WO2020262067A1 - Polarizing plate and method for producing said polarizing plate - Google Patents

Polarizing plate and method for producing said polarizing plate Download PDF

Info

Publication number
WO2020262067A1
WO2020262067A1 PCT/JP2020/023387 JP2020023387W WO2020262067A1 WO 2020262067 A1 WO2020262067 A1 WO 2020262067A1 JP 2020023387 W JP2020023387 W JP 2020023387W WO 2020262067 A1 WO2020262067 A1 WO 2020262067A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
based resin
polarizing film
polarizing plate
weight
Prior art date
Application number
PCT/JP2020/023387
Other languages
French (fr)
Japanese (ja)
Inventor
真由美 森崎
後藤 周作
亮 嶋津
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217041682A priority Critical patent/KR20220024113A/en
Priority to CN202080046229.2A priority patent/CN114026472A/en
Publication of WO2020262067A1 publication Critical patent/WO2020262067A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate and a method for producing the polarizing plate.
  • a liquid crystal display device which is a typical image display device, has polarizing films arranged on both sides of the liquid crystal cell due to the image forming method.
  • a method for producing a polarizing film for example, a method has been proposed in which a laminate having a resin base material and a polyvinyl alcohol-based resin layer is stretched and then dyed to obtain a polarizing film on the resin base material. (For example, Patent Document 1).
  • a thin polarizing film can be obtained, which is attracting attention as it can contribute to the thinning of image display devices in recent years.
  • the thin polarizing film is required to have further improved durability in a high temperature and high humidity environment.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a polarizing plate having a high single transmittance and excellent durability in a high temperature and high humidity environment, and such a polarizing plate.
  • the present invention is to provide a method for manufacturing a polarizing plate.
  • a polarizing plate having a polarizing film made of a polyvinyl alcohol-based resin film containing iodine and an adjacent layer containing chlorine provided on at least one surface of the polarizing film.
  • the adjacent layer further comprises a polyvinyl alcohol-based resin.
  • the concentration of chlorine in the adjacent layer is 0.3% by weight or more.
  • the chlorine is derived from hydrogen chloride.
  • the thickness of the polarizing film is 8 ⁇ m or less.
  • the iodine concentration in the polarizing film is 3% by weight or more.
  • the content of the alkali metal and the alkaline earth metal in the adjacent layer is 0.1% by weight or less.
  • the method for producing a polarizing plate includes applying a polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride to at least one surface of a polarizing film to form an adjacent layer.
  • a production method is provided in which the pH of the polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride is 2.5 or less.
  • a polarizing plate having a high single transmittance and excellent durability in a high temperature and high humidity environment can be obtained by providing a layer containing chlorine adjacent to the polarizing film.
  • the polarizing plate according to the embodiment of the present invention has a polarizing film made of a polyvinyl alcohol-based resin film containing iodine, and an adjacent layer containing chlorine provided on at least one surface of the polarizing film.
  • the polarizing plate may further have a protective layer, if necessary.
  • the chlorine contained in the adjacent layer is preferably derived from hydrogen chloride, and the chlorine concentration in the adjacent layer is preferably 0.3% by weight or more.
  • the effect of the adjacent layer can be remarkable in the thin polarizing film.
  • the thin polarizing film has a higher iodine concentration than the thick polarizing film, the stability of iodine is insufficient, and the humidification durability tends to be insufficient.
  • the humidification durability is remarkably improved by providing the adjacent layer. Can be improved.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 10a has a polarizing film 12 and an adjacent layer 14 provided adjacent to one surface of the polarizing film 12. Unlike the illustrated example, the adjacent layers may be provided on both sides of the polarizing film.
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention.
  • the polarizing plate 10b is a first arrangement of the polarizing film 12 and the adjacent layer 14 provided adjacent to one surface of the polarizing film 12 and the side opposite to the side provided with the adjacent layer 14 of the polarizing film 12.
  • the protective layer 16 is provided with a second protective layer 18 arranged on the side opposite to the side on which the polarizing film 12 of the adjacent layer 14 is provided.
  • One of the first protective layer 16 and the second protective layer 18 may be omitted.
  • the protective layer on the adjacent layer side can be typically omitted.
  • One of the first protective layer and the second protective layer may be a resin base material used for producing the polarizing plate described in item B.
  • the polarizing film is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine as described above.
  • the PVA-based resin constituting the PVA-based resin film (substantially, a polarizing film) contains an acetacetyl-modified PVA-based resin.
  • a polarizing film having a desired mechanical strength can be obtained.
  • the blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total PVA-based resin is 100% by weight. .. When the blending amount is in such a range, a polarizing film having more excellent mechanical strength can be obtained.
  • the thickness of the polarizing film is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, further preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the lower limit of the thickness of the polarizing film can be 1 ⁇ m in one embodiment and 2 ⁇ m in another embodiment.
  • Such a thickness is realized, for example, by producing a polarizing film using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material, as will be described later. obtain.
  • the thickness of the polarizing film can be, for example, 12 ⁇ m to 35 ⁇ m.
  • the iodine concentration in the polarizing film is preferably 3% by weight or more, more preferably 4% by weight to 10% by weight, and further preferably 4% by weight to 8% by weight.
  • "iodine concentration” means the amount of all iodine contained in a polarizing film. More specifically, the iodine in the polarizing film I -, I 2, I 3 -, PVA / I 3 - complex, PVA / I 5 - where present in the form of such complexes, iodine concentrations herein , Means the concentration of iodine that includes all of these forms.
  • the iodine concentration can be calculated from, for example, the fluorescence X-ray intensity by fluorescent X-ray analysis and the film (polarizing film) thickness.
  • the polarizing film has a simple substance transmittance of preferably 42.0% or more, more preferably 43.0% or more, and further preferably 44.0% or more.
  • the simple substance transmittance is preferably 47.0% or less, more preferably 45.0% or less.
  • a thin polarizing film having a high single transmittance may have reduced durability in a high temperature and high humidity environment.
  • the thin polarizing film has such a high single transmittance. Even if it exists, excellent durability in a high temperature and high humidity environment can be realized.
  • the simple substance transmittance, the orthogonal transmittance and the degree of polarization mean the simple substance transmittance, the orthogonal transmittance and the degree of polarization before the durability test.
  • the degree of polarization of the polarizing film is preferably 99.85% or more, more preferably 99.90% or more, and further preferably 99.95% or more.
  • the degree of polarization is preferably 99.998% or less. According to the embodiment of the present invention, it is possible to achieve both a high single transmittance and a high degree of polarization as described above, and to realize excellent durability in a high temperature and high humidity environment as described later. it can.
  • the simple substance transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • the single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53.
  • the degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 x 100
  • the transmittance (single transmittance) of a thin polarizing film of 8 ⁇ m or less is typically a polarizing film (refractive index of the surface: 1.53) and a protective layer (protective film) (refraction).
  • the laminate with the rate: 1.50) is measured using an ultraviolet-visible spectrophotometer.
  • the reflectance at the interface of each layer may change, and as a result, the measured value of transmittance may change. ..
  • the measured value of the transmittance may be corrected according to the refractive index of the surface of the protective layer in contact with the air interface.
  • the correction value C of the transmittance with reflectance R 1 (transmission axis reflectance) of light polarized parallel to the transmission axis at the interface between the protective layer and the air layer is expressed by the following equation.
  • R 0 ((1.50-1) 2 /(1.50+1) 2) ⁇ (T 1/100)
  • R 1 ((n 1 -1 ) 2 / (n 1 +1) 2) ⁇ (T 1/100)
  • R 0 is the transmittance of the transmission axis when a protective layer having a refractive index of 1.50 is used
  • n 1 is the refractive index of the protective layer to be used
  • T 1 is the transmittance of the polarizing film.
  • the correction amount C is about 0.2%.
  • the amount of change in the correction value C when the transmittance T 1 of the polarizing film is changed by 2% is 0.03% or less, and the transmittance of the polarizing film is the correction value C.
  • the protective layer has absorption other than surface reflection, appropriate correction can be performed according to the amount of absorption.
  • the amount of change ⁇ P in the degree of polarization of the polarizing film after a durability test at a temperature of 60 ° C. and a relative humidity of 95% for 240 hours is typically ⁇ 0.05% or more, preferably ⁇ It can be 0.03% or more, more preferably ⁇ 0.01% or more.
  • the polarizing film may be produced by using a single PVA-based resin film, or may be produced by using a laminate of two or more layers including a PVA-based resin layer.
  • Specific examples of the polarizing film obtained by using the laminate include a polarizing film obtained by using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material. .. Details of the method for producing such a polarizing film will be described later in Section B.
  • Adjacent layers contain chlorine and typically further contain a base resin for forming the layer.
  • chlorine may be contained in the form of a chlorine-containing compound, may be contained in the form of chlorine ions derived from the chlorine-containing compound, or both.
  • the concentration of chlorine in the adjacent layer is preferably 0.3% by weight or more, more preferably 0.5% by weight to 10.0% by weight, and further preferably 1.0% by weight to 8.0% by weight.
  • the concentration of chlorine in the adjacent layer can be calculated from, for example, the fluorescence X-ray intensity by fluorescent X-ray analysis and the thickness of the adjacent layer.
  • the chlorine contained in the adjacent layer is preferably derived from a chlorine-containing compound other than the chloride of an alkali metal or an alkaline earth metal.
  • the content (total content) of the alkali metal and the alkaline earth metal in the adjacent layer is typically 0.1% by weight or less, preferably 0.05% by weight or less.
  • an acid containing chlorine such as hydrogen chloride and oxo acid of chlorine (for example, chloric acid and perchloric acid) is preferable. It can be exemplified. Of these, hydrogen chloride can be preferably used.
  • the effect of the present invention is exhibited through the action of protons (H + ) derived from the acid. Therefore, the effect of the present invention can be preferably obtained by blending an acid containing chlorine so that the chlorine concentration in the adjacent layer is within the above-mentioned preferable range.
  • the base resin examples include water-soluble resins such as PVA-based resins and acrylic resins. Of these, PVA-based resins can be preferably used.
  • the PVA-based resin has excellent adhesion to the polarizing film, can easily form an aqueous solution having excellent operability, and can impart appropriate mechanical strength to the obtained adjacent layer.
  • any suitable PVA-based resin can be used. Examples of the PVA-based resin include those described later in Section B-1-1 regarding the method for producing a polarizing plate.
  • the thickness of the adjacent layer can be preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.5 ⁇ m or more. If the adjacent layer is too thin, the effect of improving durability in a high temperature and high humidity environment may be insufficient. On the other hand, the thickness of the adjacent layer can be 3 ⁇ m or less.
  • the first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizing film.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based.
  • TAC triacetyl cellulose
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
  • glassy polymers such as siloxane-based polymers can also be mentioned.
  • the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
  • the polymer film can be, for example, an extruded product of the above resin composition.
  • the thickness of the protective layer (outer protective layer) arranged on the opposite side of the display panel when the polarizing plate is applied to the image display device is typically 300 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 5 ⁇ m. It is ⁇ 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
  • the thickness of the protective layer (inner protective layer) arranged on the display panel side when the polarizing plate is applied to the image display device is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and further preferably 10 ⁇ m to 60 ⁇ m. ..
  • the inner protective layer is a retardation layer with any suitable retardation value.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
  • the method for producing a polarizing plate according to the embodiment of the present invention includes applying an aqueous solution of a PVA-based resin containing hydrogen chloride to at least one surface of a polarizing film to form an adjacent layer.
  • the pH of the aqueous resin solution is preferably 2.5 or less.
  • the polarizing plate according to Item A can be preferably obtained.
  • a PVA-based resin layer is formed on one side of a long thermoplastic resin base material to form a laminated body.
  • the laminate is stretched and dyed to form the PVA-based resin layer as a polarizing film, and an aqueous PVA-based resin containing hydrogen chloride is applied to at least one surface of the polarizing film to form an adjacent layer.
  • a polarizing plate having excellent durability in a high-temperature and high-humidity environment can be realized.
  • the laminated body is subjected to an aerial auxiliary stretching treatment, a dyeing treatment, and an underwater stretching treatment in this order to form a PVA-based resin layer into a polarizing film.
  • the manufacturing method can further include performing a drying shrinkage treatment of shrinking the laminate in the width direction by 2% or more by heating the laminated body after the stretching treatment in water while transporting it in the longitudinal direction.
  • the application of the PVA-based resin aqueous solution containing hydrogen chloride may be performed after the underwater stretching treatment and before the drying shrinkage treatment, or after the drying shrinkage treatment.
  • thermoplastic resin base material any appropriate method can be adopted.
  • a coating liquid containing a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
  • any appropriate method can be adopted as the application method of the coating liquid.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned.
  • the coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
  • the thickness of the PVA-based resin layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • the thermoplastic resin base material Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
  • thermoplastic resin base material Any suitable thermoplastic resin film can be adopted as the thermoplastic resin base material. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference. A polyester resin is preferably used, and a polyethylene terephthalate resin is more preferable.
  • the coating liquid contains PVA-based resin.
  • the coating liquid is a solution in which a PVA-based resin is dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more.
  • the solvent is preferably water.
  • any suitable resin can be used as the PVA-based resin.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned.
  • Polyvinyl alcohol is obtained by saponification of polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. ..
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the PVA-based resin preferably contains an acetoacetyl-modified PVA-based resin. With such a configuration, a polarizing film having a desired mechanical strength can be obtained.
  • the blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total PVA-based resin is 100% by weight. .. When the blending amount is in such a range, a polarizing film having more excellent mechanical strength can be obtained.
