WO2020184083A1 - Polarizing film, polarizing plate, and production method for said polarizing film - Google Patents
Polarizing film, polarizing plate, and production method for said polarizing film Download PDFInfo
- Publication number
- WO2020184083A1 WO2020184083A1 PCT/JP2020/006246 JP2020006246W WO2020184083A1 WO 2020184083 A1 WO2020184083 A1 WO 2020184083A1 JP 2020006246 W JP2020006246 W JP 2020006246W WO 2020184083 A1 WO2020184083 A1 WO 2020184083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing film
- stretching
- pva
- based resin
- treatment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to a polarizing film, a polarizing plate, and a method for producing the polarizing film.
- a liquid crystal display device which is a typical image display device, has polarizing films arranged on both sides of the liquid crystal cell due to the image forming method.
- a method for producing a polarizing film for example, a method in which a laminate having a resin base material and a polyvinyl alcohol (PVA) -based resin layer is stretched and then dyed to obtain a polarizing film on the resin base material is used. It has been proposed (for example, Patent Document 1). According to such a method, a thin polarizing film can be obtained, which is attracting attention as it can contribute to the thinning of image display devices in recent years. However, the thin polarizing film has a problem that the shrinkage is large and cracks are likely to occur in a high temperature environment.
- the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to obtain a polarizing film, a polarizing plate, and a method for producing such a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. To provide.
- the polarizing film of the present invention is composed of a polyvinyl alcohol-based resin film containing iodine, and contains 0.1% by weight to 1.0% by weight of alcohol having a boiling point of 100 ° C. or higher.
- the alcohol having a boiling point of 100 ° C. or higher is at least one selected from the group consisting of glycerin and ethylene glycol.
- the polarizing film has a thickness of 8 ⁇ m or less.
- a polarizing plate is provided. This polarizing plate has the above-mentioned polarizing film and a protective layer arranged on at least one side of the polarizing film.
- a method for producing the above-mentioned polarizing film comprising immersing the polarizing film in a treatment solution containing an alcohol having a boiling point of 100 ° C. or higher.
- the production method further comprises introducing the alcohol having a boiling point of 100 ° C. or higher into the polarizing film and then heating the laminate.
- the stretching comprises stretching in water.
- the present invention by introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment.
- the polarizing film according to the embodiment of the present invention is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine, and contains 0.1 alcohol having a boiling point of 100 ° C. or higher (hereinafter, may be referred to as high boiling point alcohol). Contains% to 1.0% by weight.
- PVA polyvinyl alcohol
- Contains% to 1.0% by weight When the polarizing film contains such a high boiling point alcohol in a predetermined amount, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment.
- Such a high boiling point alcohol can be typically introduced into the polarizing film between the underwater stretching treatment and the drying shrinkage treatment, as will be described later in Section C regarding the production method.
- the high boiling point alcohol functions as a plasticizer, the flexibility of the finally obtained polarizing film is improved, and shrinkage can be suppressed in a high temperature environment. It is presumed that cracks can also be suppressed.
- the content of the high boiling point alcohol in the polarizing film is preferably 0.1% by weight to 0.9% by weight, more preferably 0.1% by weight to 0.8% by weight, and further preferably 0. It is 2% by weight to 0.7% by weight, and particularly preferably 0.2% by weight to 0.6% by weight. If the content is too low, the effect of high boiling alcohol may not be obtained. If the content is too high, the degree of polarization may decrease significantly in a high temperature and high humidity environment.
- the boiling point of the high boiling point alcohol is 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 250 ° C. or higher.
- the upper limit of the boiling point can be, for example, 310 ° C.
- high boiling point alcohols include higher alcohols, alcohols having a ring structure (for example, aromatic alcohols and alicyclic alcohols), and polyhydric alcohols. Specific examples include glycerin, ethylene glycol, butanol, phenol, and pentanol.
- the high boiling point alcohol may be used alone or in combination of two or more. Preferred are glycerin and ethylene glycol. These can impart good flexibility to the resulting polarizing film and, as a result, suppress shrinkage and cracking in a high temperature environment.
- the thickness of the polarizing film is, for example, 8 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 3 ⁇ m or less.
- the lower limit of the thickness of the polarizing film can be 1 ⁇ m in one embodiment and 2 ⁇ m in another embodiment.
- the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
- the simple substance transmittance of the polarizing film is preferably 42.0% or more, more preferably 42.5% or more, and further preferably 43.0% or more. On the other hand, the simple substance transmittance is preferably 47.0% or less, and more preferably 46.0% or less.
- the degree of polarization of the polarizing film is preferably 99.90% or more, more preferably 99.95% or more. On the other hand, the degree of polarization is preferably 99.998% or less.
- the simple substance transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
- the single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53.
- the degree of polarization is typically calculated by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
- Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 x 100
- the polarizing film has a shrinkage rate in the absorption axis direction after heating at a temperature of 85 ° C. for 120 hours, preferably 0.20% or less, more preferably 0.18% or less, still more preferably 0.16% or less. It is particularly preferably 0.14% or less. According to the embodiment of the present invention, it is possible to obtain a polarizing film having a small shrinkage rate in such a high temperature environment.
- the shrinkage rate is a shrinkage rate for a sample having a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction.
- the polarizing film may be produced by using a single resin film, or may be produced by using a laminate of two or more layers.
- Specific examples of the polarizing film obtained by using the laminated body include a polarizing film obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material.
- the polarizing film obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
- a PVA-based resin layer is formed on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to form a PVA-based resin layer as a polarizing film. obtain.
- a high boiling point alcohol is introduced into the polarizing film.
- a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is formed on one side of the resin base material.
- Stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
- the laminate is subjected to a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction.
- the production method of the present embodiment includes subjecting the laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
- the crystallinity of PVA can be enhanced, and high optical characteristics can be achieved.
- by increasing the orientation of PVA in advance it is possible to prevent problems such as deterioration of PVA orientation and dissolution when immersed in water in a subsequent dyeing step or stretching step, resulting in high optical characteristics. Will be possible to achieve.
- the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
- the obtained laminate of the resin base material / polarizing film may be used as it is (that is, the resin base material may be used as the protective layer of the polarizing film), or the resin base material is peeled off from the laminate of the resin base material / polarizing film. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing the polarizing film will be described later in Section C.
- FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
- the polarizing plate 100 has a polarizing film 10, a first protective layer 20 arranged on one side of the polarizing film 10, and a second protective layer 30 arranged on the other side of the polarizing film 10.
- the polarizing film 10 is the polarizing film of the present invention described in the above section A.
- One of the first protective layer 20 and the second protective layer 30 may be omitted.
- one of the first protective layer and the second protective layer may be a resin base material used for producing the above-mentioned polarizing film.
- the first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizing film.
- the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like.
- TAC triacetyl cellulose
- polyester-based polyvinyl alcohol-based
- polycarbonate-based polyamide-based
- polyimide-based polyimide-based
- polyethersulfone-based polysulfone-based
- thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
- glassy polymers such as siloxane-based polymers can also be mentioned.
- the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
- a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
- the polymer film can be, for example, an extruded product of the above resin composition.
- the thickness of the protective layer (outer protective layer) arranged on the side opposite to the display panel is typically 300 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 100 ⁇ m or less. It is 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m.
- the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
- the thickness of the protective layer (inner protective layer) arranged on the display panel side when the polarizing plate 100 is applied to the image display device is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and further preferably 10 ⁇ m to 60 ⁇ m. is there.
- the inner protective layer is a retardation layer with any suitable retardation value.
- the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm.
- nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
- a PVA-based resin solution is applied and dried on one side of a long thermoplastic resin base material to form a PVA-based resin layer. Includes: stretching and dyeing the laminate to form a PVA-based resin layer as a polarizing film; and introducing high-boiling alcohol into the polarizing film. By introducing a high boiling point alcohol, it is possible to realize a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment.
- the PVA-based resin solution further comprises a halide.
- the above-mentioned production method comprises an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Is included in this order.
- the introduction of the high boiling point alcohol can preferably be carried out between the underwater stretching treatment and the drying shrinkage treatment.
- the content of the halide in the PVA-based resin solution is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- the drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C.
- the shrinkage ratio in the width direction of the laminated body by the drying shrinkage treatment is preferably 2% or more.
- the polarizing film described in the above item A can be obtained.
- a polarizing film having excellent optical properties typically, single transmittance and unit absorbance
- thermoplastic resin base material a thermoplastic resin base material and a PVA-based resin layer
- any appropriate method can be adopted.
- a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
- the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- any appropriate method can be adopted as the coating method of the coating liquid.
- a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned.
- the coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
- the thickness of the PVA-based resin layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
- the thermoplastic resin base material Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
- thermoplastic resin base material any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
- the coating liquid contains a halide and a PVA-based resin as described above.
- the coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent.
- the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferred.
- the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent.
- the content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- Additives may be added to the coating liquid.
- the additive include a plasticizer, a surfactant and the like.
- the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
- the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
- any suitable resin can be used as the PVA-based resin.
- polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned.
- Polyvinyl alcohol is obtained by saponification of polyvinyl acetate.
- the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
- the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. ..
- the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
- the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
- the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
- the average degree of polymerization can be determined according to JIS K 6726-1994.
- any suitable halide can be adopted.
- iodide and sodium chloride Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
- the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing film may become cloudy.
- the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased.
- the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease.
- the laminate of the thermoplastic resin and the PVA-based resin layer is stretched in boric acid water, when the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin, The tendency of the degree of orientation to decrease is remarkable.
- stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
- stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
- a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in air before being stretched in boric acid water.
- Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
- the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
- thermoplastic resin base material can be stretched while suppressing the crystallization of the thermoplastic resin base material, and the thermoplastic resin base material is excessively crystallized in the subsequent drawing in boric acid in water. This solves the problem that the stretchability is lowered, and the laminated body can be stretched at a higher magnification.
- the PVA-based resin when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. Become.
- the stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Good, but in order to obtain high optical properties, free end stretching can be positively adopted.
- the aerial stretching treatment includes a heating roll stretching step of stretching the laminated body in the longitudinal direction due to a difference in peripheral speed between the heating rolls.
- the aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step.
- the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first.
- the zone stretching step may be omitted.
- the zone stretching step and the heating roll stretching step are performed in this order.
- the film in the tenter stretching machine, is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio).
- the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily. Preferably, it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction.
- the contraction rate in the width direction (1 / stretching ratio) 1/2 .
- the aerial auxiliary extension may be performed in one step or in multiple steps.
- the draw ratio is the product of the draw ratios of each stage.
- the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
- the draw ratio in the aerial auxiliary stretching is preferably 2.0 to 3.5 times.
- the maximum draw ratio when the aerial auxiliary stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times the original length of the laminated body. That is all.
- the "maximum draw ratio" means the draw ratio immediately before the laminate breaks, and separately confirms the draw ratio at which the laminate breaks, and means a value 0.2 lower than that value.
- the stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like.
- the stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher.
- the upper limit of the stretching temperature is preferably 170 ° C.
- insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment and the dyeing treatment.
- the insolubilization treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution.
- the dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine).
- a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
- the cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the cross-linking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (above).
- the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical characteristics can be produced.
- any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected.
- the stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminated body described later is the product of the draw ratios of each stage.
- the underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching).
- a boric acid aqueous solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer.
- boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding.
- the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing film having excellent optical characteristics can be produced.
- the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
- the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is.
- an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
- iodide is added to the above stretching bath (boric acid aqueous solution).
- iodide elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
- Specific examples of iodide are as described above.
- the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
- the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C. to 85 ° C., more preferably 60 ° C. to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution.
- the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be stretched well even when the plasticization of the thermoplastic resin base material by water is taken into consideration.
- the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
- the stretching ratio by stretching in water is preferably 1.5 times or more, more preferably 3.0 times or more.
- the total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body.
- high boiling point alcohol is introduced after the stretching treatment in water (and typically before the drying shrinkage treatment described later).
- the introduction of high boiling alcohol can be done in any suitable manner.
- the laminate may be immersed in a treatment liquid containing a high boiling point alcohol, or the treatment liquid containing a high boiling point alcohol may be applied to the surface of the polarizing film of the laminate.
- the introduction of high boiling alcohol can be done by immersion. Immersion can be done in any suitable manner.
- a high boiling point alcohol may be added to the washing bath for the washing treatment to serve as a bath for the treatment liquid, or a bath for the treatment liquid may be used instead of the washing bath.
- a bath for the treatment liquid may be provided separately from the washing bath. May be good.
- high boiling point alcohol can be added to the washing bath (washing liquid) of the washing treatment.
- the high boiling point alcohol concentration of the treatment liquid (cleaning liquid) is preferably 0.03% by weight to 1.0% by weight.
- Dry shrinkage treatment can preferably be carried out after the introduction of the high boiling point alcohol.
