WO2020184155A1 - Pressure-sensitive adhesive sheet, production method therefor, and image display device - Google Patents

Pressure-sensitive adhesive sheet, production method therefor, and image display device Download PDF

Info

Publication number
WO2020184155A1
WO2020184155A1 PCT/JP2020/007230 JP2020007230W WO2020184155A1 WO 2020184155 A1 WO2020184155 A1 WO 2020184155A1 JP 2020007230 W JP2020007230 W JP 2020007230W WO 2020184155 A1 WO2020184155 A1 WO 2020184155A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
meth
pressure
sensitive adhesive
acrylate
Prior art date
Application number
PCT/JP2020/007230
Other languages
French (fr)
Japanese (ja)
Inventor
大器 下栗
崇弘 野中
翔 寳田
理仁 丹羽
祐輔 山本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020013804A external-priority patent/JP7285794B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11202109807P priority Critical patent/SG11202109807PA/en
Priority to KR1020217031879A priority patent/KR102566778B1/en
Priority to CN202080017881.1A priority patent/CN113518808B/en
Publication of WO2020184155A1 publication Critical patent/WO2020184155A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to an adhesive sheet and a method for producing the same. Furthermore, the present invention relates to an image display device using the adhesive sheet.
  • Liquid crystal display devices and organic EL display devices are widely used as various image display devices such as mobile phones, smartphones, car navigation devices, personal computer monitors, and televisions.
  • a front transparent plate (also referred to as a "cover window") such as a transparent resin plate or a glass plate is provided on the visual side of the image display panel for the purpose of preventing damage to the image display panel due to an impact from the outer surface.
  • cover window such as a transparent resin plate or a glass plate
  • a colored layer (decorative printing layer) for decoration or light shielding may be formed on the periphery of the front transparent member.
  • the adhesive is attached to the transparent member having the decorative printing layer, air bubbles are likely to be generated around the printing step portion. Therefore, a method is adopted in which a thick adhesive sheet is used to absorb steps to prevent problems such as air bubbles from being mixed.
  • an adhesive sheet made of a photocurable adhesive composition for bonding front transparent members.
  • Patent Document 1 a composition obtained by adding a polyfunctional monomer and a photopolymerization initiator to a polymer solution prepared by solution polymerization is applied onto a substrate, and the solvent is removed by heating to obtain a photocurable adhesion.
  • Patent Document 2 a solvent-free composition containing a low molecular weight polymer, a monofunctional monomer and a polyfunctional monomer, and a photopolymerization initiator is applied onto a substrate and photocured to prepare an adhesive sheet.
  • Patent Document 2 a solvent-free composition containing a low molecular weight polymer, a monofunctional monomer and a polyfunctional monomer, and a photopolymerization initiator is applied onto a substrate and photocured to prepare an adhesive sheet.
  • an adhesive sheet having high fluidity and excellent step absorption is formed.
  • the photocurable pressure-sensitive adhesive sheet contains a photopolymerizable monomer or oligomer in an unreacted state
  • the pressure-sensitive adhesive has high fluidity and excellent step absorption.
  • the front transparent member such as a cover window is larger than the display panel
  • the front transparent member and the housing are bonded to each other by an adhesive tape or the like in an area outside the outer peripheral edge of the display panel. .. That is, the front transparent member is fixed by a combination of bonding to the housing with an adhesive tape or the like and bonding to the surface of the display panel with an adhesive sheet for interlayer filling.
  • display devices have become narrower and bezel-less, mainly for mobile devices such as smartphones.
  • an image display device in which the size of the display panel 10 is equal to or larger than the size of the front transparent member 7 has been developed.
  • the housing 9 and the front transparent member 7 cannot be fixed by an adhesive tape or the like, and the front transparent member 7 needs to be fixed only by the adhesive sheet 5 (see FIG. 2).
  • the adhesive sheet is required to have a higher adhesive force and is required not to be peeled off due to an impact such as dropping.
  • the photocurable adhesive sheet described in Patent Document 1 and Patent Document 2 enhances the flexibility of the adhesive in order to have step absorption, and in the state before photocuring, an external force is applied during transportation or processing. If is added, the adhesive sheet is easily deformed, so that the bonding members may be displaced from each other. Further, since it is necessary to perform photo-curing after bonding with the adherend, the manufacturing process of the image display device tends to be complicated.
  • the present invention is an adhesive sheet which does not require photo-curing after being bonded to an adherend, can achieve both step absorption and dimensional stability, and has adhesive durability and impact resistance. For the purpose of providing.
  • One embodiment of the present invention is a double-sided pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive containing a base polymer having a crosslinked structure is formed in a sheet shape.
  • the shear storage elastic modulus G'25 ° C. of the pressure-sensitive adhesive sheet at a temperature of 25 ° C. is preferably 0.16 MPa or more, and the loss tangent tan ⁇ 70 ° C. at a temperature of 70 ° C. is preferably 0.25 or more.
  • the glass transition temperature of the adhesive sheet is preferably -3 ° C or lower.
  • the gel fraction of the adhesive sheet is preferably 30 to 80%.
  • the polymerization rate of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive sheet is preferably 95% or more.
  • the weight average molecular weight of the sol of the pressure-sensitive adhesive is, for example, 150,000 to 400,000.
  • the haze of the adhesive sheet is preferably 1% or less.
  • the base polymer contained in the adhesive sheet includes, for example, a polymer in which an acrylic polymer chain is crosslinked by a urethane segment.
  • the content of the urethane-based segment with respect to 100 parts by weight of the acrylic polymer chain is preferably 0.3 to 10 parts by weight.
  • the weight average molecular weight of the urethane-based segment is, for example, 5000 to 30,000.
  • the base polymer of the pressure-sensitive adhesive is, for example, an acrylic polymer having a crosslinked structure, even if the crosslinked structure is introduced into the acrylic polymer chain by polyfunctional (meth) acrylate or urethane (meth) acrylate. Good.
  • the amount of (meth) acrylic acid alkyl ester in the acrylic polymer chain is preferably 50% by weight or more based on the total amount of the constituent monomer components. In the acrylic polymer chain, the total amount of the hydroxyl group-containing monomer and the nitrogen-containing monomer with respect to the total amount of the constituent monomer components may be 15 to 45% by weight.
  • the base polymer may contain a polymer in which a crosslinked structure with urethane-based segments is introduced into an acrylic polymer chain. For example, by copolymerizing an acrylic monomer constituting an acrylic polymer chain with a polyfunctional urethane (meth) acrylate having at least two (meth) acryloyl groups at the ends, a crosslinked structure of the acrylic polymer chain with a urethane segment. An acrylic polymer in which is introduced is obtained.
  • urethane (meth) acrylate urethane di (meth) acrylate having (meth) acryloyl groups at both ends is preferable.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably 5000 to 30,000.
  • the glass transition temperature of urethane (meth) acrylate is preferably 0 ° C. or lower.
  • the urethane (meth) acrylate may contain a polyester urethane (meth) acrylate.
  • a pressure-sensitive adhesive sheet containing a base polymer in which an acrylic polymer chain is crosslinked with a urethane-based segment has, for example, a composition containing an acrylic monomer and / or a partial polymer thereof, and a urethane (meth) acrylate layered on a substrate. After coating, it is obtained by irradiating the composition with active light and performing photocuring.
  • the pressure-sensitive adhesive composition preferably has a urethane (meth) acrylate content of 0.3 to 10 parts by weight based on a total of 100 parts by weight of the acrylic monomer and its partial polymer.
  • the adhesive sheet of the present invention is used, for example, for bonding transparent members in an image display device in which a transparent member is arranged on the surface on the viewing side.
  • the image display device is formed by fixing the front transparent member to the visible surface of the image display panel via the above-mentioned adhesive sheet.
  • An adhesive sheet may be laminated on a transparent film substrate to form a double-sided adhesive sheet with a substrate.
  • the adhesive sheet of the present invention has a large shear storage elastic modulus at room temperature, is excellent in adhesive reliability and workability, and has a large loss tangent at high temperature, so that it has excellent step absorption and impact resistance.
  • the image display device in which a cover window or the like is attached to the surface on the viewing side using the adhesive sheet of the present invention has excellent adhesive reliability, and can be used for narrowing the frame and bezel-less.
  • FIG. 1 shows an adhesive sheet with a release film in which release films 21 and 22 are temporarily attached to both sides of the adhesive sheet 5.
  • FIG. 2 is a cross-sectional view showing a configuration example of an image display device in which the front transparent plate 7 is fixed by using an adhesive sheet.
  • the pressure-sensitive adhesive sheet 5 is a base-less double-sided pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive is formed in the form of a sheet.
  • the pressure-sensitive adhesive contains a base polymer having a crosslinked structure.
  • the adhesive sheet is preferably highly transparent.
  • the total light transmittance of the pressure-sensitive adhesive sheet is preferably 85% or more, more preferably 90% or more.
  • the haze of the adhesive sheet is preferably 1% or less.
  • the shear storage elastic modulus G'25 ° C of the adhesive sheet at 25 ° C is 0.16 MPa or more.
  • 0.18 MPa or more is more preferable, 0.20 MPa or more is further preferable, and 0.21 MPa or more is particularly preferable.
  • the G'25 ° C. of the adhesive sheet is 0.5 MPa or less from the viewpoint of ensuring wettability by giving the adhesive sheet an appropriate viscosity and also providing cushioning property against impacts such as dropping. Is more preferable, 0.4 MPa or less is more preferable, 0.3 MPa or less is further preferable, and 0.28 MPa or less is particularly preferable.
  • the loss tangent tan ⁇ 70 ° C. at 70 ° C. of the pressure-sensitive adhesive sheet is preferably 0.25 or more, more preferably 0.30 or more, still more preferably 0.35 or more.
  • tan ⁇ 70 ° C. may be 0.40 or more, 0.45 or more, 0.50 or more, or 0.55 or more.
  • tan ⁇ 70 ° C. is preferably 1.0 or less, more preferably 0.9 or less, and even more preferably 0.85 or less.
  • tan ⁇ 70 ° C. may be 0.80 or less, 0.75 or less, or 0.70 or less.
  • the peak top value of tan ⁇ of the adhesive sheet is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • An adhesive sheet having a large peak top value of tan ⁇ tends to have a large viscous behavior and excellent impact resistance.
  • the upper limit of the peak top value of tan ⁇ of the adhesive sheet is not particularly limited, but is generally 3.0 or less. From the viewpoint of adhesive holding power, the peak top value of tan ⁇ is preferably 2.7 or less, more preferably 2.5 or less.
  • the glass transition temperature of the adhesive sheet is preferably -3 ° C or lower, more preferably -4 ° C or lower.
  • the glass transition temperature of the pressure-sensitive adhesive sheet is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 15 ° C. or higher, and even more preferably ⁇ 13 ° C. or higher.
  • the adhesive sheet has an appropriate viscosity even in a low temperature region, and there is a tendency that peeling of the adherend due to an impact such as dropping is suppressed.
  • the shear storage elastic modulus G', loss contact tan ⁇ , and glass transition temperature of the adhesive sheet are determined by viscoelasticity measurement at a frequency of 1 Hz.
  • tan ⁇ is the ratio G ′′ / G ′ of the storage elastic modulus G ′ and the loss elastic modulus G ′′
  • the glass transition temperature is the temperature at which tan ⁇ is maximized (peak top temperature).
  • the storage elastic modulus G' corresponds to a portion stored as elastic energy when the material is deformed, and is an index indicating the degree of hardness. The larger the storage elastic modulus of the adhesive sheet, the higher the adhesive holding force and the tendency for peeling due to strain to be suppressed.
  • the loss elastic modulus G corresponds to the energy loss portion dissipated by internal friction or the like when the material is deformed, and represents the degree of viscosity.
  • the rebound resilience energy tends to be small.
  • the gel fraction of the pressure-sensitive adhesive sheet is preferably 30 to 80% from the viewpoint of ensuring processing stability at G'25 ° C. of 0.16 MPa or more and providing appropriate flexibility for imparting step absorption. 35-70% is more preferable.
  • the gel fraction may be 40% or more or 45% or more, 65% or less, or 60% or less.
  • the gel fraction of the pressure-sensitive adhesive sheet can be determined as an insoluble component in a solvent such as ethyl acetate. Specifically, the insoluble component after immersing the pressure-sensitive adhesive constituting the pressure-sensitive adhesive sheet in ethyl acetate at 23 ° C. for 7 days. Is obtained as a weight fraction (unit: weight%) with respect to the sample before immersion.
  • the gel fraction of a polymer is equal to the degree of cross-linking, and the more cross-linked portions in the polymer, the higher the gel fraction.
  • the gel fraction (introduction amount of the crosslinked structure) can be adjusted to a desired range depending on the introduction method of the crosslinked structure, the type and amount of the crosslinking agent, and the like.
  • the adhesive strength of the adhesive sheet is preferably 2N / 10 mm or more, more preferably 4N / 10 mm or more, and even more preferably 5N / 10 mm or more.
  • the adhesive strength is determined by a peel test with a tensile speed of 300 mm / min and a peeling angle of 180 ° using a glass plate as an adherend. Unless otherwise specified, the adhesive strength is a measured value at 25 ° C.
  • the thickness of the adhesive sheet is not particularly limited, and may be set according to the type and shape of the adherend. When a member having a printing step is used as an adherend, it is preferable that the thickness of the adhesive sheet is larger than the thickness of the printing step.
  • the thickness of the pressure-sensitive adhesive sheet used for bonding the front transparent plate (cover window) is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, still more preferably 50 ⁇ m or more. Increasing the thickness of the adhesive sheet tends to increase step absorption and impact resistance.
  • the upper limit of the thickness of the pressure-sensitive adhesive sheet is not particularly limited, but from the viewpoint of the productivity of the pressure-sensitive adhesive sheet, it is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 250 ⁇ m or less.
  • composition of the pressure-sensitive adhesive is not particularly limited as long as the pressure-sensitive adhesive sheet 5 satisfies the above characteristics, and the pressure-sensitive adhesive composition is not particularly limited, and acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer, and modified polyolefin.
  • Epoxy-based, fluorine-based, natural rubber, synthetic rubber and other rubber-based polymers as the base polymer can be appropriately selected and used. In particular, it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is also excellent in weather resistance and heat resistance. Therefore, acrylic adhesive containing an acrylic polymer as a base polymer.
  • the agent is preferably used.
  • the acrylic base polymer having a crosslinked structure is one in which a crosslinked structure is introduced into an acrylic polymer chain.
  • the acrylic polymer chain contains (meth) acrylic acid alkyl ester as a main constituent monomer component.
  • (meth) acrylic means acrylic and / or methacryl.
  • the (meth) acrylic acid alkyl ester a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms is preferably used.
  • the (meth) acrylic acid alkyl ester may have a branched alkyl group or a cyclic alkyl group.
  • (meth) acrylic acid alkyl ester having a chain alkyl group examples include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, butyl (meth) acrylic acid, isobutyl (meth) acrylic acid, and (meth).
  • (meth) acrylate alkyl ester having an alicyclic alkyl group examples include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, cyclooctyl (meth) acrylate and the like.
  • the amount of the (meth) acrylic acid alkyl ester with respect to the total amount of the monomer components constituting the acrylic polymer chain is preferably 50% by weight or more, more preferably 55% by weight or more, still more preferably 60% by weight or more.
  • the acrylic base polymer is an amount of (meth) acrylic acid alkyl ester having a chain alkyl group having 4 to 10 carbon atoms with respect to the total amount of constituent monomer components. However, it is preferably 40% by weight or more, more preferably 50% by weight or more, and further preferably 55% by weight or more.
  • the monomer components constituting the acrylic polymer chain include all the monomer components constituting the polymer, the monomers used for forming the crosslinked structure (polyfunctional (meth) acrylate, urethane (meth) acrylate, etc. described later) and crosslinked. It is the one excluding the agent.
  • the acrylic base polymer may contain a hydroxyl group-containing monomer or a carboxy group-containing monomer as a constituent monomer component.
  • the hydroxyl group becomes the reaction point with the isocyanate group
  • the crosslinked structure is introduced by the epoxy-based cross-linking agent, the carboxy group becomes the reaction point with the epoxy group.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and (meth) acrylic.
  • acrylic acid esters such as 8-hydroxyoctyl acid, 10-hydroxydecyl (meth) acrylic acid, 12-hydroxylauryl (meth) acrylic acid and (4-hydroxymethylcyclohexyl) -methyl (meth) acrylate. ..
  • the acrylic-based base polymer is used as a constituent monomer component from the viewpoint of high compatibility with the urethane-based segment and improving the transparency of the pressure-sensitive adhesive sheet.
  • a (meth) acrylic acid ester having a hydroxyalkyl group having 4 to 8 carbon atoms is preferably contained.
  • the acrylic base polymer has a hydroxyl group-containing monomer as a constituent monomer component
  • the transparency of the pressure-sensitive adhesive sheet is improved and white turbidity in a high-temperature and high-humidity environment tends to be suppressed.
  • the hydroxyl group of the hydroxyl group-containing monomer can form a physical crosslink by hydrogen bonding with an acrylic polymer chain or a crosslinked segment (for example, a urethane segment) that crosslinks the acrylic polymer chain. Therefore, by increasing the ratio of the hydroxyl group-containing monomer in the monomer components constituting the acrylic polymer chain, the cohesive force tends to be increased and the G'25 ° C. tends to increase even when the gel fraction is low.
  • the amount of the hydroxyl group-containing monomer is preferably 5 to 30% by weight, more preferably 8 to 25% by weight, still more preferably 10 to 20% by weight, based on the total amount of the monomer components constituting the acrylic polymer chain.
  • carboxy group-containing monomer examples include acrylic monomers such as (meth) acrylic acid, carboxyethyl (meth) acrylate, and carboxypentyl (meth) acrylate, and itaconic acid, maleic acid, fumaric acid, and crotonic acid. ..
  • the adhesive sheet When the adhesive sheet is used for adhering the touch panel sensor, it is preferable that the adhesive sheet has a small acid content in order to prevent the electrode from being corroded by the acid component. Further, when the pressure-sensitive adhesive sheet is used for adhering a polarizing plate, the pressure-sensitive adhesive sheet preferably has a small acid content in order to suppress polyene formation of the polyvinyl alcohol-based polarizer due to an acid component.
  • the content of the organic acid monomer such as (meth) acrylic acid in such an acid-free pressure-sensitive adhesive sheet is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less. ..
  • the organic acid monomer content of the pressure-sensitive adhesive sheet is determined by immersing the pressure-sensitive adhesive sheet in pure water, heating it at 100 ° C. for 45 minutes, and quantifying the acid monomer extracted in water by ion chromatography.
  • the amount of the organic acid monomer component such as (meth) acrylic acid in the monomer component constituting the acrylic base polymer is small. Therefore, in order to make the pressure-sensitive adhesive sheet acid-free, it is preferable that the base polymer does not substantially contain an organic acid monomer (carboxy group-containing monomer) as a monomer component.
  • the amount of the carboxy group-containing monomer based on 100 parts by weight of the total monomer components of the base polymer is preferably 0.5 parts by weight or less, more preferably 0.1 parts by weight or less, and more preferably 0.05 parts by weight. The following is more preferable, ideally 0.
  • the acrylic base polymer may contain a nitrogen-containing monomer as a constituent monomer component.
  • the nitrogen-containing monomer include N-vinylpyrrolidone, methylvinylpyrrolidone, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, vinylmorpholin, (meth) acryloylmorpholin, and N-vinyl.
  • vinyl-based monomers such as carboxylic acid amides and N-vinylcaprolactam, and cyano group-containing acrylic monomers such as acrylonitrile and methacrylonitrile.
  • N-vinylpyrrolidone is preferable because it has a high effect of improving the adhesive force by improving the cohesive force.
  • the acrylic-based base polymer contains a highly polar monomer such as a hydroxyl group-containing monomer, a carboxy group-containing monomer, and a nitrogen-containing monomer as a constituent monomer component
  • a highly polar monomer such as a hydroxyl group-containing monomer, a carboxy group-containing monomer, and a nitrogen-containing monomer
  • the cohesive force of the pressure-sensitive adhesive is enhanced and G'25 ° C. is increased.
  • Adhesive retention tends to improve.
  • the content of the highly polar monomer is excessively large, the glass transition temperature may increase and the impact resistance may decrease.
  • the amount of highly polar monomers (total of hydroxyl group-containing monomer, carboxy group-containing monomer, and nitrogen-containing monomer) with respect to the total amount of the monomer components constituting the acrylic polymer chain is preferably 15 to 45% by weight, preferably 20 to 40% by weight. More preferably, 25 to 37% by weight is further preferable. In particular, it is preferable that the total of the hydroxyl group-containing monomer and the nitrogen-containing monomer is within the above range.
  • the amount of the nitrogen-containing monomer with respect to the total amount of the monomer components constituting the acrylic base polymer is preferably 7 to 30% by weight, more preferably 10 to 25% by weight, still more preferably 12 to 22% by weight.
  • Acrylic-based base polymers include acid anhydride group-containing monomers, (meth) acrylic acid caprolactone adducts, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, vinyl acetate, vinyl propionate, and styrene, as monomer components other than the above.
  • Vinyl-based monomers such as ⁇ -methylstyrene; cyano group-containing acrylic monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing monomers such as glycidyl (meth) acrylate; (meth) polyethylene glycol acrylate, (meth) acrylic Glycol-based acrylic ester monomers such as polypropylene glycol acid, methoxyethylene glycol (meth) acrylate, and methoxypolypropylene glycol (meth) acrylate; tetrahydrofurfuryl (meth) acrylate, fluorine (meth) acrylate, silicone (meth) acrylate, etc.
  • Acrylic acid ester-based monomers such as 2-methoxyethyl (meth) acrylic acid may be contained.
  • the acrylic base polymer preferably has the highest content of (meth) acrylic acid alkyl ester among the above-mentioned monomer components.
  • the characteristics of the pressure-sensitive adhesive sheet are easily affected by the type of the monomer (main monomer) having the highest content among the constituent monomers of the acrylic polymer chain.
  • the main monomer of the acrylic polymer chain is a (meth) acrylic acid alkyl ester having a chain alkyl group having 6 or less carbon atoms
  • tan ⁇ 70 ° C. tends to increase and the step absorption tends to be improved.
  • an acrylic acid C 4 alkyl esters, such as butyl acrylate is the major monomer, they tend to tan [delta 70 ° C. increases.
  • the amount of the (meth) acrylic acid alkyl ester having a chain alkyl group having 6 or less carbon atoms is preferably 40 to 85% by weight, more preferably 45 to 80% by weight, based on the total amount of the monomer components constituting the acrylic polymer chain. , 50-75% by weight is more preferable.
  • the content of butyl acrylate as a constituent monomer component is preferably in the above range.
  • the theoretical Tg of the acrylic polymer chain is preferably ⁇ 50 ° C. or higher.
  • the theoretical Tg of the acrylic polymer chain is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and even more preferably ⁇ 25 ° C. or lower.
  • Tg is the glass transition temperature of the polymer chain (unit: K)
  • Wi is the weight fraction of the monomer component i constituting the segment (copolymerization ratio based on the weight)
  • Tg i is the glass transition temperature of the homopolymer of the monomer component i. (Unit: K).
  • the glass transition temperature of the homopolymer the numerical value described in the third edition of the Polymer Handbook (John Wiley & Sons, Inc., 1989) can be adopted.
  • the peak top temperature of the loss tangent (tan ⁇ ) by the dynamic viscoelasticity measurement may be adopted.
  • ⁇ Crosslink structure> For a polymer in which a crosslinked structure is introduced into an acrylic polymer chain, for example, (1) an acrylic polymer having a functional group capable of reacting with a crosslinking agent is polymerized, and then a crosslinking agent is added to obtain the acrylic polymer and the crosslinking agent. (2) By including a polyfunctional compound in the polymer component of the polymer, a branched structure (crosslinked structure) is introduced into the polymer chain, and the like. These may be used in combination to introduce a plurality of crosslinked structures into the base polymer.
  • cross-linking agent in the method of reacting the base polymer of the above (1) with the cross-linking agent include isocyanate-based cross-linking agent, epoxy-based cross-linking agent, oxazoline-based cross-linking agent, aziridine-based cross-linking agent, carbodiimide-based cross-linking agent, and metal.
  • examples include a chelate-based cross-linking agent.
  • isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable because they have high reactivity with the hydroxyl groups and carboxy groups of the base polymer and the cross-linked structure can be easily introduced.
  • cross-linking agents react with functional groups such as hydroxyl groups and carboxy groups introduced into the base polymer to form a cross-linked structure.
  • functional groups such as hydroxyl groups and carboxy groups introduced into the base polymer to form a cross-linked structure.
  • an isocyanate-based cross-linking agent to form a cross-linked structure by reacting a hydroxyl group in the base polymer with the isocyanate cross-linking agent.
  • polyisocyanate-based cross-linking agent polyisocyanate having two or more isocyanate groups in one molecule is used.
  • examples of the isocyanate-based cross-linking agent include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate; 2,4-tolylene diisocyanate.
  • Aromatic isocyanates such as isocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate; trimethylolpropane / trimylene diisocyanate trimer adduct (eg, "Coronate L” manufactured by Toso), trimethylolpropane / hexamethylene Diisocyanate trimeric adduct (for example, “Coronate HL” manufactured by Toso), trimethylolpropane adduct of xylylene diisocyanate (for example, "Takenate D110N” manufactured by Mitsui Chemicals), isocyanurate of hexamethylene diisocyanate (for example, manufactured by Toso).
  • trimylene diisocyanate trimer adduct eg, "Coronate L” manufactured by Toso
  • trimethylolpropane / hexamethylene Diisocyanate trimeric adduct for example, “Cor
  • isocyanate additives such as "Coronate HX”
  • isocyanate-based cross-linking agent By using a urethane prepolymer having an isocyanate group at the terminal as the isocyanate-based cross-linking agent, a cross-linked structure using urethane-based segments can be introduced.
  • the monomer component constituting the acrylic base polymer and the total amount of the polyfunctional compound for introducing the crosslinked structure may be reacted at one time.
  • Polymerization may be carried out in multiple stages.
  • a monofunctional monomer constituting the base polymer is polymerized (prepolymerized) to prepare a partial polymer (prepolymer composition), and the prepolymer composition is polyfunctional (meth).
  • a method of adding a polyfunctional compound such as acrylate to polymerize (mainly polymerize) the prepolymer composition and the polyfunctional monomer is preferable.
  • the prepolymer composition is a partial polymer containing a polymer having a low degree of polymerization and an unreacted monomer.
  • branch points (crosslink points) due to the polyfunctional compound can be uniformly introduced into the base polymer. Further, after applying a mixture (adhesive composition) of a low molecular weight polymer or a partial polymer and an unpolymerized monomer component on a base material, the main polymerization is performed on the base material to form a pressure-sensitive adhesive sheet. You can also. Since a low polymerization composition such as a prepolymer composition has a low viscosity and is excellent in coatability, it is a method of performing main polymerization on a substrate after applying a pressure-sensitive adhesive composition which is a mixture of a prepolymer composition and a polyfunctional compound. According to this, the productivity of the pressure-sensitive adhesive sheet can be improved, and the thickness of the pressure-sensitive adhesive sheet can be made uniform.
  • polyfunctional compound used for introducing the crosslinked structure examples include compounds containing two or more polymerizable functional groups (ethylenically unsaturated groups) having an unsaturated double bond in one molecule.
  • polyfunctional (meth) acrylate is preferable because it can be easily copolymerized with the monomer component of the acrylic base polymer.
  • a polyfunctional acrylate is preferable.
  • polyfunctional (meth) acrylate examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, bisphenol A ethylene oxide-modified di (meth) acrylate, and bisphenol A propylene oxide.
  • urethane (meth) acrylate having a (meth) acryloyl group at the end of the urethane chain as the polyfunctional (meth) acrylate, a crosslinked structure using urethane-based segments can be introduced.
  • urethane-based segment is a molecular chain having a urethane bond, and when both ends of the urethane-based segment are covalently bonded to the acrylic polymer chain, a crosslinked structure by the urethane-based segment is introduced into the acrylic polymer chain.
  • Urethane-based segments typically contain a polyurethane chain obtained by reacting a diol with a diisocyanate.
  • the molecular weight of the polyurethane chain in the urethane-based segment is preferably 5000 to 30000, more preferably 6000 to 23000, and even more preferably 7000 to 20000.
  • the larger the molecular weight of the polyurethane chain in the urethane-based segment the longer the distance between the cross-linking points of the acrylic polymer chain.
  • the polymer having the crosslinked structure introduced has appropriate cohesiveness and fluidity, so that both adhesive strength, step absorption and impact resistance can be achieved at the same time.
  • the tan ⁇ becomes smaller as the cohesive force increases, and the step absorption and impact resistance tend to decrease.
  • the storage elastic modulus may be small and the adhesive holding force may be insufficient.
  • the storage elastic modulus can be increased by increasing the amount of urethane-based segments to increase the gel fraction.
  • the polyurethane chain having a large molecular weight has low compatibility with the acrylic polymer chain, the haze of the pressure-sensitive adhesive may increase as the amount of the urethane-based segment increases, and the transparency may decrease.
  • the amount of the urethane-based segment in the base polymer is preferably 10 parts by weight or less, more preferably 7 parts by weight or less, still more preferably 5 parts by weight or less, based on 100 parts by weight of the acrylic polymer chain.
  • the amount of the urethane-based segment in the base polymer is preferably 0.3 parts by weight or more with respect to 100 parts by weight of the acrylic polymer chain, preferably 0.4. It is more preferably parts by weight or more, and even more preferably 0.5 parts by weight or more.
  • the amount of the urethane-based segment in the base polymer may be 4 parts by weight or less or 3 parts by weight or less, and 0.7 parts by weight or more or 1 part by weight or more with respect to 100 parts by weight of the acrylic polymer chain. May be good.
  • diol used for forming the polyurethane chain examples include low molecular weight diols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol and hexamethylene glycol; polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, epoxy polyol, caprolactone polyol and the like. High molecular weight polyols of.
  • the polyether polyol is obtained by ring-opening addition polymerization of an alkylene oxide on a polyhydric alcohol.
  • alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, and tetrahydrofuran.
  • polyhydric alcohol include the above-mentioned diol, glycerin, trimethylolpropane and the like.
  • the polyester polyol is a polyester having a hydroxyl group at the terminal, and is obtained by reacting a polybasic acid with a polyhydric alcohol so that the alcohol equivalent is excessive with respect to the carboxylic acid equivalent.
  • a polybasic acid component and the polyhydric alcohol component constituting the polyester polyol a combination of dibasic acid and diol is preferable.
  • dibasic acid component examples include aromatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, and terephthalic acid; and alicyclics such as hexahydrophthalic acid, tetrahydrophthalic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, and terephthalic acid
  • alicyclics such as hexahydrophthalic acid, tetrahydrophthalic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid.
  • dicarboxylic acid aliphatic dicarboxylic acids such as oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, dodecandicarboxylic acid, octadecanedicarboxylic acid; Examples thereof include acid anhydrides of dicarboxylic acids and lower alcohol esters.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, and the like.
  • 1,8-octanediol, 1,10-decanediol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, bisphenol A, bisphenol F , Hydrophobic bisphenol A, hydrogenated bisphenol F and the like.
  • the polycarbonate polyol is a polycarbonate polyol obtained by subjecting a diol component and phosgen to a polycondensation reaction; the diol component, dimethyl carbonate, diethyl carbonate, diprovyl carbonate, diisopropyl carbonate, dibutyl carbonate, ethylbutylcarbonate, ethylene carbonate, propylene carbonate, and carbonic acid.
  • Polycarbonate polyol obtained by ester exchange condensation with carbonic acid diesters such as diphenyl and dibenzyl carbonate; copolymerized polycarbonate polyol obtained by using two or more kinds of polyol components in combination; the above-mentioned various polycarbonate polyols and carboxy group-containing compounds are esterified.
  • Polycarbonate polyol obtained by reaction Polycarbonate polyol obtained by etherifying the various polycarbonate polyols and hydroxyl group-containing compounds; Polycarbonate polyol obtained by ester exchange reaction between the various polycarbonate polyols and ester compounds; Polycarbonate polyol obtained by ester exchange reaction of polyol and hydroxyl group-containing compound; Polycarbonate-based polycarbonate polyol obtained by polycondensation of various polycarbonate polyols and dicarboxylic acid compounds; Copolymerization of various polycarbonate polyols and alkylene oxides Examples thereof include the obtained copolymerized polyether-based polycarbonate polyol.
  • the polyacrylic polyol is obtained by copolymerizing a (meth) acrylic acid ester with a monomer component having a hydroxyl group.
  • the monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and (meth).
  • Hydroxyalkyl esters of (meth) acrylic acids such as 4-hydroxybutyl acrylate and 2-hydroxypentyl (meth) acrylate; (meth) acrylic acid monoesters of polyhydric alcohols such as glycerin and trimethyl propane; N- Examples thereof include methylol (meth) acrylamide.
  • the (meth) acrylic acid ester include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • the polyacrylic polyol may contain a monomer component other than the above as a copolymerization component.
  • the copolymerized monomer component other than the above include unsaturated monocarboxylic acids such as (meth) acrylic acid; unsaturated dicarboxylic acids such as maleic acid and their anhydrides and mono- or diesters; and unsaturated nitriles such as (meth) acrylonitrile.
  • unsaturated amides such as (meth) acrylamide and N-methylol (meth) acrylamide
  • vinyl esters such as vinyl acetate and vinyl propionate
  • vinyl ethers such as methyl vinyl ether
  • ⁇ -olefins such as ethylene and propylene
  • examples thereof include halogenated ⁇ , ⁇ -unsaturated aliphatic monomers such as vinyl chloride and vinylidene chloride; and ⁇ , ⁇ -unsaturated aromatic monomers such as styrene and ⁇ -methylstyrene.
  • the diisocyanate used to form the polyurethane chain may be either an aromatic diisocyanate or an aliphatic diisocyanate.
  • aromatic diisocyanis include 1,5-naphthalenediocyanis, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-diphenyldimethylmethane diisocyanate, tetramethyldiphenylmethane diisocyanate, 1,3-phenylenediisocyanate, 1,4-.
  • aliphatic diisocyanate examples include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, and isophorone diisocyanate.
  • Dicyclohexylmethane-4,4'-diisocyanate 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate and the like.
  • a derivative of an isocyanate compound can also be used as the diisocyanate.
  • Derivatives of the isocyanate compound include dimer of polyisocyanate, trimer of isocyanate (isocyanurate), polypeptide MDI, adduct with trimethylolpropane, biuret modified product, allophanate modified product, urea modified product and the like. ..
  • a urethane prepolymer having an isocyanate group at the terminal may be used.
  • polyurethane chains it is preferable to contain a polyether urethane having a polyether polyol as a diol component and / or a polyester urethane having a polyester polyol as a diol component because of its high compatibility with an acrylic polymer chain.
  • a polyether urethane having a polyether polyol as a diol component and / or a polyester urethane having a polyester polyol as a diol component because of its high compatibility with an acrylic polymer chain.
  • the storage elastic modulus at room temperature tends to increase, and the adhesive holding force and workability tend to improve.
  • polyester has a rigid molecular structure as compared with polyether and the like.
  • the storage elastic modulus is increased because the movement of the acrylic polymer chain is restricted, while the distance between the cross-linking points of the polymer chain is maintained, so that it is impact resistant. It is thought that it shows step absorption.
  • a compound having a group By using a compound having a group, a crosslinked structure of urethane-based segments can be introduced into the acrylic polymer chain.
  • Urethane di (meth) having (meth) acryloyl groups at both ends of the polyurethane chain because it is easy to uniformly introduce cross-linking points into the acrylic polymer chain and the compatibility between the acrylic polymer chain and the urethane segment is excellent.
  • a crosslinked structure with urethane-based segments using acrylate.
  • a crosslinked structure by the urethane segment can be introduced into the acrylic polymer chain.
  • Urethane di (meth) acrylate having (meth) acryloyl groups at both ends can be obtained, for example, by using a (meth) acrylic compound having a hydroxyl group in addition to the diol component in the polymerization of polyurethane.
  • a diol and diisocyanate are reacted so as to have an excess of isocyanate to synthesize an isocyanate-terminated polyurethane, and then a (meth) acrylic compound having a hydroxyl group is added. Therefore, it is preferable to react the terminal isocyanate group of polyurethane with the hydroxyl group of the (meth) acrylic compound.
  • a polyurethane chain having an isocyanate group at the terminal can be obtained.
  • a diol component and a diisocyanate component are used so that the NCO / OH (equivalent ratio) is preferably 1.1 to 2.0, more preferably 1.15 to 1.5. do it.
