WO2020184153A1 - Laser annealing device - Google Patents

Laser annealing device Download PDF

Info

Publication number
WO2020184153A1
WO2020184153A1 PCT/JP2020/007185 JP2020007185W WO2020184153A1 WO 2020184153 A1 WO2020184153 A1 WO 2020184153A1 JP 2020007185 W JP2020007185 W JP 2020007185W WO 2020184153 A1 WO2020184153 A1 WO 2020184153A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
substrate
thin film
predetermined region
Prior art date
Application number
PCT/JP2020/007185
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
義大 塩飽
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020184153A1 publication Critical patent/WO2020184153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a laser annealing device.
  • a thin film transistor (TFT: Thin Film Transistor) is used as a switching element for actively driving a thin display (FPD: Flat Panel Display) such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OLED: Organic Electroluminescence Display). It is used.
  • FPD Flat Panel Display
  • LCD Liquid Crystal Display
  • OLED Organic Electroluminescence Display
  • amorphous silicon a-Si: amorphous Silicon
  • p-Si polycrystalline Silicon
  • a predetermined region of the amorphous silicon thin film is instantaneously heated by a laser beam to polycrystallize it to form a polycrystalline silicon thin film having high electron mobility, and the polycrystalline silicon thin film is used for the channel region.
  • a technology to do There is a technology to do.
  • an amorphous silicon thin film is formed on a substrate, and then the amorphous silicon thin film is irradiated with a laser beam such as an excimer laser and laser annealed to melt and solidify in a short time.
  • a laser beam such as an excimer laser and laser annealed to melt and solidify in a short time.
  • a process of crystallizing an amorphous silicon thin film is performed.
  • Patent Document 1 states that by performing this process, the channel region between the source and drain of the TFT can be formed into a polycrystalline silicon thin film having high electron mobility, and the transistor operation can be speeded up. Is described.
  • the channel region between the source and the drain is formed by a polycrystalline silicon thin film in one place. Therefore, the characteristics of the TFT depend on the polycrystalline silicon thin film in one place.
  • the energy density of the laser beam of an excimer laser or the like varies depending on the irradiation (shot)
  • crystal unevenness occurs in the polycrystalline silicon thin film, and the polycrystalline silicon thin film formed by using the laser beam.
  • the electron mobility also varies. Therefore, the characteristics of the TFT formed by using the polycrystalline silicon thin film also depend on the variation in the energy density of the laser beam.
  • the characteristics of the plurality of TFTs contained in the substrate may vary.
  • an object of the present invention is to provide a laser annealing apparatus capable of suppressing variations in the characteristics of a plurality of thin film transistors contained in a substrate.
  • the laser annealing device of the present invention is a laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to form crystallized silicon, and the first laser beam is applied to the predetermined region. Is irradiated and laser annealed, and then the predetermined region is irradiated with a second laser beam which is a continuously oscillating laser beam to perform laser annealing.
  • the first laser beam is a pulsed laser beam.
  • the first opening for shaping the irradiation shape of the first laser beam according to the shape of the predetermined region and the irradiation shape of the second laser light for matching the shape of the predetermined region is reduced on the amorphous silicon thin film. It is provided with a condensing lens for focusing.
  • the laser annealing device of the present invention is a laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to obtain crystallized silicon, and is a continuously oscillating laser beam. Is irradiated to the predetermined region and laser annealed.
  • the laser annealing method of the present invention is a laser annealing method in which a predetermined region of an amorphous silicon thin film adhered on a substrate is laser-annealed to obtain crystallized silicon, and the first laser beam is applied to the predetermined region.
  • the present invention includes a step of irradiating the predetermined region with laser annealing and a step of irradiating the predetermined region with a second laser beam which is a continuously oscillating laser beam to perform laser annealing. It is a thing.
  • the present invention can provide a laser annealing apparatus capable of suppressing variations in the characteristics of a plurality of thin film transistors contained in a substrate.
  • FIG. 1 is a schematic configuration diagram of a laser annealing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a method of irradiating a laser beam of the laser annealing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a mask pattern of the laser annealing apparatus according to the embodiment of the present invention.
  • the laser annealing device 10 in the manufacturing process of a semiconductor device including a TFT, irradiates, for example, laser light to a region to be formed in a channel region to perform annealing, and forms the channel region. It is a device for crystallizing a planned region.
  • the laser annealing device 10 is used, for example, when forming a TFT of pixels of a liquid crystal display device.
  • a gate electrode 3 made of a metal film such as Al is formed on the glass substrate 2 of the substrate 1 to be processed.
  • a gate insulating film (not shown) made of a SiN film is formed on the entire surface of the glass substrate 2 by the low temperature plasma CVD method.
  • the amorphous silicon thin film 4 is formed on the gate insulating film by, for example, a plasma CVD method. That is, the amorphous silicon thin film 4 is formed (adhered) on the entire surface of the glass substrate 2.
  • a silicon dioxide (SiO2) film (not shown) is formed on the amorphous silicon thin film 4.
  • the laser annealing device 10 illustrated in FIG. 1 irradiates a predetermined region (a region serving as a channel region in the TFT) on the gate electrode 3 of the amorphous silicon thin film 4 with laser light to perform annealing, and the predetermined region is subjected to the annealing treatment.
  • the region of is crystallized to obtain crystallized silicon.
  • the glass substrate 2 does not necessarily have to be a glass substrate, and may be a substrate of any material such as a resin substrate formed of a material such as resin. Further, the crystallized silicon may be either polycrystalline silicon or single crystal silicon.
  • the laser annealing device 10 includes a base 11, a pulse laser generation unit 12, a continuous oscillation laser generation unit 13, a control unit 14, and a laser beam irradiation unit 20.
  • the base 11 is provided with a substrate transporting means (not shown).
  • the substrate 1 to be processed is placed on the base 11 and transported in the transport direction (board scan direction) indicated by the arrow in the drawing by a substrate transport means (not shown).
  • This transport direction is the same as the extending direction of the gate electrode 3. That is, in the present embodiment, the laser beam irradiation unit 20 does not move during the annealing process, but the substrate 1 to be processed is moved.
  • the pulse laser generation unit 12 includes a laser light source (not shown) and a coupling optical system (not shown).
  • the laser light emitted from the laser light source is expanded by the coupling optical system, the brightness distribution is made uniform, and the laser light is irradiated as the first laser light L1.
  • the laser light source is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 248 nm at a predetermined repeating period.
  • the first laser beam L1 is reflected by the mirror 15 and irradiates the laser beam irradiation unit 20.
  • the continuous oscillation laser generation unit 13 includes a laser light source (not shown).
  • the laser light emitted from the laser light source is applied to the mirror 16 as the second laser light L2.
  • the laser light source oscillates, for example, continuous wave (CW) laser light.
  • the continuously oscillating laser light is a concept including so-called pseudo continuous oscillation that continuously irradiates the target region with the laser light. That is, even if the laser beam is a pulse laser, it may be a pseudo-continuous oscillation laser in which the pulse interval is shorter than the cooling time of the silicon thin film after heating (irradiation with the next pulse before solidification).
  • the second laser beam L2 is reflected by the mirror 16 and irradiates the polygon mirror 17.
  • the polygon mirror 17 rotates at a predetermined speed, and causes the F ⁇ lens 18 to scan the second laser beam L2 reflected by the mirror 16 at a uniform angular velocity.
  • the F ⁇ lens 18 converts the second laser beam L2 scanned at a uniform angular velocity into a uniform linear velocity and causes the mirror 19 to scan.
  • the second laser beam L2 is reflected by the mirror 19 and scanned by the laser beam irradiation unit 20.
  • the laser beam irradiating unit 20 irradiates the first laser light L1 and the second laser light L2 at predetermined positions on the substrate 1 to be processed, and as shown in FIG. 2, the first laser light L1 A mask pattern 21 and a microlens array 22 are provided in this order from the upstream side to the downstream side in the traveling direction of the second laser beam L2.
  • the mask pattern 21 separates one first laser beam L1 into a plurality of first laser beams L1. Further, the mask pattern 21 irradiates the substrate 1 to be processed with the second laser beam L2 in a predetermined irradiation shape.