- the high boiling point alcohol functions as a plasticizer during the drying shrinkage treatment, and the flexibility of the finally obtained polarizing film can be improved.
- the drying shrinkage treatment may be performed by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used.
- heating roll By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizing film having an excellent appearance.
- the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased.
- the rigidity of the thermoplastic resin base material is increased so that it can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
- the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
- the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
- the shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
- FIG. 2 is a schematic view showing an example of the drying shrinkage treatment.
- the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
- the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material.
- one surface of the laminate 200 (for example, thermoplastic) is arranged.
- the transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
- the drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
- the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
- the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
- the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
- the number of transport rolls is usually 2 to 40, preferably 4 to 30.
- the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
- the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
- a heating furnace provided with a blowing means.
- the temperature of hot air drying is preferably 30 ° C to 100 ° C.
- the hot air drying time is preferably 1 second to 300 seconds.
- the wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
- thermoplastic resin base material / polarizing film obtained as described above may be used as it is as a polarizing plate (the thermoplastic resin base material may be used as a protective layer); polarized light of the laminate.
- the thermoplastic resin base material may be peeled off and used as a polarizing plate having a protective layer / polarizing film configuration; another protection is provided on the peeled surface of the thermoplastic resin base material.
- the layers may be bonded together and used as a polarizing plate having a protective layer / polarizing film / protective layer configuration.
- Thickness Measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
- the single-unit transmittance Ts measured using an ultraviolet-visible spectrophotometer is the single-unit transmittance of the polarizing film. The transmittance was used.
- ⁇ Shrinkage rate is smaller than that of Comparative Example 1 (absolute value in the negative direction is smaller)
- ⁇ The shrinkage rate is the same as that of Comparative Example 1.
- ⁇ The shrinkage rate is larger than that of Comparative Example 1 (the absolute value in the negative direction is larger).
- an acrylic polymer solution (40% by mass).
- the acrylic polymer had a weight average molecular weight of 570,000 and a glass transition temperature (Tg) of ⁇ 68 ° C.
- the acrylic polymer solution (40% by mass) is diluted with ethyl acetate to 20% by mass, and an isocyanurate form of hexamethylene diisocyanate (coronate manufactured by Nippon Polyurethane Industry Co., Ltd.) is added to 500 parts by mass (solid content 100 parts by mass) of this solution.
- HX C / HX 2 parts by mass (solid content 2 parts by mass), dibutyltin dilaurate (1 mass% ethyl acetate solution) 2 parts by mass (solid content 0.02 part by mass) as a cross-linking catalyst, and mix and stir. This was performed to prepare an acrylic pressure-sensitive adhesive solution.
- the acrylic pressure-sensitive adhesive solution is applied to a transparent polyethylene terephthalate (PET) film (polyester film) having a thickness of 38 ⁇ m and heated at 130 ° C. for 1 minute to form a pressure-sensitive adhesive layer having a thickness of 15 ⁇ m to protect the surface.
- PET polyethylene terephthalate
- the polarizing plate to which the above surface protective film was attached was attached onto a glass plate via an adhesive to prepare a test sample.
- a load of 200 g is applied to the central portion of this test sample (surface protective film side) by a guitar pick (manufactured by HISTORY, model number "HP2H (HARD)") as shown in FIG. 4, and is orthogonal to the absorption axis of the polarizer.
- a load of 50 reciprocations was repeated at a distance of 100 mm in the direction in which the load was applied. The above load was applied at one place. The load was applied at high speed (5 m / min) and low speed (1 m / min), respectively.
- the test sample was left in an environment of 80 ° C.
- thermoplastic resin base material an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used.
- One side of the resin base material was corona-treated.
- a PVA aqueous solution (coating liquid).
- the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
- the obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
- a cycloolefin-based film (manufactured by ZEON, product name "G-Film") as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 ⁇ m), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure. The concentration of glycerin in the polarizing film of the obtained polarizing plate was 0.30% by weight.
- Table 1 shows the single transmittance of the obtained polarizing plate (substantially, a polarizing film). Furthermore, the evaluation results of (4) and (5) above are also shown in Table 1.
- Example 2 A polarizing plate was produced in the same manner as in Example 1 except that the glycerin concentration in the treatment bath was 0.68% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
- Example 3 A polarizing plate (protective film / polarizing film) was produced in the same manner as in Example 1. This polarizing plate was cut into a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction, and the cut pieces were used as test samples as they were (that is, without being attached to a glass plate via an adhesive). This test sample was measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.) at four points not including the film edge as shown in FIG. 3 (b), and the dimensions were accurately measured. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and the dimensions were measured again accurately.
- a heating oven 85 ° C.
- the shrinkage rate in the absorption axis direction was calculated from the initial length and evaluated as follows with reference to Comparative Example 2 (described later). The results are shown in Table 1. ⁇ : Shrinkage rate is smaller than that of Comparative Example 2 (absolute value in the negative direction is smaller) ⁇ : The shrinkage rate is the same as that of Comparative Example 2. ⁇ : The shrinkage rate is larger than that of Comparative Example 2 (the absolute value in the negative direction is larger).
- Example 4 A polarizing plate was produced in the same manner as in Example 2. The obtained polarizing plate was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
- Example 5 A laminate of the resin base material / PVA-based resin layer was prepared in the same manner as in Example 1, and the laminate was subjected to an aerial auxiliary stretching treatment in the same manner as in Example 1. Next, the laminate was cut into an auxiliary stretching axis direction of 15 cm ⁇ 10 cm, and the short side of the sample was fixed with a dedicated stretching jig, and the mixture was placed in an insolubilizing bath at a liquid temperature of 30 ° C. (boric acid was added to 100 parts by weight of water). It was immersed in (an aqueous solution of boric acid obtained by blending 3 parts by weight) for 30 seconds (insolubilization treatment).
- the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 42.0% ⁇ 0.2% (staining treatment). Next, it was immersed in a cross-linked bath at a liquid temperature of 30 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
- the total draw ratio is 5 in the longitudinal direction (longitudinal direction).
- the uniaxial stretching was performed so as to be 5.5 times (underwater stretching treatment).
- the laminate is immersed in a treatment bath at a liquid temperature of 20 ° C. (an aqueous solution of 3 wt% potassium iodide and 1 wt% ethylene glycol) for 3 seconds to wash the laminate and ethylene in a PVA-based resin layer (polarizing film).
- Glycol was introduced (cleaning treatment and introduction of ethylene glycol).
- a polarizing film having a thickness of 5.0 ⁇ m was formed on the resin substrate.
- a cycloolefin-based film manufactured by ZEON, product name "G-Film" as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 ⁇ m), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure.
- a test sample having a size of 4 cm in the absorption axis direction and 4 cm in the transmission axis direction was cut out from the obtained polarizing plate.
- This test sample is attached to a glass plate via an adhesive, and four points not including the film edge as shown in FIG. 3 (b) are measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.). It was long and the dimensions were measured accurately. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and after measuring the dimensions accurately again, the shrinkage rate in the absorption axis direction was calculated from the initial length, and the following was performed based on Comparative Example 3 (described later). I evaluated it in this way.
- Example 6 A polarizing plate was produced in the same manner as in Example 5 except that the ethylene glycol concentration in the treatment bath was 3% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
- Example 1 A polarizing plate was prepared in the same manner as in Example 1 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
- Example 2 A polarizing plate was prepared in the same manner as in Example 3 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
- Example 3 A polarizing plate was prepared in the same manner as in Example 5 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
- the polarizing plate (polarizing film) of the embodiment of the present invention contains a predetermined amount of high boiling point alcohol, so that shrinkage in a high temperature environment is suppressed. Further, the polarizing plates (polarizing films) of Examples 1 and 2 have significantly suppressed cracks as compared with Comparative Example 1.
- the polarizing film and the polarizing plate of the present invention are suitably used for a liquid crystal display device.
- Polarizing film 10 Polarizing film 20 First protective layer 30 Second protective layer 100 Polarizing plate
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
Abstract
Provided is a polarizing film in which shrinking and cracking in a high-temperature environment are suppressed. A polarizing film according to the present invention is formed from a polyvinyl-alcohol-based resin film containing iodine, and contains 0.1-1.0 wt% of an alcohol having a boiling point of 100°C or higher. In one embodiment, the alcohol having a boiling point of 100°C or higher is glycerin and/or ethylene glycol. A polarizing plate according to the present invention has said polarizing film and a protective layer that is disposed at least on one side of the polarizing film.
Description
本発明は、偏光膜、偏光板、および該偏光膜の製造方法に関する。
The present invention relates to a polarizing film, a polarizing plate, and a method for producing the polarizing film.
代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光膜が配置されている。偏光膜の製造方法としては、例えば、樹脂基材とポリビニルアルコール(PVA)系樹脂層とを有する積層体を延伸し、次に染色処理を施して、樹脂基材上に偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、近年の画像表示装置の薄型化に寄与し得るとして注目されている。しかし、薄型偏光膜においては、高温環境下において収縮が大きく、および、クラックが発生しやすいという問題がある。
A liquid crystal display device, which is a typical image display device, has polarizing films arranged on both sides of the liquid crystal cell due to the image forming method. As a method for producing a polarizing film, for example, a method in which a laminate having a resin base material and a polyvinyl alcohol (PVA) -based resin layer is stretched and then dyed to obtain a polarizing film on the resin base material is used. It has been proposed (for example, Patent Document 1). According to such a method, a thin polarizing film can be obtained, which is attracting attention as it can contribute to the thinning of image display devices in recent years. However, the thin polarizing film has a problem that the shrinkage is large and cracks are likely to occur in a high temperature environment.
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高温環境下において収縮およびクラックが抑制された偏光膜、偏光板、およびそのような偏光膜の製造方法を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to obtain a polarizing film, a polarizing plate, and a method for producing such a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. To provide.
本発明の偏光膜は、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、沸点が100℃以上のアルコールを0.1重量%~1.0重量%含有する。
1つの実施形態においては、上記沸点が100℃以上のアルコールが、グリセリンおよびエチレングリコールからなる群から選択される少なくとも1つである。
1つの実施形態においては、上記偏光膜は、厚みが8μm以下である。
本発明の別の局面によれば、偏光板が提供される。この偏光板は、上記の偏光膜と、該偏光膜の少なくとも一方の側に配置された保護層とを有する。
本発明のさらに別の局面によれば、上記偏光膜の製造方法が提供される。この方法は、長尺状の熱可塑性樹脂基材の片側にポリビニルアルコール系樹脂層を形成して積層体とすること;該積層体を延伸および染色して、該ポリビニルアルコール系樹脂層を偏光膜とすること;および、該偏光膜に、沸点が100℃以上のアルコールを導入すること;を含む。
1つの実施形態においては、上記製造方法は、上記偏光膜を上記沸点が100℃以上のアルコールを含む処理液に浸漬することを含む。
1つの実施形態においては、上記製造方法は、上記偏光膜に上記沸点が100℃以上のアルコールを導入した後、上記積層体を加熱することをさらに含む。
1つの実施形態においては、上記延伸は水中延伸を含む。 The polarizing film of the present invention is composed of a polyvinyl alcohol-based resin film containing iodine, and contains 0.1% by weight to 1.0% by weight of alcohol having a boiling point of 100 ° C. or higher.
In one embodiment, the alcohol having a boiling point of 100 ° C. or higher is at least one selected from the group consisting of glycerin and ethylene glycol.
In one embodiment, the polarizing film has a thickness of 8 μm or less.
According to another aspect of the present invention, a polarizing plate is provided. This polarizing plate has the above-mentioned polarizing film and a protective layer arranged on at least one side of the polarizing film.
According to yet another aspect of the present invention, there is provided a method for producing the above-mentioned polarizing film. In this method, a polyvinyl alcohol-based resin layer is formed on one side of a long thermoplastic resin base material to form a laminate; the laminate is stretched and dyed, and the polyvinyl alcohol-based resin layer is made into a polarizing film. And introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film;
In one embodiment, the production method comprises immersing the polarizing film in a treatment solution containing an alcohol having a boiling point of 100 ° C. or higher.
In one embodiment, the production method further comprises introducing the alcohol having a boiling point of 100 ° C. or higher into the polarizing film and then heating the laminate.
In one embodiment, the stretching comprises stretching in water.
