, Nacalai Tesque
  • the reaction was allowed to incubate overnight at 4 ° C.
  • the cells were washed twice with PBS, and reacted with Alexa Fluor 488-labeled anti-mouse IgG antibody (diluted with a blocking solution) for 1 hour at room temperature under light-shielded conditions.
  • the cells were washed twice with PBS, and then DAPI (diluted with PBS) was added to the cells and reacted at room temperature for 10 minutes for nuclear staining. Finally, 100 ⁇ L / well of PBS was added and the cells were photographed using ToxInsight.
  • Quantitative analysis of the survival number of neurites and the length of neurites was performed using images taken with the imaging device ToxInsight (ThermoFisher Scientific), and the neurite analysis protocol DeveNopenteTP of image analysis software ArrayScan (ThermoFisherScientific). The analysis was performed using v4.1. Data analysis was performed using Cellomics (ThermoFisher scientific) and Microsoft Excel.
  • Example 1 above. ⁇ 4.
  • the flow is shown in FIG.
  • FIG. 2 shows the results of amprolium treatment.
  • FIG. 2A shows a Western blot image.
  • the vertical axis of the graph in FIG. 2B shows the expression level of TDP-43 protein in the insoluble fraction, and the bar graph shows full-length TDP-43 protein (43 kDa, black), fragmented TDP-43 protein (35 kDa is light gray, 25 kDa). Is the dark gray).
  • the horizontal axis shows the solvent treatment group (“solvent” in the figure), the amprolium 6.0 mmol / L treatment group, and the amprolium 12 mmol / L treatment group from the left.
  • FIG. 3 shows the results of oxythiamine treatment.
  • FIG. 3A shows a Western blot image.
  • the vertical axis of the graph in FIG. 3B shows the expression level of TDP-43 protein in the insoluble fraction, and the bar graph shows full-length TDP-43 protein (43 kDa, black), fragmented TDP-43 protein (35 kDa is light gray, 25 kDa). Is the dark gray).
  • the horizontal axis shows, from the left, a solvent treatment group (“solvent” in the figure), an oxythiamine 3.0 mmol / L treatment group, and an oxythiamine 0.6 mmol / L treatment group.
  • Fig. 4 shows the measurement results of the survival number and morphology of nerve cells.
  • the vertical axis of FIG. 4A indicates the survival number of nerve cells (“number of nerve cells” in the figure), and the horizontal axis indicates the concentration of amprolium.
  • the vertical axis of FIG. 4B indicates the total neurite length / number of neurons, that is, the length of neurite per nerve cell, and the horizontal axis indicates the concentration of amprolium.
  • FIG. 4C shows immunostained images with anti- ⁇ III-tubulin when nerve cells were treated with a solvent or with 8 mmol / L of amprolium.
  • amprolium or oxythiamine causes accumulation of insolubilized TDP-43 protein in the cells of neurons, and further decreases the survival number of neurons and shortens neurites of neurons. .
  • an inducer having an inhibitory action on vitamin B1 uptake causes accumulation of insoluble TDP-43 protein in the cells of non-cancerous nerve cells of mammals. Furthermore, it is a pathological feature of neurodegenerative diseases. It has been shown to cause a decrease in the survival number of certain neurons and shortening of neurites of neurons.
  • Example 2 Effects of existing therapeutic agents on nerve cells treated with an inducer having an inhibitory action on vitamin B1 uptake Neuronal differentiation ReproNeuro Ach (ReproCell, RCESDA001) was used as a cholinergic neuron derived from normal human iPS cells.
  • the coating plate was produced according to the protocol of ReproCell. Specifically, 0.02% poly-L-lysine solution (0.1% solution diluted 5 times with PBS) was added to a 96-well plate made of polystyrene, and incubated at 37 ° C. for 2 hours or more. After removing the Poly-L-lysine solution from the plate, the plate was washed twice with PBS, then a coating solution (Repro Coat) was added, incubated overnight at 37 ° C., and used within one week. The coating solution was removed before cell seeding.
  • Cell seeding was performed according to the protocol of ReproCell. That is, the cell vial was taken out of dry ice or liquid nitrogen, immediately heated for 90 seconds in a 37 ° C. water bath, then transferred to Whating Medium, and centrifuged at 350 ⁇ g for 5 minutes at room temperature. After centrifugation, the supernatant was removed, and the cells were suspended in a medium (added with Culture medium, ACh Additive, and Penicillin / Streptomycin) and immediately seeded on the coating plate. The seeding date was day 0, and thereafter, medium was changed by half each for day 3 and day 7, and day 14 cells in which sufficient extension of neurites was observed were used in the following experiments.
  • cells added with a new medium containing only solvent (0.1% DMSO) (not containing amprolium and existing ALS therapeutic agent) (referred to as a solvent treatment group) and amprolium (final concentration: 7 mmol / L) only (not containing the existing ALS therapeutic agent) was added to cells supplemented with a new medium (referred to as a control group). After adding the medium, the cells were further cultured for 7 days.
  • the cells were washed twice with PBS, and reacted with Alexa Fluor 555-labeled anti-mouse IgG antibody (diluted with a blocking solution) for 1 hour at room temperature under light-shielded conditions.
  • the cells were washed twice with PBS, and then DAPI (diluted with PBS) was added to the cells and reacted at room temperature for 10 minutes for nuclear staining. Finally, 200 ⁇ L / well of PBS was added and the cells were photographed using IN Cell Analyzer 2200 (GE Healthcare).
  • the vertical axis of FIG. 5A indicates the number of surviving nerve cells (in the figure, “number of nerve cells”), and the horizontal axis indicates amprolium and the test substance (existing ALS therapeutic agent) and their concentrations.
  • a solvent treatment group treated with only 0.1% DMSO (“solvent” in the figure) a control group treated with only amprolium (7 mmol / L) (“no test substance” in the figure), amprolium ( 7 mmol / L) and a group treated with edaravone (1 and 10 ⁇ mol / L) as a test substance, and a group treated with amprolium (7 mmol / L) and riluzole (1 and 3 ⁇ mol / L) as a test substance.
  • the vertical axis of FIG. 5B shows the total neurite length / number of neurons, that is, the length of neurite per nerve cell, and the horizontal axis shows amprolium and test substance (existing ALS therapeutic agent) and The concentration is shown.
  • the symbol * (asterisk) in the figure indicates that the difference between the control group (“no test substance” in the figure) and the result (value on the vertical axis) is statistically significant (P ⁇ 0.05). ).
  • Nerve cells cultured with the addition of edaravone (10 ⁇ mol / L) or riluzole (3 ⁇ mol / L) simultaneously with amprolium showed a decrease in the number of surviving neurons compared to the control group treated with amprolium alone. Was significantly suppressed (FIG. 5A).
  • neurodegenerative disease model cells prepared using the above inducer can be used for screening for therapeutic or prophylactic agents for neurodegenerative diseases.
  • TDP-43 protein insolubilized in nerve cells of the present invention it is possible not to depend on the introduction of gene mutation and to uniformly reproduce the pathology in nerve cells of patients with neurodegenerative diseases.
  • a neurodegenerative disease model cell in which insolubilized TDP-43 protein accumulates in the cell can be prepared. Moreover, if the neurodegenerative disease model cell is used, a therapeutic or prophylactic agent for neurodegenerative disease can be screened.

Abstract

The purpose of the present invention is to provide the following: a method for creating neurodegenerative disease model cells, the method not depending on genetic mutation introduction and with which a morbid state can be uniformly reproduced in the nerve cells of a patient; and a screening method that uses the model cells. The present invention provides a method for creating neurodegenerative disease model cells using an agent for inducing accumulation of insolubilized TDP-43 protein, and a method for screening for a therapeutic or prophylactic drug for neurodegenerative disease using the model cells.