  • a light-shielding film such as chromium (cr) or aluminum (Al) is formed on a transparent quartz substrate.
  • the light-shielding film has a plurality of first openings 23 for shaping according to the irradiation shape of the first laser beam L1 irradiated on the substrate 1 to be processed, and the substrate 1 to be processed.
  • a plurality of second openings 24 for shaping according to the irradiation shape of the second laser beam L2 to be irradiated are provided.
  • the first opening 23 is formed in a shape similar to the irradiation shape of the first laser beam L1.
  • the second opening 24 is formed in a shape similar to the irradiation shape of the second laser beam L2.
  • the first opening 23 is, for example, the number of times the first laser beam L1 is irradiated in the substrate scan direction (10 times in the figure) so as to irradiate the gate electrode 3 extending in the substrate scan direction with the first laser beam L1. It is provided.
  • a plurality of first openings 23 (10 in the figure) are provided in a straight line in a direction orthogonal to the substrate scanning direction in accordance with the distance between the gate electrodes 3. This is because the annealing treatment is performed on the substrate 1 to be processed in a grid pattern, and it may be appropriately changed depending on the position on the substrate 1 to be processed where the annealing treatment is desired.
  • One second opening 24 is provided, for example, so as to irradiate the second laser beam L2 once on the gate electrode 3 extending in the substrate scanning direction.
  • a plurality of second openings 24 (10 in the figure) are provided, for example, in a direction orthogonal to the substrate scanning direction in accordance with the distance between the gate electrodes 3.
  • the second opening 24 adjacent to the direction orthogonal to the substrate scanning direction is provided at a distance W in the substrate scanning direction.
  • the distance W is determined by the transport speed of the substrate 1 to be processed and the scan speed in the direction orthogonal to the substrate scan direction of the second laser beam L2.
  • the scanning direction of the second laser beam L2 is from the left to the right in FIG.
  • the second laser beam L2 when the second laser beam L2 reaches the position of the adjacent second aperture 24 in the substrate scanning direction from the second aperture 24, the adjacent second aperture 24 comes to the irradiation position of the second laser beam L2. Set. As a result, by scanning once in the scanning direction, the second laser beam L2 can irradiate the region aligned in the direction orthogonal to the substrate scanning direction with the second laser beam L2.
  • the microlens array 22 reduces and projects the first laser beam L1 passing through the first aperture 23 onto the gate electrode 3.
  • the microlens array 22 reduces and projects the second laser beam L2 passing through the second aperture 24 onto the gate electrode 3.
  • the microlens array 22 has a plurality of microlenses as condensing lenses arranged so that the center of the optical axis is aligned with the center of each opening of the first opening 23 and the second opening 24.
  • the reduction magnification of each microlens is set so that the images of the first aperture 23 and the second aperture 24 are focused on the amorphous silicon thin film 4 on the gate electrode 3.
  • the control unit 14 controls a substrate transport means (not shown) provided on the base 11, a pulse laser generation unit 12, and a continuous oscillation laser generation unit 13. Specifically, the control unit 14 is set to drive and control a substrate transporting means (not shown) to move the substrate 1 to be processed in the substrate scanning direction at a predetermined speed. Further, the control unit 14 is set so that the position information of the region to be modified in the substrate 1 to be annealed is input from the position detecting means (not shown).
  • control unit 14 is set so as to drive and control the pulse laser generation unit 12 and the continuous oscillation laser generation unit 13 to perform the first irradiation and the second irradiation on the substrate 1 to be processed. ing.
  • the control unit 14 emits the pulse laser light as the first laser light L1 from the pulse laser generation unit 12.
  • control unit 14 continuously emits the CW laser light as the second laser light L2 from the continuously oscillating laser generation unit 13.
  • the control unit 14 outputs a drive signal to the pulse laser generation unit 12 when the planned reforming region reaches a predetermined position with respect to the base 11 based on the above-mentioned position information data of the planned reforming region. Is set to.
  • the control unit 14 outputs a drive signal to the continuous oscillation laser generation unit 13 when the planned modification area reaches a predetermined position with respect to the base 11 based on the above-mentioned position information data of the planned modification area. Is set to.
  • Laser annealing method The laser annealing method using the laser annealing apparatus 10 according to the present embodiment will be described.
  • the control unit 14 moves the base 11 by the substrate transport means to move the substrate 1 to be processed at a predetermined scan speed along the substrate scan direction.
  • the control unit 14 outputs a drive signal to the pulse laser generation unit 12 when the planned reforming region reaches a predetermined position based on the position information of the planned reforming region.
  • the first modification area 23 (the most rightmost area in FIG. 2) in the substrate scan direction of the mask pattern 21 is the most upstream first opening 23 in the substrate scan direction.
  • a drive signal is output to the pulsed laser generator 12, after which the substrate 1 to be processed moves in the substrate scan direction, and the area to be modified is the substrate scan.
  • a drive signal is output to the pulsed laser generation unit 12 when it reaches below the next first opening 23 adjacent in the direction.
  • the pulse laser generation unit 12 is used for the number of times of the first opening 23 provided in the substrate scan direction (10 times in the mask pattern 21 of FIG. 3).
  • the region A (see FIG. 2) where the amorphous silicon thin film 4 in the region to be modified is crystallized by being irradiated with the laser beam L1.
  • the first laser beam L1 is uniformly irradiated by the pulsed laser generating unit 12. It is difficult to make it completely uniform, and a variation of several percent occurs. This variation is also affected by the first laser beam L1 that has passed through the microlens of the microlens array 22, and unevenness may occur on the irradiation surface.
  • the second laser beam L2 is irradiated by the continuously oscillating laser generator 13.
  • the annealing treatment is performed again with the continuously oscillating laser light which is the second laser light L2, and the crystal unevenness of the crystallized silicon annealed by the first laser light L1 is made uniform in the irradiated surface.
  • the region A crystallized by the first laser beam L1 located at the most upstream of the second laser beam L2 in the scanning direction is the second most upstream of the second laser beam L2 of the mask pattern 21 in the scanning direction.
  • a drive signal is output to the continuously oscillating laser generation unit 13.
  • the second laser beam L2 emitted from the continuously oscillating laser generation unit 13 is irradiated to the polygon mirror 17, scanned by the mirror 19 through the F ⁇ lens 18, and scanned by the laser beam irradiation unit 20.
  • the distance W of the second opening 24 adjacent in the direction orthogonal to the substrate scanning direction is set based on the substrate scanning speed and the scanning speed of the second laser beam L2, and the substrate 1 to be processed is set.
  • the crystallized region A adjacent to the direction orthogonal to the substrate scanning direction is sequentially irradiated with the second laser beam L2, and annealing treatment is performed. ..
  • the second laser beam L2 scans once in the scanning direction, the second laser beam L2 is sequentially irradiated to the region A in a row adjacent to the direction perpendicular to the substrate scanning direction, and the next second laser beam L2 In this scan, the second laser beam L2 is applied to the row of the next region A in the substrate scanning direction.
  • the continuously oscillating laser beam is emitted to the region. Irradiated and laser annealed. Therefore, even if the characteristics of the plurality of thin film transistors contained in the substrate are varied due to the laser annealing by the first laser beam, the variation in the characteristics of the plurality of thin film transistors can be suppressed by the laser annealing by the continuously oscillating laser light. ..
  • the laser beam irradiation unit 20 is configured such that the irradiation region of the first laser light L1 and the irradiation region of the second laser light L2 are integrated, but the irradiation region of the first laser light L1
  • the irradiation region of the second laser beam L2 may be formed separately. Further, in the irradiation region of the second laser beam L2, the microlens array 22 may be omitted.
  • the device that performs the first irradiation and the device that performs the second irradiation may be different devices.
  • the first opening 23 and the second opening 24 formed in the mask pattern 21 are rectangular, but they are changed according to the irradiation region of the first laser light L1 or the second laser light L2. It doesn't matter.
  • Substrate to be processed 4 Amorphous silicon thin film 10
  • Laser annealing device 12
  • Pulsed laser generator 13
  • Continuous oscillation laser generator 14
  • Control unit 20
  • Laser beam irradiation unit 21
  • Mask pattern 22
  • Microlens array 23
  • 1st aperture 24 2nd aperture