1つの実施形態においては、上記沸点が100℃以上のアルコールが、グリセリンおよびエチレングリコールからなる群から選択される少なくとも1つである。
1つの実施形態においては、上記偏光膜は、厚みが8μm以下である。
本発明の別の局面によれば、偏光板が提供される。この偏光板は、上記の偏光膜と、該偏光膜の少なくとも一方の側に配置された保護層とを有する。
本発明のさらに別の局面によれば、上記偏光膜の製造方法が提供される。この方法は、長尺状の熱可塑性樹脂基材の片側にポリビニルアルコール系樹脂層を形成して積層体とすること;該積層体を延伸および染色して、該ポリビニルアルコール系樹脂層を偏光膜とすること;および、該偏光膜に、沸点が100℃以上のアルコールを導入すること;を含む。
1つの実施形態においては、上記製造方法は、上記偏光膜を上記沸点が100℃以上のアルコールを含む処理液に浸漬することを含む。
1つの実施形態においては、上記製造方法は、上記偏光膜に上記沸点が100℃以上のアルコールを導入した後、上記積層体を加熱することをさらに含む。
1つの実施形態においては、上記延伸は水中延伸を含む。 The polarizing film of the present invention is composed of a polyvinyl alcohol-based resin film containing iodine, and contains 0.1% by weight to 1.0% by weight of alcohol having a boiling point of 100 ° C. or higher.
In one embodiment, the alcohol having a boiling point of 100 ° C. or higher is at least one selected from the group consisting of glycerin and ethylene glycol.
In one embodiment, the polarizing film has a thickness of 8 μm or less.
According to another aspect of the present invention, a polarizing plate is provided. This polarizing plate has the above-mentioned polarizing film and a protective layer arranged on at least one side of the polarizing film.
According to yet another aspect of the present invention, there is provided a method for producing the above-mentioned polarizing film. In this method, a polyvinyl alcohol-based resin layer is formed on one side of a long thermoplastic resin base material to form a laminate; the laminate is stretched and dyed, and the polyvinyl alcohol-based resin layer is made into a polarizing film. And introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film;
In one embodiment, the production method comprises immersing the polarizing film in a treatment solution containing an alcohol having a boiling point of 100 ° C. or higher.
In one embodiment, the production method further comprises introducing the alcohol having a boiling point of 100 ° C. or higher into the polarizing film and then heating the laminate.
In one embodiment, the stretching comprises stretching in water.
本発明によれば、偏光膜に沸点が100℃以上のアルコールを導入することにより、高温環境下において収縮およびクラックが抑制された偏光膜を得ることができる。
According to the present invention, by introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment.
以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.偏光膜
本発明の実施形態による偏光膜は、ヨウ素を含むポリビニルアルコール(PVA)系樹脂フィルムで構成され、沸点が100℃以上のアルコール(以下、高沸点アルコールと称する場合がある)を0.1重量%~1.0重量%含有する。偏光膜がこのような高沸点アルコールを所定量含有することにより、高温環境下において収縮およびクラックが抑制された偏光膜を得ることができる。このような高沸点アルコールは、製造方法に関してC項で後述するように、代表的には水中延伸処理と乾燥収縮処理との間に偏光膜に導入され得る。このような高沸点アルコールを導入することにより、高沸点アルコールが可塑剤として機能し、最終的に得られる偏光膜の柔軟性が向上して、高温環境下において収縮を抑制することができ、結果としてクラックも抑制することができると推定される。偏光膜中の高沸点アルコールの含有量は、好ましくは0.1重量%~0.9重量%であり、より好ましくは0.1重量%~0.8重量%であり、さらに好ましくは0.2重量%~0.7重量%であり、特に好ましくは0.2重量%~0.6重量%である。含有量が少なすぎると、高沸点アルコールの効果が得られない場合がある。含有量が多すぎると、高温高湿環境下における偏光度低下が大きくなる場合がある。 A. Polarizing film The polarizing film according to the embodiment of the present invention is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine, and contains 0.1 alcohol having a boiling point of 100 ° C. or higher (hereinafter, may be referred to as high boiling point alcohol). Contains% to 1.0% by weight. When the polarizing film contains such a high boiling point alcohol in a predetermined amount, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. Such a high boiling point alcohol can be typically introduced into the polarizing film between the underwater stretching treatment and the drying shrinkage treatment, as will be described later in Section C regarding the production method. By introducing such a high boiling point alcohol, the high boiling point alcohol functions as a plasticizer, the flexibility of the finally obtained polarizing film is improved, and shrinkage can be suppressed in a high temperature environment. It is presumed that cracks can also be suppressed. The content of the high boiling point alcohol in the polarizing film is preferably 0.1% by weight to 0.9% by weight, more preferably 0.1% by weight to 0.8% by weight, and further preferably 0. It is 2% by weight to 0.7% by weight, and particularly preferably 0.2% by weight to 0.6% by weight. If the content is too low, the effect of high boiling alcohol may not be obtained. If the content is too high, the degree of polarization may decrease significantly in a high temperature and high humidity environment.
本発明の実施形態による偏光膜は、ヨウ素を含むポリビニルアルコール(PVA)系樹脂フィルムで構成され、沸点が100℃以上のアルコール(以下、高沸点アルコールと称する場合がある)を0.1重量%~1.0重量%含有する。偏光膜がこのような高沸点アルコールを所定量含有することにより、高温環境下において収縮およびクラックが抑制された偏光膜を得ることができる。このような高沸点アルコールは、製造方法に関してC項で後述するように、代表的には水中延伸処理と乾燥収縮処理との間に偏光膜に導入され得る。このような高沸点アルコールを導入することにより、高沸点アルコールが可塑剤として機能し、最終的に得られる偏光膜の柔軟性が向上して、高温環境下において収縮を抑制することができ、結果としてクラックも抑制することができると推定される。偏光膜中の高沸点アルコールの含有量は、好ましくは0.1重量%~0.9重量%であり、より好ましくは0.1重量%~0.8重量%であり、さらに好ましくは0.2重量%~0.7重量%であり、特に好ましくは0.2重量%~0.6重量%である。含有量が少なすぎると、高沸点アルコールの効果が得られない場合がある。含有量が多すぎると、高温高湿環境下における偏光度低下が大きくなる場合がある。 A. Polarizing film The polarizing film according to the embodiment of the present invention is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine, and contains 0.1 alcohol having a boiling point of 100 ° C. or higher (hereinafter, may be referred to as high boiling point alcohol). Contains% to 1.0% by weight. When the polarizing film contains such a high boiling point alcohol in a predetermined amount, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. Such a high boiling point alcohol can be typically introduced into the polarizing film between the underwater stretching treatment and the drying shrinkage treatment, as will be described later in Section C regarding the production method. By introducing such a high boiling point alcohol, the high boiling point alcohol functions as a plasticizer, the flexibility of the finally obtained polarizing film is improved, and shrinkage can be suppressed in a high temperature environment. It is presumed that cracks can also be suppressed. The content of the high boiling point alcohol in the polarizing film is preferably 0.1% by weight to 0.9% by weight, more preferably 0.1% by weight to 0.8% by weight, and further preferably 0. It is 2% by weight to 0.7% by weight, and particularly preferably 0.2% by weight to 0.6% by weight. If the content is too low, the effect of high boiling alcohol may not be obtained. If the content is too high, the degree of polarization may decrease significantly in a high temperature and high humidity environment.
高沸点アルコールの沸点は、上記のとおり100℃以上であり、好ましくは150℃以上であり、より好ましくは180℃以上であり、さらに好ましくは250℃以上である。沸点の上限は、例えば310℃であり得る。
As described above, the boiling point of the high boiling point alcohol is 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 250 ° C. or higher. The upper limit of the boiling point can be, for example, 310 ° C.
高沸点アルコールの代表例としては、高級アルコール、環構造を有するアルコール(例えば、芳香族アルコール、脂環式アルコール)、多価アルコールが挙げられる。具体例としては、グリセリン、エチレングリコール、ブタノール、フェノール、ペンタノールが挙げられる。高沸点アルコールは、単独で用いてもよく2種以上を併用してもよい。好ましくは、グリセリン、エチレングリコールである。これらは、得られる偏光膜に良好な柔軟性を付与し、結果として、高温環境下における収縮およびクラックを抑制し得る。
Typical examples of high boiling point alcohols include higher alcohols, alcohols having a ring structure (for example, aromatic alcohols and alicyclic alcohols), and polyhydric alcohols. Specific examples include glycerin, ethylene glycol, butanol, phenol, and pentanol. The high boiling point alcohol may be used alone or in combination of two or more. Preferred are glycerin and ethylene glycol. These can impart good flexibility to the resulting polarizing film and, as a result, suppress shrinkage and cracking in a high temperature environment.
偏光膜の厚みは、例えば8μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。偏光膜の厚みの下限は、1つの実施形態においては1μmであり得、別の実施形態においては2μmであり得る。
The thickness of the polarizing film is, for example, 8 μm or less, preferably 7 μm or less, more preferably 5 μm or less, and further preferably 3 μm or less. The lower limit of the thickness of the polarizing film can be 1 μm in one embodiment and 2 μm in another embodiment.
偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の単体透過率は、好ましくは42.0%以上であり、より好ましくは42.5%以上であり、さらに好ましくは43.0%以上である。一方、単体透過率は、好ましくは47.0%以下であり、より好ましくは46.0%以下である。偏光膜の偏光度は、好ましくは99.90%以上であり、より好ましくは99.95%以上である。一方、偏光度は、好ましくは99.998%以下である。本発明の実施形態によれば、このように、高い単体透過率と高い偏光度とを両立させることができ、かつ、上記のように高温高湿環境下における優れた耐久性を実現することができる。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。また、単体透過率は、偏光板の一方の表面の屈折率を1.50、もう一方の表面の屈折率を1.53に換算した時の値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 The polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing film is preferably 42.0% or more, more preferably 42.5% or more, and further preferably 43.0% or more. On the other hand, the simple substance transmittance is preferably 47.0% or less, and more preferably 46.0% or less. The degree of polarization of the polarizing film is preferably 99.90% or more, more preferably 99.95% or more. On the other hand, the degree of polarization is preferably 99.998% or less. According to the embodiment of the present invention, it is possible to achieve both a high single transmittance and a high degree of polarization as described above, and to realize excellent durability in a high temperature and high humidity environment as described above. it can. The simple substance transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor. The single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53. The degree of polarization is typically calculated by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 The polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing film is preferably 42.0% or more, more preferably 42.5% or more, and further preferably 43.0% or more. On the other hand, the simple substance transmittance is preferably 47.0% or less, and more preferably 46.0% or less. The degree of polarization of the polarizing film is preferably 99.90% or more, more preferably 99.95% or more. On the other hand, the degree of polarization is preferably 99.998% or less. According to the embodiment of the present invention, it is possible to achieve both a high single transmittance and a high degree of polarization as described above, and to realize excellent durability in a high temperature and high humidity environment as described above. it can. The simple substance transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor. The single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53. The degree of polarization is typically calculated by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
偏光膜は、温度85℃で120時間加熱後の吸収軸方向の収縮率が、好ましくは0.20%以下であり、より好ましくは0.18%以下であり、さらに好ましくは0.16%以下であり、特に好ましくは0.14%以下である。本発明の実施形態によれば、このような高温環境下での収縮率が小さい偏光膜を得ることができる。なお、収縮率は、吸収軸方向10cm×透過軸方向10cmサイズの試料についての収縮率である。
The polarizing film has a shrinkage rate in the absorption axis direction after heating at a temperature of 85 ° C. for 120 hours, preferably 0.20% or less, more preferably 0.18% or less, still more preferably 0.16% or less. It is particularly preferably 0.14% or less. According to the embodiment of the present invention, it is possible to obtain a polarizing film having a small shrinkage rate in such a high temperature environment. The shrinkage rate is a shrinkage rate for a sample having a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction.
偏光膜は、単一の樹脂フィルムを用いて作製されてもよく、二層以上の積層体を用いて作製されてもよい。積層体を用いて得られる偏光膜の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光膜が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光膜とすること;により作製され得る。本発明の実施形態においては、偏光膜に高沸点アルコールを導入する。これにより、上記のような高温環境下における収縮およびクラックが抑制された偏光膜を得ることができる。好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光膜の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光膜の保護層としてもよく)、樹脂基材/偏光膜の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。偏光膜の製造方法の詳細については、C項で後述する。
The polarizing film may be produced by using a single resin film, or may be produced by using a laminate of two or more layers. Specific examples of the polarizing film obtained by using the laminated body include a polarizing film obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material. The polarizing film obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to form a PVA-based resin layer as a polarizing film. obtain. In the embodiment of the present invention, a high boiling point alcohol is introduced into the polarizing film. As a result, it is possible to obtain a polarizing film in which shrinkage and cracking are suppressed in the high temperature environment as described above. Preferably, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. In addition, in the present embodiment, preferably, the laminate is subjected to a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Typically, the production method of the present embodiment includes subjecting the laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing the auxiliary stretching, even when PVA is coated on the thermoplastic resin, the crystallinity of PVA can be enhanced, and high optical characteristics can be achieved. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of PVA orientation and dissolution when immersed in water in a subsequent dyeing step or stretching step, resulting in high optical characteristics. Will be possible to achieve. Further, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing film obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. The obtained laminate of the resin base material / polarizing film may be used as it is (that is, the resin base material may be used as the protective layer of the polarizing film), or the resin base material is peeled off from the laminate of the resin base material / polarizing film. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing the polarizing film will be described later in Section C.