Description

不溶化TDP-43蛋白質の蓄積誘導剤、神経変性疾患モデル細胞の作製方法及び神経変性疾患の治療薬又は予防薬のスクリーニング方法Accumulation inducer of insolubilized TDP-43 protein, method for producing neurodegenerative disease model cell, and screening method for therapeutic or prophylactic agent for neurodegenerative disease
 本発明は、不溶化したTDP-43蛋白質の蓄積誘導剤、神経変性疾患モデル細胞の作製方法及び神経変性疾患の治療薬又は予防薬のスクリーニング方法に関する。 The present invention relates to an accumulation inducer of insolubilized TDP-43 protein, a method for producing a neurodegenerative disease model cell, and a screening method for a therapeutic or prophylactic agent for neurodegenerative disease.
 多くの神経変性疾患では、神経細胞内における特定の蛋白質の蓄積及び神経突起の異常が病態的特徴として知られており、これらの現象により神経細胞死が引き起こされると考えられている。 In many neurodegenerative diseases, accumulation of specific proteins in nerve cells and abnormal neurites are known as pathological features, and these phenomena are thought to cause nerve cell death.
 例えば、前頭側頭葉変性症(以下、FTLD)や筋萎縮性側索硬化症(以下、ALS)では、その病態的特徴として、不溶化した、トランス活性応答DNA結合蛋白質-43(trans-activation response element DNA-binding protein of 43 kDa; 以下、TDP-43蛋白質)の細胞質への蓄積(非特許文献1)、神経突起の異常及び細胞死が見られることが報告されている(非特許文献2)。また、一部の家族性FTLD及び家族性ALSの患者では、TDP-43蛋白質をコードする遺伝子(以下、TDP-43遺伝子)に変異が存在することが報告されている(非特許文献3)。 For example, in frontotemporal lobar degeneration (hereinafter referred to as FTLD) and amyotrophic lateral sclerosis (hereinafter referred to as ALS), as a pathological feature thereof, an insolubilized trans-activation response DNA binding protein-43 (trans-activation response) It has been reported that element DNA-binding protein of 43 kDa; hereinafter referred to as TDP-43 protein) accumulates in the cytoplasm (Non-patent Document 1), abnormal neurites and cell death (Non-patent Document 2). . In addition, in some patients with familial FTLD and familial ALS, it has been reported that a mutation exists in a gene encoding TDP-43 protein (hereinafter referred to as TDP-43 gene) (Non-patent Document 3).
 神経変性疾患の病態的特徴を再現するモデル細胞を提供することは、該疾患の病態の理解及び治療法の開発に不可欠であるため、これまでに、さまざまなモデル細胞が提供されてきている。 Providing model cells that reproduce the pathological characteristics of neurodegenerative diseases is indispensable for understanding the pathological conditions of the diseases and developing therapeutic methods, and thus various model cells have been provided so far.
 例えば、変異を有するTDP-43遺伝子を培養細胞に導入することによる家族性FTLD及び家族性ALSの病態的特徴を再現するモデル及び該モデルを用いた治療薬及び/又は予防薬のスクリーニング方法が報告されている(特許文献1及び2)。 For example, a model that reproduces the pathological characteristics of familial FTLD and familial ALS by introducing a TDP-43 gene having a mutation into cultured cells, and a method for screening therapeutic and / or prophylactic drugs using the model are reported. (Patent Documents 1 and 2).
 また、近年、ヒトの神経変性疾患のモデルとして、ヒト人工多能性幹細胞(以下、ヒトiPS細胞)を分化させることにより得られる神経細胞が注目されている。神経変性疾患の患者、特に上記疾患の病因遺伝子に変異を有する患者から作製したヒトiPS細胞を分化させることにより得られる神経細胞は、上記疾患の病態的特徴をよく再現するモデルとして、期待を寄せられている(特許文献3及び4)。 In recent years, attention has been focused on nerve cells obtained by differentiating human induced pluripotent stem cells (hereinafter, human iPS cells) as models of human neurodegenerative diseases. Nerve cells obtained by differentiating human iPS cells prepared from patients with neurodegenerative diseases, particularly those having mutations in the pathogenic genes of the above diseases, are expected as models that well reproduce the pathological features of the above diseases. (Patent Documents 3 and 4).
 さらに、癌細胞由来の細胞株を用いたモデル細胞も報告されている(非特許文献4)。 Furthermore, model cells using cancer cell-derived cell lines have also been reported (Non-patent Document 4).
国際公開第2009/125646号International Publication No. 2009/125646 特開2014-171425号公報JP 2014-171425 A 国際公開第2014/148646号International Publication No. 2014/148646 特表2015-506905号公報Special table 2015-506905 gazette
 しかしながら、FTLD及びALSの患者のうち、90%以上の患者は、TDP-43遺伝子に変異を持たない、又は家族性でない孤発性疾患の患者である。そのため、一部の家族性疾患の患者に見られる、変異を有するTDP-43遺伝子の導入により作製したモデル細胞のみでは、必ずしもFTLD及びALSの十分なモデルとはいえない。 However, more than 90% of patients with FTLD and ALS are sporadic patients who have no mutation in the TDP-43 gene or are not familial. Therefore, it is not always a sufficient model of FTLD and ALS only with model cells prepared by introducing a TDP-43 gene having a mutation found in some patients with familial diseases.
 また、神経変性疾患の病因遺伝子に変異を有する患者から作製したヒトiPS細胞を分化させることにより得られる神経細胞も、病因遺伝子の変異に依拠して作製されたものであるため、孤発性疾患を含めた神経変性疾患のモデルとはいえない。さらに、ヒトiPS細胞から分化させ、目的の神経細胞を作製する場合、ヒトiPS細胞の由来によっては、分化の同調性を制御することが難しい場合もある。そのため、神経変性疾患の治療薬及び予防薬のスクリーニングに用いるために不可欠な、均一な病態的特徴を呈する細胞集団を得ることが困難な場合がある。 In addition, since nerve cells obtained by differentiating human iPS cells prepared from patients having mutations in the pathogenic genes of neurodegenerative diseases are also produced based on mutations in the pathogenic genes, sporadic diseases It is not a model for neurodegenerative diseases including Furthermore, when differentiating from a human iPS cell to produce a target nerve cell, it may be difficult to control the synchronization of differentiation depending on the origin of the human iPS cell. Therefore, it may be difficult to obtain a cell population exhibiting uniform pathological characteristics, which is indispensable for use in screening for therapeutic and preventive drugs for neurodegenerative diseases.
 また、特定の蛋白質の蓄積を病態的特徴とする、FTLD、ALS及びアルツハイマー病等の神経変性疾患は、動物において相当する疾患の報告がないため、ヒトに特有の疾患と考えられる。したがって、従来、ヒト以外の哺乳動物由来の細胞を用いたモデル細胞では、ヒト特有の疾患の病態的特徴を十分に再現することが困難であり、ヒトの神経変性疾患の治療薬及び予防薬のスクリーニングには適さないと考えられていた。また、TDP-43蛋白質は、癌の増殖期によって発現が変化することから、癌細胞由来の細胞株を用いたモデル細胞も、神経変性疾患の治療薬及び予防薬のスクリーニングに適さない。 In addition, neurodegenerative diseases such as FTLD, ALS, and Alzheimer's disease, which have pathological features characterized by the accumulation of specific proteins, are considered to be human-specific diseases because there are no reports of corresponding diseases in animals. Therefore, in the past, model cells using cells derived from mammals other than humans have been difficult to sufficiently reproduce the pathological characteristics of human-specific diseases. It was considered unsuitable for screening. In addition, since the expression of TDP-43 protein changes depending on the growth phase of cancer, model cells using cell lines derived from cancer cells are not suitable for screening for therapeutic and preventive drugs for neurodegenerative diseases.
 したがって、神経変性疾患の治療薬及び予防薬の探索において、遺伝子変異の導入に依らない、かつ、疾患患者の神経細胞における病態を均一に再現しうる神経変性疾患モデル細胞及び該モデル細胞を用いたスクリーニング方法が切望されていた。 Therefore, in the search for therapeutic agents and preventive agents for neurodegenerative diseases, neurodegenerative disease model cells that do not rely on the introduction of gene mutations and that can uniformly reproduce the pathology in the nerve cells of disease patients and the model cells were used. A screening method was eagerly desired.
 そこで、本発明は、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす、神経変性疾患モデル細胞の誘導剤、神経変性疾患モデル細胞の作製方法及び神経変性疾患の治療薬又は予防薬のスクリーニング方法を提供することを目的とする。 Accordingly, the present invention provides a neurodegenerative disease model cell inducer, a neurodegenerative disease model cell preparation method, and a therapeutic or prophylactic agent for neurodegenerative disease that cause accumulation of insoluble TDP-43 protein in the nerve cell. It aims to provide a method.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ビタミンB1取り込み阻害作用を有し、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす誘導剤を見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found an inducer having an inhibitory action on vitamin B1 uptake and causing accumulation of TDP-43 protein insolubilized in nerve cells. Was completed.
 すなわち、本発明は、ビタミンB1取り込み阻害作用を有し、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす、神経変性疾患モデル細胞の誘導剤を提供する。 That is, the present invention provides an inducer of a neurodegenerative disease model cell that has an inhibitory action on vitamin B1 uptake and causes accumulation of insoluble TDP-43 protein in nerve cells.
 上記の誘導剤は、アンプロリウム若しくはその薬理学的に許容される塩又はオキシチアミン若しくはその薬理学的に許容される塩であることが好ましい。 The above-mentioned inducer is preferably amprolium or a pharmacologically acceptable salt thereof, or oxythiamine or a pharmacologically acceptable salt thereof.
 上記の神経変性疾患モデル細胞は、前頭側頭葉変性症又は筋萎縮性側索硬化症のモデル細胞であることが好ましい。 The above-mentioned neurodegenerative disease model cell is preferably a model cell of frontotemporal lobar degeneration or amyotrophic lateral sclerosis.
 上記の神経細胞は、哺乳動物の非癌性の神経細胞であることが好ましい。 The above-described nerve cell is preferably a non-cancerous nerve cell of a mammal.
 また、本発明は、上記の誘導剤の存在下で、哺乳動物の非癌性の神経細胞を培養する培養工程を備える、神経変性疾患モデル細胞の作製方法を提供する。 The present invention also provides a method for producing a neurodegenerative disease model cell comprising a culturing step of culturing a mammalian non-cancerous nerve cell in the presence of the above inducer.
 上記の誘導剤は、2~12mmol/Lのアンプロリウム又はその薬理学的に許容される塩であることが好ましい。 The above inducer is preferably 2 to 12 mmol / L of amprolium or a pharmacologically acceptable salt thereof.
 また、上記の培養工程は、哺乳動物の非癌性の神経細胞を6時間~21日間培養する工程であることが好ましい。 In addition, the above culturing step is preferably a step of culturing mammalian non-cancerous neurons for 6 hours to 21 days.
 上記の哺乳動物の非癌性の神経細胞は、哺乳動物の多能性幹細胞由来神経細胞であることが好ましく、ヒトiPS細胞由来神経細胞であることがより好ましく、ヒト正常iPS細胞由来神経細胞であることがさらに好ましく、ヒト正常iPS細胞由来コリン作動性神経細胞又はヒト正常iPS細胞由来コリンアセチルトランスフェラーゼ陽性神経細胞であることが特に好ましい。 The mammalian non-cancerous neuron is preferably a mammalian pluripotent stem cell-derived neuron, more preferably a human iPS cell-derived neuron, and a human normal iPS cell-derived neuron. More preferably, it is particularly preferably a human normal iPS cell-derived cholinergic neuron or a human normal iPS cell-derived choline acetyltransferase positive neuron.
 また、本発明は、上記作製方法で作製した神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、上記神経変性疾患モデル細胞の細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、上記実験群測定工程で測定された評価項目を指標として、上記不溶化したTDP-43蛋白質の蓄積量が抑制された場合、上記生存数が減少した場合、及び/又は上記形態の変化が抑制された場合に、上記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する判定工程(A)と、を備える、神経変性疾患の治療薬又は予防薬のスクリーニング方法を提供する。 Further, the present invention provides a contact step of bringing a test substance into contact with a neurodegenerative disease model cell prepared by the above preparation method, an accumulation amount of insoluble TDP-43 protein in the cell of the neurodegenerative disease model cell, An experimental group measurement step for measuring one or more evaluation items selected from the group consisting of the number of surviving degenerative disease model cells and the morphology of the neurodegenerative disease model cells, and an evaluation item measured in the experimental group measurement step as an index As described above, when the accumulated amount of the insolubilized TDP-43 protein is suppressed, when the survival number is decreased, and / or when the change in the form is suppressed, the test substance is used for treatment of neurodegenerative diseases. And a determination step (A) for determining that the substance is a drug and / or prophylactic drug candidate substance.
 また、本発明は、上記の作製方法で作製した神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、上記神経変性疾患モデル細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、上記被験物質を接触させていない上記神経変性疾患モデル細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する対照群測定工程と、上記実験群測定工程で測定された評価項目の結果が、上記対照群測定工程で測定された対照となる評価項目の結果と比較して、上記不溶化したTDP-43蛋白質の蓄積量が抑制された場合、上記生存数が減少した場合、及び/又は上記形態の変化が抑制された場合に、上記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する判定工程(B)と、を備える、神経変性疾患の治療薬又は予防薬のスクリーニング方法を提供する。 In addition, the present invention provides a contact step of bringing a test substance into contact with a neurodegenerative disease model cell prepared by the above preparation method, an accumulated amount of insoluble TDP-43 protein in the neurodegenerative disease model cell, the neurodegeneration An experimental group measurement step for measuring one or more evaluation items selected from the group consisting of the number of survival of the disease model cells and the morphology of the neurodegenerative disease model cells, and the neurodegenerative disease model cells not contacted with the test substance A control group measurement step for measuring one or more evaluation items selected from the group consisting of the accumulated amount of insoluble TDP-43 protein in the cell, the number of surviving neurodegenerative disease model cells and the morphology of the neurodegenerative disease model cells; The results of the evaluation items measured in the experimental group measurement step are insolubilized compared to the results of the evaluation items serving as the controls measured in the control group measurement step. When the accumulated amount of TDP-43 protein is suppressed, when the survival number is decreased, and / or when the change in the form is suppressed, the test substance is a therapeutic agent for neurodegenerative diseases and / or And a determination step (B) for determining that the substance is a prophylactic drug candidate substance.
 上記の形態は、神経突起の長さ及び/又は密度であることが好ましい。 The above form is preferably the length and / or density of neurites.
 また、上記のスクリーニング方法において、神経変性疾患は、FTLD又はALSであることが好ましい。 In the above screening method, the neurodegenerative disease is preferably FTLD or ALS.
 本発明の、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす、神経変性疾患モデル細胞の誘導剤によれば、遺伝子変異の導入に依らない、かつ、神経変性疾患患者の神経細胞における病態を均一に再現しうる、不溶化したTDP-43蛋白質が細胞内に蓄積した神経変性疾患モデル細胞を作製できる。また、該神経変性疾患モデル細胞を用いれば、神経変性疾患の治療薬又は予防薬のスクリーニングを行うことができる。 According to the inducer of a neurodegenerative disease model cell that causes accumulation of TDP-43 protein insolubilized in nerve cells of the present invention, the pathology in nerve cells of patients with neurodegenerative diseases that does not depend on the introduction of gene mutations Can be uniformly reproduced, and a neurodegenerative disease model cell in which insoluble TDP-43 protein accumulates in the cell can be produced. Moreover, if the neurodegenerative disease model cell is used, a therapeutic or prophylactic agent for neurodegenerative disease can be screened.
不溶化したTDP-43蛋白質が細胞内に蓄積した神経変性疾患モデル細胞を作製する手順及び該神経変性疾患モデル細胞を用いた神経変性疾患の治療薬及び/又は予防薬のスクリーニングの流れの一例を示す図である。An example of a procedure for preparing a neurodegenerative disease model cell in which insolubilized TDP-43 protein accumulates in the cell and a flow of screening for a therapeutic and / or prophylactic agent for neurodegenerative disease using the neurodegenerative disease model cell is shown. FIG. 図2A:アンプロリウム処置による、ヒト正常iPS細胞由来コリン作動性神経細胞の不溶性画分における全長TDP-43及び断片化TDP-43の発現のウエスタンブロット像である。図2B:アンプロリウム処置による、ヒト正常iPS細胞由来コリン作動性神経細胞の不溶性画分における、全長TDP-43及び断片化TDP-43のウエスタンブロット像から定量化した発現量を示す図である。FIG. 2A is a Western blot image of expression of full-length TDP-43 and fragmented TDP-43 in the insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with amprolium. FIG. 2B is a graph showing expression levels quantified from Western blot images of full-length TDP-43 and fragmented TDP-43 in an insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with amprolium. 図3A:オキシチアミン処置による、ヒト正常iPS細胞由来コリン作動性神経細胞の不溶性画分における全長TDP-43及び断片化TDP-43の発現のウエスタンブロット像である。図3B:オキシチアミン処置による、ヒト正常iPS細胞由来コリン作動性神経細胞の不溶性画分における、全長TDP-43及び断片化TDP-43のウエスタンブロット像から定量化した発現量を示す図である。FIG. 3A: Western blot image of expression of full-length TDP-43 and fragmented TDP-43 in the insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with oxythiamine. FIG. 3B is a graph showing expression levels quantified from Western blot images of full-length TDP-43 and fragmented TDP-43 in an insoluble fraction of human normal iPS cell-derived cholinergic neurons treated with oxythiamine. 図4A:アンプロリウム処置によるヒト正常iPS細胞由来コリン作動性神経細胞の生存数の画像解析結果を示す図である。図4B:アンプロリウム処置によるヒト正常iPS細胞由来コリン作動性神経細胞の神経突起の長さの画像解析結果を示す図である。図4C:溶媒処置及びアンプロリウム処置によるヒト正常iPS細胞由来コリン作動性神経細胞の画像解析に用いた画像の一例である。FIG. 4A is a diagram showing an image analysis result of the number of surviving human normal iPS cell-derived cholinergic neurons by amprolium treatment. FIG. 4B is a diagram showing an image analysis result of neurite length of cholinergic neurons derived from human normal iPS cells by amprolium treatment. FIG. 4C is an example of images used for image analysis of human normal iPS cell-derived cholinergic neurons by solvent treatment and amprolium treatment. 図5A:アンプロリウム処置によるヒト正常iPS細胞由来コリン作動性神経細胞の生存数に対する、既存のALS治療薬(エダラボンとリルゾール)の作用を示す図である。図5B:アンプロリウム処置によるヒト正常iPS細胞由来コリン作動性神経細胞の神経突起の長さに対する、既存のALS治療薬(エダラボンとリルゾール)の作用を示す図である。FIG. 5A is a graph showing the effect of existing ALS therapeutic agents (edaravone and riluzole) on the survival number of human normal iPS cell-derived cholinergic neurons by amprolium treatment. FIG. 5B shows the effect of existing ALS therapeutics (edaravone and riluzole) on the neurite length of human normal iPS cell-derived cholinergic neurons treated with amprolium.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす、神経変性疾患モデル細胞の誘導剤は、ビタミンB1取り込み阻害作用を有することを特徴としている。 The inducer of a neurodegenerative disease model cell that causes accumulation of TDP-43 protein insolubilized in nerve cells of the present invention is characterized by having an inhibitory action on vitamin B1 uptake.