Abstract

This laser annealing device is provided with: a pulsed laser generating unit 12 which radiates a pulsed laser light beam as a first laser light beam L1 having a uniform luminance distribution; a continuous wave laser generating unit 13 which causes a continuous wave laser light beam to oscillate as a second laser light beam L2; and a laser beam radiating unit 20 which splits a plurality of first laser light beams L1 from one first laser light beam L1, and causes the second laser light beam L2 to be radiated with a prescribed radiation shape onto a substrate 1 being processed.

Description

レーザアニール装置Laser annealing equipment
 本発明は、レーザアニール装置に関する。 The present invention relates to a laser annealing device.
 薄膜トランジスタ(TFT:Thin Film Transistor)は、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OLED:Organic Electroluminescence Display)などの薄型ディスプレイ(FPD:Flat Panel Display)をアクティブ駆動するためのスイッチング素子として用いられている。薄膜トランジスタ(以下、TFTともいう)の半導体層の材料としては、非晶質シリコン(a-Si:amorphous Silicon)や、多結晶シリコン(p-Si:polycrystalline Silicon)などが用いられている。 A thin film transistor (TFT: Thin Film Transistor) is used as a switching element for actively driving a thin display (FPD: Flat Panel Display) such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OLED: Organic Electroluminescence Display). It is used. As the material of the semiconductor layer of the thin film transistor (hereinafter, also referred to as TFT), amorphous silicon (a-Si: amorphous Silicon), polycrystalline silicon (p-Si: polycrystalline Silicon), or the like is used.
 逆スタガ構造のTFTとして、非晶質シリコン薄膜をチャネル領域に使用したものが存在する。ただ、非晶質シリコン薄膜は電子移動度が小さいため、当該非晶質シリコン薄膜をチャネル領域に使用すると、TFTにおける電荷の移動度が小さくなるという難点があった。 There is a TFT with an inverted stagger structure that uses an amorphous silicon thin film for the channel region. However, since the amorphous silicon thin film has low electron mobility, there is a problem that when the amorphous silicon thin film is used in the channel region, the charge mobility in the TFT becomes small.
 そこで、非晶質シリコン薄膜の所定の領域をレーザ光により瞬間的に加熱することで多結晶化し、電子移動度の高い多結晶シリコン薄膜を形成して、当該多結晶シリコン薄膜をチャネル領域に使用する技術が存在する。 Therefore, a predetermined region of the amorphous silicon thin film is instantaneously heated by a laser beam to polycrystallize it to form a polycrystalline silicon thin film having high electron mobility, and the polycrystalline silicon thin film is used for the channel region. There is a technology to do.
 例えば、特許文献1には、基板に非晶質シリコン薄膜を形成し、その後、この非晶質シリコン薄膜にエキシマレーザ等のレーザ光を照射してレーザアニールすることにより、短時間での溶融凝固によって、多結晶シリコン薄膜に結晶化させる処理を行なうことが開示されている。 For example, in Patent Document 1, an amorphous silicon thin film is formed on a substrate, and then the amorphous silicon thin film is irradiated with a laser beam such as an excimer laser and laser annealed to melt and solidify in a short time. Discloses that a process of crystallizing an amorphous silicon thin film is performed.
 特許文献1には、当該処理を行うことにより、TFTのソースとドレイン間のチャネル領域を、電子移動度の高い多結晶シリコン薄膜とすることが可能となり、トランジスタ動作の高速化が可能になる旨が記載されている。 Patent Document 1 states that by performing this process, the channel region between the source and drain of the TFT can be formed into a polycrystalline silicon thin film having high electron mobility, and the transistor operation can be speeded up. Is described.
特開2016-100537号公報Japanese Unexamined Patent Publication No. 2016-100537
 特許文献1に記載のTFTでは、ソースとドレイン間のチャネル領域が、一か所の多結晶シリコン薄膜により形成されている。そのため、TFTの特性は、一か所の多結晶シリコン薄膜に依存することになる。 In the TFT described in Patent Document 1, the channel region between the source and the drain is formed by a polycrystalline silicon thin film in one place. Therefore, the characteristics of the TFT depend on the polycrystalline silicon thin film in one place.
 ここで、エキシマレーザ等のレーザ光のエネルギ密度は、その照射(ショット)ごとにばらつきが生じるため、多結晶シリコン薄膜に結晶ムラが生じて当該レーザ光を用いて形成される多結晶シリコン薄膜の電子移動度にもばらつきが生じる。そのため、当該多結晶シリコン薄膜を用いて形成されるTFTの特性も、レーザ光のエネルギ密度のばらつきに依存してしまう。 Here, since the energy density of the laser beam of an excimer laser or the like varies depending on the irradiation (shot), crystal unevenness occurs in the polycrystalline silicon thin film, and the polycrystalline silicon thin film formed by using the laser beam. The electron mobility also varies. Therefore, the characteristics of the TFT formed by using the polycrystalline silicon thin film also depend on the variation in the energy density of the laser beam.
 その結果、基板に含まれる複数のTFTの特性には、ばらつきが生じてしまう可能性がある。 As a result, the characteristics of the plurality of TFTs contained in the substrate may vary.
 そこで、本発明は、基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能なレーザアニール装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a laser annealing apparatus capable of suppressing variations in the characteristics of a plurality of thin film transistors contained in a substrate.
 本発明のレーザアニール装置は、基板上に被着された非晶質シリコン薄膜の所定の領域をレーザアニールして結晶化シリコンとするレーザアニール装置であって、前記所定の領域に第1レーザ光を照射してレーザアニールした後、前記所定の領域に連続発振レーザ光である第2レーザ光を照射してレーザアニールするものである。 The laser annealing device of the present invention is a laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to form crystallized silicon, and the first laser beam is applied to the predetermined region. Is irradiated and laser annealed, and then the predetermined region is irradiated with a second laser beam which is a continuously oscillating laser beam to perform laser annealing.
 また、本発明のレーザアニール装置において、前記第1レーザ光は、パルスレーザ光であるものである。 Further, in the laser annealing apparatus of the present invention, the first laser beam is a pulsed laser beam.
 また、本発明のレーザアニール装置において、前記第1レーザ光の照射形状を前記所定領域の形状に合わせて整形する第1開口と、前記第2レーザ光の照射形状を前記所定領域の形状に合わせて整形する第2開口と、を有するマスクパターンと、前記第1開口を通過した前記第1レーザ光または前記第2開口を通過した前記第2レーザ光を前記非晶質シリコン薄膜上に縮小して合焦させる集光レンズと、を備えるものである。 Further, in the laser annealing apparatus of the present invention, the first opening for shaping the irradiation shape of the first laser beam according to the shape of the predetermined region and the irradiation shape of the second laser light for matching the shape of the predetermined region. The mask pattern having the second aperture to be shaped and the first laser beam passing through the first opening or the second laser beam passing through the second opening is reduced on the amorphous silicon thin film. It is provided with a condensing lens for focusing.
 本発明のレーザアニール装置は、基板上に被着された非晶質シリコン薄膜のレーザアニールされた所定の領域を、レーザアニールして結晶化シリコンとするレーザアニール装置であって、連続発振レーザ光を前記所定の領域に照射してレーザアニールするものである。 The laser annealing device of the present invention is a laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to obtain crystallized silicon, and is a continuously oscillating laser beam. Is irradiated to the predetermined region and laser annealed.
 本発明のレーザアニール方法は、基板上に被着された非晶質シリコン薄膜の所定の領域をレーザアニールして結晶化シリコンとするレーザアニール方法であって、前記所定の領域に第1レーザ光を照射してレーザアニールする工程と、前記所定の領域に連続発振レーザ光である第2レーザ光を照射してレーザアニールする工程と、を有するものである。
ものである。
The laser annealing method of the present invention is a laser annealing method in which a predetermined region of an amorphous silicon thin film adhered on a substrate is laser-annealed to obtain crystallized silicon, and the first laser beam is applied to the predetermined region. The present invention includes a step of irradiating the predetermined region with laser annealing and a step of irradiating the predetermined region with a second laser beam which is a continuously oscillating laser beam to perform laser annealing.
It is a thing.
 本発明は、基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能なレーザアニール装置を提供することができる。 The present invention can provide a laser annealing apparatus capable of suppressing variations in the characteristics of a plurality of thin film transistors contained in a substrate.
