WO2020184007A1 - Foamable resin particles, pre-foamed particles, and shaped foam - Google Patents

Foamable resin particles, pre-foamed particles, and shaped foam Download PDF

Info

Publication number
WO2020184007A1
WO2020184007A1 PCT/JP2020/004539 JP2020004539W WO2020184007A1 WO 2020184007 A1 WO2020184007 A1 WO 2020184007A1 JP 2020004539 W JP2020004539 W JP 2020004539W WO 2020184007 A1 WO2020184007 A1 WO 2020184007A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
foamable resin
weight
less
foamed
Prior art date
Application number
PCT/JP2020/004539
Other languages
French (fr)
Japanese (ja)
Inventor
敦士 飯田
基理人 鈴木
太郎 木口
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021505597A priority Critical patent/JPWO2020184007A1/ja
Priority to CN202080010060.5A priority patent/CN113330061A/en
Publication of WO2020184007A1 publication Critical patent/WO2020184007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Definitions

  • the present invention relates to foamable resin particles, pre-foamed particles, and a foamed molded product, which have a low content of volatile organic compounds and can suppress the emission amount of approximately volatile organic compounds.
  • Foamable polystyrene resin particles are well known as foamable resin particles. Foamable polystyrene resin particles are widely used because they can be easily obtained by in-mold foam molding and are inexpensive.
  • foamable polystyrene resin particles are excellent in light weight and heat insulating performance, they are contained in volatile organic compounds (hereinafter, sometimes referred to as "VOC" by taking the acronym of Volatile Organic Compounds in English) per unit time.
  • VOC volatile organic compounds
  • the problem was that the amount of radiation was large.
  • foamable polystyrene resin particles it is difficult for both styrene and ethylbenzene, which are VOC components, to meet the strict emission standards in the fields of automobiles and building materials, and it is necessary to take measures such as drying the foamed molded product for several days. , It is one of the causes of cost increase.
  • foamable polystyrene resin particles having a small amount of residual styrene in the resin particles are provided by devising a manufacturing method such as increasing the number of copies of the initiator added and / or adding the flame retardant afterwards. It is disclosed that it can be provided.
  • Patent Document 3 discloses styrene / acrylonitrile / alpha-methylstyrene-based heat-resistant styrene-based resin particles produced by using the initiator described in Patent Document 1 or a similar initiator of the initiator.
  • One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to have a small VOC content and its emission amount, a novel foamable resin particle, and a small VOC emission amount and its emission amount. Is to provide a new foam molded product.
  • the foamable resin particles according to the embodiment of the present invention are foamable resin particles containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and the foamable resin particles are used.
  • red absorbance ratio at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 in the infrared absorption spectrum D2230 / D1600 of foamed was foamed particle surface is 0.80 or more.
  • the method for producing foamable resin particles is a method for producing foamable resin particles, which is a copolymerization in which a monomer containing a styrene monomer and an acrylonitrile monomer is copolymerized.
  • the first step includes a step and a step of impregnating the obtained copolymer with a foaming agent
  • the copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures.
  • a polymerization initiator containing a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and the polymerization initiator (X) contains benzoyl peroxide and is foamed.
  • the TH / TQ ratio of the sex resin particles is less than 1.20.
  • foamable resin particles, pre-foamed particles (foamed particles), and a foamed molded product which have a low content of volatile organic compounds (VOC) and can suppress the emission amount of approximately volatile organic compounds (VOC).
  • the foamable resin particles according to the embodiment of the present invention are foamable resin particles containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and the foamable resin particles are foamed.
  • the infrared absorption spectrum in one embodiment of the present invention can be obtained by ATR-FTIR analysis.
  • the "infrared absorption spectrum on the surface of foamed particles” is intended as "infrared absorption spectrum obtained by Fourier transform infrared spectroscopic analysis on the surface of foamed particles by total reflection measurement method".
  • “Fourier transform infrared spectroscopic analysis by total reflection measurement method” may be referred to as "ATR-FTIR analysis”.
  • the foamed particles used for measuring the infrared absorption spectrum are obtained by treating the foamable resin particles according to the embodiment of the present invention in the following order (1) to (3).
  • the foamable resin particles are put into a pressurized foaming machine;
  • steam is blown into the foaming machine at a blowing vapor pressure of 0.09 MPa to 0.10 MPa, and the pressure inside the foaming machine is adjusted.
  • the temperature inside the foaming machine is set to 100 ° C. to 104 ° C., whereby the foamed particles are foamed at a magnification of 40 times;
  • the obtained foaming The particles are cured at 25 ° C. for 12 to 24 hours to obtain foamed particles used for measuring the infrared absorption spectrum.
  • the foamable resin particles according to the embodiment of the present invention have an advantage that a foamed molded product having a small amount of VOC emission can be provided by having the above structure. As a result, it is possible to clear the standard of VOC emission amount required in the fields of automobiles and building materials. That is, the foamable resin particles according to the embodiment of the present invention have an advantage that a highly productive foamed molded product can be provided.
  • the foamable resin particles are used to produce foamed particles by a known method, and the foamed resin particles are foam-molded by a known method. Can provide a foam molded article.
  • foamable resin particles according to one embodiment of the present invention may be simply referred to as “present foamable resin particles”. That is, the term “the present foamable resin particles” is intended to be an embodiment of the foamable resin particles in the present invention.
  • VOC means, for example, as defined by the Air Pollution Control Act of Japan, "organic compounds that are gas when they are discharged into the atmosphere from the outlet and scattered."
  • compounds to be regulated as VOCs are specified.
  • the Ministry of Health, Labor and Welfare of Japan has established indoor concentration guideline values for the following substances: formaldehyde, acetaldehyde, toluene, ethylbenzene, xylene, styrene, nonanal, tetradecane, di-n-butyl phthalate, di-butyl phthalate.
  • VOC means "among compounds that can be contained in foamable resin particles or foamed molded articles, (a) a gas when discharged into the atmosphere and scattered, and (b) the Ministry of Health, Labor and Welfare of Japan. Is intended as an "organic compound for which the indoor concentration guideline value is set.” Specifically, VOCs herein are intended to be styrene and ethylbenzene.
  • the base resin contained in the foamable resin particles contains a styrene unit and an acrylonitrile unit as constituent units.
  • the "styrene unit” is a structural unit derived from a styrene monomer
  • the "acrylonitrile unit” is a structural unit derived from an "acrylonitrile monomer”.
  • the content of the styrene unit is 55 parts by weight or more and 80 parts by weight or less, and the content of the acrylonitrile unit is 20 parts by weight or more and 45 parts by weight or less.
  • the total content of the styrene unit and the acrylonitrile unit is preferably 100 parts by weight.
  • the content of the styrene unit is preferably 55 parts by weight or more and 80 parts by weight or less, more preferably 60 parts by weight or more and 80 parts by weight or less, and more preferably 65 parts by weight or more and 75 parts by weight or less.
  • the content of the styrene unit is (a) 55 parts by weight or more, the foamable resin particles are excellent in moldability, and (b) when it is 80 parts by weight or less, the foamable resin particles are excellent in heat resistance.
  • a foam molded product can be provided.
  • the content of the acrylonitrile unit is preferably 20 parts by weight or more and 45 parts by weight or less, more preferably 20 parts by weight or more and 40 parts by weight or less, and more preferably 25 parts by weight or more and 35 parts by weight or less.
  • the foamable resin particles are (a) excellent in gas barrier property, so that the amount of styrene released as VOC is small, and (b) excellent in heat resistance. Can be provided.
  • the content of the acrylonitrile unit is 45 parts by weight or less, the foamable resin particles are excellent in moldability, and the polymerization stability is increased during the production of the foamable resin particles.
  • the foamable resin particles according to the embodiment of the present invention have an absorbance at 2230 cm- 1 in the infrared absorption spectrum obtained by ATR-FTIR analysis on the surface of the foamed particles obtained by foaming the foamable resin particles.
  • the absorbance D1600 at D2230 and 1600 cm -1 is determined, and the absorbance ratio of D2230 / D1600 is 0.8 or more.
  • the preferable range of the absorbance ratio of D2230 / D1600 is 1.2 or more and 2.5 or less. When the absorbance ratio of D2230 / D1600 is 0.8 or more, the VOC component emitted from the foamed molded product can be significantly suppressed.
  • ATR-FTIR analysis is intended as "Fourier transform infrared spectroscopic analysis by total reflection measurement method”.
  • the base resin contained in the foamable resin particles may further contain an alpha-methylstyrene unit as a constituent unit. Since the glass transition temperature of the base resin rises when alpha-methylstyrene is added, the foamable resin particles can provide a foamed molded product having sufficient heat resistance.
  • alpha-methylstyrene unit is a structural unit derived from an alpha-methylstyrene monomer.
  • the content of the alphamethylstyrene unit is preferably 3 parts by weight or more and 15 parts by weight or less, more preferably, when the total content of the styrene unit, the acrylonitrile unit and the alphamethylstyrene unit in the base resin is 100 parts by weight. It is 4 parts by weight or more and 10 parts by weight or less, and more preferably 4 parts by weight or more and 7 parts by weight or less.
  • Alpha-methylstyrene has a methyl group at the alpha position and is characterized by large steric hindrance and therefore poor reactivity. Further, when alpha-methylstyrene is contained in the base resin, the alpha-methylstyrene moiety in the base resin is easily decomposed.
  • the polymerization rate does not become too high during the production of the foamable resin particles, so that the polymerization can be easily controlled.
  • the content of the alphamethylstyrene unit is 15 parts by weight or less, (a) the obtained base resin is difficult to decompose, so that the foamable resin particles can provide a foamed molded product having excellent flame retardancy. b) Since the reactivity during the polymerization reaction does not deteriorate, the weight average molecular weight of the obtained base resin does not become too low, and (c) the foamable resin particles have a low styrene content as VOC.
  • the content of (a) and (a-1) styrene units is 55 parts by weight or more and 80 parts by weight or less, and the content of acrylonitrile units is 20 parts by weight or more and 45 parts by weight.
  • the content of the alphamethylstyrene unit is 0 parts by weight or more and 15 parts by weight or less, and the total content of (a-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is 100 parts by weight.
  • the content of the styrene unit is 60 parts by weight or more and 80 parts by weight or less, the content of the acrylonitrile unit is 20 parts by weight or more and 40 parts by weight or less, and the alphamethylstyrene unit.
  • the content is preferably 0 parts by weight or more and 15 parts by weight or less, and the total content of (b-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is preferably 100 parts by weight, and (c) (c-).
  • the content of styrene unit is 60 parts by weight or more and 75 parts by weight or less, the content of acrylonitrile unit is 21 parts by weight or more and 27 parts by weight or less, and the content of alphamethylstyrene unit is 3 parts by weight or more and 15 parts by weight. More preferably, the total content is 100 parts by weight or less and the total content of (c-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is 100 parts by weight.
  • the foaming agents contained in the effervescent resin particles include (a) aliphatic hydrocarbons such as hydrocarbons such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentanecyclohexane, and (b) difluoroethane. , And volatile foaming agents such as fluorinated hydrocarbons having a zero ozone destruction coefficient, such as tetrafluoroethane, but are not limited thereto.
  • the above-mentioned foaming agent may be used alone or in combination of two or more.
  • the content of the foaming agent in the foamable resin particles is preferably 2 parts by weight or more and 7 parts by weight or less with respect to 100 parts by weight of the foamable resin particles, and more preferably 3 parts by weight or more and 6 parts by weight or less. It is preferably 4 parts by weight or more and 5 parts by weight or less.
  • foamable resin particles can be used to produce foamed particles having a foaming ratio of 40 times or more, and (b) foamable resin particles are foam-molded with excellent heat resistance and flame retardancy. Can provide the body.
  • the foamable resin particles may optionally contain other additives in addition to the base resin and the foaming agent.
  • the other additives include plasticizers, bubble modifiers, flame retardants, flame retardants, heat ray radiation inhibitors, pigments, dyes and antistatic agents.