 「ビタミンB1取り込み阻害作用」とは、細胞内へのビタミンB1取り込みを阻害又は抑制し、細胞内のビタミンB1量を低下させる作用を意味する。ビタミンB1取り込み阻害作用を有する物質としては、例えば、アンプロリウム若しくはその薬理学的に許容される塩、オキシチアミン若しくはその薬理学的に許容される塩又はピリチアミン等が挙げられるが、アンプロリウム若しくはその薬理学的に許容される塩又はオキシチアミン若しくはその薬理学的に許容される塩が好ましく、アンプロリウム若しくはその薬理学的に許容される塩がより好ましい。アンプロリウム若しくはその薬理学的に許容される塩、オキシチアミン若しくはその薬理学的に許容される塩又はピリチアミン等のビタミンB1取り込み阻害物質は市販品として入手可能である。 “Vitamin B1 uptake inhibitory action” means an action of inhibiting or suppressing vitamin B1 uptake into cells and reducing the amount of vitamin B1 in the cells. Examples of the substance having an inhibitory action on vitamin B1 uptake include amprolium or a pharmacologically acceptable salt thereof, oxythiamine or a pharmacologically acceptable salt thereof, or pyrithiamine. Pharmaceutically acceptable salt or oxythiamine or a pharmacologically acceptable salt thereof is preferable, and amprolium or a pharmacologically acceptable salt thereof is more preferable. Vitamin B1 uptake inhibitors such as amprolium or a pharmacologically acceptable salt thereof, oxythiamine or a pharmacologically acceptable salt thereof or pyrithiamine are commercially available.
 「哺乳動物」としては、例えば、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ又はサル等が挙げられるが、特にヒトが好ましい。 Examples of “mammals” include humans, mice, rats, rabbits, dogs, cats, cows, horses, pigs, and monkeys, with humans being particularly preferred.
 「非癌性の神経細胞」とは、癌由来ではない神経細胞を意味する。神経細胞は、培養細胞であることが好ましく、正常な生体内の神経細胞の性質に近い性質を保持した状態で培養した神経細胞であることがより好ましい。 “Non-cancerous neuron” means a non-cancerous neuron. The nerve cell is preferably a cultured cell, and more preferably a nerve cell cultured in a state that retains properties close to those of a normal in vivo nerve cell.
 「哺乳動物の非癌性の神経細胞」としては、例えば、哺乳動物の初代培養神経細胞、哺乳動物の組織幹細胞由来神経細胞又は哺乳動物の多能性幹細胞由来神経細胞等が挙げられるが、哺乳動物の多能性幹細胞由来神経細胞であることが好ましく、ヒト多能性幹細胞由来神経細胞であることがより好ましい。 Examples of “mammalian non-cancerous nerve cells” include, for example, mammalian primary cultured neurons, mammalian tissue stem cell-derived neurons, or mammalian pluripotent stem cell-derived neurons. It is preferably an animal pluripotent stem cell-derived neuron, more preferably a human pluripotent stem cell-derived neuron.
 「多能性幹細胞」とは、生体内に存在する全ての細胞に分化する能力と、自己増殖する能力とを兼ね備えた細胞を意味する。多能性幹細胞としては、例えば、人工多能性幹細胞(以下、iPS細胞)、胚性幹細胞、生殖幹細胞及びMuse細胞等が挙げられるが、iPS細胞が好ましい。 “A pluripotent stem cell” means a cell having both the ability to differentiate into all cells existing in a living body and the ability to self-proliferate. Examples of pluripotent stem cells include artificial pluripotent stem cells (hereinafter referred to as iPS cells), embryonic stem cells, reproductive stem cells, and Muse cells, and iPS cells are preferred.
 「多能性幹細胞由来神経細胞」とは、多能性幹細胞から分化誘導して得られた神経細胞を意味する。多能性幹細胞由来神経細胞は、iPS細胞由来神経細胞であることが好ましく、ヒトiPS細胞由来神経細胞であることがより好ましい。 “A pluripotent stem cell-derived neuron” means a neuron obtained by inducing differentiation from a pluripotent stem cell. The pluripotent stem cell-derived neuron is preferably an iPS cell-derived neuron, and more preferably a human iPS cell-derived neuron.
 「iPS細胞」とは、特定の初期化因子をDNA、mRNA又は蛋白質の形態で、体細胞に導入することで人工的に作製した幹細胞であり、胚性幹細胞に近い性質、例えば各種生体組織の細胞への分化能と自己増殖能とを有する細胞である。 An “iPS cell” is a stem cell artificially prepared by introducing a specific reprogramming factor into a somatic cell in the form of DNA, mRNA or protein, and has properties similar to embryonic stem cells, such as various biological tissues. It is a cell having the ability to differentiate into cells and the ability to self-proliferate.
 ヒトiPS細胞由来神経細胞は、ヒト正常iPS細胞由来神経細胞であることが好ましい。ヒト正常iPS細胞由来神経細胞は、ヒト正常iPS細胞由来コリン作動性神経細胞又はヒト正常iPS細胞由来コリンアセチルトランスフェラーゼ陽性神経細胞であることが好ましい。 The human iPS cell-derived nerve cell is preferably a human normal iPS cell-derived nerve cell. The human normal iPS cell-derived neuron is preferably a human normal iPS cell-derived cholinergic neuron or a human normal iPS cell-derived choline acetyltransferase positive neuron.
 初代培養神経細胞は、例えば、ATCC社又はLonza社から購入することができる。また、哺乳動物の胎仔の脳を取り出し、文献(Kaechら、Nature Protocols、2006年、第1巻、5号、p.2406-2415)に記載の方法で単離・培養することで、作製することもできる。 Primary cultured neurons can be purchased from ATCC or Lonza, for example. Moreover, it is prepared by removing the brain of a mammalian fetus and isolating and culturing it by the method described in the literature (Kaech et al., Nature Protocols, 2006, Vol. 1, No. 5, p. 2406-2415). You can also.
 ヒト正常iPS細胞由来コリン作動性神経細胞又はヒト正常iPS細胞由来コリンアセチルトランスフェラーゼ陽性神経細胞は、例えば、F12/DMEM/N2培地中でヒト正常iPS細胞を培養し神経前駆細胞を誘導した後、さらにレチノイン酸及びソニックヘッジホッグ存在下で20日間培養を継続することで作製する方法(Briscoeら、Current Opinion in Neurobiology、2001年、第11巻、1号、p.43-49)や、F12/DMEM/N2培地中でヒト正常iPS細胞を培養し神経前駆細胞を誘導後、Ngn2、Isl-1及びLhx3の3つの転写因子を神経前駆細胞に強制発現させた後、さらにレチノイン酸及びソニックヘッジホッグ存在下で7日間培養を継続することで作製する方法(Hesterら、Molecular Therapy、2011年、第19巻、19号、p.1905-1949)等で作製できる。また、ヒト正常iPS細胞由来コリンアセチルトランスフェラーゼ陽性神経細胞は、細胞キットとして日本では、Reprocell社から購入することもできる。 Human normal iPS cell-derived cholinergic neuron or human normal iPS cell-derived choline acetyltransferase positive neuron, for example, after culturing human normal iPS cell in F12 / DMEM / N2 medium and inducing neural progenitor cell, A method of culturing for 20 days in the presence of retinoic acid and sonic hedgehog (Briscoe et al., Current Opinion in Neurobiology, 2001, Vol. 11, No. 1, p. 43-49), F12 / DMEM After culturing normal human iPS cells in / N2 medium and inducing neural progenitor cells, three transcription factors Ngn2, Isl-1 and Lhx3 were forced to be expressed in neural progenitor cells, and then retinoic acid and sonic hedgehog were also present By continuing the culture for 7 days under Seisuru method (Hester et al., Molecular Therapy, 2011 years, Vol. 19, No. 19, P.1905-1949) can be prepared in like. In addition, human normal iPS cell-derived choline acetyltransferase positive neurons can be purchased as cell kits from Reprocell in Japan.
 「TDP-43蛋白質」とは、核に局在する不均一核内リボ蛋白質であり、リボ核酸や他のリボ蛋白質と結合して、リボ核酸の安定化、選択的スプライシング、又は/及び転写調節などのプロセスに関与する蛋白質である。TDP-43蛋白質は、trans-activation response element DNA-binding protein of 43 kDaの他に、transactive response DNA binding protein 43 kDa、transactivation responsive region-DNA-binding protein of 43 kDa、TAR DNA-binding protein 43 kDa又は43 kDa TAR DNA-binding proteinとも表記される。本明細書において、特記しない限り、「TDP-43蛋白質」は、不溶化したTDP-43蛋白質、全長TDP-43蛋白質、断片化したTDP-43蛋白質を全て含む。 “TDP-43 protein” is a heterogeneous nuclear riboprotein that is localized in the nucleus and binds to ribonucleic acid and other riboproteins to stabilize ribonucleic acid, alternative splicing, and / or transcriptional regulation. It is a protein involved in such processes. In addition to trans-activation response element DNA-binding protein of 43 kDa, TDP-43 protein is also known as transactive response DNA binding binding 43 kDa, transactivation response-43. It is also written as 43 kDa TAR DNA-binding protein. In the present specification, unless otherwise specified, “TDP-43 protein” includes all insolubilized TDP-43 protein, full-length TDP-43 protein, and fragmented TDP-43 protein.
 「不溶化したTDP-43蛋白質」とは、TDP-43蛋白質が可溶化される通常の蛋白質抽出条件(例えば、界面活性剤等を用いた条件)で、可溶化されない性質に変化したものを意味する。不溶化したTDP-43蛋白質としては、例えば、断片化したTDP-43蛋白質、異常リン酸化されたTDP-43蛋白質又はユビキチン化されたTDP-43蛋白質が挙げられる。 The “insolubilized TDP-43 protein” means a protein that has been changed to a non-solubilized property under normal protein extraction conditions (for example, conditions using a surfactant, etc.) in which the TDP-43 protein is solubilized. . Examples of insolubilized TDP-43 protein include fragmented TDP-43 protein, abnormally phosphorylated TDP-43 protein, and ubiquitinated TDP-43 protein.
 「断片化したTDP-43蛋白質」とは、蛋白質分解酵素等の働きによって、全長TDP-43蛋白質が、より小さい断片に分解されたものを意味し、分子量が、全長TDP-43蛋白質の43kDaより小さければ特に限定されないが、例えば、35kDa又は25kDaに切断されたTDP-43蛋白質が挙げられる。 “Fragmented TDP-43 protein” means that the full-length TDP-43 protein has been broken down into smaller fragments by the action of proteolytic enzymes and the like. Although it will not specifically limit if it is small, For example, TDP-43 protein cut | disconnected by 35 kDa or 25 kDa is mentioned.
 「異常リン酸化されたTDP-43蛋白質」とは、リン酸化酵素反応によって、TDP-43蛋白質の一部のアミノ酸残基がリン酸化されたものを意味し、例えば、C末端領域の複数の部位(Ser403、Ser404、Ser409及びSer410等)がリン酸化されたTDP-43蛋白質が挙げられる。 “Abnormally phosphorylated TDP-43 protein” means a protein in which a part of amino acid residues of TDP-43 protein is phosphorylated by a phosphorylase reaction, for example, a plurality of sites in the C-terminal region. Examples thereof include TDP-43 protein in which (Ser403, Ser404, Ser409, Ser410 and the like) are phosphorylated.
 「ユビキチン化されたTDP-43蛋白質」とは、ユビキチンリガーゼ等の働きによりユビキチン蛋白質がイソペプチド結合で付加されたTDP-43蛋白質のことである。 The “ubiquitinated TDP-43 protein” is a TDP-43 protein in which the ubiquitin protein is added by an isopeptide bond by the action of ubiquitin ligase or the like.
 「神経細胞内の不溶化したTDP-43蛋白質の蓄積」とは、上記の不溶化したTDP-43蛋白質が神経細胞内で増加することを意味する。神経細胞内とは、特に神経細胞の細胞質内であることが好ましい。 “Accumulation of insolubilized TDP-43 protein in nerve cells” means that the insolubilized TDP-43 protein increases in nerve cells. In particular, it is preferably in the cytoplasm of a nerve cell.
 また、本発明は、上記の誘導剤の存在下で、哺乳動物の非癌性の神経細胞を培養する培養工程を備える、神経変性疾患モデル細胞の作製方法を提供することを特徴としている。 In addition, the present invention is characterized by providing a method for producing a neurodegenerative disease model cell comprising a culturing step of culturing a mammal's non-cancerous nerve cell in the presence of the above inducer.
 「神経変性疾患」とは、中枢神経系において特定の種類の神経細胞群が徐々に変性し、細胞死を起こす進行性疾患の総称である。 “Neurodegenerative disease” is a general term for progressive diseases in which a specific type of nerve cell group gradually degenerates and causes cell death in the central nervous system.
 上記の神経変性疾患モデル細胞は、不溶化したTDP-43蛋白質が細胞内に蓄積した神経変性疾患モデル細胞であることが好ましい。 The above-mentioned neurodegenerative disease model cell is preferably a neurodegenerative disease model cell in which insolubilized TDP-43 protein is accumulated in the cell.
 「不溶化したTDP-43蛋白質が細胞内に蓄積した神経変性疾患モデル細胞」は、上記の不溶化したTDP-43蛋白質が細胞内(好ましくは、細胞質内)に蓄積した細胞であるため、神経細胞での不溶化したTDP-43蛋白質の蓄積が病態のいずれかの時期に生じることが知られている神経変性疾患の病態的特徴を模倣した細胞である。したがって、上記の神経変性疾患は、神経細胞での不溶化したTDP-43蛋白質の蓄積が病態のいずれかの時期に生じることが知られている神経変性疾患であれば特に限定されない。神経細胞での不溶化したTDP-43蛋白質の蓄積が病態のいずれかの時期に生じることが知られている神経変性疾患としては、例えば、FTLD及びALS等が挙げられるが、特にALSが好ましい。また、上記の病態的特徴とは、神経細胞の細胞内の不溶化したTDP-43蛋白質の蓄積、神経細胞の生存数の減少(細胞死)及び神経細胞の形態の変化(神経突起の異常)を包含する。上記の神経細胞の形態の変化は、神経突起の長さ及び/又は密度の変化であることが好ましい。 “A neurodegenerative disease model cell in which insolubilized TDP-43 protein is accumulated in the cell” is a cell in which the insolubilized TDP-43 protein is accumulated in the cell (preferably in the cytoplasm). It is a cell that mimics the pathological features of neurodegenerative diseases that are known to accumulate insoluble TDP-43 protein at any stage of the pathological state. Therefore, the neurodegenerative disease is not particularly limited as long as accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state. Examples of neurodegenerative diseases in which accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state include FTLD and ALS, with ALS being particularly preferred. The above pathological features include accumulation of insolubilized TDP-43 protein in neurons, decrease in the survival number of neurons (cell death), and change in neuronal morphology (neurite abnormality). Include. Preferably, the change in the morphology of the nerve cell is a change in neurite length and / or density.
 上記の神経変性疾患モデル細胞の作製方法において、上記の誘導剤は、0.01~1000mmol/Lであることが好ましく、0.1~100mmol/Lであることがより好ましい。また、上記の誘導剤は、0.01~1000mmol/Lのアンプロリウム又はその薬理学的に許容される塩であることが好ましく、0.1~100mmol/Lのアンプロリウム又はその薬理学的に許容される塩であることがより好ましく、2~12mmol/Lのアンプロリウム又はその薬理学的に許容される塩であることがさらに好ましく、6~12mmol/Lのアンプロリウム又はその薬理学的に許容される塩であることが特に好ましい。また、上記の誘導剤は、0.01~100mmol/Lのオキシチアミン又はその薬理学的に許容される塩であることが好ましく、0.1~10mmol/Lのオキシチアミン又はその薬理学的に許容される塩であることがより好ましく、0.6~3mmol/Lのオキシチアミン又はその薬理学的に許容される塩であることがさらに好ましい。上記の誘導剤は、例えば、細胞培養用培地の中に添加し、溶解させることが好ましく、該細胞培養用培地には各種緩衝液(例えば、HEPES緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、トリス塩酸緩衝液、ホウ酸緩衝液、酢酸緩衝液など)が含まれていてもよい。 In the above method for producing a neurodegenerative disease model cell, the inducer is preferably 0.01 to 1000 mmol / L, more preferably 0.1 to 100 mmol / L. Further, the above-mentioned inducer is preferably 0.01 to 1000 mmol / L amprolium or a pharmacologically acceptable salt thereof, and 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof. More preferably 2 to 12 mmol / L amprolium or a pharmacologically acceptable salt thereof, and 6 to 12 mmol / L amprolium or a pharmacologically acceptable salt thereof. It is particularly preferred that The inducer is preferably 0.01 to 100 mmol / L oxythiamine or a pharmaceutically acceptable salt thereof, and 0.1 to 10 mmol / L oxythiamine or a pharmacologically salt thereof. An acceptable salt is more preferable, and 0.6 to 3 mmol / L oxythiamine or a pharmacologically acceptable salt thereof is more preferable. The above inducer is preferably added and dissolved in, for example, a cell culture medium. Various buffer solutions (for example, HEPES buffer solution, phosphate buffer solution, phosphate buffer physiology) are contained in the cell culture medium. Saline, Tris-HCl buffer, borate buffer, acetate buffer, etc.).
 上記の培養工程は、6時間~21日間培養する工程であることが好ましく、1~14日間培養する工程であることがより好ましく、3~14日間培養する工程であることがさらに好ましく、3~7日間培養する工程であることが特に好ましい。 The culture step is preferably a step of culturing for 6 hours to 21 days, more preferably a step of culturing for 1 to 14 days, further preferably a step of culturing for 3 to 14 days. The step of culturing for 7 days is particularly preferable.
 上記の神経変性疾患モデル細胞の作製方法は、哺乳動物の非癌性の神経細胞を、0.1~100mmol/Lのアンプロリウム若しくはその薬理学的に許容される塩又は0.1~10mmol/Lのオキシチアミン若しくはその薬理学的に許容される塩の存在下に1~14日間培養する工程を備えることが好ましく、哺乳動物の非癌性の神経細胞を、6~12mmol/Lのアンプロリウム若しくはその薬理学的に許容される塩又は0.6~3mmol/Lのオキシチアミン若しくはその薬理学的に許容される塩の存在下に3~7日間培養する工程を備えることがより好ましい。さらに、上記の神経変性疾患モデル細胞を作製する方法は、ヒト正常iPS細胞由来神経細胞を、0.1~100mmol/Lのアンプロリウム若しくはその薬理学的に許容される塩又は0.1~10mmol/Lのオキシチアミン若しくはその薬理学的に許容される塩の存在下に1~14日間培養する工程を備えることがさらに好ましく、ヒト正常iPS細胞由来神経細胞を、2~12mmol/Lのアンプロリウム若しくはその薬理学的に許容される塩又は0.6~3mmol/Lのオキシチアミン若しくはその薬理学的に許容される塩の存在下に3~7日間培養する工程を備えることが特に好ましい。 The above-described method for producing a neurodegenerative disease model cell is obtained by treating mammalian non-cancerous nerve cells with 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof or 0.1 to 10 mmol / L. Preferably culturing for 1 to 14 days in the presence of oxythiamine or a pharmacologically acceptable salt thereof, wherein the mammalian non-cancerous nerve cells are treated with 6 to 12 mmol / L of amprolium or its It is more preferable to provide a step of culturing for 3 to 7 days in the presence of a pharmacologically acceptable salt or 0.6 to 3 mmol / L oxythiamine or a pharmacologically acceptable salt thereof. Further, the above-mentioned method for producing a neurodegenerative disease model cell comprises a method wherein human normal iPS cell-derived nerve cells are mixed with 0.1 to 100 mmol / L amprolium or a pharmacologically acceptable salt thereof or 0.1 to 10 mmol / L. More preferably, the method further comprises a step of culturing for 1 to 14 days in the presence of L oxythiamine or a pharmaceutically acceptable salt thereof. It is particularly preferable to provide a step of culturing for 3 to 7 days in the presence of a pharmacologically acceptable salt or 0.6 to 3 mmol / L oxythiamine or a pharmacologically acceptable salt thereof.