B.偏光板
図1は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板100は、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層20と、偏光膜10の他方の側に配置された第2の保護層30とを有する。偏光膜10は、上記A項で説明した本発明の偏光膜である。第1の保護層20および第2の保護層30のうち一方の保護層は省略されてもよい。なお、上記のとおり、第1の保護層および第2の保護層のうち一方は、上記の偏光膜の製造に用いられる樹脂基材であってもよい。 B. Polarizing Plate FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. Thepolarizing plate 100 has a polarizing film 10, a first protective layer 20 arranged on one side of the polarizing film 10, and a second protective layer 30 arranged on the other side of the polarizing film 10. The polarizing film 10 is the polarizing film of the present invention described in the above section A. One of the first protective layer 20 and the second protective layer 30 may be omitted. As described above, one of the first protective layer and the second protective layer may be a resin base material used for producing the above-mentioned polarizing film.
図1は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板100は、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層20と、偏光膜10の他方の側に配置された第2の保護層30とを有する。偏光膜10は、上記A項で説明した本発明の偏光膜である。第1の保護層20および第2の保護層30のうち一方の保護層は省略されてもよい。なお、上記のとおり、第1の保護層および第2の保護層のうち一方は、上記の偏光膜の製造に用いられる樹脂基材であってもよい。 B. Polarizing Plate FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The
第1および第2の保護層は、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
The first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizing film. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
偏光板100を画像表示装置に適用したときに表示パネルとは反対側に配置される保護層(外側保護層)の厚みは、代表的には300μm以下であり、好ましくは100μm以下、より好ましくは5μm~80μm、さらに好ましくは10μm~60μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。
When the polarizing plate 100 is applied to an image display device, the thickness of the protective layer (outer protective layer) arranged on the side opposite to the display panel is typically 300 μm or less, preferably 100 μm or less, more preferably 100 μm or less. It is 5 μm to 80 μm, more preferably 10 μm to 60 μm. When the surface treatment is applied, the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
偏光板100を画像表示装置に適用したときに表示パネル側に配置される保護層(内側保護層)の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。1つの実施形態においては、内側保護層は、任意の適切な位相差値を有する位相差層である。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmである。「Re(550)」は、23℃における波長550nmの光で測定した面内位相差であり、式:Re=(nx-ny)×dにより求められる。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率であり、「d」は層(フィルム)の厚み(nm)である。
The thickness of the protective layer (inner protective layer) arranged on the display panel side when the polarizing plate 100 is applied to the image display device is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and further preferably 10 μm to 60 μm. is there. In one embodiment, the inner protective layer is a retardation layer with any suitable retardation value. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm. “Re (550)” is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C., and is obtained by the formula: Re = (nx−ny) × d. Here, "nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
C.偏光膜の製造方法
本発明の1つの実施形態による偏光膜の製造方法は、長尺状の熱可塑性樹脂基材の片側にPVA系樹脂溶液を塗布および乾燥させてPVA系樹脂層を形成して積層体とすること;当該積層体を延伸および染色してPVA系樹脂層を偏光膜とすること;および、当該偏光膜に、高沸点アルコールを導入すること;を含む。高沸点アルコールを導入することにより、高温環境下における収縮およびクラックが抑制された偏光膜を実現することができる。好ましくは、PVA系樹脂溶液は、ハロゲン化物をさらに含む。好ましくは、上記製造方法は、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。この場合、高沸点アルコールの導入は、好ましくは水中延伸処理と乾燥収縮処理との間に行われ得る。PVA系樹脂溶液(結果として、PVA系樹脂層)におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%以上である。このような製造方法によれば、上記A項で説明した偏光膜を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および単位吸光度)を有する偏光膜を得ることができる。 C. Method for producing a polarizing film In the method for producing a polarizing film according to one embodiment of the present invention, a PVA-based resin solution is applied and dried on one side of a long thermoplastic resin base material to form a PVA-based resin layer. Includes: stretching and dyeing the laminate to form a PVA-based resin layer as a polarizing film; and introducing high-boiling alcohol into the polarizing film. By introducing a high boiling point alcohol, it is possible to realize a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. Preferably, the PVA-based resin solution further comprises a halide. Preferably, the above-mentioned production method comprises an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Is included in this order. In this case, the introduction of the high boiling point alcohol can preferably be carried out between the underwater stretching treatment and the drying shrinkage treatment. The content of the halide in the PVA-based resin solution (as a result, the PVA-based resin layer) is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. The shrinkage ratio in the width direction of the laminated body by the drying shrinkage treatment is preferably 2% or more. According to such a manufacturing method, the polarizing film described in the above item A can be obtained. In particular, by preparing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll. , A polarizing film having excellent optical properties (typically, single transmittance and unit absorbance) can be obtained.
本発明の1つの実施形態による偏光膜の製造方法は、長尺状の熱可塑性樹脂基材の片側にPVA系樹脂溶液を塗布および乾燥させてPVA系樹脂層を形成して積層体とすること;当該積層体を延伸および染色してPVA系樹脂層を偏光膜とすること;および、当該偏光膜に、高沸点アルコールを導入すること;を含む。高沸点アルコールを導入することにより、高温環境下における収縮およびクラックが抑制された偏光膜を実現することができる。好ましくは、PVA系樹脂溶液は、ハロゲン化物をさらに含む。好ましくは、上記製造方法は、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。この場合、高沸点アルコールの導入は、好ましくは水中延伸処理と乾燥収縮処理との間に行われ得る。PVA系樹脂溶液(結果として、PVA系樹脂層)におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%以上である。このような製造方法によれば、上記A項で説明した偏光膜を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および単位吸光度)を有する偏光膜を得ることができる。 C. Method for producing a polarizing film In the method for producing a polarizing film according to one embodiment of the present invention, a PVA-based resin solution is applied and dried on one side of a long thermoplastic resin base material to form a PVA-based resin layer. Includes: stretching and dyeing the laminate to form a PVA-based resin layer as a polarizing film; and introducing high-boiling alcohol into the polarizing film. By introducing a high boiling point alcohol, it is possible to realize a polarizing film in which shrinkage and cracking are suppressed in a high temperature environment. Preferably, the PVA-based resin solution further comprises a halide. Preferably, the above-mentioned production method comprises an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Is included in this order. In this case, the introduction of the high boiling point alcohol can preferably be carried out between the underwater stretching treatment and the drying shrinkage treatment. The content of the halide in the PVA-based resin solution (as a result, the PVA-based resin layer) is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably carried out using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. The shrinkage ratio in the width direction of the laminated body by the drying shrinkage treatment is preferably 2% or more. According to such a manufacturing method, the polarizing film described in the above item A can be obtained. In particular, by preparing a laminate containing a PVA-based resin layer containing a halide, stretching the laminate to multi-step stretching including aerial auxiliary stretching and underwater stretching, and heating the stretched laminate with a heating roll. , A polarizing film having excellent optical properties (typically, single transmittance and unit absorbance) can be obtained.
C-1.積層体の作製
熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。 C-1. Preparation of Laminate As a method for preparing a laminate of a thermoplastic resin base material and a PVA-based resin layer, any appropriate method can be adopted. Preferably, a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material. As described above, the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。 C-1. Preparation of Laminate As a method for preparing a laminate of a thermoplastic resin base material and a PVA-based resin layer, any appropriate method can be adopted. Preferably, a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material. As described above, the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。
Any appropriate method can be adopted as the coating method of the coating liquid. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned. The coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
PVA系樹脂層の厚みは、好ましくは、3μm~40μm、さらに好ましくは3μm~20μmである。
The thickness of the PVA-based resin layer is preferably 3 μm to 40 μm, more preferably 3 μm to 20 μm.
PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。
Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
C-1-1.熱可塑性樹脂基材
熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 C-1-1. Thermoplastic Resin Base Material As the thermoplastic resin base material, any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 C-1-1. Thermoplastic Resin Base Material As the thermoplastic resin base material, any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
C-1-2.塗布液
塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。 C-1-2. Coating liquid The coating liquid contains a halide and a PVA-based resin as described above. The coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferred. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that adheres to the thermoplastic resin base material can be formed. The content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。 C-1-2. Coating liquid The coating liquid contains a halide and a PVA-based resin as described above. The coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferred. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that adheres to the thermoplastic resin base material can be formed. The content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。
Additives may be added to the coating liquid. Examples of the additive include a plasticizer, a surfactant and the like. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
Any suitable resin can be used as the PVA-based resin. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned. Polyvinyl alcohol is obtained by saponification of polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. .. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。
As the above-mentioned halide, any suitable halide can be adopted. For example, iodide and sodium chloride. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光膜が白濁する場合がある。
The amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing film may become cloudy.
一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光膜の光学特性を向上し得る。
Generally, when the PVA-based resin layer is stretched, the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease. In particular, when the laminate of the thermoplastic resin and the PVA-based resin layer is stretched in boric acid water, when the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin, The tendency of the degree of orientation to decrease is remarkable. For example, while stretching a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water. On the other hand, a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in air before being stretched in boric acid water. , Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing film obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water.
C-2.空中補助延伸処理
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。 C-2. Aerial Auxiliary Stretching Treatment In particular, in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and boric acid water stretching is selected. By introducing the auxiliary stretching as in the two-stage stretching, the thermoplastic resin base material can be stretched while suppressing the crystallization of the thermoplastic resin base material, and the thermoplastic resin base material is excessively crystallized in the subsequent drawing in boric acid in water. This solves the problem that the stretchability is lowered, and the laminated body can be stretched at a higher magnification. Furthermore, when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. Become. At the same time, by increasing the orientation of the PVA resin in advance, it is possible to prevent problems such as deterioration and dissolution of the orientation of the PVA resin when immersed in water in a subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。 C-2. Aerial Auxiliary Stretching Treatment In particular, in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and boric acid water stretching is selected. By introducing the auxiliary stretching as in the two-stage stretching, the thermoplastic resin base material can be stretched while suppressing the crystallization of the thermoplastic resin base material, and the thermoplastic resin base material is excessively crystallized in the subsequent drawing in boric acid in water. This solves the problem that the stretchability is lowered, and the laminated body can be stretched at a higher magnification. Furthermore, when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. Become. At the same time, by increasing the orientation of the PVA resin in advance, it is possible to prevent problems such as deterioration and dissolution of the orientation of the PVA resin when immersed in water in a subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定されうる。自由端延伸の場合、 幅方向の収縮率=(1/延伸倍率)1/2で計算される。
The stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Good, but in order to obtain high optical properties, free end stretching can be positively adopted. In one embodiment, the aerial stretching treatment includes a heating roll stretching step of stretching the laminated body in the longitudinal direction due to a difference in peripheral speed between the heating rolls. The aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the heating roll stretching step are performed in this order. Further, in another embodiment, in the tenter stretching machine, the film is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily. Preferably, it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction. In the case of free-end stretching, the contraction rate in the width direction = (1 / stretching ratio) 1/2 .
空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。
The aerial auxiliary extension may be performed in one step or in multiple steps. When performed in multiple stages, the draw ratio is the product of the draw ratios of each stage. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
空中補助延伸における延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。
The draw ratio in the aerial auxiliary stretching is preferably 2.0 to 3.5 times. The maximum draw ratio when the aerial auxiliary stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times the original length of the laminated body. That is all. In the present specification, the "maximum draw ratio" means the draw ratio immediately before the laminate breaks, and separately confirms the draw ratio at which the laminate breaks, and means a value 0.2 lower than that value.
空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。
The stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like. The stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin and suppress defects due to the crystallization (for example, hindering the orientation of the PVA-based resin layer due to stretching). it can.
C-3.不溶化処理、染色処理および架橋処理
必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報(上記)に記載されている。 C-3. Insolubilization treatment, dyeing treatment and cross-linking treatment If necessary, insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment and the dyeing treatment. The insolubilization treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. The dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine). If necessary, a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the cross-linking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (above).
必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報(上記)に記載されている。 C-3. Insolubilization treatment, dyeing treatment and cross-linking treatment If necessary, insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment and the dyeing treatment. The insolubilization treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. The dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine). If necessary, a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the cross-linking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (above).
C-4.水中延伸処理
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。 C-4. Underwater stretching treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical characteristics can be produced.
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。 C-4. Underwater stretching treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical characteristics can be produced.
積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。
Any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected. The stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminated body described later is the product of the draw ratios of each stage.
水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光膜を製造することができる。
The underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching). By using an aqueous boric acid solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer. Specifically, boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding. As a result, the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing film having excellent optical characteristics can be produced.