  • plasticizer examples include high boiling point plasticizers having a boiling point of 200 ° C. or higher.
  • plasticizers include (a) fatty acid glycerides such as (a) triglyceride stearate, triglyceride palmitate, triglyceride laurate, diglyceride stearate, and monoglyceride stearate, and (b) coconut oil, palm oil, and palm kernel oil.
  • Vegetable oils (c) aliphatic esters such as dioctyl adipate and dibutyl sebacate, and (d) organic hydrocarbons such as liquid paraffin and cyclohexane.
  • the content of the plasticizer in the foamable resin particles can be appropriately set so that the foamed molded product that the foamable resin particles can provide has desired heat resistance.
  • the foamable resin particles may contain a bubble adjusting agent in order to adjust the bubble diameter in the foamed molded product that the foamable resin particles can provide.
  • the bubble adjusting agent include (a) aliphatic bisamides such as methylene bisstearic acid amide and ethylene bisstearic acid amide, and (b) polyethylene wax.
  • the content of the bubble modifier in the foamable resin particles is preferably less than 0.1 parts by weight with respect to 100 parts by weight of the foamable resin particles. According to the above configuration, in the foamed molded product that the foamable resin particles can provide, deterioration of heat resistance and an increase in VOC emission amount due to miniaturization of bubbles do not occur.
  • the foamable resin particles may contain a flame retardant in order for the foamed molded product that the foamable resin particles can provide to obtain flame retardancy.
  • a flame retardant a brominated flame retardant is preferable.
  • brominated flame retardants 2,2-bis [4'-(2'', 3''-dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane, hexa Examples include bromocyclododecane, tetrabromocyclooctane, brominated polystyrene, and brominated butadiene-styrene block copolymers.
  • the present foamable resin particles can be used as a flame retardant with 2,2-bis [4'-(2'', 3''-). It preferably contains dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane.
  • 2,2-bis [4'-(2'', 3''-dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane is tetrabromobisphenol A-. Also referred to as bis (2,3-dibromo-2-methylpropyl) ether.
  • the content of the flame retardant in the foamable resin particles is preferably 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the foamable resin particles, and is 1.8 parts by weight or more and 2.5 parts by weight. It is more preferably less than parts by weight.
  • the content of the flame retardant in the foamable resin particles is (a) 1.5 parts by weight or more with respect to 100 parts by weight of the foamable resin particles, the foamed molded article that the foamable resin particles can provide is sufficiently difficult.
  • the foamable resin particles have a low VOC content and are excellent in moldability.
  • the foamable resin particles When the foamable resin particles contain a flame retardant, the foamable resin particles preferably further contain a flame retardant aid.
  • a flame retardant aid a radical generator such as a peroxide can be used.
  • radical generators include dicumyl peroxide, t-butyl peroxybenzoate, 2,3-dimethyl-2,3-diphenylbutane, and 3,4-dialkyl-3,4-diphenylhexane. Be done. Since it is possible to provide a foamed molded product having a small effect on the polymerization reaction and having good flame retardant performance, the foamable resin particles can be used as a flame retardant aid at a 10-hour half-life temperature of 130 ° C. or higher and 150 ° C. or lower. It is more preferable to contain a certain peroxide, and it is particularly preferable to contain a dicumyl peroxide.
  • the content of the flame retardant aid in the foamable resin particles is preferably 0.3 parts by weight or more and 1.5 parts by weight or less with respect to 100 parts by weight of the foamable resin particles.
  • the content of the flame retardant in the foamable resin particles is (a) 0.3 parts by weight or more with respect to 100 parts by weight of the foamable resin particles, the foamed molded article that the foamable resin particles can provide is sufficiently difficult.
  • the foamed molded product that the foamable resin particles can provide has sufficient heat resistance.
  • the content of styrene in the foamable resin particles is preferably less than 20 ppm, and the content of ethylbenzene is preferably 130 ppm or less.
  • the content of styrene in the foamable resin particles is more preferably 10 ppm or less, still more preferably 5 ppm or less. Especially preferably, it is 0 ppm or less. 0 ppm means below the detection limit in gas chromatography.
  • the content of ethylbenzene in the foamable resin particles is more preferably 100 ppm or less, still more preferably 70 ppm or less.
  • the foamed molded product that the foamable resin particles can provide can reduce the amount of VOC emitted into the environment, and as a result, it is possible to suppress an adverse effect on the human body.
  • the content of styrene in the foamable resin particles is intended to be the content of the styrene monomer in the foamable resin particles, and the content of ethylbenzene in the foamable resin particles is foamable.
  • the content of ethylbenzene monomer in the resin particles is intended.
  • Examples of the method for measuring the content of styrene and ethylbenzene (that is, the VOC content) in the foamable resin particles include a measurement method using gas chromatography. A specific method will be described in Examples described later.
  • the weight average molecular weight of the base resin of the foamable resin particles is preferably 150,000 or more and 220,000 or less, and more preferably 170,000 or more and 200,000 or less.
  • the weight average molecular weight of the base resin is (a) 150,000 or more, the foamed molded product that the foamable resin particles can provide has sufficient strength, flame retardancy, and heat resistance, and (b). ) When it is 220,000 or less, it has sufficient foaming power and the moldability of the foamable resin particles is good.
  • Examples of the method for measuring the weight average molecular weight of the base resin include a measuring method using gel permeation chromatography.
  • the foamable resin particles preferably have a weight average molecular weight of 150,000 or more and 220,000 or less, and more preferably 170,000 or more and 200,000 or less.
  • the weight average molecular weight of the foamable resin particles is (a) 150,000 or more, the foamed molded product that the obtained foamable resin particles can provide has sufficient strength, flame retardancy, and heat resistance.
  • (B) When it is 220,000 or less, it has sufficient foaming power and the moldability of the foamable resin particles is good.
  • Examples of the method for measuring the weight average molecular weight of the foamable resin particles include a measuring method using gel permeation chromatography.
  • the TH / TQ ratio of the foamable resin particles will be described.
  • GPC measurement is performed on the foamable resin particles using gel permeation chromatography to obtain a GPC measurement chart.
  • the GPC measurement chart is a chart of the relationship between the molecular weight and the differential distribution value, and is obtained as a graph in which the horizontal axis is the molecular weight and the vertical axis is the differential distribution value.
  • the horizontal axis is represented by a logarithm (Log).
  • An example of a GPC measurement chart of foamable resin particles is shown in FIG.
  • FIG. 1 is a diagram showing an example of a GPC measurement chart of foamable resin particles.
  • the point where the integrated distribution value on the GPC curve of the GPC measurement chart is the highest is set as the peak top, and is set as the point P as shown in FIG. Then, through the point P (peak top), draw a line L 1 perpendicular to the horizontal axis of the graph. Line L 1 and intersection next point P of the GPC curve, the intersection of the lines L 1 and the horizontal axis of the graph as point S.
  • the line segment PS the point corresponding to the length of 2/3 of the line segment PS from the point P is defined as the point T. That is, the length of the line segment ST is twice the length of the line segment PT.
  • the ratio of the length of the line segment TQ to the length of the line segment TH is defined as the TH / THQ ratio.
  • the composition of the base resin does not change, and the foaming agent does not affect the TH / THQ ratio.
  • the TH / TQ ratio of the foamable resin particles is the TH / TH / of the base resin. It can be said to be the TQ ratio. That is, the TH / TQ ratio obtained by analyzing the base resin which is the raw material of the foamable resin particles can be regarded as the TH / TQ ratio of the foamable resin particles.
  • the conditions for GPC measurement of foamable resin particles using gel permeation chromatography will be described in detail in the following examples.
  • the TH / TQ ratio of the foamable resin particles may be less than 1.20, 1.19 or less, 1.18 or less, or 1.17 or less. , 1.16 or less, 1.15 or less, 1.14 or less, 1.13 or less, 1.12 or less. , 1.11 or less, 1.10 or less, or less than 1.10.
  • the TH / TQ ratio of the foamable resin particles is low because the 10-hour half-life temperature is 74 ° C. or higher and 94 ° C. or lower in the copolymerization step (preparation step of the base resin) in the production of the foamable resin particles. This is a feature that appears when the initiator (X) is used.
  • the foamable resin particles produced by using the polymerization initiator containing the polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower are TH / TQ within the above range.
  • the polymerization initiator (X) described later when benzoyl peroxide (also known as dibenzoyl peroxide), ditoluyl peroxide, toluyl benzoyl peroxide and the like are used as the polymerization initiator (X), the polymerization initiator Foamable resin particles having a lower TH / TQ ratio can be obtained as compared with the case where di-t-butylperoxyhexahydroterephthalate is used as (X). It can be said that the effervescent resin particles containing the base resin containing the acrylonitrile unit as the constituent unit and having a TH / TQ ratio of less than 1.20 tend to have a low VOC content.
  • the effervescent resin particles containing the base resin containing the acrylonitrile unit as the constituent unit and having a TH / TQ ratio of less than 1.20 tend to be able to provide a molded product having a small amount of VOC emission.
  • the foamable resin particles having a TH / TQ ratio of less than 1.20 have an advantage that they are easily multiplied, that is, easily foamed.
  • the TH / TQ ratio of the foamable resin particles is preferably 0.90 or more, more preferably 1.00 or more.
  • the foamable resin particles having a TH / TQ ratio of 0.90 or more have an advantage that a foamed molded product having excellent heat resistance can be provided.
  • the composition of the base resin does not change. Further, in the foamed particles produced by using the foamable resin particles, the structure of the foamable resin particles changes, but the composition of the foamable resin particles does not change. Further, in the foamed molded product produced by using the foamed particles produced by using the foamable resin particles, the structure of the foamed particles changes, but the composition of the foamed particles does not change. Therefore, the types of structural units, the content of each structural unit, and the weight average molecular weight obtained by analyzing the foamable resin particles, the foamed particles, or the foamed molded article are the base resin which is the raw material thereof.
  • the TH / TQ ratio obtained by analyzing the foamed particles or the foamed molded product can be regarded as the TH / TQ ratio of the foamable resin particles which are the raw materials thereof.
  • the weight average molecular weight of the foamable resin particles, the foamed particles, or the foamed molded product can be obtained by measuring the foamable resin particles, the foamed particles, or the foamed molded product by using gel permeation chromatography.
  • the TH / TQ ratio of the base resin, the foamed particles, or the foamed molded product is determined by measuring the base resin, the foamed particles, or the foamed molded product by GPC using gel permeation chromatography to obtain a GPC measurement chart. It can be calculated by the same method as the TH / TQ ratio of the foamable resin particles.
  • the method for producing foamable resin particles according to an embodiment of the present invention includes a copolymerization step of copolymerizing a monomer containing a styrene monomer and an acrylonitrile monomer, and a foaming agent added to the obtained copolymer.
  • the copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures, including a foaming agent impregnation step of impregnating.
  • a method for producing foamable resin particles according to an embodiment of the present invention may be simply referred to as “the present production method”. That is, the term “the present production method” is intended to be an embodiment of the method for producing foamable resin particles in the present invention.
  • the "copolymer” in the present production method corresponds to the "base resin” contained in the foamable resin particles described in the section of ⁇ foamable resin particles>.
  • the present foamable resin particles that is, the foamable resin particles described in the section of ⁇ Expandable resin particles> are preferably produced by the present production method, but may be produced by a method other than the present production method. .. That is, the method for producing the foamable resin particles is not limited to the mode of the present production method as described below.
  • the styrene monomer may contain a small amount of the ethylbenzene monomer used in the manufacturing process.
  • the styrene monomer used in this production method is preferably as low as the content of ethylbenzene monomer in the styrene monomer, for example, preferably 130 ppm or less, more preferably 100 ppm or less, and 85 ppm. It is more preferably 70 ppm or less, and particularly preferably 70 ppm or less.
  • the foamable resin particles obtained by this production method have an advantage that a foamed molded product having an even smaller amount of ethylbenzene emitted can be provided.
  • the method of copolymerizing the monomer containing the styrene monomer and the acrylonitrile monomer is not particularly limited, and a conventionally known polymerization method can be used.