  • the PVA-based resin concentration in the coating liquid is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that adheres to the thermoplastic resin base material can be formed.
  • the coating liquid preferably further contains a halide.
  • a halide any suitable halide can be adopted.
  • Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
  • the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing film may become cloudy.
  • the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased.
  • the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease.
  • the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the tendency of the degree of orientation to decrease is remarkable.
  • stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
  • stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
  • a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in air before being stretched in boric acid water.
  • Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
  • the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • Additives may be further added to the coating liquid.
  • the additive include a plasticizer, a surfactant and the like.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
  • thermoplastic resin base material can be stretched while suppressing crystallization, and the thermoplastic resin can be stretched in water (preferably boric acid in water).
  • water stretching preferably boric acid in water
  • the PVA-based resin when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, even when the PVA-based resin is applied on the thermoplastic resin base material, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. It will be possible.
  • the stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Good, but in order to obtain high optical properties, free end stretching can be positively adopted.
  • the aerial stretching treatment includes a heating roll stretching step of stretching the laminated body in the longitudinal direction due to a difference in peripheral speed between the heating rolls.
  • the aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step.
  • the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first.
  • the zone stretching step may be omitted.
  • the zone stretching step and the heating roll stretching step are performed in this order.
  • the film in the tenter stretching machine, is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio).
  • the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily. Preferably, it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction.
  • the shrinkage rate in the width direction (1 / stretching ratio) 1/2 .
  • the aerial auxiliary extension may be performed in one step or in multiple steps.
  • the draw ratio is the product of the draw ratios of each stage.
  • the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the draw ratio in the aerial auxiliary stretching is preferably 2.0 to 3.5 times.
  • the maximum draw ratio when the aerial auxiliary stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, still more preferably 6.0 times, the original length of the laminated body. That is all.
  • the "maximum draw ratio" means the draw ratio immediately before the laminate breaks, and separately confirms the draw ratio at which the laminate breaks, and means a value 0.2 lower than that value.
  • the stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like.
  • the stretching temperature is preferably the glass transition temperature (Tg) or more of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher.
  • the upper limit of the stretching temperature is preferably 170 ° C.
  • Insolubilization treatment, dyeing treatment and cross-linking treatment If necessary, an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment.
  • the insolubilization treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution.
  • the dyeing treatment is typically performed by dyeing the PVA-based resin layer with iodine.
  • a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
  • the cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the crosslinking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580.
  • the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical characteristics can be produced.
  • any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected.
  • the stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminate described later is the product of the draw ratios of each stage.
  • the underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching).
  • a boric acid aqueous solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer.
  • boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding.
  • the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing film having excellent optical characteristics can be produced.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
  • iodide is added to the above stretching bath (boric acid aqueous solution).
  • iodide elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
  • Specific examples of iodide are as described above.
  • the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
  • the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C. to 85 ° C., more preferably 60 ° C. to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be stretched well even when the plasticization of the thermoplastic resin base material by water is taken into consideration.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the stretching ratio by stretching in water is preferably 1.5 times or more, more preferably 3.0 times or more.
  • the total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution containing an iodide such as potassium iodide.
  • the iodide concentration in the cleaning liquid is preferably 0.5% by weight to 10% by weight, preferably 0.5% by weight to 5% by weight, and more preferably 1% by weight to 4% by weight.
  • the temperature of the cleaning liquid is usually 10 ° C to 50 ° C, preferably 20 ° C to 35 ° C.
  • the immersion time is usually 1 second to 1 minute, preferably 10 seconds to 1 minute.
  • drying shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used.
  • heating roll heating roll drying method
  • the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state where it can withstand the shrinkage of the PVA-based resin layer (polarizing film) due to drying, and curling is suppressed.
  • the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
  • the optical characteristics of the polarizing film can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 3 is a schematic view showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA-based resin layer (polarizing film) and the surface of the thermoplastic resin base material.
  • the transport rolls R1 to R6 may be arranged so as to continuously heat only the surface (for example, the surface of the thermoplastic resin base material).
  • Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
  • the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
  • the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
  • the number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means.
  • a heating furnace provided with a blowing means.
  • the temperature of hot air drying is preferably 30 ° C to 100 ° C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
  • Adjacent Layer A PVA-based resin aqueous solution containing hydrogen chloride is applied to the surface of the polarizing film of the laminate (polarizing plate) of the thermoplastic resin base material and the polarizing film obtained as described above to form an adjacent layer. Form. As a result, a laminate (polarizing plate) of a thermoplastic resin base material / polarizing film / adjacent layer can be obtained. In this case, typically, the thermoplastic resin base material can be used as it is as the protective layer of the polarizing film.
  • a resin film (which serves as a protective layer) is bonded to the surface of the polarizing film of the laminate of the thermoplastic resin base material and the polarizing film to form a laminated body of the protective layer / polarizing film / thermoplastic resin base material.
  • the thermoplastic resin base material is peeled off from the laminated body to prepare a laminated body (polarizing plate) of a protective layer / polarizing film.
  • a PVA-based resin aqueous solution containing hydrogen chloride is applied to the surface of the polarizing film of the obtained polarizing plate.
  • a laminated body (polarizing plate) of the protective layer / polarizing film / adjacent layer can be obtained.
  • the PVA-based resin aqueous solution is typically an aqueous solution in which hydrogen chloride and PVA-based resin are dissolved in water.
  • the PVA-based resin is as described in Section B-1-1.
  • the concentration of the PVA-based resin in the above-mentioned PVA-based resin aqueous solution can be set in consideration of operability (coatability).
  • the concentration can be adjusted, for example, so that the viscosity of the PVA-based resin aqueous solution is 1 mPa ⁇ sec to 300 mPa ⁇ sec.
  • the concentration of the PVA-based resin in the PVA-based resin aqueous solution can be, for example, 0.1% by weight to 15% by weight, more preferably 0.5% by weight to 10% by weight.
  • the concentration of hydrogen chloride in the PVA-based resin aqueous solution is appropriately set in consideration of the chlorine concentration desired for the adjacent layer (in other words, the proton (H + ) concentration desired for the adjacent layer).
  • the pH of the PVA-based resin aqueous solution is preferably 2.5 or less, more preferably 2.0 or less, still more preferably 1.5 or less.
  • the lower limit of the pH of the PVA-based resin aqueous solution is not particularly limited, but may be 0.5 or more in consideration of leaving stability.
  • the adjacent layer is formed by applying the above PVA-based resin aqueous solution to the surface of the polarizing film and drying it if necessary.
  • the coating method any appropriate method can be adopted.
  • the method described in Section B-1-1 can be mentioned as a method of applying a coating liquid for forming a PVA-based resin layer (polarizing film).
  • the drying temperature is, for example, 40 ° C. to 100 ° C.
  • the drying time is, for example, 1 minute to 20 minutes.
  • Section B-2 Method for manufacturing a polarizing plate using a single PVA-based resin film
  • a polarizing plate using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material is manufactured.
  • the present invention can also be applied to a method for producing a polarizing plate using a single PVA-based resin film.
  • a PVA-based resin film having self-supporting property is stretched and dyed to form the PVA-based resin film as a polarizing film, and a PVA-based resin aqueous solution containing hydrogen chloride is used. Is applied to at least one surface of the polarizing film to form an adjacent layer.
  • a long PVA-based resin film is uniaxially stretched in the long direction by a roll stretching machine and subjected to swelling, dyeing, cross-linking, and cleaning treatment to prepare a polarizing film, and after the cleaning treatment.
  • a PVA-based resin aqueous solution containing hydrogen chloride is applied to the polarizing film.
  • the application of the PVA-based resin aqueous solution containing hydrogen chloride can be carried out in the same manner as in Item B-1-7.
  • the degree of polarization was determined using the following formula.
  • Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 x 100
  • glass from which the alkaline component has been removed non-alkali glass
  • the glass is placed in an oven set at a temperature of 60 ° C. and a relative humidity of 95% for 240 hours.
  • a durability test was performed, and the degree of polarization P 240 after the durability test was determined in the same manner as described above.
  • Chlorine concentration (Cl concentration) in the adjacent layer The chlorine concentration in the film (adjacent layer) is determined by the following procedure using a scanning fluorescent X-ray analyzer (ZSX PRIMUS IV manufactured by Rigaku): First, thickness ( ⁇ m), chlorine concentration (% by weight). Measures the fluorescent X-ray intensity (kcps) of a known sample (for example, a PVA-based resin film to which a certain amount of NaCl is added) to prepare a calibration curve.
  • a and B are constants that differ depending on the measuring device.
  • ZSX PRIMUS IV measured sample diameter: 30 mm
  • A is "0.0024"
  • B is "0.0012”.
  • Sodium concentration (Na concentration) in the adjacent layer The sodium concentration in the film (adjacent layer) is determined by the following procedure using a scanning fluorescent X-ray analyzer (ZSX PRIMUS IV manufactured by Rigaku): First, thickness ( ⁇ m), sodium concentration (% by weight). Measures the fluorescent X-ray intensity (kcps) of a known sample (for example, a PVA-based resin film to which a certain amount of NaCl is added) to prepare a calibration curve.
  • kcps fluorescent X-ray intensity
  • a and B are constants that differ depending on the measuring device. For example, when ZSX PRIMUS IV (measurement sample diameter: 30 mm) is used as the measuring device, A is "0.0054" and B is "0.0027".
  • thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment.
  • PVA-based resin 100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9:
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • the polarizing plate finally obtained is placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water).
  • a polarizing film having a thickness of 5.0 ⁇ m is formed on the resin base material, and a cycloolefin-based film (manufactured by ZEON, product name “G-Film”) as a protective layer (protective film) is formed on the surface of the polarizing film.
  • a cycloolefin-based film manufactured by ZEON, product name “G-Film” as a protective layer (protective film) was formed on the surface of the polarizing film.
  • a UV curable adhesive thickness 1.0 ⁇ m
  • the simple substance transmittance (Ts) of the obtained laminated body is 44.0%, because the surface refractive index of the polarizing film / protective layer constituting the laminated body is 1.53 / 1.53.
  • a PVA-based resin aqueous solution containing hydrogen chloride (HCl-containing PVA aqueous solution) was applied to the surface of the polarizing film of the laminate.
  • the HCl-containing PVA aqueous solution contained 0.7% by weight of hydrogen chloride and 3.5% by weight of polyvinyl alcohol (degree of polymerization 2600, degree of saponification 99.98 mol%), and had a pH of 0.9.
  • the coating film of the HCl-containing PVA aqueous solution was dried at 60 ° C. for 5 minutes to form an adjacent layer having a thickness of 0.4 ⁇ m to obtain a polarizing plate having a protective layer / polarizing film / adjacent layer structure.
  • Table 1 shows the Cl concentration and Na concentration in the ⁇ P and the adjacent layer of the obtained polarizing plate (substantially, the polarizing film).
  • Example 1-2 A polarizing plate was prepared in the same manner as in Example 1-1 except that the HCl-containing PVA aqueous solution was applied so that the thickness of the adjacent layer was 1.2 ⁇ m.
  • the Cl concentration and Na concentration in ⁇ P and the adjacent layer are shown in Table 1.
  • Example 2-1 The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 1.2 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.35% by weight) and the thickness of the adjacent layer was 1.2 ⁇ m.
  • a polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ⁇ P and the adjacent layer are shown in Table 1.
  • Example 2-2 The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 1.6 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.15% by weight) and the thickness of the adjacent layer was 1.1 ⁇ m.
  • a polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ⁇ P and the adjacent layer are shown in Table 1.
  • Example 2-3 The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was set to 1.8 (hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.09% by weight) and the thickness of the adjacent layer was 1.5 ⁇ m.
  • a polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ⁇ P and the adjacent layer are shown in Table 1.
  • Example 2-4 The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 2.0 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.06% by weight) and the thickness of the adjacent layer was 1.2 ⁇ m.
  • a polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ⁇ P and the adjacent layer are shown in Table 1.
  • Table 1 shows ⁇ P of the obtained polarizing plate (substantially, a polarizing film).
  • the degree of polarization P 0 of the obtained polarizing plate (substantially a polarizing film) before the durability test was 99.90%, which is the polarizing plate of Examples and Comparative Examples provided with the adjacent layer. It was almost the same value as P 0 of.
  • the polarizing plate of the embodiment of the present invention has excellent durability in a high temperature and high humidity environment.
  • the polarizing plate of the present invention is suitably used for a liquid crystal display device.
  • Polarizing plate 12 Polarizing film 14 Adjacent layer 16 First protective layer 18 Second protective layer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a polarizing plate which has high single transmittance and has excellent durability in a high-temperature and high-humidity environment. A polarizing plate of the present invention includes: a polarizing film made of a polyvinyl alcohol-based resin film containing iodine; and an adjacent layer which is provided on at least one surface of the polarizing film and contains chlorine.