  • the diisocyanate component may be added after the diol component and the diisocyanate component are mixed in substantially equal amounts and reacted.
  • Examples of the (meth) acrylic compound having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxymethylacrylamide, and hydroxyethyl.
  • Examples include acrylamide.
  • urethane (meth) acrylate commercially available products sold by Arakawa Chemical Industry, Shin Nakamura Chemical Industry, Toa Synthetic, Kyoeisha Chemical, Nippon Kayaku, Nippon Synthetic Chemical Industry, Negami Kogyo, Daicel Ornex, etc. are used. May be good.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably 5000 to 30000, more preferably 6000 to 23000, and even more preferably 7000 to 20000.
  • the glass transition temperature of urethane (meth) acrylate is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and even more preferably ⁇ 20 ° C. or lower.
  • the lower limit of the glass transition temperature of urethane (meth) acrylate is not particularly limited, but from the viewpoint of obtaining an adhesive having excellent high-temperature holding power, -100 ° C or higher is preferable, -90 ° C or higher is more preferable, and -80 ° C or higher is preferable. More preferred.
  • the glass transition temperature of the urethane-based segment of the base polymer is approximately equal to the glass transition temperature of urethane (meth) acrylate. ..
  • a polymer in which a crosslinked structure of urethane-based segments is introduced into an acrylic polymer chain can be polymerized by various known methods.
  • urethane (meth) acrylate is used as a constituent component of the urethane-based segment, the monomer component for forming the acrylic polymer chain and urethane (meth) acrylate may be copolymerized.
  • the amount of urethane (meth) acrylate used is preferably 0.3 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, and 0, based on 100 parts by weight of the monomer component for forming the acrylic polymer chain. .7 to 5 parts by weight is more preferable.
  • a base polymer having a urethane-based segment content in the above range can be prepared.
  • the content of the urethane-based segment is excessively small, the adhesive holding force of the pressure-sensitive adhesive sheet tends to decrease due to the decrease in cohesiveness of the base polymer.
  • the viscosity of the pressure-sensitive adhesive sheet tends to decrease as the cohesiveness of the base polymer increases, and the impact resistance and step absorption tend to decrease.
  • a crosslinked structure can be introduced into the acrylic polymer chain by using a polyfunctional (meth) acrylic compound other than urethane (meth) acrylate in addition to urethane (meth) acrylate or instead of urethane (meth) acrylate. If the amount of the crosslinked structure introduced by the polyfunctional compound other than urethane (meth) acrylate increases, the impact resistance and step absorption of the pressure-sensitive adhesive may decrease. Therefore, the amount of the polyfunctional compound other than the urethane (meth) acrylate is preferably 0.2 parts by weight or less, preferably 0.1 parts by weight or less, based on 100 parts by weight of the monomer component for forming the acrylic polymer chain. More preferably, 0.05 parts by weight or less is further preferable.
  • Photopolymerization is preferable as the method for polymerizing the base polymer. Since the polymer can be prepared without using a solvent in photopolymerization, it is not necessary to dry and remove the solvent when forming the pressure-sensitive adhesive sheet, and a thick pressure-sensitive adhesive sheet can be uniformly formed.
  • the monomer components constituting the acrylic polymer chain and the total amount of the polyfunctional compound for introducing the crosslinked structure may be reacted at once, or the polymerization may be carried out in multiple steps.
  • a monofunctional monomer constituting an acrylic polymer chain is polymerized to form a prepolymer composition (prepolymerization), and urethane di (meth) acrylate is contained in the syrup of the prepolymer composition.
  • a method of polymerizing (mainly polymerizing) the prepolymer composition and the polyfunctional monomer by adding a polyfunctional compound such as the above is preferable.
  • the prepolymer composition is a partial polymer containing a polymer having a low degree of polymerization and an unreacted monomer.
  • branch points due to a polyfunctional compound such as urethane di (meth) acrylate can be uniformly introduced into the acrylic polymer chain.
  • a mixture adheresive composition
  • the main polymerization is performed on the base material to form a pressure-sensitive adhesive sheet. You can also.
  • a method of performing main polymerization on a substrate after applying a pressure-sensitive adhesive composition which is a mixture of a prepolymer composition and a polyfunctional compound According to the above, the productivity of the pressure-sensitive adhesive sheet can be improved, and the thickness of the pressure-sensitive adhesive sheet can be made uniform.
  • a pressure-sensitive adhesive sheet As described above, a prepolymer composition having a low degree of polymerization is prepared by prepolymerization, and a pressure-sensitive adhesive composition obtained by adding a polyfunctional compound or the like to the prepolymer composition is applied in a layered manner on the base material, and then on the base material.
  • a pressure-sensitive adhesive sheet can be obtained by polymerizing the pressure-sensitive adhesive composition (main polymerization).
  • the prepolymer composition can be prepared, for example, by polymerizing a composition in which a monomer component constituting an acrylic polymer chain and a polymerization initiator are mixed.
  • the composition for forming a prepolymer may contain a polyfunctional compound (polyfunctional monomer or polyfunctional oligomer).
  • a part of the polyfunctional compound which is a raw material of the polymer may be contained in the composition for forming the prepolymer, and the rest of the polyfunctional compound may be added after the prepolymer is polymerized to be subjected to the main polymerization.
  • the composition for forming a prepolymer preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include a benzoin ether-based photopolymerization initiator, an acetophenone-based photopolymerization initiator, an ⁇ -ketol-based photopolymerization initiator, an aromatic sulfonyl chloride-based photopolymerization initiator, and a photoactive oxime-based photopolymerization initiator.
  • Examples thereof include benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and acylphosphine oxide-based photopolymerization initiators.
  • a chain transfer agent such as ⁇ -thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, and 2,3-dimercapto-1-propanol.
  • thiols such as ⁇ -thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, and 2,3-dimercapto-1-propanol.
  • thiols such as ⁇ -thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-
  • the polymerization rate of the prepolymer is not particularly limited, but is preferably 3 to 50% by weight, more preferably 5 to 40% by weight, from the viewpoint of obtaining a viscosity suitable for coating on a substrate.
  • the polymerization rate of the prepolymer can be adjusted to a desired range by adjusting the type and amount of the photopolymerization initiator, the irradiation intensity and irradiation time of active light such as UV light, and the like.
  • the polymerization rate of the prepolymer is calculated by the following formula from the weight before and after heating when heated at 130 ° C. for 3 hours.
  • a polyfunctional compound such as urethane di (meth) acrylate, and if necessary, the rest of the monomer components constituting the acrylic polymer chain, a polymerization initiator, a chain transfer agent, other additives, and the like are added.
  • a pressure-sensitive adhesive composition preferably has a viscosity suitable for coating on a substrate (for example, about 0.5 to 20 Pa ⁇ s).
  • the viscosity of the pressure-sensitive adhesive composition can be adjusted to an appropriate range. it can.
  • a thickening additive or the like may be used for the purpose of adjusting the viscosity.
  • the polymerization initiator used in the main polymerization is not particularly limited, and for example, the above-mentioned photopolymerization initiator can be used. If the polymerization initiator used in the prepolymerization remains in the prepolymer composition without being deactivated, the addition of the polymerization initiator for the main polymerization may be omitted.
  • Chain transfer agent In this polymerization, it is preferable to adjust the molecular weight by including a chain transfer agent in the pressure-sensitive adhesive composition.
  • the chain transfer agent used in the present polymerization is not particularly limited, and for example, the above-mentioned chain transfer agent can be used.
  • the amount of the chain transfer agent in the pressure-sensitive adhesive composition is preferably 0.001 to 2 parts by weight, more preferably 0.005 to 1 part by weight, and 0.01 to 0.01 parts by weight, based on 100 parts by weight of the constituent components of the base polymer. 0.5 parts by weight is more preferable. If the chain transfer agent used in the prepolymerization remains in the prepolymer composition without being inactivated, the addition of the chain transfer agent to the pressure-sensitive adhesive composition may be omitted.
  • the chain transfer agent receives radicals from the growing polymer chain to stop the elongation of the polymer, and the chain transfer agent that receives the radicals attacks the monomer to restart the polymerization.
  • a chain transfer agent By using a chain transfer agent, an increase in the molecular weight of the polymer can be suppressed without lowering the radical concentration in the reaction system.
  • the ratio of the monofunctional monomer to the polyfunctional monomer is constant, the larger the molecular weight, the higher the probability that one polymer chain contains a cross-linking point (branching point) due to the polyfunctional monomer, so that the gel fraction increases. Tend. By suppressing the elongation of the polymer by using a chain transfer agent, the molecular weight of the polymer tends to be reduced and the increase in gel fraction tends to be suppressed. Therefore, when the pressure-sensitive adhesive composition contains a chain transfer agent, a pressure-sensitive adhesive sheet having a large tan ⁇ and excellent step absorption is easily formed.
  • the pressure-sensitive adhesive composition may contain various oligomers for the purpose of adjusting the adhesive force of the pressure-sensitive adhesive sheet, adjusting the viscosity, and the like.
  • oligomer for example, one having a weight average molecular weight of about 1000 to 30,000 is used.
  • an acrylic oligomer is preferable because it has excellent compatibility with an acrylic base polymer.
  • Acrylic oligomer contains (meth) acrylic acid alkyl ester as a main constituent monomer component.
  • Those containing (meth) acrylate) are preferable.
  • Specific examples of the chain alkyl (meth) acrylate and the alicyclic alkyl (meth) acrylate are as exemplified above as the constituent monomers of the acrylic polymer chain.
  • the glass transition temperature of the acrylic oligomer is preferably 20 ° C. or higher, more preferably 40 ° C. or higher.
  • the glass transition temperature of the acrylic oligomer may be 60 ° C. or higher, 80 ° C. or higher, 100 ° C. or higher, or 110 ° C. or higher.
  • the upper limit of the glass transition temperature of the acrylic oligomer is not particularly limited, but is generally 200 ° C. or lower, preferably 180 ° C. or lower, and more preferably 160 ° C. or lower.
  • the glass transition temperature of the acrylic oligomer is calculated by the Fox formula described above.
  • methyl methacrylate is preferable as the chain alkyl (meth) acrylate because it has a high glass transition temperature and excellent compatibility with the base polymer.
  • the alicyclic alkyl (meth) acrylate dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate are preferable.
  • the acrylic oligomer contains one or more selected from the group consisting of dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate as constituent monomer components, and methyl methacrylate. Is preferable.
  • the amount of the alicyclic alkyl (meth) acrylate is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight, based on the total amount of the monomer components constituting the acrylic oligomer.
  • the amount of the chain alkyl (meth) acrylate with respect to the total amount of the monomer components constituting the acrylic oligomer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight.
  • the weight average molecular weight of the acrylic oligomer is preferably 1000 to 30,000, more preferably 1500 to 10000, and even more preferably 2000 to 8000.
  • Acrylic oligomers are obtained by polymerizing the above monomer components by various polymerization methods.
  • Various polymerization initiators may be used for the polymerization of the acrylic oligomer.
  • a chain transfer agent may be used for the purpose of adjusting the molecular weight.
  • the content of the oligomer in the pressure-sensitive adhesive composition is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the above base polymer. More preferably, 2 to 10 parts by weight.
  • the content of the oligomer in the pressure-sensitive adhesive composition is in the above range, the adhesiveness at high temperature and the holding power at high temperature tend to be improved.
  • silane coupling agent A silane coupling agent may be added to the pressure-sensitive adhesive composition for the purpose of adjusting the adhesive strength.
  • the amount added is usually about 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the base polymer, and 0.03 to 2.0 parts by weight. It is preferably about.
  • the pressure-sensitive adhesive composition may contain an ultraviolet absorber.
  • an ultraviolet absorber it is possible to impart ultraviolet absorbability to the adhesive sheet 5 and prevent deterioration of the polarizing plate 3 and the image display cell 6 due to ultraviolet rays.
  • the ultraviolet absorber examples include benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, triazine ultraviolet absorbers, salicylate-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and the like.
  • a triazine-based UV absorber is preferable because it has high UV absorption, excellent compatibility with an acrylic polymer, and a highly transparent acrylic pressure-sensitive adhesive sheet can be easily obtained.
  • a triazine-based UV absorber containing a hydroxyl group is preferable. Agents are preferred, and hydroxyphenyltriazine-based UV absorbers are particularly preferred.
  • UV absorber A commercially available product may be used as the ultraviolet absorber.
  • commercially available triazine-based UV absorbers include 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hydroxyphenyl and [(alkyloxy).
  • the amount of the ultraviolet absorber added is usually about 0.1 to 10 parts by weight, preferably 0.3 to 5 parts by weight, based on 100 parts by weight of the base polymer.
  • the pressure-sensitive adhesive composition includes additives such as pressure-sensitive adhesives, plasticizers, softeners, deterioration inhibitors, fillers, colorants, antioxidants, surfactants, and antistatic agents. It may be included.
  • the base material and cover sheet used for forming the adhesive sheet may be any suitable base material.
  • the base material and the cover sheet may be a release film having a release layer on the contact surface with the adhesive sheet.
  • the base material of the release film a film made of various resin materials is used.
  • the resin material include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth) acrylic resins.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth) acrylic resins.
  • polyester resins such as polyethylene terephthalate are particularly preferable.
  • the thickness of the base material is preferably 10 to 200 ⁇ m, more preferably 25 to 150 ⁇ m.
  • the material of the release layer include a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, and a fatty acid amide-based release agent.
  • the thickness of the release layer is generally about 10 to 2000 nm.
  • This polymerization is carried out by irradiating the pressure-sensitive adhesive composition coated in layers on the base material with active light.
  • the unreacted monomer component in the prepolymer composition reacts with a polyfunctional compound such as urethane di (meth) acrylate to obtain a polymer in which a crosslinked structure is introduced into an acrylic polymer chain.
  • the active light may be selected according to the type of polymerizable component such as a monomer or urethane (meth) acrylate, the type of photopolymerization initiator, and the like, and generally, ultraviolet rays and / or visible light having a short wavelength are used. ..
  • the integrated light amount of the irradiation light is preferably about 100 to 5000 mJ / cm 2 .
  • the light source for light irradiation is not particularly limited as long as the photopolymerization initiator contained in the pressure-sensitive adhesive composition can irradiate light in a wavelength range having sensitivity, and is an LED light source, a high-pressure mercury lamp, and ultra-high-pressure mercury.
  • Lamps, metal halide lamps, xenon lamps and the like are preferably used. If the residual amount of unreacted monomer is large, the G'25 ° C. of the pressure-sensitive adhesive sheet may decrease and the adhesive holding power may decrease. Therefore, the polymerization rate of the pressure-sensitive adhesive sheet after the main polymerization is preferably 95% or more, more preferably 97% or more, further preferably 98% or more, and particularly preferably 99% or more. In order to increase the polymerization rate, the pressure-sensitive adhesive sheet may be heated to volatilize the residual monomer, the unreacted polymerization initiator and the like.
  • the gel fraction of the pressure-sensitive adhesive sheet is preferably 30 to 80%, more preferably 35 to 70%.
  • the adhesive holding force of the adhesive is enhanced, glue chipping during processing and positional deviation between members are unlikely to occur, and the processability and processing dimensional stability are excellent. .. Further, when the gel fraction is 80% or less, excellent step absorption can be exhibited.
  • the weight average molecular weight of the sol content of the adhesive sheet is preferably 150,000 to 450,000, more preferably 180,000 to 420,000.
  • the sol content is a soluble component obtained by extracting the base polymer with tetrahydrofuran (hereinafter, THF). Since it is difficult to measure the molecular weight of individual polymer chains of a crosslinked polymer (gel), the molecular weight of a sol (non-crosslinked polymer) is an index indicating the degree of elongation of the polymer chain. If the molecular weight of the sol is excessively large, the glass transition temperature may increase and the impact resistance may decrease. On the other hand, if the molecular weight of the sol content is excessively small, the adhesive holding power may decrease.
  • an adhesive sheet in which the release films are temporarily attached to both sides can be obtained.
  • the release film used as the base material or the cover sheet at the time of forming the adhesive sheet may be used as it is as the release films 21 and 22.
  • the thickness of one release film 21 and the thickness of the other release film 22 may be the same or different. Even if the peeling force for peeling the release film temporarily attached to one surface from the adhesive sheet 5 and the release force for peeling the release film temporarily attached to the other surface from the adhesive sheet 5 are the same. It may be different. If the peeling forces of the two are different, the release film 22 (light peeling film) having a relatively small peeling force is peeled off from the adhesive sheet 5 first and bonded to the first adherend, and is relatively relative. Excellent workability when the release film 21 (heavy release film) having a large peeling force is peeled off and bonded to the second adherend.
  • the adhesive sheet 5 can be used for bonding various transparent members and opaque members.
  • the type of the adherend is not particularly limited, and examples thereof include various resin materials, glass, and metal. Since the adhesive sheet 5 has high transparency, it is suitable for bonding optical members such as an image display device. In particular, since the adhesive sheet 5 is excellent in step absorption and impact resistance, it is suitably used for bonding a transparent member such as a front transparent plate or a touch panel to the visible side surface of an image display device.
  • FIG. 2 is a cross-sectional view showing an example of a laminated configuration of an image display device in which a front transparent plate 7 is attached to the visible side surface of the image display panel 10 via an adhesive sheet 5.
  • the image display panel 10 includes a polarizing plate 3 attached to the visible surface of the image display cell 6 such as a liquid crystal cell or an organic EL cell via an adhesive sheet 4.
  • the front transparent plate 7 is provided with a print layer 76 on the peripheral edge of one surface of the transparent flat plate 71.
  • a transparent resin plate such as an acrylic resin or a polycarbonate resin, a glass plate, or the like is used.
  • the transparent plate 71 may have a touch panel function.
  • an arbitrary type touch panel such as a resistive film type, a capacitance type, an optical method, and an ultrasonic method is used.
  • the polarizing plate 3 provided on the surface of the image display panel 10 and the printing layer 76 forming surface of the front transparent plate 7 are bonded to each other via the adhesive sheet 5.
  • the order of bonding is not particularly limited, and the adhesive sheet 5 may be bonded to the image display panel 10 first, or the adhesive sheet 5 may be bonded to the front transparent plate 7 first. Good. In addition, both can be bonded at the same time. From the viewpoint of bonding workability and the like, one release film (light release film) 2 is peeled off, the surface of the exposed adhesive sheet 5 is bonded to the image display panel 10, and then the other release film 21 is bonded. It is preferable to peel off the (heavy release film) and attach the exposed surface of the adhesive sheet to the front transparent plate 7.
  • defoaming is performed to remove air bubbles near the interface between the adhesive sheet 5 and the flat plate 71 portion of the front transparent plate 7 and the non-flat portion such as the printing layer 76.
  • the defoaming method an appropriate method such as heating, pressurization, or depressurization can be adopted.
  • the bonding is performed under reduced pressure and heating while suppressing the mixing of bubbles, and then the pressurization is performed at the same time as heating by an autoclave treatment or the like for the purpose of suppressing delay bubbles.
  • the heating temperature is generally about 40 to 150 ° C.
  • pressurization is performed, the pressure is generally about 0.05 MPa to 2 MPa.
  • the adhesive sheet 5 has a large shear storage elastic modulus, it is excellent in adhesive reliability in a wide temperature range. Therefore, even if stress strain occurs at the bonding interface of the pressure-sensitive adhesive sheet due to a temperature change during sealing with a resin material or the like, peeling at the bonding interface can be suppressed. Further, since the adhesive sheet 5 has a low glass transition temperature and a large peak top value of tan ⁇ , it has excellent impact resistance in a wide temperature range and is unlikely to be peeled off due to an impact such as dropping.
  • the pressure-sensitive adhesive sheet 5 can be used as a film with a pressure-sensitive adhesive in which a release film is temporarily attached to both sides, and the pressure-sensitive adhesive sheet is fixed to an optical film or the like.
  • the release film 21 is temporarily attached to one surface of the adhesive sheet 5, and the polarizing plate 3 is fixed to the other surface of the adhesive sheet 5.
  • an adhesive sheet 4 is further provided on the polarizing plate 3, and the release film 24 is temporarily attached on the adhesive sheet 4.
  • the release film 21 temporarily attached to the surface of the pressure-sensitive adhesive sheet 5 is peeled off and bonded to the front transparent member. Just do it.
  • FIGS. 1 to 4 the form in which the image display panel 10 (polarizing plate 3) and the front transparent plate 7 (cover window) are bonded to each other by the base material-less double-sided adhesive sheet 5 has been mainly described, but the types of adherends have been described. And combinations are not limited to these.
  • the cover window and the touch panel sensor may be attached to each other via the adhesive sheet 5.
  • another adhesive sheet is used for bonding the touch panel sensor and the image display panel.
  • the adhesive sheet 5 can also be used as an adhesive layer for one or both of the double-sided adhesive sheets with a base material.
  • the first pressure-sensitive adhesive layer 51 is laminated on one surface of the transparent film base material 59, and the second pressure-sensitive adhesive layer 53 is formed on the other side of the transparent film base material 59. It is laminated. Release films 21 and 23 are temporarily attached to the surfaces of the pressure-sensitive adhesive layers 51 and 53.
  • FIG. 6 is a cross-sectional view showing a configuration example of an image display device 206 in which a front transparent plate 7 is fixed to a visible surface of an image display panel 10 using a double-sided adhesive sheet 15 with a base material.
  • the first pressure-sensitive adhesive layer 51 is bonded to the front transparent plate 7, and the second pressure-sensitive adhesive layer 53 is bonded to the polarizing plate 3 of the image display panel 10.
  • a transparent resin film is used as the transparent film base material 59 of the double-sided pressure-sensitive adhesive sheet 15 with a base material.
  • the total light transmittance of the transparent film base material 59 is preferably 85% or more, more preferably 90% or more.
  • the resin material constituting the film substrate is not particularly limited as long as it has transparency, and polyesters such as polyethylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; cyclic polyolefins such as norbornene-based polymers; diacetyl cellulose, Cellular polymers such as triacetyl cellulose; acrylic polymers; styrene polymers; polycarbonate, polyamide, polyimide, polyether ether ketones and the like can be mentioned.
  • the thickness of the transparent film base material 59 is preferably about 15 to 150 ⁇ m, more preferably 25 to 120 ⁇ m, and even more preferably 35 to 100 ⁇ m. From the viewpoint of suppressing the coloring of the iris pattern (iris phenomenon) when the screen of the image display device is visually recognized, the transparent film base material 59 preferably has optical isotropic properties.
  • the in-plane retardation of the transparent film substrate 59 at a wavelength of 590 nm is preferably 50 nm or less, more preferably 30 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the double-sided pressure-sensitive adhesive sheet 15 with a base material preferably has step absorption in addition to adhesive holding power, dimensional stability and impact resistance when bonded to the front transparent plate. Therefore, it is preferable to use the pressure-sensitive adhesive sheet 5 having the above-mentioned various properties as the first pressure-sensitive adhesive layer 51.
  • the thickness of the first pressure-sensitive adhesive layer 51 is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the thickness of the first pressure-sensitive adhesive layer 51 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 250 ⁇ m or less.
  • the pressure-sensitive adhesive constituting the second pressure-sensitive adhesive layer 53 arranged on the image display panel 10 side of the transparent film base material 59 is not particularly limited as long as it is a transparent pressure-sensitive adhesive.
  • the pressure-sensitive adhesive of the first pressure-sensitive adhesive layer 51 and the pressure-sensitive adhesive of the second pressure-sensitive adhesive layer 53 may be the same or different.
  • a pressure-sensitive adhesive sheet 5 having the above-mentioned characteristics may be used as the second pressure-sensitive adhesive layer 53 from the viewpoint of enhancing the adhesive holding power, dimensional stability, and impact resistance.
  • the thickness of the second adhesive layer 53 is not particularly limited. From the viewpoint of imparting impact resistance, the thickness of the second pressure-sensitive adhesive layer 53 is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more. On the other hand, since the second pressure-sensitive adhesive layer 53 is not required to have step absorption, the thickness of the second pressure-sensitive adhesive layer 53 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, from the viewpoint of dimensional stability and productivity. It is more preferably 120 ⁇ m or less. The thickness of the second pressure-sensitive adhesive layer 53 may be 100 ⁇ m or less or 80 ⁇ m or less.
  • the thickness of the second pressure-sensitive adhesive layer 53 is preferably smaller than the thickness of the first pressure-sensitive adhesive layer 51.
  • the thickness of the second pressure-sensitive adhesive layer 53 is preferably 0.2 to 0.85 times, more preferably 0.3 to 0.8 times, and 0.4 to 0.75 times the thickness of the first pressure-sensitive adhesive layer 51. Is even more preferable.
  • the double-sided pressure-sensitive adhesive sheet 15 with a base material adheres to the second pressure-sensitive adhesive layer 53 with an optical film or the like, in addition to the form in which the release films 21 and 23 are temporarily attached to the pressure-sensitive adhesive layers 51 and 53. It can also be used as a film with an adhesive. Further, as in the form shown in FIG. 4, it can also be used as an optical film with a double-sided adhesive, which is further provided with an adhesive sheet on the optical film (polarizing plate) bonded to the second pressure-sensitive adhesive layer.
  • reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the weight average molecular weight of the acrylic oligomer was 5100.
  • Example 1 Polymerization of prepolymer
  • BA butyl acrylate
  • NDP N-vinyl-2-pyrrolidone
  • 4HBA 4-hydroxybutyl acrylate
  • photopolymerization initiation as monomer components for prepolymer formation.
  • the agent BASF "Irgacure 184": 0.05 parts by weight and BASF “Irgacure 651”: 0.05 parts by weight
  • the polymer was polymerized by irradiating with ultraviolet rays until the temperature reached about 20 Pa ⁇ s to obtain a prepolymer composition (polymerization rate; about 9%).
  • NVP 3 parts by weight and 4HBA: 8 parts by weight as a monofunctional monomer
  • polyester urethane diacrylate as a urethane (meth) acrylate (“Art Resin UN-350” manufactured by Negami Kogyo): 2
  • parts by weight of the acrylic oligomer 5 parts by weight
  • photopolymerization initiator "Irgacure 184": 0.05 parts by weight
  • Irgacure 651" 0.55 parts by weight
  • chain transfer agent ⁇ -methylstyrene.
  • a 75 ⁇ m-thick polyethylene terephthalate (PET) film (“Diafoil MRF75” manufactured by Mitsubishi Chemical Co., Ltd.) with a silicone-based release layer on the surface is used as a base material (cum-heavy release film), and the above photocurable adhesive is applied on the base material.
  • the agent composition was applied so as to have a thickness of 150 ⁇ m to form a coating layer.
  • a PET film (“Diafoil MRE75” manufactured by Mitsubishi Chemical Corporation) having a thickness of 75 ⁇ m, which had one side treated with silicone peeling as a cover sheet (also a light peeling film), was laminated.
  • This laminate was photocured by irradiating it with ultraviolet rays from the cover sheet side with a black light whose position was adjusted so that the irradiation intensity on the irradiation surface directly under the lamp was 5 mW / cm 2 , and the thickness was 150 ⁇ m and the polymerization rate was 99. %% Adhesive sheet was obtained.
  • Table 1 shows the composition of the charged monomer in the polymerization of the prepolymer, the type and amount of the monofunctional monomer and the polyfunctional compound (urethane acrylate and / or the polyfunctional acrylate) to be added to the pressure-sensitive adhesive composition, and the amount of the chain transfer agent added. And changed as shown in Table 2.
  • a photocurable pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except for the above, and coated on a substrate and photo-cured to obtain a pressure-sensitive adhesive sheet.
  • a photopolymerization initiator (“Irgacure 184”: 0.05 parts by weight and “Irgacure 651”: 0.55 parts by weight); and a silane coupling agent (“KBM-403”: 0). .3 parts by weight) is the same in all Examples and Comparative Examples, so the description of these components is omitted in Tables 1 and 2.
  • the pressure-sensitive adhesive sample wrapped in the porous polytetrafluoroethylene membrane was immersed in about 50 mL of ethyl acetate at 23 ° C. for 7 days to elute the sol component of the pressure-sensitive adhesive out of the porous polytetrafluoroethylene membrane. .. After the immersion, the pressure-sensitive adhesive wrapped in the porous polytetrafluoroethylene film was taken out, dried at 130 ° C. for 2 hours, allowed to cool for about 20 minutes, and then the dry weight (C) was measured.
  • GPC gel permeation chromatography
  • the shear storage elastic modulus G'25 ° C. at 25 ° C. and the loss tangent tan ⁇ 70 ° C. at 70 ° C. were read. Further, the temperature at which the loss tangent (tan ⁇ ) is maximized (peak top temperature) was defined as the glass transition temperature of the adhesive sheet.
  • ⁇ Adhesive strength> The light release film is peeled off from the adhesive sheet, a PET film with a thickness of 50 ⁇ m is attached, cut into a width of 10 mm and a length of 100 mm, the heavy release film is peeled off, and the heavy release film is pressure-bonded to a glass plate with a 5 kg roller.
  • a sample for force measurement was prepared. After holding the sample for adhesive force measurement in an environment of 25 ° C. for 30 minutes, the test piece is peeled off from the glass plate under the conditions of a tensile speed of 300 mm / min and a peeling angle of 180 ° using a tensile tester. The force was measured.
  • ⁇ Haze> Using a test piece in which an adhesive sheet is attached to a non-alkali glass (total light transmittance 92%, haze 0.4%) having a thickness of 800 ⁇ m, and using a haze meter (“HM-150” manufactured by Murakami Color Technology Research Institute), The haze was measured. The value obtained by subtracting the haze (0.4%) of the non-alkali glass from the measured value was taken as the haze of the adhesive sheet.
  • HM-150 manufactured by Murakami Color Technology Research Institute
  • the adhesive sheet was cut into a size of 75 mm ⁇ 45 mm, the light release film was peeled off from the adhesive sheet, and a roll laminator (pressure between rolls: 0.2 MPa, feed rate: feed rate:) was placed in the center of the PET film having a thickness of 125 ⁇ m cut out to 100 mm ⁇ 50 mm. It was bonded at 100 mm / min). After that, the heavy release film was peeled off, and a glass plate (100 mm ⁇ 50 mm) having a thickness of 500 ⁇ m on which black ink (printing thickness: 25 ⁇ m or 40 ⁇ m) was printed in a frame shape on the peripheral edge was used as a roll laminator (pressure between rolls: 0).
  • the light release film was peeled off from the adhesive sheet, attached to a PET film having a thickness of 100 ⁇ m (Toyobo's "Cosmo Shine A4100"), and punched from the PET film side using a press machine to prepare a sample for processability evaluation. ..
  • This sample was left in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% for 1 week, then the heavy-release film was peeled off, and the presence or absence of adhesive chipping was visually observed. Those without glue chipping were marked with ⁇ , and those with glue chipping were marked with x.
  • the ink printing area of the glass plate was 5 mm from both ends in the short side direction and 15 mm from both ends in the long side direction, and the black ink layer was in contact with the area 5 mm from the four side ends of the adhesive sheet.
  • This sample was treated in an autoclave (50 ° C., 0.5 MPa) for 30 minutes.
  • FIG. 7A After holding the above sample in an environment of 60 ° C. for 30 minutes, as shown in FIG. 7A, a polystyrene sheet having a thickness of 200 ⁇ m was inserted between two glass plates at a distance of 1 mm from the end of the adhesive sheet. It was held for 10 seconds. The edge of the adhesive sheet was observed with a digital microscope at a magnification of 20 times. Those in which streak-shaped bubbles (see FIG. 7B) or the adhesive sheet was peeled off from the glass plate were evaluated as x, and those in which neither bubbles nor peeling occurred were evaluated as ⁇ .
  • test sample 95 fixed on the table 93 with an adhesive tape was held in an environment of -5 ° C for 24 hours, and then within 40 seconds after being taken out to room temperature, a metal ball 97 having a mass of 11 g was placed on the glass plate 7. Was dropped from a height of 300 mm to perform an impact resistance test.
  • a tubular guide 99 is used to keep the falling position of the metal ball constant, and the print layer 76 is separated from the corner of the inner edge of the frame of the print area by 10 mm in each of the short side direction and the long side direction.
  • the metal ball 97 was dropped at the above position. Two tests were performed, and those in which the glass plate did not peel off in any of the tests were evaluated as 0, and those in which peeling of the glass plate occurred in either or both of the two tests were evaluated as x.
  • Tables 1 and 2 show the composition of the pressure-sensitive adhesive composition used for producing each pressure-sensitive adhesive sheet and the evaluation results of the pressure-sensitive adhesive sheet.
  • each component is described by the following abbreviations.
  • UN-350 "Art Resin UN-350” manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 12500)
  • UN-350ND “Art Resin UN-350NDTN011” manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 7600)
  • UN-350MU "Art Resin UN-350MU” manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 25,000)
  • UV-3305B "Shikou UV-3305B” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • the adhesives of the examples were excellent in adhesiveness and workability, and also had excellent step absorption and drop impact durability.
  • Example 4 as the amount of the chain transfer agent added afterwards was reduced, the gel fraction and the molecular weight of the sol component increased, and tan ⁇ 70 ° C. decreased.
  • Example 4 in which the amount of the chain transfer agent added was 0.03 parts by weight, the step absorption was lower than in the other examples.
  • Comparative Example 1 in which the chain transfer agent was not added, the gel fraction was over 80, the glass transition temperature was high, and the step absorption and drop impact resistance were lowered.
  • Example 5 In Examples 5 and 6 in which the amount of urethane diacrylate added was larger than that in Example 1, the gel fraction increased and tan ⁇ 70 ° C. decreased. Also in the comparison between Example 12 and Example 13 in which the type of urethane diacrylate was changed, the gel fraction tended to increase and the tan ⁇ 70 ° C. tended to decrease as the amount of urethane diacrylate added increased. It was. The same tendency was observed in the comparison between Example 16 and Comparative Example 6 having different polymer compositions, and Comparative Example 6 in which the amount of urethane diacrylate added was large was inferior in step absorption.
  • Example 7 in which the amount of urethane diacrylate added was small, the gel fraction was lower and tan ⁇ 70 ° C. was higher than in Example 1.
  • Comparative Example 2 in which the amount of urethane diacrylate added was even smaller, the gel fraction was reduced to 13%, and the processability was insufficient.
  • Example 8 in which the polyfunctional acrylate was used in combination with the urethane diacrylate as the polyfunctional monomer, the same excellent characteristics as those of the other examples were exhibited.
  • Comparative Example 3 in which urethane diacrylate was not used as the polyfunctional monomer and only polyfunctional acrylate was used, the gel fraction was significantly increased, tan ⁇ 70 ° C. was small, and the step absorption was inferior.
  • Comparative Example 5 in which urethane monoacrylate was used as a post-addition component, although an appropriate amount of urethane acrylate was used, an appropriate crosslinked structure was not formed, so that the gel fraction and storage elastic modulus were low, and the interlayer adhesiveness and interlayer adhesiveness were improved. The workability was inferior.
  • Example 9 Example 10 and Example 11 using a relatively low molecular weight urethane diacrylate, and Example 6, Example 1 and Example 7 using a relatively high molecular weight urethane diacrylate.
  • the smaller the molecular weight of the urethane diacrylate the smaller the tan ⁇ 70 ° C. tended to be.
  • Comparative Example 4 in which urethane diacrylate having a large molecular weight was used, deterioration in interlayer adhesiveness and processability was observed.
  • the haze of the adhesive sheet increased and the transparency was inferior. The decrease in transparency is considered to be due to the decrease in compatibility between the main chain structure of the base polymer and the urethane segment forming the crosslinked structure.
  • the composition and crosslinked structure of the base polymer are adjusted, and the gel fraction, the shear storage elastic modulus at room temperature G'25 ° C. , and the high temperature loss tangent tan ⁇ 70 ° C. are set within the predetermined ranges.
  • the gel fraction, the shear storage elastic modulus at room temperature G'25 ° C. , and the high temperature loss tangent tan ⁇ 70 ° C. are set within the predetermined ranges.