  • a suspension polymerization method in which polymerization is carried out in an aqueous suspension is preferable.
  • the "aqueous suspension” is a liquid (aqueous solution) in which resin particles, foamable resin particles and / or monomer droplets are dispersed in water or an aqueous solution using a stirrer or the like. Point to.
  • Surfactants and monomers may be dissolved in the aqueous suspension, or water-insoluble dispersants, polymerization initiators, cross-linking agents, plasticizers, bubble conditioners, flame retardants, and A flame retardant aid or the like may be dispersed together with the monomer.
  • the polymerization initiator, cross-linking agent, chain transfer agent and polymerization modifier used in the copolymerization step constitute a part of the obtained copolymer.
  • the weight ratio of the resin and water in the aqueous suspension is 1.0 / 0.6 to 1.0 / 3.0 as the weight / water weight ratio of the obtained copolymer. It is preferable to have.
  • Dispersants that can be used in the copolymerization step include, for example, (a) poorly water-soluble inorganic salts such as tricalcium phosphate, magnesium pyrophosphate, hydroxyapatite, and kaolin, and (b) polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinylpyrrolidone. Examples include water-soluble polymers such as.
  • a poorly water-soluble inorganic salt is used as the dispersant
  • an anionic surfactant such as ⁇ -olefin sulfonic acid sodium or dodecylbenzene sulfonic acid sodium is used in combination with the poorly water-soluble inorganic salt in order to increase dispersion stability. Is preferable.
  • These dispersants may be further added to the aqueous suspension at any time during the copolymerization step, if desired.
  • the amount of dispersant used depends on the type of dispersant.
  • the amount of the dispersant used is preferably 0.1 part by weight or more and 1.5 parts by weight or less with respect to 100 parts by weight of water.
  • the dispersant is preferably used so as to be 30 ppm or more and 100 ppm or less in the aqueous suspension.
  • an anionic surfactant is used in combination with a poorly water-soluble inorganic salt, it is preferable to use the anionic surfactant so as to be 30 ppm or more and 100 ppm or less in the aqueous suspension.
  • a chain transfer agent and a polymerization modifier may be further used.
  • the chain transfer agent include mercaptan compounds such as n-octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan.
  • the polymerization modifier include ⁇ -methylstyrene dimer. Since ⁇ -methylstyrene dimer also contributes to the adjustment of the weight average molecular weight of the copolymer, it can be said to be a chain transfer agent.
  • the chain transfer agent mainly functions to adjust the weight average molecular weight of the copolymer.
  • the polymerization modifier mainly functions to regulate the polymerization rate.
  • ⁇ -methylstyrene dimer As a chain transfer agent, (a) the polymerization rate and the weight average molecular weight of the copolymer can be easily adjusted, and (b) odor is less likely to be generated from the foamed molded product that the foamable resin particles can provide.
  • the amount of the chain transfer agent and the polymerization modifier used is 0.6% by weight with respect to 100 parts by weight of the monomer because (a) the polymerization rate and (b) the weight average molecular weight of the copolymer can be easily adjusted.
  • the amount is preferably 1 part or more, and more preferably 1.4 parts by weight or more.
  • the polymerization initiator it is desirable to mainly use the polymerization initiator (X) in the first polymerization step and mainly use the polymerization initiator (Y) in the second polymerization step.
  • the composition of the first polymerization step is not particularly limited as long as the polymerization temperature is different from that of the second polymerization step.
  • the polymerization temperature of the first polymerization step is, for example, 85 ° C. to 95 ° C.
  • the polymerization time of the first polymerization step is, for example, 4 hours to 7 hours.
  • the polymerization temperature in the first polymerization step is preferably 87 ° C. to 93 ° C., more preferably 88 ° C. to 92 ° C., and particularly preferably 89 ° C. to 91 ° C.
  • foamable resin particles having D2230 / D1600 of 0.80 or more that is, foamable resin particles having a small VOC content (emission amount) can be easily obtained.
  • the decomposition amount of the polymerization initiator for example, the polymerization initiator (X)
  • the decomposition amount of the polymerization initiator can be adjusted in an optimum range.
  • the polymerization rate reaction rate
  • foamable resin particles having an appropriate molecular weight range can be easily obtained.
  • the polymerization time of the first polymerization step is preferably 4.5 hours to 6.5 hours, and particularly preferably 5 hours to 6 hours. According to this configuration, there is an advantage that both productivity and polymerization stability can be achieved at the same time.
  • a polymerization initiator of the polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower.
  • a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and (b) a polymerization reaction is carried out at a polymerization temperature of 85 ° C. or higher and 95 ° C. or lower. It is preferable to carry out. According to the above configuration, the polymerization reaction can be appropriately controlled.
  • Examples of the polymerization initiator (X) in the first polymerization step include organic peroxides such as benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, and (b) azobisisobutyronitrile. Examples thereof include azo compounds such as azobisdimethylvaleronitrile.
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, and (b) azobisisobutyronitrile.
  • examples thereof include azo compounds such as azobisdimethylvaleronitrile.
  • As the polymerization initiator (X) it is particularly preferable to use benzoyl peroxide among these polymerization initiators because acrylonitrile, which can impart gas barrier properties, easily reacts.
  • polymerization initiator (X) one type may be used alone, or two or more types may be used in combination.
  • the polymerization initiator (X) it is more preferable to use only the polymerization initiator having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C. That is, in the first polymerization step, it is more preferable to use only the polymerization initiator (a) having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C., and (b) (b) (b). -1) As the polymerization initiator (X), only a polymerization initiator having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C. is used, and (b-2) at a polymerization temperature of 85 ° C. or higher and 95 ° C.
  • the polymerization initiator (X) used in the first polymerization step is mainly decomposed in the first polymerization step, so that the polymerization reaction can be controlled more appropriately.
  • the polymerization initiator of the polymerization initiator (X) is used, and the amount of the polymerization initiator of the polymerization initiator (X) used is 0.08 weight by weight based on 100 parts by weight of the monomer.
  • the amount is preferably 0.25 parts by weight or less, and more preferably 0.15 parts by weight or less.
  • the amount of the polymerization initiator (X) used is 0.08 part by weight or more of (a) with respect to 100 parts by weight of the monomer, there is an advantage that the polymerization proceeds sufficiently.
  • (B) When it is 0.25 parts by weight or less, the polymerization reaction does not proceed rapidly, and the polymerization can be easily controlled.
  • the weight average molecular weight of the obtained foamable resin particles is 170,000 or more and less than 200,000, and foaming of good quality. Sexual resin particles are obtained.
  • the weight average molecular weight of the copolymer can be adjusted by variously combining the polymerization initiator, the chain transfer agent, and the polymerization conditions of the first polymerization step.
  • the second polymerization step is carried out continuously with the first polymerization at an arbitrary time point after the polymerization conversion rate of the monomer reaches 85%.
  • the above-mentioned "amount of monomer supplied to the aqueous suspension-amount of monomer remaining in the aqueous suspension” is, in other words, a single amount contained as a constituent unit in the copolymer. It can be said to be the amount of body.
  • the "amount of monomer remaining in the aqueous suspension” is, for example, the residue (which may contain a monomer) obtained by filtering the aqueous suspension with a filter paper or the like. It can be measured by subjecting it to gas chromatography.
  • the polymerization temperature in the second polymerization step is different from the polymerization temperature in the first polymerization step, and the polymerization temperature in the second polymerization step is preferably 110 to 120 ° C.
  • the polymerization temperature in the second polymerization step is (a) less than 110 ° C., the VOC content (particularly the styrene content) in the obtained foamable resin particles cannot be reduced, and (b) when it exceeds 120 ° C. Since the internal pressure of the polymerization machine used in the polymerization step becomes high, high pressure resistance is required, and as a result, a heavy-equipped polymerization machine is required.
  • the polymerization temperature of the second polymerization step is preferably higher than that of the first polymerization step. According to the above configuration, the VOC content in the obtained foamable resin particles can be reduced.
  • the polymerization time of the second polymerization step is preferably 3 to 13 hours, more preferably 4 to 11 hours, further preferably 5 to 9 hours, and particularly preferably 6 to 8 hours.
  • the polymerization time of the second polymerization step is (a) less than 3 hours, the VOC content (particularly the styrene content) in the obtained foamable resin particles cannot be reduced, and (b) when it exceeds 8 hours, Since the amount of decomposition of the flame-retardant aid (for example, dicumyl peroxide) is large, the effect of the flame-retardant aid is not sufficiently exhibited when the foamed molded product is burned, and as a result, the flame retardancy tends to deteriorate. ..
  • the flame-retardant aid for example, dicumyl peroxide
  • the polymerization temperature in the second polymerization step is preferably 111 ° C. to 119 ° C., more preferably 112 ° C. to 118 ° C., further preferably 113 ° C. to 117 ° C., and particularly preferably 114 ° C. to 116 ° C. According to this configuration, there is an advantage that VOC can be efficiently reduced below the upper limit of the internal pressure of the polymerizer of the polymerizer used.
  • the polymerization time of the second polymerization step is preferably 4 hours to 11 hours, more preferably 5 hours to 9 hours, and particularly preferably 6 hours to 8 hours. According to this configuration, there is an advantage that VOC can be reduced while maintaining quality such as flame retardancy.
  • a polymerization initiator (Y) having a 10-hour half-life temperature of 90 ° C. or higher and 100 ° C. or lower it is preferable to use a polymerization initiator (Y) having a 10-hour half-life temperature of 90 ° C. or higher and 100 ° C. or lower, and a polymerization initiator having a 10-hour half-life temperature of 90 ° C. or higher and 100 ° C. or lower. It is more preferable to mainly use (Y).
  • polymerization initiator (Y) examples include t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-amylperoxyisopropyl monocarbonate, and t-amylperoxy-2-ethylhexyl monocarbonate. And 1,1-bis (t-butylperoxy) cyclohexane and the like. These polymerization initiators (Y) may be used alone or in combination of two or more. The polymerization initiator (Y) can be suitably used in the second polymerization step.
  • 1,1-bis (t-butylperoxy) cyclohexane cleaves in two steps.
  • the 10-hour half-life temperature when 1,1-bis (t-butylperoxy) cyclohexane before cleavage causes first-stage cleavage is 90 ° C.
  • the 10-hour half-life temperature when the intermediate product produced after the first-stage cleavage causes the second-stage cleavage is about 5 ° C. higher than the 10-hour half-life temperature of the first stage, and is 95 ° C. or higher.
  • 1,1-bis (t-butylperoxy) cyclohexane the final product produced after the second stage cleavage acts mainly in the second polymerization step. Therefore, in the present specification, 1,1-bis (t-butylperoxy) cyclohexane is not regarded as a polymerization initiator (X) but as a polymerization initiator (Y).
  • t-butylperoxy-2-ethylhexyl monocarbonate and t-amylperoxy-2-ethylhexyl monocarbonate as the polymerization initiator (Y) remain in the foamable resin particles or in the aqueous suspension. It is preferable in that the reaction between the styrene and acrylonitrile is promoted.
  • the amount of the polymerization initiator (Y) used in the second polymerization step is preferably 0.25 parts by weight or more and 0.90 parts by weight or less, and 0.28 parts by weight or more and 0 by weight with respect to 100 parts by weight of the monomer. More preferably, it is .60 parts by weight or less. Within this range, styrene remaining in the foamable resin particles or the aqueous suspension tends to react easily with acrylonitrile, and the proportion of the styrene-acrylonitrile copolymer in the surface layer of the foamable resin particles tends to increase. ..
  • the second polymerization step may be performed in combination with the foaming agent impregnation step, that is, may be performed in the presence of a foaming agent.
  • the foaming agent impregnation step is started by adding the foaming agent to the aqueous suspension, and the specific treatment temperature (also referred to as impregnation temperature) and treatment time (also referred to as impregnation time) are not particularly limited.