図1は、本発明の一実施形態に係るレーザアニール装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a laser annealing device according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るレーザアニール装置のレーザ光の照射方法を示す図である。FIG. 2 is a diagram showing a method of irradiating a laser beam of the laser annealing apparatus according to the embodiment of the present invention. 図3は、本発明の一実施形態に係るレーザアニール装置のマスクパターンの例を示す図である。FIG. 3 is a diagram showing an example of a mask pattern of the laser annealing apparatus according to the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態に係るレーザアニール装置について詳細に説明する。但し、図面は模式的なものであり、各部材の数、各部材の寸法、寸法の比率、形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。 Hereinafter, the laser annealing apparatus according to the embodiment of the present invention will be described in detail with reference to the drawings. However, it should be noted that the drawings are schematic, and the number of each member, the dimensions of each member, the ratio of dimensions, the shape, etc. are different from the actual ones. In addition, there are parts where the dimensional relationships, ratios, and shapes of the drawings are different from each other.
 図1において、本発明の一実施形態に係るレーザアニール装置10は、TFTを備える半導体装置の製造工程において、例えば、チャネル領域形成予定領域にレーザ光を照射してアニール処理し、当該チャネル領域形成予定領域を結晶化するための装置である。 In FIG. 1, in the manufacturing process of a semiconductor device including a TFT, the laser annealing device 10 according to the embodiment of the present invention irradiates, for example, laser light to a region to be formed in a channel region to perform annealing, and forms the channel region. It is a device for crystallizing a planned region.
 レーザアニール装置10は、例えば、液晶表示装置の画素のTFTを形成する際に用いられる。このようなTFTを形成する場合、図2に示すように、まず、被処理基板1のガラス基板2上にAl等の金属膜からなるゲート電極3をパターン形成する。 The laser annealing device 10 is used, for example, when forming a TFT of pixels of a liquid crystal display device. When forming such a TFT, as shown in FIG. 2, first, a gate electrode 3 made of a metal film such as Al is formed on the glass substrate 2 of the substrate 1 to be processed.
 そして、低温プラズマCVD法により、ガラス基板2上の全面にSiN膜からなる図示しないゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法により非晶質シリコン薄膜4を形成する。すなわち、ガラス基板2の全面に非晶質シリコン薄膜4が形成(被着)される。最後に、非晶質シリコン薄膜4上に図示しない二酸化ケイ素(SiO2)膜を形成する。 Then, a gate insulating film (not shown) made of a SiN film is formed on the entire surface of the glass substrate 2 by the low temperature plasma CVD method. After that, the amorphous silicon thin film 4 is formed on the gate insulating film by, for example, a plasma CVD method. That is, the amorphous silicon thin film 4 is formed (adhered) on the entire surface of the glass substrate 2. Finally, a silicon dioxide (SiO2) film (not shown) is formed on the amorphous silicon thin film 4.
 そして、図1に例示するレーザアニール装置10により、非晶質シリコン薄膜4のゲート電極3上の所定の領域(TFTにおいてチャネル領域となる領域)にレーザ光を照射してアニール処理し、当該所定の領域を結晶化して結晶化シリコンとする。なお、ガラス基板2は、必ずしもガラス基板である必要はなく、樹脂などの素材で形成された樹脂基板など、どのような素材の基板であってもよい。また、結晶化シリコンは、多結晶シリコンと単結晶シリコンのいずれでもよい。 Then, the laser annealing device 10 illustrated in FIG. 1 irradiates a predetermined region (a region serving as a channel region in the TFT) on the gate electrode 3 of the amorphous silicon thin film 4 with laser light to perform annealing, and the predetermined region is subjected to the annealing treatment. The region of is crystallized to obtain crystallized silicon. The glass substrate 2 does not necessarily have to be a glass substrate, and may be a substrate of any material such as a resin substrate formed of a material such as resin. Further, the crystallized silicon may be either polycrystalline silicon or single crystal silicon.
(レーザアニール装置の概略構成)
 以下、図1及び図2を用いて、本実施の形態に係るレーザアニール装置10の概略構成を説明する。図1に示すように、レーザアニール装置10は、基台11と、パルスレーザ発生部12と、連続発振レーザ発生部13と、制御部14と、レーザビーム照射部20と、を備える。
(Rough configuration of laser annealing device)
Hereinafter, a schematic configuration of the laser annealing apparatus 10 according to the present embodiment will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the laser annealing device 10 includes a base 11, a pulse laser generation unit 12, a continuous oscillation laser generation unit 13, a control unit 14, and a laser beam irradiation unit 20.
 基台11は、図示しない基板搬送手段を備えている。このレーザアニール装置10においては、被処理基板1を基台11の上に配置した状態で、図示しない基板搬送手段によって、図中矢印で示す搬送方向(基板スキャン方向)に向けて搬送する。この搬送方向は、ゲート電極3の延在方向と同一方向である。すなわち、本実施の形態では、アニール処理時にはレーザビーム照射部20は移動せず、被処理基板1を移動させるようになっている。 The base 11 is provided with a substrate transporting means (not shown). In the laser annealing device 10, the substrate 1 to be processed is placed on the base 11 and transported in the transport direction (board scan direction) indicated by the arrow in the drawing by a substrate transport means (not shown). This transport direction is the same as the extending direction of the gate electrode 3. That is, in the present embodiment, the laser beam irradiation unit 20 does not move during the annealing process, but the substrate 1 to be processed is moved.
 パルスレーザ発生部12は、図示しないレーザ光源と、図示しないカップリング光学系とを備えている。レーザ光源から出射されたレーザ光は、カップリング光学系により拡張され、輝度分布が均一化されて第1レーザ光L1として照射される。レーザ光源は、例えば、波長が308nmや248nmなどのレーザ光を、所定の繰り返し周期で放射するエキシマレーザである。 The pulse laser generation unit 12 includes a laser light source (not shown) and a coupling optical system (not shown). The laser light emitted from the laser light source is expanded by the coupling optical system, the brightness distribution is made uniform, and the laser light is irradiated as the first laser light L1. The laser light source is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 248 nm at a predetermined repeating period.
 第1レーザ光L1は、ミラー15により反射され、レーザビーム照射部20に照射される。 The first laser beam L1 is reflected by the mirror 15 and irradiates the laser beam irradiation unit 20.
 連続発振レーザ発生部13は、図示しないレーザ光源を備えている。レーザ光源から出射されたレーザ光は、第2レーザ光L2としてミラー16に照射される。レーザ光源は、例えば、連続発振(CW:Continuous Wave)レーザ光を発振する。 The continuous oscillation laser generation unit 13 includes a laser light source (not shown). The laser light emitted from the laser light source is applied to the mirror 16 as the second laser light L2. The laser light source oscillates, for example, continuous wave (CW) laser light.
 ここで、連続発振レーザ光(CWレーザ光)とは、目的領域に対して連続してレーザ光を照射する所謂疑似連続発振も含む概念である。つまり、レーザ光がパルスレーザであっても、パルス間隔が加熱後のシリコン薄膜の冷却時間よりも短い(固まる前に次のパルスで照射する)疑似連続発振レーザであってもよい。 Here, the continuously oscillating laser light (CW laser light) is a concept including so-called pseudo continuous oscillation that continuously irradiates the target region with the laser light. That is, even if the laser beam is a pulse laser, it may be a pseudo-continuous oscillation laser in which the pulse interval is shorter than the cooling time of the silicon thin film after heating (irradiation with the next pulse before solidification).
 第2レーザ光L2は、ミラー16により反射され、ポリゴンミラー17に照射される。
ポリゴンミラー17は、所定の速度で回転し、ミラー16により反射された第2レーザ光L2をFθレンズ18に等角速度でスキャンさせる。
The second laser beam L2 is reflected by the mirror 16 and irradiates the polygon mirror 17.
The polygon mirror 17 rotates at a predetermined speed, and causes the Fθ lens 18 to scan the second laser beam L2 reflected by the mirror 16 at a uniform angular velocity.
 Fθレンズ18は、等角速度でスキャンされた第2レーザ光L2を等直線速度に変換してミラー19にスキャンさせる。第2レーザ光L2は、ミラー19により反射され、レーザビーム照射部20にスキャンされる。 The Fθ lens 18 converts the second laser beam L2 scanned at a uniform angular velocity into a uniform linear velocity and causes the mirror 19 to scan. The second laser beam L2 is reflected by the mirror 19 and scanned by the laser beam irradiation unit 20.
 レーザビーム照射部20は、第1レーザ光L1及び第2レーザ光L2を被処理基板1上の予め定められた所定位置に照射させるものであり、図2に示すように、第1レーザ光L1及び第2レーザ光L2の進行方向上流側から下流側に向かって順に、マスクパターン21と、マイクロレンズアレイ22と、を備えている。 The laser beam irradiating unit 20 irradiates the first laser light L1 and the second laser light L2 at predetermined positions on the substrate 1 to be processed, and as shown in FIG. 2, the first laser light L1 A mask pattern 21 and a microlens array 22 are provided in this order from the upstream side to the downstream side in the traveling direction of the second laser beam L2.
 マスクパターン21は、1つの第1レーザ光L1から複数の第1レーザ光L1に分離させるものである。また、マスクパターン21は、第2レーザ光L2を被処理基板1上に所定の照射形状で照射させる。 The mask pattern 21 separates one first laser beam L1 into a plurality of first laser beams L1. Further, the mask pattern 21 irradiates the substrate 1 to be processed with the second laser beam L2 in a predetermined irradiation shape.