Description

偏光板および該偏光板の製造方法Polarizing plate and method for manufacturing the polarizing plate
 本発明は、偏光板および該偏光板の製造方法に関する。 The present invention relates to a polarizing plate and a method for producing the polarizing plate.
 代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光膜が配置されている。偏光膜の製造方法としては、例えば、樹脂基材とポリビニルアルコール系樹脂層とを有する積層体を延伸し、次に染色処理を施して、樹脂基材上に偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、近年の画像表示装置の薄型化に寄与し得るとして注目されている。しかし、薄型偏光膜においては、高温高湿環境下における耐久性のさらなる向上が求められている。 A liquid crystal display device, which is a typical image display device, has polarizing films arranged on both sides of the liquid crystal cell due to the image forming method. As a method for producing a polarizing film, for example, a method has been proposed in which a laminate having a resin base material and a polyvinyl alcohol-based resin layer is stretched and then dyed to obtain a polarizing film on the resin base material. (For example, Patent Document 1). According to such a method, a thin polarizing film can be obtained, which is attracting attention as it can contribute to the thinning of image display devices in recent years. However, the thin polarizing film is required to have further improved durability in a high temperature and high humidity environment.
特開2001-343521号公報Japanese Unexamined Patent Publication No. 2001-343521
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高い単体透過率を有し、かつ、高温高湿環境下における耐久性に優れた偏光板およびそのような偏光板の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a polarizing plate having a high single transmittance and excellent durability in a high temperature and high humidity environment, and such a polarizing plate. The present invention is to provide a method for manufacturing a polarizing plate.
 本発明の1つの局面によれば、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成された偏光膜と、該偏光膜の少なくとも一方の面に設けられた塩素を含む隣接層と、を有する、偏光板が提供される。
 1つの実施形態において、上記隣接層が、ポリビニルアルコール系樹脂をさらに含む。
 1つの実施形態において、上記隣接層における塩素の濃度が、0.3重量%以上である。
 1つの実施形態において、上記塩素が、塩化水素由来である。
 1つの実施形態において、上記偏光膜の厚みが、8μm以下である。
 1つの実施形態において、上記偏光膜中のヨウ素濃度が、3重量%以上である。
 1つの実施形態において、上記記隣接層におけるアルカリ金属およびアルカリ土類金属の含有量が、0.1重量%以下である。
 本発明の別の局面によれば、上記偏光板の製造方法であって、塩化水素を含むポリビニルアルコール系樹脂水溶液を偏光膜の少なくとも一方の面に塗布して、隣接層を形成することを含み、該塩化水素を含むポリビニルアルコール系樹脂水溶液のpHが、2.5以下である、製造方法が提供される。
According to one aspect of the present invention, a polarizing plate having a polarizing film made of a polyvinyl alcohol-based resin film containing iodine and an adjacent layer containing chlorine provided on at least one surface of the polarizing film. Is provided.
In one embodiment, the adjacent layer further comprises a polyvinyl alcohol-based resin.
In one embodiment, the concentration of chlorine in the adjacent layer is 0.3% by weight or more.
In one embodiment, the chlorine is derived from hydrogen chloride.
In one embodiment, the thickness of the polarizing film is 8 μm or less.
In one embodiment, the iodine concentration in the polarizing film is 3% by weight or more.
In one embodiment, the content of the alkali metal and the alkaline earth metal in the adjacent layer is 0.1% by weight or less.
According to another aspect of the present invention, the method for producing a polarizing plate includes applying a polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride to at least one surface of a polarizing film to form an adjacent layer. A production method is provided in which the pH of the polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride is 2.5 or less.
 本発明によれば、高い単体透過率を有し、かつ、高温高湿環境下における耐久性に優れた偏光板を得ることができる。このような偏光板は、塩素を含む層を偏光膜に隣接して設けることによって得られ得る。 According to the present invention, it is possible to obtain a polarizing plate having a high single transmittance and excellent durability in a high temperature and high humidity environment. Such a polarizing plate can be obtained by providing a layer containing chlorine adjacent to the polarizing film.
本発明の1つの実施形態による偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate by one Embodiment of this invention. 本発明の1つの実施形態による偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate by one Embodiment of this invention. 加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is the schematic which shows an example of the drying shrinkage treatment using a heating roll.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.偏光板
 本発明の実施形態による偏光板は、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成された偏光膜と、該偏光膜の少なくとも一方の面に設けられた塩素を含む隣接層と、を有する。偏光板は、必要に応じて、保護層をさらに有し得る。本発明の実施形態において、隣接層に含まれる塩素は、好ましくは塩化水素由来であり、隣接層中の塩素濃度は、好ましくは0.3重量%以上である。このような層を偏光膜に隣接して設けることにより、偏光膜の高温高湿環境下における耐久性を向上することができ、代表的には、後述するΔPを所定の範囲内にすることができる。当該隣接層の効果は、薄型偏光膜において顕著であり得る。薄型偏光膜は、厚い偏光膜に比べてヨウ素濃度が高く、ヨウ素の安定性が不十分であり、加湿耐久性が不十分になりやすいところ、上記隣接層を設けることにより加湿耐久性を顕著に改善することができる。
A. Polarizing Plate The polarizing plate according to the embodiment of the present invention has a polarizing film made of a polyvinyl alcohol-based resin film containing iodine, and an adjacent layer containing chlorine provided on at least one surface of the polarizing film. The polarizing plate may further have a protective layer, if necessary. In the embodiment of the present invention, the chlorine contained in the adjacent layer is preferably derived from hydrogen chloride, and the chlorine concentration in the adjacent layer is preferably 0.3% by weight or more. By providing such a layer adjacent to the polarizing film, the durability of the polarizing film in a high temperature and high humidity environment can be improved, and typically, ΔP, which will be described later, can be set within a predetermined range. it can. The effect of the adjacent layer can be remarkable in the thin polarizing film. The thin polarizing film has a higher iodine concentration than the thick polarizing film, the stability of iodine is insufficient, and the humidification durability tends to be insufficient. However, the humidification durability is remarkably improved by providing the adjacent layer. Can be improved.
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板10aは、偏光膜12と、偏光膜12の一方の面に隣接して設けられた隣接層14と、を有する。図示例とは異なり、隣接層は、偏光膜の両面に設けられていてもよい。 FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 10a has a polarizing film 12 and an adjacent layer 14 provided adjacent to one surface of the polarizing film 12. Unlike the illustrated example, the adjacent layers may be provided on both sides of the polarizing film.
 図2は、本発明の別の実施形態による偏光板の概略断面図である。偏光板10bは、偏光膜12と、偏光膜12の一方の面に隣接して設けられた隣接層14と、偏光膜12の隣接層14が設けられた側と反対側に配置された第1の保護層16と、隣接層14の偏光膜12が設けられた側と反対側に配置された第2の保護層18とを有する。第1の保護層16および第2の保護層18のうち一方の保護層は省略されてもよい。偏光膜の一方の面のみに隣接層が設けられている場合には、代表的には、隣接層側の保護層(図示例においては、第2の保護層18)が省略され得る。なお、第1の保護層および第2の保護層のうち一方は、B項で記載する偏光板の製造に用いられる樹脂基材であってもよい。 FIG. 2 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention. The polarizing plate 10b is a first arrangement of the polarizing film 12 and the adjacent layer 14 provided adjacent to one surface of the polarizing film 12 and the side opposite to the side provided with the adjacent layer 14 of the polarizing film 12. The protective layer 16 is provided with a second protective layer 18 arranged on the side opposite to the side on which the polarizing film 12 of the adjacent layer 14 is provided. One of the first protective layer 16 and the second protective layer 18 may be omitted. When the adjacent layer is provided only on one surface of the polarizing film, the protective layer on the adjacent layer side (second protective layer 18 in the illustrated example) can be typically omitted. One of the first protective layer and the second protective layer may be a resin base material used for producing the polarizing plate described in item B.
A-1.偏光膜
 偏光膜は、上記のとおり、ヨウ素を含むポリビニルアルコール(PVA)系樹脂フィルムで構成される。好ましくは、PVA系樹脂フィルム(実質的には、偏光膜)を構成するPVA系樹脂は、アセトアセチル変性されたPVA系樹脂を含む。このような構成であれば、所望の機械的強度を有する偏光膜が得られ得る。アセトアセチル変性されたPVA系樹脂の配合量は、PVA系樹脂全体を100重量%としたときに、好ましくは5重量%~20重量%であり、より好ましくは8重量%~12重量%である。配合量がこのような範囲であれば、より優れた機械的強度を有する偏光膜が得られ得る。
A-1. Polarizing film The polarizing film is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine as described above. Preferably, the PVA-based resin constituting the PVA-based resin film (substantially, a polarizing film) contains an acetacetyl-modified PVA-based resin. With such a configuration, a polarizing film having a desired mechanical strength can be obtained. The blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total PVA-based resin is 100% by weight. .. When the blending amount is in such a range, a polarizing film having more excellent mechanical strength can be obtained.
 偏光膜の厚みは、好ましくは8μm以下であり、より好ましくは7μm以下であり、さらに好ましくは5μm以下であり、特に好ましくは3μm以下である。偏光膜の厚みの下限は、1つの実施形態においては1μmであり得、別の実施形態においては2μmであり得る。このような厚みは、後述するように、例えば、熱可塑性樹脂基材と当該熱可塑性樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて偏光膜を作製することにより実現され得る。偏光膜を単一のPVA系樹脂フィルムから作製する場合には、偏光膜の厚みは、例えば12μm~35μmであり得る。 The thickness of the polarizing film is preferably 8 μm or less, more preferably 7 μm or less, further preferably 5 μm or less, and particularly preferably 3 μm or less. The lower limit of the thickness of the polarizing film can be 1 μm in one embodiment and 2 μm in another embodiment. Such a thickness is realized, for example, by producing a polarizing film using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material, as will be described later. obtain. When the polarizing film is made from a single PVA-based resin film, the thickness of the polarizing film can be, for example, 12 μm to 35 μm.
 偏光膜中のヨウ素濃度は、好ましくは3重量%以上であり、より好ましくは4重量%~10重量%であり、さらに好ましくは4重量%~8重量%である。なお、本明細書において「ヨウ素濃度」とは、偏光膜中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光膜中においてヨウ素はI、I、I 、PVA/I 錯体、PVA/I 錯体等の形態で存在するところ、本明細書におけるヨウ素濃度は、これらの形態をすべて包含したヨウ素の濃度を意味する。ヨウ素濃度は、例えば、蛍光X線分析による蛍光X線強度とフィルム(偏光膜)厚みとから算出され得る。 The iodine concentration in the polarizing film is preferably 3% by weight or more, more preferably 4% by weight to 10% by weight, and further preferably 4% by weight to 8% by weight. In addition, in this specification, "iodine concentration" means the amount of all iodine contained in a polarizing film. More specifically, the iodine in the polarizing film I -, I 2, I 3 -, PVA / I 3 - complex, PVA / I 5 - where present in the form of such complexes, iodine concentrations herein , Means the concentration of iodine that includes all of these forms. The iodine concentration can be calculated from, for example, the fluorescence X-ray intensity by fluorescent X-ray analysis and the film (polarizing film) thickness.
 偏光膜は、単体透過率が好ましくは42.0%以上であり、より好ましくは43.0%以上であり、さらに好ましくは44.0%以上である。一方、単体透過率は、好ましくは47.0%以下であり、より好ましくは45.0%以下である。高い単体透過率を有する薄型偏光膜は高温高湿環境下における耐久性が低下する場合があるところ、本発明の実施形態によれば、薄型偏光膜がこのような高い単体透過率を有する場合であっても高温高湿環境下における優れた耐久性を実現することができる。なお、本明細書において、単に単体透過率、直交透過率および偏光度というときは、耐久試験前の単体透過率、直交透過率および偏光度を意味する。偏光膜の偏光度は、好ましくは99.85%以上であり、より好ましくは99.90%以上であり、さらに好ましくは99.95%以上である。一方、偏光度は、好ましくは99.998%以下である。本発明の実施形態によれば、このように、高い単体透過率と高い偏光度とを両立させることができ、かつ、後述するように高温高湿環境下における優れた耐久性を実現することができる。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。また、単体透過率は、偏光板の一方の表面の屈折率を1.50、もう一方の表面の屈折率を1.53に換算した時の値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The polarizing film has a simple substance transmittance of preferably 42.0% or more, more preferably 43.0% or more, and further preferably 44.0% or more. On the other hand, the simple substance transmittance is preferably 47.0% or less, more preferably 45.0% or less. A thin polarizing film having a high single transmittance may have reduced durability in a high temperature and high humidity environment. However, according to the embodiment of the present invention, when the thin polarizing film has such a high single transmittance. Even if it exists, excellent durability in a high temperature and high humidity environment can be realized. In addition, in this specification, the simple substance transmittance, the orthogonal transmittance and the degree of polarization mean the simple substance transmittance, the orthogonal transmittance and the degree of polarization before the durability test. The degree of polarization of the polarizing film is preferably 99.85% or more, more preferably 99.90% or more, and further preferably 99.95% or more. On the other hand, the degree of polarization is preferably 99.998% or less. According to the embodiment of the present invention, it is possible to achieve both a high single transmittance and a high degree of polarization as described above, and to realize excellent durability in a high temperature and high humidity environment as described later. it can. The simple substance transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and corrected for luminosity factor. The single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53. The degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
 1つの実施形態においては、8μm以下の薄型の偏光膜の透過率(単体透過率)は、代表的には、偏光膜(表面の屈折率:1.53)と保護層(保護フィルム)(屈折率:1.50)との積層体を測定対象として、紫外可視分光光度計を用いて測定される。偏光膜の表面の屈折率および/または保護層の空気界面に接する表面の屈折率に応じて、各層の界面での反射率が変化し、その結果、透過率の測定値が変化する場合がある。したがって、例えば、屈折率が1.50ではない保護層を用いる場合、保護層の空気界面に接する表面の屈折率に応じて透過率の測定値を補正してもよい。具体的には、透過率の補正値Cは、保護層と空気層との界面における透過軸に平行な偏光の反射率R(透過軸反射率)を用いて、以下の式で表わされる。
C=R-R
=((1.50-1)/(1.50+1))×(T/100) 
=((n-1)/(n+1))×(T/100)
ここで、Rは、屈折率が1.50である保護層を用いた場合の透過軸反射率であり、nは使用する保護層の屈折率であり、Tは偏光膜の透過率である。例えば、表面屈折率が1.53である基材(シクロオレフィン系フィルム、ハードコート層付きフィルムなど)を保護層として用いる場合、補正量Cは約0.2%となる。この場合、測定により得られた透過率に0.2%を加算することで、表面の屈折率が1.53である偏光膜を屈折率が1.50である保護層を用いた場合の透過率に換算することが可能である。なお、上記式に基づく計算によれば、偏光膜の透過率Tを2%変化させたときの補正値Cの変化量は0.03%以下であり、偏光膜の透過率が補正値Cの値に与える影響は限定的である。また、保護層が表面反射以外の吸収を有する場合は、吸収量に応じて適切な補正を行うことができる。
In one embodiment, the transmittance (single transmittance) of a thin polarizing film of 8 μm or less is typically a polarizing film (refractive index of the surface: 1.53) and a protective layer (protective film) (refraction). The laminate with the rate: 1.50) is measured using an ultraviolet-visible spectrophotometer. Depending on the refractive index of the surface of the polarizing film and / or the refractive index of the surface of the protective layer in contact with the air interface, the reflectance at the interface of each layer may change, and as a result, the measured value of transmittance may change. .. Therefore, for example, when a protective layer having a refractive index of not 1.50 is used, the measured value of the transmittance may be corrected according to the refractive index of the surface of the protective layer in contact with the air interface. Specifically, the correction value C of the transmittance with reflectance R 1 (transmission axis reflectance) of light polarized parallel to the transmission axis at the interface between the protective layer and the air layer is expressed by the following equation.