上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film having higher characteristics can be produced. In addition to boric acid or borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。
Preferably, iodide is added to the above stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。
The stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C. to 85 ° C., more preferably 60 ° C. to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be stretched well even when the plasticization of the thermoplastic resin base material by water is taken into consideration. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics cannot be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、さらに好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた偏光膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。
The stretching ratio by stretching in water is preferably 1.5 times or more, more preferably 3.0 times or more. The total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body. By achieving such a high draw ratio, it is possible to manufacture a polarizing film having extremely excellent optical characteristics. Such a high draw ratio can be achieved by adopting an underwater stretching method (boric acid underwater stretching).
C-5.高沸点アルコールの導入
本発明の実施形態においては、水中延伸処理の後(および、代表的には後述する乾燥収縮処理の前)に、高沸点アルコールを導入する。高沸点アルコールの導入は、任意の適切な方式で行われ得る。例えば、高沸点アルコールを含む処理液に積層体を浸漬してもよく、積層体の偏光膜表面に高沸点アルコールを含む処理液を塗布してもよい。代表的には、高沸点アルコールの導入は浸漬により行われ得る。浸漬は、任意の適切な様式により行われ得る。例えば、洗浄処理の洗浄浴に高沸点アルコールを添加して処理液の浴としてもよく、洗浄浴の代わりに処理液の浴を用いてもよく、処理液の浴を洗浄浴とは別に設けてもよい。代表的には、洗浄処理の洗浄浴(洗浄液)に高沸点アルコールが添加され得る。処理液(洗浄液)の高沸点アルコール濃度は、好ましくは0.03重量%~1.0重量%である。 C-5. Introduction of high boiling point alcohol In the embodiment of the present invention, high boiling point alcohol is introduced after the stretching treatment in water (and typically before the drying shrinkage treatment described later). The introduction of high boiling alcohol can be done in any suitable manner. For example, the laminate may be immersed in a treatment liquid containing a high boiling point alcohol, or the treatment liquid containing a high boiling point alcohol may be applied to the surface of the polarizing film of the laminate. Typically, the introduction of high boiling alcohol can be done by immersion. Immersion can be done in any suitable manner. For example, a high boiling point alcohol may be added to the washing bath for the washing treatment to serve as a bath for the treatment liquid, or a bath for the treatment liquid may be used instead of the washing bath. A bath for the treatment liquid may be provided separately from the washing bath. May be good. Typically, high boiling point alcohol can be added to the washing bath (washing liquid) of the washing treatment. The high boiling point alcohol concentration of the treatment liquid (cleaning liquid) is preferably 0.03% by weight to 1.0% by weight.
本発明の実施形態においては、水中延伸処理の後(および、代表的には後述する乾燥収縮処理の前)に、高沸点アルコールを導入する。高沸点アルコールの導入は、任意の適切な方式で行われ得る。例えば、高沸点アルコールを含む処理液に積層体を浸漬してもよく、積層体の偏光膜表面に高沸点アルコールを含む処理液を塗布してもよい。代表的には、高沸点アルコールの導入は浸漬により行われ得る。浸漬は、任意の適切な様式により行われ得る。例えば、洗浄処理の洗浄浴に高沸点アルコールを添加して処理液の浴としてもよく、洗浄浴の代わりに処理液の浴を用いてもよく、処理液の浴を洗浄浴とは別に設けてもよい。代表的には、洗浄処理の洗浄浴(洗浄液)に高沸点アルコールが添加され得る。処理液(洗浄液)の高沸点アルコール濃度は、好ましくは0.03重量%~1.0重量%である。 C-5. Introduction of high boiling point alcohol In the embodiment of the present invention, high boiling point alcohol is introduced after the stretching treatment in water (and typically before the drying shrinkage treatment described later). The introduction of high boiling alcohol can be done in any suitable manner. For example, the laminate may be immersed in a treatment liquid containing a high boiling point alcohol, or the treatment liquid containing a high boiling point alcohol may be applied to the surface of the polarizing film of the laminate. Typically, the introduction of high boiling alcohol can be done by immersion. Immersion can be done in any suitable manner. For example, a high boiling point alcohol may be added to the washing bath for the washing treatment to serve as a bath for the treatment liquid, or a bath for the treatment liquid may be used instead of the washing bath. A bath for the treatment liquid may be provided separately from the washing bath. May be good. Typically, high boiling point alcohol can be added to the washing bath (washing liquid) of the washing treatment. The high boiling point alcohol concentration of the treatment liquid (cleaning liquid) is preferably 0.03% by weight to 1.0% by weight.
C-6.乾燥収縮処理
上記乾燥収縮処理は、好ましくは、高沸点アルコールの導入後に行われ得る。高沸点アルコールの導入後に乾燥収縮処理を行うことにより、乾燥収縮処理の際に高沸点アルコールが可塑剤として機能し、最終的に得られる偏光膜の柔軟性を向上させることができる。 C-6. Dry shrinkage treatment The dry shrinkage treatment can preferably be carried out after the introduction of the high boiling point alcohol. By performing the drying shrinkage treatment after the introduction of the high boiling point alcohol, the high boiling point alcohol functions as a plasticizer during the drying shrinkage treatment, and the flexibility of the finally obtained polarizing film can be improved.
上記乾燥収縮処理は、好ましくは、高沸点アルコールの導入後に行われ得る。高沸点アルコールの導入後に乾燥収縮処理を行うことにより、乾燥収縮処理の際に高沸点アルコールが可塑剤として機能し、最終的に得られる偏光膜の柔軟性を向上させることができる。 C-6. Dry shrinkage treatment The dry shrinkage treatment can preferably be carried out after the introduction of the high boiling point alcohol. By performing the drying shrinkage treatment after the introduction of the high boiling point alcohol, the high boiling point alcohol functions as a plasticizer during the drying shrinkage treatment, and the flexibility of the finally obtained polarizing film can be improved.
乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。
The drying shrinkage treatment may be performed by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used. By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizing film having an excellent appearance. Specifically, by drying the laminate along the heating roll, the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material is increased so that it can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. Further, by using the heating roll, the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
図2は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。
FIG. 2 is a schematic view showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material. For example, one surface of the laminate 200 (for example, thermoplastic) is arranged. The transport rolls R1 to R6 may be arranged so as to continuously heat only the resin base material surface).
搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。
The drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like. The temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C. The crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。
The heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using both drying with a heating roll and hot air drying together, a steep temperature change between the heating rolls can be suppressed, and shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
C-7.その他
上記のようにして得られた熱可塑性樹脂基材/偏光膜の積層体は、そのまま偏光板として用いてもよく(熱可塑性樹脂基材を保護層として用いてもよく);積層体の偏光膜表面に保護層を貼り合わせた後、熱可塑性樹脂基材を剥離して、保護層/偏光膜の構成を有する偏光板として用いてもよく;熱可塑性樹脂基材の剥離面に別の保護層を貼り合わせて、保護層/偏光膜/保護層の構成を有する偏光板として用いてもよい。 C-7. Others The laminate of the thermoplastic resin base material / polarizing film obtained as described above may be used as it is as a polarizing plate (the thermoplastic resin base material may be used as a protective layer); polarized light of the laminate. After the protective layer is attached to the surface of the film, the thermoplastic resin base material may be peeled off and used as a polarizing plate having a protective layer / polarizing film configuration; another protection is provided on the peeled surface of the thermoplastic resin base material. The layers may be bonded together and used as a polarizing plate having a protective layer / polarizing film / protective layer configuration.
上記のようにして得られた熱可塑性樹脂基材/偏光膜の積層体は、そのまま偏光板として用いてもよく(熱可塑性樹脂基材を保護層として用いてもよく);積層体の偏光膜表面に保護層を貼り合わせた後、熱可塑性樹脂基材を剥離して、保護層/偏光膜の構成を有する偏光板として用いてもよく;熱可塑性樹脂基材の剥離面に別の保護層を貼り合わせて、保護層/偏光膜/保護層の構成を有する偏光板として用いてもよい。 C-7. Others The laminate of the thermoplastic resin base material / polarizing film obtained as described above may be used as it is as a polarizing plate (the thermoplastic resin base material may be used as a protective layer); polarized light of the laminate. After the protective layer is attached to the surface of the film, the thermoplastic resin base material may be peeled off and used as a polarizing plate having a protective layer / polarizing film configuration; another protection is provided on the peeled surface of the thermoplastic resin base material. The layers may be bonded together and used as a polarizing plate having a protective layer / polarizing film / protective layer configuration.
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1)厚み
干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。 (1) Thickness Measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。 (1) Thickness Measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
(2)偏光膜のアルコール濃度
実施例および比較例で得られた偏光膜を凍結粉砕し約0.02gをスクリュー管へ採取し、メタノール0.5mlを加えて一晩以上浸透抽出したのち、抽出液を0.45μmメンブレンフィルターにてろ過し、そのろ液1μLをガスクロマトグラフ(Agilent TechNologies社製、製品名「6890N」)に注入して各アルコール種に該当するピーク面積から下記検量線を用いて含有アルコール量を算出した。
グリセリン検量線
y=5.666E―01x + 1.833E-00
エチレングリコール検量線
y=2.478E―01x + 1.315E-00 (2) Alcohol concentration of polarizing film The polarizing films obtained in Examples and Comparative Examples were freeze-crushed, about 0.02 g was collected in a screw tube, 0.5 ml of methanol was added, and the mixture was permeated and extracted overnight and then extracted. The solution is filtered through a 0.45 μm membrane filter, and 1 μL of the filtrate is injected into a gas chromatograph (manufactured by Agent Technologies, product name “6890N”) from the peak area corresponding to each alcohol type using the following calibration curve. The amount of alcohol contained was calculated.
Glycerin calibration curve y = 5.666E- 01 x + 1.833E- 00
Ethylene glycol calibration curve y = 2.478E- 01 x + 1.315E- 00
実施例および比較例で得られた偏光膜を凍結粉砕し約0.02gをスクリュー管へ採取し、メタノール0.5mlを加えて一晩以上浸透抽出したのち、抽出液を0.45μmメンブレンフィルターにてろ過し、そのろ液1μLをガスクロマトグラフ(Agilent TechNologies社製、製品名「6890N」)に注入して各アルコール種に該当するピーク面積から下記検量線を用いて含有アルコール量を算出した。
グリセリン検量線
y=5.666E―01x + 1.833E-00
エチレングリコール検量線
y=2.478E―01x + 1.315E-00 (2) Alcohol concentration of polarizing film The polarizing films obtained in Examples and Comparative Examples were freeze-crushed, about 0.02 g was collected in a screw tube, 0.5 ml of methanol was added, and the mixture was permeated and extracted overnight and then extracted. The solution is filtered through a 0.45 μm membrane filter, and 1 μL of the filtrate is injected into a gas chromatograph (manufactured by Agent Technologies, product name “6890N”) from the peak area corresponding to each alcohol type using the following calibration curve. The amount of alcohol contained was calculated.
Glycerin calibration curve y = 5.666E- 01 x + 1.833E- 00
Ethylene glycol calibration curve y = 2.478E- 01 x + 1.315E- 00
(3)単体透過率
実施例および比較例の偏光板(保護フィルム/偏光膜)について、紫外可視分光光度計(大塚電子製 LPF-200)を用いて測定した単体透過率Tsを偏光膜の単体透過率とした。 (3) Single-unit transmittance For the polarizing plates (protective film / polarizing film) of the examples and comparative examples, the single-unit transmittance Ts measured using an ultraviolet-visible spectrophotometer (LPF-200 manufactured by Otsuka Electronics) is the single-unit transmittance of the polarizing film. The transmittance was used.
実施例および比較例の偏光板(保護フィルム/偏光膜)について、紫外可視分光光度計(大塚電子製 LPF-200)を用いて測定した単体透過率Tsを偏光膜の単体透過率とした。 (3) Single-unit transmittance For the polarizing plates (protective film / polarizing film) of the examples and comparative examples, the single-unit transmittance Ts measured using an ultraviolet-visible spectrophotometer (LPF-200 manufactured by Otsuka Electronics) is the single-unit transmittance of the polarizing film. The transmittance was used.
(4)収縮性
実施例および比較例の偏光板(保護フィルム/偏光膜)から吸収軸方向10cm×透過軸方向10cmサイズの試験サンプルを切り出した。この試験サンプルを、粘着剤を介してガラス板に貼り付け、CNC画像測定機(ミツトヨ社製 QickVision(QV606))を用いて図3(a)に示すようなフィルムエッジを含む8点を測長し、正確に寸法を測定した。その後加熱オーブン(85℃)に120時間投入し、オーブンから取り出し再度正確に寸法を測定した後、吸収軸方向の収縮率を初期長さから算出し、比較例1を基準として以下のようにして評価した。
◎:比較例1に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例1に対して収縮率が同等
×:比較例1に対して収縮率が大きい(マイナス方向の絶対値がより大きい) (4) Shrinkage Test samples having a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction were cut out from the polarizing plates (protective film / polarizing film) of Examples and Comparative Examples. This test sample was attached to a glass plate via an adhesive, and a CNC image measuring machine (Mitutoyo QickVision (QV606)) was used to measure eight points including the film edge as shown in FIG. 3 (a). And measured the dimensions accurately. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and after measuring the dimensions accurately again, the shrinkage rate in the absorption axis direction was calculated from the initial length, and as follows with reference to Comparative Example 1. evaluated.