Abstract

Provided is a pressure-sensitive adhesive sheet which need not be photocured after application to adherends and which can combine irregularity-absorbing properties with dimensional stability. The pressure-sensitive adhesive sheet (5) is a sheet formed from a pressure-sensitive adhesive comprising a base polymer having a crosslinked structure and has a shear storage modulus at 25°C of 0.16 MPa or greater and a loss tangent at 70°C of 0.25 or greater. The pressure-sensitive adhesive sheet has a glass transition temperature of preferably -3°C or lower. The pressure-sensitive adhesive has a gel content of preferably 30-80% and a polymer content (nonvolatile content) of 95% or higher.

Description

粘着シートおよびその製造方法、ならびに画像表示装置Adhesive sheet and its manufacturing method, and image display device
 本発明は、粘着シートおよびその製造方法に関する。さらに、本発明は当該粘着シートを用いた画像表示装置に関する。 The present invention relates to an adhesive sheet and a method for producing the same. Furthermore, the present invention relates to an image display device using the adhesive sheet.
 携帯電話、スマートフォン、カーナビゲーション装置、パソコン用モニタ、テレビ等の各種画像表示装置として、液晶表示装置や有機EL表示装置が広く用いられている。外表面からの衝撃による画像表示パネルの破損防止等を目的として、画像表示パネルの視認側に、透明樹脂板やガラス板等の前面透明板(「カバーウインドウ」等とも称される)が設けられることがある。また、近年、画像表示パネルの視認側にタッチパネルを備えるデバイスが普及している。 Liquid crystal display devices and organic EL display devices are widely used as various image display devices such as mobile phones, smartphones, car navigation devices, personal computer monitors, and televisions. A front transparent plate (also referred to as a "cover window") such as a transparent resin plate or a glass plate is provided on the visual side of the image display panel for the purpose of preventing damage to the image display panel due to an impact from the outer surface. Sometimes. Further, in recent years, a device having a touch panel on the visual side of an image display panel has become widespread.
 前面透明部材の周縁には、装飾や光遮蔽を目的とした着色層(加飾印刷層)が形成される場合がある。加飾印刷層を有する透明部材に粘着剤を貼り合わせると、印刷段差部の周辺に気泡が生じ易い。そのため、厚みの大きい粘着シートにより段差吸収性を持たせ、気泡混入等の不具合を抑制する方法が採用されている。 A colored layer (decorative printing layer) for decoration or light shielding may be formed on the periphery of the front transparent member. When the adhesive is attached to the transparent member having the decorative printing layer, air bubbles are likely to be generated around the printing step portion. Therefore, a method is adopted in which a thick adhesive sheet is used to absorb steps to prevent problems such as air bubbles from being mixed.
 また、段差吸収性を付与するために、光硬化性を有する粘着剤組成物からなる粘着シートを前面透明部材の貼り合わせに用いることが提案されている。例えば、特許文献1では、溶液重合により調製したポリマー溶液に、多官能モノマーおよび光重合開始剤を添加した組成物を、基材上に塗布し、加熱により溶媒を除去して光硬化性の粘着シートを作製した例が示されている。特許文献2には、低分子量のポリマー、単官能モノマーおよび多官能モノマー、ならびに光重合開始剤を含む無溶媒型の組成物を、基材上に塗布し、光硬化することにより粘着シートを作製した例が示されている。光硬化の際に、組成物中のモノマー成分の一部を未反応の状態で残存させておくことにより、流動性が高く、段差吸収性に優れる粘着シートが形成される。 Further, in order to impart step absorption, it has been proposed to use an adhesive sheet made of a photocurable adhesive composition for bonding front transparent members. For example, in Patent Document 1, a composition obtained by adding a polyfunctional monomer and a photopolymerization initiator to a polymer solution prepared by solution polymerization is applied onto a substrate, and the solvent is removed by heating to obtain a photocurable adhesion. An example of making a sheet is shown. In Patent Document 2, a solvent-free composition containing a low molecular weight polymer, a monofunctional monomer and a polyfunctional monomer, and a photopolymerization initiator is applied onto a substrate and photocured to prepare an adhesive sheet. An example is shown. By leaving a part of the monomer components in the composition in an unreacted state at the time of photo-curing, an adhesive sheet having high fluidity and excellent step absorption is formed.
 光硬化性の粘着シートは、光重合性を有するモノマーまたはオリゴマーを未反応の状態で含んでいるため、粘着剤の流動性が高く、段差吸収性に優れている。被着体との貼り合わせ後に粘着シートに活性光線を照射して光硬化を行うことにより、粘着剤の流動性が低下し、接着保持力が向上する。 Since the photocurable pressure-sensitive adhesive sheet contains a photopolymerizable monomer or oligomer in an unreacted state, the pressure-sensitive adhesive has high fluidity and excellent step absorption. By irradiating the pressure-sensitive adhesive sheet with active light rays and performing photo-curing after bonding with the adherend, the fluidity of the pressure-sensitive adhesive is reduced and the adhesive holding power is improved.
特開2014-227453号公報Japanese Unexamined Patent Publication No. 2014-227453 国際公開第2013/161666号International Publication No. 2013/161666
 カバーウインドウ等の前面透明部材が、表示パネルよりもサイズが大きい画像表示装置では、表示パネルの外周縁よりも外側の領域で、前面透明部材と筐体とが接着テープ等により貼り合わせられている。すなわち、前面透明部材は、接着テープ等による筐体への貼り合わせと、層間充填用粘着シートによる表示パネル表面への貼り合わせとの併用により固定されている。 In an image display device in which the front transparent member such as a cover window is larger than the display panel, the front transparent member and the housing are bonded to each other by an adhesive tape or the like in an area outside the outer peripheral edge of the display panel. .. That is, the front transparent member is fixed by a combination of bonding to the housing with an adhesive tape or the like and bonding to the surface of the display panel with an adhesive sheet for interlayer filling.
 近年、スマートフォン等のモバイル機器を中心に、表示装置の狭額縁化やベゼルレス化が進んでいる。狭額縁化やベゼルレス化に伴い、表示パネル10のサイズが、前面透明部材7のサイズと同等または、前面透明部材のサイズよりも大きい画像表示装置も開発されるに至っている。このような構成では、筐体9と前面透明部材7とを接着テープ等により固定することができず、粘着シート5のみで前面透明部材7を固定する必要がある(図2参照)。これに伴って、粘着シートには、より高い接着力が要求されるとともに、落下等の衝撃による剥がれが生じないことが要求されている。 In recent years, display devices have become narrower and bezel-less, mainly for mobile devices such as smartphones. With the narrowing of the frame and the bezel-less, an image display device in which the size of the display panel 10 is equal to or larger than the size of the front transparent member 7 has been developed. In such a configuration, the housing 9 and the front transparent member 7 cannot be fixed by an adhesive tape or the like, and the front transparent member 7 needs to be fixed only by the adhesive sheet 5 (see FIG. 2). Along with this, the adhesive sheet is required to have a higher adhesive force and is required not to be peeled off due to an impact such as dropping.
 また、狭額縁化やベゼルレス化に伴い、画像表示装置の組み立てや、仕掛品の搬送時にも、高い寸法安定性が要求されるようになっている。特許文献1や特許文献2に記載の光硬化性の粘着シートは、段差吸収性を持たせるために粘着剤の柔軟性を高めており、光硬化前の状態では、搬送や加工の際に外力が加わると粘着シートが変形しやすいため、貼り合わせ部材間の位置ズレが生じる場合がある。また、被着体との貼り合わせ後に光硬化を行う必要があるため、画像表示装置の製造工程が煩雑となりやすい。 In addition, due to the narrowing of the frame and the bezel-less design, high dimensional stability is required even when assembling the image display device and transporting work-in-process. The photocurable adhesive sheet described in Patent Document 1 and Patent Document 2 enhances the flexibility of the adhesive in order to have step absorption, and in the state before photocuring, an external force is applied during transportation or processing. If is added, the adhesive sheet is easily deformed, so that the bonding members may be displaced from each other. Further, since it is necessary to perform photo-curing after bonding with the adherend, the manufacturing process of the image display device tends to be complicated.
 上記に鑑み、本発明は、被着体との貼り合わせ後に光硬化を必要とせず、段差吸収性と寸法安定性とを両立可能であり、かつ接着耐久性と耐衝撃性を備える粘着シートの提供を目的とする。 In view of the above, the present invention is an adhesive sheet which does not require photo-curing after being bonded to an adherend, can achieve both step absorption and dimensional stability, and has adhesive durability and impact resistance. For the purpose of providing.
 本発明の一実施形態は、架橋構造を有するベースポリマーを含む粘着剤がシート状に形成されている両面粘着シートである。粘着シートの温度25℃における剪断貯蔵弾性率G’25℃は0.16MPa以上が好ましく、温度70℃における損失正接tanδ70℃は0.25以上が好ましい。粘着シートのガラス転移温度は-3℃以下が好ましい。 One embodiment of the present invention is a double-sided pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive containing a base polymer having a crosslinked structure is formed in a sheet shape. The shear storage elastic modulus G'25 ° C. of the pressure-sensitive adhesive sheet at a temperature of 25 ° C. is preferably 0.16 MPa or more, and the loss tangent tan δ 70 ° C. at a temperature of 70 ° C. is preferably 0.25 or more. The glass transition temperature of the adhesive sheet is preferably -3 ° C or lower.
 粘着シートのゲル分率は、30~80%が好ましい。粘着シートを構成する粘着剤の重合率は95%以上が好ましい。粘着剤のゾル分の重量平均分子量は、例えば15万~40万である。粘着シートのヘイズは1%以下が好ましい。 The gel fraction of the adhesive sheet is preferably 30 to 80%. The polymerization rate of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive sheet is preferably 95% or more. The weight average molecular weight of the sol of the pressure-sensitive adhesive is, for example, 150,000 to 400,000. The haze of the adhesive sheet is preferably 1% or less.
 粘着シートに含まれるベースポリマーは、例えば、アクリル系ポリマー鎖がウレタン系セグメントにより架橋されたポリマーを含む。上記の諸特性を満足するためには、アクリル系ポリマー鎖100重量部に対するウレタン系セグメントの含有量は、0.3~10重量部が好ましい。ウレタン系セグメントの重量平均分子量は、例えば、5000~30000である。 The base polymer contained in the adhesive sheet includes, for example, a polymer in which an acrylic polymer chain is crosslinked by a urethane segment. In order to satisfy the above characteristics, the content of the urethane-based segment with respect to 100 parts by weight of the acrylic polymer chain is preferably 0.3 to 10 parts by weight. The weight average molecular weight of the urethane-based segment is, for example, 5000 to 30,000.
 粘着剤のベースポリマーは、例えば、架橋構造を有するアクリル系ポリマーであり、アクリル系ポリマー鎖に、多官能(メタ)アクリレートや、ウレタン(メタ)アクリレートにより架橋構造が導入されたものであってもよい。アクリル系ポリマー鎖は、好ましくは、構成モノマー成分全量に対する(メタ)アクリル酸アルキルエステルの量が50重量%以上である。アクリル系ポリマー鎖は、構成モノマー成分全量に対する水酸基含有モノマーの量と窒素含有モノマーの量の合計が15~45重量%であってもよい。 The base polymer of the pressure-sensitive adhesive is, for example, an acrylic polymer having a crosslinked structure, even if the crosslinked structure is introduced into the acrylic polymer chain by polyfunctional (meth) acrylate or urethane (meth) acrylate. Good. The amount of (meth) acrylic acid alkyl ester in the acrylic polymer chain is preferably 50% by weight or more based on the total amount of the constituent monomer components. In the acrylic polymer chain, the total amount of the hydroxyl group-containing monomer and the nitrogen-containing monomer with respect to the total amount of the constituent monomer components may be 15 to 45% by weight.
 ベースポリマーは、アクリル系ポリマー鎖に、ウレタン系セグメントによる架橋構造が導入されたポリマーを含んでいてもよい。例えば、アクリル系ポリマー鎖を構成するアクリル系モノマーと、少なくとも2つの末端に(メタ)アクリロイル基を有する多官能ウレタン(メタ)アクリレートとの共重合により、アクリル系ポリマー鎖にウレタン系セグメントによる架橋構造が導入されたアクリル系ポリマーが得られる。 The base polymer may contain a polymer in which a crosslinked structure with urethane-based segments is introduced into an acrylic polymer chain. For example, by copolymerizing an acrylic monomer constituting an acrylic polymer chain with a polyfunctional urethane (meth) acrylate having at least two (meth) acryloyl groups at the ends, a crosslinked structure of the acrylic polymer chain with a urethane segment. An acrylic polymer in which is introduced is obtained.
 ウレタン(メタ)アクリレートとしては、両末端に(メタ)アクリロイル基を有するウレタンジ(メタ)アクリレートが好ましい。ウレタン(メタ)アクリレートの重量平均分子量は5000~30000が好ましい。ウレタン(メタ)アクリレートのガラス転移温度は0℃以下が好ましい。ウレタン(メタ)アクリレートは、ポリエステルウレタン(メタ)アクリレートを含んでいてもよい。 As the urethane (meth) acrylate, urethane di (meth) acrylate having (meth) acryloyl groups at both ends is preferable. The weight average molecular weight of the urethane (meth) acrylate is preferably 5000 to 30,000. The glass transition temperature of urethane (meth) acrylate is preferably 0 ° C. or lower. The urethane (meth) acrylate may contain a polyester urethane (meth) acrylate.
 アクリル系ポリマー鎖がウレタン系セグメントにより架橋されたベースポリマーを含む粘着シートは、例えば、アクリル系モノマーおよび/またはその部分重合物、ならびにウレタン(メタ)アクリレートを含む組成物を基材上に層状に塗布した後、組成物に活性光線を照射して光硬化を行うことにより得られる。粘着剤組成物は、アクリル系モノマーおよびその部分重合物の合計100重量部に対するウレタン(メタ)アクリレートの含有量が、0.3~10重量部であることが好ましい。 A pressure-sensitive adhesive sheet containing a base polymer in which an acrylic polymer chain is crosslinked with a urethane-based segment has, for example, a composition containing an acrylic monomer and / or a partial polymer thereof, and a urethane (meth) acrylate layered on a substrate. After coating, it is obtained by irradiating the composition with active light and performing photocuring. The pressure-sensitive adhesive composition preferably has a urethane (meth) acrylate content of 0.3 to 10 parts by weight based on a total of 100 parts by weight of the acrylic monomer and its partial polymer.
 本発明の粘着シートは、例えば、透明部材が視認側表面に配置された画像表示装置における透明部材の貼り合わせに用いられる。例えば、画像表示パネルの視認側表面に上記の粘着シートを介して前面透明部材を固着することにより画像表示装置が形成される。透明フィルム基材上に粘着シートを積層して、基材付き両面粘着シートとすることもできる。 The adhesive sheet of the present invention is used, for example, for bonding transparent members in an image display device in which a transparent member is arranged on the surface on the viewing side. For example, the image display device is formed by fixing the front transparent member to the visible surface of the image display panel via the above-mentioned adhesive sheet. An adhesive sheet may be laminated on a transparent film substrate to form a double-sided adhesive sheet with a substrate.
 本発明の粘着シートは、常温での剪断貯蔵弾性率が大きく、接着信頼性および加工性に優れるとともに、高温での損失正接が大きいため、優れた段差吸収性および耐衝撃性を有する。本発明の粘着シートを用いて視認側表面にカバーウインドウ等を貼り合わせた画像表示装置は、接着信頼性に優れており、狭額縁化やベゼルレス化にも対応可能である。 The adhesive sheet of the present invention has a large shear storage elastic modulus at room temperature, is excellent in adhesive reliability and workability, and has a large loss tangent at high temperature, so that it has excellent step absorption and impact resistance. The image display device in which a cover window or the like is attached to the surface on the viewing side using the adhesive sheet of the present invention has excellent adhesive reliability, and can be used for narrowing the frame and bezel-less.
離型フィルム付き粘着シート(基材レス両面粘着シート)の構成例を示す断面図である。It is sectional drawing which shows the structural example of the pressure-sensitive adhesive sheet (base-less double-sided pressure-sensitive adhesive sheet) with a release film. 画像表示装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the image display apparatus. 粘着シート付き光学フィルムの積層構成例を示す断面図である。It is sectional drawing which shows the laminated structure example of the optical film with an adhesive sheet. 粘着シート付き光学フィルムの積層構成例を示す断面図である。It is sectional drawing which shows the laminated structure example of the optical film with an adhesive sheet. 離型フィルム付き粘着シート(基材付き両面粘着シート)の構成例を示す断面図である。It is sectional drawing which shows the structural example of the adhesive sheet with a release film (double-sided adhesive sheet with a base material). 画像表示装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the image display apparatus. 層間接着性試験の様子を示す写真である。It is a photograph which shows the state of the interlayer adhesion test. 層間接着性試験においてスジ状の気泡が生じた試料の観察写真である。It is an observation photograph of a sample in which streak-like bubbles were generated in the interlayer adhesion test. 耐衝撃試験における試料の配置を示す模式図である。It is a schematic diagram which shows the arrangement of a sample in an impact resistance test.
 図1は、粘着シート5の両面に離型フィルム21,22が仮着された離型フィルム付き粘着シートを示している。図2は、粘着シートを用いて前面透明板7が固定された画像表示装置の構成例を示す断面図である。 FIG. 1 shows an adhesive sheet with a release film in which release films 21 and 22 are temporarily attached to both sides of the adhesive sheet 5. FIG. 2 is a cross-sectional view showing a configuration example of an image display device in which the front transparent plate 7 is fixed by using an adhesive sheet.
[粘着シートの物性]
 粘着シート5は、粘着剤がシート状に形成された基材レス両面粘着シートである。粘着剤は架橋構造を有するベースポリマーを含む。粘着シートは透明性が高いことが好ましい。粘着シートの全光線透過率は、85%以上が好ましく、90%以上がより好ましい。粘着シートのヘイズは1%以下が好ましい。
[Physical properties of adhesive sheet]
The pressure-sensitive adhesive sheet 5 is a base-less double-sided pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive is formed in the form of a sheet. The pressure-sensitive adhesive contains a base polymer having a crosslinked structure. The adhesive sheet is preferably highly transparent. The total light transmittance of the pressure-sensitive adhesive sheet is preferably 85% or more, more preferably 90% or more. The haze of the adhesive sheet is preferably 1% or less.
 粘着シートを被着体と貼り合わせた際の接着保持力を高めるとともに、加工寸法安定性を確保する観点から、粘着シートの25℃における剪断貯蔵弾性率G’25℃は、0.16MPa以上が好ましく、0.18MPa以上がより好ましく、0.20MPa以上がさらに好ましく、0.21MPa以上が特に好ましい。 From the viewpoint of enhancing the adhesive holding force when the adhesive sheet is attached to the adherend and ensuring the processing dimensional stability, the shear storage elastic modulus G'25 ° C of the adhesive sheet at 25 ° C is 0.16 MPa or more. Preferably, 0.18 MPa or more is more preferable, 0.20 MPa or more is further preferable, and 0.21 MPa or more is particularly preferable.
 一方、粘着シートに適度の粘性を持たせて濡れ性を確保するとともに、段差吸収性や、落下等の衝撃に対するクッション性を持たせる観点から、粘着シートのG’25℃は、0.5MPa以下が好ましく、0.4MPa以下がより好ましく、0.3MPa以下がさらに好ましく、0.28MPa以下が特に好ましい。 On the other hand, the G'25 ° C. of the adhesive sheet is 0.5 MPa or less from the viewpoint of ensuring wettability by giving the adhesive sheet an appropriate viscosity and also providing cushioning property against impacts such as dropping. Is more preferable, 0.4 MPa or less is more preferable, 0.3 MPa or less is further preferable, and 0.28 MPa or less is particularly preferable.
 粘着シートに段差吸収性を持たせる観点から、粘着シートの70℃における損失正接tanδ70℃は、0.25以上が好ましく、0.30以上がより好ましく、0.35以上がさらに好ましい。tanδ70℃は、0.40以上、0.45以上、0.50以上または0.55以上であってもよい。接着保持力の観点から、tanδ70℃は、1.0以下が好ましく、0.9以下がより好ましく、0.85以下がさらに好ましい。tanδ70℃は、0.80以下、0.75以下または0.70以下であってもよい。 From the viewpoint of providing the pressure-sensitive adhesive sheet with step absorption, the loss tangent tan δ 70 ° C. at 70 ° C. of the pressure-sensitive adhesive sheet is preferably 0.25 or more, more preferably 0.30 or more, still more preferably 0.35 or more. tan δ 70 ° C. may be 0.40 or more, 0.45 or more, 0.50 or more, or 0.55 or more. From the viewpoint of adhesive holding power, tan δ 70 ° C. is preferably 1.0 or less, more preferably 0.9 or less, and even more preferably 0.85 or less. tan δ 70 ° C. may be 0.80 or less, 0.75 or less, or 0.70 or less.
 粘着シートのtanδのピークトップ値は、1.5以上が好ましく、1.6以上がより好ましく、1.7以上がさらに好ましい。tanδのピークトップ値が大きい粘着シートは、粘性挙動が大きく、耐衝撃性に優れる傾向がある。粘着シートのtanδのピークトップ値の上限は特に限定されないが、一般には3.0以下である。接着保持力の観点から、tanδのピークトップ値は、2.7以下が好ましく、2.5以下がより好ましい。 The peak top value of tan δ of the adhesive sheet is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. An adhesive sheet having a large peak top value of tan δ tends to have a large viscous behavior and excellent impact resistance. The upper limit of the peak top value of tan δ of the adhesive sheet is not particularly limited, but is generally 3.0 or less. From the viewpoint of adhesive holding power, the peak top value of tan δ is preferably 2.7 or less, more preferably 2.5 or less.
 粘着シートのガラス転移温度は、-3℃以下が好ましく、-4℃以下がより好ましい。粘着シートのガラス転移温度は、-20℃以上が好ましく、-15℃以上がより好ましく、-13℃以上がさらに好ましい。ガラス転移温度が上記範囲内であることにより、低温領域においても粘着シートが適宜の粘性を有し、落下等の衝撃による被着体の剥離が抑制される傾向がある。 The glass transition temperature of the adhesive sheet is preferably -3 ° C or lower, more preferably -4 ° C or lower. The glass transition temperature of the pressure-sensitive adhesive sheet is preferably −20 ° C. or higher, more preferably −15 ° C. or higher, and even more preferably −13 ° C. or higher. When the glass transition temperature is within the above range, the adhesive sheet has an appropriate viscosity even in a low temperature region, and there is a tendency that peeling of the adherend due to an impact such as dropping is suppressed.
 粘着シートの剪断貯蔵弾性率G’、損失性接tanδおよびガラス転移温度は、周波数1Hzの粘弾性測定により求められる。tanδは、貯蔵弾性率G’と損失弾性率G”の比G”/G’であり、ガラス転移温度は、tanδが極大となる温度(ピークトップ温度)である。貯蔵弾性率G’は、材料が変形する際に弾性エネルギーとして貯蔵される部分に相当し、硬さの程度を表す指標である。粘着シートの貯蔵弾性率が大きいほど、接着保持力が高く、歪による剥がれが抑制される傾向がある。損失弾性率G”は、材料が変形する際に内部摩擦等により散逸される損失エネルギー部分に相当し、粘性の程度を表す。tanδが大きいほど粘性の傾向が強く、変形挙動が液体的となり、反発弾性エネルギーが小さくなる傾向がある。 The shear storage elastic modulus G', loss contact tan δ, and glass transition temperature of the adhesive sheet are determined by viscoelasticity measurement at a frequency of 1 Hz. tan δ is the ratio G ″ / G ′ of the storage elastic modulus G ′ and the loss elastic modulus G ″, and the glass transition temperature is the temperature at which tan δ is maximized (peak top temperature). The storage elastic modulus G'corresponds to a portion stored as elastic energy when the material is deformed, and is an index indicating the degree of hardness. The larger the storage elastic modulus of the adhesive sheet, the higher the adhesive holding force and the tendency for peeling due to strain to be suppressed. The loss elastic modulus G ”corresponds to the energy loss portion dissipated by internal friction or the like when the material is deformed, and represents the degree of viscosity. The larger the tan δ, the stronger the tendency of viscosity, and the more liquid the deformation behavior becomes. The rebound resilience energy tends to be small.
 G’25℃を0.16MPa以上として加工安定性を確保しつつ、段差吸収性付与のための適度な柔軟性を持たせる観点から、粘着シートのゲル分率は、30~80%が好ましく、35~70%がより好ましい。ゲル分率は、40%以上または45%以上であってもよく、65%以下、または60%以下であってもよい。 The gel fraction of the pressure-sensitive adhesive sheet is preferably 30 to 80% from the viewpoint of ensuring processing stability at G'25 ° C. of 0.16 MPa or more and providing appropriate flexibility for imparting step absorption. 35-70% is more preferable. The gel fraction may be 40% or more or 45% or more, 65% or less, or 60% or less.
 粘着シートのゲル分率は、酢酸エチル等の溶媒に対する不溶分として求めることができ、具体的には、粘着シートを構成する粘着剤を酢酸エチル中に23℃で7日間浸漬した後の不溶成分の、浸漬前の試料に対する重量分率(単位:重量%)として求められる。一般に、ポリマーのゲル分率は架橋度に等しく、ポリマー中の架橋された部分が多いほど、ゲル分率が大きくなる。ゲル分率(架橋構造の導入量)は、架橋構造の導入方法や、架橋剤の種類および量等により所望の範囲に調整できる。 The gel fraction of the pressure-sensitive adhesive sheet can be determined as an insoluble component in a solvent such as ethyl acetate. Specifically, the insoluble component after immersing the pressure-sensitive adhesive constituting the pressure-sensitive adhesive sheet in ethyl acetate at 23 ° C. for 7 days. Is obtained as a weight fraction (unit: weight%) with respect to the sample before immersion. In general, the gel fraction of a polymer is equal to the degree of cross-linking, and the more cross-linked portions in the polymer, the higher the gel fraction. The gel fraction (introduction amount of the crosslinked structure) can be adjusted to a desired range depending on the introduction method of the crosslinked structure, the type and amount of the crosslinking agent, and the like.
 粘着シートの接着力は、2N/10mm以上が好ましく、4N/10mm以上がより好ましく、5N/10mm以上がさらに好ましい。粘着シートの接着力が上記範囲であることにより、歪による応力や落下等による衝撃が生じた場合における、被着体からの粘着シートの剥離を防止できる。接着力は、ガラス板を被着体として、引張速度300mm/分、剥離角度180°のピール試験により求められる。特に断りがない限り、接着力は25℃での測定値である。 The adhesive strength of the adhesive sheet is preferably 2N / 10 mm or more, more preferably 4N / 10 mm or more, and even more preferably 5N / 10 mm or more. When the adhesive force of the adhesive sheet is within the above range, it is possible to prevent the adhesive sheet from peeling off from the adherend when stress due to strain or impact due to dropping or the like occurs. The adhesive strength is determined by a peel test with a tensile speed of 300 mm / min and a peeling angle of 180 ° using a glass plate as an adherend. Unless otherwise specified, the adhesive strength is a measured value at 25 ° C.
 粘着シートの厚みは特に限定されず、被着体の種類や形状等により設定すればよい。印刷段差を有する部材を被着体とする場合は、印刷段差の厚みよりも粘着シートの厚みの方が大きいことが好ましい。前面透明板(カバーウインドウ)の貼り合わせに用いられる粘着シートの厚みは、30μm以上が好ましく、40μm以上がより好ましく、50μm以上がさらに好ましい。粘着シートの厚みを大きくすることにより、段差吸収性および耐衝撃性が高くなる傾向がある。粘着シートの厚みの上限は特に制限されないが、粘着シートの生産性等の観点から、500μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましい。 The thickness of the adhesive sheet is not particularly limited, and may be set according to the type and shape of the adherend. When a member having a printing step is used as an adherend, it is preferable that the thickness of the adhesive sheet is larger than the thickness of the printing step. The thickness of the pressure-sensitive adhesive sheet used for bonding the front transparent plate (cover window) is preferably 30 μm or more, more preferably 40 μm or more, still more preferably 50 μm or more. Increasing the thickness of the adhesive sheet tends to increase step absorption and impact resistance. The upper limit of the thickness of the pressure-sensitive adhesive sheet is not particularly limited, but from the viewpoint of the productivity of the pressure-sensitive adhesive sheet, it is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 250 μm or less.
[粘着剤の組成]
 粘着シート5は、上記特性を満たすものであれば、粘着剤の組成は特に限定されず、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系等のポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れることから、ベースポリマーとしてアクリル系ポリマーを含有するアクリル系粘着剤が好ましく用いられる。
[Composition of adhesive]
The composition of the pressure-sensitive adhesive is not particularly limited as long as the pressure-sensitive adhesive sheet 5 satisfies the above characteristics, and the pressure-sensitive adhesive composition is not particularly limited, and acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer, and modified polyolefin. , Epoxy-based, fluorine-based, natural rubber, synthetic rubber and other rubber-based polymers as the base polymer can be appropriately selected and used. In particular, it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is also excellent in weather resistance and heat resistance. Therefore, acrylic adhesive containing an acrylic polymer as a base polymer. The agent is preferably used.
<アクリル系ポリマー鎖>
 架橋構造を有するアクリル系ベースポリマーは、アクリル系ポリマー鎖に、架橋構造が導入されたものである。アクリル系ポリマー鎖は、主たる構成モノマー成分として(メタ)アクリル酸アルキルエステルを含有する。なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
<Acrylic polymer chain>
The acrylic base polymer having a crosslinked structure is one in which a crosslinked structure is introduced into an acrylic polymer chain. The acrylic polymer chain contains (meth) acrylic acid alkyl ester as a main constituent monomer component. In addition, in this specification, "(meth) acrylic" means acrylic and / or methacryl.
 (メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが好適に用いられる。(メタ)アクリル酸アルキルエステルは、アルキル基が分枝を有していてもよく、環状アルキル基を有していてもよい。 As the (meth) acrylic acid alkyl ester, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms is preferably used. The (meth) acrylic acid alkyl ester may have a branched alkyl group or a cyclic alkyl group.
 鎖状アルキル基を有する(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソトリドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸セチル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソオクタデシル、(メタ)アクリル酸ノナデシル等が挙げられる。 Specific examples of the (meth) acrylic acid alkyl ester having a chain alkyl group include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, butyl (meth) acrylic acid, isobutyl (meth) acrylic acid, and (meth). S-butyl acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate , (Meta) undecyl acrylate, (meth) dodecyl acrylate, (meth) isotridodecyl acrylate, (meth) tetradecyl acrylate, (meth) isotetradecyl acrylate, (meth) pentadecyl acrylate, (meth) Examples thereof include cetyl acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, isooctadecil (meth) acrylate, and nonadecil (meth) acrylate.
 脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチル、(メタ)アクリル酸シクロオクチル等の(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル等の二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステル;ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロペンタニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート等の三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルが挙げられる。 Specific examples of the (meth) acrylate alkyl ester having an alicyclic alkyl group include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, cyclooctyl (meth) acrylate and the like. (Meta) acrylic acid cycloalkyl ester; (meth) acrylic acid ester having a bicyclic aliphatic hydrocarbon ring such as (meth) acrylic acid isobornyl; dicyclopentanyl (meth) acrylate, dicyclopentanyloxy Three rings such as ethyl (meth) acrylate, tricyclopentanyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate Examples thereof include (meth) acrylic acid esters having the above aliphatic hydrocarbon rings.
 アクリル系ポリマー鎖を構成するモノマー成分全量に対する、(メタ)アクリル酸アルキルエステルの量は、50重量%以上が好ましく、55重量%以上がより好ましく、60重量%以上がさらに好ましい。ポリマー鎖のガラス転移温度(Tg)を適切な範囲とする観点から、アクリル系ベースポリマーは、構成モノマー成分全量に対する炭素数4~10の鎖状アルキル基を有する(メタ)アクリル酸アルキルエステルの量が、40重量%以上であることが好ましく、50重量%以上であることがより好ましく、55重量%以上であることがさらに好ましい。なお、アクリル系ポリマー鎖を構成するモノマー成分とは、ポリマーを構成する全モノマー成分から、架橋構造の形成に用いられるモノマー(後述の多官能(メタ)アクリレート、ウレタン(メタ)アクリレート等)および架橋剤を除いたものである。 The amount of the (meth) acrylic acid alkyl ester with respect to the total amount of the monomer components constituting the acrylic polymer chain is preferably 50% by weight or more, more preferably 55% by weight or more, still more preferably 60% by weight or more. From the viewpoint of setting the glass transition temperature (Tg) of the polymer chain in an appropriate range, the acrylic base polymer is an amount of (meth) acrylic acid alkyl ester having a chain alkyl group having 4 to 10 carbon atoms with respect to the total amount of constituent monomer components. However, it is preferably 40% by weight or more, more preferably 50% by weight or more, and further preferably 55% by weight or more. The monomer components constituting the acrylic polymer chain include all the monomer components constituting the polymer, the monomers used for forming the crosslinked structure (polyfunctional (meth) acrylate, urethane (meth) acrylate, etc. described later) and crosslinked. It is the one excluding the agent.