C = R 1- R 0
R 0 = ((1.50-1) 2 /(1.50+1) 2) × (T 1/100)
R 1 = ((n 1 -1 ) 2 / (n 1 +1) 2) × (T 1/100)
Here, R 0 is the transmittance of the transmission axis when a protective layer having a refractive index of 1.50 is used, n 1 is the refractive index of the protective layer to be used, and T 1 is the transmittance of the polarizing film. Is. For example, when a base material having a surface refractive index of 1.53 (cycloolefin film, film with a hard coat layer, etc.) is used as the protective layer, the correction amount C is about 0.2%. In this case, by adding 0.2% to the transmittance obtained by the measurement, the transmittance when a polarizing film having a surface refractive index of 1.53 is used and a protective layer having a refractive index of 1.50 is used. It can be converted into a rate. According to the calculation based on the above formula, the amount of change in the correction value C when the transmittance T 1 of the polarizing film is changed by 2% is 0.03% or less, and the transmittance of the polarizing film is the correction value C. The effect on the value of is limited. Further, when the protective layer has absorption other than surface reflection, appropriate correction can be performed according to the amount of absorption.
 1つの実施形態においては、温度60℃および相対湿度95%で240時間の耐久試験後の偏光膜の偏光度の変化量ΔPが、代表的には-0.05%以上であり、好ましくは-0.03%以上であり、より好ましくは-0.01%以上であり得る。なお、上記偏光度の変化量ΔPは下記式で表される。
   ΔP=P240-P
(式中、P240は耐久試験後の偏光度であり、Pは耐久試験前の偏光度(上記で説明した偏光度)である)
In one embodiment, the amount of change ΔP in the degree of polarization of the polarizing film after a durability test at a temperature of 60 ° C. and a relative humidity of 95% for 240 hours is typically −0.05% or more, preferably − It can be 0.03% or more, more preferably −0.01% or more. The amount of change ΔP in the degree of polarization is expressed by the following equation.
ΔP = P 240 −P 0
(In the formula, P 240 is the degree of polarization after the durability test, and P 0 is the degree of polarization before the durability test (the degree of polarization described above)).
 偏光膜は、単一のPVA系樹脂フィルムを用いて作製されてもよく、PVA系樹脂層を含む二層以上の積層体を用いて作製されてもよい。積層体を用いて得られる偏光膜の具体例としては、熱可塑性樹脂基材と当該熱可塑性樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光膜が挙げられる。このような偏光膜の製造方法の詳細については、B項で後述する。 The polarizing film may be produced by using a single PVA-based resin film, or may be produced by using a laminate of two or more layers including a PVA-based resin layer. Specific examples of the polarizing film obtained by using the laminate include a polarizing film obtained by using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material. .. Details of the method for producing such a polarizing film will be described later in Section B.
A-2.隣接層
 隣接層は、塩素を含み、代表的には、層を形成するためのベース樹脂をさらに含む。隣接層において、塩素は、塩素含有化合物の形態で含まれていてもよく、塩素含有化合物に由来する塩素イオンの形態で含まれていてもよく、その両方であってもよい。
A-2. Adjacent Layer Adjacent layers contain chlorine and typically further contain a base resin for forming the layer. In the adjacent layer, chlorine may be contained in the form of a chlorine-containing compound, may be contained in the form of chlorine ions derived from the chlorine-containing compound, or both.
 隣接層における塩素の濃度は、好ましくは0.3重量%以上、より好ましくは0.5重量%~10.0重量%、さらに好ましくは1.0重量%~8.0重量%である。塩素濃度が当該範囲内であれば、高温高湿環境下における耐久性に優れた偏光膜が好適に得られ得る。隣接層における塩素の濃度は、例えば、蛍光X線分析による蛍光X線強度と隣接層厚みとから算出され得る。 The concentration of chlorine in the adjacent layer is preferably 0.3% by weight or more, more preferably 0.5% by weight to 10.0% by weight, and further preferably 1.0% by weight to 8.0% by weight. When the chlorine concentration is within the above range, a polarizing film having excellent durability in a high temperature and high humidity environment can be preferably obtained. The concentration of chlorine in the adjacent layer can be calculated from, for example, the fluorescence X-ray intensity by fluorescent X-ray analysis and the thickness of the adjacent layer.
 隣接層に含まれる塩素は、好ましくはアルカリ金属またはアルカリ土類金属の塩化物以外の塩素含有化合物に由来する。具体的には、隣接層におけるアルカリ金属およびアルカリ土類金属の含有量(合計含有量)は、代表的には0.1重量%以下であり、好ましくは0.05重量%以下である。 The chlorine contained in the adjacent layer is preferably derived from a chlorine-containing compound other than the chloride of an alkali metal or an alkaline earth metal. Specifically, the content (total content) of the alkali metal and the alkaline earth metal in the adjacent layer is typically 0.1% by weight or less, preferably 0.05% by weight or less.
 隣接層に含まれる塩素が由来する塩素含有化合物としては、塩化水素、塩素のオキソ酸(例えば、塩素酸、過塩素酸)等の塩素を含む酸(好ましくは、pKa<0の強酸)が好ましく例示できる。なかでも、塩化水素が好ましく用いられ得る。このような酸を含む層を偏光膜に隣接して設けることにより、酸に由来するプロトン(H)の作用を介して本発明の効果が奏されると考えられる。よって、隣接層における塩素濃度が上記好適範囲となるように塩素を含む酸を配合することにより、本発明の効果が好適に得られ得る。 As the chlorine-containing compound from which chlorine contained in the adjacent layer is derived, an acid containing chlorine (preferably a strong acid with pKa <0) such as hydrogen chloride and oxo acid of chlorine (for example, chloric acid and perchloric acid) is preferable. It can be exemplified. Of these, hydrogen chloride can be preferably used. By providing such a layer containing an acid adjacent to the polarizing film, it is considered that the effect of the present invention is exhibited through the action of protons (H + ) derived from the acid. Therefore, the effect of the present invention can be preferably obtained by blending an acid containing chlorine so that the chlorine concentration in the adjacent layer is within the above-mentioned preferable range.
 上記ベース樹脂としては、PVA系樹脂、アクリル樹脂等の水溶性樹脂が挙げられる。なかでも、PVA系樹脂が好ましく用いられ得る。PVA系樹脂は、偏光膜に対する密着性に優れ、さらに、操作性に優れた水溶液の形成が容易であり、かつ、得られる隣接層に適切な機械的強度を付与し得る。PVA系樹脂としては、任意の適切なPVA系樹脂を用いることができる。PVA系樹脂としては、例えば、偏光板の製造方法に関してB-1-1項で後述されるものが挙げられる。 Examples of the base resin include water-soluble resins such as PVA-based resins and acrylic resins. Of these, PVA-based resins can be preferably used. The PVA-based resin has excellent adhesion to the polarizing film, can easily form an aqueous solution having excellent operability, and can impart appropriate mechanical strength to the obtained adjacent layer. As the PVA-based resin, any suitable PVA-based resin can be used. Examples of the PVA-based resin include those described later in Section B-1-1 regarding the method for producing a polarizing plate.
 隣接層の厚みは、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上とすることができる。隣接層が薄すぎると、高温高湿環境下における耐久性向上効果が不十分となる場合がある。一方、隣接層の厚みは、3μm以下とすることができる。 The thickness of the adjacent layer can be preferably 0.1 μm or more, more preferably 0.3 μm or more, and further preferably 0.5 μm or more. If the adjacent layer is too thin, the effect of improving durability in a high temperature and high humidity environment may be insufficient. On the other hand, the thickness of the adjacent layer can be 3 μm or less.
A-3.保護層
 第1および第2の保護層は、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
A-3. Protective Layer The first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizing film. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
 偏光板を画像表示装置に適用したときに表示パネルとは反対側に配置される保護層(外側保護層)の厚みは、代表的には300μm以下であり、好ましくは100μm以下、より好ましくは5μm~80μm、さらに好ましくは10μm~60μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer (outer protective layer) arranged on the opposite side of the display panel when the polarizing plate is applied to the image display device is typically 300 μm or less, preferably 100 μm or less, and more preferably 5 μm. It is ~ 80 μm, more preferably 10 μm to 60 μm. When the surface treatment is applied, the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
 偏光板を画像表示装置に適用したときに表示パネル側に配置される保護層(内側保護層)の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。1つの実施形態においては、内側保護層は、任意の適切な位相差値を有する位相差層である。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmである。「Re(550)」は、23℃における波長550nmの光で測定した面内位相差であり、式:Re=(nx-ny)×dにより求められる。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率であり、「d」は層(フィルム)の厚み(nm)である。 The thickness of the protective layer (inner protective layer) arranged on the display panel side when the polarizing plate is applied to the image display device is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and further preferably 10 μm to 60 μm. .. In one embodiment, the inner protective layer is a retardation layer with any suitable retardation value. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm. “Re (550)” is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C., and is obtained by the formula: Re = (nx−ny) × d. Here, "nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
B.偏光板の製造方法
 本発明の実施形態による偏光板の製造方法は、塩化水素を含むPVA系樹脂水溶液を偏光膜の少なくとも一方の面に塗布して、隣接層を形成することを含み、当該PVA系樹脂水溶液のpHは、好ましくは2.5以下である。本実施形態の偏光板の製造方法によれば、A項に記載の偏光板が好適に得られ得る。
B. Method for Producing Polarizing Plate The method for producing a polarizing plate according to the embodiment of the present invention includes applying an aqueous solution of a PVA-based resin containing hydrogen chloride to at least one surface of a polarizing film to form an adjacent layer. The pH of the aqueous resin solution is preferably 2.5 or less. According to the method for producing a polarizing plate of the present embodiment, the polarizing plate according to Item A can be preferably obtained.
B-1.積層体を用いた偏光板の製造方法
 本発明の1つの実施形態による偏光板の製造方法は、長尺状の熱可塑性樹脂基材の片側にPVA系樹脂層を形成して積層体とすること、該積層体を延伸および染色して、該PVA系樹脂層を偏光膜とすること、および、塩化水素を含むPVA系樹脂水溶液を該偏光膜の少なくとも一方の面に塗布して、隣接層を形成すること、を含む。上記PVA系樹脂水溶液を塗布して塩素を含む隣接層を形成することにより、高温高湿環境下における耐久性に優れた偏光板を実現することができる。好ましくは、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、をこの順に施すことによって、PVA系樹脂層を偏光膜にする。該製造方法は、水中延伸処理後の積層体を長手方向に搬送しながら加熱することにより、幅方向に2%以上収縮させる乾燥収縮処理を施すこと、をさらに含むことができる。この場合、塩化水素を含むPVA系樹脂水溶液の塗布は、水中延伸処理後であって乾燥収縮処理前、あるいは、乾燥収縮処理後に行われ得る。
B-1. Method for manufacturing a polarizing plate using a laminated body In the method for manufacturing a polarizing plate according to one embodiment of the present invention, a PVA-based resin layer is formed on one side of a long thermoplastic resin base material to form a laminated body. , The laminate is stretched and dyed to form the PVA-based resin layer as a polarizing film, and an aqueous PVA-based resin containing hydrogen chloride is applied to at least one surface of the polarizing film to form an adjacent layer. Including forming. By applying the above PVA-based resin aqueous solution to form an adjacent layer containing chlorine, a polarizing plate having excellent durability in a high-temperature and high-humidity environment can be realized. Preferably, the laminated body is subjected to an aerial auxiliary stretching treatment, a dyeing treatment, and an underwater stretching treatment in this order to form a PVA-based resin layer into a polarizing film. The manufacturing method can further include performing a drying shrinkage treatment of shrinking the laminate in the width direction by 2% or more by heating the laminated body after the stretching treatment in water while transporting it in the longitudinal direction. In this case, the application of the PVA-based resin aqueous solution containing hydrogen chloride may be performed after the underwater stretching treatment and before the drying shrinkage treatment, or after the drying shrinkage treatment.
B-1-1.積層体の作製
 熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、PVA系樹脂を含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。
B-1-1. Preparation of Laminate As a method for preparing a laminate of a thermoplastic resin base material and a PVA-based resin layer, any appropriate method can be adopted. Preferably, a coating liquid containing a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Any appropriate method can be adopted as the application method of the coating liquid. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned. The coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
 PVA系樹脂層の厚みは、好ましくは、3μm~40μm、さらに好ましくは3μm~20μmである。 The thickness of the PVA-based resin layer is preferably 3 μm to 40 μm, more preferably 3 μm to 20 μm.
 PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。 Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
 熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。好ましくはポリエステル系樹脂、より好ましくはポリエチレンテレフタレート系樹脂が用いられ得る。 Any suitable thermoplastic resin film can be adopted as the thermoplastic resin base material. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference. A polyester resin is preferably used, and a polyethylene terephthalate resin is more preferable.
 塗布液は、PVA系樹脂を含む。代表的には、塗布液は、PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、溶媒は、好ましくは、水である。 The coating liquid contains PVA-based resin. Typically, the coating liquid is a solution in which a PVA-based resin is dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, the solvent is preferably water.
 上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any suitable resin can be used as the PVA-based resin. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned. Polyvinyl alcohol is obtained by saponification of polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. .. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 PVA系樹脂は、好ましくはアセトアセチル変性されたPVA系樹脂を含む。このような構成であれば、所望の機械的強度を有する偏光膜が得られ得る。アセトアセチル変性されたPVA系樹脂の配合量は、PVA系樹脂全体を100重量%としたときに、好ましくは5重量%~20重量%であり、より好ましくは8重量%~12重量%である。配合量がこのような範囲であれば、より優れた機械的強度を有する偏光膜が得られ得る。 The PVA-based resin preferably contains an acetoacetyl-modified PVA-based resin. With such a configuration, a polarizing film having a desired mechanical strength can be obtained. The blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total PVA-based resin is 100% by weight. .. When the blending amount is in such a range, a polarizing film having more excellent mechanical strength can be obtained.
 塗布液におけるPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。 The PVA-based resin concentration in the coating liquid is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that adheres to the thermoplastic resin base material can be formed.