⊚: Shrinkage rate is smaller than that of Comparative Example 1 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 1. ×: The shrinkage rate is larger than that of Comparative Example 1 (the absolute value in the negative direction is larger).
実施例および比較例の偏光板(保護フィルム/偏光膜)から吸収軸方向10cm×透過軸方向10cmサイズの試験サンプルを切り出した。この試験サンプルを、粘着剤を介してガラス板に貼り付け、CNC画像測定機(ミツトヨ社製 QickVision(QV606))を用いて図3(a)に示すようなフィルムエッジを含む8点を測長し、正確に寸法を測定した。その後加熱オーブン(85℃)に120時間投入し、オーブンから取り出し再度正確に寸法を測定した後、吸収軸方向の収縮率を初期長さから算出し、比較例1を基準として以下のようにして評価した。
◎:比較例1に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例1に対して収縮率が同等
×:比較例1に対して収縮率が大きい(マイナス方向の絶対値がより大きい) (4) Shrinkage Test samples having a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction were cut out from the polarizing plates (protective film / polarizing film) of Examples and Comparative Examples. This test sample was attached to a glass plate via an adhesive, and a CNC image measuring machine (Mitutoyo QickVision (QV606)) was used to measure eight points including the film edge as shown in FIG. 3 (a). And measured the dimensions accurately. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and after measuring the dimensions accurately again, the shrinkage rate in the absorption axis direction was calculated from the initial length, and as follows with reference to Comparative Example 1. evaluated.
⊚: Shrinkage rate is smaller than that of Comparative Example 1 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 1. ×: The shrinkage rate is larger than that of Comparative Example 1 (the absolute value in the negative direction is larger).
(5)クラック(ナノスリット):ギターピック試験
実施例および比較例の偏光板(保護フィルム/偏光膜)を、50mm×150mmのサイズ(吸収軸方向が50mm)に裁断し、保護フィルムの側に、下記方法で作製した表面保護フィルムを貼り合わせた。
(試験サンプル用の表面保護フィルム)
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、2-エチルヘキシルアクリレート(2EHA)94質量部、N,N-ジエチルアクリルアミド(DEAA)1質量部、エトキシジエチレングリコールアクリレート(EDE)1質量部、4-ヒドロキシブチルアクリレート(HBA)4質量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.2質量部、酢酸エチル150質量部を仕込み、緩やかに攪拌しながら窒素ガスを導入し、フラスコ内の液温を60℃付近に保って5時間重合反応を行い、アクリル系ポリマー溶液(40質量%)を調製した。前記アクリル系ポリマーの重量平均分子量は57万、ガラス転移温度(Tg)は-68℃であった。前記アクリル系ポリマー溶液(40質量%)を酢酸エチルで20質量%に希釈し、この溶液500質量部(固形分100質量部)に、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、コロネートHX:C/HX)2質量部(固形分2質量部)、架橋触媒としてジラウリン酸ジブチルスズ(1質量%酢酸エチル溶液)2質量部(固形分0.02質量部)を加えて、混合攪拌を行い、アクリル系粘着剤溶液を調製した。前記アクリル系粘着剤溶液を、厚さ38μmの透明なポリエチレンテレフタレート(PET)フィルム(ポリエステルフィルム)に塗布し、130℃で1分間加熱して、厚さ15μmの粘着剤層を形成して表面保護フィルムを作製した。 (5) Crack (nanoslit): Guitar pick test The polarizing plate (protective film / polarizing film) of the examples and comparative examples is cut into a size of 50 mm × 150 mm (absorption axis direction is 50 mm) and placed on the protective film side. , The surface protective film prepared by the following method was bonded.
(Surface protective film for test sample)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 94 parts by mass of 2-ethylhexyl acrylate (2EHA), 1 part by mass of N, N-diethylacrylamide (DEAA), and ethoxydiethylene glycol acrylate ( EDE) 1 part by mass, 4-hydroxybutyl acrylate (HBA) 4 parts by mass, 2,2'-azobisisobutyronitrile 0.2 parts by mass, and ethyl acetate 150 parts by mass as a polymerization initiator, and gently stirred. While introducing nitrogen gas, the liquid temperature in the flask was maintained at around 60 ° C. and the polymerization reaction was carried out for 5 hours to prepare an acrylic polymer solution (40% by mass). The acrylic polymer had a weight average molecular weight of 570,000 and a glass transition temperature (Tg) of −68 ° C. The acrylic polymer solution (40% by mass) is diluted with ethyl acetate to 20% by mass, and an isocyanurate form of hexamethylene diisocyanate (coronate manufactured by Nippon Polyurethane Industry Co., Ltd.) is added to 500 parts by mass (solid content 100 parts by mass) of this solution. HX: C / HX) 2 parts by mass (solid content 2 parts by mass), dibutyltin dilaurate (1 mass% ethyl acetate solution) 2 parts by mass (solid content 0.02 part by mass) as a cross-linking catalyst, and mix and stir. This was performed to prepare an acrylic pressure-sensitive adhesive solution. The acrylic pressure-sensitive adhesive solution is applied to a transparent polyethylene terephthalate (PET) film (polyester film) having a thickness of 38 μm and heated at 130 ° C. for 1 minute to form a pressure-sensitive adhesive layer having a thickness of 15 μm to protect the surface. A film was made.
実施例および比較例の偏光板(保護フィルム/偏光膜)を、50mm×150mmのサイズ(吸収軸方向が50mm)に裁断し、保護フィルムの側に、下記方法で作製した表面保護フィルムを貼り合わせた。
(試験サンプル用の表面保護フィルム)
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、2-エチルヘキシルアクリレート(2EHA)94質量部、N,N-ジエチルアクリルアミド(DEAA)1質量部、エトキシジエチレングリコールアクリレート(EDE)1質量部、4-ヒドロキシブチルアクリレート(HBA)4質量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.2質量部、酢酸エチル150質量部を仕込み、緩やかに攪拌しながら窒素ガスを導入し、フラスコ内の液温を60℃付近に保って5時間重合反応を行い、アクリル系ポリマー溶液(40質量%)を調製した。前記アクリル系ポリマーの重量平均分子量は57万、ガラス転移温度(Tg)は-68℃であった。前記アクリル系ポリマー溶液(40質量%)を酢酸エチルで20質量%に希釈し、この溶液500質量部(固形分100質量部)に、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、コロネートHX:C/HX)2質量部(固形分2質量部)、架橋触媒としてジラウリン酸ジブチルスズ(1質量%酢酸エチル溶液)2質量部(固形分0.02質量部)を加えて、混合攪拌を行い、アクリル系粘着剤溶液を調製した。前記アクリル系粘着剤溶液を、厚さ38μmの透明なポリエチレンテレフタレート(PET)フィルム(ポリエステルフィルム)に塗布し、130℃で1分間加熱して、厚さ15μmの粘着剤層を形成して表面保護フィルムを作製した。 (5) Crack (nanoslit): Guitar pick test The polarizing plate (protective film / polarizing film) of the examples and comparative examples is cut into a size of 50 mm × 150 mm (absorption axis direction is 50 mm) and placed on the protective film side. , The surface protective film prepared by the following method was bonded.
(Surface protective film for test sample)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 94 parts by mass of 2-ethylhexyl acrylate (2EHA), 1 part by mass of N, N-diethylacrylamide (DEAA), and ethoxydiethylene glycol acrylate ( EDE) 1 part by mass, 4-hydroxybutyl acrylate (HBA) 4 parts by mass, 2,2'-azobisisobutyronitrile 0.2 parts by mass, and ethyl acetate 150 parts by mass as a polymerization initiator, and gently stirred. While introducing nitrogen gas, the liquid temperature in the flask was maintained at around 60 ° C. and the polymerization reaction was carried out for 5 hours to prepare an acrylic polymer solution (40% by mass). The acrylic polymer had a weight average molecular weight of 570,000 and a glass transition temperature (Tg) of −68 ° C. The acrylic polymer solution (40% by mass) is diluted with ethyl acetate to 20% by mass, and an isocyanurate form of hexamethylene diisocyanate (coronate manufactured by Nippon Polyurethane Industry Co., Ltd.) is added to 500 parts by mass (
次に、上記の表面保護フィルムを貼り合わせた偏光板を、粘着剤を介してガラス板上に貼り付け、試験サンプルを作成した。この試験サンプル(表面保護フィルム側)の中央部に対して、図4のようにギターピック(HISTORY社製、型番「HP2H(HARD)」)により荷重200gを掛けて、偏光子の吸収軸に直交する方向に100mmの距離に50往復の荷重負荷を繰り返した。上記荷重負荷は、1箇所で行った。また、上記荷重負荷は、高速(5m/分)および低速(1m/分)でそれぞれ行った。次いで、試験サンプルを80℃の環境下に1時間放置した後に、微分干渉顕微鏡を用いてクラックの発生個数をカウントした。比較例1を基準として以下のようにして評価した。
◎:比較例1に対して個数が少ない
△:比較例1に対して個数が同等
×:比較例1に対して個数が多い Next, the polarizing plate to which the above surface protective film was attached was attached onto a glass plate via an adhesive to prepare a test sample. A load of 200 g is applied to the central portion of this test sample (surface protective film side) by a guitar pick (manufactured by HISTORY, model number "HP2H (HARD)") as shown in FIG. 4, and is orthogonal to the absorption axis of the polarizer. A load of 50 reciprocations was repeated at a distance of 100 mm in the direction in which the load was applied. The above load was applied at one place. The load was applied at high speed (5 m / min) and low speed (1 m / min), respectively. Next, the test sample was left in an environment of 80 ° C. for 1 hour, and then the number of cracks generated was counted using a differential interference microscope. Evaluation was made as follows with reference to Comparative Example 1.
⊚: The number is smaller than that of Comparative Example 1. Δ: The number is the same as that of Comparative Example 1. ×: The number is larger than that of Comparative Example 1.
◎:比較例1に対して個数が少ない
△:比較例1に対して個数が同等
×:比較例1に対して個数が多い Next, the polarizing plate to which the above surface protective film was attached was attached onto a glass plate via an adhesive to prepare a test sample. A load of 200 g is applied to the central portion of this test sample (surface protective film side) by a guitar pick (manufactured by HISTORY, model number "HP2H (HARD)") as shown in FIG. 4, and is orthogonal to the absorption axis of the polarizer. A load of 50 reciprocations was repeated at a distance of 100 mm in the direction in which the load was applied. The above load was applied at one place. The load was applied at high speed (5 m / min) and low speed (1 m / min), respectively. Next, the test sample was left in an environment of 80 ° C. for 1 hour, and then the number of cracks generated was counted using a differential interference microscope. Evaluation was made as follows with reference to Comparative Example 1.
⊚: The number is smaller than that of Comparative Example 1. Δ: The number is the same as that of Comparative Example 1. ×: The number is larger than that of Comparative Example 1.
[実施例1]
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が45.0%±0.2%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の処理浴(ヨウ化カリウム4重量%、グリセリン0.23重量%の水溶液)に浸漬させ、積層体を洗浄するとともにPVA系樹脂層(偏光膜)にグリセリンを導入した(洗浄処理およびグリセリンの導入)。
その後、90℃に保たれたオーブン中で4分間乾燥させた(乾燥処理)。
このようにして、樹脂基材上に厚み5.0μmの偏光膜を形成した。偏光膜表面に、保護層(保護フィルム)としてのシクロオレフィン系フィルム(ZEON社製、製品名「G-Film」)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して保護層/偏光膜の構成を有する偏光板を得た。得られた偏光板の偏光膜中のグリセリン濃度は0.30重量%であった。 [Example 1]
As the thermoplastic resin base material, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used. One side of the resin base material was corona-treated.
100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. 13 parts by weight of potassium iodide was added to the part to prepare a PVA aqueous solution (coating liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 45.0% ± 0.2% (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) at a liquid temperature of 70 ° C., the rolls having different peripheral speeds are subjected to the longitudinal direction (longitudinal direction). ) Was uniaxially stretched so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate is immersed in a treatment bath at a liquid temperature of 20 ° C. (an aqueous solution of potassium iodide 4% by weight and glycerin 0.23% by weight) to wash the laminate and glycerin is applied to the PVA-based resin layer (polarizing film). Introduced (cleaning treatment and introduction of glycerin).
Then, it was dried for 4 minutes in an oven kept at 90 ° C. (drying treatment).