 アクリル系ベースポリマーは、構成モノマー成分として、水酸基含有モノマーやカルボキシ基含有モノマーを含んでいてもよい。イソシアネート架橋剤により架橋構造が導入される場合は水酸基がイソシアネート基との反応点となり、エポキシ系架橋剤により架橋構造が導入される場合は、カルボキシ基がエポキシ基との反応点となる。 The acrylic base polymer may contain a hydroxyl group-containing monomer or a carboxy group-containing monomer as a constituent monomer component. When the crosslinked structure is introduced by the isocyanate cross-linking agent, the hydroxyl group becomes the reaction point with the isocyanate group, and when the crosslinked structure is introduced by the epoxy-based cross-linking agent, the carboxy group becomes the reaction point with the epoxy group.
 水酸基含有モノマーとしては、(メタ)アクリル酸2‐ヒドロキシエチル、(メタ)アクリル酸2‐ヒドロキシプロピル、(メタ)アクリル酸4‐ヒドロキシブチル、(メタ)アクリル酸6‐ヒドロキシヘキシル、(メタ)アクリル酸8‐ヒドロキシオクチル、(メタ)アクリル酸10‐ヒドロキシデシル、(メタ)アクリル酸12‐ヒドロキシラウリルや(4‐ヒドロキシメチルシクロヘキシル)‐メチル(メタ)アクリレート等の(メタ)アクリル酸エステルが挙げられる。アクリル系ポリマー鎖に、ウレタン系セグメントによる架橋構造が導入される場合は、ウレタン系セグメントとの相溶性が高く、粘着シートの透明性を向上する観点から、アクリル系ベースポリマーは、構成モノマー成分として、炭素数4~8のヒドロキシアルキル基を有する(メタ)アクリル酸エステルを含むことが好ましい。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and (meth) acrylic. Examples thereof include (meth) acrylic acid esters such as 8-hydroxyoctyl acid, 10-hydroxydecyl (meth) acrylic acid, 12-hydroxylauryl (meth) acrylic acid and (4-hydroxymethylcyclohexyl) -methyl (meth) acrylate. .. When a crosslinked structure with a urethane-based segment is introduced into the acrylic polymer chain, the acrylic-based base polymer is used as a constituent monomer component from the viewpoint of high compatibility with the urethane-based segment and improving the transparency of the pressure-sensitive adhesive sheet. , A (meth) acrylic acid ester having a hydroxyalkyl group having 4 to 8 carbon atoms is preferably contained.
 アクリル系ベースポリマーが、構成モノマー成分として、水酸基含有モノマーを有することにより、粘着シートの透明性が向上するとともに、高温高湿環境下での白濁が抑制される傾向がある。また、水酸基含有モノマーの水酸基は、アクリル系ポリマー鎖や、アクリル系ポリマー鎖を架橋する架橋セグメント(例えば、ウレタン系セグメント)と水素結合による物理架橋を形成可能である。そのため、アクリル系ポリマー鎖を構成するモノマー成分における水酸基含有モノマーの比率を大きくすることにより、ゲル分率が低い場合でも、凝集力が高められ、G’25℃が大きくなる傾向がある。アクリル系ポリマー鎖を構成するモノマー成分全量に対する、水酸基含有モノマーの量は、5~30重量%が好ましく、8~25重量%がより好ましく、10~20重量%がさらに好ましい。 When the acrylic base polymer has a hydroxyl group-containing monomer as a constituent monomer component, the transparency of the pressure-sensitive adhesive sheet is improved and white turbidity in a high-temperature and high-humidity environment tends to be suppressed. Further, the hydroxyl group of the hydroxyl group-containing monomer can form a physical crosslink by hydrogen bonding with an acrylic polymer chain or a crosslinked segment (for example, a urethane segment) that crosslinks the acrylic polymer chain. Therefore, by increasing the ratio of the hydroxyl group-containing monomer in the monomer components constituting the acrylic polymer chain, the cohesive force tends to be increased and the G'25 ° C. tends to increase even when the gel fraction is low. The amount of the hydroxyl group-containing monomer is preferably 5 to 30% by weight, more preferably 8 to 25% by weight, still more preferably 10 to 20% by weight, based on the total amount of the monomer components constituting the acrylic polymer chain.
 カルボキシ基含有モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸カルボキシエチル、(メタ)アクリル酸カルボキシペンチル等のアクリル系モノマーや、イタコン酸、マレイン酸、フマール酸、クロトン酸等が挙げられる。 Examples of the carboxy group-containing monomer include acrylic monomers such as (meth) acrylic acid, carboxyethyl (meth) acrylate, and carboxypentyl (meth) acrylate, and itaconic acid, maleic acid, fumaric acid, and crotonic acid. ..
 粘着シートがタッチパネルセンサーの接着に用いられる場合、酸成分による電極の腐食を防止するために、粘着シートは酸の含有量が小さいことが好ましい。また、粘着シートが偏光板の接着に用いられる場合、酸成分によるポリビニルアルコール系偏光子のポリエン化を抑制するために、粘着シートは酸の含有量が小さいことが好ましい。このような酸フリーの粘着シートは、(メタ)アクリル酸等の有機酸モノマーの含有量が、100ppm以下であることが好ましく、70ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。粘着シートの有機酸モノマー含有量は、粘着シートを純水中に浸漬し、100℃で45分加温して、水中に抽出された酸モノマーをイオンクロマトグラフで定量することにより求められる。 When the adhesive sheet is used for adhering the touch panel sensor, it is preferable that the adhesive sheet has a small acid content in order to prevent the electrode from being corroded by the acid component. Further, when the pressure-sensitive adhesive sheet is used for adhering a polarizing plate, the pressure-sensitive adhesive sheet preferably has a small acid content in order to suppress polyene formation of the polyvinyl alcohol-based polarizer due to an acid component. The content of the organic acid monomer such as (meth) acrylic acid in such an acid-free pressure-sensitive adhesive sheet is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less. .. The organic acid monomer content of the pressure-sensitive adhesive sheet is determined by immersing the pressure-sensitive adhesive sheet in pure water, heating it at 100 ° C. for 45 minutes, and quantifying the acid monomer extracted in water by ion chromatography.
 粘着シート中の酸モノマー含有量を低減させるためには、アクリル系ベースポリマーを構成するモノマー成分における(メタ)アクリル酸等の有機酸モノマー成分の量が少ないことが好ましい。そのため、粘着シートを酸フリーとするためには、ベースポリマーがモノマー成分として有機酸モノマー(カルボキシ基含有モノマー)を実質的に含有しないことが好ましい。酸フリー粘着シートにおいては、ベースポリマーのモノマー成分の合計100重量部に対するカルボキシ基含有モノマーの量は、0.5重量部以下が好ましく、0.1重量部以下がより好ましく、0.05重量部以下がさらに好ましく、理想的には0である。 In order to reduce the acid monomer content in the pressure-sensitive adhesive sheet, it is preferable that the amount of the organic acid monomer component such as (meth) acrylic acid in the monomer component constituting the acrylic base polymer is small. Therefore, in order to make the pressure-sensitive adhesive sheet acid-free, it is preferable that the base polymer does not substantially contain an organic acid monomer (carboxy group-containing monomer) as a monomer component. In the acid-free pressure-sensitive adhesive sheet, the amount of the carboxy group-containing monomer based on 100 parts by weight of the total monomer components of the base polymer is preferably 0.5 parts by weight or less, more preferably 0.1 parts by weight or less, and more preferably 0.05 parts by weight. The following is more preferable, ideally 0.
 アクリル系ベースポリマーは、構成モノマー成分として、窒素含有モノマーを含んでいてもよい。窒素含有モノマーとしては、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、(メタ)アクリロイルモルホリン、N-ビニルカルボン酸アミド類、N-ビニルカプロラクタム等のビニル系モノマーや、アクリロニトリル、メタクリロニトリル等のシアノ基含有アクリル系モノマー等が挙げられる。これらの中でも、凝集力向上による接着力向上効果が高いことから、N-ビニルピロリドンが好ましい。 The acrylic base polymer may contain a nitrogen-containing monomer as a constituent monomer component. Examples of the nitrogen-containing monomer include N-vinylpyrrolidone, methylvinylpyrrolidone, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, vinylmorpholin, (meth) acryloylmorpholin, and N-vinyl. Examples thereof include vinyl-based monomers such as carboxylic acid amides and N-vinylcaprolactam, and cyano group-containing acrylic monomers such as acrylonitrile and methacrylonitrile. Among these, N-vinylpyrrolidone is preferable because it has a high effect of improving the adhesive force by improving the cohesive force.
 アクリル系ベースポリマーが、構成モノマー成分として、水酸基含有モノマー、カルボキシ基含有モノマーおよび窒素含有モノマー等の高極性モノマーを含有することにより、粘着剤の凝集力が高められ、G’25℃が大きくなり、接着保持性が向上する傾向がある。一方、高極性モノマーの含有量が過度に大きいと、ガラス転移温度が高くなり、耐衝撃性が低下する場合がある。そのため、アクリル系ポリマー鎖を構成するモノマー成分全量に対する高極性モノマー量(水酸基含有モノマー、カルボキシ基含有モノマー、および窒素含有モノマーの合計)は、15~45重量%が好ましく、20~40重量%がより好ましく、25~37重量%がさらに好ましい。特に、水酸基含有モノマーと窒素含有モノマーの合計が上記範囲内であることが好ましい。アクリル系ベースポリマーを構成するモノマー成分全量に対する窒素含有モノマーの量は、7~30重量%が好ましく、10~25重量%がより好ましく、12~22重量%がさらに好ましい。 When the acrylic-based base polymer contains a highly polar monomer such as a hydroxyl group-containing monomer, a carboxy group-containing monomer, and a nitrogen-containing monomer as a constituent monomer component, the cohesive force of the pressure-sensitive adhesive is enhanced and G'25 ° C. is increased. , Adhesive retention tends to improve. On the other hand, if the content of the highly polar monomer is excessively large, the glass transition temperature may increase and the impact resistance may decrease. Therefore, the amount of highly polar monomers (total of hydroxyl group-containing monomer, carboxy group-containing monomer, and nitrogen-containing monomer) with respect to the total amount of the monomer components constituting the acrylic polymer chain is preferably 15 to 45% by weight, preferably 20 to 40% by weight. More preferably, 25 to 37% by weight is further preferable. In particular, it is preferable that the total of the hydroxyl group-containing monomer and the nitrogen-containing monomer is within the above range. The amount of the nitrogen-containing monomer with respect to the total amount of the monomer components constituting the acrylic base polymer is preferably 7 to 30% by weight, more preferably 10 to 25% by weight, still more preferably 12 to 22% by weight.
 アクリル系ベースポリマーは、上記以外のモノマー成分として、酸無水物基含有モノマー、(メタ)アクリル酸のカプロラクトン付加物、スルホン酸基含有モノマー、燐酸基含有モノマー、酢酸ビニル、プロピオン酸ビニル、スチレン、α-メチルスチレン、等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノ基含有アクリル系モノマー;(メタ)アクリル酸グリシジル等のエポキシ基含有モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール等のグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや(メタ)アクリル酸2-メトキシエチル等のアクリル酸エステル系モノマー等を含んでいてもよい。 Acrylic-based base polymers include acid anhydride group-containing monomers, (meth) acrylic acid caprolactone adducts, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, vinyl acetate, vinyl propionate, and styrene, as monomer components other than the above. Vinyl-based monomers such as α-methylstyrene; cyano group-containing acrylic monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing monomers such as glycidyl (meth) acrylate; (meth) polyethylene glycol acrylate, (meth) acrylic Glycol-based acrylic ester monomers such as polypropylene glycol acid, methoxyethylene glycol (meth) acrylate, and methoxypolypropylene glycol (meth) acrylate; tetrahydrofurfuryl (meth) acrylate, fluorine (meth) acrylate, silicone (meth) acrylate, etc. Acrylic acid ester-based monomers such as 2-methoxyethyl (meth) acrylic acid may be contained.
 アクリル系ベースポリマーは、上記のモノマー成分の中で、(メタ)アクリル酸アルキルエステルの含有量が最も多いことが好ましい。アクリル系ポリマー鎖の構成モノマーの中で最も含有量の多いモノマー(主モノマー)の種類により、粘着シートの特性が左右されやすい。例えば、アクリル系ポリマー鎖の主モノマーが炭素数6以下の鎖状アルキル基を有する(メタ)アクリル酸アルキルエステルである場合に、tanδ70℃が大きくなり、段差吸収性が向上する傾向がある。特に、アクリル酸ブチル等のアクリル酸Cアルキルエステルが主モノマーである場合に、tanδ70℃が大きくなる傾向がある。アクリル系ポリマー鎖を構成するモノマー成分全量に対する、炭素数6以下の鎖状アルキル基を有する(メタ)アクリル酸アルキルエステルの量は、40~85重量%が好ましく、45~80重量%がより好ましく、50~75重量%がさらに好ましい。特に、構成モノマー成分としてのアクリル酸ブチルの含有量が上記範囲であることが好ましい。 The acrylic base polymer preferably has the highest content of (meth) acrylic acid alkyl ester among the above-mentioned monomer components. The characteristics of the pressure-sensitive adhesive sheet are easily affected by the type of the monomer (main monomer) having the highest content among the constituent monomers of the acrylic polymer chain. For example, when the main monomer of the acrylic polymer chain is a (meth) acrylic acid alkyl ester having a chain alkyl group having 6 or less carbon atoms, tan δ 70 ° C. tends to increase and the step absorption tends to be improved. In particular, when an acrylic acid C 4 alkyl esters, such as butyl acrylate is the major monomer, they tend to tan [delta 70 ° C. increases. The amount of the (meth) acrylic acid alkyl ester having a chain alkyl group having 6 or less carbon atoms is preferably 40 to 85% by weight, more preferably 45 to 80% by weight, based on the total amount of the monomer components constituting the acrylic polymer chain. , 50-75% by weight is more preferable. In particular, the content of butyl acrylate as a constituent monomer component is preferably in the above range.
 アクリル系ポリマー鎖の理論Tgは、-50℃以上が好ましい。アクリル系ポリマー鎖の理論Tgは、-10℃以下が好ましく、-20℃以下がより好ましく、-25℃以下がさらに好ましい。理論Tgは、アクリル系ポリマー鎖の構成モノマー成分のホモポリマーのガラス転移温度Tgと、各モノマー成分の重量分率Wから、下記のFoxの式により算出される。
    1/Tg=Σ(W/Tg
The theoretical Tg of the acrylic polymer chain is preferably −50 ° C. or higher. The theoretical Tg of the acrylic polymer chain is preferably −10 ° C. or lower, more preferably −20 ° C. or lower, and even more preferably −25 ° C. or lower. Theoretical Tg is a glass transition temperature Tg i of the homopolymer constituent monomer components of the acrylic polymer chain, the weight fraction W i of each monomer component, is calculated by the Fox equation below.
1 / Tg = Σ ( Wi / Tg i )
 Tgはポリマー鎖のガラス転移温度(単位:K)、Wはセグメントを構成するモノマー成分iの重量分率(重量基準の共重合割合)、Tgはモノマー成分iのホモポリマーのガラス転移温度(単位:K)である。ホモポリマーのガラス転移温度としては、Polymer Handbook 第3版(John Wiley & Sons, Inc., 1989年)に記載の数値を採用できる。上記文献に記載されていないモノマーのホモポリマーのTgは、動的粘弾性測定による損失正接(tanδ)のピークトップ温度を採用すればよい。 Tg is the glass transition temperature of the polymer chain (unit: K), Wi is the weight fraction of the monomer component i constituting the segment (copolymerization ratio based on the weight), and Tg i is the glass transition temperature of the homopolymer of the monomer component i. (Unit: K). As the glass transition temperature of the homopolymer, the numerical value described in the third edition of the Polymer Handbook (John Wiley & Sons, Inc., 1989) can be adopted. For the Tg of the homopolymer of the monomer not described in the above document, the peak top temperature of the loss tangent (tan δ) by the dynamic viscoelasticity measurement may be adopted.
<架橋構造>
 アクリル系ポリマー鎖に架橋構造が導入されたポリマーは、例えば、(1)架橋剤と反応可能な官能基を有するアクリル系ポリマーを重合後に、架橋剤を添加して、アクリル系ポリマーと架橋剤とを反応させる方法;および(2)ポリマーの重合成分に多官能化合物を含めることにより、ポリマー鎖に分枝構造(架橋構造)を導入する方法、等により得られる。これらを併用して、ベースポリマーに複数種の架橋構造を導入してもよい。
<Crosslink structure>
For a polymer in which a crosslinked structure is introduced into an acrylic polymer chain, for example, (1) an acrylic polymer having a functional group capable of reacting with a crosslinking agent is polymerized, and then a crosslinking agent is added to obtain the acrylic polymer and the crosslinking agent. (2) By including a polyfunctional compound in the polymer component of the polymer, a branched structure (crosslinked structure) is introduced into the polymer chain, and the like. These may be used in combination to introduce a plurality of crosslinked structures into the base polymer.
 上記(1)のベースポリマーと架橋剤とを反応させる方法における架橋剤の具体例としては、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、カルボジイミド系架橋剤、金属キレート系架橋剤等が挙げられる。中でも、ベースポリマーの水酸基やカルボキシ基との反応性が高く、架橋構造の導入が容易であることから、イソシアネート系架橋剤およびエポキシ系架橋剤が好ましい。これらの架橋剤は、ベースポリマー中に導入された水酸基やカルボキシ基等の官能基と反応して架橋構造を形成する。ベースポリマーがカルボキシ基を含まない酸フリーの粘着剤では、イソシアネート系架橋剤を用いて、ベースポリマー中の水酸基と、イソシアネート架橋剤との反応により架橋構造を形成することが好ましい。 Specific examples of the cross-linking agent in the method of reacting the base polymer of the above (1) with the cross-linking agent include isocyanate-based cross-linking agent, epoxy-based cross-linking agent, oxazoline-based cross-linking agent, aziridine-based cross-linking agent, carbodiimide-based cross-linking agent, and metal. Examples include a chelate-based cross-linking agent. Of these, isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable because they have high reactivity with the hydroxyl groups and carboxy groups of the base polymer and the cross-linked structure can be easily introduced. These cross-linking agents react with functional groups such as hydroxyl groups and carboxy groups introduced into the base polymer to form a cross-linked structure. In an acid-free pressure-sensitive adhesive in which the base polymer does not contain a carboxy group, it is preferable to use an isocyanate-based cross-linking agent to form a cross-linked structure by reacting a hydroxyl group in the base polymer with the isocyanate cross-linking agent.
 イソシアネート系架橋剤としては、1分子中に2個以上のイソシアネート基を有するポリイソシアネートが用いられる。イソシアネート系架橋剤としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、イソホロンジイソシアネート等の脂環族イソシアネート類;2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類;トリメチロールプロパン/トリレンジイソシアネート3量体付加物(例えば、東ソー製「コロネートL」)、トリメチロールプロパン/へキサメチレンジイソシアネート3量体付加物(例えば、東ソー製「コロネートHL」)、キシリレンジイソシアネートのトリメチロールプロパン付加物(例えば、三井化学製「タケネートD110N」)、ヘキサメチレンジイソシアネートのイソシアヌレート体(例えば、東ソー製「コロネートHX」)等のイソシアネート付加物等が挙げられる。また、イソシアネート系架橋剤として、末端にイソシアネート基を有するウレタンプレポリマーを用いることにより、ウレタン系セグメントによる架橋構造を導入できる。 As the isocyanate-based cross-linking agent, polyisocyanate having two or more isocyanate groups in one molecule is used. Examples of the isocyanate-based cross-linking agent include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate; 2,4-tolylene diisocyanate. Aromatic isocyanates such as isocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate; trimethylolpropane / trimylene diisocyanate trimer adduct (eg, "Coronate L" manufactured by Toso), trimethylolpropane / hexamethylene Diisocyanate trimeric adduct (for example, "Coronate HL" manufactured by Toso), trimethylolpropane adduct of xylylene diisocyanate (for example, "Takenate D110N" manufactured by Mitsui Chemicals), isocyanurate of hexamethylene diisocyanate (for example, manufactured by Toso). Examples thereof include isocyanate additives such as "Coronate HX"). Further, by using a urethane prepolymer having an isocyanate group at the terminal as the isocyanate-based cross-linking agent, a cross-linked structure using urethane-based segments can be introduced.
 上記(2)のベースポリマーの重合成分に多官能化合物を含める方法では、アクリル系ベースポリマーを構成するモノマー成分および架橋構造を導入するための多官能化合物の全量を一度に反応させてもよく、多段階で重合を行ってもよい。多段階で重合を行う方法としては、ベースポリマーを構成する単官能モノマーを重合(予備重合)して、部分重合物(プレポリマー組成物)を調製し、プレポリマー組成物に多官能(メタ)アクリレート等の多官能化合物を添加して、プレポリマー組成物と多官能モノマーとを重合(本重合)する方法が好ましい。プレポリマー組成物は、低重合度の重合物と未反応のモノマーとを含む部分重合物である。 In the method (2) of including the polyfunctional compound in the polymerization component of the base polymer, the monomer component constituting the acrylic base polymer and the total amount of the polyfunctional compound for introducing the crosslinked structure may be reacted at one time. Polymerization may be carried out in multiple stages. As a method of performing polymerization in multiple steps, a monofunctional monomer constituting the base polymer is polymerized (prepolymerized) to prepare a partial polymer (prepolymer composition), and the prepolymer composition is polyfunctional (meth). A method of adding a polyfunctional compound such as acrylate to polymerize (mainly polymerize) the prepolymer composition and the polyfunctional monomer is preferable. The prepolymer composition is a partial polymer containing a polymer having a low degree of polymerization and an unreacted monomer.
 アクリル系ベースポリマーの構成成分の予備重合を行うことにより、多官能化合物による分枝点(架橋点)を、ベースポリマーに均一に導入できる。また、低分子量のポリマーまたは部分重合物と未重合のモノマー成分との混合物(粘着剤組成物)を基材上に塗布した後、基材上で本重合を行って、粘着シートを形成することもできる。プレポリマー組成物等の低重合組成物は低粘度で塗布性に優れるため、プレポリマー組成物と多官能化合物との混合物である粘着剤組成物を塗布後に基材上で本重合を行う方法によれば、粘着シートの生産性を向上できると共に、粘着シートの厚みを均一とすることができる。 By prepolymerizing the constituent components of the acrylic base polymer, branch points (crosslink points) due to the polyfunctional compound can be uniformly introduced into the base polymer. Further, after applying a mixture (adhesive composition) of a low molecular weight polymer or a partial polymer and an unpolymerized monomer component on a base material, the main polymerization is performed on the base material to form a pressure-sensitive adhesive sheet. You can also. Since a low polymerization composition such as a prepolymer composition has a low viscosity and is excellent in coatability, it is a method of performing main polymerization on a substrate after applying a pressure-sensitive adhesive composition which is a mixture of a prepolymer composition and a polyfunctional compound. According to this, the productivity of the pressure-sensitive adhesive sheet can be improved, and the thickness of the pressure-sensitive adhesive sheet can be made uniform.
 架橋構造の導入に用いる多官能化合物としては、不飽和二重結合を有する重合性の官能基(エチレン性不飽和基)を、1分子中に2個以上含有する化合物が挙げられる。多官能化合物としては、アクリル系ベースポリマーのモノマー成分との共重合が容易であることから、多官能(メタ)アクリレートが好ましい。活性エネルギー線重合(光重合)により分枝(架橋)構造を導入する場合は、多官能アクリレートが好ましい。 Examples of the polyfunctional compound used for introducing the crosslinked structure include compounds containing two or more polymerizable functional groups (ethylenically unsaturated groups) having an unsaturated double bond in one molecule. As the polyfunctional compound, polyfunctional (meth) acrylate is preferable because it can be easily copolymerized with the monomer component of the acrylic base polymer. When a branched (crosslinked) structure is introduced by active energy ray polymerization (photopolymerization), a polyfunctional acrylate is preferable.
 多官能(メタ)アクリレートとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性ジ(メタ)アクリレート、アルカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ペンタエリストールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリストールテトラ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールポリ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ブタジエン(メタ)アクリレート、イソプレン(メタ)アクリレート等が挙げられる。また、多官能(メタ)アクリレートとして、ウレタン鎖の末端に(メタ)アクリロイル基を有するウレタン(メタ)アクリレートを用いることにより、ウレタン系セグメントによる架橋構造を導入できる。 Examples of the polyfunctional (meth) acrylate include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, bisphenol A ethylene oxide-modified di (meth) acrylate, and bisphenol A propylene oxide. Modified di (meth) acrylate, alcandiol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaeristol tri (meth) acrylate, pentaeristol di ( Meta) Acrylate, Trimethylol Propanetri (Meta) Acrylate, Ditrimethylol Propanetetra (Meta) Acrylate, Pentaeristol Tetra (Meta) Acrylate, Penta Eristol Tetra (Meta) Acrylate, Dipenta Eristol Poly (Meta) Examples thereof include acrylate, dipentaeryristol hexa (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, epoxy (meth) acrylate, butadiene (meth) acrylate, and isoprene (meth) acrylate. Further, by using a urethane (meth) acrylate having a (meth) acryloyl group at the end of the urethane chain as the polyfunctional (meth) acrylate, a crosslinked structure using urethane-based segments can be introduced.
<ウレタン系セグメントによる架橋構造の導入>
 アクリル系ポリマー鎖がウレタン系セグメントにより架橋されることにより、低ガラス転移温度と、高い接着保持力を両立可能な粘着剤が得られやすい。ウレタン系セグメントは、ウレタン結合を有する分子鎖であり、ウレタン系セグメントの両末端が、アクリル系ポリマー鎖と共有結合することにより、アクリル系ポリマー鎖に、ウレタン系セグメントによる架橋構造が導入される。ウレタン系セグメントは、典型的にはジオールとジイソシアネートとを反応させて得られるポリウレタン鎖を含む。
<Introduction of cross-linked structure using urethane segment>
By cross-linking the acrylic polymer chain with the urethane segment, it is easy to obtain an adhesive that can achieve both a low glass transition temperature and a high adhesive holding force. The urethane-based segment is a molecular chain having a urethane bond, and when both ends of the urethane-based segment are covalently bonded to the acrylic polymer chain, a crosslinked structure by the urethane-based segment is introduced into the acrylic polymer chain. Urethane-based segments typically contain a polyurethane chain obtained by reacting a diol with a diisocyanate.
 ウレタン系セグメントにおけるポリウレタン鎖の分子量は、5000~30000が好ましく、6000~23000がより好ましく、7000~20000がさらに好ましい。ウレタン系セグメントにおけるポリウレタン鎖の分子量が大きいほど、アクリル系ポリマー鎖の架橋点間距離が長くなる。ポリウレタン鎖の分子量が上記範囲であれば、架橋構造が導入されたポリマーが、適度の凝集性と流動性を有するため、接着力と段差吸収性および耐衝撃性とを両立できる。 The molecular weight of the polyurethane chain in the urethane-based segment is preferably 5000 to 30000, more preferably 6000 to 23000, and even more preferably 7000 to 20000. The larger the molecular weight of the polyurethane chain in the urethane-based segment, the longer the distance between the cross-linking points of the acrylic polymer chain. When the molecular weight of the polyurethane chain is within the above range, the polymer having the crosslinked structure introduced has appropriate cohesiveness and fluidity, so that both adhesive strength, step absorption and impact resistance can be achieved at the same time.
 ポリウレタン鎖の分子量が過度に小さく架橋点間距離が短い場合は、凝集力の増大に伴ってtanδが小さくなり、段差吸収性や耐衝撃性が低下する傾向がある。一方、ポリウレタン鎖の分子量が過度に大きく架橋点間距離が長い場合は、貯蔵弾性率が小さく、接着保持力が不足する場合がある。ポリウレタン鎖の分子量が大きい場合でも、ウレタン系セグメントの量を増加させてゲル分率を高めることにより、貯蔵弾性率を大きくできる。ただし、分子量の大きいポリウレタン鎖は、アクリル系ポリマー鎖との相溶性が低いため、ウレタン系セグメント量の増大に伴って、粘着剤のヘイズが大きくなり、透明性が低下する場合がある。 When the molecular weight of the polyurethane chain is excessively small and the distance between the cross-linking points is short, the tan δ becomes smaller as the cohesive force increases, and the step absorption and impact resistance tend to decrease. On the other hand, when the molecular weight of the polyurethane chain is excessively large and the distance between the cross-linking points is long, the storage elastic modulus may be small and the adhesive holding force may be insufficient. Even when the molecular weight of the polyurethane chain is large, the storage elastic modulus can be increased by increasing the amount of urethane-based segments to increase the gel fraction. However, since the polyurethane chain having a large molecular weight has low compatibility with the acrylic polymer chain, the haze of the pressure-sensitive adhesive may increase as the amount of the urethane-based segment increases, and the transparency may decrease.
 ウレタン系セグメントの量が過度に大きくなると、ゲル分率の上昇に伴って粘着剤の粘性が低下し、段差吸収性や耐衝撃性が低下する場合がある。また、ウレタン系セグメントの量が過度に大きくなると、粘着シートの透明性が低下しヘイズが上昇する場合がある。そのため、ベースポリマーにおけるウレタン系セグメントの量は、アクリル系ポリマー鎖100重量部に対して、10重量部以下が好ましく、7重量部以下がより好ましく、5重量部以下がさらに好ましい。一方、ゲル分率を高めて接着保持力を持たせる観点から、ベースポリマーにおけるウレタン系セグメントの量は、アクリル系ポリマー鎖100重量部に対して、0.3重量部以上が好ましく、0.4重量部以上がより好ましく、0.5重量部以上がさらに好ましい。ベースポリマーにおけるウレタン系セグメントの量は、アクリル系ポリマー鎖100重量部に対して、4重量部以下または3重量部以下であってもよく、0.7重量部以上または1重量部以上であってもよい。 If the amount of urethane-based segment becomes excessively large, the viscosity of the adhesive may decrease as the gel fraction increases, and the step absorption and impact resistance may decrease. Further, if the amount of the urethane-based segment is excessively large, the transparency of the adhesive sheet may decrease and the haze may increase. Therefore, the amount of the urethane-based segment in the base polymer is preferably 10 parts by weight or less, more preferably 7 parts by weight or less, still more preferably 5 parts by weight or less, based on 100 parts by weight of the acrylic polymer chain. On the other hand, from the viewpoint of increasing the gel fraction and imparting adhesive holding power, the amount of the urethane-based segment in the base polymer is preferably 0.3 parts by weight or more with respect to 100 parts by weight of the acrylic polymer chain, preferably 0.4. It is more preferably parts by weight or more, and even more preferably 0.5 parts by weight or more. The amount of the urethane-based segment in the base polymer may be 4 parts by weight or less or 3 parts by weight or less, and 0.7 parts by weight or more or 1 part by weight or more with respect to 100 parts by weight of the acrylic polymer chain. May be good.
 ポリウレタン鎖の形成に用いられるジオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサメチレングリコール等の低分子量ジオール;ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、アクリルポリオール、エポキシポリオール、カプロラクトンポリオール等の高分子量ポリオールが挙げられる。 Examples of the diol used for forming the polyurethane chain include low molecular weight diols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol and hexamethylene glycol; polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, epoxy polyol, caprolactone polyol and the like. High molecular weight polyols of.
 ポリエーテルポリオールは、多価アルコールにアルキレンオキシドを開環付加重合することにより得られる。アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド、テトラヒドロフラン等が挙げられる。多価アルコールとしては、前述のジオールや、グリセリン、トリメチロールプロパン等が挙げられる。 The polyether polyol is obtained by ring-opening addition polymerization of an alkylene oxide on a polyhydric alcohol. Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, and tetrahydrofuran. Examples of the polyhydric alcohol include the above-mentioned diol, glycerin, trimethylolpropane and the like.
 ポリエステルポリオールは、末端に水酸基を有するポリエステルであり、カルボン酸当量に対してアルコール当量が過剰となるように多塩基酸と多価アルコールとを反応させることにより得られる。ポリエステルポリオールを構成する多塩基酸成分および多価アルコール成分としては、二塩基酸とジオールの組み合わせが好ましい。 The polyester polyol is a polyester having a hydroxyl group at the terminal, and is obtained by reacting a polybasic acid with a polyhydric alcohol so that the alcohol equivalent is excessive with respect to the carboxylic acid equivalent. As the polybasic acid component and the polyhydric alcohol component constituting the polyester polyol, a combination of dibasic acid and diol is preferable.
 二塩基酸成分としては、オルトフタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸;ヘキサヒドロフタル酸、テトラヒドロフタル酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸等の脂肪族ジカルボン酸;これらのジカルボン酸の酸無水物、低級アルコールエステル等が挙げられる。 Examples of the dibasic acid component include aromatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, and terephthalic acid; and alicyclics such as hexahydrophthalic acid, tetrahydrophthalic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid. Formula dicarboxylic acid; aliphatic dicarboxylic acids such as oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, dodecandicarboxylic acid, octadecanedicarboxylic acid; Examples thereof include acid anhydrides of dicarboxylic acids and lower alcohol esters.
 ジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、ビスフェノールA、ビスフェノールF、水添ビスフェノールA、水添ビスフェノールF等が挙げられる。 Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, and the like. 1,8-octanediol, 1,10-decanediol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, bisphenol A, bisphenol F , Hydrophobic bisphenol A, hydrogenated bisphenol F and the like.
 ポリカーボネートポリオールとしては、ジオール成分とホスゲンとを重縮合反応させて得られるポリカーボネートポリオール;ジオール成分と、炭酸ジメチル、炭酸ジエチル、炭酸ジプロビル、炭酸ジイソプロピル、炭酸ジブチル、エチルブチル炭酸、エチレンカーボネート、プロピレンカーボネート、炭酸ジフェニル、炭酸ジベンジル等の炭酸ジエステル類とをエステル交換縮合させて得られるポリカーボネートポリオール;ポリオール成分を2種以上併用して得られる共重合ポリカーボネートポリオール;上記各種ポリカーボネートポリオールとカルボキシ基含有化合物とをエステル化反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールと水酸基含有化合物とをエーテル化反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとエステル化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールと水酸基含有化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとジカルボン酸化合物との重縮合により得られるポリエステル系ポリカーボネートポリオール;上記各種ポリカーボネートポリオールとアルキレンオキサイドとを共重合させて得られる共重合ポリエーテル系ポリカーボネートポリオール等が挙げられる。 The polycarbonate polyol is a polycarbonate polyol obtained by subjecting a diol component and phosgen to a polycondensation reaction; the diol component, dimethyl carbonate, diethyl carbonate, diprovyl carbonate, diisopropyl carbonate, dibutyl carbonate, ethylbutylcarbonate, ethylene carbonate, propylene carbonate, and carbonic acid. Polycarbonate polyol obtained by ester exchange condensation with carbonic acid diesters such as diphenyl and dibenzyl carbonate; copolymerized polycarbonate polyol obtained by using two or more kinds of polyol components in combination; the above-mentioned various polycarbonate polyols and carboxy group-containing compounds are esterified. Polycarbonate polyol obtained by reaction; Polycarbonate polyol obtained by etherifying the various polycarbonate polyols and hydroxyl group-containing compounds; Polycarbonate polyol obtained by ester exchange reaction between the various polycarbonate polyols and ester compounds; Polycarbonate polyol obtained by ester exchange reaction of polyol and hydroxyl group-containing compound; Polycarbonate-based polycarbonate polyol obtained by polycondensation of various polycarbonate polyols and dicarboxylic acid compounds; Copolymerization of various polycarbonate polyols and alkylene oxides Examples thereof include the obtained copolymerized polyether-based polycarbonate polyol.
 ポリアクリルポリオールは、(メタ)アクリル酸エステルと水酸基を有するモノマー成分とを共重合することにより得られる。水酸基を有するモノマーとしては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-ヒドロキシペンチル等の(メタ)アクリル酸のヒドロキシアルキルエステル;グリセリン、トリメチロールプロパン等の多価アルコールの(メタ)アクリル酸モノエステル;N-メチロール(メタ)アクリルアミド等が挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル等が挙げられる。 The polyacrylic polyol is obtained by copolymerizing a (meth) acrylic acid ester with a monomer component having a hydroxyl group. Examples of the monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and (meth). ) Hydroxyalkyl esters of (meth) acrylic acids such as 4-hydroxybutyl acrylate and 2-hydroxypentyl (meth) acrylate; (meth) acrylic acid monoesters of polyhydric alcohols such as glycerin and trimethyl propane; N- Examples thereof include methylol (meth) acrylamide. Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate.
 ポリアクリルポリオールは、共重合成分として上記以外のモノマー成分を含有していてもよい。上記以外の共重合モノマー成分としては、(メタ)アクリル酸等の不飽和モノカルボン酸;マレイン酸等の不飽和ジカルボン酸ならびにその無水物およびモノまたはジエステル類;(メタ)アクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン化α,β-不飽和脂肪族単量体;スチレン、α-メチルスチレン等のα,β-不飽和芳香族単量体等が挙げられる。 The polyacrylic polyol may contain a monomer component other than the above as a copolymerization component. Examples of the copolymerized monomer component other than the above include unsaturated monocarboxylic acids such as (meth) acrylic acid; unsaturated dicarboxylic acids such as maleic acid and their anhydrides and mono- or diesters; and unsaturated nitriles such as (meth) acrylonitrile. Classes; unsaturated amides such as (meth) acrylamide and N-methylol (meth) acrylamide; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether; α-olefins such as ethylene and propylene; Examples thereof include halogenated α, β-unsaturated aliphatic monomers such as vinyl chloride and vinylidene chloride; and α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene.
 ポリウレタン鎖の形成に用いられるジイソシアネートは、芳香族ジイソシアネートおよび脂肪族のいずれでもよい。芳香族ジイソシアネートとしては、1,5-ナフタレンジイソシアネート、4、4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジフェニルジメチルメタンジイソシアネート、テトラメチルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2-クロロ-1,4-フェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-ジフェニルスルホキシドジイソシアネート、4,4’-ジフェニルスルホンジイソシアネート、4,4’-ビフェニルジイソシアネート等が挙げられる。脂肪族ジイソシアネートとしては、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等が挙げられる。 The diisocyanate used to form the polyurethane chain may be either an aromatic diisocyanate or an aliphatic diisocyanate. Examples of the aromatic diisocyanis include 1,5-naphthalenediocyanis, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-diphenyldimethylmethane diisocyanate, tetramethyldiphenylmethane diisocyanate, 1,3-phenylenediisocyanate, 1,4-. Phoenix diisocyanis, 2-chloro-1,4-phenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl sulfoxide diisocyanate , 4,4'-diphenylsulfone diisocyanate, 4,4'-biphenyldiisocyanate and the like. Examples of the aliphatic diisocyanate include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, and isophorone diisocyanate. , Dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate and the like.
 ジイソシアネートとして、イソシアネート化合物の誘導体を用いることもできる。イソシアネート化合物の誘導体としては、ポリイソシアネートの2量体、イソシアネートの3量体(イソシアヌレート)、ポリメリックMDI、トリメチロールプロパンとの付加体、ビウレット変性体、アロファネート変性体、ウレア変性体等が挙げられる。ジイソシアネート成分として、末端にイソシアネート基を有するウレタンプレポリマーを用いてもよい。 A derivative of an isocyanate compound can also be used as the diisocyanate. Derivatives of the isocyanate compound include dimer of polyisocyanate, trimer of isocyanate (isocyanurate), polypeptide MDI, adduct with trimethylolpropane, biuret modified product, allophanate modified product, urea modified product and the like. .. As the diisocyanate component, a urethane prepolymer having an isocyanate group at the terminal may be used.
 例示のポリウレタン鎖の中でも、アクリル系ポリマー鎖との相溶性が高いことから、ジオール成分としてポリエーテルポリオールを有するポリエーテルウレタン、および/またはジオール成分としてポリエステルポリオールを有するポリエステルウレタンを含むことが好ましい。特に、ポリエステルウレタンにより架橋構造を導入した場合に、常温の貯蔵弾性率が大きくなり、接着保持力や加工性が向上する傾向がある。1つの理由として、ポリエステルは、ポリエーテル等に比べて剛直な分子構造を有することが挙げられる。剛直なセグメントにより架橋構造が導入されると、アクリル系ポリマー鎖の動きが制限されるために貯蔵弾性率が高められ、一方で、ポリマー鎖の架橋点間距離が保持されるため、耐衝撃性や段差吸収性を示すと考えられる。 Among the exemplified polyurethane chains, it is preferable to contain a polyether urethane having a polyether polyol as a diol component and / or a polyester urethane having a polyester polyol as a diol component because of its high compatibility with an acrylic polymer chain. In particular, when a crosslinked structure is introduced with polyester urethane, the storage elastic modulus at room temperature tends to increase, and the adhesive holding force and workability tend to improve. One reason is that polyester has a rigid molecular structure as compared with polyether and the like. When the cross-linked structure is introduced by the rigid segment, the storage elastic modulus is increased because the movement of the acrylic polymer chain is restricted, while the distance between the cross-linking points of the polymer chain is maintained, so that it is impact resistant. It is thought that it shows step absorption.
 ポリウレタン鎖の末端に、アクリル系ポリマー鎖を構成するモノマー成分と共重合可能な官能基を有する化合物、またはポリウレタン鎖の末端に、アクリル系ポリマー鎖に含まれるカルボキシ基、水酸基等と反応可能な官能基を有する化合物を用いることにより、アクリル系ポリマー鎖に、ウレタン系セグメントによる架橋構造を導入できる。アクリル系ポリマー鎖に均一に架橋点を導入しやすく、かつ、アクリル系ポリマー鎖とウレタン系セグメントとの相溶性に優れることから、ポリウレタン鎖の両末端に(メタ)アクリロイル基を有するウレタンジ(メタ)アクリレートを用いて、ウレタン系セグメントによる架橋構造を導入することが好ましい。例えば、アクリル系ポリマー鎖を構成するモノマー成分と、ウレタンジ(メタ)アクリレートとを共重合することにより、アクリル系ポリマー鎖にウレタン系セグメントによる架橋構造を導入できる。 A compound having a functional group copolymerizable with a monomer component constituting the acrylic polymer chain at the end of the polyurethane chain, or a functional group capable of reacting with a carboxy group, a hydroxyl group, etc. contained in the acrylic polymer chain at the end of the polyurethane chain. By using a compound having a group, a crosslinked structure of urethane-based segments can be introduced into the acrylic polymer chain. Urethane di (meth) having (meth) acryloyl groups at both ends of the polyurethane chain because it is easy to uniformly introduce cross-linking points into the acrylic polymer chain and the compatibility between the acrylic polymer chain and the urethane segment is excellent. It is preferable to introduce a crosslinked structure with urethane-based segments using acrylate. For example, by copolymerizing the monomer component constituting the acrylic polymer chain with the urethane di (meth) acrylate, a crosslinked structure by the urethane segment can be introduced into the acrylic polymer chain.
 両末端に(メタ)アクリロイル基を有するウレタンジ(メタ)アクリレートは、例えば、ポリウレタンの重合において、ジオール成分に加えて、水酸基を有する(メタ)アクリル化合物を用いることにより得られる。ウレタン系セグメントの鎖長(分子量)を制御する観点からは、ジオールとジイソシアネートとをイソシアネートが過剰となるように反応させてイソシアネート末端ポリウレタンを合成した後、水酸基を有する(メタ)アクリル化合物を添加して、ポリウレタンの末端イソシアネート基と(メタ)アクリル化合物の水酸基とを反応させることが好ましい。 Urethane di (meth) acrylate having (meth) acryloyl groups at both ends can be obtained, for example, by using a (meth) acrylic compound having a hydroxyl group in addition to the diol component in the polymerization of polyurethane. From the viewpoint of controlling the chain length (molecular weight) of the urethane-based segment, a diol and diisocyanate are reacted so as to have an excess of isocyanate to synthesize an isocyanate-terminated polyurethane, and then a (meth) acrylic compound having a hydroxyl group is added. Therefore, it is preferable to react the terminal isocyanate group of polyurethane with the hydroxyl group of the (meth) acrylic compound.
 多価アルコールとポリイソシアネート化合物とを、ポリイソシアネート化合物が過剰となるように反応させることにより、末端にイソシアネート基を有するポリウレタン鎖が得られる。イソシアネート末端ポリウレタンを得るためには、NCO/OH(当量比)が、好ましくは1.1~2.0、より好ましくは1.15~1.5となるように、ジオール成分とジイソシアネート成分を使用すればよい。ジオール成分とジイソシアネート成分とを略等量混合して反応させた後に、ジイソシアネート成分を追加してもよい。 By reacting the polyhydric alcohol with the polyisocyanate compound so that the polyisocyanate compound becomes excessive, a polyurethane chain having an isocyanate group at the terminal can be obtained. In order to obtain an isocyanate-terminated polyurethane, a diol component and a diisocyanate component are used so that the NCO / OH (equivalent ratio) is preferably 1.1 to 2.0, more preferably 1.15 to 1.5. do it. The diisocyanate component may be added after the diol component and the diisocyanate component are mixed in substantially equal amounts and reacted.
 水酸基を有する(メタ)アクリル化合物としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシへキシル、ヒドロキシメチルアクリルアミド、ヒドロキシエチルアクリルアミド等が挙げられる。 Examples of the (meth) acrylic compound having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxymethylacrylamide, and hydroxyethyl. Examples include acrylamide.
 ウレタン(メタ)アクリレートとして、荒川化学工業、新中村化学工業、東亜合成、共栄社化学、日本化薬、日本合成化学工業、根上工業、ダイセルオルネクス等の各社から販売されている市販品を用いてもよい。ウレタン(メタ)アクリレートの重量平均分子量は、5000~30000が好ましく、6000~23000がより好ましく、7000~20000がさらに好ましい。 As urethane (meth) acrylate, commercially available products sold by Arakawa Chemical Industry, Shin Nakamura Chemical Industry, Toa Synthetic, Kyoeisha Chemical, Nippon Kayaku, Nippon Synthetic Chemical Industry, Negami Kogyo, Daicel Ornex, etc. are used. May be good. The weight average molecular weight of the urethane (meth) acrylate is preferably 5000 to 30000, more preferably 6000 to 23000, and even more preferably 7000 to 20000.
 ウレタン(メタ)アクリレートのガラス転移温度は、0℃以下が好ましく、-10℃以下がより好ましく、-20℃以下がさらに好ましい。低Tgのウレタン(メタ)アクリレートを用いることにより、ウレタン系セグメントにより架橋構造を導入してベースポリマーの凝集力を高めた場合でも、低温接着力に優れる粘着剤が得られる。ウレタン(メタ)アクリレートのガラス転移温度の下限は特に限定されないが、高温保持力に優れる粘着剤を得る観点からは、-100℃以上が好ましく、-90℃以上がより好ましく、-80℃以上がさらに好ましい。 The glass transition temperature of urethane (meth) acrylate is preferably 0 ° C. or lower, more preferably −10 ° C. or lower, and even more preferably −20 ° C. or lower. By using a low Tg urethane (meth) acrylate, a pressure-sensitive adhesive having excellent low-temperature adhesive strength can be obtained even when a crosslinked structure is introduced by a urethane-based segment to enhance the cohesive force of the base polymer. The lower limit of the glass transition temperature of urethane (meth) acrylate is not particularly limited, but from the viewpoint of obtaining an adhesive having excellent high-temperature holding power, -100 ° C or higher is preferable, -90 ° C or higher is more preferable, and -80 ° C or higher is preferable. More preferred.
 ウレタン(メタ)アクリレートを用いて、アクリル系ポリマー鎖にウレタン系セグメントによる架橋構造を導入する場合は、ベースポリマーのウレタン系セグメントのガラス転移温度は、ウレタン(メタ)アクリレートのガラス転移温度に略等しい。 When a urethane (meth) acrylate is used to introduce a crosslinked structure of urethane-based segments into an acrylic polymer chain, the glass transition temperature of the urethane-based segment of the base polymer is approximately equal to the glass transition temperature of urethane (meth) acrylate. ..
<ベースポリマーの調製>
 アクリル系ポリマー鎖にウレタン系セグメントによる架橋構造が導入されたポリマーは、各種公知の方法により重合できる。ウレタン系セグメントの構成成分として、ウレタン(メタ)アクリレートを用いる場合は、アクリル系ポリマー鎖を構成するためのモノマー成分とウレタン(メタ)アクリレートとを共重合すればよい。
<Preparation of base polymer>
A polymer in which a crosslinked structure of urethane-based segments is introduced into an acrylic polymer chain can be polymerized by various known methods. When urethane (meth) acrylate is used as a constituent component of the urethane-based segment, the monomer component for forming the acrylic polymer chain and urethane (meth) acrylate may be copolymerized.
 ウレタン(メタ)アクリレートの使用量は、アクリル系ポリマー鎖を構成するためのモノマー成分100重量部に対して、0.3~10重量部が好ましく、0.5~7重量部がより好ましく、0.7~5重量部がさらに好ましい。ウレタン(メタ)アクリレートの使用量を調整することにより、ウレタン系セグメントの含有量が前述の範囲であるベースポリマーを調製できる。ウレタン系セグメントの含有量が過度に小さい場合は、ベースポリマーの凝集性低下により粘着シートの接着保持力が低下する傾向がある。ウレタン系セグメントの含有量が過度に大きい場合は、ベースポリマーの凝集性の上昇に伴って粘着シートの粘性が小さくなり、耐衝撃性や段差吸収性が低下する傾向がある。 The amount of urethane (meth) acrylate used is preferably 0.3 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, and 0, based on 100 parts by weight of the monomer component for forming the acrylic polymer chain. .7 to 5 parts by weight is more preferable. By adjusting the amount of urethane (meth) acrylate used, a base polymer having a urethane-based segment content in the above range can be prepared. When the content of the urethane-based segment is excessively small, the adhesive holding force of the pressure-sensitive adhesive sheet tends to decrease due to the decrease in cohesiveness of the base polymer. When the content of the urethane-based segment is excessively large, the viscosity of the pressure-sensitive adhesive sheet tends to decrease as the cohesiveness of the base polymer increases, and the impact resistance and step absorption tend to decrease.
 ウレタン(メタ)アクリレートに加えて、またはウレタン(メタ)アクリレートに代えて、ウレタン(メタ)アクリレート以外の多官能(メタ)アクリル化合物により、アクリル系ポリマー鎖に架橋構造を導入することもできる。ウレタン(メタ)アクリレート以外の多官能化合物による架橋構造の導入量が増加すると、粘着剤の耐衝撃性や段差吸収性が低下する場合がある。そのため、ウレタン(メタ)アクリレート以外の多官能化合物の量は、アクリル系ポリマー鎖を構成するためのモノマー成分100重量部に対して、0.2重量部以下が好ましく、0.1重量部以下がより好ましく、0.05重量部以下がさらに好ましい。 A crosslinked structure can be introduced into the acrylic polymer chain by using a polyfunctional (meth) acrylic compound other than urethane (meth) acrylate in addition to urethane (meth) acrylate or instead of urethane (meth) acrylate. If the amount of the crosslinked structure introduced by the polyfunctional compound other than urethane (meth) acrylate increases, the impact resistance and step absorption of the pressure-sensitive adhesive may decrease. Therefore, the amount of the polyfunctional compound other than the urethane (meth) acrylate is preferably 0.2 parts by weight or less, preferably 0.1 parts by weight or less, based on 100 parts by weight of the monomer component for forming the acrylic polymer chain. More preferably, 0.05 parts by weight or less is further preferable.
 ベースポリマーの重合方法としては、光重合が好ましい。光重合では溶媒を用いずにポリマーを調製できるため、粘着シートの形成時に溶媒の乾燥除去を必要とせず、厚みの大きい粘着シートを均一に形成できる。 Photopolymerization is preferable as the method for polymerizing the base polymer. Since the polymer can be prepared without using a solvent in photopolymerization, it is not necessary to dry and remove the solvent when forming the pressure-sensitive adhesive sheet, and a thick pressure-sensitive adhesive sheet can be uniformly formed.
 ベースポリマーの調製においては、アクリル系ポリマー鎖を構成するモノマー成分および架橋構造を導入するための多官能化合物の全量を一度に反応させてもよく、多段階で重合を行ってもよい。多段階で重合を行う方法としては、アクリル系ポリマー鎖を構成する単官能モノマーを重合して、プレポリマー組成物を形成し(予備重合)、プレポリマー組成物のシロップ中にウレタンジ(メタ)アクリレート等の多官能化合物を添加して、プレポリマー組成物と多官能モノマーとを重合(本重合)する方法が好ましい。プレポリマー組成物は、低重合度の重合物と未反応のモノマーとを含む部分重合物である。 In the preparation of the base polymer, the monomer components constituting the acrylic polymer chain and the total amount of the polyfunctional compound for introducing the crosslinked structure may be reacted at once, or the polymerization may be carried out in multiple steps. As a method of performing polymerization in multiple steps, a monofunctional monomer constituting an acrylic polymer chain is polymerized to form a prepolymer composition (prepolymerization), and urethane di (meth) acrylate is contained in the syrup of the prepolymer composition. A method of polymerizing (mainly polymerizing) the prepolymer composition and the polyfunctional monomer by adding a polyfunctional compound such as the above is preferable. The prepolymer composition is a partial polymer containing a polymer having a low degree of polymerization and an unreacted monomer.
 アクリル系ポリマー鎖の構成成分の予備重合を行うことにより、ウレタンジ(メタ)アクリレート等の多官能化合物による分枝点(架橋点)を、アクリル系ポリマー鎖に均一に導入できる。また、低分子量のポリマーまたは部分重合物と未重合のモノマー成分との混合物(粘着剤組成物)を基材上に塗布した後、基材上で本重合を行って、粘着シートを形成することもできる。 By prepolymerizing the constituent components of the acrylic polymer chain, branch points (crosslink points) due to a polyfunctional compound such as urethane di (meth) acrylate can be uniformly introduced into the acrylic polymer chain. Further, after applying a mixture (adhesive composition) of a low molecular weight polymer or a partial polymer and an unpolymerized monomer component on a base material, the main polymerization is performed on the base material to form a pressure-sensitive adhesive sheet. You can also.
 プレポリマー組成物等の低重合度組成物は低粘度で塗布性に優れるため、プレポリマー組成物と多官能化合物との混合物である粘着剤組成物を塗布後に基材上で本重合を行う方法によれば、粘着シートの生産性を向上できると共に、粘着シートの厚みを均一とすることができる。 Since a low-polymerization degree composition such as a prepolymer composition has low viscosity and excellent coatability, a method of performing main polymerization on a substrate after applying a pressure-sensitive adhesive composition which is a mixture of a prepolymer composition and a polyfunctional compound. According to the above, the productivity of the pressure-sensitive adhesive sheet can be improved, and the thickness of the pressure-sensitive adhesive sheet can be made uniform.
[粘着シート]
 上記のように、予備重合により低重合度のプレポリマー組成物を調製し、プレポリマー組成物に多官能化合物等を添加した粘着剤組成物を基材上に層状に塗布し、基材上の粘着剤組成物の重合(本重合)を行うことにより、粘着シートが得られる。
[Adhesive sheet]
As described above, a prepolymer composition having a low degree of polymerization is prepared by prepolymerization, and a pressure-sensitive adhesive composition obtained by adding a polyfunctional compound or the like to the prepolymer composition is applied in a layered manner on the base material, and then on the base material. A pressure-sensitive adhesive sheet can be obtained by polymerizing the pressure-sensitive adhesive composition (main polymerization).
<予備重合>
 プレポリマー組成物は、例えば、アクリル系ポリマー鎖を構成するモノマー成分と重合開始剤とを混合した組成物を重合することにより調製できる。プレポリマー形成用組成物は、多官能化合物(多官能モノマーまたは多官能オリゴマー)を含んでいてもよい。例えば、ポリマーの原料となる多官能化合物の一部をプレポリマー形成用組成物に含有させ、プレポリマーを重合後に多官能化合物の残部を添加して本重合に供してもよい。
<Prepolymerization>
The prepolymer composition can be prepared, for example, by polymerizing a composition in which a monomer component constituting an acrylic polymer chain and a polymerization initiator are mixed. The composition for forming a prepolymer may contain a polyfunctional compound (polyfunctional monomer or polyfunctional oligomer). For example, a part of the polyfunctional compound which is a raw material of the polymer may be contained in the composition for forming the prepolymer, and the rest of the polyfunctional compound may be added after the prepolymer is polymerized to be subjected to the main polymerization.
 プレポリマー形成用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては、ベンゾインエーテル系光重合開始剤、アセトフェノン系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、ケタール系光重合開始剤、チオキサントン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等が挙げられる。 The composition for forming a prepolymer preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include a benzoin ether-based photopolymerization initiator, an acetophenone-based photopolymerization initiator, an α-ketol-based photopolymerization initiator, an aromatic sulfonyl chloride-based photopolymerization initiator, and a photoactive oxime-based photopolymerization initiator. Examples thereof include benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and acylphosphine oxide-based photopolymerization initiators.
 重合に際しては、分子量調整等を目的として、連鎖移動剤や重合禁止剤(重合遅延剤)等を用いてもよい。連鎖移動剤としては、α-チオグリセロール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、チオグリコール酸、チオグルコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール等のチオール類や、α-メチルスチレン二量体等が挙げられる。 At the time of polymerization, a chain transfer agent, a polymerization inhibitor (polymerization delaying agent) or the like may be used for the purpose of adjusting the molecular weight. Examples of the chain transfer agent include thiols such as α-thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, and 2,3-dimercapto-1-propanol. Examples thereof include α-methylstyrene dimer.
 プレポリマーの重合率は特に限定されないが、基材上への塗布に適した粘度とする観点から、3~50重量%が好ましく、5~40重量%がより好ましい。プレポリマーの重合率は、光重合開始剤の種類や使用量、UV光等の活性光線の照射強度・照射時間等を調整することによって、所望の範囲に調整できる。プレポリマーの重合率は、130℃で3時間加熱した際の加熱前後の重量から、下記式により算出される。粘着シートの重合率も同様の方法により算出される。
   重合率(%)=乾燥後の重量/乾燥前の重量×100
The polymerization rate of the prepolymer is not particularly limited, but is preferably 3 to 50% by weight, more preferably 5 to 40% by weight, from the viewpoint of obtaining a viscosity suitable for coating on a substrate. The polymerization rate of the prepolymer can be adjusted to a desired range by adjusting the type and amount of the photopolymerization initiator, the irradiation intensity and irradiation time of active light such as UV light, and the like. The polymerization rate of the prepolymer is calculated by the following formula from the weight before and after heating when heated at 130 ° C. for 3 hours. The polymerization rate of the pressure-sensitive adhesive sheet is also calculated by the same method.
Polymerization rate (%) = weight after drying / weight before drying x 100
<粘着剤組成物の調製>
 上記プレポリマー組成物に、ウレタンジ(メタ)アクリレート等の多官能化合物、および必要に応じて、アクリル系ポリマー鎖を構成するモノマー成分の残部、重合開始剤、連鎖移動剤、その他の添加剤等を混合して粘着剤組成物を調製する。粘着剤組成物は、基材上への塗布に適した粘度(例えば、0.5~20Pa・s程度)を有することが好ましい。プレポリマーの重合率、多官能化合物の種類や添加量、その他の成分(例えばオリゴマー)の組成、分子量、添加量等を調整することにより、粘着剤組成物の粘度を適切な範囲とすることができる。粘度調整等を目的として、増粘性添加剤等を用いてもよい。
<Preparation of adhesive composition>
In the prepolymer composition, a polyfunctional compound such as urethane di (meth) acrylate, and if necessary, the rest of the monomer components constituting the acrylic polymer chain, a polymerization initiator, a chain transfer agent, other additives, and the like are added. Mix to prepare a pressure-sensitive adhesive composition. The pressure-sensitive adhesive composition preferably has a viscosity suitable for coating on a substrate (for example, about 0.5 to 20 Pa · s). By adjusting the polymerization rate of the prepolymer, the type and amount of the polyfunctional compound, the composition of other components (for example, oligomers), the molecular weight, the amount of addition, etc., the viscosity of the pressure-sensitive adhesive composition can be adjusted to an appropriate range. it can. A thickening additive or the like may be used for the purpose of adjusting the viscosity.
 本重合に用いられる重合開始剤は特に限定されず、例えば、上述の光重合開始剤を用いることができる。予備重合の際に用いた重合開始剤がプレポリマー組成物中で失活せずに残存している場合は、本重合のための重合開始剤の添加を省略してもよい。 The polymerization initiator used in the main polymerization is not particularly limited, and for example, the above-mentioned photopolymerization initiator can be used. If the polymerization initiator used in the prepolymerization remains in the prepolymer composition without being deactivated, the addition of the polymerization initiator for the main polymerization may be omitted.
(連鎖移動剤)
 本重合においては、粘着剤組成物に連鎖移動剤を含めることにより、分子量を調整することが好ましい。本重合に用いられる連鎖移動剤は特に限定されず、例えば、上述の連鎖移動剤を用いることができる。粘着剤組成物中の連鎖移動剤の量は、ベースポリマーの構成成分100重量部に対して、0.001~2重量部が好ましく、0.005~1重量部がより好ましく、0.01~0.5重量部がさらに好ましい。なお、予備重合の際に用いた連鎖移動剤がプレポリマー組成物中で失活せずに残存している場合は、粘着剤組成物への連鎖移動剤の添加を省略してもよい。
(Chain transfer agent)
In this polymerization, it is preferable to adjust the molecular weight by including a chain transfer agent in the pressure-sensitive adhesive composition. The chain transfer agent used in the present polymerization is not particularly limited, and for example, the above-mentioned chain transfer agent can be used. The amount of the chain transfer agent in the pressure-sensitive adhesive composition is preferably 0.001 to 2 parts by weight, more preferably 0.005 to 1 part by weight, and 0.01 to 0.01 parts by weight, based on 100 parts by weight of the constituent components of the base polymer. 0.5 parts by weight is more preferable. If the chain transfer agent used in the prepolymerization remains in the prepolymer composition without being inactivated, the addition of the chain transfer agent to the pressure-sensitive adhesive composition may be omitted.
 連鎖移動剤は、成長ポリマー鎖からラジカルを受け取ってポリマーの伸長を停止させるとともに、ラジカルを受け取った連鎖移動剤がモノマーを攻撃して再び重合を開始させる。連鎖移動剤を用いることにより、反応系中のラジカル濃度を低下させることなく、ポリマーの分子量の増大を抑止できる。 The chain transfer agent receives radicals from the growing polymer chain to stop the elongation of the polymer, and the chain transfer agent that receives the radicals attacks the monomer to restart the polymerization. By using a chain transfer agent, an increase in the molecular weight of the polymer can be suppressed without lowering the radical concentration in the reaction system.
 単官能モノマーと多官能モノマーの比率が一定である場合、分子量が大きいほど、1つのポリマー鎖に多官能モノマーによる架橋点(分岐点)が含まれる確率が高くなるため、ゲル分率が大きくなる傾向がある。連鎖移動剤を用いて、ポリマーの伸長を抑制することにより、ポリマーの分子量が小さくなり、ゲル分率の上昇が抑制される傾向がある。そのため、粘着剤組成物が連鎖移動剤を含むことにより、tanδが大きく、段差吸収性に優れる粘着シートが形成されやすい。 When the ratio of the monofunctional monomer to the polyfunctional monomer is constant, the larger the molecular weight, the higher the probability that one polymer chain contains a cross-linking point (branching point) due to the polyfunctional monomer, so that the gel fraction increases. Tend. By suppressing the elongation of the polymer by using a chain transfer agent, the molecular weight of the polymer tends to be reduced and the increase in gel fraction tends to be suppressed. Therefore, when the pressure-sensitive adhesive composition contains a chain transfer agent, a pressure-sensitive adhesive sheet having a large tan δ and excellent step absorption is easily formed.
(オリゴマー)
 粘着剤組成物は、粘着シートの接着力の調整や粘度調整等を目的として、各種のオリゴマーを含んでいてもよい。オリゴマーとしては、例えば重量平均分子量が1000~30000程度のものが用いられる。オリゴマーとしては、アクリル系ベースポリマーとの相溶性に優れることから、アクリル系オリゴマーが好ましい。
(Oligomer)
The pressure-sensitive adhesive composition may contain various oligomers for the purpose of adjusting the adhesive force of the pressure-sensitive adhesive sheet, adjusting the viscosity, and the like. As the oligomer, for example, one having a weight average molecular weight of about 1000 to 30,000 is used. As the oligomer, an acrylic oligomer is preferable because it has excellent compatibility with an acrylic base polymer.
 アクリル系オリゴマーは、主たる構成モノマー成分として(メタ)アクリル酸アルキルエステルを含有する。中でも、構成モノマー成分として、鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル(鎖状アルキル(メタ)アクリレート)、および脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル(脂環式アルキル(メタ)アクリレート)を含むものが好ましい。鎖状アルキル(メタ)アクリレートおよび脂環式アルキル(メタ)アクリレートの具体例は、アクリル系ポリマー鎖の構成モノマーとして先に例示した通りである。 Acrylic oligomer contains (meth) acrylic acid alkyl ester as a main constituent monomer component. Among them, (meth) acrylic acid alkyl ester having a chain alkyl group (chain alkyl (meth) acrylate) and (meth) acrylic acid alkyl ester having an alicyclic alkyl group (alicyclic alkyl) as constituent monomer components. Those containing (meth) acrylate) are preferable. Specific examples of the chain alkyl (meth) acrylate and the alicyclic alkyl (meth) acrylate are as exemplified above as the constituent monomers of the acrylic polymer chain.
 アクリル系オリゴマーのガラス転移温度は、20℃以上が好ましく、40℃以上がより好ましい。アクリル系オリゴマーのガラス転移温度は、60℃以上、80℃以上、100℃以上または110℃以上であってもよい。架橋構造が導入された低Tgのアクリル系ベースポリマーと高Tgのアクリル系オリゴマーとを併用することにより、粘着シートの接着保持力が向上する傾向がある。アクリル系オリゴマーのガラス転移温度の上限は特に限定されないが、一般には200℃以下であり、180℃以下が好ましく、160℃以下がより好ましい。アクリル系オリゴマーのガラス転移温度は、前述のFox式により算出される。 The glass transition temperature of the acrylic oligomer is preferably 20 ° C. or higher, more preferably 40 ° C. or higher. The glass transition temperature of the acrylic oligomer may be 60 ° C. or higher, 80 ° C. or higher, 100 ° C. or higher, or 110 ° C. or higher. By using a low Tg acrylic base polymer introduced with a crosslinked structure and a high Tg acrylic oligomer in combination, the adhesive holding power of the pressure-sensitive adhesive sheet tends to be improved. The upper limit of the glass transition temperature of the acrylic oligomer is not particularly limited, but is generally 200 ° C. or lower, preferably 180 ° C. or lower, and more preferably 160 ° C. or lower. The glass transition temperature of the acrylic oligomer is calculated by the Fox formula described above.