 また、本発明は、上記の方法で作製した神経変性疾患モデル細胞を用いた、神経変性疾患の治療薬及び/又は予防薬のスクリーニング方法を提供することを特徴としている。該スクリーニング方法は、上記の方法で作製した神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、上記神経変性疾患モデル細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、上記実験群測定工程で測定された評価項目を指標として、上記不溶化したTDP-43蛋白質の蓄積量が抑制された場合、上記生存数が減少した場合、及び/又は上記形態の変化が抑制された場合に、上記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する判定工程(A)と、を備える。 The present invention is also characterized by providing a screening method for therapeutic and / or prophylactic agents for neurodegenerative diseases using the neurodegenerative disease model cells prepared by the above method. The screening method includes a step of contacting a test substance with a neurodegenerative disease model cell prepared by the above method, an accumulation amount of insolubilized TDP-43 protein in the neurodegenerative disease model cell, the neurodegenerative disease model The experimental group measurement step of measuring one or more evaluation items selected from the group consisting of the number of cells surviving and the form of the neurodegenerative disease model cell, and the evaluation items measured in the experimental group measurement step as indicators, When the accumulated amount of insolubilized TDP-43 protein is suppressed, when the number of surviving cells is decreased, and / or when the change in morphology is suppressed, the test substance is a therapeutic agent for neurodegenerative diseases and / or Or the determination process (A) determined with it being a candidate substance of a preventive drug is provided.
 より具体的には、上記のスクリーニング方法は、以下の工程(1)~(5)を備えることが好ましい。
 (1)上記の神経変性疾患モデル細胞を作製する方法からなる、神経変性疾患モデル細胞作製工程と、
 (2)神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、
 (3)上記神経変性疾患モデル細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、
 (4)上記被験物質を接触させていない上記神経変性疾患モデル細胞内の不溶化したTDP-43蛋白質の蓄積量、上記神経変性疾患モデル細胞の生存数及び上記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する対照群測定工程と、
 (5)上記実験群測定工程の測定結果が、上記対照群測定工程で測定された対象となる評価項目の結果と比較して、上記不溶化したTDP-43蛋白質量の蓄積量が抑制された場合、上記生存数が減少した場合、及び/又は上記形態の変化が抑制された場合に、上記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する工程(B)。
More specifically, the screening method preferably includes the following steps (1) to (5).
(1) A neurodegenerative disease model cell production step comprising the above method of producing a neurodegenerative disease model cell;
(2) a contact step of bringing a test substance into contact with a neurodegenerative disease model cell;
(3) One or more evaluations selected from the group consisting of the accumulation amount of insoluble TDP-43 protein in the neurodegenerative disease model cell, the number of survival of the neurodegenerative disease model cell, and the morphology of the neurodegenerative disease model cell An experimental group measurement process for measuring items;
(4) A group consisting of the accumulated amount of insolubilized TDP-43 protein in the neurodegenerative disease model cells not contacted with the test substance, the number of surviving neurodegenerative disease model cells, and the form of the neurodegenerative disease model cells A control group measurement step for measuring one or more evaluation items selected from
(5) In the case where the accumulated amount of the insolubilized TDP-43 protein is suppressed in comparison with the result of the target evaluation item measured in the control group measurement step The step of determining that the test substance is a candidate substance for a therapeutic and / or prophylactic drug for neurodegenerative diseases when the number of survivors decreases and / or when the change in the form is suppressed (B ).
 上記のスクリーニング方法は、神経変性疾患モデル細胞の細胞内の不溶化したTDP-43蛋白質量、上記細胞の生存数及び上記細胞の形態からなる群より選択される1以上の評価項目を測定する工程を備えるが、上記の評価項目としては、神経変性疾患モデル細胞の生存数及び/又は形態が、簡便に測定できるため好ましく、神経変性疾患モデル細胞の生存数及び形態の両項目を測定することがより好ましい。 The screening method includes a step of measuring one or more evaluation items selected from the group consisting of the amount of insoluble TDP-43 protein in a neurodegenerative disease model cell, the number of viable cells, and the cell morphology. However, as the above evaluation items, the survival number and / or morphology of neurodegenerative disease model cells can be easily measured, and it is more preferable to measure both the survival number and morphology of neurodegenerative disease model cells. preferable.
 「被験物質」は、生体内物質、遺伝子組換え物質、天然物又は化学合成化合物等の別を問わず、また、これらに限定されるものでもない。また、上記の被験物質は、溶媒に溶解又は懸濁して添加することができる。溶媒は、適当な薬学的に許容可能な担体であればいずれでもよい。また、上記の被験物質の添加量、添加回数及び添加期間は、細胞の種類及び被験物質の種類等に応じて適宜設定することができる。また、効力を比較するための既知の神経変性疾患の治療剤又は予防剤であってもよい。 The “test substance” is not limited to, but is not limited to, an in-vivo substance, a genetically modified substance, a natural product, or a chemically synthesized compound. Moreover, said test substance can be added after dissolving or suspending in a solvent. The solvent can be any suitable pharmaceutically acceptable carrier. Moreover, the addition amount, the number of additions, and the addition period of the test substance can be appropriately set according to the type of cells, the type of test substance, and the like. Moreover, the therapeutic agent or preventive agent of the known neurodegenerative disease for comparing efficacy may be sufficient.
 被験物質と上記の神経変性疾患モデル細胞との接触は、例えば、細胞培養用培地や各種緩衝液(例えば、HEPES緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、トリス塩酸緩衝液、ホウ酸緩衝液、酢酸緩衝液など)の中に被験物質を添加して、細胞を一定時間インキュベートすることにより実施することができる。上記の被験物質の添加期間、タイミング、回数及び濃度は、被験物質の効力により適宜設定すればよい。例えば、上記の被験物質を添加するタイミングは、上記の誘導剤(好ましくは、アンプロリウム、オキシチアミン又はその薬理学的に許容される塩)を添加する前、同時又は後から添加してもよい。好ましくは、上記の誘導剤との同時添加である。 The contact between the test substance and the above-mentioned neurodegenerative disease model cell is, for example, a cell culture medium or various buffer solutions (for example, HEPES buffer, phosphate buffer, phosphate buffered saline, Tris-HCl buffer, The test substance can be added to an acid buffer, an acetate buffer, etc.), and the cells can be incubated for a certain period of time. What is necessary is just to set suitably the addition period, timing, frequency | count, and density | concentration of said test substance by the efficacy of a test substance. For example, the timing of adding the above-mentioned test substance may be added before, simultaneously with, or after adding the above inducer (preferably, amprolium, oxythiamine or a pharmacologically acceptable salt thereof). Preferably, it is simultaneous addition with said inducer.
 「被験物質を接触させていない神経変性疾患モデル細胞」とは、該被験物質を添加されていない対応する神経変性疾患モデル細胞を意味し、上記神経変性疾患モデル細胞は「被験物質を接触させた神経変性疾患モデル細胞」とは別細胞であっても同一細胞であってもよい。例えば、同一細胞の場合は、被験物質を添加する前の神経変性疾患モデル細胞が「被験物質を接触させていない神経変性疾患モデル細胞」に該当し、被験物質を添加した後の該神経変性疾患モデル細胞が「被験物質を接触させた神経変性疾患モデル細胞」に該当する。本発明の神経変性疾患モデル細胞は、神経変性疾患患者(好ましくは、FTLD及びALS)の神経細胞における病態を均一に再現しうる神経変性疾患モデル細胞であるため、被験物質を接触させていない神経変性疾患モデル細胞は、被験物質を接触させた神経変性疾患モデル細胞と別細胞を用い、同条件下で培養した細胞を用いることが好ましい。なお、「被験物質を接触させていない」とは、被験物質の代わりに被験物質と同量の溶媒(ブランク)を添加する場合や、測定項目に影響を与えないネガティブコントロール物質を添加する場合も含まれる。 “Neurodegenerative disease model cell not contacted with test substance” means a corresponding neurodegenerative disease model cell to which the test substance is not added, and the neurodegenerative disease model cell is referred to as “contacted with test substance” It may be a different cell from the “neurodegenerative disease model cell” or the same cell. For example, in the case of the same cell, the neurodegenerative disease model cell before adding the test substance corresponds to “a neurodegenerative disease model cell not contacted with the test substance”, and the neurodegenerative disease after adding the test substance The model cell corresponds to “a neurodegenerative disease model cell contacted with a test substance”. Since the neurodegenerative disease model cell of the present invention is a neurodegenerative disease model cell capable of uniformly reproducing the pathology in the neuronal cell of a neurodegenerative disease patient (preferably, FTLD and ALS), it is a nerve not contacted with a test substance. As the degenerative disease model cell, it is preferable to use a cell that is cultured under the same conditions, using a different cell from the neurodegenerative disease model cell contacted with the test substance. “No test substance contacted” means that the same amount of solvent (blank) as the test substance is added instead of the test substance or a negative control substance that does not affect the measurement item is added. included.
 上記の実験群測定工程と上記の対照群測定工程は、同時期に行っても、異なる時期に行ってもよい。例えば、対照となる、被験物質を接触させていない神経変性疾患モデル細胞の細胞内の不溶化したTDP-43蛋白質量、上記神経変性疾患モデル細胞の生存数及び/又は上記神経変性疾患モデル細胞の形態は、予め測定しておいた値を用いてもよい。上記の実験群測定工程と上記の対照群測定工程は、同時期に行うことが好ましい。 The experiment group measurement step and the control group measurement step may be performed at the same time or at different times. For example, the amount of insoluble TDP-43 protein in the cell of the neurodegenerative disease model cell not contacted with the test substance as a control, the number of surviving neurodegenerative disease model cells and / or the form of the neurodegenerative disease model cells A value measured in advance may be used. The experiment group measurement step and the control group measurement step are preferably performed at the same time.
 上記の不溶化したTDP-43蛋白質量を測定する方法は、TDP-43蛋白質の量を定量的に検出できる方法であればいずれの方法でもよい。例えば、細胞から不溶性画分の蛋白質溶液を調製し、不溶性画分の蛋白質溶液中のTDP-43蛋白質を免疫学的手法により検出する方法が挙げられる。また、細胞を直接免疫染色し、不溶化したTDP―43蛋白質が局在する細胞質の封入体量を検出してもよい。不溶性画分の蛋白質溶液中のTDP-43蛋白質を免疫学的手法により検出する方法が好ましい。 The method for measuring the insolubilized TDP-43 protein amount may be any method as long as the amount of TDP-43 protein can be quantitatively detected. For example, a method may be mentioned in which a protein solution of an insoluble fraction is prepared from cells, and TDP-43 protein in the protein solution of the insoluble fraction is detected by an immunological technique. Alternatively, the cells may be directly immunostained to detect the amount of cytoplasmic inclusions where the insolubilized TDP-43 protein is localized. A method of detecting TDP-43 protein in the protein solution of the insoluble fraction by an immunological technique is preferred.
 不溶性画分の蛋白質溶液中のTDP-43蛋白質を免疫学的手法により検出する方法において、細胞からの不溶性画分の蛋白質溶液の調製は、細胞の回収直後に行ってもよいし、細胞の蛋白質が分解又は変性等されない条件下で適切に保存後(例えば、凍結保存後)、後日実施することでもかまわない。不溶性画分の蛋白質溶液中のTDP-43蛋白質を免疫学的手法により検出するためには、その前処理として、回収した細胞から蛋白質を抽出する処理を行うことが好ましい。蛋白質を抽出する方法は、例えば、組織破砕方法及び蛋白質抽出バッファーを用いた方法で行うことができる。具体的には、細胞に可溶性画分のみを溶解するバッファーを添加後、超音波により細胞を破砕し、遠心後、上清を回収することで可溶性画分の蛋白質を抽出することができる。この遠心後の沈殿物を、さらに不溶性画分も溶解可能なバッファーを用いて懸濁し、再度超音波処理することにより不溶性画分の蛋白質を抽出することができる(実施例1参照)。蛋白質の抽出は、細胞の回収直後に行ってもよいし、蛋白質が分解又は変性等されない条件下で適切に保存後(例えば、凍結保存後)、後日抽出することでもかまわない。蛋白質抽出液は、次の作業まで、蛋白質が分解又は変性等されない条件下で適切に保存(例えば、凍結保存)してもよい。 In the method of detecting the TDP-43 protein in the protein solution of the insoluble fraction by immunological techniques, the protein solution of the insoluble fraction from the cell may be prepared immediately after the collection of the cell, or the protein of the cell May be carried out at a later date after being properly stored (for example, after cryopreservation) under conditions that are not degraded or denatured. In order to detect the TDP-43 protein in the protein solution of the insoluble fraction by an immunological technique, it is preferable to perform a pretreatment for extracting the protein from the collected cells. The protein can be extracted by, for example, a tissue disruption method or a method using a protein extraction buffer. Specifically, after adding a buffer that dissolves only the soluble fraction in the cells, the cells are disrupted by ultrasonic waves, centrifuged, and then the supernatant is recovered to extract the protein of the soluble fraction. The precipitate after the centrifugation is further suspended using a buffer capable of dissolving the insoluble fraction, and the protein of the insoluble fraction can be extracted by sonication again (see Example 1). Protein extraction may be performed immediately after cell recovery, or may be extracted at a later date after appropriate storage (eg, after cryopreservation) under conditions where the protein is not degraded or denatured. The protein extract may be appropriately stored (for example, cryopreserved) under conditions where the protein is not decomposed or denatured until the next operation.
 不溶性画分の蛋白質溶液中のTDP-43蛋白質量を測定するための免疫学的手法は、特に限定されないが、抗TDP-43抗体で検出する免疫学的手法が好ましい。例えば、ウエスタンブロット、ドットブロット、免疫沈降法、RIA、プロテインアレイ及びELISA等を用いて測定することができるが、抗TDP―43抗体を用いて、全長TDP―43蛋白質及び断片化したTDP―43蛋白質をバンドとして検出するウエスタンブロットによる測定が好ましい。 The immunological technique for measuring the amount of TDP-43 protein in the protein solution of the insoluble fraction is not particularly limited, but an immunological technique for detection with an anti-TDP-43 antibody is preferred. For example, it can be measured using Western blot, dot blot, immunoprecipitation, RIA, protein array, ELISA, etc., but using anti-TDP-43 antibody, full-length TDP-43 protein and fragmented TDP-43 Measurement by Western blotting in which protein is detected as a band is preferred.
 ウエスタンブロットにより不溶化したTDP-43蛋白質量の測定を行う方法は、公知の方法であり、特に限定されないが、例えば、上記の蛋白質抽出液を同質量ずつポリアクリルアミドゲルのウェルにアプライし、SDS-PAGEによる電気泳動を行った後、PVDF膜へと転写し、その膜上に転写されたTDP-43蛋白質を抗TDP-43抗体と抗TDP-43抗体を認識する標識2次抗体とを用いて特異的バンドとして検出し、市販の画像解析ソフトにてバンドを定量化する方法がある。 The method for measuring the amount of TDP-43 protein insolubilized by Western blotting is a known method, and is not particularly limited. For example, the same amount of the above protein extract is applied to a well of a polyacrylamide gel, and SDS- After electrophoresis by PAGE, it is transferred to a PVDF membrane, and the TDP-43 protein transferred on the membrane is used with an anti-TDP-43 antibody and a labeled secondary antibody that recognizes the anti-TDP-43 antibody. There is a method of detecting as a specific band and quantifying the band with commercially available image analysis software.
 上記の抗TDP-43抗体は、TDP-43蛋白質を検出しうる抗体であればよく、モノクローナル抗体であっても、ポリクローナル抗体であってもよいし、場合によっては、抗体のフラグメント、例えば、Fab’、Fab、F(ab’)2を用いることができる。また、これらの抗体は、公知の方法により作製することが可能である。 The anti-TDP-43 antibody may be any antibody that can detect the TDP-43 protein, and may be a monoclonal antibody or a polyclonal antibody. In some cases, an antibody fragment, for example, Fab ', Fab, F (ab') 2 can be used. Moreover, these antibodies can be produced by a known method.
 神経変性疾患モデル細胞の生存数を測定する方法は、特に限定されないが、公知の方法を用いて測定することができる。例えば、MTT法、WST-1法、WST-8法若しくはAlamer Blue法を用いて吸光度を測定する方法、PI(ヨウ化プロピジウム)を用いて染色し、フローサイトメーターを用いて計数する方法、顕微鏡下での目視による計測若しくは取り込んだ画像を解析して細胞核の数を測定する方法又は神経様の細胞形態と核形態共存性から神経細胞のみを同定し、その細胞数を測定する方法等が挙げられるが、神経様の細胞形態と核形態共存性から神経細胞のみを同定し、その細胞数を測定する方法が好ましい。 The method for measuring the number of surviving neurodegenerative disease model cells is not particularly limited, but can be measured using a known method. For example, absorbance measurement using MTT method, WST-1 method, WST-8 method or Almer Blue method, staining using PI (propidium iodide), counting using a flow cytometer, microscope Examples include a method of measuring the number of cell nuclei by analyzing visual measurements or capturing captured images below, or a method of measuring the number of cells by identifying only nerve cells from the coexistence of nerve-like cell morphology and nuclear morphology, etc. However, a method of identifying only nerve cells from the coexistence of nerve-like cell morphology and nuclear morphology and measuring the number of cells is preferred.