 塗布液は、好ましくはハロゲン化物をさらに含む。ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 The coating liquid preferably further contains a halide. As the halide, any suitable halide can be adopted. For example, iodide and sodium chloride. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.
 塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光膜が白濁する場合がある。 The amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing film may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光膜の光学特性を向上し得る。 Generally, when the PVA-based resin layer is stretched, the orientation of the polyvinyl alcohol molecules in the PVA-based resin is increased. However, when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become more oriented. The orientation may be disturbed and the orientation may decrease. In particular, when the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the tendency of the degree of orientation to decrease is remarkable. For example, while stretching a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water. On the other hand, a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin base material is prepared, and the laminate is stretched at a high temperature (auxiliary stretching) in air before being stretched in boric acid water. , Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing film obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water.
 塗布液には、添加剤をさらに配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。 Additives may be further added to the coating liquid. Examples of the additive include a plasticizer, a surfactant and the like. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
B-1-2.空中補助延伸処理
 特に、高い光学特性を得るためには、乾式延伸(補助延伸)と水中延伸(好ましくは、ホウ酸水中延伸)を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後の水中延伸(好ましくは、ホウ酸水中延伸)において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
B-1-2. Aerial Auxiliary Stretching Treatment In particular, in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and water stretching (preferably boric acid water stretching) is selected. By introducing auxiliary stretching as in the case of two-stage stretching, the thermoplastic resin base material can be stretched while suppressing crystallization, and the thermoplastic resin can be stretched in water (preferably boric acid in water). The problem that the stretchability is lowered due to excessive crystallization of the base material can be solved, and the laminate can be stretched at a higher magnification. Furthermore, when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, even when the PVA-based resin is applied on the thermoplastic resin base material, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved. It will be possible. At the same time, by increasing the orientation of the PVA resin in advance, it is possible to prevent problems such as deterioration and dissolution of the orientation of the PVA resin when immersed in water in a subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定され得る。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Good, but in order to obtain high optical properties, free end stretching can be positively adopted. In one embodiment, the aerial stretching treatment includes a heating roll stretching step of stretching the laminated body in the longitudinal direction due to a difference in peripheral speed between the heating rolls. The aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the heating roll stretching step are performed in this order. Further, in another embodiment, in the tenter stretching machine, the film is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily. Preferably, it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction. In the case of free end stretching, the shrinkage rate in the width direction = (1 / stretching ratio) 1/2 .
 空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。 The aerial auxiliary extension may be performed in one step or in multiple steps. When performed in multiple stages, the draw ratio is the product of the draw ratios of each stage. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
 空中補助延伸における延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。 The draw ratio in the aerial auxiliary stretching is preferably 2.0 to 3.5 times. The maximum draw ratio when the aerial auxiliary stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, still more preferably 6.0 times, the original length of the laminated body. That is all. In the present specification, the "maximum draw ratio" means the draw ratio immediately before the laminate breaks, and separately confirms the draw ratio at which the laminate breaks, and means a value 0.2 lower than that value.
 空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。 The stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like. The stretching temperature is preferably the glass transition temperature (Tg) or more of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin and suppress defects due to the crystallization (for example, hindering the orientation of the PVA-based resin layer due to stretching). it can.
B-1-3.不溶化処理、染色処理および架橋処理
 必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層をヨウ素で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報に記載されている。
B-1-3. Insolubilization treatment, dyeing treatment and cross-linking treatment If necessary, an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment. The insolubilization treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. The dyeing treatment is typically performed by dyeing the PVA-based resin layer with iodine. If necessary, a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the crosslinking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580.
B-1-4.水中延伸処理
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。
B-1-4. Underwater stretching treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical characteristics can be produced.
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。 Any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected. The stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminate described later is the product of the draw ratios of each stage.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光膜を製造することができる。 The underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching). By using an aqueous boric acid solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer. Specifically, boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding. As a result, the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing film having excellent optical characteristics can be produced.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film having higher characteristics can be produced. In addition to boric acid or borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 Preferably, iodide is added to the above stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
 延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C. to 85 ° C., more preferably 60 ° C. to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be stretched well even when the plasticization of the thermoplastic resin base material by water is taken into consideration. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics cannot be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
 水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、より好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた偏光膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。 The stretching ratio by stretching in water is preferably 1.5 times or more, more preferably 3.0 times or more. The total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body. By achieving such a high draw ratio, it is possible to manufacture a polarizing film having extremely excellent optical characteristics. Such a high draw ratio can be achieved by adopting an underwater stretching method (boric acid underwater stretching).
B-1-5.その他の処理
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム等のヨウ化物を含む水溶液にPVA系樹脂層を浸漬させることにより行う。洗浄液中のヨウ化物濃度は、好ましくは0.5重量%~10重量%、好ましくは0.5重量%~5重量%、より好ましくは1重量%~4重量%である。洗浄液の温度は、通常、10℃~50℃、好ましくは20℃~35℃である。浸漬時間は、通常、1秒~1分、好ましくは10秒~1分である。
B-1-5. Other Treatments Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution containing an iodide such as potassium iodide. The iodide concentration in the cleaning liquid is preferably 0.5% by weight to 10% by weight, preferably 0.5% by weight to 5% by weight, and more preferably 1% by weight to 4% by weight. The temperature of the cleaning liquid is usually 10 ° C to 50 ° C, preferably 20 ° C to 35 ° C. The immersion time is usually 1 second to 1 minute, preferably 10 seconds to 1 minute.
B-1-6.乾燥収縮処理
 上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層(偏光膜)の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、乾燥収縮処理によって積層体を幅方向に収縮させることにより、偏光膜の光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。
B-1-6. Drying shrinkage treatment The drying shrinkage treatment may be carried out by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably, both are used. By drying with a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizing film having an excellent appearance. Specifically, by drying the laminate along the heating roll, the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin base material can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material is increased, and the thermoplastic resin base material is in a state where it can withstand the shrinkage of the PVA-based resin layer (polarizing film) due to drying, and curling is suppressed. Further, by using the heating roll, the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the optical characteristics of the polarizing film can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
 図3は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA系樹脂層(偏光膜)の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 3 is a schematic view showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA-based resin layer (polarizing film) and the surface of the thermoplastic resin base material. For example, one of the laminate 200 is provided. The transport rolls R1 to R6 may be arranged so as to continuously heat only the surface (for example, the surface of the thermoplastic resin base material).
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like. The temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C. The crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with a blowing means. By using the drying with a heating roll and the hot air drying together, it is possible to suppress a steep temperature change between the heating rolls, and it is possible to easily control the shrinkage in the width direction. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
B-1-7.隣接層の形成
 上記のようにして得られた熱可塑性樹脂基材と偏光膜との積層体(偏光板)の偏光膜表面に、塩化水素を含むPVA系樹脂水溶液を塗布して、隣接層を形成する。その結果、熱可塑性樹脂基材/偏光膜/隣接層の積層体(偏光板)が得られ得る。この場合、代表的には、熱可塑性樹脂基材がそのまま偏光膜の保護層として用いられ得る。別の実施形態においては、熱可塑性樹脂基材と偏光膜との積層体の偏光膜表面に樹脂フィルム(保護層となる)を貼り合わせて保護層/偏光膜/熱可塑性樹脂基材の積層体を作製し、当該積層体から熱可塑性樹脂基材を剥離して保護層/偏光膜の積層体(偏光板)を作製する。得られた偏光板の偏光膜表面に塩化水素を含むPVA系樹脂水溶液を塗布する。その結果、保護層/偏光膜/隣接層の積層体(偏光板)が得られ得る。
B-1-7. Formation of Adjacent Layer A PVA-based resin aqueous solution containing hydrogen chloride is applied to the surface of the polarizing film of the laminate (polarizing plate) of the thermoplastic resin base material and the polarizing film obtained as described above to form an adjacent layer. Form. As a result, a laminate (polarizing plate) of a thermoplastic resin base material / polarizing film / adjacent layer can be obtained. In this case, typically, the thermoplastic resin base material can be used as it is as the protective layer of the polarizing film. In another embodiment, a resin film (which serves as a protective layer) is bonded to the surface of the polarizing film of the laminate of the thermoplastic resin base material and the polarizing film to form a laminated body of the protective layer / polarizing film / thermoplastic resin base material. Is prepared, and the thermoplastic resin base material is peeled off from the laminated body to prepare a laminated body (polarizing plate) of a protective layer / polarizing film. A PVA-based resin aqueous solution containing hydrogen chloride is applied to the surface of the polarizing film of the obtained polarizing plate. As a result, a laminated body (polarizing plate) of the protective layer / polarizing film / adjacent layer can be obtained.
 上記PVA系樹脂水溶液は、代表的には、塩化水素およびPVA系樹脂を水に溶解した水溶液である。PVA系樹脂については、B-1-1項で記載したとおりである。 The PVA-based resin aqueous solution is typically an aqueous solution in which hydrogen chloride and PVA-based resin are dissolved in water. The PVA-based resin is as described in Section B-1-1.
 上記PVA系樹脂水溶液中のPVA系樹脂の濃度は、操作性(塗布性)を考慮して設定され得る。当該濃度は、例えば、PVA系樹脂水溶液の粘度が1mPa・sec~300mPa・secとなるよう調整され得る。PVA系樹脂水溶液中のPVA系樹脂の濃度は、例えば0.1重量%~15重量%であり、より好ましくは0.5重量%~10重量%であり得る。 The concentration of the PVA-based resin in the above-mentioned PVA-based resin aqueous solution can be set in consideration of operability (coatability). The concentration can be adjusted, for example, so that the viscosity of the PVA-based resin aqueous solution is 1 mPa · sec to 300 mPa · sec. The concentration of the PVA-based resin in the PVA-based resin aqueous solution can be, for example, 0.1% by weight to 15% by weight, more preferably 0.5% by weight to 10% by weight.
 上記PVA系樹脂水溶液中の塩化水素の濃度は、隣接層に所望される塩素濃度(換言すると、隣接層に所望されるプロトン(H)濃度)を考慮して適切に設定される。PVA系樹脂水溶液のpHは、好ましくは2.5以下、より好ましくは2.0以下、さらに好ましくは1.5以下である。PVA系樹脂水溶液のpHの下限は、特に制限されないが、放置安定性を考慮して0.5以上とすることができる。 The concentration of hydrogen chloride in the PVA-based resin aqueous solution is appropriately set in consideration of the chlorine concentration desired for the adjacent layer (in other words, the proton (H + ) concentration desired for the adjacent layer). The pH of the PVA-based resin aqueous solution is preferably 2.5 or less, more preferably 2.0 or less, still more preferably 1.5 or less. The lower limit of the pH of the PVA-based resin aqueous solution is not particularly limited, but may be 0.5 or more in consideration of leaving stability.