  • the present production method can provide foamable resin particles containing a base resin having a strong bonding force between polymer chains. Therefore, from the viewpoint of sufficiently impregnating the copolymer with the foaming agent, the impregnation temperature is preferably 110 ° C. to 120 ° C., more preferably 111 ° C. to 119 ° C., and 112 ° C. in the foaming agent impregnation step in the present production method. ° C. to 118 ° C.
  • the impregnation time is preferably 3 hours to 13 hours, more preferably 4 hours to 11 hours, and 5 hours to 5 hours in the foaming agent impregnation step in the present production method. 9 hours is more preferred, and 6 to 8 hours is particularly preferred.
  • the polymerization temperature of the second polymerization step is the impregnation temperature of the foaming agent impregnation step.
  • the polymerization time of the second polymerization step can be said to be the impregnation time of the foaming agent impregnation step.
  • the present production method further includes a drying step of drying the foamable resin particles.
  • the foamable resin particles are obtained in a state of being dispersed in an aqueous suspension. Therefore, when the present production method includes a drying step, the obtained foamable resin particles can be suitably used for producing foamed particles and the like.
  • the method for drying the foamable resin particles is not particularly limited, and for example, a groove-type or cylindrical stirring dryer, a box-type or band-type aeration dryer, a fluidized bed dryer, or the like can be used. ..
  • the drying treatment in the drying step is preferably carried out at a temperature equal to or lower than the foaming temperature of the foamable resin particles, and more preferably carried out at 30 ° C. to 55 ° C. from the viewpoint of productivity.
  • the temperature at which the drying treatment is carried out also referred to as the treatment temperature
  • the water content of the obtained foamable resin particles can be adjusted.
  • the drying treatment temperature in the drying step is (a) 30 ° C. or higher, the water content does not become too large, so that the foamed particles that the foamable resin particles can provide suppress the miniaturization of bubbles and reduce the VOC emission amount.
  • it can be reduced and (b) 55 ° C. or lower the water content does not become too low, so that there is no possibility that the flame retardancy of the foamed molded product that the foamable resin particles can provide deteriorates.
  • the polymerization initiator (X) preferably contains at least benzoyl peroxide. That is, a more preferable aspect of the production method according to the embodiment of the present invention is a method for producing foamable resin particles, in which a monomer (polymer mixture) containing a styrene monomer and an acrylonitrile monomer is used.
  • the copolymerization step includes a copolymerization step of copolymerizing and a foaming agent impregnation step of impregnating the obtained copolymer with a foaming agent, and the copolymerization step comprises a continuous first polymerization step and a second polymerization step having different polymerization temperatures.
  • a polymerization initiator (X) containing a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and the polymerization initiator (X) is benzoyl peroxide.
  • This is a method for producing a foamable resin particle, which comprises the above and has a TH / TQ ratio of the foamable resin particle of less than 1.20. According to this configuration, it is possible to provide an effervescent resin particle that can provide an effervescent molded article having a small amount of VOC emission, in other words, an effervescent molded article having high productivity.
  • the amount of benzoyl peroxide used in the first polymerization step is preferably 0.08 parts by weight or more and 0.25 parts by weight or less, and 0.15 parts by weight by weight of 0.20 parts by weight, based on 100 parts by weight of the monomer.
  • the following is more preferable. According to this configuration, it is possible to provide a foamed molded product having a smaller VOC emission amount, in other words, a foamed resin particle capable of providing a foamed molded product having higher productivity.
  • the foamable resin particles can be made into foamed particles by a general foaming method.
  • the foaming method include a method in which the following (1) to (3) are sequentially performed: (1) foaming resin particles are placed in a container equipped with a stirrer, and (2) foaming is performed by a heat source such as steam. By heating the sex resin particles, (3) foaming is performed until a desired expansion ratio is reached, and foamed particles are obtained.
  • the foamed particles may be referred to as pre-foamed particles, and therefore, the foaming method for obtaining the pre-foamed particles may be referred to as a pre-foamed method.
  • Foamed particles obtained by foaming foamable resin particles according to an embodiment of the present invention are also an embodiment of the present invention.
  • the foamed particles according to the embodiment of the present invention can provide a foamed molded product having a small amount of VOC emissions, in other words, a foamed molded product having high productivity.
  • the foamed particles according to one embodiment of the present invention may have the following constitution. That is, the foamed particles according to another embodiment of the present invention are foamed particles obtained by foaming foamable resin particles, and the foamable resin particles have (a) styrene units and acrylonitrile units as constituent units. a base resin containing, (b) and a blowing agent, wherein the ratio of absorbance at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 in the infrared absorption spectrum of the surface of the expanded beads D2230 / D1600 is 0.80 or more.
  • the foamed particles according to one embodiment of the present invention may have the following constitution. That is, the foamed particles according to another embodiment of the present invention (a) contain styrene units and acrylonitrile units as constituent units, and (b) have a wavelength of 2230 cm- 1 and a wavelength in the infrared absorption spectrum of the surface of the foamed particles.
  • the absorbance ratio D2230 / D1600 at 1600 cm -1 is 0.80 or more.
  • the foamed particles can be made into a foamed molded product by molding by a general in-mold molding method.
  • Specific examples of the in-mold molding method include a method in which foamed particles are filled in a mold that can be closed but cannot be sealed, and the foamed particles are heated and fused with steam to form a foamed molded product.
  • a foamed molded product obtained by in-mold molding of foamed particles according to an embodiment of the present invention is also an embodiment of the present invention.
  • the foam molded product according to the embodiment of the present invention has an advantage that the amount of VOC emitted is small.
  • the amount of styrene released is 2 ppm or less and the amount of ethylbenzene released is less than 15 ppm.
  • the amount of styrene released and the amount of ethylbenzene released are the amounts released when a 0.025 g foam molded product is left in a container having a volume of 20 ml under the condition of 60 ° C. for 2 hours. Is.
  • the amount of styrene and ethylbenzene released is shown as the concentration (ppm) in the gas in a container having a volume of 20 ml containing 0.025 g of the foamed molded product.
  • the amount of styrene released in the foam molded product according to the embodiment of the present invention is preferably 1.5 ppm or less, more preferably 1.0 ppm or less, still more preferably 0.6 ppm or less, and particularly preferably. It is 0.5 ppm or less.
  • the amount of ethylbenzene released in the foamed molded article according to the embodiment of the present invention is preferably less than 13 ppm, more preferably 10 ppm or less, still more preferably 7 ppm or less, and particularly preferably 5 ppm or less.
  • emission amount and “emission amount” are synonymous and can be interchanged.
  • the foamed molded product when used as an automobile interior material or a heat insulating material for building materials, sick house syndrome or the like are within the above ranges, when the foamed molded product is used as an automobile interior material or a heat insulating material for building materials, sick house syndrome or the like It has the advantage that there is no risk of adversely affecting the body.
  • the foamed molded product according to the embodiment of the present invention may be simply referred to as “the present foamed molded product”. That is, the term “present foam molded product” is intended to be an embodiment of the foam molded product in the present invention.
  • the oxygen index of the foamed molded product is preferably 26% or more, more preferably 27% or more, further preferably 28% or more, and particularly preferably 29% or more. According to the above configuration, when the foamed molded product is used as an automobile interior material or a heat insulating material for a building material, the foamed molded product has an advantage that it can exhibit sufficient flame retardant performance.
  • the foam molded product has excellent heat resistance.
  • the foamed molded product when used as a heat insulating material or a material for a portion exposed to sunlight as an automobile member, it is preferable that the foamed molded product has little deformation when used at 90 ° C. or higher.
  • the dimensional change rate of the foamed molded product before and after leaving is preferably 0.4% or less. It is more preferably 35% or less, further preferably 0.3% or less, and particularly preferably 0.25% or less.
  • the average cell diameter of the surface layer of this foam molded product is preferably 50 ⁇ m or more and less than 100 ⁇ m, and more preferably 60 to 90 ⁇ m.
  • the average cell diameter is 50 ⁇ m or more, (a) the cell membrane has a sufficient thickness, so that the dimensional change of the foamed molded product with respect to temperature is small, and (b) the amount of VOC and total VOC emissions can be reduced. (C) Since the cell film has a sufficient thickness, the cell film is not melted by the pressurized steam during in-mold molding, and therefore the surface property of the foam molded product is improved. When the cell film is thin, the foamed molded product may swell in an environment of 90 ° C.
  • the expansion of the foamed molded product in a high temperature environment may be referred to as tertiary foaming.
  • the average cell diameter is less than 100 ⁇ m, the surface property of the foamed molded product is good.
  • the "average cell diameter of the surface layer” is the average chord length of the foamed particles existing on a straight line of the cut surface of the surface layer of the foamed molded product.
  • the average chord length is a value obtained by measuring according to ASTM-D-2842-97 using a photograph obtained by projecting a cut surface of a foamed molded product.
  • 10 foam particles existing on a straight line of the cut surface of the surface layer of the foamed molded body are arbitrarily selected in the photograph obtained by projecting the cut surface of the foamed molded body, and the chord length of each of the foamed particles is selected. Measure and use the average value.
  • One embodiment of the present invention may have the following configuration.
  • (X1) A foamable resin particle containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and having a wavelength in the infrared absorption spectrum of the surface of the foamed particle in which the foamable resin particle is foamed.
  • Foamable resin particles having an absorbance ratio D2230 / D1600 at 2230 cm -1 and a wavelength of 1600 cm -1 of 0.80 or more.
  • (X4) In the base resin, (a) the content of the styrene unit is 55 parts by weight or more and 80 parts by weight or less, the content of the acrylonitrile unit is 20 parts by weight or more and 45 parts by weight or less, and ( b) The foamable resin particle according to any one of (X1) to (X3), wherein the total content of the styrene unit and the acrylonitrile unit is 100 parts by weight.
  • foamable resin particles according to any one of (X1) to (X4), wherein the (X5) TH / TQ ratio is less than 1.20.
  • (X10) A method for producing foamable resin particles, which is a copolymerization step of copolymerizing a monomer containing a styrene monomer and an acrylonitrile monomer, and foaming in which the obtained copolymer is impregnated with a foaming agent.
  • the copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures, and the first polymerization step has a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower.
  • a polymerization initiator (X) containing the above-mentioned polymerization initiator (X) is used, the polymerization initiator (X) contains benzoyl peroxide, and the TH / TQ ratio of the foamable resin particles is less than 1.20.
  • a method for producing foamable resin particles which is characterized by the above.
  • One embodiment of the present invention may have the following configuration.
  • (Y1) A foamable resin particle containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and having a wavelength in the infrared absorption spectrum of the surface of the foamed particle in which the foamable resin particle is foamed.
  • Foamable resin particles having an absorbance ratio D2230 / D1600 of 0.8 or more at 2230 cm -1 and a wavelength of 1600 cm -1 .
  • (Y2) The foamable resin particles according to (Y1), wherein the content of styrene in the foamable resin particles is less than 20 ppm, and the content of ethylbenzene is 130 ppm or less.
  • (Y3) The foamable resin particles according to (Y1) or (Y2), wherein the weight average molecular weight is 150,000 or more and 220,000 or less.
  • (Y7) The foamed molded product according to (Y5) or (Y6), wherein the emission amount of styrene is 2 ppm or less and the emission amount of ethylbenzene is less than 15 ppm.
  • the TH / TQ ratio of the GPC curve of the obtained GPC measurement chart was determined by the method described above. The results obtained are shown in Tables 1 and 2 as "TH / TQ ratio".
  • Styrene and ethylbenzene contained in the above were measured.
  • the contents of styrene and ethylbenzene in the foamable resin particles were quantified from the obtained results using the measured calibration curves of styrene and ethylbenzene.
  • the results obtained are shown in Tables 1 and 2 as "residual styrene monomer” and "ethylbenzene".
  • the foamable resin particles were placed in a steamer at 100 ° C. and heated for 5 minutes to obtain foamed particles. 10 g of the obtained foamed particles were placed in a 1000 cm 3 graduated cylinder, and the volume of the foamed particles (cm 3 ) was measured. The bulk ratio (cm 3 / g) was calculated by the following formula.
  • the manufacturing method of foamed particles is as follows.