In this way, a polarizing film having a thickness of 5.0 μm was formed on the resin substrate. A cycloolefin-based film (manufactured by ZEON, product name "G-Film") as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 μm), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure. The concentration of glycerin in the polarizing film of the obtained polarizing plate was 0.30% by weight.
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が45.0%±0.2%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の処理浴(ヨウ化カリウム4重量%、グリセリン0.23重量%の水溶液)に浸漬させ、積層体を洗浄するとともにPVA系樹脂層(偏光膜)にグリセリンを導入した(洗浄処理およびグリセリンの導入)。
その後、90℃に保たれたオーブン中で4分間乾燥させた(乾燥処理)。
このようにして、樹脂基材上に厚み5.0μmの偏光膜を形成した。偏光膜表面に、保護層(保護フィルム)としてのシクロオレフィン系フィルム(ZEON社製、製品名「G-Film」)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して保護層/偏光膜の構成を有する偏光板を得た。得られた偏光板の偏光膜中のグリセリン濃度は0.30重量%であった。 [Example 1]
As the thermoplastic resin base material, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used. One side of the resin base material was corona-treated.
100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. 13 parts by weight of potassium iodide was added to the part to prepare a PVA aqueous solution (coating liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 45.0% ± 0.2% (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) at a liquid temperature of 70 ° C., the rolls having different peripheral speeds are subjected to the longitudinal direction (longitudinal direction). ) Was uniaxially stretched so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate is immersed in a treatment bath at a liquid temperature of 20 ° C. (an aqueous solution of potassium iodide 4% by weight and glycerin 0.23% by weight) to wash the laminate and glycerin is applied to the PVA-based resin layer (polarizing film). Introduced (cleaning treatment and introduction of glycerin).
Then, it was dried for 4 minutes in an oven kept at 90 ° C. (drying treatment).
In this way, a polarizing film having a thickness of 5.0 μm was formed on the resin substrate. A cycloolefin-based film (manufactured by ZEON, product name "G-Film") as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 μm), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure. The concentration of glycerin in the polarizing film of the obtained polarizing plate was 0.30% by weight.
得られた偏光板(実質的には、偏光膜)について、単体透過率を表1に示す。さらに、上記(4)および(5)の評価結果を併せて表1に示す。
Table 1 shows the single transmittance of the obtained polarizing plate (substantially, a polarizing film). Furthermore, the evaluation results of (4) and (5) above are also shown in Table 1.
[実施例2]
処理浴のグリセリン濃度を0.68重量%としたこと以外は実施例1と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例1と同様の評価に供した。結果を表1に示す。 [Example 2]
A polarizing plate was produced in the same manner as in Example 1 except that the glycerin concentration in the treatment bath was 0.68% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
処理浴のグリセリン濃度を0.68重量%としたこと以外は実施例1と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例1と同様の評価に供した。結果を表1に示す。 [Example 2]
A polarizing plate was produced in the same manner as in Example 1 except that the glycerin concentration in the treatment bath was 0.68% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例3]
実施例1と同様にして偏光板(保護フィルム/偏光膜)を作製した。この偏光板を吸収軸方向10cm×透過軸方向10cmサイズに切り出し、切り出し片をそのまま(すなわち、粘着剤を介してガラス板に貼り付けることなく)試験サンプルとした。この試験サンプルを、CNC画像測定機(ミツトヨ社製 QickVision(QV606))を用いて図3(b)に示すようなフィルムエッジを含まない4点を測長し、正確に寸法を測定した。その後加熱オーブン(85℃)に120時間投入し、オーブンから取り出し再度正確に寸法を測定した。吸収軸方向の収縮率を初期長さから算出し、比較例2(後述)を基準として以下のようにして評価した。結果を表1に示す。
◎:比較例2に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例2に対して収縮率が同等
×:比較例2に対して収縮率が大きい(マイナス方向の絶対値がより大きい) [Example 3]
A polarizing plate (protective film / polarizing film) was produced in the same manner as in Example 1. This polarizing plate was cut into a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction, and the cut pieces were used as test samples as they were (that is, without being attached to a glass plate via an adhesive). This test sample was measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.) at four points not including the film edge as shown in FIG. 3 (b), and the dimensions were accurately measured. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and the dimensions were measured again accurately. The shrinkage rate in the absorption axis direction was calculated from the initial length and evaluated as follows with reference to Comparative Example 2 (described later). The results are shown in Table 1.
⊚: Shrinkage rate is smaller than that of Comparative Example 2 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 2. ×: The shrinkage rate is larger than that of Comparative Example 2 (the absolute value in the negative direction is larger).
実施例1と同様にして偏光板(保護フィルム/偏光膜)を作製した。この偏光板を吸収軸方向10cm×透過軸方向10cmサイズに切り出し、切り出し片をそのまま(すなわち、粘着剤を介してガラス板に貼り付けることなく)試験サンプルとした。この試験サンプルを、CNC画像測定機(ミツトヨ社製 QickVision(QV606))を用いて図3(b)に示すようなフィルムエッジを含まない4点を測長し、正確に寸法を測定した。その後加熱オーブン(85℃)に120時間投入し、オーブンから取り出し再度正確に寸法を測定した。吸収軸方向の収縮率を初期長さから算出し、比較例2(後述)を基準として以下のようにして評価した。結果を表1に示す。
◎:比較例2に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例2に対して収縮率が同等
×:比較例2に対して収縮率が大きい(マイナス方向の絶対値がより大きい) [Example 3]
A polarizing plate (protective film / polarizing film) was produced in the same manner as in Example 1. This polarizing plate was cut into a size of 10 cm in the absorption axis direction and 10 cm in the transmission axis direction, and the cut pieces were used as test samples as they were (that is, without being attached to a glass plate via an adhesive). This test sample was measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.) at four points not including the film edge as shown in FIG. 3 (b), and the dimensions were accurately measured. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and the dimensions were measured again accurately. The shrinkage rate in the absorption axis direction was calculated from the initial length and evaluated as follows with reference to Comparative Example 2 (described later). The results are shown in Table 1.
⊚: Shrinkage rate is smaller than that of Comparative Example 2 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 2. ×: The shrinkage rate is larger than that of Comparative Example 2 (the absolute value in the negative direction is larger).
[実施例4]
実施例2と同様にして偏光板を作製した。得られた偏光板を実施例3と同様の評価に供した。結果を表1に示す。 [Example 4]
A polarizing plate was produced in the same manner as in Example 2. The obtained polarizing plate was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
実施例2と同様にして偏光板を作製した。得られた偏光板を実施例3と同様の評価に供した。結果を表1に示す。 [Example 4]
A polarizing plate was produced in the same manner as in Example 2. The obtained polarizing plate was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
[実施例5]
実施例1と同様にして樹脂基材/PVA系樹脂層の積層体を作製し、当該積層体を実施例1と同様にして空中補助延伸処理に供した。
次いで、積層体を、補助延伸軸方向15cm×10cmに切り出し、サンプルの短辺を専用の延伸治具で固定したものを液温30℃の不溶化浴(水100重量部に対して、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%±0.2%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の処理浴(ヨウ化カリウム3重量%、エチレングリコール1重量%の水溶液)に3秒浸漬させ、積層体を洗浄するとともにPVA系樹脂層(偏光膜)にエチレングリコールを導入した(洗浄処理およびエチレングリコールの導入)。
その後、60℃に保たれたオーブン中で4分間乾燥させた(乾燥処理)。
このようにして、樹脂基材上に厚み5.0μmの偏光膜を形成した。偏光膜表面に、保護層(保護フィルム)としてのシクロオレフィン系フィルム(ZEON社製、製品名「G-Film」)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して保護層/偏光膜の構成を有する偏光板を得た。 [Example 5]
A laminate of the resin base material / PVA-based resin layer was prepared in the same manner as in Example 1, and the laminate was subjected to an aerial auxiliary stretching treatment in the same manner as in Example 1.
Next, the laminate was cut into an auxiliary stretching axis direction of 15 cm × 10 cm, and the short side of the sample was fixed with a dedicated stretching jig, and the mixture was placed in an insolubilizing bath at a liquid temperature of 30 ° C. (boric acid was added to 100 parts by weight of water). It was immersed in (an aqueous solution of boric acid obtained by blending 3 parts by weight) for 30 seconds (insolubilization treatment).
Next, the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 42.0% ± 0.2% (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 30 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) at a liquid temperature of 70 ° C., the total draw ratio is 5 in the longitudinal direction (longitudinal direction). The uniaxial stretching was performed so as to be 5.5 times (underwater stretching treatment).
Then, the laminate is immersed in a treatment bath at a liquid temperature of 20 ° C. (an aqueous solution of 3 wt% potassium iodide and 1 wt% ethylene glycol) for 3 seconds to wash the laminate and ethylene in a PVA-based resin layer (polarizing film). Glycol was introduced (cleaning treatment and introduction of ethylene glycol).
Then, it was dried for 4 minutes in an oven kept at 60 ° C. (drying treatment).
In this way, a polarizing film having a thickness of 5.0 μm was formed on the resin substrate. A cycloolefin-based film (manufactured by ZEON, product name "G-Film") as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 μm), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure.
実施例1と同様にして樹脂基材/PVA系樹脂層の積層体を作製し、当該積層体を実施例1と同様にして空中補助延伸処理に供した。
次いで、積層体を、補助延伸軸方向15cm×10cmに切り出し、サンプルの短辺を専用の延伸治具で固定したものを液温30℃の不溶化浴(水100重量部に対して、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%±0.2%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の処理浴(ヨウ化カリウム3重量%、エチレングリコール1重量%の水溶液)に3秒浸漬させ、積層体を洗浄するとともにPVA系樹脂層(偏光膜)にエチレングリコールを導入した(洗浄処理およびエチレングリコールの導入)。
その後、60℃に保たれたオーブン中で4分間乾燥させた(乾燥処理)。
このようにして、樹脂基材上に厚み5.0μmの偏光膜を形成した。偏光膜表面に、保護層(保護フィルム)としてのシクロオレフィン系フィルム(ZEON社製、製品名「G-Film」)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して保護層/偏光膜の構成を有する偏光板を得た。 [Example 5]
A laminate of the resin base material / PVA-based resin layer was prepared in the same manner as in Example 1, and the laminate was subjected to an aerial auxiliary stretching treatment in the same manner as in Example 1.
Next, the laminate was cut into an auxiliary stretching axis direction of 15 cm × 10 cm, and the short side of the sample was fixed with a dedicated stretching jig, and the mixture was placed in an insolubilizing bath at a liquid temperature of 30 ° C. (boric acid was added to 100 parts by weight of water). It was immersed in (an aqueous solution of boric acid obtained by blending 3 parts by weight) for 30 seconds (insolubilization treatment).
Next, the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 42.0% ± 0.2% (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 30 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) at a liquid temperature of 70 ° C., the total draw ratio is 5 in the longitudinal direction (longitudinal direction). The uniaxial stretching was performed so as to be 5.5 times (underwater stretching treatment).
Then, the laminate is immersed in a treatment bath at a liquid temperature of 20 ° C. (an aqueous solution of 3 wt% potassium iodide and 1 wt% ethylene glycol) for 3 seconds to wash the laminate and ethylene in a PVA-based resin layer (polarizing film). Glycol was introduced (cleaning treatment and introduction of ethylene glycol).
Then, it was dried for 4 minutes in an oven kept at 60 ° C. (drying treatment).
In this way, a polarizing film having a thickness of 5.0 μm was formed on the resin substrate. A cycloolefin-based film (manufactured by ZEON, product name "G-Film") as a protective layer (protective film) is bonded to the surface of the polarizing film with a UV curable adhesive (thickness 1.0 μm), and then a resin base is used. The material was peeled off to obtain a polarizing plate having a protective layer / polarizing film structure.
得られた偏光板から吸収軸方向4cm×透過軸方向4cmサイズの試験サンプルを切り出した。この試験サンプルを、粘着剤を介してガラス板に貼り付け、CNC画像測定機(ミツトヨ社製 QickVision(QV606))を用いて図3(b)に示すようなフィルムエッジを含まない4点を測長し、正確に寸法を測定した。その後加熱オーブン(85℃)に120時間投入し、オーブンから取り出し再度正確に寸法を測定した後、吸収軸方向の収縮率を初期長さから算出し、比較例3(後述)を基準として以下のようにして評価した。結果を表1に示す。
◎:比較例3に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例3に対して収縮率が同等
×:比較例3に対して収縮率が大きい(マイナス方向の絶対値がより大きい)
なお、(5)の評価は行わなかった。 A test sample having a size of 4 cm in the absorption axis direction and 4 cm in the transmission axis direction was cut out from the obtained polarizing plate. This test sample is attached to a glass plate via an adhesive, and four points not including the film edge as shown in FIG. 3 (b) are measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.). It was long and the dimensions were measured accurately. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and after measuring the dimensions accurately again, the shrinkage rate in the absorption axis direction was calculated from the initial length, and the following was performed based on Comparative Example 3 (described later). I evaluated it in this way. The results are shown in Table 1.