 マスクパターン21は、例えば、透明な石英基板上にクロム(cr)やアルミニウム(Al)等の遮光膜が成膜される。遮光膜には、図3に示すように、被処理基板1上に照射される第1レーザ光L1の照射形状に合わせて整形するための複数の第1開口23と、被処理基板1上に照射される第2レーザ光L2の照射形状に合わせて整形するための複数の第2開口24とが設けられる。 In the mask pattern 21, for example, a light-shielding film such as chromium (cr) or aluminum (Al) is formed on a transparent quartz substrate. As shown in FIG. 3, the light-shielding film has a plurality of first openings 23 for shaping according to the irradiation shape of the first laser beam L1 irradiated on the substrate 1 to be processed, and the substrate 1 to be processed. A plurality of second openings 24 for shaping according to the irradiation shape of the second laser beam L2 to be irradiated are provided.
 第1開口23は、第1レーザ光L1の照射形状と相似形に形成される。第2開口24は、第2レーザ光L2の照射形状と相似形に形成される。 The first opening 23 is formed in a shape similar to the irradiation shape of the first laser beam L1. The second opening 24 is formed in a shape similar to the irradiation shape of the second laser beam L2.
 第1開口23は、例えば、基板スキャン方向に延在するゲート電極3上に第1レーザ光L1を照射させるように、基板スキャン方向に第1レーザ光L1の照射回数分(図では10回分)設けられている。第1開口23は、例えば、基板スキャン方向と直行する方向に直線上にゲート電極3の間隔に合わせて複数(図では10個)設けられている。これは、被処理基板1上に格子状にアニール処理を行なうためであり、被処理基板1上のアニール処理を行ないたい位置により適宜変更してもよい。 The first opening 23 is, for example, the number of times the first laser beam L1 is irradiated in the substrate scan direction (10 times in the figure) so as to irradiate the gate electrode 3 extending in the substrate scan direction with the first laser beam L1. It is provided. For example, a plurality of first openings 23 (10 in the figure) are provided in a straight line in a direction orthogonal to the substrate scanning direction in accordance with the distance between the gate electrodes 3. This is because the annealing treatment is performed on the substrate 1 to be processed in a grid pattern, and it may be appropriately changed depending on the position on the substrate 1 to be processed where the annealing treatment is desired.
 第2開口24は、例えば、基板スキャン方向に延在するゲート電極3上に第2レーザ光L2を1回照射させるように1個設けられている。第2開口24は、例えば、基板スキャン方向と直行する方向にゲート電極3の間隔に合わせて複数(図では10個)設けられている。基板スキャン方向と直行する方向に隣接する第2開口24は、基板スキャン方向に距離Wだけ離れて設けられている。距離Wは、被処理基板1の搬送速度と、第2レーザ光L2の基板スキャン方向と直行する方向のスキャン速度によって決められる。第2レーザ光L2のスキャン方向は、図3の左から右への方向である。 One second opening 24 is provided, for example, so as to irradiate the second laser beam L2 once on the gate electrode 3 extending in the substrate scanning direction. A plurality of second openings 24 (10 in the figure) are provided, for example, in a direction orthogonal to the substrate scanning direction in accordance with the distance between the gate electrodes 3. The second opening 24 adjacent to the direction orthogonal to the substrate scanning direction is provided at a distance W in the substrate scanning direction. The distance W is determined by the transport speed of the substrate 1 to be processed and the scan speed in the direction orthogonal to the substrate scan direction of the second laser beam L2. The scanning direction of the second laser beam L2 is from the left to the right in FIG.
 すなわち、第2レーザ光L2が第2開口24から隣接する第2開口24の基板スキャン方向の位置に到達したときに、隣接する第2開口24が第2レーザ光L2の照射位置に来るように設定される。これにより、第2レーザ光L2がスキャン方向に1回スキャンすることで、基板スキャン方向と直行する方向に並んだ領域に第2レーザ光L2を照射することができる。 That is, when the second laser beam L2 reaches the position of the adjacent second aperture 24 in the substrate scanning direction from the second aperture 24, the adjacent second aperture 24 comes to the irradiation position of the second laser beam L2. Set. As a result, by scanning once in the scanning direction, the second laser beam L2 can irradiate the region aligned in the direction orthogonal to the substrate scanning direction with the second laser beam L2.
 マイクロレンズアレイ22は、第1開口23を通過する第1レーザ光L1をゲート電極3上に縮小投影する。マイクロレンズアレイ22は、第2開口24を通過する第2レーザ光L2をゲート電極3上に縮小投影する。 The microlens array 22 reduces and projects the first laser beam L1 passing through the first aperture 23 onto the gate electrode 3. The microlens array 22 reduces and projects the second laser beam L2 passing through the second aperture 24 onto the gate electrode 3.
 マイクロレンズアレイ22は、図2に示すように、第1開口23及び第2開口24の各開口の中心に光軸中心を合致させて複数の集光レンズとしてのマイクロレンズを配置している。各マイクロレンズの縮小倍率は、第1開口23及び第2開口24の像をゲート電極3上の非晶質シリコン薄膜4上に合焦させるように設定されている。 As shown in FIG. 2, the microlens array 22 has a plurality of microlenses as condensing lenses arranged so that the center of the optical axis is aligned with the center of each opening of the first opening 23 and the second opening 24. The reduction magnification of each microlens is set so that the images of the first aperture 23 and the second aperture 24 are focused on the amorphous silicon thin film 4 on the gate electrode 3.
 制御部14は、基台11に設けられた図示しない基板搬送手段と、パルスレーザ発生部12と、連続発振レーザ発生部13と、の制御を行う。具体的には、制御部14は、図示しない基板搬送手段を駆動制御して被処理基板1を基板スキャン方向へ向けて所定の速度で移動させるように設定されている。また、制御部14は、図示しない位置検出手段から被処理基板1におけるアニール処理を行なう改質予定領域の位置情報が入力されるように設定されている。 The control unit 14 controls a substrate transport means (not shown) provided on the base 11, a pulse laser generation unit 12, and a continuous oscillation laser generation unit 13. Specifically, the control unit 14 is set to drive and control a substrate transporting means (not shown) to move the substrate 1 to be processed in the substrate scanning direction at a predetermined speed. Further, the control unit 14 is set so that the position information of the region to be modified in the substrate 1 to be annealed is input from the position detecting means (not shown).
 また、制御部14は、パルスレーザ発生部12と、連続発振レーザ発生部13と、を駆動制御して、被処理基板1に対して第1照射と第2照射とを行わせるように設定されている。 Further, the control unit 14 is set so as to drive and control the pulse laser generation unit 12 and the continuous oscillation laser generation unit 13 to perform the first irradiation and the second irradiation on the substrate 1 to be processed. ing.
 第1照射に際して、制御部14は、パルスレーザ発生部12から第1レーザ光L1としてのパルスレーザ光を出射させる。 At the time of the first irradiation, the control unit 14 emits the pulse laser light as the first laser light L1 from the pulse laser generation unit 12.
 第2照射に際しては、制御部14は、連続発振レーザ発生部13から第2レーザ光L2としてのCWレーザ光を連続して出射させる。 At the time of the second irradiation, the control unit 14 continuously emits the CW laser light as the second laser light L2 from the continuously oscillating laser generation unit 13.
 制御部14は、改質予定領域の上記位置情報データに基づいて、改質予定領域が基台11に対して所定の位置に到達したときに、パルスレーザ発生部12へ駆動信号を出力するように設定されている。 The control unit 14 outputs a drive signal to the pulse laser generation unit 12 when the planned reforming region reaches a predetermined position with respect to the base 11 based on the above-mentioned position information data of the planned reforming region. Is set to.
 制御部14は、改質予定領域の上記位置情報データに基づいて、改質予定領域が基台11に対して所定の位置に到達したときに、連続発振レーザ発生部13へ駆動信号を出力するように設定されている。 The control unit 14 outputs a drive signal to the continuous oscillation laser generation unit 13 when the planned modification area reaches a predetermined position with respect to the base 11 based on the above-mentioned position information data of the planned modification area. Is set to.
(レーザアニール方法)
 本実施形態に係るレーザアニール装置10を用いたレーザアニール方法ついて説明する。
(Laser annealing method)
The laser annealing method using the laser annealing apparatus 10 according to the present embodiment will be described.
 制御部14は、基板搬送手段により基台11を移動させることにより、被処理基板1を基板スキャン方向に沿って所定のスキャン速度で走行させる。 The control unit 14 moves the base 11 by the substrate transport means to move the substrate 1 to be processed at a predetermined scan speed along the substrate scan direction.
 制御部14は、改質予定領域の位置情報に基づいて改質予定領域が所定の位置に到達したときに、パルスレーザ発生部12へ駆動信号を出力する。 The control unit 14 outputs a drive signal to the pulse laser generation unit 12 when the planned reforming region reaches a predetermined position based on the position information of the planned reforming region.