 神経様の細胞形態と核形態共存性から神経細胞のみを同定し、その細胞数を測定する方法は、特に限定されないが、例えば、顕微鏡下で神経様の細胞形態と核形態が共存している細胞を目視で計測する方法又は核特異的マーカーによる核染色及び神経細胞特異的マーカーによる細胞標識を行い、核染色と細胞標識との重なり部分を測定し神経細胞を計測する(その重なり部分を有する細胞を神経細胞の本体とする)方法が挙げられる。核染色と細胞標識は、顕微鏡下に目視で観察してもよいし、細胞画像取得装置により撮影した画像を画像解析ソフトにより解析してもよいが、細胞画像取得装置により撮影した画像を解析ソフトにより解析することが好ましい。 The method for identifying only nerve cells from the coexistence of neuronal cell morphology and nuclear morphology and measuring the number of cells is not particularly limited. For example, the neuronal cell morphology and nuclear morphology coexist under a microscope. A method of visually measuring cells or nuclear staining with a nuclear-specific marker and cell labeling with a neuron-specific marker, measuring the overlapping portion between the nuclear staining and the cell label, and measuring the nerve cell (having the overlapping portion) A method in which cells are the main body of nerve cells). Nuclear staining and cell labeling may be observed visually under a microscope, or an image taken with a cell image acquisition device may be analyzed with image analysis software, but an image taken with a cell image acquisition device may be analyzed. It is preferable to analyze by.
 上記の細胞標識の方法は、特に限定されないが、公知の方法を用いることができる。例えば、神経細胞特異的マーカー蛋白質に結合する抗体を用いて免疫染色により標識する方法又は神経細胞特異的に発現する蛋白質のプロモーター領域下流にレポーター遺伝子を連結したベクターを細胞に導入し、発現するレポーター蛋白質を標識として検出する方法が挙げられる。上記の細胞標識の方法は、神経細胞特異的マーカー蛋白質に結合する抗体を用いて免疫染色により標識する方法が好ましい。 The cell labeling method is not particularly limited, and a known method can be used. For example, a method of labeling by immunostaining using an antibody that binds to a neuron-specific marker protein, or a reporter gene that is expressed by introducing a vector linking a reporter gene downstream of the promoter region of a protein that is specifically expressed in a neuron into the cell. There is a method of detecting a protein as a label. The above-described cell labeling method is preferably a method of labeling by immunostaining using an antibody that binds to a nerve cell-specific marker protein.
 上記の免疫染色は公知の方法により実施することができる。例えば、神経細胞特異的マーカーに結合する1次抗体をラベル物質で直接標識したものを、細胞サンプルに添加し免疫染色を行う方法又は未標識の1次抗体と、その1次抗体を特異的に認識する、ラベル物質で標識された2次抗体を用いて免疫染色を行う方法が挙げられるが、未標識の1次抗体と、その1次抗体を特異的に認識する、ラベル物質で標識された2次抗体を用いて免疫染色を行う方法が好ましい(以下の、実施例1及び2参照)。 The above immunostaining can be performed by a known method. For example, a method in which a primary antibody that binds to a neuron-specific marker is directly labeled with a labeling substance is added to a cell sample and immunostaining is performed, or an unlabeled primary antibody and the primary antibody specifically A method of performing immunostaining using a secondary antibody that is recognized and labeled with a labeling substance is exemplified. An unlabeled primary antibody and a labeled substance that specifically recognizes the primary antibody are labeled. A method of performing immunostaining using a secondary antibody is preferred (see Examples 1 and 2 below).
 上記の神経細胞特異的マーカーに結合する1次抗体としては、特に限定されないが、例えば、抗βIII-tubulin抗体、抗NeuN抗体,抗MAP2抗体又は抗Neurofilament抗体等が挙げられる。神経細胞特異的マーカーに結合する1次抗体としては、抗βIII-tubulin抗体が好ましい。これら抗体はモノクローナル抗体であっても、ポリクローナル抗体であってもよい。 The primary antibody that binds to the above neuron-specific marker is not particularly limited, and examples thereof include anti-βIII-tubulin antibody, anti-NeuN antibody, anti-MAP2 antibody, and anti-Neurofilament antibody. As a primary antibody that binds to a neuron-specific marker, an anti-βIII-tubulin antibody is preferable. These antibodies may be monoclonal antibodies or polyclonal antibodies.
 上記の1次抗体を特異的に認識する、ラベル物質で標識された2次抗体は、モノクローナル抗体であっても、ポリクローナル抗体であってもよい。 The secondary antibody labeled with a label substance that specifically recognizes the primary antibody may be a monoclonal antibody or a polyclonal antibody.
 上記のラベル物質は、特に限定されないが、例えば、蛍光ラベル物質として、FITC、TEXAS RED、Alexa Fluor 488、Alexa Fluor 555、Alexa Fluor 568、CY3又はCY5等が挙げられる。また酵素ラベル物質としてHorse radish peroxidase及びAlkaline phosphatse等を用いることができる。ラベル物質としては、蛍光ラベル物質が好ましい。 The above-mentioned label substance is not particularly limited, and examples of the fluorescent label substance include FITC, TEXAS RED, Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 568, CY3 or CY5. Moreover, Horse radish peroxidase, Alkaline phosphatase, etc. can be used as an enzyme label substance. As the label substance, a fluorescent label substance is preferable.
 上記の核染色の方法は、神経細胞特異的マーカーの免疫染色の色と区別が可能な方法であれば特に限定されないが、例えば、蛍光核染色としてDAPI、PI又はHoechst等による染色法が挙げられる。また、明視野観察の核染色として、ヘマトキシリン染色又はメチルグリーン染色等の染色法が挙げられる。上記の核染色の方法としては、蛍光核染色であることが好ましい。 The method for nuclear staining is not particularly limited as long as it is a method that can be distinguished from the color of immunostaining of a neuron-specific marker. Examples of fluorescent nuclear staining include staining methods using DAPI, PI, or Hoechst. . Examples of nuclear staining for bright field observation include staining methods such as hematoxylin staining or methyl green staining. As the above-mentioned nuclear staining method, fluorescent nuclear staining is preferable.
 「神経変性疾患モデル細胞の形態」の測定項目としては、例えば、神経突起の長さ、神経突起の断片化の程度、神経突起数、神経突起の密度、神経突起の膨化程度又は神経突起のビーズ状変化度等が挙げられるが、神経突起の長さ及び/又は密度が好ましい。神経突起の密度は、神経突起の画像上における蛍光強度と面積との積として測定してもよい。 Measurement items of “morphology of neurodegenerative disease model cell” include, for example, neurite length, degree of neurite fragmentation, neurite count, neurite density, neurite swelling degree, or neurite bead The length of the neurite and / or the density are preferable. The density of neurites may be measured as the product of fluorescence intensity and area on the neurite image.
 上記の神経変性疾患モデル細胞の形態を測定する方法は、特に限定されないが、例えば、顕微鏡下で神経突起の形態を目視で計測する方法又は顕微鏡カメラ若しくは細胞画像取得装置により撮影した画像を解析ソフトにより解析する方法等が挙げられるが、細胞画像取得装置により撮影した画像を画像解析ソフトにより解析する方法が好ましい。 The method for measuring the morphology of the above-mentioned neurodegenerative disease model cell is not particularly limited. The method of analyzing by the image analysis software is preferable.
 上記の細胞画像取得装置は、特に限定されないが、例えば、ToxInsight,CellInsight、IN Cell Analyzer、Image Xpress、Opera又はOperetta等が挙げられる。 The cell image acquisition device is not particularly limited, and examples thereof include ToxInsight, CellInsight, IN Cell Analyzer, Image Xpress, Opera, and Operata.
 上記の画像解析ソフトは、特に限定されないが、Cellomics Scan、In Cell Investigator、Meta Xpress、Harmony、Image J又はNIH Image等が挙げられる。 The above-described image analysis software is not particularly limited, and examples thereof include Cellomics Scan, In Cell Investigator, Meta Xpress, Harmony, Image J, or NIH Image.
 「神経変性疾患モデル細胞の形態の変化」としては、神経突起の短縮、神経突起の断片化、神経突起数の減少、神経突起の密度低下、神経突起の膨化及び神経突起のビーズ状変化等が挙げられるが、神経突起の短縮及び密度低下が好ましい。「形態の変化が抑制される」とは、例えば、上記の被験物質を接触させていない神経変性疾患モデル細胞と比較して神経突起の短縮度合いが小さい、神経突起の断片化が少ない、神経突起数の減少が抑制されている、神経突起の密度低下が抑制されている、神経突起の膨化が抑制されている又は神経突起のビーズ状変化が抑制されていることを意味する。 “Changes in the morphology of neurodegenerative disease model cells” include shortening of neurites, fragmentation of neurites, decrease in the number of neurites, decrease in neurite density, swelling of neurites, and changes in neurite beads Although mentioned, shortening of neurites and reduction of density are preferred. “Suppression of morphological change” means, for example, that the degree of shortening of neurites is small compared to neurodegenerative disease model cells not contacted with the above test substance, neurite fragmentation is small, neurite It means that the decrease in the number is suppressed, the decrease in the density of neurites is suppressed, the swelling of neurites is suppressed, or the bead-like change of neurites is suppressed.
 上記の神経変性疾患の治療薬又は予防薬のスクリーニング方法は、神経細胞での不溶化したTDP-43蛋白質の蓄積が病態のいずれかの時期に生じることが知られている神経変性疾患の治療薬又は予防薬のスクリーニング方法であることが好ましい。神経細胞での不溶化したTDP-43蛋白質の蓄積が病態のいずれかの時期に生じることが知られている神経変性疾患としては、例えば、FTLD及びALS等が挙げられるが、特にALSが好ましい。 The method for screening a therapeutic agent or preventive agent for a neurodegenerative disease described above is a therapeutic agent for a neurodegenerative disease, which is known to cause accumulation of insolubilized TDP-43 protein in nerve cells at any stage of the disease state. A screening method for prophylactic drugs is preferred. Examples of neurodegenerative diseases in which accumulation of insolubilized TDP-43 protein in nerve cells is known to occur at any stage of the disease state include FTLD and ALS, with ALS being particularly preferred.
 以下に実施例を示して本発明を更に詳しく説明するが、本発明は、これら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
 (実施例1)ビタミンB1取り込み阻害作用を有する誘導剤の処置による神経細胞の変化
1.神経細胞の分化
 ヒト正常iPS細胞由来コリン作動性神経細胞として、ReproNeuro Ach(ReproCell社,RCESDA001)を用いた。
(Example 1) Changes in nerve cells by treatment with an inducer having an inhibitory action on vitamin B1 uptake Neuronal differentiation ReproNeuro Ach (ReproCell, RCESDA001) was used as a cholinergic neuron derived from normal human iPS cells.
 コーティングプレートの作製は、ReproCell社のプロトコルに従い行った。すなわち、ポリスチレン製96ウェルプレート又は12ウェルプレートに0.02% poly-L-lysine液(0.1%液をPBSで5倍希釈)を添加し、37℃で2時間以上インキュベートした。Poly-L-lysine液をプレートから除去後、プレートをPBSで2回洗浄した後、コーティング液(Repro Coat)をプレートに添加し、37℃で一晩インキュベートし、1週間以内に使用した。コーティング液は、細胞播種前に除去した。 The coating plate was produced according to the protocol of ReproCell. That is, 0.02% poly-L-lysine solution (0.1% solution was diluted 5 times with PBS) was added to a polystyrene 96-well plate or 12-well plate and incubated at 37 ° C. for 2 hours or more. After removing the Poly-L-lysine solution from the plate, the plate was washed twice with PBS, then the coating solution (Repro Coat) was added to the plate, incubated overnight at 37 ° C., and used within one week. The coating solution was removed before cell seeding.
 細胞播種は、ReproCell社のプロトコルに従い行った。すなわち、細胞のバイアルをドライアイス又は液体窒素から取り出し、直ちに37℃のウォーターバスで90秒間加温した後、Thawing Mediumに移し、350×g、5分間室温で遠心した。遠心後、上清を除去し、細胞を培地(Maturation medium、ACh Additive及びPenicillin/Streptomycinを添加)に懸濁し、上記のコーティングプレートに播種した。播種日をday0とし、以降、day3及びday7に半量ずつ培地交換を行い、神経突起の十分な伸展が見られたday14の細胞を以下の実験に使用した。 Cell seeding was performed according to the protocol of ReproCell. That is, the cell vial was taken out of dry ice or liquid nitrogen, immediately heated for 90 seconds in a 37 ° C. water bath, then transferred to Whating Medium, and centrifuged at 350 × g for 5 minutes at room temperature. After centrifugation, the supernatant was removed, and the cells were suspended in a medium (added with Culture medium, ACh Additive, and Penicillin / Streptomycin) and seeded on the coating plate. The seeding date was day 0, and thereafter, medium was changed by half each for day 3 and day 7, and day 14 cells in which sufficient extension of neurites was observed were used in the following experiments.
2.ビタミンB1取り込み阻害作用を有する誘導剤による細胞処置
 細胞の培養上清を除去し、ビタミンB1取り込み阻害作用を有する誘導剤として、アンプロリウム(12wellプレートでは6.0mmol/L若しくは12mmol/L、96wellプレートでは2~12mmol/L)又はオキシチアミン(最終濃度:3mmol/L若しくは0.6mmol/L)を含有する新たな培地を細胞に添加した(それぞれ「アンプロリウム処置群」、「オキシチアミン処置群」と呼ぶ)。対照として、溶媒(0.1% DMSO)のみを添加した(ビタミンB1取り込み阻害物質を含有しない)。新たな培地を細胞に添加した(これを「溶媒処置群」と呼ぶ)。12ウェルプレートの場合は、さらに3日間培養した。96ウェルプレートの場合は、さらに7日間培養した(細胞処置開始の4日後に、古い培地を半量除き、各添加物質を含有する新しい培地を半量分添加した)。
2. Cell treatment with an inducer having an inhibitory action on vitamin B1 uptake The cell culture supernatant is removed, and an inducer with an inhibitory action on vitamin B1 uptake is used as amprolium (6.0 mmol / L or 12 mmol / L for 12-well plates, 96-well plates). 2-12 mmol / L) or fresh medium containing oxythiamine (final concentration: 3 mmol / L or 0.6 mmol / L) was added to the cells (referred to as “Amprolium-treated group” and “Oxythiamine-treated group”, respectively) ). As a control, only solvent (0.1% DMSO) was added (no vitamin B1 uptake inhibitor). Fresh medium was added to the cells (this is referred to as the “solvent treatment group”). In the case of a 12-well plate, the cells were further cultured for 3 days. In the case of a 96-well plate, the cells were further cultured for 7 days (after 4 days from the start of cell treatment, half of the old medium was removed and half of the new medium containing each additive was added).
3.TDP-43の不溶化及び断片化(細胞の蛋白質分画及びウエスタンブロット)
 12ウェルプレートで3日間培養した細胞から、培養上清を除去し、細胞を氷冷PBSで洗浄後、RIPA Buffer混合液(Protease inhibitor cocktail、Pho Stop及びUREA bufferを含む)を添加し、氷冷しながら30分間静置した後、ソニケーションして細胞破砕液を回収した。この時点での細胞破砕液中の蛋白質量をBCA法により定量した。上記細胞破砕液を4℃、100,000×gで遠心し、上清を可溶性画分として回収した。さらに、ペレットを同様にRIPA Buffer混合液で2回遠心洗浄し(4℃、100,000×g)、得られたペレットにUREA bufferを添加し、ソニケーションで溶解したものを不溶性画分として回収した。
3. Insolubilization and fragmentation of TDP-43 (cell protein fraction and Western blot)
The culture supernatant is removed from the cells cultured for 3 days in a 12-well plate, and the cells are washed with ice-cold PBS, followed by addition of RIPA Buffer mixture (including Protease inhibitor cocktail, Pho Stop and UREA buffer), and ice-cooled. Then, the mixture was allowed to stand for 30 minutes, and then sonicated to recover the cell disruption solution. The amount of protein in the cell lysate at this point was quantified by the BCA method. The cell lysate was centrifuged at 100,000 × g at 4 ° C., and the supernatant was recovered as a soluble fraction. Furthermore, the pellet was similarly centrifuged twice with RIPA Buffer mixture (4 ° C, 100,000 xg), and UREA buffer was added to the resulting pellet, and the lysate dissolved was recovered as an insoluble fraction. did.
 回収した不溶性画分は、SDS-PAGEによる電気泳動を行った後、ゲルからPVDF膜に転写した。PVDF膜をブロッキング液(Brocking One、ナカライテスク社)に浸して室温で30分ブロッキングした後、ウサギ抗TDP-43抗体(Protein Tech社、抗体希釈液で1000倍希釈)と4℃で一晩インキュベーションして反応させた。次に、PVDF膜をTBSTで3回洗浄後、HRP標識ウサギIgG抗体(GEヘルスケア、抗体希釈液で10000倍希釈)と室温で1時間インキュベーションして反応させた。さらに、PVDF膜をTBSTで3回洗浄後、PVDF膜にECL Prime(GEヘルスケア社)を添加して5分間静置した後、発光検出装置(Chemi-Doc XRS Plus、Bio-Rad社)を用いて発光を検出した。得られた画像から、画像解析ソフトウェアImage Lab(BIO-RAD社)を用いて各バンドのシグナル強度を検出し、相対的なTDP-43蛋白質の発現量を測定した。 The recovered insoluble fraction was subjected to electrophoresis by SDS-PAGE and then transferred from the gel to the PVDF membrane. The PVDF membrane is immersed in a blocking solution (Blocking One, Nacalai Tesque), blocked at room temperature for 30 minutes, and then incubated overnight at 4 ° C. with a rabbit anti-TDP-43 antibody (Protein Tech, diluted 1000 times with an antibody diluent). And reacted. Next, the PVDF membrane was washed 3 times with TBST and then reacted with HRP-labeled rabbit IgG antibody (GE Healthcare, diluted 10000 times with antibody diluent) at room temperature for 1 hour. Furthermore, after washing the PVDF membrane 3 times with TBST, ECL Prime (GE Healthcare) was added to the PVDF membrane and allowed to stand for 5 minutes, and then the luminescence detection device (Chemi-Doc XRS Plus, Bio-Rad) was installed. Was used to detect luminescence. The signal intensity of each band was detected from the obtained image using image analysis software Image Lab (BIO-RAD), and the relative expression level of TDP-43 protein was measured.
4.神経細胞の生存数及び形態の測定(免疫細胞化学)
 96ウェルプレートで7日間培養した細胞から、培養上清を除去し、細胞をPBSで2回洗浄後、4%PFAを添加して室温で30分間、固定した。細胞をPBSで2回洗浄後、0.1% TritonX-100を含むPBSを添加して室温で30分間、浸透化処理を行った。細胞をPBSで2回洗浄後、ブロッキング液(Blockng One、ナカライテスク社)を添加して室温で30分間、ブロッキングした後、マウス抗βIII-tubulin抗体(ブロッキング液で希釈)と、室温で2時間又は4℃で一晩インキュベートして反応させた。細胞をPBSで2回洗浄後、Alexa Fluor 488標識抗マウスIgG抗体(ブロッキング液で希釈)と、遮光条件下、室温で1時間インキュベートして反応させた。細胞をPBSで2回洗浄後、細胞にDAPI(PBSで希釈)を添加して室温で10分間反応させることで核染色した。最後に、100μL/ウェルのPBSを添加してToxInsightを用いて細胞を撮影した。
4). Measurement of neuronal survival and morphology (immunocytochemistry)
The culture supernatant was removed from the cells cultured in a 96-well plate for 7 days, the cells were washed twice with PBS, 4% PFA was added, and the mixture was fixed at room temperature for 30 minutes. The cells were washed twice with PBS, then PBS containing 0.1% Triton X-100 was added, and permeabilization was performed at room temperature for 30 minutes. After washing the cells twice with PBS, blocking solution (Blockng One, Nacalai Tesque) was added and blocked at room temperature for 30 minutes, then mouse anti-βIII-tubulin antibody (diluted with blocking solution) and 2 hours at room temperature. Alternatively, the reaction was allowed to incubate overnight at 4 ° C. The cells were washed twice with PBS, and reacted with Alexa Fluor 488-labeled anti-mouse IgG antibody (diluted with a blocking solution) for 1 hour at room temperature under light-shielded conditions. The cells were washed twice with PBS, and then DAPI (diluted with PBS) was added to the cells and reacted at room temperature for 10 minutes for nuclear staining. Finally, 100 μL / well of PBS was added and the cells were photographed using ToxInsight.