 隣接層は、上記PVA系樹脂水溶液を偏光膜表面に塗布し、必要に応じて乾燥することにより形成される。塗布方法としては、任意の適切な方法を採用することができる。具体例としては、PVA系樹脂層(偏光膜)形成用の塗布液の塗布方法としてB-1-1項で説明した方法が挙げられる。乾燥温度は例えば40℃~100℃であり、乾燥時間は例えば1分~20分である。 The adjacent layer is formed by applying the above PVA-based resin aqueous solution to the surface of the polarizing film and drying it if necessary. As the coating method, any appropriate method can be adopted. As a specific example, the method described in Section B-1-1 can be mentioned as a method of applying a coating liquid for forming a PVA-based resin layer (polarizing film). The drying temperature is, for example, 40 ° C. to 100 ° C., and the drying time is, for example, 1 minute to 20 minutes.
B-2.単一のPVA系樹脂フィルムを用いる偏光板の製造方法
 B-1項では熱可塑性樹脂基材と該熱可塑性樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いる偏光板の製造方法を説明したが、本発明は、単一のPVA系樹脂フィルムを用いる偏光板の製造方法にも適用され得る。このような製造方法は、代表的には、自己支持性を有するPVA系樹脂フィルムを延伸および染色して、該PVA系樹脂フィルムを偏光膜とすること、および、塩化水素を含むPVA系樹脂水溶液を該偏光膜の少なくとも一方の面に塗布して、隣接層を形成することを含む。より具体的には、長尺状のPVA系樹脂フィルムを、ロール延伸機により長尺方向に一軸延伸しながら、膨潤、染色、架橋および洗浄処理を施して偏光膜を作製し、洗浄処理後の偏光膜に塩化水素を含むPVA系樹脂水溶液を塗布する。塩化水素を含むPVA系樹脂水溶液の塗布は、B-1-7項と同様にして行うことができる。
B-2. Method for manufacturing a polarizing plate using a single PVA-based resin film In Section B-1, a polarizing plate using a laminate of a thermoplastic resin base material and a PVA-based resin layer coated and formed on the thermoplastic resin base material is manufactured. Although the method has been described, the present invention can also be applied to a method for producing a polarizing plate using a single PVA-based resin film. In such a production method, typically, a PVA-based resin film having self-supporting property is stretched and dyed to form the PVA-based resin film as a polarizing film, and a PVA-based resin aqueous solution containing hydrogen chloride is used. Is applied to at least one surface of the polarizing film to form an adjacent layer. More specifically, a long PVA-based resin film is uniaxially stretched in the long direction by a roll stretching machine and subjected to swelling, dyeing, cross-linking, and cleaning treatment to prepare a polarizing film, and after the cleaning treatment. A PVA-based resin aqueous solution containing hydrogen chloride is applied to the polarizing film. The application of the PVA-based resin aqueous solution containing hydrogen chloride can be carried out in the same manner as in Item B-1-7.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 実施例および比較例の偏光板を切削し、偏光板断面を走査電子顕微鏡(日本電子株式会社製 「JSM7100F」)を用いて観察し、隣接層の厚みを測定した。偏光膜の厚みについては、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。
(2)単体透過率、直交透過率および偏光度
 実施例および比較例の偏光板(単体透過率に関しては、保護層/偏光膜の構成を有する積層体)について、紫外可視分光光度計(大塚電子社製 LPF200)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光膜のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光度を求めた。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 次に、偏光板の隣接層側に、粘着剤を介し、アルカリ成分を除去したガラス(無アルカリガラス)を貼り合わせ、温度60℃および相対湿度95%に設定されたオーブンに240時間投入して耐久試験を行い、耐久試験後の偏光度P240を上記と同様にして求めた。
(3)隣接層中の塩素濃度(Cl濃度)
 フィルム(隣接層)中の塩素濃度は、走査型蛍光X線分析装置(リガク社製 ZSX PRIMUS IV)を用いて、下記の手順で求められる:まず、厚み(μm)、塩素濃度(重量%)が既知の試料(例えば、一定量のNaClを添加したPVA系樹脂フィルム)の蛍光X線強度(kcps)を測定し、検量線を作成する。フィルム中の塩素濃度の検量線は、以下の式で表される:
  (塩素濃度)=A×(蛍光X線強度)/(フィルム厚み)-B
 ここで、AおよびBは測定装置ごとに異なる定数である。例えば、測定装置としてZSX PRIMUS IV(測定試料径:30mm)を用いる場合、Aは「0.0024」であり、Bは「0.0012」である。
(4)隣接層中のナトリウム濃度(Na濃度)
 フィルム(隣接層)中のナトリウム濃度は、走査型蛍光X線分析装置(リガク社製 ZSX PRIMUS IV)を用いて、下記の手順で求められる:まず、厚み(μm)、ナトリウム濃度(重量%)が既知の試料(例えば、一定量のNaClを添加したPVA系樹脂フィルム)の蛍光X線強度(kcps)を測定し、検量線を作成する。フィルム中のナトリウム濃度の検量線は、以下の式で表される:
  (ナトリウム濃度)=A×(蛍光X線強度)/(フィルム厚み)-B
 ここで、AおよびBは測定装置ごとに異なる定数である。例えば、測定装置としてZSX PRIMUS IV(測定試料径:30mm)を用いる場合、Aは「0.0054」であり、Bは「0.0027」である。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness The polarizing plates of Examples and Comparative Examples were cut, the cross section of the polarizing plate was observed using a scanning electron microscope (“JSM7100F” manufactured by JEOL Ltd.), and the thickness of the adjacent layer was measured. The thickness of the polarizing film was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
(2) Single-unit transmittance, orthogonal transmittance and degree of polarization Regarding the polarizing plates of Examples and Comparative Examples (for single-unit transmittance, a laminate having a protective layer / polarizing film structure), an ultraviolet-visible spectrophotometer (Otsuka Denshi) The single transmittance Ts, the parallel transmittance Tp, and the orthogonal transmittance Tc measured using LPF200) manufactured by the same company were defined as Ts, Tp, and Tc of the polarizing film, respectively. These Ts, Tp, and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization was determined using the following formula.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
Next, glass from which the alkaline component has been removed (non-alkali glass) is attached to the adjacent layer side of the polarizing plate via an adhesive, and the glass is placed in an oven set at a temperature of 60 ° C. and a relative humidity of 95% for 240 hours. A durability test was performed, and the degree of polarization P 240 after the durability test was determined in the same manner as described above.
(3) Chlorine concentration (Cl concentration) in the adjacent layer
The chlorine concentration in the film (adjacent layer) is determined by the following procedure using a scanning fluorescent X-ray analyzer (ZSX PRIMUS IV manufactured by Rigaku): First, thickness (μm), chlorine concentration (% by weight). Measures the fluorescent X-ray intensity (kcps) of a known sample (for example, a PVA-based resin film to which a certain amount of NaCl is added) to prepare a calibration curve. The calibration curve of the chlorine concentration in the film is expressed by the following formula:
(Chlorine concentration) = A × (Fluorescent X-ray intensity) / (Film thickness) -B
Here, A and B are constants that differ depending on the measuring device. For example, when ZSX PRIMUS IV (measurement sample diameter: 30 mm) is used as the measuring device, A is "0.0024" and B is "0.0012".
(4) Sodium concentration (Na concentration) in the adjacent layer
The sodium concentration in the film (adjacent layer) is determined by the following procedure using a scanning fluorescent X-ray analyzer (ZSX PRIMUS IV manufactured by Rigaku): First, thickness (μm), sodium concentration (% by weight). Measures the fluorescent X-ray intensity (kcps) of a known sample (for example, a PVA-based resin film to which a certain amount of NaCl is added) to prepare a calibration curve. The calibration curve of the sodium concentration in the film is expressed by the following formula:
(Sodium concentration) = A × (Fluorescent X-ray intensity) / (Film thickness) -B
Here, A and B are constants that differ depending on the measuring device. For example, when ZSX PRIMUS IV (measurement sample diameter: 30 mm) is used as the measuring device, A is "0.0054" and B is "0.0027".
[実施例1-1]
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光板の単体透過率(Ts)が44.0%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
 このようにして、樹脂基材上に厚み5.0μmの偏光膜を形成し、偏光膜表面に、保護層(保護フィルム)としてのシクロオレフィン系フィルム(ZEON社製、製品名「G-Film」)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して保護層/偏光膜の構成を有する積層体を得た。得られた積層体の単体透過率(Ts)は、44.0%であり、これは、当該積層体を構成する偏光膜/保護層の表面屈折率が1.53/1.53であるため、実際の測定値に+0.2%補正し、1.53/1.50の状態に換算した値である。
 次いで、積層体の偏光膜表面に、塩化水素を含むPVA系樹脂水溶液(HCl含有PVA水溶液)を塗布した。当該HCl含有PVA水溶液は、塩化水素を0.7重量%およびポリビニルアルコール(重合度2600、ケン化度99.98モル%)を3.5重量%含み、pHは0.9であった。HCl含有PVA水溶液の塗布膜を60℃で5分乾燥し、厚み0.4μmの隣接層を形成し、保護層/偏光膜/隣接層の構成を有する偏光板を得た。
[Example 1-1]
As the thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9: A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the polarizing plate finally obtained is placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 44.0% (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment). The shrinkage rate in the width direction of the laminate by the drying shrinkage treatment was 2%.
In this way, a polarizing film having a thickness of 5.0 μm is formed on the resin base material, and a cycloolefin-based film (manufactured by ZEON, product name “G-Film”) as a protective layer (protective film) is formed on the surface of the polarizing film. ) Was bonded with a UV curable adhesive (thickness 1.0 μm), and then the resin base material was peeled off to obtain a laminate having a protective layer / polarizing film structure. The simple substance transmittance (Ts) of the obtained laminated body is 44.0%, because the surface refractive index of the polarizing film / protective layer constituting the laminated body is 1.53 / 1.53. , The value is corrected by + 0.2% to the actual measured value and converted into the state of 1.53 / 1.50.
Next, a PVA-based resin aqueous solution containing hydrogen chloride (HCl-containing PVA aqueous solution) was applied to the surface of the polarizing film of the laminate. The HCl-containing PVA aqueous solution contained 0.7% by weight of hydrogen chloride and 3.5% by weight of polyvinyl alcohol (degree of polymerization 2600, degree of saponification 99.98 mol%), and had a pH of 0.9. The coating film of the HCl-containing PVA aqueous solution was dried at 60 ° C. for 5 minutes to form an adjacent layer having a thickness of 0.4 μm to obtain a polarizing plate having a protective layer / polarizing film / adjacent layer structure.
 得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。 Table 1 shows the Cl concentration and Na concentration in the ΔP and the adjacent layer of the obtained polarizing plate (substantially, the polarizing film).
[実施例1-2]
 隣接層の厚みが1.2μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Example 1-2]
A polarizing plate was prepared in the same manner as in Example 1-1 except that the HCl-containing PVA aqueous solution was applied so that the thickness of the adjacent layer was 1.2 μm. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[実施例2-1]
 HCl含有PVA水溶液のpHを1.2としたこと(HCl含有PVA水溶液中の塩化水素濃度は0.35重量%)および隣接層の厚みが1.2μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Example 2-1]
The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 1.2 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.35% by weight) and the thickness of the adjacent layer was 1.2 μm. A polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[実施例2-2]
 HCl含有PVA水溶液のpHを1.6としたこと(HCl含有PVA水溶液中の塩化水素濃度は0.15重量%)および隣接層の厚みが1.1μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Example 2-2]
The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 1.6 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.15% by weight) and the thickness of the adjacent layer was 1.1 μm. A polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[実施例2-3]
 HCl含有PVA水溶液のpHを1.8としたこと(HCl含有PVA水溶液中の塩化水素濃度は0.09重量%)および隣接層の厚みが1.5μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Example 2-3]
The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was set to 1.8 (hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.09% by weight) and the thickness of the adjacent layer was 1.5 μm. A polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[実施例2-4]
 HCl含有PVA水溶液のpHを2.0としたこと(HCl含有PVA水溶液中の塩化水素濃度は0.06重量%)および隣接層の厚みが1.2μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Example 2-4]
The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 2.0 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.06% by weight) and the thickness of the adjacent layer was 1.2 μm. A polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[比較例1]
 HCl含有PVA水溶液のpHを3.1としたこと(HCl含有PVA水溶液中の塩化水素濃度は0.02重量%)および隣接層の厚みが1.2μmになるようにHCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Comparative Example 1]
The HCl-containing PVA aqueous solution was applied so that the pH of the HCl-containing PVA aqueous solution was 3.1 (the hydrogen chloride concentration in the HCl-containing PVA aqueous solution was 0.02% by weight) and the thickness of the adjacent layer was 1.2 μm. A polarizing plate was prepared in the same manner as in Example 1-1 except for the above. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[比較例2]
 HCl含有PVA水溶液の代わりに、塩化ナトリウムを0.2重量%およびポリビニルアルコール(重合度2600、ケン化度99.98モル%)を3.5重量%含むNaCl含有PVA水溶液(pH=6.3)を用いたことおよび隣接層の厚みが1.2μmになるようにNaCl含有PVA水溶液を塗布したこと以外は実施例1-1と同様にして偏光板を作製した。得られた偏光板(実質的には、偏光膜)について、ΔPならびに隣接層中のCl濃度およびNa濃度を表1に示す。
[Comparative Example 2]
NaCl-containing PVA aqueous solution (pH = 6.3) containing 0.2% by weight of sodium chloride and 3.5% by weight of polyvinyl alcohol (polymerization degree 2600, saponification degree 99.98 mol%) instead of HCl-containing PVA aqueous solution. ) Was used, and a NaCl-containing PVA aqueous solution was applied so that the thickness of the adjacent layer was 1.2 μm. A polarizing plate was prepared in the same manner as in Example 1-1. For the obtained polarizing plate (substantially, a polarizing film), the Cl concentration and Na concentration in ΔP and the adjacent layer are shown in Table 1.
[参考例]
 HCl含有PVA水溶液を塗布しなかったこと(結果として、隣接層を形成しなかったこと)以外は実施例1-1と同様にして、保護層/偏光膜の構成を有する偏光板(Ts:44.0%)を得た。得られた偏光板(実質的には、偏光膜)について、ΔPを表1に示す。なお、得られた偏光板(実質的には、偏光膜)の耐久試験前の偏光度Pは、99.90%であり、これは、上記隣接層を備える実施例および比較例の偏光板のPと概ね同じ値であった。
[Reference example]
A polarizing plate having a protective layer / polarizing film configuration (Ts: 44) in the same manner as in Example 1-1 except that the HCl-containing PVA aqueous solution was not applied (as a result, an adjacent layer was not formed). 0.0%) was obtained. Table 1 shows ΔP of the obtained polarizing plate (substantially, a polarizing film). The degree of polarization P 0 of the obtained polarizing plate (substantially a polarizing film) before the durability test was 99.90%, which is the polarizing plate of Examples and Comparative Examples provided with the adjacent layer. It was almost the same value as P 0 of.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の実施例の偏光板は、高温高湿環境下における耐久性に優れている。 As is clear from Table 1, the polarizing plate of the embodiment of the present invention has excellent durability in a high temperature and high humidity environment.
 本発明の偏光板は、液晶表示装置に好適に用いられる。 The polarizing plate of the present invention is suitably used for a liquid crystal display device.
 10   偏光板
 12   偏光膜
 14   隣接層
 16   第1の保護層
 18   第2の保護層
10 Polarizing plate 12 Polarizing film 14 Adjacent layer 16 First protective layer 18 Second protective layer