 制御部14は、基板スキャン方向の先頭の改質予定領域(図2において最も右に位置する改質予定領域)がマスクパターン21の基板スキャン方向の最上流の第1開口23(図3における最も上に位置する第1開口23)の下に到達したときにパルスレーザ発生部12へ駆動信号を出力し、その後、被処理基板1が基板スキャン方向に移動して、改質予定領域が基板スキャン方向に隣接する次の第1開口23の下に到達したときにパルスレーザ発生部12へ駆動信号を出力する。 In the control unit 14, the first modification area 23 (the most rightmost area in FIG. 2) in the substrate scan direction of the mask pattern 21 is the most upstream first opening 23 in the substrate scan direction. When it reaches below the first opening 23) located above, a drive signal is output to the pulsed laser generator 12, after which the substrate 1 to be processed moves in the substrate scan direction, and the area to be modified is the substrate scan. A drive signal is output to the pulsed laser generation unit 12 when it reaches below the next first opening 23 adjacent in the direction.
 このようにして、被処理基板1の改質予定領域には、基板スキャン方向に設けられた第1開口23の数分(図3のマスクパターン21では10回)パルスレーザ発生部12により第1レーザ光L1が照射され、改質予定領域の非晶質シリコン薄膜4が結晶化された領域A(図2を参照)となる。 In this way, in the region to be modified of the substrate 1 to be processed, the pulse laser generation unit 12 is used for the number of times of the first opening 23 provided in the substrate scan direction (10 times in the mask pattern 21 of FIG. 3). The region A (see FIG. 2) where the amorphous silicon thin film 4 in the region to be modified is crystallized by being irradiated with the laser beam L1.
 このように、第1レーザ光L1であるパルスレーザ光により非晶質シリコン薄膜4のアニール処理を行なった場合、第1レーザ光L1はパルスレーザ発生部12により均一化されて照射されるが、完全に均一化されることは難しく、数%のばらつきが発生する。このばらつきは、マイクロレンズアレイ22のマイクロレンズを透過した第1レーザ光L1も影響を受け、照射面でムラが発生することがある。 In this way, when the amorphous silicon thin film 4 is annealed by the pulsed laser beam which is the first laser beam L1, the first laser beam L1 is uniformly irradiated by the pulsed laser generating unit 12. It is difficult to make it completely uniform, and a variation of several percent occurs. This variation is also affected by the first laser beam L1 that has passed through the microlens of the microlens array 22, and unevenness may occur on the irradiation surface.
 このため、本実施例においては、第1レーザ光L1を10ショット照射して非晶質シリコン薄膜4にアニール処理を行なった後に、連続発振レーザ発生部13による第2レーザ光L2を照射して、再度アニール処理を第2レーザ光L2である連続発振レーザ光で行なって、第1レーザ光L1によりアニールされた結晶化シリコンの結晶ムラを照射面内で均一化する。 Therefore, in this embodiment, after 10 shots of the first laser beam L1 are irradiated to anneal the amorphous silicon thin film 4, the second laser beam L2 is irradiated by the continuously oscillating laser generator 13. , The annealing treatment is performed again with the continuously oscillating laser light which is the second laser light L2, and the crystal unevenness of the crystallized silicon annealed by the first laser light L1 is made uniform in the irradiated surface.
 制御部14は、第2レーザ光L2のスキャン方向の最上流に位置する第1レーザ光L1により結晶化された領域Aがマスクパターン21の第2レーザ光L2のスキャン方向の最上流の第2開口24(図3における最も左に位置する第2開口24)の下に到達したときに連続発振レーザ発生部13へ駆動信号を出力する。 In the control unit 14, the region A crystallized by the first laser beam L1 located at the most upstream of the second laser beam L2 in the scanning direction is the second most upstream of the second laser beam L2 of the mask pattern 21 in the scanning direction. When the light reaches below the opening 24 (the second opening 24 located on the leftmost side in FIG. 3), a drive signal is output to the continuously oscillating laser generation unit 13.
 連続発振レーザ発生部13から照射された第2レーザ光L2は、ポリゴンミラー17に照射され、Fθレンズ18を通してミラー19にスキャンされ、レーザビーム照射部20にスキャンされる。 The second laser beam L2 emitted from the continuously oscillating laser generation unit 13 is irradiated to the polygon mirror 17, scanned by the mirror 19 through the Fθ lens 18, and scanned by the laser beam irradiation unit 20.
 第2開口24は、基板スキャン速度と第2レーザ光L2のスキャン速度に基づいて、基板スキャン方向と直行する方向に隣接する第2開口24の距離Wが設定されていて、被処理基板1を基板スキャン方向に移動させながら第2レーザ光L2をスキャンさせることで、基板スキャン方向と直行する方向に隣接する結晶化された領域Aに順次第2レーザ光L2が照射され、アニール処理が行なわれる。すなわち、第2レーザ光L2がスキャン方向に1回スキャンすることで、基板スキャン方向と直行する方向に隣接する一列の領域Aに順次第2レーザ光L2が照射され、次の第2レーザ光L2のスキャンでは、基板スキャン方向の次の領域Aの列に第2レーザ光L2が照射される。 In the second opening 24, the distance W of the second opening 24 adjacent in the direction orthogonal to the substrate scanning direction is set based on the substrate scanning speed and the scanning speed of the second laser beam L2, and the substrate 1 to be processed is set. By scanning the second laser beam L2 while moving in the substrate scanning direction, the crystallized region A adjacent to the direction orthogonal to the substrate scanning direction is sequentially irradiated with the second laser beam L2, and annealing treatment is performed. .. That is, when the second laser beam L2 scans once in the scanning direction, the second laser beam L2 is sequentially irradiated to the region A in a row adjacent to the direction perpendicular to the substrate scanning direction, and the next second laser beam L2 In this scan, the second laser beam L2 is applied to the row of the next region A in the substrate scanning direction.
 このように、本実施形態においては、基板上に被着された非晶質シリコン薄膜4の所定の領域に第1レーザ光が照射されてレーザアニールされた後、その領域に連続発振レーザ光が照射されてレーザアニールされる。このため、第1レーザ光によるレーザアニールにより基板に含まれる複数の薄膜トランジスタの特性にばらつきが生じてしまっても、連続発振レーザ光によるレーザアニールにより複数の薄膜トランジスタの特性のばらつきを抑制することができる。 As described above, in the present embodiment, after the first laser beam is irradiated to the predetermined region of the amorphous silicon thin film 4 adhered on the substrate and the laser is annealed, the continuously oscillating laser beam is emitted to the region. Irradiated and laser annealed. Therefore, even if the characteristics of the plurality of thin film transistors contained in the substrate are varied due to the laser annealing by the first laser beam, the variation in the characteristics of the plurality of thin film transistors can be suppressed by the laser annealing by the continuously oscillating laser light. ..
 なお、本実施形態においては、レーザビーム照射部20を第1レーザ光L1の照射領域と第2レーザ光L2の照射領域とが一体となる構成としたが、第1レーザ光L1の照射領域と第2レーザ光L2の照射領域とを別体に構成してもよい。また、第2レーザ光L2の照射領域では、マイクロレンズアレイ22を省略した構成としてもよい。 In the present embodiment, the laser beam irradiation unit 20 is configured such that the irradiation region of the first laser light L1 and the irradiation region of the second laser light L2 are integrated, but the irradiation region of the first laser light L1 The irradiation region of the second laser beam L2 may be formed separately. Further, in the irradiation region of the second laser beam L2, the microlens array 22 may be omitted.
 また、本実施形態においては、第1レーザ光L1による第1照射に連続して第2レーザ光L2による第2照射を行なう場合を示したが、第1照射と第2照射を別に行なってもよい。この場合、第1照射を行なう装置と、第2照射を行う装置を別の装置にしてもよい。 Further, in the present embodiment, the case where the second irradiation by the second laser beam L2 is continuously performed after the first irradiation by the first laser beam L1 is shown, but the first irradiation and the second irradiation may be performed separately. Good. In this case, the device that performs the first irradiation and the device that performs the second irradiation may be different devices.
 また、本実施形態においては、マスクパターン21に形成した第1開口23及び第2開口24は、長方形としたが、第1レーザ光L1または第2レーザ光L2の照射領域に応じて変更してもかまわない。 Further, in the present embodiment, the first opening 23 and the second opening 24 formed in the mask pattern 21 are rectangular, but they are changed according to the irradiation region of the first laser light L1 or the second laser light L2. It doesn't matter.
 本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。 Although the embodiments of the present invention have been disclosed, it is clear that some skilled in the art can make changes without departing from the scope of the present invention. All such modifications and equivalents are intended to be included in the following claims.
 1 被処理基板
 4 非晶質シリコン薄膜
 10 レーザアニール装置
 12 パルスレーザ発生部
 13 連続発振レーザ発生部
 14 制御部
 20 レーザビーム照射部
 21 マスクパターン
 22 マイクロレンズアレイ
 23 第1開口
 24 第2開口 
1 Substrate to be processed 4 Amorphous silicon thin film 10 Laser annealing device 12 Pulsed laser generator 13 Continuous oscillation laser generator 14 Control unit 20 Laser beam irradiation unit 21 Mask pattern 22 Microlens array 23 1st aperture 24 2nd aperture