 神経細胞の生存数及び神経突起の長さの定量解析は、撮影装置ToxInsight(ThermoFisher Scientific)を用いて撮影した画像を、画像解析ソフトウェアArrayScan(ThermoFisher Scientific)の神経突起解析プロトコルDevelopmental Neurotoxicity Panel(DNTP)v4.1を用いて解析することにより行った。データ解析はCellomics(ThermoFisher scientific)及びMicrosoft Excelを用いて行った。 Quantitative analysis of the survival number of neurites and the length of neurites was performed using images taken with the imaging device ToxInsight (ThermoFisher Scientific), and the neurite analysis protocol DeveNopenteTP of image analysis software ArrayScan (ThermoFisherScientific). The analysis was performed using v4.1. Data analysis was performed using Cellomics (ThermoFisher scientific) and Microsoft Excel.
 上記の実施例1の1.~4.の流れを図1に示す。 In Example 1 above. ~ 4. The flow is shown in FIG.
5.結果
 不溶性画分における全長TDP-43蛋白質及び断片化TDP-43蛋白質の発現量の測定結果を図2に示す。
5. Results The measurement results of the expression levels of full-length TDP-43 protein and fragmented TDP-43 protein in the insoluble fraction are shown in FIG.
 図2は、アンプロリウム処置時の結果を示す。図2Aは、ウエスタンブロット像を示す。図2Bのグラフの縦軸は、不溶性画分におけるTDP-43蛋白質の発現量を示し、棒グラフは、全長TDP-43蛋白質(43kDa、黒色)、断片化TDP-43蛋白質(35kDaが薄い灰色、25kDaが濃い灰色)の合計を示す。横軸は、左から溶媒処置群(図中、「溶媒」)、アンプロリウム6.0mmol/L処置群、アンプロリウム12mmol/L処置群を示す。 Fig. 2 shows the results of amprolium treatment. FIG. 2A shows a Western blot image. The vertical axis of the graph in FIG. 2B shows the expression level of TDP-43 protein in the insoluble fraction, and the bar graph shows full-length TDP-43 protein (43 kDa, black), fragmented TDP-43 protein (35 kDa is light gray, 25 kDa). Is the dark gray). The horizontal axis shows the solvent treatment group (“solvent” in the figure), the amprolium 6.0 mmol / L treatment group, and the amprolium 12 mmol / L treatment group from the left.
 図3は、オキシチアミン処置時の結果を示す。図3Aは、ウエスタンブロット像を示す。図3Bのグラフの縦軸は、不溶性画分におけるTDP-43蛋白質の発現量を示し、棒グラフは、全長TDP-43蛋白質(43kDa、黒色)、断片化TDP-43蛋白質(35kDaが薄い灰色、25kDaが濃い灰色)の合計を示す。横軸は、左から溶媒処置群(図中、「溶媒」)、オキシチアミン3.0mmol/L処置群、オキシチアミン0.6mmol/L処置群を示す。 FIG. 3 shows the results of oxythiamine treatment. FIG. 3A shows a Western blot image. The vertical axis of the graph in FIG. 3B shows the expression level of TDP-43 protein in the insoluble fraction, and the bar graph shows full-length TDP-43 protein (43 kDa, black), fragmented TDP-43 protein (35 kDa is light gray, 25 kDa). Is the dark gray). The horizontal axis shows, from the left, a solvent treatment group (“solvent” in the figure), an oxythiamine 3.0 mmol / L treatment group, and an oxythiamine 0.6 mmol / L treatment group.
 アンプロリウム6.0mmol/L又は12mmol/Lによる細胞処置では、対照の溶媒処置群と比較して、不溶性画分における全長TDP-43蛋白質(43kDa)及び断片化TDP-43蛋白質(25kDa及び35kDa)の発現量が増加した(図2B)。オキシチアミン3.0mmol/L又は0.6mmol/Lを処置した場合でも、溶媒処置群と比較して、不溶性画分における全長TDP-43蛋白質(43kDa)及び断片化TDP-43蛋白質(25kDa及び35kDa)の発現量が増加した(図3B)。この結果から、ヒト正常iPS細胞由来コリン作動性神経細胞において、アンプロリウム又はオキシチアミン処置によって、不溶性画分における全長TDP-43蛋白質及び断片化TDP-43蛋白質の量が増加することが示された。 In the cell treatment with amprolium 6.0 mmol / L or 12 mmol / L, the full length TDP-43 protein (43 kDa) and the fragmented TDP-43 protein (25 kDa and 35 kDa) in the insoluble fraction compared to the control solvent treatment group. The expression level increased (FIG. 2B). Even when oxythiamine 3.0 mmol / L or 0.6 mmol / L was treated, the full-length TDP-43 protein (43 kDa) and the fragmented TDP-43 protein (25 kDa and 35 kDa) in the insoluble fraction compared to the solvent-treated group. ) Increased (FIG. 3B). From these results, it was shown that the amount of full-length TDP-43 protein and fragmented TDP-43 protein in the insoluble fraction increased in human normal iPS cell-derived cholinergic neurons by treatment with amprolium or oxythiamine.
 神経細胞の生存数及び形態の測定結果を図4に示す。 Fig. 4 shows the measurement results of the survival number and morphology of nerve cells.
 図4Aの縦軸は、神経細胞の生存数(図中、「神経細胞数」)を示し、横軸は、アンプロリウムの濃度を示す。図4Bの縦軸は、神経突起長の合計/神経細胞数すなわち神経細胞あたりの神経突起の長さを示し、横軸は、アンプロリウムの濃度を示す。図4Cは、神経細胞を、溶媒で処置した場合又は8mmol/Lのアンプロリウムを処置した場合の抗βIII-tubulinによる免疫染色像を示す。 The vertical axis of FIG. 4A indicates the survival number of nerve cells (“number of nerve cells” in the figure), and the horizontal axis indicates the concentration of amprolium. The vertical axis of FIG. 4B indicates the total neurite length / number of neurons, that is, the length of neurite per nerve cell, and the horizontal axis indicates the concentration of amprolium. FIG. 4C shows immunostained images with anti-βIII-tubulin when nerve cells were treated with a solvent or with 8 mmol / L of amprolium.
 アンプロリウム6mmol/Lによる細胞処置では、ヒト正常iPS細胞由来コリン作動性神経細胞の生存数が45%減少し、上記神経細胞あたりの神経突起の長さが25%減少した。また、アンプロリウム8mmol/Lによる細胞処置では、ヒト正常iPS細胞由来コリン作動性神経細胞の生存数が59%減少し、上記神経細胞あたりの神経突起の長さが36%減少した。この結果から、ヒト正常iPS細胞由来コリン作動性神経細胞において、アンプロリウムの濃度が高いほど、上記神経細胞の生存数は減少し、上記神経細胞あたりの神経突起の長さが短縮することが示された。 In the cell treatment with amprolium 6 mmol / L, the survival number of cholinergic neurons derived from human normal iPS cells was reduced by 45%, and the neurite length per nerve cell was reduced by 25%. In addition, cell treatment with amprolium 8 mmol / L reduced the survival number of cholinergic neurons derived from human normal iPS cells by 59%, and the neurite length per nerve cell decreased by 36%. This result shows that in human normal iPS cell-derived cholinergic neurons, the higher the concentration of amprolium, the smaller the number of surviving neurons and the shorter the neurite length per nerve cell. It was.
 したがって、アンプロリウム又はオキシチアミンは、神経細胞の細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こし、さらには、神経細胞の生存数の減少及び神経細胞の神経突起の短縮を引き起こすことが示された。 Thus, it has been shown that amprolium or oxythiamine causes accumulation of insolubilized TDP-43 protein in the cells of neurons, and further decreases the survival number of neurons and shortens neurites of neurons. .
 この結果から、ビタミンB1取り込み阻害作用を有する誘導剤は、哺乳動物の非癌性の神経細胞の細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こし、さらには、神経変性疾患の病態的特徴である神経細胞の生存数の減少及び神経細胞の神経突起の短縮を引き起こすことが示された。 From this result, an inducer having an inhibitory action on vitamin B1 uptake causes accumulation of insoluble TDP-43 protein in the cells of non-cancerous nerve cells of mammals. Furthermore, it is a pathological feature of neurodegenerative diseases. It has been shown to cause a decrease in the survival number of certain neurons and shortening of neurites of neurons.
 (実施例2)ビタミンB1取り込み阻害作用を有する誘導剤で処置した神経細胞に対する既存治療薬の影響
1.神経細胞の分化
 ヒト正常iPS細胞由来コリン作動性神経細胞として、ReproNeuro Ach(ReproCell社,RCESDA001)を用いた。
(Example 2) Effects of existing therapeutic agents on nerve cells treated with an inducer having an inhibitory action on vitamin B1 uptake Neuronal differentiation ReproNeuro Ach (ReproCell, RCESDA001) was used as a cholinergic neuron derived from normal human iPS cells.
 コーティングプレートの作製は、ReproCell社のプロトコルに従い行った。すなわち、ポリスチレン製96ウェルプレートに0.02% poly-L-lysine液(0.1%液をPBSで5倍希釈)を添加し、37℃で2時間以上インキュベートした。Poly-L-lysine液をプレートから除去後、プレートをPBSで2回洗浄した後、コーティング液(Repro Coat)を添加し、37℃で一晩インキュベートし、1週間以内に使用した。コーティング液は細胞播種前に除去した。 The coating plate was produced according to the protocol of ReproCell. Specifically, 0.02% poly-L-lysine solution (0.1% solution diluted 5 times with PBS) was added to a 96-well plate made of polystyrene, and incubated at 37 ° C. for 2 hours or more. After removing the Poly-L-lysine solution from the plate, the plate was washed twice with PBS, then a coating solution (Repro Coat) was added, incubated overnight at 37 ° C., and used within one week. The coating solution was removed before cell seeding.
 細胞播種は、ReproCell社のプロトコルに従い行った。すなわち、細胞のバイアルをドライアイス又は液体窒素から取り出し、直ちに37℃のウォーターバスで90秒間加温した後、Thawing Mediumに移し、350×g、5分間室温で遠心した。遠心後、上清を除去し、細胞を培地(Maturation medium、ACh Additive及びPenicillin/Streptomycinを添加)に懸濁し、上記のコーティングプレートに直ちに播種した。播種日をday0とし、以降、day3及びday7に半量ずつ培地交換を行い、神経突起の十分な伸展が見られたday14の細胞を以下の実験に使用した。 Cell seeding was performed according to the protocol of ReproCell. That is, the cell vial was taken out of dry ice or liquid nitrogen, immediately heated for 90 seconds in a 37 ° C. water bath, then transferred to Whating Medium, and centrifuged at 350 × g for 5 minutes at room temperature. After centrifugation, the supernatant was removed, and the cells were suspended in a medium (added with Culture medium, ACh Additive, and Penicillin / Streptomycin) and immediately seeded on the coating plate. The seeding date was day 0, and thereafter, medium was changed by half each for day 3 and day 7, and day 14 cells in which sufficient extension of neurites was observed were used in the following experiments.
2.ビタミンB1取り込み阻害作用を有する誘導剤による細胞処置及び既存治療薬の処置
 細胞の培養上清を除去し、ビタミンB1取り込み阻害作用を有する誘導剤であるアンプロリウム(最終濃度:7mmol/L)及び既存のALS治療薬(エダラボン又はリルゾール)を含有する新たな培地を細胞に添加した。それぞれ、エダラボン処置群、リルゾール処置群と呼ぶ。比較として、溶媒(0.1% DMSO)のみを含有した(アンプロリウム及び既存のALS治療薬を含有しない)新たな培地を添加した細胞(これを溶媒処置群と呼ぶ)と、アンプロリウム(最終濃度:7mmol/L)のみを含有する(既存のALS治療薬を含有しない)新たな培地を添加した細胞(これを対照群と呼ぶ)を設けた。培地を添加後、さらに7日間培養した。
2. Treatment of cells with an inducer having an inhibitory action on vitamin B1 uptake and treatment of existing therapeutic agents The culture supernatant of the cells is removed, and amprolium (final concentration: 7 mmol / L) which is an inducer having an inhibitory action on vitamin B1 uptake is used. Fresh media containing ALS therapeutic (edaravone or riluzole) was added to the cells. They are called the edaravone treatment group and the riluzole treatment group, respectively. As a comparison, cells added with a new medium containing only solvent (0.1% DMSO) (not containing amprolium and existing ALS therapeutic agent) (referred to as a solvent treatment group) and amprolium (final concentration: 7 mmol / L) only (not containing the existing ALS therapeutic agent) was added to cells supplemented with a new medium (referred to as a control group). After adding the medium, the cells were further cultured for 7 days.
3.神経細胞の生存数及び形態の測定(免疫細胞化学)
 7日間培養後、培養上清を除去し、細胞をPBSで2回洗浄後、4%PFAを添加して室温で30分間、固定した。細胞をPBSで2回洗浄後、0.1% TritonX-100を含むPBSを添加して室温で20分間、浸透化処理を行った。細胞をPBSで2回洗浄後、ブロッキング液(5倍希釈Blockng One、ナカライテスク社)を添加して室温で40分間ブロッキングした後、マウス抗βIII-tubulin抗体(ブロッキング液で希釈)と、室温で2時間又は4℃で一晩インキュベートして反応させた。細胞をPBSで2回洗浄後、Alexa Fluor 555標識抗マウスIgG抗体(ブロッキング液で希釈)と、遮光条件下、室温で1時間インキュベートして反応させた。細胞をPBSで2回洗浄後、細胞にDAPI(PBSで希釈)を添加して室温で10分間反応させることで核染色した。最後に、200μL/ウェルのPBSを添加してIN Cell Analyzer 2200(GE Healthcare)を用いて細胞を撮影した。
3. Measurement of neuronal survival and morphology (immunocytochemistry)
After culturing for 7 days, the culture supernatant was removed, the cells were washed twice with PBS, 4% PFA was added, and the mixture was fixed at room temperature for 30 minutes. After the cells were washed twice with PBS, PBS containing 0.1% Triton X-100 was added and permeabilized for 20 minutes at room temperature. After washing the cells twice with PBS, blocking solution (5-fold diluted Blockone, Nacalai Tesque) was added and blocked at room temperature for 40 minutes, and then mouse anti-βIII-tubulin antibody (diluted with blocking solution) was added at room temperature. The reaction was incubated for 2 hours or overnight at 4 ° C. The cells were washed twice with PBS, and reacted with Alexa Fluor 555-labeled anti-mouse IgG antibody (diluted with a blocking solution) for 1 hour at room temperature under light-shielded conditions. The cells were washed twice with PBS, and then DAPI (diluted with PBS) was added to the cells and reacted at room temperature for 10 minutes for nuclear staining. Finally, 200 μL / well of PBS was added and the cells were photographed using IN Cell Analyzer 2200 (GE Healthcare).
 神経細胞の生存数及び神経突起の長さの定量解析は、撮影した画像を、画像解析ソフトウェアIN Cell Investigator(GE Healthcare)を用いて解析することにより行った。統計解析は、t検定を用いた。統計解析の結果、P値が0.05未満の場合に統計学的に有意であると判断した。 Quantitative analysis of the survival number of nerve cells and the length of neurites was performed by analyzing the captured images using image analysis software IN Cell Investigator (GE Healthcare). Statistical analysis used t-test. As a result of statistical analysis, when the P value was less than 0.05, it was judged to be statistically significant.
4.結果
 結果を図5に示す。
4). Results The results are shown in FIG.
 図5Aの縦軸は、神経細胞の生存数(図中、「神経細胞数」)を示し、横軸は、アンプロリウム及び被験物質(既存のALS治療薬)並びにその濃度を示し、具体的には左から順に、0.1%DMSOのみを処置した溶媒処置群(図中、「溶媒」)、アンプロリウム(7mmol/L)のみを処置した対照群(図中、「被験物質なし」)、アンプロリウム(7mmol/L)及び被験物質であるエダラボン(1及び10μmol/L)を処置した群、アンプロリウム(7mmol/L)及び被験物質であるリルゾール(1及び3μmol/L)処置した群を示す。図5Bの縦軸は、神経突起長の合計/神経細胞数すなわち神経細胞あたりの神経突起の長さを示し、横軸は、図5Aと同様に、アンプロリウム及び被験物質(既存ALS治療薬)並びにその濃度を示す。また、図中の記号*(アスタリスク)は、対照群(図中「被験物質なし」)と結果(縦軸の値)を比較したときの差が、統計学的に有意(P<0.05)であることを示す。 The vertical axis of FIG. 5A indicates the number of surviving nerve cells (in the figure, “number of nerve cells”), and the horizontal axis indicates amprolium and the test substance (existing ALS therapeutic agent) and their concentrations. From left to right, a solvent treatment group treated with only 0.1% DMSO (“solvent” in the figure), a control group treated with only amprolium (7 mmol / L) (“no test substance” in the figure), amprolium ( 7 mmol / L) and a group treated with edaravone (1 and 10 μmol / L) as a test substance, and a group treated with amprolium (7 mmol / L) and riluzole (1 and 3 μmol / L) as a test substance. The vertical axis of FIG. 5B shows the total neurite length / number of neurons, that is, the length of neurite per nerve cell, and the horizontal axis shows amprolium and test substance (existing ALS therapeutic agent) and The concentration is shown. The symbol * (asterisk) in the figure indicates that the difference between the control group (“no test substance” in the figure) and the result (value on the vertical axis) is statistically significant (P <0.05). ).
 アンプロリウムと同時に、被験物質であるエダラボン(10μmol/L)又はリルゾール(3μmol/L)を添加して培養した神経細胞では、アンプロリウムのみ処置した対照群と比較して、神経細胞の生存数の減少が、有意に抑制された(図5A)。 Nerve cells cultured with the addition of edaravone (10 μmol / L) or riluzole (3 μmol / L) simultaneously with amprolium showed a decrease in the number of surviving neurons compared to the control group treated with amprolium alone. Was significantly suppressed (FIG. 5A).
 一方、アンプロリウムにより引き起こされる神経突起の短縮に対する、エダラボン又はリルゾールの作用はいずれも弱い抑制傾向のみであった(図5B)。エダラボン及びリルゾールは、ALS治療薬として承認され使用されているが、その作用は、いずれも数ヶ月の延命効果又はイベントなしの生存期間延長効果といった限定的ものであることが知られている。アンプロリウムにより引き起こされる神経突起の短縮に対して、十分な抑制効果が見られなかったのは、エダラボン及びリルゾールの臨床における限定的な作用を反映したものと考えられる。したがって、アンプロリウム処置をした神経細胞は、ALSの病態的特徴をよく反映したモデルであると同時に、薬物に対する作用を確度よく評価できるモデルであることが示された。 On the other hand, the effects of edaravone or riluzole on neurite shortening caused by amprolium were only weakly suppressed (FIG. 5B). Edaravone and riluzole have been approved and used as ALS therapeutics, but their effects are both known to be limited, such as a life-prolonging effect of several months or a survival-prolonging effect without an event. The lack of a sufficient inhibitory effect on the shortening of neurites caused by amprolium is thought to reflect the limited clinical effects of edaravone and riluzole. Therefore, it was shown that the nerve cells treated with amprolium are a model that well reflects the pathologic characteristics of ALS, and at the same time, a model that can accurately evaluate the effect on drugs.
 以上の結果から、上記の誘導剤を用いて作製した神経変性疾患モデル細胞は、神経変性疾患の治療薬又は予防薬のスクリーニングに使用できることか明らかとなった。 From the above results, it was clarified whether the neurodegenerative disease model cells prepared using the above inducer can be used for screening for therapeutic or prophylactic agents for neurodegenerative diseases.
 本発明の、神経細胞内に不溶化したTDP-43蛋白質の蓄積を引き起こす誘導剤によれば、遺伝子変異の導入に依らない、かつ、神経変性疾患患者の神経細胞における病態を均一に再現しうる、不溶化したTDP-43蛋白質が細胞内に蓄積した神経変性疾患モデル細胞を作製できる。また、該神経変性疾患モデル細胞を用いれば、神経変性疾患の治療薬又は予防薬のスクリーニングを行うことができる。 According to the inducer that causes accumulation of TDP-43 protein insolubilized in nerve cells of the present invention, it is possible not to depend on the introduction of gene mutation and to uniformly reproduce the pathology in nerve cells of patients with neurodegenerative diseases. A neurodegenerative disease model cell in which insolubilized TDP-43 protein accumulates in the cell can be prepared. Moreover, if the neurodegenerative disease model cell is used, a therapeutic or prophylactic agent for neurodegenerative disease can be screened.