⊚: Shrinkage rate is smaller than that of Comparative Example 3 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 3 ×: The shrinkage rate is larger than that of Comparative Example 3 (the absolute value in the negative direction is larger).
The evaluation of (5) was not performed.
◎:比較例3に対して収縮率が小さい(マイナス方向の絶対値がより小さい)
△:比較例3に対して収縮率が同等
×:比較例3に対して収縮率が大きい(マイナス方向の絶対値がより大きい)
なお、(5)の評価は行わなかった。 A test sample having a size of 4 cm in the absorption axis direction and 4 cm in the transmission axis direction was cut out from the obtained polarizing plate. This test sample is attached to a glass plate via an adhesive, and four points not including the film edge as shown in FIG. 3 (b) are measured using a CNC image measuring machine (QickVision (QV606) manufactured by Mitutoyo Co., Ltd.). It was long and the dimensions were measured accurately. After that, it was put into a heating oven (85 ° C.) for 120 hours, taken out from the oven, and after measuring the dimensions accurately again, the shrinkage rate in the absorption axis direction was calculated from the initial length, and the following was performed based on Comparative Example 3 (described later). I evaluated it in this way. The results are shown in Table 1.
⊚: Shrinkage rate is smaller than that of Comparative Example 3 (absolute value in the negative direction is smaller)
Δ: The shrinkage rate is the same as that of Comparative Example 3 ×: The shrinkage rate is larger than that of Comparative Example 3 (the absolute value in the negative direction is larger).
The evaluation of (5) was not performed.
[実施例6]
処理浴のエチレングリコール濃度を3重量%としたこと以外は実施例5と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例5と同様の評価に供した。結果を表1に示す。 [Example 6]
A polarizing plate was produced in the same manner as in Example 5 except that the ethylene glycol concentration in the treatment bath was 3% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
処理浴のエチレングリコール濃度を3重量%としたこと以外は実施例5と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例5と同様の評価に供した。結果を表1に示す。 [Example 6]
A polarizing plate was produced in the same manner as in Example 5 except that the ethylene glycol concentration in the treatment bath was 3% by weight. The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
[比較例1]
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例1と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例1と同様の評価に供した。結果を表1に示す。 [Comparative Example 1]
A polarizing plate was prepared in the same manner as in Example 1 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例1と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例1と同様の評価に供した。結果を表1に示す。 [Comparative Example 1]
A polarizing plate was prepared in the same manner as in Example 1 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例2]
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例3と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例3と同様の評価に供した。結果を表1に示す。 [Comparative Example 2]
A polarizing plate was prepared in the same manner as in Example 3 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例3と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例3と同様の評価に供した。結果を表1に示す。 [Comparative Example 2]
A polarizing plate was prepared in the same manner as in Example 3 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 3. The results are shown in Table 1.
[比較例3]
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例5と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例5と同様の評価に供した。結果を表1に示す。 [Comparative Example 3]
A polarizing plate was prepared in the same manner as in Example 5 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
洗浄浴(洗浄液)に高沸点アルコールを添加しなかったこと以外は実施例5と同様にして偏光板を作製した。得られた偏光板(または偏光膜)を実施例5と同様の評価に供した。結果を表1に示す。 [Comparative Example 3]
A polarizing plate was prepared in the same manner as in Example 5 except that high boiling point alcohol was not added to the washing bath (washing liquid). The obtained polarizing plate (or polarizing film) was subjected to the same evaluation as in Example 5. The results are shown in Table 1.
表1から明らかなように、本発明の実施例の偏光板(偏光膜)は、高沸点アルコールを所定量含有することにより、高温環境下における収縮が抑制されている。さらに、実施例1および2の偏光板(偏光膜)は、比較例1に比べてクラックが顕著に抑制されている。
As is clear from Table 1, the polarizing plate (polarizing film) of the embodiment of the present invention contains a predetermined amount of high boiling point alcohol, so that shrinkage in a high temperature environment is suppressed. Further, the polarizing plates (polarizing films) of Examples 1 and 2 have significantly suppressed cracks as compared with Comparative Example 1.
本発明の偏光膜および偏光板は、液晶表示装置に好適に用いられる。
The polarizing film and the polarizing plate of the present invention are suitably used for a liquid crystal display device.
10 偏光膜
20 第1の保護層
30 第2の保護層
100 偏光板 10Polarizing film 20 First protective layer 30 Second protective layer 100 Polarizing plate
20 第1の保護層
30 第2の保護層
100 偏光板 10
Claims (8)
- ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、沸点が100℃以上のアルコールを0.1重量%~1.0重量%含有する、偏光膜。 A polarizing film composed of a polyvinyl alcohol-based resin film containing iodine and containing 0.1% by weight to 1.0% by weight of alcohol having a boiling point of 100 ° C. or higher.
- 前記沸点が100℃以上のアルコールが、グリセリンおよびエチレングリコールからなる群から選択される少なくとも1つである、請求項1に記載の偏光膜。 The polarizing film according to claim 1, wherein the alcohol having a boiling point of 100 ° C. or higher is at least one selected from the group consisting of glycerin and ethylene glycol.
- 厚みが8μm以下である、請求項1または2に記載の偏光膜。 The polarizing film according to claim 1 or 2, wherein the thickness is 8 μm or less.
- 請求項1から3のいずれかに記載の偏光膜と、該偏光膜の少なくとも一方の側に配置された保護層とを有する、偏光板。 A polarizing plate having the polarizing film according to any one of claims 1 to 3 and a protective layer arranged on at least one side of the polarizing film.
- 請求項1から3のいずれかに記載の偏光膜の製造方法であって、
長尺状の熱可塑性樹脂基材の片側にポリビニルアルコール系樹脂層を形成して積層体とすること、
該積層体を延伸および染色して、該ポリビニルアルコール系樹脂層を偏光膜とすること、および
該偏光膜に、沸点が100℃以上のアルコールを導入すること、
を含む、製造方法。 The method for producing a polarizing film according to any one of claims 1 to 3.
Forming a polyvinyl alcohol-based resin layer on one side of a long thermoplastic resin base material to form a laminate,
Stretching and dyeing the laminate to form the polyvinyl alcohol-based resin layer as a polarizing film, and introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film.
Manufacturing method, including. - 前記偏光膜を前記沸点が100℃以上のアルコールを含む処理液に浸漬することを含む、請求項5に記載の製造方法。 The production method according to claim 5, wherein the polarizing film is immersed in a treatment liquid containing an alcohol having a boiling point of 100 ° C. or higher.
- 前記偏光膜に前記沸点が100℃以上のアルコールを導入した後、前記積層体を加熱することをさらに含む、請求項5または6に記載の製造方法。 The production method according to claim 5 or 6, further comprising heating the laminate after introducing alcohol having a boiling point of 100 ° C. or higher into the polarizing film.
- 前記延伸が水中延伸を含む、請求項5から7のいずれかに記載の製造方法。
The production method according to any one of claims 5 to 7, wherein the stretching includes stretching in water.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080017275.XA CN113508317A (en) | 2019-03-08 | 2020-02-18 | Polarizing film, polarizing plate, and method for producing polarizing film |
JP2021504861A JP7267396B2 (en) | 2019-03-08 | 2020-02-18 | Polarizing film, polarizing plate, and method for producing the polarizing film |
KR1020217028175A KR20210137019A (en) | 2019-03-08 | 2020-02-18 | Polarizing film, polarizing plate, and manufacturing method of the polarizing film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019043000 | 2019-03-08 | ||
JP2019-043000 | 2019-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184083A1 true WO2020184083A1 (en) | 2020-09-17 |
Family
ID=72427938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006246 WO2020184083A1 (en) | 2019-03-08 | 2020-02-18 | Polarizing film, polarizing plate, and production method for said polarizing film |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7267396B2 (en) |
KR (1) | KR20210137019A (en) |
CN (1) | CN113508317A (en) |
TW (1) | TW202045600A (en) |
WO (1) | WO2020184083A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316491A (en) * | 2000-05-01 | 2001-11-13 | Kuraray Co Ltd | Polyvinyl alcohol based polymer film and polarizing film |
JP2018028662A (en) * | 2016-08-10 | 2018-02-22 | 住友化学株式会社 | Polarizing film |
WO2018212091A1 (en) * | 2017-05-19 | 2018-11-22 | 日本化薬株式会社 | Polarization element, and polarization plate and liquid crystal display device using same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001343521A (en) | 2000-05-31 | 2001-12-14 | Sumitomo Chem Co Ltd | Polarizing plate and method for manufacturing the same |
KR20100124044A (en) * | 2009-05-18 | 2010-11-26 | 동우 화인켐 주식회사 | Polarizer having improved durability, preparing method thereof and polarizing plate comprising the same |
JP5568800B2 (en) * | 2010-09-08 | 2014-08-13 | 日東電工株式会社 | Method for producing water-resistant optically anisotropic film and image display device |
CN112505818B (en) * | 2012-03-30 | 2022-09-16 | 株式会社可乐丽 | Polyvinyl alcohol polymer film |
TWI548899B (en) * | 2014-03-14 | 2016-09-11 | Nitto Denko Corp | A method for producing an optical film laminate comprising a polarizing film, and a method of manufacturing the same, |
JPWO2016104741A1 (en) * | 2014-12-26 | 2017-09-28 | 富士フイルム株式会社 | Polarizer, polarizing plate and image display device |
ES2640838T3 (en) * | 2015-03-26 | 2017-11-06 | Carl Zeiss Vision International Gmbh | Method to produce polarized glasses |
JP6776566B2 (en) * | 2015-05-29 | 2020-10-28 | 三菱ケミカル株式会社 | Polyvinyl alcohol-based film, polarizing film, and method for producing polyvinyl alcohol-based film |
WO2017138551A1 (en) * | 2016-02-09 | 2017-08-17 | 株式会社クラレ | Polarizing film and method for producing same |
JP6737609B2 (en) * | 2016-03-22 | 2020-08-12 | 日東電工株式会社 | Method for producing one-sided protective polarizing film with adhesive layer |
JP6409142B1 (en) * | 2018-02-13 | 2018-10-17 | 日東電工株式会社 | Polarizing film, polarizing plate, and manufacturing method of polarizing film |
-
2020
- 2020-02-18 WO PCT/JP2020/006246 patent/WO2020184083A1/en active Application Filing
- 2020-02-18 CN CN202080017275.XA patent/CN113508317A/en active Pending
- 2020-02-18 KR KR1020217028175A patent/KR20210137019A/en unknown
- 2020-02-18 JP JP2021504861A patent/JP7267396B2/en active Active
- 2020-02-26 TW TW109106324A patent/TW202045600A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316491A (en) * | 2000-05-01 | 2001-11-13 | Kuraray Co Ltd | Polyvinyl alcohol based polymer film and polarizing film |
JP2018028662A (en) * | 2016-08-10 | 2018-02-22 | 住友化学株式会社 | Polarizing film |
WO2018212091A1 (en) * | 2017-05-19 | 2018-11-22 | 日本化薬株式会社 | Polarization element, and polarization plate and liquid crystal display device using same |
Also Published As
Publication number | Publication date |
---|---|
JP7267396B2 (en) | 2023-05-01 |
KR20210137019A (en) | 2021-11-17 |
TW202045600A (en) | 2020-12-16 |
CN113508317A (en) | 2021-10-15 |
JPWO2020184083A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021095527A1 (en) | Polarizing film, polarizing plate, and image display device | |
WO2020262213A1 (en) | Polarization plate production method | |
JP2023130424A (en) | polarizing film | |
JP2023090724A (en) | Polarizing plate | |
JP7165805B2 (en) | Polarizing film, polarizing plate, and method for producing the polarizing film | |
WO2020255779A1 (en) | Polarizing film, polarizing plate, and method for producing said polarizing film | |
WO2020203312A1 (en) | Polarization film, polarization plate, and production method for said polarization film | |
WO2021095526A1 (en) | Polarizing film, polarizing plate, and image display device | |
WO2020184083A1 (en) | Polarizing film, polarizing plate, and production method for said polarizing film | |
JP7165813B2 (en) | Polarizing film, polarizing plate, and method for producing the polarizing film | |
WO2020262067A1 (en) | Polarizing plate and method for producing said polarizing plate | |
JP7300326B2 (en) | Polarizing plate and method for producing the polarizing plate | |
WO2020261776A1 (en) | Polarizing film, polarizing plate, and method for producing said polarizing film | |
WO2020261778A1 (en) | Polarizing film, polarizing plate, and method for producing said polarizing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20770781 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021504861 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20770781 Country of ref document: EP Kind code of ref document: A1 |