Claims (8)

  1.  ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成された偏光膜と、該偏光膜の少なくとも一方の面に設けられた塩素を含む隣接層と、を有する、偏光板。 A polarizing plate having a polarizing film made of a polyvinyl alcohol-based resin film containing iodine and an adjacent layer containing chlorine provided on at least one surface of the polarizing film.
  2.  前記隣接層が、ポリビニルアルコール系樹脂をさらに含む、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the adjacent layer further contains a polyvinyl alcohol-based resin.
  3.  前記隣接層における塩素の濃度が、0.3重量%以上である、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the concentration of chlorine in the adjacent layer is 0.3% by weight or more.
  4.  前記塩素が、塩化水素由来である、請求項1から3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the chlorine is derived from hydrogen chloride.
  5.  前記偏光膜の厚みが、8μm以下である、請求項1から4のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein the thickness of the polarizing film is 8 μm or less.
  6.  前記偏光膜中のヨウ素濃度が、3重量%以上である、請求項1から5のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 5, wherein the iodine concentration in the polarizing film is 3% by weight or more.
  7.  前記隣接層におけるアルカリ金属およびアルカリ土類金属の含有量が、0.1重量%以下である、請求項1から6のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, wherein the content of the alkali metal and the alkaline earth metal in the adjacent layer is 0.1% by weight or less.
  8.  請求項1から7のいずれかに記載の偏光板の製造方法であって、
     塩化水素を含むポリビニルアルコール系樹脂水溶液を偏光膜の少なくとも一方の面に塗布して、隣接層を形成することを含み、
     該塩化水素を含むポリビニルアルコール系樹脂水溶液のpHが、2.5以下である、製造方法。
    The method for manufacturing a polarizing plate according to any one of claims 1 to 7.
    Including applying a polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride to at least one surface of a polarizing film to form an adjacent layer.
    A production method in which the pH of the polyvinyl alcohol-based resin aqueous solution containing hydrogen chloride is 2.5 or less.
PCT/JP2020/023387 2019-06-25 2020-06-15 Polarizing plate and method for producing said polarizing plate WO2020262067A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217041682A KR20220024113A (en) 2019-06-25 2020-06-15 Polarizing plate and manufacturing method of the polarizing plate
CN202080046229.2A CN114026472A (en) 2019-06-25 2020-06-15 Polarizing plate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117771 2019-06-25
JP2019117771A JP7300325B2 (en) 2019-06-25 2019-06-25 Polarizing plate and method for producing the polarizing plate