Claims (11)

  1.  ビタミンB1取り込み阻害作用を有し、神経細胞内に不溶化したトランス活性応答DNA結合蛋白質-43の蓄積を引き起こす、神経変性疾患モデル細胞の誘導剤。 An inducer of a neurodegenerative disease model cell having an inhibitory action on vitamin B1 uptake and causing accumulation of a trans-activity-responsive DNA-binding protein-43 insolubilized in nerve cells.
  2.  アンプロリウム若しくはオキシチアミン又はそれらの薬理学的に許容される塩である、請求項1記載の誘導剤。 The inducer according to claim 1, which is amprolium or oxythiamine or a pharmacologically acceptable salt thereof.
  3.  前頭側頭葉変性症又は筋萎縮性側索硬化症のモデル細胞である、請求項1又は2記載の誘導剤。 The inducer according to claim 1 or 2, which is a model cell for frontotemporal lobar degeneration or amyotrophic lateral sclerosis.
  4.  請求項1~3のいずれか一項記載の誘導剤の存在下で、哺乳動物の非癌性の神経細胞を培養する培養工程を備える、神経変性疾患モデル細胞の作製方法。 A method for producing a neurodegenerative disease model cell, comprising a culture step of culturing a non-cancerous nerve cell of a mammal in the presence of the inducer according to any one of claims 1 to 3.
  5.  前記誘導剤は、2~12mmol/Lのアンプロリウム又はその薬理学的に許容される塩である、請求項4記載の作製方法。 The preparation method according to claim 4, wherein the inducer is 2 to 12 mmol / L amprolium or a pharmacologically acceptable salt thereof.
  6.  前記培養工程は、哺乳動物の非癌性の神経細胞を6時間~21日間培養する工程である、請求項4又は5記載の作製方法。 The production method according to claim 4 or 5, wherein the culturing step is a step of culturing mammalian non-cancerous neurons for 6 hours to 21 days.
  7.  前記神経細胞は、ヒト人工多能性幹細胞由来神経細胞である、請求項4~6のいずれか一項記載の作製方法。 The production method according to any one of claims 4 to 6, wherein the nerve cell is a human induced pluripotent stem cell-derived nerve cell.
  8.  請求項4~7のいずれか一項記載の作製方法で作製した神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、
     前記神経変性疾患モデル細胞内の不溶化したトランス活性応答DNA結合蛋白質-43の蓄積量、前記神経変性疾患モデル細胞の生存数及び前記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、
     前記実験群測定工程で測定された評価項目を指標として、前記不溶化したトランス活性応答DNA結合蛋白質-43の蓄積量が抑制された場合、前記生存数が減少した場合、及び/又は前記形態の変化が抑制された場合に、前記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する判定工程(A)と、
    を備える、神経変性疾患の治療薬又は予防薬のスクリーニング方法。
    Contacting a test substance with a neurodegenerative disease model cell produced by the production method according to any one of claims 4 to 7,
    One or more selected from the group consisting of the accumulated amount of insolubilized transactivity-responsive DNA binding protein-43 in the neurodegenerative disease model cell, the number of survival of the neurodegenerative disease model cell, and the form of the neurodegenerative disease model cell An experimental group measurement process for measuring evaluation items;
    Using the evaluation item measured in the experimental group measurement step as an index, when the accumulated amount of the insolubilized transactivity-responsive DNA-binding protein-43 is suppressed, when the number of survivors decreases, and / or when the morphology changes Determination step (A) for determining that the test substance is a candidate substance for a therapeutic and / or prophylactic drug for neurodegenerative diseases,
    A screening method for a therapeutic or prophylactic agent for neurodegenerative diseases.
  9.  請求項4~7のいずれか一項記載の作製方法で作製した神経変性疾患モデル細胞に、被験物質を接触させる接触工程と、
     前記神経変性疾患モデル細胞内の不溶化したトランス活性応答DNA結合蛋白質-43の蓄積量、前記神経変性疾患モデル細胞の生存数及び前記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する実験群測定工程と、
     前記被験物質を接触させていない前記神経変性疾患モデル細胞内の不溶化したトランス活性応答DNA結合蛋白質-43の蓄積量、前記神経変性疾患モデル細胞の生存数及び前記神経変性疾患モデル細胞の形態からなる群より選択される1以上の評価項目を測定する対照群測定工程と、
     前記実験群測定工程で測定された評価項目の結果が、前記対照群測定工程で測定された対照となる評価項目の結果と比較して、前記不溶化したトランス活性応答DNA結合蛋白質-43の蓄積量が抑制された場合、前記生存数が減少した場合、及び/又は前記形態の変化が抑制された場合に、前記被験物質は、神経変性疾患の治療薬及び/又は予防薬の候補物質であると判定する判定工程(B)と、
    を備える、神経変性疾患の治療薬又は予防薬のスクリーニング方法。
    Contacting a test substance with a neurodegenerative disease model cell produced by the production method according to any one of claims 4 to 7,
    One or more selected from the group consisting of the accumulated amount of insolubilized transactivity-responsive DNA binding protein-43 in the neurodegenerative disease model cell, the number of survival of the neurodegenerative disease model cell, and the form of the neurodegenerative disease model cell An experimental group measurement process for measuring evaluation items;
    The accumulation amount of insolubilized transactivity-responsive DNA-binding protein-43 in the neurodegenerative disease model cell not contacted with the test substance, the number of survival of the neurodegenerative disease model cell, and the form of the neurodegenerative disease model cell A control group measurement step for measuring one or more evaluation items selected from the group;
    The result of the evaluation item measured in the experimental group measurement step is more than the result of the control evaluation item measured in the control group measurement step. When the number of survivors is reduced, and / or when the morphological change is suppressed, the test substance is a candidate for a therapeutic and / or preventive drug for neurodegenerative diseases. A determination step (B) for determining;
    A screening method for a therapeutic or prophylactic agent for neurodegenerative diseases.
  10.  前記形態は、神経突起の長さ及び/又は密度である、請求項8又は9記載のスクリーニング方法。 10. The screening method according to claim 8 or 9, wherein the form is a neurite length and / or density.
  11.  前記神経変性疾患は、前頭側頭葉変性症又は筋萎縮性側索硬化症である、請求項8~10のいずれか一項記載のスクリーニング方法。
     