 例示の(メタ)アクリル酸アルキルエステルの中でも、鎖状アルキル(メタ)アクリレートとしては、ガラス転移温度が高く、ベースポリマーとの相溶性に優れることから、メタクリル酸メチルが好ましい。脂環式アルキル(メタ)アクリレートとしては、アクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンタニル、アクリル酸シクロヘキシル、およびメタクリル酸シクロヘキシルが好ましい。すなわち、アクリル系オリゴマーは、構成モノマー成分として、アクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンタニル、アクリル酸シクロヘキシル、およびメタクリル酸シクロヘキシルからなる群より選択される1種以上と、メタクリル酸メチルとを含むものが好ましい。 Among the exemplified (meth) acrylic acid alkyl esters, methyl methacrylate is preferable as the chain alkyl (meth) acrylate because it has a high glass transition temperature and excellent compatibility with the base polymer. As the alicyclic alkyl (meth) acrylate, dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate are preferable. That is, the acrylic oligomer contains one or more selected from the group consisting of dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate as constituent monomer components, and methyl methacrylate. Is preferable.
 アクリル系オリゴマーを構成するモノマー成分全量に対する脂環式アルキル(メタ)アクリレートの量は、10~90重量%が好ましく、20~80重量%がより好ましく、30~70重量%がさらに好ましい。アクリル系オリゴマーを構成するモノマー成分全量に対する鎖状アルキル(メタ)アクリレートの量は、10~90重量%が好ましく、20~80重量%がより好ましく、30~70重量%がさらに好ましい。 The amount of the alicyclic alkyl (meth) acrylate is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight, based on the total amount of the monomer components constituting the acrylic oligomer. The amount of the chain alkyl (meth) acrylate with respect to the total amount of the monomer components constituting the acrylic oligomer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight.
 アクリル系オリゴマーの重量平均分子量は、1000~30000が好ましく、1500~10000がより好ましく、2000~8000がさらに好ましい。当該範囲の分子量を有するアクリル系オリゴマーを用いることにより、粘着剤の接着力や接着保持力が向上する傾向がある。 The weight average molecular weight of the acrylic oligomer is preferably 1000 to 30,000, more preferably 1500 to 10000, and even more preferably 2000 to 8000. By using an acrylic oligomer having a molecular weight in the above range, the adhesive strength and adhesive holding strength of the pressure-sensitive adhesive tend to be improved.
 アクリル系オリゴマーは、上記モノマー成分を各種の重合方法により重合することにより得られる。アクリル系オリゴマーの重合に際しては、各種の重合開始剤を用いてもよい。また、分子量の調整を目的として連鎖移動剤を用いてもよい。 Acrylic oligomers are obtained by polymerizing the above monomer components by various polymerization methods. Various polymerization initiators may be used for the polymerization of the acrylic oligomer. Further, a chain transfer agent may be used for the purpose of adjusting the molecular weight.
 粘着剤組成物にアクリル系オリゴマー等のオリゴマー成分を含める場合、その含有量は、上記のベースポリマー100重量部に対して、0.5~20重量部が好ましく、1~15重量部がより好ましく、2~10重量部がさらに好ましい。粘着剤組成物中のオリゴマーの含有量が上記範囲である場合に、高温での接着性および高温保持力が向上する傾向がある。 When the pressure-sensitive adhesive composition contains an oligomer component such as an acrylic oligomer, the content thereof is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the above base polymer. More preferably, 2 to 10 parts by weight. When the content of the oligomer in the pressure-sensitive adhesive composition is in the above range, the adhesiveness at high temperature and the holding power at high temperature tend to be improved.
(シランカップリング剤)
 接着力の調整を目的として、粘着剤組成物中に、シランカップリング剤を添加してもよい。粘着剤組成物にシランカップリング剤が添加される場合、その添加量は、ベースポリマー100重量部に対し通常0.01~5.0重量部程度であり、0.03~2.0重量部程度であることが好ましい。
(Silane coupling agent)
A silane coupling agent may be added to the pressure-sensitive adhesive composition for the purpose of adjusting the adhesive strength. When a silane coupling agent is added to the pressure-sensitive adhesive composition, the amount added is usually about 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the base polymer, and 0.03 to 2.0 parts by weight. It is preferably about.
(紫外線吸収剤)
 粘着剤組成物は、紫外線吸収剤を含んでいてもよい。粘着剤組成物が紫外線吸収剤を含むことにより、粘着シート5に紫外線吸収性を付与して、紫外線に起因する偏光板3や画像表示セル6の劣化を防止できる。
(UV absorber)
The pressure-sensitive adhesive composition may contain an ultraviolet absorber. When the pressure-sensitive adhesive composition contains an ultraviolet absorber, it is possible to impart ultraviolet absorbability to the adhesive sheet 5 and prevent deterioration of the polarizing plate 3 and the image display cell 6 due to ultraviolet rays.
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が挙げられる。紫外線吸収性が高く、かつアクリル系ポリマーとの相溶性に優れ、高透明性のアクリル系粘着シートが得られやすいことから、トリアジン系紫外線吸収剤が好ましく、中でも、水酸基を含有するトリアジン系紫外線吸収剤が好ましく、ヒドロキシフェニルトリアジン系紫外線吸収剤が特に好ましい。 Examples of the ultraviolet absorber include benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, triazine ultraviolet absorbers, salicylate-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and the like. A triazine-based UV absorber is preferable because it has high UV absorption, excellent compatibility with an acrylic polymer, and a highly transparent acrylic pressure-sensitive adhesive sheet can be easily obtained. Among them, a triazine-based UV absorber containing a hydroxyl group is preferable. Agents are preferred, and hydroxyphenyltriazine-based UV absorbers are particularly preferred.
 紫外線吸収剤として市販品を用いてもよい。トリアジン系紫外線吸収剤の市販品としては、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルと[(アルキルオキシ)メチル]オキシランとの反応生成物(BASF社製「TINUVIN 400」)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルとの反応生成物(BASF社製「TINUVIN 405」)、(2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(BASF社製「TINUVIN 460」)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製「TINUVIN 577」)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製「TINUVIN 479」), 2,4-ビス-[{4-(4-エチルヘキシルオキシ)-4-ヒドロキシ}-フェニル]-6-(4-メトキシフェニル)-1,3,5-トリアジン(BASF製「Tinosorb S」)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]-フェノール(ADEKA製「ADK STAB LA-46」)等が挙げられる。 A commercially available product may be used as the ultraviolet absorber. Commercially available triazine-based UV absorbers include 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hydroxyphenyl and [(alkyloxy). ) Methyl] Reaction product with oxylane (BASF "TINUVIN 400"), 2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5 -Reaction product of triazine and (2-ethylhexyl) -glycidate ester (BASF "TINUVIN 405"), (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4) -Dibutoxyphenyl) -1,3,5-triazine (BASF "TINUVIN 460"), 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl) ) Oxy] -Phenol ("TINUVIN 577" manufactured by BASF), 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3 , 5-Triazine (BASF "TINUVIN 479"), 2,4-bis- [{4- (4-ethylhexyloxy) -4-hydroxy} -phenyl] -6- (4-methoxyphenyl) -1, 3,5-Triazine (BASF "Tinosorb S"), 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy ] -Phenol ("ADK STAB LA-46" manufactured by ADEKA) and the like can be mentioned.
 粘着剤組成物に紫外線吸収剤が添加される場合、その添加量は、ベースポリマー100重量部に対し通常0.1~10重量部程度であり、0.3~5重量部が好ましい。紫外線吸収剤の含有量を上記範囲とすることにより、紫外線吸収剤のブリードアウト等による透明性の低下を抑制しつつ、粘着シートの紫外線カット性を向上できる。 When an ultraviolet absorber is added to the pressure-sensitive adhesive composition, the amount of the ultraviolet absorber added is usually about 0.1 to 10 parts by weight, preferably 0.3 to 5 parts by weight, based on 100 parts by weight of the base polymer. By setting the content of the ultraviolet absorber in the above range, it is possible to improve the ultraviolet blocking property of the adhesive sheet while suppressing the decrease in transparency due to the bleed-out of the ultraviolet absorber or the like.
(他の添加剤)
 上記例示の各成分の他、粘着剤組成物は、粘着付与剤、可塑剤、軟化剤、劣化防止剤、充填剤、着色剤、酸化防止剤、界面活性剤、帯電防止剤等の添加剤を含んでいてもよい。
(Other additives)
In addition to the above-exemplified components, the pressure-sensitive adhesive composition includes additives such as pressure-sensitive adhesives, plasticizers, softeners, deterioration inhibitors, fillers, colorants, antioxidants, surfactants, and antistatic agents. It may be included.
<粘着剤組成物の塗布および本重合>
 基材上に粘着剤組成物を層状に塗布した後、活性光線を照射することにより光硬化が行われる。光硬化を行う際は、塗布層の表面にカバーシートを付設して、粘着剤組成物を2枚のシート間に挟持した状態で活性光線を照射して、酸素による重合阻害を防止することが好ましい。
<Application of adhesive composition and main polymerization>
After the pressure-sensitive adhesive composition is applied in layers on the substrate, photocuring is performed by irradiating with active light rays. When photo-curing, a cover sheet is attached to the surface of the coating layer, and the pressure-sensitive adhesive composition is sandwiched between the two sheets and irradiated with active light to prevent polymerization inhibition by oxygen. preferable.
 粘着シートの形成に用いられる基材およびカバーシートとしては、任意の適切な基材が用いられる。基材およびカバーシートは、粘着シートとの接触面に離型層を備える離型フィルムでもよい。 Any suitable base material is used as the base material and cover sheet used for forming the adhesive sheet. The base material and the cover sheet may be a release film having a release layer on the contact surface with the adhesive sheet.
 離型フィルムの基材としては、各種の樹脂材料からなるフィルムが用いられる。樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。これらの中でも、ポリエチレンテレフタレート等のポリエステル系樹脂が特に好ましい。基材の厚みは、10~200μmが好ましく、25~150μmがより好ましい。離型層の材料としては、シリコーン系離型剤、フッ素系離型剤、長鎖アルキル系離型剤、脂肪酸アミド系離型剤等が挙げられる。離型層の厚みは、一般には、10~2000nm程度である。 As the base material of the release film, a film made of various resin materials is used. Examples of the resin material include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth) acrylic resins. Examples thereof include polyvinyl chloride-based resins, polyvinylidene chloride-based resins, polystyrene-based resins, polyvinyl alcohol-based resins, polyarylate-based resins, and polyphenylene sulfide-based resins. Among these, polyester resins such as polyethylene terephthalate are particularly preferable. The thickness of the base material is preferably 10 to 200 μm, more preferably 25 to 150 μm. Examples of the material of the release layer include a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, and a fatty acid amide-based release agent. The thickness of the release layer is generally about 10 to 2000 nm.
 基材上への粘着剤組成物の塗布方法としては、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等の各種方法が用いられる。 As a method of applying the adhesive composition on the substrate, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat , Lip coat, die coater and the like are used.
 基材上に層状に塗布した粘着剤組成物に活性光線を照射することにより、本重合が行われる。本重合では、プレポリマー組成物中の未反応のモノマー成分およびウレタンジ(メタ)アクリレート等の多官能化合物が反応して、アクリル系ポリマー鎖に架橋構造が導入されたポリマーが得られる。 This polymerization is carried out by irradiating the pressure-sensitive adhesive composition coated in layers on the base material with active light. In this polymerization, the unreacted monomer component in the prepolymer composition reacts with a polyfunctional compound such as urethane di (meth) acrylate to obtain a polymer in which a crosslinked structure is introduced into an acrylic polymer chain.
 活性光線は、モノマーやウレタン(メタ)アクリレート等の重合性成分の種類や、光重合開始剤の種類等に応じて選択すればよく、一般には、紫外線および/または短波長の可視光が用いられる。照射光の積算光量は、100~5000mJ/cm程度が好ましい。光照射のための光源としては、粘着剤組成物に含まれる光重合開始剤が感度を有する波長範囲の光を照射できるものであれば特に限定されず、LED光源、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ等が好ましく用いられる。未反応のモノマーの残存量が多いと、粘着シートのG’25℃が小さくなり接着保持力が低下する場合がある。そのため、本重合後の粘着シートの重合率は、95%以上が好ましく、97%以上がより好ましく、98%以上がさらに好ましく、99%以上が特に好ましい。重合率を高めるために、粘着シートを加熱して、残存モノマーや未反応の重合開始剤等を揮発させてもよい。 The active light may be selected according to the type of polymerizable component such as a monomer or urethane (meth) acrylate, the type of photopolymerization initiator, and the like, and generally, ultraviolet rays and / or visible light having a short wavelength are used. .. The integrated light amount of the irradiation light is preferably about 100 to 5000 mJ / cm 2 . The light source for light irradiation is not particularly limited as long as the photopolymerization initiator contained in the pressure-sensitive adhesive composition can irradiate light in a wavelength range having sensitivity, and is an LED light source, a high-pressure mercury lamp, and ultra-high-pressure mercury. Lamps, metal halide lamps, xenon lamps and the like are preferably used. If the residual amount of unreacted monomer is large, the G'25 ° C. of the pressure-sensitive adhesive sheet may decrease and the adhesive holding power may decrease. Therefore, the polymerization rate of the pressure-sensitive adhesive sheet after the main polymerization is preferably 95% or more, more preferably 97% or more, further preferably 98% or more, and particularly preferably 99% or more. In order to increase the polymerization rate, the pressure-sensitive adhesive sheet may be heated to volatilize the residual monomer, the unreacted polymerization initiator and the like.
 前述のように、粘着シートのゲル分率は、30~80%が好ましく、35~70%がより好ましい。ゲル分率が30%以上であることにより、粘着剤の接着保持力が高められるとともに、加工時の糊欠けや、部材間の位置ズレが生じ難く、加工性および加工寸法安定性に優れている。また、ゲル分率が80%以下であることにより、優れた段差吸収性を発揮できる。 As described above, the gel fraction of the pressure-sensitive adhesive sheet is preferably 30 to 80%, more preferably 35 to 70%. When the gel content is 30% or more, the adhesive holding force of the adhesive is enhanced, glue chipping during processing and positional deviation between members are unlikely to occur, and the processability and processing dimensional stability are excellent. .. Further, when the gel fraction is 80% or less, excellent step absorption can be exhibited.
 粘着シートのゾル分の重量平均分子量は、15万~45万が好ましく、18万~42万がより好ましい。ゾル分は、ベースポリマーをテトラヒドロフラン(以下、THF)で抽出した可溶分である。架橋されたポリマー(ゲル分)は、個々のポリマー鎖の分子量の測定が困難であるため、ゾル分(架橋されていないポリマー)の分子量が、ポリマー鎖の伸長の程度を表す指標となる。ゾル分の分子量が過度に大きい場合は、ガラス転移温度が高くなり、耐衝撃性が低下する場合がある。一方、ゾル分の分子量が過度に小さい場合は、接着保持力が低下する場合がある。 The weight average molecular weight of the sol content of the adhesive sheet is preferably 150,000 to 450,000, more preferably 180,000 to 420,000. The sol content is a soluble component obtained by extracting the base polymer with tetrahydrofuran (hereinafter, THF). Since it is difficult to measure the molecular weight of individual polymer chains of a crosslinked polymer (gel), the molecular weight of a sol (non-crosslinked polymer) is an index indicating the degree of elongation of the polymer chain. If the molecular weight of the sol is excessively large, the glass transition temperature may increase and the impact resistance may decrease. On the other hand, if the molecular weight of the sol content is excessively small, the adhesive holding power may decrease.
 粘着シート5の表面に離型フィルム21,22を貼り合わせることにより、図1に示すように、両面に離型フィルムが仮着された粘着シートが得られる。粘着シートの形成時基材やカバーシートとして用いた離型フィルムを、そのまま離型フィルム21,22として用いてもよい。 By adhering the release films 21 and 22 to the surface of the adhesive sheet 5, as shown in FIG. 1, an adhesive sheet in which the release films are temporarily attached to both sides can be obtained. The release film used as the base material or the cover sheet at the time of forming the adhesive sheet may be used as it is as the release films 21 and 22.
 粘着シート5の両面に離型フィルム21,22が設けられる場合、一方の離型フィルム21の厚みと他方の離型フィルム22の厚みは、同一でもよく、異なっていてもよい。粘着シート5から一方の面に仮着された離型フィルムを剥離する際の剥離力と、粘着シート5から他方の面に仮着された離型フィルムを剥離する際の剥離力は、同一でも異なっていてもよい。両者の剥離力が異なる場合は、相対的に剥離力の小さい離型フィルム22(軽剥離フィルム)を粘着シート5から先に剥離して第一の被着体との貼り合わせを行い、相対的に剥離力の大きい離型フィルム21(重剥離フィルム)を剥離して、第二の被着体との貼り合わせを行う場合の作業性に優れる。 When the release films 21 and 22 are provided on both sides of the adhesive sheet 5, the thickness of one release film 21 and the thickness of the other release film 22 may be the same or different. Even if the peeling force for peeling the release film temporarily attached to one surface from the adhesive sheet 5 and the release force for peeling the release film temporarily attached to the other surface from the adhesive sheet 5 are the same. It may be different. If the peeling forces of the two are different, the release film 22 (light peeling film) having a relatively small peeling force is peeled off from the adhesive sheet 5 first and bonded to the first adherend, and is relatively relative. Excellent workability when the release film 21 (heavy release film) having a large peeling force is peeled off and bonded to the second adherend.
[画像表示装置]
 粘着シート5は、各種の透明部材や不透明部材の貼り合わせに使用可能である。被着体の種類は特に限定されず、各種の樹脂材料、ガラス、金属等が挙げられる。粘着シート5は、透明性が高いことから、画像表示装置等の光学部材の貼り合わせに適している。特に、粘着シート5は、段差吸収性や耐衝撃性に優れることから、画像表示装置の視認側表面への前面透明板やタッチパネル等の透明部材の貼り合わせに好適に用いられる。
[Image display device]
The adhesive sheet 5 can be used for bonding various transparent members and opaque members. The type of the adherend is not particularly limited, and examples thereof include various resin materials, glass, and metal. Since the adhesive sheet 5 has high transparency, it is suitable for bonding optical members such as an image display device. In particular, since the adhesive sheet 5 is excellent in step absorption and impact resistance, it is suitably used for bonding a transparent member such as a front transparent plate or a touch panel to the visible side surface of an image display device.
 図2は、画像表示パネル10の視認側表面に粘着シート5を介して前面透明板7が貼り合わせられた画像表示装置の積層構成例を示す断面図である。画像表示パネル10は、液晶セルや有機ELセル等の画像表示セル6の視認側表面に粘着シート4を介して貼り合わせられた偏光板3を備える。前面透明板7は、透明な平板71の一方の面の周縁に印刷層76が設けられている。透明板71は、例えばアクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等が用いられる。透明板71はタッチパネル機能を備えていてもよい。タッチパネルとしては、抵抗膜方式、静電容量方式、光学方式、超音波方式等、任意の方式のタッチパネルが用いられる。 FIG. 2 is a cross-sectional view showing an example of a laminated configuration of an image display device in which a front transparent plate 7 is attached to the visible side surface of the image display panel 10 via an adhesive sheet 5. The image display panel 10 includes a polarizing plate 3 attached to the visible surface of the image display cell 6 such as a liquid crystal cell or an organic EL cell via an adhesive sheet 4. The front transparent plate 7 is provided with a print layer 76 on the peripheral edge of one surface of the transparent flat plate 71. As the transparent plate 71, for example, a transparent resin plate such as an acrylic resin or a polycarbonate resin, a glass plate, or the like is used. The transparent plate 71 may have a touch panel function. As the touch panel, an arbitrary type touch panel such as a resistive film type, a capacitance type, an optical method, and an ultrasonic method is used.
 画像表示パネル10の表面に設けられた偏光板3と、前面透明板7の印刷層76形成面とが、粘着シート5を介して貼り合わせられる。貼り合せの順序は特に限定されず、画像表示パネル10への粘着シート5の貼り合せが先に行われてもよく、前面透明板7への粘着シート5の貼り合せが先に行われてもよい。また、両者の貼り合せを同時に行うこともできる。貼り合せの作業性等の観点からは、一方の離型フィルム(軽剥離フィルム)2を剥離後、露出した粘着シート5の表面を画像表示パネル10に貼り合わせた後、他方の離型フィルム21(重剥離フィルム)を剥離して、露出した粘着シートの表面を前面透明板7に貼り合わせることが好ましい。 The polarizing plate 3 provided on the surface of the image display panel 10 and the printing layer 76 forming surface of the front transparent plate 7 are bonded to each other via the adhesive sheet 5. The order of bonding is not particularly limited, and the adhesive sheet 5 may be bonded to the image display panel 10 first, or the adhesive sheet 5 may be bonded to the front transparent plate 7 first. Good. In addition, both can be bonded at the same time. From the viewpoint of bonding workability and the like, one release film (light release film) 2 is peeled off, the surface of the exposed adhesive sheet 5 is bonded to the image display panel 10, and then the other release film 21 is bonded. It is preferable to peel off the (heavy release film) and attach the exposed surface of the adhesive sheet to the front transparent plate 7.
 粘着シート5と前面透明板7との貼り合せ後には、粘着シート5と前面透明板7の平板71部分との界面や、印刷層76等の非平坦部近辺の気泡を除去するための脱泡が行われることが好ましい。脱泡方法としては、加熱、加圧、減圧等の適宜の方法が採用され得る。例えば、減圧・加熱下で気泡の混入を抑制しながら貼り合わせが行われ、その後、ディレイバブルの抑制等を目的として、オートクレーブ処理等により、加熱と同時に加圧が行われることが好ましい。加熱により脱泡が行われる場合、加熱温度は、一般的に40~150℃程度である。加圧が行われる場合、圧力は一般に0.05MPa~2MPa程度である。 After the adhesive sheet 5 and the front transparent plate 7 are bonded together, defoaming is performed to remove air bubbles near the interface between the adhesive sheet 5 and the flat plate 71 portion of the front transparent plate 7 and the non-flat portion such as the printing layer 76. Is preferably performed. As the defoaming method, an appropriate method such as heating, pressurization, or depressurization can be adopted. For example, it is preferable that the bonding is performed under reduced pressure and heating while suppressing the mixing of bubbles, and then the pressurization is performed at the same time as heating by an autoclave treatment or the like for the purpose of suppressing delay bubbles. When defoaming is performed by heating, the heating temperature is generally about 40 to 150 ° C. When pressurization is performed, the pressure is generally about 0.05 MPa to 2 MPa.
 筐体9と前面透明板7との間に隙間90が存在する場合は、樹脂材料等を隙間90に充填して封止を行うことが好ましい。前述のように、粘着シート5は、剪断貯蔵弾性率が大きいため、広い温度範囲での接着信頼性に優れる。そのため、樹脂材料等による封止の際の温度変化により粘着シートの貼り合わせ界面に応力歪が生じた場合でも、貼り合わせ界面での剥離を抑制できる。また、粘着シート5は、ガラス転移温度が低く、かつtanδのピークトップ値が大きいため、広い温度範囲で耐衝撃性に優れ、落下等の衝撃による剥がれが生じ難い。 When there is a gap 90 between the housing 9 and the front transparent plate 7, it is preferable to fill the gap 90 with a resin material or the like to seal the gap 90. As described above, since the adhesive sheet 5 has a large shear storage elastic modulus, it is excellent in adhesive reliability in a wide temperature range. Therefore, even if stress strain occurs at the bonding interface of the pressure-sensitive adhesive sheet due to a temperature change during sealing with a resin material or the like, peeling at the bonding interface can be suppressed. Further, since the adhesive sheet 5 has a low glass transition temperature and a large peak top value of tan δ, it has excellent impact resistance in a wide temperature range and is unlikely to be peeled off due to an impact such as dropping.
[粘着シート付き光学フィルム]
 粘着シート5は、図1に示すように両面に離型フィルムが仮着された形態に加えて、粘着シートが光学フィルム等に固着されている粘着剤付きフィルムとして用いることもできる。例えば、図3に示す形態では、粘着シート5の一方の面に離型フィルム21が仮着され、粘着シート5の他方の面に偏光板3が固着されている。図4に示す形態では、偏光板3上に、さらに粘着シート4が設けられ、その上に離型フィルム24が仮着されている。
[Optical film with adhesive sheet]
As shown in FIG. 1, the pressure-sensitive adhesive sheet 5 can be used as a film with a pressure-sensitive adhesive in which a release film is temporarily attached to both sides, and the pressure-sensitive adhesive sheet is fixed to an optical film or the like. For example, in the form shown in FIG. 3, the release film 21 is temporarily attached to one surface of the adhesive sheet 5, and the polarizing plate 3 is fixed to the other surface of the adhesive sheet 5. In the form shown in FIG. 4, an adhesive sheet 4 is further provided on the polarizing plate 3, and the release film 24 is temporarily attached on the adhesive sheet 4.
 このように、粘着シートにあらかじめ偏光板等の光学フィルムが貼り合わせられた形態では、粘着シート5の表面に仮着された離型フィルム21を剥離して、前面透明部材との貼り合わせを行えばよい。 In this way, in the form in which an optical film such as a polarizing plate is bonded to the pressure-sensitive adhesive sheet in advance, the release film 21 temporarily attached to the surface of the pressure-sensitive adhesive sheet 5 is peeled off and bonded to the front transparent member. Just do it.
[積層形態の変形例]
 図1~4では、基材レス両面粘着シート5により、画像表示パネル10(偏光板3)と前面透明板7(カバーウインドウ)とを貼り合わせる形態を中心に説明したが、被着体の種類および組合せはこれらに限定されない。例えば、粘着シート5を介して、カバーウインドウとタッチパネルセンサーとを貼り合わせてもよい。この形態では、タッチパネルセンサーと画像表示パネルとの貼り合わせには別の粘着シートが用いられる。
[Modification example of laminated form]
In FIGS. 1 to 4, the form in which the image display panel 10 (polarizing plate 3) and the front transparent plate 7 (cover window) are bonded to each other by the base material-less double-sided adhesive sheet 5 has been mainly described, but the types of adherends have been described. And combinations are not limited to these. For example, the cover window and the touch panel sensor may be attached to each other via the adhesive sheet 5. In this form, another adhesive sheet is used for bonding the touch panel sensor and the image display panel.
 粘着シート5は、基材付き両面粘着シートの一方または両方の粘着剤層として用いることもできる。図5に示す基材付き両面粘着シート15は、透明フィルム基材59の一方の面に第一粘着剤層51が積層され、透明フィルム基材59の他方の面に第二粘着剤層53が積層されている。粘着剤層51,53の表面には、離型フィルム21,23が仮着されている。 The adhesive sheet 5 can also be used as an adhesive layer for one or both of the double-sided adhesive sheets with a base material. In the double-sided pressure-sensitive adhesive sheet 15 with a base material shown in FIG. 5, the first pressure-sensitive adhesive layer 51 is laminated on one surface of the transparent film base material 59, and the second pressure-sensitive adhesive layer 53 is formed on the other side of the transparent film base material 59. It is laminated. Release films 21 and 23 are temporarily attached to the surfaces of the pressure-sensitive adhesive layers 51 and 53.
 図6は、基材付き両面粘着シート15を用いて、画像表示パネル10の視認側表面に前面透明板7が固定された画像表示装置206の構成例を示す断面図である。画像表示装置206では、第一粘着剤層51が前面透明板7に貼り合わせられており、第二粘着剤層53が画像表示パネル10の偏光板3に貼り合わせられている。 FIG. 6 is a cross-sectional view showing a configuration example of an image display device 206 in which a front transparent plate 7 is fixed to a visible surface of an image display panel 10 using a double-sided adhesive sheet 15 with a base material. In the image display device 206, the first pressure-sensitive adhesive layer 51 is bonded to the front transparent plate 7, and the second pressure-sensitive adhesive layer 53 is bonded to the polarizing plate 3 of the image display panel 10.
 基材付き両面粘着シート15の透明フィルム基材59としては、透明樹脂フィルムが用いられる。透明フィルム基材59の全光線透過率は85%以上が好ましく、90%以上がより好ましい。フィルム基板を構成する樹脂材料は、透明性を有していれば特に制限されず、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ノルボルネン系ポリマー等の環状ポリオレフィン;ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー;アクリル系ポリマー;スチレン系ポリマー;ポリカーボネート、ポリアミド、ポリイミド、ポリエーテルエーテルケトン等が挙げられる。 A transparent resin film is used as the transparent film base material 59 of the double-sided pressure-sensitive adhesive sheet 15 with a base material. The total light transmittance of the transparent film base material 59 is preferably 85% or more, more preferably 90% or more. The resin material constituting the film substrate is not particularly limited as long as it has transparency, and polyesters such as polyethylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; cyclic polyolefins such as norbornene-based polymers; diacetyl cellulose, Cellular polymers such as triacetyl cellulose; acrylic polymers; styrene polymers; polycarbonate, polyamide, polyimide, polyether ether ketones and the like can be mentioned.
 透明フィルム基材59の厚みは、15~150μ程度が好ましく、25~120μmがより好ましく、35~100μmがさらに好ましい。画像表示装置の画面を視認した際の虹模様の着色(虹彩現象)を抑制する観点から、透明フィルム基材59は、光学等方性を有していることが好ましい。透明フィルム基材59の波長590nmにおける面内レターデーションは、50nm以下が好ましく、30nm以下がより好ましく、10nm以下がさらに好ましく、5nm以下が特に好ましい。 The thickness of the transparent film base material 59 is preferably about 15 to 150 μm, more preferably 25 to 120 μm, and even more preferably 35 to 100 μm. From the viewpoint of suppressing the coloring of the iris pattern (iris phenomenon) when the screen of the image display device is visually recognized, the transparent film base material 59 preferably has optical isotropic properties. The in-plane retardation of the transparent film substrate 59 at a wavelength of 590 nm is preferably 50 nm or less, more preferably 30 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less.
 基材付き両面粘着シート15は、前面透明板と貼り合わせた際に、接着保持力、寸法安定性および耐衝撃性に加えて、段差吸収性を有することが好ましい。そのため、第一粘着剤層51として、上記の諸特性を有する粘着シート5を用いることが好ましい。段差吸収性および耐衝撃性を確保する観点から、第一粘着剤層51の厚みは、30μm以上が好ましく、40μm以上がより好ましく、50μm以上がさらに好ましい。一方、生産性の観点から、第一粘着剤層51の厚みは、500μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましい。 The double-sided pressure-sensitive adhesive sheet 15 with a base material preferably has step absorption in addition to adhesive holding power, dimensional stability and impact resistance when bonded to the front transparent plate. Therefore, it is preferable to use the pressure-sensitive adhesive sheet 5 having the above-mentioned various properties as the first pressure-sensitive adhesive layer 51. From the viewpoint of ensuring step absorption and impact resistance, the thickness of the first pressure-sensitive adhesive layer 51 is preferably 30 μm or more, more preferably 40 μm or more, and even more preferably 50 μm or more. On the other hand, from the viewpoint of productivity, the thickness of the first pressure-sensitive adhesive layer 51 is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 250 μm or less.
 透明フィルム基材59の画像表示パネル10側に配置される第二粘着剤層53を構成する粘着剤は、透明粘着剤であれば特に限定されない。第一粘着剤層51の粘着剤と第二粘着剤層53の粘着剤は、同一でもよく、異なっていてもよい。接着保持力、寸法安定性および耐衝撃性を高める観点から、第二粘着剤層53として、第一粘着剤層51と同様、上記の諸特性を有する粘着シート5を用いてもよい。 The pressure-sensitive adhesive constituting the second pressure-sensitive adhesive layer 53 arranged on the image display panel 10 side of the transparent film base material 59 is not particularly limited as long as it is a transparent pressure-sensitive adhesive. The pressure-sensitive adhesive of the first pressure-sensitive adhesive layer 51 and the pressure-sensitive adhesive of the second pressure-sensitive adhesive layer 53 may be the same or different. As the second pressure-sensitive adhesive layer 53, a pressure-sensitive adhesive sheet 5 having the above-mentioned characteristics may be used as the second pressure-sensitive adhesive layer 53 from the viewpoint of enhancing the adhesive holding power, dimensional stability, and impact resistance.