Publications (1)

Publication Number Publication Date
WO2020262067A1 true WO2020262067A1 (en) 2020-12-30

Family

ID=74061946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023387 WO2020262067A1 (en) 2019-06-25 2020-06-15 Polarizing plate and method for producing said polarizing plate

Country Status (5)

Country Link
JP (1) JP7300325B2 (en)
KR (1) KR20220024113A (en)
CN (1) CN114026472A (en)
TW (1) TW202100364A (en)
WO (1) WO2020262067A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154020A (en) * 1999-11-29 2001-06-08 Nitto Denko Corp Polarizing plate and optical member
JP2008070571A (en) * 2006-09-14 2008-03-27 Nippon Kayaku Co Ltd High durable polarizing plate
JP2009042385A (en) * 2007-08-07 2009-02-26 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method thereof
JP2012014148A (en) * 2010-06-04 2012-01-19 Fujifilm Corp Polarizing plate and liquid crystal display device
WO2019103002A1 (en) * 2017-11-24 2019-05-31 日東電工株式会社 Polarizer and polarizing plate
WO2019116969A1 (en) * 2017-12-11 2019-06-20 住友化学株式会社 Curable composition, optical laminate, and image display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
KR100416924B1 (en) * 2001-12-24 2004-01-31 신화오플라주식회사 Polarizing film having ultraviolet absorbing ability and its production
JP2005062458A (en) * 2003-08-12 2005-03-10 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
JP2005275216A (en) * 2004-03-26 2005-10-06 Teijin Ltd Polarizing plate
WO2006095815A1 (en) * 2005-03-10 2006-09-14 Nippon Kayaku Kabushiki Kaisha Iodine-containing polarizing film, process for producing the same, and polarizer comprising the same
JP6125061B2 (en) * 2015-02-13 2017-05-10 日東電工株式会社 Polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154020A (en) * 1999-11-29 2001-06-08 Nitto Denko Corp Polarizing plate and optical member
JP2008070571A (en) * 2006-09-14 2008-03-27 Nippon Kayaku Co Ltd High durable polarizing plate
JP2009042385A (en) * 2007-08-07 2009-02-26 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method thereof
JP2012014148A (en) * 2010-06-04 2012-01-19 Fujifilm Corp Polarizing plate and liquid crystal display device
WO2019103002A1 (en) * 2017-11-24 2019-05-31 日東電工株式会社 Polarizer and polarizing plate
WO2019116969A1 (en) * 2017-12-11 2019-06-20 住友化学株式会社 Curable composition, optical laminate, and image display device

Also Published As

Publication number Publication date
CN114026472A (en) 2022-02-08
JP7300325B2 (en) 2023-06-29
JP2021004943A (en) 2021-01-14
TW202100364A (en) 2021-01-01
KR20220024113A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR102296083B1 (en) Polarizing film, polarizing plate, and manufacturing method of polarizing film
WO2021095527A1 (en) Polarizing film, polarizing plate, and image display device
WO2019054268A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
JP2022173190A (en) Polarizing plate with phase difference layer
WO2020262213A1 (en) Polarization plate production method
JP2022111165A (en) Polarizing film, polarizing plate, and method of manufacturing polarizing film
KR102296079B1 (en) Polarizing film, polarizing plate, and manufacturing method of polarizing film
WO2020184137A1 (en) Polarizing film, polarizing plate and method for producing polarizing film
WO2020203312A1 (en) Polarization film, polarization plate, and production method for said polarization film
WO2020255779A1 (en) Polarizing film, polarizing plate, and method for producing said polarizing film
JP7165805B2 (en) Polarizing film, polarizing plate, and method for producing the polarizing film
WO2020184082A1 (en) Polarizing film, polarizing plate, and polarizing film production method
WO2021095526A1 (en) Polarizing film, polarizing plate, and image display device
WO2020262067A1 (en) Polarizing plate and method for producing said polarizing plate
WO2020262068A1 (en) Polarizing plate and method for producing polarizing plate
WO2020261776A1 (en) Polarizing film, polarizing plate, and method for producing said polarizing film
WO2020261778A1 (en) Polarizing film, polarizing plate, and method for producing said polarizing film
WO2020184083A1 (en) Polarizing film, polarizing plate, and production method for said polarizing film
WO2020196439A1 (en) Polarizing film, polarizing plate, and method for producing said polarizing film
WO2019054269A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
WO2019054270A1 (en) Polarizing plate, polarizing plate roll, and method for manufacturing polarizing film
WO2021256329A1 (en) Polarizing film, polarizing plate, and method for producing said polarizing film
JP2020101805A (en) Polarizing plate and polarizing plate roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831444

Country of ref document: EP

Kind code of ref document: A1