Claims (5)

  1.  基板上に被着された非晶質シリコン薄膜の所定の領域をレーザアニールして結晶化シリコンとするレーザアニール装置であって、
     前記所定の領域に第1レーザ光を照射してレーザアニールした後、前記所定の領域に連続発振レーザ光である第2レーザ光を照射してレーザアニールするレーザアニール装置。
    A laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to obtain crystallized silicon.
    A laser annealing apparatus that irradiates the predetermined region with a first laser beam to perform laser annealing, and then irradiates the predetermined region with a second laser beam that is a continuously oscillating laser beam to perform laser annealing.
  2.  前記第1レーザ光は、パルスレーザ光である請求項1に記載のレーザアニール装置。 The laser annealing device according to claim 1, wherein the first laser beam is a pulsed laser beam.
  3.  前記第1レーザ光の照射形状を前記所定の領域の形状に合わせて整形する第1開口と、前記第2レーザ光の照射形状を前記所定の領域の形状に合わせて整形する第2開口と、を有するマスクパターンと、
     前記第1開口を通過した前記第1レーザ光または前記第2開口を通過した前記第2レーザ光を前記非晶質シリコン薄膜上に縮小して合焦させる集光レンズと、を備える請求項1または請求項2に記載のレーザアニール装置。
    A first opening that shapes the irradiation shape of the first laser beam to match the shape of the predetermined region, and a second opening that shapes the irradiation shape of the second laser beam to match the shape of the predetermined region. With a mask pattern that has
    1. Claim 1 comprising a condensing lens that reduces and focuses the first laser beam that has passed through the first aperture or the second laser beam that has passed through the second aperture on the amorphous silicon thin film. Alternatively, the laser annealing apparatus according to claim 2.
  4.  基板上に被着された非晶質シリコン薄膜のレーザアニールされた所定の領域を、レーザアニールして結晶化シリコンとするレーザアニール装置であって、
     連続発振レーザ光を前記所定の領域に照射してレーザアニールするレーザアニール装置。
    A laser annealing device that laser-anneals a predetermined region of an amorphous silicon thin film adhered on a substrate to obtain crystallized silicon.
    A laser annealing device that irradiates the predetermined region with continuously oscillating laser light to perform laser annealing.
  5.  基板上に被着された非晶質シリコン薄膜の所定の領域をレーザアニールして結晶化シリコンとするレーザアニール方法であって、
     前記所定の領域に第1レーザ光を照射してレーザアニールする工程と、
     前記所定の領域に連続発振レーザ光である第2レーザ光を照射してレーザアニールする工程と、を有するレーザアニール方法。
     