    The screening method according to any one of claims 8 to 10, wherein the neurodegenerative disease is frontotemporal lobar degeneration or amyotrophic lateral sclerosis.
PCT/JP2017/013543 2016-03-31 2017-03-31 Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease WO2017170986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017518171A JPWO2017170986A1 (en) 2016-03-31 2017-03-31 Accumulation inducer of insolubilized TDP-43 protein, method for producing neurodegenerative disease model cell, and method for screening therapeutic or preventive agent for neurodegenerative disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071771 2016-03-31
JP2016071771 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170986A1 true WO2017170986A1 (en) 2017-10-05

Family

ID=59965987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013543 WO2017170986A1 (en) 2016-03-31 2017-03-31 Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease

Country Status (2)

Country Link
JP (1) JPWO2017170986A1 (en)
WO (1) WO2017170986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961278B1 (en) * 2021-03-10 2021-11-05 国立研究開発法人量子科学技術研究開発機構 Methods and Devices for Measuring TDP-43 in Biological Samples

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125646A1 (en) * 2008-04-09 2009-10-15 財団法人東京都医学研究機構 Tdp-43-storing cell model
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125646A1 (en) * 2008-04-09 2009-10-15 財団法人東京都医学研究機構 Tdp-43-storing cell model
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SINGH, K, V ET AL.: "Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery", FRONT CELL DEV BIOL, vol. 3, 2 February 2015 (2015-02-02), pages 1 - 18, XP055415748, Retrieved from the Internet <URL:doi:10.3389/fcell.2015.00002> *
WANG, X ET AL.: "Thiamine Deficiency Induces Endoplasmic Reticulum Stress in Neurons", NEUROSCIENCE, vol. 144, no. 3, 29 December 2006 (2006-12-29), pages 1045 - 1056, XP005818600, Retrieved from the Internet <URL:doi:10.1016/j.neuroscience.2006.10.008> *
YUTAKA SATO ET AL.: "Application of iPS cells for studying neurological disorders", JAPANESE JOURNAL OF GERIATRICS, vol. 51, 2014, pages 502 - 509 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961278B1 (en) * 2021-03-10 2021-11-05 国立研究開発法人量子科学技術研究開発機構 Methods and Devices for Measuring TDP-43 in Biological Samples
WO2022190737A1 (en) * 2021-03-10 2022-09-15 国立研究開発法人量子科学技術研究開発機構 Method and device for measuring tdp-43 in biological sample
JP2022138655A (en) * 2021-03-10 2022-09-26 国立研究開発法人量子科学技術研究開発機構 Method and device for measuring tdp-43 in biological specimen

Also Published As

Publication number Publication date
JPWO2017170986A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
Kobayashi et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis
Shah et al. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes
Hendriks et al. System-wide identification of wild-type SUMO-2 conjugation sites
Baron et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function
Starost et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis
Settembre et al. TFEB and the CLEAR network
Mohamed et al. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy
Park et al. Development and validation of a yeast high-throughput screen for inhibitors of Aβ42 oligomerization
Li et al. Potential biomarkers of the mature intervertebral disc identified at the single cell level
US20220340849A1 (en) Brain-chip modeling neurodegeneration and neuroinflammation in parkinson&#39;s disease
WO2018183446A1 (en) Assembly of functionally integrated human forebrain spheroids and methods of use thereof
Rowan et al. Origin and function of the renal stroma in health and disease
Grochowska et al. LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson’s disease and dementia with Lewy bodies
Jarmas et al. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis
Staugaitis et al. NG2-positive glia in the human central nervous system
WO2013073219A1 (en) Method for producing insoluble aggregate of neurodegenerative-disease-related protein
Tan et al. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte–neuron cadherin interactions
Hettige et al. FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells
WO2017170986A1 (en) Agent for inducing accumulation of insolubilized tdp-43 protein, method for creating neurodegenerative disease model cells, and method for screening for therapeutic or prophylactic drug for neurodegenerative disease
Hasan et al. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons
Jiang et al. Live neuron high-content screening reveals synaptotoxic activity in alzheimer mouse model homogenates
Antoniani et al. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia
Romero-Fernandez et al. Detection, visualization and quantification of protein complexes in human Alzheimer’s disease brains using proximity ligation assay
Xu et al. Characterization of huntingtin interactomes and their dynamic responses in living cells by proximity proteomics
WO2022126633A1 (en) Application of compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775518

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775518

Country of ref document: EP

Kind code of ref document: A1