  • the foamable resin particles were sieved to separate the foamable resin particles having a particle diameter of 0.5 to 1.4 mm.
  • the separated effervescent resin particles are pre-foamed to a bulk magnification of 40 times under the condition of a blown vapor pressure of 0.09 to 0.10 MPa using a pressure type pre-foaming machine "Ohiraki Kogyo, BHP", and then pre-foamed.
  • the foamed particles were left at room temperature for 1 day to obtain foamed particles having a bulk ratio of 40 times.
  • the blocking amount of the obtained foamed particles was measured by the following method.
  • Blocking is a mass in which foamed particles are bonded to each other during a preliminary foaming operation. If the blocking amount is large, filling defects will occur in the molding process, so it is better that the blocking amount is small.
  • the method for measuring the blocking amount is as follows.
  • Blocking amount (%) weight of mass / weight of total amount of foamed particles x 100
  • the blocking property was judged from the obtained blocking amount according to the following criteria. The results obtained are shown in Tables 1 and 2 as the "blocking amount". ⁇ (Good): Less than 0.05% ⁇ (Pass): Less than 0.01% 0.05% or more ⁇ (Defective): 0.1% or more.
  • the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high-refractive index crystal, so that the absorbance at 1600 cm -1 is 0.05 to 0.10.
  • the degree of adhesion of high refractive index crystals is adjusted for measurement.
  • the particle surface was brought into close contact with the ATR prism as it was.
  • absorbance ratio between the absorbance of the absorbance and 2230 cm -1 of the 1600cm -1 (D2230 / D1600).
  • ATR-FTIR measurements are performed on the surface of any 10 prefoamed particles to exclude the minimum and maximum absorbance ratios. Then, the arithmetic mean of the absorbance ratios of the remaining eight pieces was taken as the absorbance ratio.
  • the preliminary foamed particles (foamed particles) used for measuring the absorptivity ratio were obtained by treating the foamable resin particles obtained in Examples and Comparative Examples described later in the order of (1) to (3) below.
  • (1) The foamable resin particles were put into a pressurized foaming machine; (2) Next, steam was blown into the foaming machine at a blowing vapor pressure of 0.09 MPa to 0.10 MPa, and the pressure inside the foaming machine.
  • the foamed particles were cured at 25 ° C. for 12 to 24 hours to obtain foamed particles used for measuring the infrared absorption spectrum.
  • the manufacturing method of the foam molded product is as follows.
  • the obtained foamed molded product was evaluated for the amount of styrene and ethylbenzene emitted, the average cell diameter of the surface layer, the heat resistance, etc. by the following method.
  • the average chord length of each foamed particle of the foamed molded product was measured according to ASTM-D-2842-97 using a photograph obtained by projecting a cut surface of the foamed molded product. Specifically, in a photograph of the cut surface of the foamed molded product, the average chord length was measured from the foamed particles existing on a straight line of the cut surface of the surface layer of the foamed molded product. Ten foamed particles existing on the surface layer of the foamed molded product were arbitrarily selected, and the average of the chord lengths of each of the foamed particles was used as the final value (average chord length). In the present specification, the average chord length thus obtained is defined as the average cell diameter of the surface layer of the foamed molded product.
  • Heat resistance evaluation As described below, the heat resistance of the foamed molded product was evaluated by (a) calculating the dimensional change rate of the foamed molded product at 90 ° C. and (b) observing the swelling of the surface of the foamed molded product.
  • a foam molded product having a molded product magnification of 40 times was dried at 60 ° C. for 24 hours. Then, a sample piece having a length of 150, a width of 150, and a thickness of 20 (t) mm was cut out from the foam molded product.
  • the initial dimension (D) was obtained by measuring the dimensions of the sample piece in the length direction and the width direction at three points each. Then, the foam molded product was left to stand in a dryer at 90 ° C. for 168 hours, and after being left to stand, the same measurement was performed to determine the dimension (E) after drying at 90 ° C.
  • the dimensional change rate was calculated by the following formula, and the absolute value of the dimensional change rate was 0.4 or less, that is, the dimensional change rate ⁇ 0.4% to 0.4% was regarded as acceptable.
  • the dimensional change rate When the dimensional change rate is a positive value, it indicates that the initial (before drying) dimension (D) is larger than the post-drying dimension (E), that is, the foamed molded product has shrunk. Further, when the dimensional change rate is a negative value, it indicates that the dimension (E) after drying is larger than the initial dimension (D), that is, it indicates that the foamed molded product has swelled.
  • Dimensional change rate (%) ((D)-(E)) / (D) x 100 Absolute value of dimensional change rate is 0.4 or less: ⁇ (good) Absolute value of dimensional change rate is more than 0.4 and 0.5 or less: ⁇ (pass) Absolute value of dimensional change rate exceeds 0.5: ⁇ (defective) (Examples 1 to 10, Comparative Examples 1 to 5) 110 parts by weight of water, 0.105 parts by weight of tricalcium phosphate, 0.0075 parts by weight of sodium ⁇ -olein sulfonate, and the amounts of polymerization initiator, chain transfer agent, and flame retardant shown in Table 1 in a 6 L autoclave with a stirrer. A flame retardant and a flame retardant aid were charged and deoxidized to a gauge pressure of ⁇ 0.06 MPa with a vacuum pump.
  • the second polymerization (second polymerization step) was carried out at the temperature (second polymerization temperature) and time (second polymerization temperature) shown in Table 1. Then, the temperature in the autoclave was cooled to 40 ° C., dehydrated, and further dried to obtain effervescent resin particles. The obtained foamable resin particles were subjected to various measurements and evaluations described above, and the results are shown in Tables 1 and 2.
  • the obtained foamable resin particles were pre-foamed by the above-mentioned method to obtain foamed particles, and then further molded in the mold by the above-mentioned method to obtain a 40-fold foamed molded product.
  • foamable resin particles pre-foamed particles (foamed particles), and a foamed molded product, which have a low VOC content and can suppress the emission amount of VOC. Therefore, one embodiment of the present invention can be suitably used in the fields of automobiles and building materials.

Abstract

The present invention addresses the problem of providing foamable resin particles that have a low VOC content and in which VOC off-gassing levels can be suppressed. This goal is achievable through foamable resin particles containing: a base resin comprising a styrene unit and an acrylonitrile unit as constituent units; and a foaming agent, wherein the ratio D2230/D1600 of absorbance at wavelength 2230 cm–1 and wavelength 1600 cm–1 in the infrared absorption spectrum of the surfaces of foam particles obtained by foaming the foamable resin particles is 0.8 or higher.

Description

発泡性樹脂粒子及び予備発泡粒子並びに発泡成形体Foamable resin particles, prefoamed particles, and foamed molded article
 本発明は、揮発性有機化合物の含有量が少なく、概揮発性有機化合物の放散量を抑制できる発泡性樹脂粒子及び予備発泡粒子並びに発泡成形体に関する。 The present invention relates to foamable resin particles, pre-foamed particles, and a foamed molded product, which have a low content of volatile organic compounds and can suppress the emission amount of approximately volatile organic compounds.
 発泡性樹脂粒子として発泡性ポリスチレン樹脂粒子が良く知られている。発泡性ポリスチレン樹脂粒子は型内発泡成形により容易に成形体を得ることができ、安価であることから一般的に広く利用されている。 Foamable polystyrene resin particles are well known as foamable resin particles. Foamable polystyrene resin particles are widely used because they can be easily obtained by in-mold foam molding and are inexpensive.
 発泡性ポリスチレン樹脂粒子は軽量性及び断熱性能に優れる反面、含有する揮発性有機化合物(以下、英語表記のVolatile Organic Compoundsの頭文字をとって「VOC」と記載することもある)の単位時間当たりの放散量が多いことが問題であった。特に発泡性ポリスチレン樹脂粒子では、VOC成分であるスチレン及びエチルベンゼンがいずれも自動車分野及び建材分野の厳しい放散量の規格をクリアすることが難しく、発泡成形体を数日乾燥させるなどの処置が必要で、コストアップの一因となっている。 While foamable polystyrene resin particles are excellent in light weight and heat insulating performance, they are contained in volatile organic compounds (hereinafter, sometimes referred to as "VOC" by taking the acronym of Volatile Organic Compounds in English) per unit time. The problem was that the amount of radiation was large. Especially for foamable polystyrene resin particles, it is difficult for both styrene and ethylbenzene, which are VOC components, to meet the strict emission standards in the fields of automobiles and building materials, and it is necessary to take measures such as drying the foamed molded product for several days. , It is one of the causes of cost increase.
 上記課題を解決すべく、特許文献1及び2では、開始剤の添加部数増量及び/又は難燃剤の後添加など、製造方法の工夫により樹脂粒子中の残存スチレン量が少ない発泡性ポリスチレン樹脂粒子を提供できることが開示されている。 In order to solve the above problems, in Patent Documents 1 and 2, foamable polystyrene resin particles having a small amount of residual styrene in the resin particles are provided by devising a manufacturing method such as increasing the number of copies of the initiator added and / or adding the flame retardant afterwards. It is disclosed that it can be provided.
 また、特許文献3は特許文献1で記載の開始剤または当該開始剤の類似開始剤を用いて製造された、スチレン/アクリロニトリル/アルファメチルスチレン系の耐熱性スチレン系樹脂粒子が開示されている。 Further, Patent Document 3 discloses styrene / acrylonitrile / alpha-methylstyrene-based heat-resistant styrene-based resin particles produced by using the initiator described in Patent Document 1 or a similar initiator of the initiator.
特開2017-052894JP-A-2017-052894 特開2010-195936JP-A-2010-195936 特開2016-164213JP 2016-164213
 上述のような従来技術は、VOCの放散量低減という観点において、従来技術の開発当時の技術水準における一般的な発泡性樹脂粒子からすれば、改善されたものであった。しかしながら、市場におけるVOCの放散量低減に関する関心は高く、上述のような従来技術は、VOC(特にスチレン及びエチルベンゼン)の放散量という観点において、さらなる改善の余地があった。 The above-mentioned conventional technique was improved from the viewpoint of reducing the amount of VOC emission from the viewpoint of general foamable resin particles at the technical level at the time of development of the conventional technique. However, there is a great deal of interest in reducing VOC emissions in the market, and the prior art as described above has room for further improvement in terms of VOC emissions (particularly styrene and ethylbenzene).
 本発明の一実施形態は、上記問題点に鑑みなされたものであり、その目的は、VOC含有量及びその放散量が少ない、新規の発泡性樹脂粒子並びに、VOC放散量及びその放散量が少ない、新規の発泡成形体、を提供することである。 One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to have a small VOC content and its emission amount, a novel foamable resin particle, and a small VOC emission amount and its emission amount. Is to provide a new foam molded product.
 本発明者らは、鋭意検討の結果、本発明の完成に至った。すなわち、本発明の一実施形態に係る発泡性樹脂粒子は、構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、発泡剤とを含む発泡性樹脂粒子であって、前記発泡性樹脂粒子を発泡させた発泡粒子表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上である。 As a result of diligent studies, the present inventors have completed the present invention. That is, the foamable resin particles according to the embodiment of the present invention are foamable resin particles containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and the foamable resin particles are used. red absorbance ratio at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 in the infrared absorption spectrum D2230 / D1600 of foamed was foamed particle surface is 0.80 or more.
 また、本発明の一実施形態に係る発泡性樹脂粒子の製造方法は、発泡性樹脂粒子の製造方法であって、スチレン単量体およびアクリロニトリル単量体を含む単量体を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、前記共重合工程は、重合温度が異なる連続した第1重合工程及び第2重合工程を含み、前記第1重合工程では、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を含む重合開始剤を使用し、前記重合開始剤(X)は、過酸化ベンゾイルを含み、前記発泡性樹脂粒子のTH/TQ比は、1.20未満である。 Further, the method for producing foamable resin particles according to an embodiment of the present invention is a method for producing foamable resin particles, which is a copolymerization in which a monomer containing a styrene monomer and an acrylonitrile monomer is copolymerized. The first step includes a step and a step of impregnating the obtained copolymer with a foaming agent, and the copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures. In the polymerization step, a polymerization initiator containing a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and the polymerization initiator (X) contains benzoyl peroxide and is foamed. The TH / TQ ratio of the sex resin particles is less than 1.20.