 第二粘着剤層53の厚みは特に限定されない。耐衝撃性付与の観点から、第二粘着剤層53の厚みは30μm以上が好ましく、50μm以上がより好ましい。一方、第二粘着剤層53には、段差吸収性は要求されないため、寸法安定性および生産性の観点から、第二粘着剤層53の厚みは、200μm以下が好ましく、150μm以下がより好ましく、120μm以下がさらに好ましい。第二粘着剤層53の厚みは、100μm以下または80μm以下であってもよい。 The thickness of the second adhesive layer 53 is not particularly limited. From the viewpoint of imparting impact resistance, the thickness of the second pressure-sensitive adhesive layer 53 is preferably 30 μm or more, more preferably 50 μm or more. On the other hand, since the second pressure-sensitive adhesive layer 53 is not required to have step absorption, the thickness of the second pressure-sensitive adhesive layer 53 is preferably 200 μm or less, more preferably 150 μm or less, from the viewpoint of dimensional stability and productivity. It is more preferably 120 μm or less. The thickness of the second pressure-sensitive adhesive layer 53 may be 100 μm or less or 80 μm or less.
 第二粘着剤層53の厚みは、第一粘着剤層51の厚みよりも小さいことが好ましい。第二粘着剤層53の厚みは、第一粘着剤層51の厚みの0.2~0.85倍が好ましく、0.3~0.8倍がより好ましく、0.4~0.75倍がさらに好ましい。 The thickness of the second pressure-sensitive adhesive layer 53 is preferably smaller than the thickness of the first pressure-sensitive adhesive layer 51. The thickness of the second pressure-sensitive adhesive layer 53 is preferably 0.2 to 0.85 times, more preferably 0.3 to 0.8 times, and 0.4 to 0.75 times the thickness of the first pressure-sensitive adhesive layer 51. Is even more preferable.
 基材付き両面粘着シート15は、図5に示すように粘着剤層51,53に離型フィルム21,23が仮着された形態に加えて、第二粘着剤層53に光学フィルム等に固着されている粘着剤付きフィルムとして用いることもできる。また、図4に示す形態と同様、第二粘着剤層に貼り合わせられた光学フィルム(偏光板)に、さらに粘着シートが設けられた両面粘着剤付き光学フィルムとして用いることもできる。 As shown in FIG. 5, the double-sided pressure-sensitive adhesive sheet 15 with a base material adheres to the second pressure-sensitive adhesive layer 53 with an optical film or the like, in addition to the form in which the release films 21 and 23 are temporarily attached to the pressure-sensitive adhesive layers 51 and 53. It can also be used as a film with an adhesive. Further, as in the form shown in FIG. 4, it can also be used as an optical film with a double-sided adhesive, which is further provided with an adhesive sheet on the optical film (polarizing plate) bonded to the second pressure-sensitive adhesive layer.
 以下に実施例および比較例を挙げて、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[アクリルオリゴマーの作製]
 メタクリル酸ジシクロペンタニル(DCPMA)60重量部、メタクリル酸メチル(MMA)40重量部、連鎖移動剤としてα-チオグリセロール3.5重量部、および重合溶媒としてトルエン100重量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、熱重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.2重量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリルオリゴマーを得た。アクリルオリゴマーの重量平均分子量は5100であった。
[Preparation of acrylic oligomer]
60 parts by weight of dicyclopentanyl methacrylate (DCPMA), 40 parts by weight of methyl methacrylate (MMA), 3.5 parts by weight of α-thioglycerol as a chain transfer agent, and 100 parts by weight of toluene as a polymerization solvent are mixed and nitrogen is mixed. The mixture was stirred at 70 ° C. for 1 hour in an atmosphere. Next, 0.2 parts by weight of 2,2'-azobisisobutyronitrile (AIBN) was added as a thermal polymerization initiator, reacted at 70 ° C. for 2 hours, and then heated to 80 ° C. for 2 hours. It was reacted. Then, the reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The weight average molecular weight of the acrylic oligomer was 5100.
[実施例1]
(プレポリマーの重合)
 プレポリマー形成用モノマー成分として、アクリル酸ブチル(BA)78重量部、N-ビニル-2-ピロリドン(NVP)16重量部、およびアクリル酸4-ヒドロキシブチル(4HBA)6重量部、ならびに光重合開始剤(BASF製「イルガキュア184」:0.05重量部、およびBASF製「イルガキュア651」:0.05重量部)を配合し、粘度(BH粘度計No.5ローター、10rpm、測定温度30℃)が約20Pa・sになるまで紫外線を照射して重合を行い、プレポリマー組成物(重合率;約9%)を得た。
[Example 1]
(Polymerization of prepolymer)
78 parts by weight of butyl acrylate (BA), 16 parts by weight of N-vinyl-2-pyrrolidone (NVP), 6 parts by weight of 4-hydroxybutyl acrylate (4HBA), and photopolymerization initiation as monomer components for prepolymer formation. The agent (BASF "Irgacure 184": 0.05 parts by weight and BASF "Irgacure 651": 0.05 parts by weight) is blended and the viscosity (BH viscometer No. 5 rotor, 10 rpm, measurement temperature 30 ° C.). The polymer was polymerized by irradiating with ultraviolet rays until the temperature reached about 20 Pa · s to obtain a prepolymer composition (polymerization rate; about 9%).
(光硬化性粘着剤組成物の調製)
 上記のプレポリマー組成物に、単官能モノマーとしてNVP:3重量部、および4HBA:8重量部;ウレタン(メタ)アクリレートとして、ポリエステルウレタンジアクリレート(根上工業製「アートレジン UN‐350」):2重量部;上記のアクリルオリゴマー:5重量部;光重合開始剤として、「イルガキュア184」:0.05重量部、および「イルガキュア651」:0.55重量部;連鎖移動剤として、α‐メチルスチレン二量体(日油製「ノフマー MSD」):0.2重量部;ならびにシランカップリング剤として信越化学製「KBM-403」:0.3重量部を添加した後、これらを均一に混合して、粘着剤組成物を調製した。
(Preparation of photocurable pressure-sensitive adhesive composition)
In the above prepolymer composition, NVP: 3 parts by weight and 4HBA: 8 parts by weight as a monofunctional monomer; polyester urethane diacrylate as a urethane (meth) acrylate (“Art Resin UN-350” manufactured by Negami Kogyo): 2 By weight: parts by weight of the acrylic oligomer: 5 parts by weight; as a photopolymerization initiator, "Irgacure 184": 0.05 parts by weight, and "Irgacure 651": 0.55 parts by weight; as a chain transfer agent, α-methylstyrene. Dimeric (“Nofmer MSD” manufactured by Nichiyu): 0.2 parts by weight; and “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd .: 0.3 parts by weight as a silane coupling agent, and then mixed uniformly. To prepare a pressure-sensitive adhesive composition.
(粘着シートの作製)
 表面にシリコーン系離型層が設けられた厚み75μmのポリエチレンテレフタレート(PET)フィルム(三菱ケミカル製「ダイアホイルMRF75」)を基材(兼重剥離フィルム)として、基材上に上記の光硬化性粘着剤組成物を厚み150μmになるように塗布して塗布層を形成した。この塗布層上に、カバーシート(兼軽剥離フィルム)として片面がシリコーン剥離処理された厚み75μmのPETフィルム(三菱ケミカル製「ダイアホイルMRE75」)を貼り合わせた。この積層体に、カバーシート側から、ランプ直下の照射面における照射強度が5mW/cmになるように位置調節したブラックライトにより、紫外線を照射して光硬化を行い、厚み150μm、重合率99%の粘着シートを得た。
(Making an adhesive sheet)
A 75 μm-thick polyethylene terephthalate (PET) film (“Diafoil MRF75” manufactured by Mitsubishi Chemical Co., Ltd.) with a silicone-based release layer on the surface is used as a base material (cum-heavy release film), and the above photocurable adhesive is applied on the base material. The agent composition was applied so as to have a thickness of 150 μm to form a coating layer. On this coating layer, a PET film (“Diafoil MRE75” manufactured by Mitsubishi Chemical Corporation) having a thickness of 75 μm, which had one side treated with silicone peeling as a cover sheet (also a light peeling film), was laminated. This laminate was photocured by irradiating it with ultraviolet rays from the cover sheet side with a black light whose position was adjusted so that the irradiation intensity on the irradiation surface directly under the lamp was 5 mW / cm 2 , and the thickness was 150 μm and the polymerization rate was 99. %% Adhesive sheet was obtained.
[実施例2~16、比較例1~6]
 プレポリマーの重合における仕込みモノマー組成、粘着剤組成物に添加する単官能モノマーおよび多官能化合物(ウレタンアクリレートおよび/または多官能アクリレート)の種類および添加量、ならびに連鎖移動剤の添加量を、表1および表2に示すように変更した。それ以外は実施例1と同様にして光硬化性粘着剤組成物を調製し、基材上への塗布および光硬化を行い、粘着シートを得た。なお、後添加の組成において、光重合開始剤(「イルガキュア184」:0.05重量部、および「イルガキュア651」:0.55重量部);ならびにシランカップリング剤(「KBM-403」:0.3重量部)は、全ての実施例および比較例で同一であるため、表1および表2では、これらの成分の記載を省略している。
[Examples 2 to 16, Comparative Examples 1 to 6]
Table 1 shows the composition of the charged monomer in the polymerization of the prepolymer, the type and amount of the monofunctional monomer and the polyfunctional compound (urethane acrylate and / or the polyfunctional acrylate) to be added to the pressure-sensitive adhesive composition, and the amount of the chain transfer agent added. And changed as shown in Table 2. A photocurable pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except for the above, and coated on a substrate and photo-cured to obtain a pressure-sensitive adhesive sheet. In the post-addition composition, a photopolymerization initiator (“Irgacure 184”: 0.05 parts by weight and “Irgacure 651”: 0.55 parts by weight); and a silane coupling agent (“KBM-403”: 0). .3 parts by weight) is the same in all Examples and Comparative Examples, so the description of these components is omitted in Tables 1 and 2.
[評価]
<ゲル分率>
 粘着シートから約0.2gの粘着剤を掻き取り、100mm×100mmのサイズに切り出した細孔径0.2μmの多孔質ポリテトラフルオロエチレン膜(日東電工製「NTF-1122」)で包み、包んだ口をタコ糸で縛った。この試料の重量から、予め測定しておいた多孔質ポリテトラフルオロエチレン膜及びタコ糸の重量の合計(A)を差し引いて、粘着剤試料の重量(B)を算出した。多孔質ポリテトラフルオロエチレン膜で包まれた粘着剤試料を、約50mLの酢酸エチル中に、23℃で7日間浸漬し、粘着剤のゾル成分を多孔質ポリテトラフルオロエチレン膜外へ溶出させた。浸漬後、多孔質ポリテトラフルオロエチレン膜で包まれた粘着剤を取出し、130℃で2時間乾燥させ、約20分間放冷した後、乾燥重量(C)を測定した。粘着剤のゲル分率は、次式により算出した。
   ゲル分率(%)=100×(C-A)/B
[Evaluation]
<Gel fraction>
Approximately 0.2 g of the adhesive was scraped from the adhesive sheet and wrapped in a porous polytetrafluoroethylene film (Nitto Denko "NTF-1122") with a pore diameter of 0.2 μm cut into a size of 100 mm × 100 mm. I tied my mouth with octopus thread. The weight (B) of the pressure-sensitive adhesive sample was calculated by subtracting the total weight (A) of the porous polytetrafluoroethylene film and the octopus thread measured in advance from the weight of this sample. The pressure-sensitive adhesive sample wrapped in the porous polytetrafluoroethylene membrane was immersed in about 50 mL of ethyl acetate at 23 ° C. for 7 days to elute the sol component of the pressure-sensitive adhesive out of the porous polytetrafluoroethylene membrane. .. After the immersion, the pressure-sensitive adhesive wrapped in the porous polytetrafluoroethylene film was taken out, dried at 130 ° C. for 2 hours, allowed to cool for about 20 minutes, and then the dry weight (C) was measured. The gel fraction of the pressure-sensitive adhesive was calculated by the following formula.
Gel fraction (%) = 100 x (CA) / B
<ゾル分の重量平均分子量>
 粘着シートから約0.2gの粘着剤を掻き取り、10mMのリン酸テトラヒドロフラン溶液に12時間浸漬してゾル分を抽出した。リン酸テトラヒドロフラン溶液の量は、粘着剤のゲル分率を考慮して、抽出後の溶液のゾル分含有量が0.1重量%になるように調整した。抽出後の溶液を0.45μmのメンブレンフィルターにて濾過した濾液を試料として、東ソー製のGPC(ゲル・パーミエーション・クロマトグラフィー)装置(製品名「HLC-8120GPC」)により、下記の条件でGPC分析を行い、ゾル分の重量平均分子量Mwを算出した。
(測定条件)
  カラム:東ソー社製、G7000HXL+GMHXL+GMHXL
  カラムサイズ:各7.8mmφ×30cm(合計カラム長さ:90cm)
  カラム温度:40℃・流量:0.8mL/min
  注入量:100μL
  溶離液:テトラヒドロフラン
  検出器:示差屈折計(RI)
  標準試料:ポリスチレン
<Weight average molecular weight of sol>
About 0.2 g of the pressure-sensitive adhesive was scraped from the pressure-sensitive adhesive sheet and immersed in a 10 mM tetrahydrofuran solution of phosphate for 12 hours to extract the sol component. The amount of the phosphoric acid tetrahydrofuran solution was adjusted so that the sol content of the solution after extraction was 0.1% by weight in consideration of the gel fraction of the pressure-sensitive adhesive. Using the filtrate obtained by filtering the extracted solution with a 0.45 μm membrane filter as a sample, use a GPC (gel permeation chromatography) device (product name “HLC-8120 GPC”) manufactured by Tosoh under the following conditions. The analysis was performed and the weight average molecular weight Mw of the sol content was calculated.
(Measurement condition)
Column: Made by Tosoh, G7000HXL + GMHXL + GMHXL
Column size: 7.8 mmφ x 30 cm each (total column length: 90 cm)
Column temperature: 40 ° C, flow rate: 0.8 mL / min
Injection volume: 100 μL
Eluent: tetrahydrofuran Detector: Differential Refrometer (RI)
Standard sample: polystyrene
<粘着シートの貯蔵弾性率、損失正接およびガラス転移温度>
 粘着シートを10枚積層して厚み約1.5mmとしたものを測定用サンプルとした。Rheometric Scientific社製「Advanced Rheometric Expansion System (ARES)」を用いて、以下の条件により、動的粘弾性測定を行った。
(測定条件)
  変形モード:ねじり
  測定周波数:1Hz
  昇温速度:5℃/分
  形状:パラレルプレート 7.9mmφ
<Storage modulus of adhesive sheet, loss tangent and glass transition temperature>
A measurement sample was obtained by laminating 10 adhesive sheets to a thickness of about 1.5 mm. Dynamic viscoelasticity measurements were performed using the "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific under the following conditions.
(Measurement condition)
Deformation mode: Torsion measurement frequency: 1Hz
Temperature rise rate: 5 ° C / min Shape: Parallel plate 7.9 mmφ
 測定結果から、25℃における剪断貯蔵弾性率G’25℃、および70℃における損失正接tanδ70℃を読み取った。また、損失正接(tanδ)が極大となる温度(ピークトップ温度)を粘着シートのガラス転移温度とした。 From the measurement results, the shear storage elastic modulus G'25 ° C. at 25 ° C. and the loss tangent tan δ 70 ° C. at 70 ° C. were read. Further, the temperature at which the loss tangent (tan δ) is maximized (peak top temperature) was defined as the glass transition temperature of the adhesive sheet.
<接着力>
 粘着シートから軽剥離フィルムを剥離して、厚み50μmのPETフィルムを貼り合わせ、幅10mm×長さ100mmにカットした後、重剥離フィルムを剥離して、5kgのローラでガラス板に圧着して接着力測定用試料を作製した。接着力測定用試料を、25℃の環境下で30分間保持した後、引張試験機を用いて、引張速度300mm/分、剥離角度180°の条件でガラス板から試験片を剥離して、剥離力を測定した。
<Adhesive strength>
The light release film is peeled off from the adhesive sheet, a PET film with a thickness of 50 μm is attached, cut into a width of 10 mm and a length of 100 mm, the heavy release film is peeled off, and the heavy release film is pressure-bonded to a glass plate with a 5 kg roller. A sample for force measurement was prepared. After holding the sample for adhesive force measurement in an environment of 25 ° C. for 30 minutes, the test piece is peeled off from the glass plate under the conditions of a tensile speed of 300 mm / min and a peeling angle of 180 ° using a tensile tester. The force was measured.
<ヘイズ>
 粘着シートを厚み800μmの無アルカリガラス(全光線透過率92%、ヘイズ0.4%)に貼り合わせた試験片を用い、ヘイズメータ(村上色彩技術研究所製「HM-150」)を用いて、ヘイズを測定した。測定値から無アルカリガラスのヘイズ(0.4%)を差引いた値を粘着シートのヘイズとした。
<Haze>
Using a test piece in which an adhesive sheet is attached to a non-alkali glass (total light transmittance 92%, haze 0.4%) having a thickness of 800 μm, and using a haze meter (“HM-150” manufactured by Murakami Color Technology Research Institute), The haze was measured. The value obtained by subtracting the haze (0.4%) of the non-alkali glass from the measured value was taken as the haze of the adhesive sheet.
<段差吸収性>
 粘着シートを75mm×45mmのサイズに切り出し、粘着シートから軽剥離フィルムを剥離して、100mm×50mmに切り出した厚み125μmのPETフィルムの中央にロールラミネータ(ロール間圧力:0.2MPa、送り速度:100mm/分)により貼り合わせた。その後、重剥離フィルムを剥離して、黒色インク(印刷厚み:25μmまたは40μm)が周縁部に枠状に印刷された厚み500μmのガラス板(100mm×50mm)を、ロールラミネータ(ロール間圧力:0.2MPa、送り速度:100mm/分)により貼り合わせた。ガラス板のインク印刷領域は、短辺方向が両端から5mm、長辺方向が両端から15mmであり、粘着シートの4辺の端から5mmの領域に、黒色インク層が接していた。この試料を、オートクレーブ(50℃、0.5MPa)で30分処理した後、黒色インクの印刷領域の境界付近を、倍率20倍のデジタルマイクロスコープで観察して、気泡の有無を確認した。黒色インクの印刷厚み25μmおよび40μmのそれぞれの試料について、下記の基準により、段差吸収性を評価した。
  ◎:全周にわたって気泡の発生がみられなかったもの
  〇:4つの角のうち1か所に気泡がみられたが、4つの辺のいずれにも気泡の発生がみられなかったもの
  ×:4つの角のうち2か所以上、または4つの辺のうち1つ以上に気泡がみられたもの
<Step absorption>
The adhesive sheet was cut into a size of 75 mm × 45 mm, the light release film was peeled off from the adhesive sheet, and a roll laminator (pressure between rolls: 0.2 MPa, feed rate: feed rate:) was placed in the center of the PET film having a thickness of 125 μm cut out to 100 mm × 50 mm. It was bonded at 100 mm / min). After that, the heavy release film was peeled off, and a glass plate (100 mm × 50 mm) having a thickness of 500 μm on which black ink (printing thickness: 25 μm or 40 μm) was printed in a frame shape on the peripheral edge was used as a roll laminator (pressure between rolls: 0). .2 MPa, feed rate: 100 mm / min). The ink printing area of the glass plate was 5 mm from both ends in the short side direction and 15 mm from both ends in the long side direction, and the black ink layer was in contact with the area 5 mm from the four side ends of the adhesive sheet. After treating this sample in an autoclave (50 ° C., 0.5 MPa) for 30 minutes, the vicinity of the boundary of the printing area of the black ink was observed with a digital microscope at a magnification of 20 times to confirm the presence or absence of air bubbles. For each of the samples having a printing thickness of 25 μm and 40 μm of black ink, the step absorption was evaluated according to the following criteria.
⊚: No bubbles were generated all around 〇: Bubbles were found in one of the four corners, but no bubbles were found on any of the four sides ×: Bubbles found in two or more of the four corners, or one or more of the four sides
<加工性>
 粘着シートから軽離型フィルムを剥離して、厚み100μmのPETフィルム(東洋紡製「コスモシャインA4100」)に貼り合わせ、プレス機を用いてPETフィルム側から打ち抜いて、加工性評価用試料を作製した。この試料を、温度:23℃、相対湿度50%の雰囲気中に1週間放置した後、重剥離フィルムを剥離し、糊欠けの有無を目視にて観察した。糊欠けが見られなかったものを〇、糊欠けが見られたものを×とした。
<Workability>
The light release film was peeled off from the adhesive sheet, attached to a PET film having a thickness of 100 μm (Toyobo's "Cosmo Shine A4100"), and punched from the PET film side using a press machine to prepare a sample for processability evaluation. .. This sample was left in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% for 1 week, then the heavy-release film was peeled off, and the presence or absence of adhesive chipping was visually observed. Those without glue chipping were marked with 〇, and those with glue chipping were marked with x.
<層間接着性>
(試験用試料の作製)
 粘着シートを75mm×45mmのサイズに切り出し、粘着シートから軽剥離フィルムを剥離して、厚み500μmのガラス板(100mm×50mm)の中央にロールラミネータ(ロール間圧力:0.2MPa、送り速度:100mm/分)により貼り合わせた。その後、重剥離フィルムを剥離して、厚み30μmの黒色インクが周縁部に枠状に印刷された厚み500μmのガラス板(50mm×100mm)を、真空圧着(面圧0.3MPa,圧力100Pa)により貼り合わせた。ガラス板のインク印刷領域は、短辺方向が両端から5mm、長辺方向が両端から15mmであり、粘着シートの4辺の端から5mmの領域に、黒色インク層が接していた。この試料を、オートクレーブ(50℃、0.5MPa)で30分処理した。
<Interlayer adhesiveness>
(Preparation of test sample)
The adhesive sheet is cut into a size of 75 mm × 45 mm, the light release film is peeled off from the adhesive sheet, and a roll laminator (pressure between rolls: 0.2 MPa, feed rate: 100 mm) is centered on a glass plate (100 mm × 50 mm) having a thickness of 500 μm. / Minutes). After that, the heavy release film was peeled off, and a glass plate (50 mm × 100 mm) having a thickness of 500 μm on which black ink having a thickness of 30 μm was printed in a frame shape on the peripheral portion was vacuum-bonded (surface pressure 0.3 MPa, pressure 100 Pa). I pasted them together. The ink printing area of the glass plate was 5 mm from both ends in the short side direction and 15 mm from both ends in the long side direction, and the black ink layer was in contact with the area 5 mm from the four side ends of the adhesive sheet. This sample was treated in an autoclave (50 ° C., 0.5 MPa) for 30 minutes.
 上記の試料を60℃の環境下で30分間保持した後、図7Aに示すように、厚み200μmのポリスチレンシートを、2枚のガラス板の間に、粘着シートの端部から1mmの距離まで挿入して10秒間保持した。粘着シートの端部を、倍率20倍のデジタルマイクロスコープで観察した。スジ状の気泡(図7B参照)またはガラス板からの粘着シートの剥がれが生じていたものを×、気泡および剥がれのいずれも生じていなかったものを〇とした。 After holding the above sample in an environment of 60 ° C. for 30 minutes, as shown in FIG. 7A, a polystyrene sheet having a thickness of 200 μm was inserted between two glass plates at a distance of 1 mm from the end of the adhesive sheet. It was held for 10 seconds. The edge of the adhesive sheet was observed with a digital microscope at a magnification of 20 times. Those in which streak-shaped bubbles (see FIG. 7B) or the adhesive sheet was peeled off from the glass plate were evaluated as x, and those in which neither bubbles nor peeling occurred were evaluated as 〇.
<耐衝撃性>
 黒色インクの印刷層が設けられていないガラス板のサイズを100mm×70mmに変更したこと以外は、上記の層間接着性試験用の試料の作製と同様に、粘着シートの両面にガラス板を貼り合わせ、オートクレーブ処理を行い、試験用試料を作製した。図8に示すように、印刷層76が設けられたガラス板7が下側となるように、試験用試料95の短辺方向の両端を、60mmの間隔を隔てて配置された台93の上に載置し、印刷層が設けられていないガラス板8の端部の上面を台93の上に粘着テープ(不図示)で固定した。台93の上に粘着テープで固定した試験用試料95を、-5℃の環境下で24時間保持した後、室温に取り出してから40秒以内に、ガラス板7上に質量11gの金属球97を300mmの高さから落下させて、耐衝撃性試験を行った。
<Impact resistance>
Except for changing the size of the glass plate without the black ink printing layer to 100 mm × 70 mm, the glass plates are attached to both sides of the adhesive sheet in the same manner as in the preparation of the sample for the interlayer adhesion test described above. , Autoclave treatment was performed to prepare a test sample. As shown in FIG. 8, both ends of the test sample 95 in the short side direction are arranged on a table 93 with an interval of 60 mm so that the glass plate 7 provided with the printing layer 76 is on the lower side. The upper surface of the end portion of the glass plate 8 not provided with the printing layer was fixed on the table 93 with an adhesive tape (not shown). The test sample 95 fixed on the table 93 with an adhesive tape was held in an environment of -5 ° C for 24 hours, and then within 40 seconds after being taken out to room temperature, a metal ball 97 having a mass of 11 g was placed on the glass plate 7. Was dropped from a height of 300 mm to perform an impact resistance test.
 耐衝撃性試験では、金属球の落下位置を一定とするために筒状のガイド99を用い、印刷層76の印刷領域の枠の内縁の角から短辺方向および長辺方向のそれぞれに10mm隔てた位置に、金属球97を落下させた。2回の試験を行い、いずれの試験においても、ガラス板の剥がれが生じなかったものを〇,2回のいずれか一方または両方でガラス板の剥がれが生じたものを×とした。 In the impact resistance test, a tubular guide 99 is used to keep the falling position of the metal ball constant, and the print layer 76 is separated from the corner of the inner edge of the frame of the print area by 10 mm in each of the short side direction and the long side direction. The metal ball 97 was dropped at the above position. Two tests were performed, and those in which the glass plate did not peel off in any of the tests were evaluated as 0, and those in which peeling of the glass plate occurred in either or both of the two tests were evaluated as x.
[評価結果]
 各粘着シートの作製に用いた粘着剤組成物の配合および粘着シートの評価結果を表1および表2に示す。なお、表1および表2において、各成分は以下の略称により記載されている。
<アクリル系モノマー>
  2EHA :アクリル酸2-エチルヘキシル
  BA   :アクリル酸ブチル
  CHA  :アクリル酸シクロヘキシル
  NVP  :N-ビニル-2-ピロリドン
  4HBA :アクリル酸4-ヒドロキシブチル
[Evaluation results]
Tables 1 and 2 show the composition of the pressure-sensitive adhesive composition used for producing each pressure-sensitive adhesive sheet and the evaluation results of the pressure-sensitive adhesive sheet. In addition, in Table 1 and Table 2, each component is described by the following abbreviations.
<Acrylic monomer>
2EHA: 2-ethylhexyl acrylate BA: butyl acrylate CHA: cyclohexyl acrylate NVP: N-vinyl-2-pyrrolidone 4HBA: 4-hydroxybutyl acrylate
<ウレタンジアクリレート>
  UN-350:根上工業製「アートレジン UN‐350」(重量平均分子量約12500のポリエステルウレタンジアクリレート)
  UN-350ND::根上工業製「アートレジンUN-350NDTN011」(重量平均分子量約7600のポリエステルウレタンジアクリレート)
  UN-350MU:根上工業製「アートレジン UN-350MU」(重量平均分子量約25000のポリエステルウレタンジアクリレート)
  UV-3305B:日本合成化学工業製「紫光 UV-3305B」(重量平均分子量約12000のポリエーテルウレタンジアクリレート)
  UT-6957::日本合成化学工業製「紫光 UT6957」(重量平均分子量約15000のポリエーテルウレタンジアクリレート)
  UV-3010B:日本合成化学工業製「UV-3010B」(重量平均分子量約11000のポリエステルウレタンジアクリレート)
<ウレタンモノアクリレート>
  UA-2334:新中村化学工業製「NEオリゴ UA-2334PHB」(重量平均分子量約20000のポリエーテルウレタンモノアクリレート)
<多官能アクリレート>
  HDDA:ヘキサンジオールジアクリレート
<Urethane diacrylate>
UN-350: "Art Resin UN-350" manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 12500)
UN-350ND :: "Art Resin UN-350NDTN011" manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 7600)
UN-350MU: "Art Resin UN-350MU" manufactured by Negami Kogyo (polyester urethane diacrylate with a weight average molecular weight of about 25,000)
UV-3305B: "Shikou UV-3305B" manufactured by Nippon Synthetic Chemical Industry Co., Ltd. (polyether urethane diacrylate with a weight average molecular weight of about 12000)
UT-6957 :: Nippon Synthetic Chemical Industry Co., Ltd. "Shikou UT6957" (polyether urethane diacrylate with a weight average molecular weight of about 15,000)
UV-3010B: "UV-3010B" manufactured by Nippon Synthetic Chemical Industry Co., Ltd. (polyester urethane diacrylate with a weight average molecular weight of about 11000)
<Urethane monoacrylate>
UA-2334: "NE Oligo UA-2334PHB" manufactured by Shin Nakamura Chemical Industry Co., Ltd. (polyether urethane monoacrylate with a weight average molecular weight of about 20000)
<Polyfunctional acrylate>
HDDA: Hexanediol diacrylate
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、実施例の粘着剤は、いずれも、接着性および加工性に優れるとともに、優れた段差吸収性および落下衝撃耐久性を有していた。 As shown in Tables 1 and 2, the adhesives of the examples were excellent in adhesiveness and workability, and also had excellent step absorption and drop impact durability.
 実施例1~4では、後添加の連鎖移動剤量の低減に伴って、ゲル分率およびゾル分の分子量が大きくなり、tanδ70℃が小さくなっていた。連鎖移動剤の添加量が0.03重量部の実施例4では、他の例に比べて段差吸収性が低下していた。連鎖移動剤を添加しなかった比較例1では、ゲル分率が80を超えており、ガラス転移温度が高く、段差吸収性および落下耐衝撃性が低下していた。 In Examples 1 to 4, as the amount of the chain transfer agent added afterwards was reduced, the gel fraction and the molecular weight of the sol component increased, and tan δ 70 ° C. decreased. In Example 4 in which the amount of the chain transfer agent added was 0.03 parts by weight, the step absorption was lower than in the other examples. In Comparative Example 1 in which the chain transfer agent was not added, the gel fraction was over 80, the glass transition temperature was high, and the step absorption and drop impact resistance were lowered.
 実施例1よりもウレタンジアクリレートの添加量が大きい実施例5および実施例6では、ゲル分率が上昇し、tanδ70℃が小さくなっていた。ウレタンジアクリレートの種類を変更した実施例12と実施例13との対比においても、ウレタンジアクリレートの添加量の増大に伴って、ゲル分率が上昇し、tanδ70℃が小さくなる傾向がみられた。ポリマーの組成が異なる実施例16と比較例6との対比においても同様の傾向がみられ、ウレタンジアクリレートの添加量の大きい比較例6では、段差吸収性が劣っていた。 In Examples 5 and 6 in which the amount of urethane diacrylate added was larger than that in Example 1, the gel fraction increased and tan δ 70 ° C. decreased. Also in the comparison between Example 12 and Example 13 in which the type of urethane diacrylate was changed, the gel fraction tended to increase and the tan δ 70 ° C. tended to decrease as the amount of urethane diacrylate added increased. It was. The same tendency was observed in the comparison between Example 16 and Comparative Example 6 having different polymer compositions, and Comparative Example 6 in which the amount of urethane diacrylate added was large was inferior in step absorption.
 ウレタンジアクリレートの添加量が小さい実施例7では、実施例1よりもゲル分率が低下し、tanδ70℃が大きくなっていた。ウレタンジアクリレートの添加量がさらに小さい比較例2では、ゲル分率が13%まで低下し、加工性が不十分となっていた。 In Example 7 in which the amount of urethane diacrylate added was small, the gel fraction was lower and tan δ 70 ° C. was higher than in Example 1. In Comparative Example 2 in which the amount of urethane diacrylate added was even smaller, the gel fraction was reduced to 13%, and the processability was insufficient.
 多官能モノマーとしてウレタンジアクリレートに加えて多官能アクリレートを併用した実施例8では、他の実施例と同様の優れた特性を示した。一方、多官能モノマーとしてウレタンジアクリレートを用いず、多官能アクリレートのみを用いた比較例3では、ゲル分率が大幅に上昇し、tanδ70℃が小さく、段差吸収性が劣っていた。後添加成分としてウレタンモノアクリレートを用いた比較例5では、ウレタンアクリレートの使用量が大きいにも関わらず、適切な架橋構造が形成されないため、ゲル分率および貯蔵弾性率が低く、層間接着性および加工性が劣っていた。 In Example 8 in which the polyfunctional acrylate was used in combination with the urethane diacrylate as the polyfunctional monomer, the same excellent characteristics as those of the other examples were exhibited. On the other hand, in Comparative Example 3 in which urethane diacrylate was not used as the polyfunctional monomer and only polyfunctional acrylate was used, the gel fraction was significantly increased, tan δ 70 ° C. was small, and the step absorption was inferior. In Comparative Example 5 in which urethane monoacrylate was used as a post-addition component, although an appropriate amount of urethane acrylate was used, an appropriate crosslinked structure was not formed, so that the gel fraction and storage elastic modulus were low, and the interlayer adhesiveness and interlayer adhesiveness were improved. The workability was inferior.
 相対的に低分子量のウレタンジアクリレートを用いた実施例9、実施例10および実施例11と、相対的に高分子量のウレタンジアクリレートを用いた実施例6、実施例1および実施例7とを対比すると、ウレタンジアクリレートの分子量が小さい方が、tanδ70℃が小さくなる傾向がみられた。さらに分子量の大きいウレタンジアクリレートを用いた比較例4では、層間接着性および加工性の低下がみられた。また、比較例4では粘着シートのヘイズが上昇し、透明性が劣っていた。透明性の低下は、ベースポリマーの主鎖構造と架橋構造を形成するウレタンセグメントとの相溶性の低下に起因すると考えられる。 Example 9, Example 10 and Example 11 using a relatively low molecular weight urethane diacrylate, and Example 6, Example 1 and Example 7 using a relatively high molecular weight urethane diacrylate. In comparison, the smaller the molecular weight of the urethane diacrylate, the smaller the tan δ 70 ° C. tended to be. Further, in Comparative Example 4 in which urethane diacrylate having a large molecular weight was used, deterioration in interlayer adhesiveness and processability was observed. Further, in Comparative Example 4, the haze of the adhesive sheet increased and the transparency was inferior. The decrease in transparency is considered to be due to the decrease in compatibility between the main chain structure of the base polymer and the urethane segment forming the crosslinked structure.
 以上の実施例および比較例の結果から、ベースポリマーの組成および架橋構造を調整し、ゲル分率、常温の剪断貯蔵弾性率G’25℃、および高温の損失正接tanδ70℃を所定範囲とすることにより、段差吸収性や耐衝撃性等の特性を兼ね備えた粘着シートが得られることが分かる。 From the results of the above Examples and Comparative Examples, the composition and crosslinked structure of the base polymer are adjusted, and the gel fraction, the shear storage elastic modulus at room temperature G'25 ° C. , and the high temperature loss tangent tan δ 70 ° C. are set within the predetermined ranges. As a result, it can be seen that an adhesive sheet having characteristics such as step absorption and impact resistance can be obtained.
   5,51,53     粘着シート
   21,22,23,24 離型フィルム
   59      透明フィルム基材
   3       偏光板
   4       粘着シート
   6       画像表示セル
   10      画像表示パネル
   7       前面透明板
   9       筐体
   202,206 画像表示装置
5,51,53 Adhesive sheet 21, 22, 23,24 Release film 59 Transparent film base material 3 Polarizing plate 4 Adhesive sheet 6 Image display cell 10 Image display panel 7 Front transparent plate 9 Housing 202, 206 Image display device