    This is a laser annealing method in which a predetermined region of an amorphous silicon thin film adhered on a substrate is laser-annealed to obtain crystallized silicon.
    A step of irradiating the predetermined region with a first laser beam and performing laser annealing,
    A laser annealing method comprising a step of irradiating the predetermined region with a second laser beam which is a continuously oscillating laser beam to perform laser annealing.
PCT/JP2020/007185 2019-03-08 2020-02-21 Laser annealing device WO2020184153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-042257 2019-03-08
JP2019042257A JP2020145363A (en) 2019-03-08 2019-03-08 Laser anneal apparatus

Publications (1)

Publication Number Publication Date
WO2020184153A1 true WO2020184153A1 (en) 2020-09-17

Family

ID=72354550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007185 WO2020184153A1 (en) 2019-03-08 2020-02-21 Laser annealing device

Country Status (3)

Country Link
JP (1) JP2020145363A (en)
TW (1) TW202037440A (en)
WO (1) WO2020184153A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151904A (en) * 2001-11-14 2003-05-23 Fujitsu Ltd Crystallizing method of semiconductor thin film, the semiconductor thin film, and thin-film semiconductor device
JP2006156676A (en) * 2004-11-29 2006-06-15 Sumitomo Heavy Ind Ltd Laser anneal method
WO2018158648A1 (en) * 2017-03-01 2018-09-07 株式会社半導体エネルギー研究所 Display code generation method, display code detection method, authentication system, and communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151904A (en) * 2001-11-14 2003-05-23 Fujitsu Ltd Crystallizing method of semiconductor thin film, the semiconductor thin film, and thin-film semiconductor device
JP2006156676A (en) * 2004-11-29 2006-06-15 Sumitomo Heavy Ind Ltd Laser anneal method
WO2018158648A1 (en) * 2017-03-01 2018-09-07 株式会社半導体エネルギー研究所 Display code generation method, display code detection method, authentication system, and communication system

Also Published As

Publication number Publication date
JP2020145363A (en) 2020-09-10
TW202037440A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
US10644133B2 (en) Laser annealing method, laser annealing apparatus, and manufacturing process for thin film transistor
KR101268107B1 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
US10818492B2 (en) Method for manufacturing thin film transistor and mask for use in the manufacturing method
US20200176284A1 (en) Laser irradiation device, method of manufacturing thin film transistor, and projection mask
WO2012157410A1 (en) Laser treatment device
US20190287790A1 (en) Laser irradiation apparatus and method of manufacturing thin film transistor
WO2020184153A1 (en) Laser annealing device
WO2016143462A1 (en) Thin film transistor substrate, display panel, and laser annealing method
JP6761479B2 (en) Laser irradiation device, thin film transistor and thin film transistor manufacturing method
US20200266062A1 (en) Laser irradiation device and laser irradiation method
WO2020158464A1 (en) Laser annealing method and laser annealing apparatus
CN213366530U (en) Laser annealing device
WO2020090396A1 (en) Laser annealing device and laser annealing method
JP2022131271A (en) Laser annealing apparatus and laser annealing method
CN111033693A (en) Laser irradiation device, method and program for manufacturing thin film transistor, and projection mask
KR20050121548A (en) Method for crystallizing silicon and method of manufacturing tft substrate using the same
JP2008288514A (en) Method of crystallizing semiconductor thin film, method of manufacturing display device, thin-film transistor substrate, and display device provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769780

Country of ref document: EP

Kind code of ref document: A1