 本発明一実施形態は、揮発性有機化合物(VOC)の含有量が少なく、概揮発性有機化合物(VOC)の放散量を抑制できる発泡性樹脂粒子及び予備発泡粒子(発泡粒子)並びに発泡成形体を提供できる。 In one embodiment of the present invention, foamable resin particles, pre-foamed particles (foamed particles), and a foamed molded product, which have a low content of volatile organic compounds (VOC) and can suppress the emission amount of approximately volatile organic compounds (VOC). Can be provided.
発泡性樹脂粒子のGPC測定チャートの一例を示すグラフである。It is a graph which shows an example of the GPC measurement chart of the foamable resin particle.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. The technical scope of the present invention also includes embodiments or examples obtained by appropriately combining the technical means disclosed in the different embodiments or examples.
 さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".
 <発泡性樹脂粒子>
 本発明の一実施形態に係る発泡性樹脂粒子は、構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、発泡剤とを含む発泡性樹脂粒子であって、前記発泡性樹脂粒子を発泡させた発泡粒子表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上であることを特徴とする。本発明の一実施形態における赤外吸収スペクトルは、ATR-FTIR分析で得ることができる。
<Effervescent resin particles>
The foamable resin particles according to the embodiment of the present invention are foamable resin particles containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and the foamable resin particles are foamed. red absorbance ratio at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 in the infrared absorption spectrum D2230 / D1600 of the foamed particle surface, characterized in that at least 0.80. The infrared absorption spectrum in one embodiment of the present invention can be obtained by ATR-FTIR analysis.
 本明細書において「発泡粒子表面の赤外吸収スペクトル」とは、「発泡粒子の表面に対する全反射測定法によるフーリエ変換赤外分光分析で得られた赤外吸収スペクトル」を意図する。本明細書において、「全反射測定法によるフーリエ変換赤外分光分析」を「ATR-FTIR分析」と称する場合もある。 In the present specification, the "infrared absorption spectrum on the surface of foamed particles" is intended as "infrared absorption spectrum obtained by Fourier transform infrared spectroscopic analysis on the surface of foamed particles by total reflection measurement method". In the present specification, "Fourier transform infrared spectroscopic analysis by total reflection measurement method" may be referred to as "ATR-FTIR analysis".
 本発明の一実施形態において、赤外吸収スペクトルの測定に用いる発泡粒子は、本発明の一実施形態に係る発泡性樹脂粒子を以下(1)~(3)の順で処理して得るものとする:(1)発泡性樹脂粒子を加圧式の発泡機に投入する;(2)次に、吹き込み蒸気圧0.09MPa~0.10MPaにて発泡機内に蒸気を吹き込み、かつ発泡機内の圧力を0.01MPa~0.02MPaの範囲で調製することにより、発泡機内の温度を100℃~104℃とし、これにより、発泡粒子を倍率40倍へ発泡させる;(3)次に、得られた発泡粒子を25℃で12時間~24時間養生し、赤外吸収スペクトルの測定に用いる発泡粒子を得る。 In one embodiment of the present invention, the foamed particles used for measuring the infrared absorption spectrum are obtained by treating the foamable resin particles according to the embodiment of the present invention in the following order (1) to (3). (1) The foamable resin particles are put into a pressurized foaming machine; (2) Next, steam is blown into the foaming machine at a blowing vapor pressure of 0.09 MPa to 0.10 MPa, and the pressure inside the foaming machine is adjusted. By preparing in the range of 0.01 MPa to 0.02 MPa, the temperature inside the foaming machine is set to 100 ° C. to 104 ° C., whereby the foamed particles are foamed at a magnification of 40 times; (3) Next, the obtained foaming The particles are cured at 25 ° C. for 12 to 24 hours to obtain foamed particles used for measuring the infrared absorption spectrum.
 本発明の一実施形態に係る発泡性樹脂粒子は、上記構成を有することでVOC放散量が少ない発泡成形体を提供できるという利点を有する。これにより、自動車分野および建材分野などで要求されるVOC放散量の規格をクリアできる。すなわち、本発明の一実施形態に係る発泡性樹脂粒子は、生産性の高い発泡成形体を提供できるという利点を有する。 The foamable resin particles according to the embodiment of the present invention have an advantage that a foamed molded product having a small amount of VOC emission can be provided by having the above structure. As a result, it is possible to clear the standard of VOC emission amount required in the fields of automobiles and building materials. That is, the foamable resin particles according to the embodiment of the present invention have an advantage that a highly productive foamed molded product can be provided.
 ここで、本発明の一実施形態に係る発泡性樹脂粒子は、当該発泡性樹脂粒子を用いて公知の方法により発泡粒子を製造し、かかる発泡粒子を用いて公知の方法により発泡成形を行うことにより発泡成形体を提供できる。 Here, for the foamable resin particles according to the embodiment of the present invention, the foamable resin particles are used to produce foamed particles by a known method, and the foamed resin particles are foam-molded by a known method. Can provide a foam molded article.
 本明細書中では、「本発明の一実施形態に係る発泡性樹脂粒子」を、単に「本発泡性樹脂粒子」と称する場合もある。すなわち、用語「本発泡性樹脂粒子」は、本発明における発泡性樹脂粒子の一実施形態を意図する。 In the present specification, "foamable resin particles according to one embodiment of the present invention" may be simply referred to as "present foamable resin particles". That is, the term "the present foamable resin particles" is intended to be an embodiment of the foamable resin particles in the present invention.
 VOCは、広義には、例えば日本国の大気汚染防止法にて定義されるように、「排出口から大気中に排出され、また飛散したときに気体である有機化合物」を意味する。各技術分野において、VOCとして規制されるべき化合物が指定されている。例えば、日本国の厚生労働省は、下記の物質について室内濃度指針値を定めている:ホルムアルデヒド、アセトアルデヒド、トルエン、エチルベンゼン、キシレン、スチレン、ノナナール、テトラデカン、フタル酸ジ-n-ブチル、フタル酸ジ-2-エチルヘキシル、p-ジクロロベンゼン、クロロピリホス、ダイアジノン、およびフェノブカルブ。また、自動車工業会は、下記物質について自動車室内の濃度規制を行っている:ホルムアルデヒド、アセトアルデヒド、トルエン、エチルベンゼン、キシレン、スチレン、テトラデカン、フタル酸ジ-n-ブチル、およびフタル酸ジ-2-エチルヘキシル。 In a broad sense, VOC means, for example, as defined by the Air Pollution Control Act of Japan, "organic compounds that are gas when they are discharged into the atmosphere from the outlet and scattered." In each technical field, compounds to be regulated as VOCs are specified. For example, the Ministry of Health, Labor and Welfare of Japan has established indoor concentration guideline values for the following substances: formaldehyde, acetaldehyde, toluene, ethylbenzene, xylene, styrene, nonanal, tetradecane, di-n-butyl phthalate, di-butyl phthalate. 2-Ethylhexyl, p-dichlorobenzene, chloropyriphos, diazinon, and phenocarb. In addition, the Automobile Manufacturers Association regulates the concentrations of the following substances in the vehicle interior: formaldehyde, acetaldehyde, toluene, ethylbenzene, xylene, styrene, tetradecane, di-n-butyl phthalate, and di-2-ethylhexyl phthalate. ..
 本明細書においてVOCとは、「発泡性樹脂粒子または発泡成形体が含み得る化合物のうち、(a)大気中に排出され、また飛散したときに気体であり、かつ(b)日本国厚生労働省が室内濃度指針値を定めている有機化合物」を意図する。具体的には、本明細書においてVOCとは、スチレンおよびエチルベンゼンを意図する。 In the present specification, VOC means "among compounds that can be contained in foamable resin particles or foamed molded articles, (a) a gas when discharged into the atmosphere and scattered, and (b) the Ministry of Health, Labor and Welfare of Japan. Is intended as an "organic compound for which the indoor concentration guideline value is set." Specifically, VOCs herein are intended to be styrene and ethylbenzene.
 本発泡性樹脂粒子が含む基材樹脂は、構成単位としてスチレン単位およびアクリロニトリル単位を含む。本明細書において、「スチレン単位」とは、スチレン単量体に由来する構成単位であり、「アクリロニトリル単位」とは「アクリロニトリル単量体」に由来する構成単位である。 The base resin contained in the foamable resin particles contains a styrene unit and an acrylonitrile unit as constituent units. In the present specification, the "styrene unit" is a structural unit derived from a styrene monomer, and the "acrylonitrile unit" is a structural unit derived from an "acrylonitrile monomer".
 本発泡性樹脂粒子が含む基材樹脂において、(a)スチレン単位の含有量は55重量部以上80重量部以下であり、アクリロニトリル単位の含有量は20重量部以上45重量部以下であり、かつ(b)スチレン単位及びアクリロニトリル単位の合計含有量は100重量部であることが好ましい。 In the base resin contained in the foamable resin particles, (a) the content of the styrene unit is 55 parts by weight or more and 80 parts by weight or less, and the content of the acrylonitrile unit is 20 parts by weight or more and 45 parts by weight or less. (B) The total content of the styrene unit and the acrylonitrile unit is preferably 100 parts by weight.
 スチレン単位の含有量は、好ましくは55重量部以上80重量部以下であり、より好ましくは60重量部以上80重量部以下であり、より好ましくは65重量部以上75重量部以下である。スチレン単位の含有量が、(a)55重量部以上である場合、発泡性樹脂粒子は成形性に優れるものとなり、(b)80重量部以下である場合、発泡性樹脂粒子は耐熱性に優れる発泡成形体を提供できる。 The content of the styrene unit is preferably 55 parts by weight or more and 80 parts by weight or less, more preferably 60 parts by weight or more and 80 parts by weight or less, and more preferably 65 parts by weight or more and 75 parts by weight or less. When the content of the styrene unit is (a) 55 parts by weight or more, the foamable resin particles are excellent in moldability, and (b) when it is 80 parts by weight or less, the foamable resin particles are excellent in heat resistance. A foam molded product can be provided.
 アクリロニトリル単位の含有量は、好ましくは20重量部以上45重量部以下であり、より好ましくは20重量部以上40重量部以下であり、より好ましくは25重量部以上35重量部以下である。アクリロニトリル単位の含有量が20重量部以上である場合、発泡性樹脂粒子は、(a)ガスバリア性に優れるためVOCとしてのスチレンの放出量が少なく、かつ(b)耐熱性に優れる、発泡成形体を提供できる。アクリロニトリル単位の含有量が45重量部以下である場合、発泡性樹脂粒子は成形性に優れ、かつ発泡性樹脂粒子の製造時に重合安定性が増す。 The content of the acrylonitrile unit is preferably 20 parts by weight or more and 45 parts by weight or less, more preferably 20 parts by weight or more and 40 parts by weight or less, and more preferably 25 parts by weight or more and 35 parts by weight or less. When the content of the acrylonitrile unit is 20 parts by weight or more, the foamable resin particles are (a) excellent in gas barrier property, so that the amount of styrene released as VOC is small, and (b) excellent in heat resistance. Can be provided. When the content of the acrylonitrile unit is 45 parts by weight or less, the foamable resin particles are excellent in moldability, and the polymerization stability is increased during the production of the foamable resin particles.
 本発明の一実施形態に係る発泡性樹脂粒子は、本発泡性樹脂粒子を発泡し得られた発泡粒子表面のATR-FTIR分析で得られた赤外吸収スペクトルのうち、2230cm-1での吸光度D2230と1600cm-1での吸光度D1600とを求め、D2230/D1600の吸光度比が0.8以上であることを特徴とする。尚、D2230/D1600の吸光度比の好ましい範囲は1.2以上2.5以下である。D2230/D1600の吸光度比が0.8以上であることで、発泡成形体から放散されるVOC成分を大幅に抑制できる。 The foamable resin particles according to the embodiment of the present invention have an absorbance at 2230 cm- 1 in the infrared absorption spectrum obtained by ATR-FTIR analysis on the surface of the foamed particles obtained by foaming the foamable resin particles. The absorbance D1600 at D2230 and 1600 cm -1 is determined, and the absorbance ratio of D2230 / D1600 is 0.8 or more. The preferable range of the absorbance ratio of D2230 / D1600 is 1.2 or more and 2.5 or less. When the absorbance ratio of D2230 / D1600 is 0.8 or more, the VOC component emitted from the foamed molded product can be significantly suppressed.