Claims (14)

  1.  架橋構造を有するベースポリマーを含む粘着剤がシート状に形成されている粘着シートであって、
     温度25℃における剪断貯蔵弾性率が0.16MPa以上であり、
     温度70℃における損失正接が0.25以上であり、
     ガラス転移温度が-3℃以下であり、
     ゲル分率が30~80%である、粘着シート。
    A pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive containing a base polymer having a crosslinked structure is formed in a sheet shape.
    The shear storage elastic modulus at a temperature of 25 ° C. is 0.16 MPa or more.
    The loss tangent at a temperature of 70 ° C. is 0.25 or more.
    The glass transition temperature is -3 ° C or less,
    Adhesive sheet with a gel fraction of 30-80%.
  2.  ヘイズが1%以下である、請求項1に記載の粘着シート The adhesive sheet according to claim 1, wherein the haze is 1% or less.
  3.  重合率が95%以上である、請求項1または2に記載の粘着シート。 The adhesive sheet according to claim 1 or 2, wherein the polymerization rate is 95% or more.
  4.  ゾル分の重量平均分子量が15万~45万である、請求項1~3のいずれか1項に記載の粘着シート。 The adhesive sheet according to any one of claims 1 to 3, wherein the weight average molecular weight of the sol is 150,000 to 450,000.
  5.  前記ベースポリマーが、架橋構造を有するアクリル系ポリマー鎖を含むアクリル系ポリマーである、請求項1~4のいずれか1項に記載の粘着シート The pressure-sensitive adhesive sheet according to any one of claims 1 to 4, wherein the base polymer is an acrylic polymer containing an acrylic polymer chain having a crosslinked structure.
  6.  前記アクリル系ポリマー鎖は、構成モノマー成分全量に対する(メタ)アクル酸アルキルエステルの量が50重量%以上であり、水酸基含有モノマーの量と窒素含有モノマーの量の合計が15~45重量%である、請求項5に記載の粘着シート。 In the acrylic polymer chain, the amount of (meth) acryl alkyl ester is 50% by weight or more based on the total amount of the constituent monomer components, and the total amount of the hydroxyl group-containing monomer and the nitrogen-containing monomer is 15 to 45% by weight. , The adhesive sheet according to claim 5.
  7.  前記ベースポリマーが、アクリル系ポリマー鎖にウレタン系セグメントによる架橋構造が導入されたアクリル系ポリマーを含む、請求項5または6に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 5 or 6, wherein the base polymer contains an acrylic polymer in which a crosslinked structure of urethane-based segments is introduced into an acrylic polymer chain.
  8.  前記ウレタン系セグメントの重量平均分子量が5000~30000である、請求項7に記載の粘着シート。 The adhesive sheet according to claim 7, wherein the urethane-based segment has a weight average molecular weight of 5,000 to 30,000.
  9.  前記ウレタン系セグメントが、ポリエステルウレタンである、請求項7または8に記載の粘着シート。 The adhesive sheet according to claim 7 or 8, wherein the urethane-based segment is polyester urethane.
  10.  前記アクリル系ポリマーは、アクリル系ポリマー鎖100重量部に対するウレタン系セグメントの含有量が0.3~10重量部である、請求項7~9のいずれか1項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 7 to 9, wherein the acrylic polymer has a urethane-based segment content of 0.3 to 10 parts by weight with respect to 100 parts by weight of the acrylic polymer chain.
  11.  前記アクリル系ポリマーが、(メタ)アクリル酸アルキルエステルと、末端に(メタ)アクリロイル基を有するウレタン(メタ)アクリレートとの共重合体を含む、請求項7~10のいずれか1項に記載の粘着シート。 The invention according to any one of claims 7 to 10, wherein the acrylic polymer contains a copolymer of a (meth) acrylic acid alkyl ester and a urethane (meth) acrylate having a (meth) acryloyl group at the terminal. Adhesive sheet.
  12.  請求項5~11のいずれか1項に記載の粘着シートの製造方法であって、
     アクリル系モノマーおよび/またはその部分重合物、ならびに1分子中に2以上の(メタ)アクリロイル基を有する多官能モノマーを含む組成物を、基材上に層状に塗布した後、前記組成物に活性光線を照射して光硬化を行う、粘着シートの製造方法。
    The method for manufacturing an adhesive sheet according to any one of claims 5 to 11.
    A composition containing an acrylic monomer and / or a partial polymer thereof and a polyfunctional monomer having two or more (meth) acryloyl groups in one molecule is applied in a layer on a substrate and then activated on the composition. A method for manufacturing an adhesive sheet, which is photocured by irradiating with light rays.
  13.  前記多官能モノマーが、両末端に(メタ)アクリロイル基を有するウレタンジ(メタ)アクリレートである、請求項12に記載の粘着シートの製造方法。 The method for producing an adhesive sheet according to claim 12, wherein the polyfunctional monomer is a urethane di (meth) acrylate having (meth) acryloyl groups at both ends.
  14.  画像表示パネルの視認側表面に、請求項1~11のいずれか1項に記載の粘着シートにより前面透明部材が固着されている、画像表示装置。 An image display device in which a front transparent member is fixed to the visible side surface of an image display panel by the adhesive sheet according to any one of claims 1 to 11.
PCT/JP2020/007230 2019-03-08 2020-02-21 Pressure-sensitive adhesive sheet, production method therefor, and image display device WO2020184155A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11202109807P SG11202109807PA (en) 2019-03-08 2020-02-21 Pressure-sensitive adhesive sheet, production method therefor, and display device
KR1020217031879A KR102566778B1 (en) 2019-03-08 2020-02-21 Adhesive sheet, manufacturing method thereof, and image display device
CN202080017881.1A CN113518808B (en) 2019-03-08 2020-02-21 Pressure-sensitive adhesive sheet, method for producing the same, and image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019043184 2019-03-08
JP2019-043184 2019-03-08
JP2020-013804 2020-01-30
JP2020013804A JP7285794B2 (en) 2019-03-08 2020-01-30 PSA SHEET, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE

Publications (1)

Publication Number Publication Date
WO2020184155A1 true WO2020184155A1 (en) 2020-09-17

Family

ID=72427930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007230 WO2020184155A1 (en) 2019-03-08 2020-02-21 Pressure-sensitive adhesive sheet, production method therefor, and image display device

Country Status (1)

Country Link
WO (1) WO2020184155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155503A (en) * 2007-12-27 2009-07-16 Dic Corp Double-sided pressure-sensitive adhesive tape
JP2014224179A (en) * 2013-05-15 2014-12-04 日立化成株式会社 Adhesive for image display device, adhesive sheet for image display device, and method for manufacturing image display device using the same
JP2016017113A (en) * 2014-07-07 2016-02-01 日東電工株式会社 Adhesive sheet
JP2019131678A (en) * 2018-01-30 2019-08-08 日東電工株式会社 Adhesive sheet and production method of the same, and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155503A (en) * 2007-12-27 2009-07-16 Dic Corp Double-sided pressure-sensitive adhesive tape
JP2014224179A (en) * 2013-05-15 2014-12-04 日立化成株式会社 Adhesive for image display device, adhesive sheet for image display device, and method for manufacturing image display device using the same
JP2016017113A (en) * 2014-07-07 2016-02-01 日東電工株式会社 Adhesive sheet
JP2019131678A (en) * 2018-01-30 2019-08-08 日東電工株式会社 Adhesive sheet and production method of the same, and image display device

Similar Documents

Publication Publication Date Title
JP7076217B2 (en) Adhesive sheet and its manufacturing method, and manufacturing method of image display device
KR20200119340A (en) Adhesive sheet, optical film with adhesive layer, laminate and image display device
JP7166762B2 (en) PSA SHEET, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
KR20170104378A (en) Optical adhesive sheet, polarizing film with adhesive layer and liquid crystal display device
US11319470B2 (en) Pressure sensitive adhesive, curable pressure sensitive adhesive composition, pressure sensitive adhesive sheet and method for manufacturing thereof
JP7253903B2 (en) Adhesive sheet, method for producing same, and method for producing image display device
JP7028660B2 (en) Adhesive sheet and its manufacturing method, as well as adhesive film
TW201821567A (en) Surface protective film
JP7285794B2 (en) PSA SHEET, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
KR20180092802A (en) Adhesive and adhesive sheet
US11860472B2 (en) Solvent-free photo-curable resin composition for polarizing plate protective layer, polarizing plate comprising cured product thereof, and image display device
WO2020184155A1 (en) Pressure-sensitive adhesive sheet, production method therefor, and image display device
TW202138514A (en) Adhesive sheet and image display device having a first adhesive layer on one main surface of the transparent film substrate and a second adhesive layer on the other main surface
KR20180036223A (en) Adhesive Composition and Adhesive Sheet Using the Same
KR102596425B1 (en) Uv curable adhesive composition for micro led display and adhesive sheet using the same
JP7332730B2 (en) Adhesive sheet, manufacturing method thereof, and adhesive film
WO2023100866A1 (en) Adhesive sheet and method for manufacturing adhesive sheet
KR20180125271A (en) Adhesive Composition and Adhesive Sheet Using the Same
TW202103949A (en) Surface protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031879

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20769642

Country of ref document: EP

Kind code of ref document: A1