 本明細書において「ATR-FTIR分析」とは、「全反射測定法によるフーリエ変換赤外分光分析」を意図する。 In the present specification, "ATR-FTIR analysis" is intended as "Fourier transform infrared spectroscopic analysis by total reflection measurement method".
 本発泡性樹脂粒子が含む基材樹脂は、構成単位として、さらにアルファメチルスチレン単位を含んでも良い。アルファメチルスチレンを追加すれば、基材樹脂のガラス転移温度が上昇するため、発泡性樹脂粒子は、十分な耐熱性を有する発泡成形体を提供できる。 The base resin contained in the foamable resin particles may further contain an alpha-methylstyrene unit as a constituent unit. Since the glass transition temperature of the base resin rises when alpha-methylstyrene is added, the foamable resin particles can provide a foamed molded product having sufficient heat resistance.
 本明細書において、「アルファメチルスチレン単位」とは、アルファメチルスチレン単量体に由来する構成単位である。 In the present specification, the "alpha-methylstyrene unit" is a structural unit derived from an alpha-methylstyrene monomer.
 アルファメチルスチレン単位の含有量は、基材樹脂におけるスチレン単位、アクリロニトリル単位及びアルファメチルスチレン単位の合計含有量が100重量部である場合に、3重量部以上15重量部以下が好ましく、より好ましくは4重量部以上10重量部以下であり、更に好ましくは4重量部以上7重量部以下である。アルファメチルスチレンはアルファ位にメチル基があり、立体障害が大きく、それ故に、反応性が乏しいという特徴がある。また、アルファメチルスチレンが基材樹脂に含まれる場合、基材樹脂中のアルファメチルスチレン部位は分解しやすいという特徴がある。それ故に、アルファメチルスチレン単位の含有量が3重量部以上である場合、発泡性樹脂粒子の製造時に、重合速度が速くなりすぎないため重合を制御しやすいものとなる。また、アルファメチルスチレン単位の含有量が15重量部以下である場合、(a)得られる基材樹脂が分解しにくいため、発泡性樹脂粒子は難燃性に優れる発泡成形体を提供でき、(b)重合反応時の反応性が悪化しないため得られる基材樹脂の重量平均分子量は低くなりすぎず、かつ(c)発泡性樹脂粒子はVOCとしてスチレン含有量が少ないものとなる。 The content of the alphamethylstyrene unit is preferably 3 parts by weight or more and 15 parts by weight or less, more preferably, when the total content of the styrene unit, the acrylonitrile unit and the alphamethylstyrene unit in the base resin is 100 parts by weight. It is 4 parts by weight or more and 10 parts by weight or less, and more preferably 4 parts by weight or more and 7 parts by weight or less. Alpha-methylstyrene has a methyl group at the alpha position and is characterized by large steric hindrance and therefore poor reactivity. Further, when alpha-methylstyrene is contained in the base resin, the alpha-methylstyrene moiety in the base resin is easily decomposed. Therefore, when the content of the alpha-methylstyrene unit is 3 parts by weight or more, the polymerization rate does not become too high during the production of the foamable resin particles, so that the polymerization can be easily controlled. Further, when the content of the alphamethylstyrene unit is 15 parts by weight or less, (a) the obtained base resin is difficult to decompose, so that the foamable resin particles can provide a foamed molded product having excellent flame retardancy. b) Since the reactivity during the polymerization reaction does not deteriorate, the weight average molecular weight of the obtained base resin does not become too low, and (c) the foamable resin particles have a low styrene content as VOC.
 本発泡性樹脂粒子が含む基材樹脂において、(a)(a-1)スチレン単位の含有量は55重量部以上80重量部以下であり、アクリロニトリル単位の含有量は20重量部以上45重量部以下であり、アルファメチルスチレン単位の含有量は0重量部以上15重量部以下であり、かつ(a-2)スチレン単位、アクリロニトリル単位およびアルファメチルスチレン単位の合計含有量は100重量部であることが好ましく、(b)(b-1)スチレン単位の含有量は60重量部以上80重量部以下であり、アクリロニトリル単位の含有量は20重量部以上40重量部以下であり、アルファメチルスチレン単位の含有量は0重量部以上15重量部以下であり、かつ(b-2)スチレン単位、アクリロニトリル単位およびアルファメチルスチレン単位の合計含有量は100重量部であることが好ましく、(c)(c-1)スチレン単位の含有量は60重量部以上75重量部以下であり、アクリロニトリル単位の含有量は21重量部以上27重量部以下であり、アルファメチルスチレン単位の含有量は3重量部以上15重量部以下であり、かつ(c-2)スチレン単位、アクリロニトリル単位およびアルファメチルスチレン単位の合計含有量は100重量部であることがより好ましい。 In the base resin contained in the foamable resin particles, the content of (a) and (a-1) styrene units is 55 parts by weight or more and 80 parts by weight or less, and the content of acrylonitrile units is 20 parts by weight or more and 45 parts by weight. The content of the alphamethylstyrene unit is 0 parts by weight or more and 15 parts by weight or less, and the total content of (a-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is 100 parts by weight. (B) (b-1) The content of the styrene unit is 60 parts by weight or more and 80 parts by weight or less, the content of the acrylonitrile unit is 20 parts by weight or more and 40 parts by weight or less, and the alphamethylstyrene unit. The content is preferably 0 parts by weight or more and 15 parts by weight or less, and the total content of (b-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is preferably 100 parts by weight, and (c) (c-). 1) The content of styrene unit is 60 parts by weight or more and 75 parts by weight or less, the content of acrylonitrile unit is 21 parts by weight or more and 27 parts by weight or less, and the content of alphamethylstyrene unit is 3 parts by weight or more and 15 parts by weight. More preferably, the total content is 100 parts by weight or less and the total content of (c-2) styrene unit, acrylonitrile unit and alphamethylstyrene unit is 100 parts by weight.
 本発泡性樹脂粒子が含む発泡剤としては、(a)プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、およびネオペンタンシクロへキサンなどの炭化水素などの脂肪族炭化水素類、および(b)ジフルオロエタン、およびテトラフルオロエタンなどのオゾン破壊係数がゼロであるフッ化炭化水素類、などの揮発性発泡剤が挙げられるが、これらに限定されるものではない。上述した発泡剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The foaming agents contained in the effervescent resin particles include (a) aliphatic hydrocarbons such as hydrocarbons such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentanecyclohexane, and (b) difluoroethane. , And volatile foaming agents such as fluorinated hydrocarbons having a zero ozone destruction coefficient, such as tetrafluoroethane, but are not limited thereto. The above-mentioned foaming agent may be used alone or in combination of two or more.
 本発泡性樹脂粒子における発泡剤の含有量は、発泡性樹脂粒子100重量部に対して2重量部以上7重量部以下であることが好ましく、3重量部以上6重量部以下であることがより好ましく、4重量部以上5重量部以下であることがさらに好ましい。上記構成によれば、(a)発泡性樹脂粒子を用いて発泡倍率40倍以上の発泡粒子を製造することが可能となり、(b)発泡性樹脂粒子は耐熱性および難燃性に優れる発泡成形体を提供できる。 The content of the foaming agent in the foamable resin particles is preferably 2 parts by weight or more and 7 parts by weight or less with respect to 100 parts by weight of the foamable resin particles, and more preferably 3 parts by weight or more and 6 parts by weight or less. It is preferably 4 parts by weight or more and 5 parts by weight or less. According to the above configuration, (a) foamable resin particles can be used to produce foamed particles having a foaming ratio of 40 times or more, and (b) foamable resin particles are foam-molded with excellent heat resistance and flame retardancy. Can provide the body.
 本発泡性樹脂粒子は、基材樹脂および発泡剤に加えて、任意でその他の添加剤を含んでいてもよい。上記その他の添加剤としては、可塑剤、気泡調整剤、難燃剤、難燃助剤、熱線輻射抑制剤、顔料、染料および帯電防止剤などが挙げられる。 The foamable resin particles may optionally contain other additives in addition to the base resin and the foaming agent. Examples of the other additives include plasticizers, bubble modifiers, flame retardants, flame retardants, heat ray radiation inhibitors, pigments, dyes and antistatic agents.
 可塑剤としては、沸点が200℃以上の高沸点可塑剤が挙げられる。そのような可塑剤としては、例えば、(a)ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライドなどの脂肪酸グリセライド、(b)ヤシ油、パーム油、パーム核油などの植物油、(c)ジオクチルアジペート、ジブチルセバケートなどの脂肪族エステル、および(d)流動パラフィン、シクロヘキサンなどの有機炭化水素、などが挙げられる。発泡性樹脂粒子がこれら可塑剤として挙げた物質を多量に含む場合、発泡性樹脂粒子が提供し得る発泡成形体の耐熱性が悪化する傾向がある。そのため、本発泡性樹脂粒子における可塑剤の含有量は、当該発泡性樹脂粒子が提供し得る発泡成形体が所望の耐熱性を有するように、適宜設定され得る。 Examples of the plasticizer include high boiling point plasticizers having a boiling point of 200 ° C. or higher. Examples of such plasticizers include (a) fatty acid glycerides such as (a) triglyceride stearate, triglyceride palmitate, triglyceride laurate, diglyceride stearate, and monoglyceride stearate, and (b) coconut oil, palm oil, and palm kernel oil. Vegetable oils, (c) aliphatic esters such as dioctyl adipate and dibutyl sebacate, and (d) organic hydrocarbons such as liquid paraffin and cyclohexane. When the foamable resin particles contain a large amount of the substances listed as these plasticizers, the heat resistance of the foamed molded product that the foamable resin particles can provide tends to deteriorate. Therefore, the content of the plasticizer in the foamable resin particles can be appropriately set so that the foamed molded product that the foamable resin particles can provide has desired heat resistance.
 本発泡性樹脂粒子は、発泡性樹脂粒子が提供し得る発泡成形体における気泡径を調整するために、気泡調整剤を含んでいてもよい。上記気泡調整剤としては、(a)メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイドなどの脂肪族ビスアマイド、および(b)ポリエチレンワックスなどが挙げられる。本発泡性樹脂粒子における気泡調整剤の含有量は、発泡性樹脂粒子100重量部に対して0.1重量部未満であることが好ましい。上記構成によれば、発泡性樹脂粒子が提供し得る発泡成形体において、気泡の微細化に起因する、耐熱性の悪化およびVOC放散量の増加などが生じない。 The foamable resin particles may contain a bubble adjusting agent in order to adjust the bubble diameter in the foamed molded product that the foamable resin particles can provide. Examples of the bubble adjusting agent include (a) aliphatic bisamides such as methylene bisstearic acid amide and ethylene bisstearic acid amide, and (b) polyethylene wax. The content of the bubble modifier in the foamable resin particles is preferably less than 0.1 parts by weight with respect to 100 parts by weight of the foamable resin particles. According to the above configuration, in the foamed molded product that the foamable resin particles can provide, deterioration of heat resistance and an increase in VOC emission amount due to miniaturization of bubbles do not occur.
 本発泡性樹脂粒子は、発泡性樹脂粒子が提供し得る発泡成形体が難燃性を得るために、難燃剤を含んでいてもよい。上記難燃剤としては臭素系難燃剤が好ましい。臭素系難燃剤としては、2,2-ビス[4’-(2’’,3’’-ジブロモ-2’’-メチルプロピルオキシ)-,3’,5’-ジブロモフェニル]-プロパン、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、臭素化ポリスチレン、および臭素化ブタジエン-スチレンブロック共重合体などが挙げられる。発泡性樹脂粒子が提供し得る発泡成形体が難燃性を得やすいことから、本発泡性樹脂粒子は、難燃剤として、2,2-ビス[4’-(2’’,3’’-ジブロモ-2’’-メチルプロピルオキシ)-,3’,5’-ジブロモフェニル]-プロパンを含むことが好ましい。なお、2,2-ビス[4’-(2’’,3’’-ジブロモ-2’’-メチルプロピルオキシ)-,3’,5’-ジブロモフェニル]-プロパンは、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテルとも称する。 The foamable resin particles may contain a flame retardant in order for the foamed molded product that the foamable resin particles can provide to obtain flame retardancy. As the flame retardant, a brominated flame retardant is preferable. As brominated flame retardants, 2,2-bis [4'-(2'', 3''-dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane, hexa Examples include bromocyclododecane, tetrabromocyclooctane, brominated polystyrene, and brominated butadiene-styrene block copolymers. Since the foamed molded product that the foamable resin particles can provide tends to obtain flame retardancy, the present foamable resin particles can be used as a flame retardant with 2,2-bis [4'-(2'', 3''-). It preferably contains dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane. In addition, 2,2-bis [4'-(2'', 3''-dibromo-2''-methylpropyloxy)-, 3', 5'-dibromophenyl] -propane is tetrabromobisphenol A-. Also referred to as bis (2,3-dibromo-2-methylpropyl) ether.
 本発泡性樹脂粒子における難燃剤の含有量は、発泡性樹脂粒子100重量部に対して1.5重量部以上3.0重量部以下であることが好ましく、1.8重量部以上2.5重量部以下であることがより好ましい。発泡性樹脂粒子における難燃剤の含有量が発泡性樹脂粒子100重量部に対して、(a)1.5重量部以上である場合、発泡性樹脂粒子が提供し得る発泡成形体は十分な難燃性能を得ることができ、(b)3.0重量部以下である場合、発泡性樹脂粒子はVOC含有量が少なく、かつ成形性に優れるものとなる。 The content of the flame retardant in the foamable resin particles is preferably 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the foamable resin particles, and is 1.8 parts by weight or more and 2.5 parts by weight. It is more preferably less than parts by weight. When the content of the flame retardant in the foamable resin particles is (a) 1.5 parts by weight or more with respect to 100 parts by weight of the foamable resin particles, the foamed molded article that the foamable resin particles can provide is sufficiently difficult. When the fuel performance can be obtained and (b) 3.0 parts by weight or less, the foamable resin particles have a low VOC content and are excellent in moldability.
 本発泡性樹脂粒子が難燃剤を含む場合、発泡性樹脂粒子は、さらに難燃助剤を含むことが好ましい。上記難燃助剤としては、過酸化物などのラジカル発生剤が用いられ得る。そのようなラジカル発生剤としては、ジクミルパーオキサイド、t-ブチルパーオキシベンゾエート、2,3-ジメチル-2,3-ジフェニルブタン、および3,4-ジアルキル-3,4-ジフェニルヘキサンなどが挙げられる。重合反応への影響が小さく、かつ良好な難燃性能を有する発泡成形体を提供できることから、本発泡性樹脂粒子は、難燃助剤として、10時間半減期温度が130℃以上150℃以下である過酸化物を含むことがより好ましく、ジクミルパーオキサイドを含むことが特に好ましい。 When the foamable resin particles contain a flame retardant, the foamable resin particles preferably further contain a flame retardant aid. As the flame retardant aid, a radical generator such as a peroxide can be used. Examples of such radical generators include dicumyl peroxide, t-butyl peroxybenzoate, 2,3-dimethyl-2,3-diphenylbutane, and 3,4-dialkyl-3,4-diphenylhexane. Be done. Since it is possible to provide a foamed molded product having a small effect on the polymerization reaction and having good flame retardant performance, the foamable resin particles can be used as a flame retardant aid at a 10-hour half-life temperature of 130 ° C. or higher and 150 ° C. or lower. It is more preferable to contain a certain peroxide, and it is particularly preferable to contain a dicumyl peroxide.
 本発泡性樹脂粒子における難燃助剤の含有量は、発泡性樹脂粒子100重量部に対して0.3重量部以上1.5重量部以下であることが好ましい。発泡性樹脂粒子における難燃剤の含有量が発泡性樹脂粒子100重量部に対して、(a)0.3重量部以上である場合、発泡性樹脂粒子が提供し得る発泡成形体は十分な難燃性能を有し、(b)1.5重量部以下である場合、発泡性樹脂粒子が提供し得る発泡成形体は十分な耐熱性を有する。 The content of the flame retardant aid in the foamable resin particles is preferably 0.3 parts by weight or more and 1.5 parts by weight or less with respect to 100 parts by weight of the foamable resin particles. When the content of the flame retardant in the foamable resin particles is (a) 0.3 parts by weight or more with respect to 100 parts by weight of the foamable resin particles, the foamed molded article that the foamable resin particles can provide is sufficiently difficult. When it has fuel performance and (b) 1.5 parts by weight or less, the foamed molded product that the foamable resin particles can provide has sufficient heat resistance.
 本発泡性樹脂粒子中のスチレンの含有量は20ppm未満であり、かつ、エチルベンゼンの含有量は130ppm以下であることが好ましい。本発泡性樹脂粒子中のスチレンの含有量は、より好ましくは10ppm以下であり、更に好ましくは5ppm以下である。特に好ましくは0ppm以下である。0ppmとはガスクロマトグラフィーにおける検出限界以下を示す。本発泡性樹脂粒子中のエチルベンゼンの含有量は、より好ましくは100ppm以下であり、さらに好ましくは70ppm以下である。上記構成によれば、発泡性樹脂粒子が提供し得る発泡成形体は、環境中に放出されるVOC放散量を低減でき、その結果、人体への悪影響を抑えることが可能となる。ここで、発泡性樹脂粒子中のスチレンの含有量とは、発泡性樹脂粒子中のスチレン単量体の含有量を意図しており、発泡性樹脂粒子中のエチルベンゼンの含有量とは、発泡性樹脂粒子中のエチルベンゼン単量体の含有量を意図している。発泡性樹脂粒子中のスチレンおよびエチルベンゼンの含有量(すなわちVOC含有量)の測定方法としては、例えば、ガスクロマトグラフィーを用いた測定方法が挙げられる。具体的な方法は、後述の実施例にて説明する。 The content of styrene in the foamable resin particles is preferably less than 20 ppm, and the content of ethylbenzene is preferably 130 ppm or less. The content of styrene in the foamable resin particles is more preferably 10 ppm or less, still more preferably 5 ppm or less. Especially preferably, it is 0 ppm or less. 0 ppm means below the detection limit in gas chromatography. The content of ethylbenzene in the foamable resin particles is more preferably 100 ppm or less, still more preferably 70 ppm or less. According to the above configuration, the foamed molded product that the foamable resin particles can provide can reduce the amount of VOC emitted into the environment, and as a result, it is possible to suppress an adverse effect on the human body. Here, the content of styrene in the foamable resin particles is intended to be the content of the styrene monomer in the foamable resin particles, and the content of ethylbenzene in the foamable resin particles is foamable. The content of ethylbenzene monomer in the resin particles is intended. Examples of the method for measuring the content of styrene and ethylbenzene (that is, the VOC content) in the foamable resin particles include a measurement method using gas chromatography. A specific method will be described in Examples described later.
 本発泡性樹脂粒子は、基材樹脂の重量平均分子量が15万以上22万以下であることが好ましく、より好ましくは17万以上20万以下である。基材樹脂の重量平均分子量が、(a)15万以上である場合、発泡性樹脂粒子が提供し得る発泡成形体は、十分な強度、難燃性、および耐熱性を有するものとなり、(b)22万以下である場合、十分な発泡力を有し、発泡性樹脂粒子の成形性が良好となる。基材樹脂の重量平均分子量の測定方法としては、例えば、ゲル浸透クロマトグラフィーを用いた測定方法が挙げられる。 The weight average molecular weight of the base resin of the foamable resin particles is preferably 150,000 or more and 220,000 or less, and more preferably 170,000 or more and 200,000 or less. When the weight average molecular weight of the base resin is (a) 150,000 or more, the foamed molded product that the foamable resin particles can provide has sufficient strength, flame retardancy, and heat resistance, and (b). ) When it is 220,000 or less, it has sufficient foaming power and the moldability of the foamable resin particles is good. Examples of the method for measuring the weight average molecular weight of the base resin include a measuring method using gel permeation chromatography.
 本発泡性樹脂粒子は、重量平均分子量が15万以上22万以下であることが好ましく、より好ましくは17万以上20万以下である。発泡性樹脂粒子の重量平均分子量が、(a)15万以上である場合、得られる発泡性樹脂粒子が提供し得る発泡成形体は、十分な強度、難燃性、および耐熱性を有するものとなり、(b)22万以下である場合、十分な発泡力を有し、発泡性樹脂粒子の成形性が良好となる。発泡性樹脂粒子の重量平均分子量の測定方法としては、例えば、ゲル浸透クロマトグラフィーを用いた測定方法が挙げられる。 The foamable resin particles preferably have a weight average molecular weight of 150,000 or more and 220,000 or less, and more preferably 170,000 or more and 200,000 or less. When the weight average molecular weight of the foamable resin particles is (a) 150,000 or more, the foamed molded product that the obtained foamable resin particles can provide has sufficient strength, flame retardancy, and heat resistance. , (B) When it is 220,000 or less, it has sufficient foaming power and the moldability of the foamable resin particles is good. Examples of the method for measuring the weight average molecular weight of the foamable resin particles include a measuring method using gel permeation chromatography.
 (発泡性樹脂粒子のTH/TQ比)
 本発泡性樹脂粒子のTH/TQ比について説明する。発泡性樹脂粒子について、ゲル浸透クロマトグラフィーを用いてGPC測定を行い、GPC測定チャートを得る。ここで、GPC測定チャートは、分子量と微分分布値との関係チャートであり、横軸が分子量、縦軸が微分分布値であるグラフとして得られる。なお、ここで、横軸は対数(Log)で表すものとする。発泡性樹脂粒子のGPC測定チャートの一例を、図1に示す。
(TH / TQ ratio of foamable resin particles)
The TH / TQ ratio of the foamable resin particles will be described. GPC measurement is performed on the foamable resin particles using gel permeation chromatography to obtain a GPC measurement chart. Here, the GPC measurement chart is a chart of the relationship between the molecular weight and the differential distribution value, and is obtained as a graph in which the horizontal axis is the molecular weight and the vertical axis is the differential distribution value. Here, the horizontal axis is represented by a logarithm (Log). An example of a GPC measurement chart of foamable resin particles is shown in FIG.
 図1は、発泡性樹脂粒子のGPC測定チャートの一例を示す図である。GPC測定チャートのGPC曲線上における積分分布値が最も高くなる点をピークトップとし、図1に示すように点Pとする。次に、点P(ピークトップ)を通り、グラフの横軸に対して垂直な線Lを引く。線LとGPC曲線との交点が点Pとなり、線Lとグラフの横軸との交点を点Sとする。線分PSについて、点Pから線分PSの2/3の長さにあたる点を点Tとする。すなわち、線分STの長さは、線分PTの長さの2倍の長さとなる。次に、点Tを通り、グラフの横軸に平行な線Lを引く。線LとGPC曲線との2つの交点のうち、線Lよりも左側(低分子量側)の交点を点Qとし、線Lよりも右側(高分子量側)の交点を点Hとする。線分THの長さに対する線分TQの長さの比を、TH/TQ比とする。TH/TQ比が大きいほど、発泡性樹脂粒子は高分子量の成分が多いことを表す。発泡性樹脂粒子の製造において、基材樹脂の組成は変化せず、かつ発泡剤はTH/TQ比に影響を与えないため、発泡性樹脂粒子のTH/TQ比は、基材樹脂のTH/TQ比ともいえる。すなわち、発泡性樹脂粒子の原料である基材樹脂を解析して得られたTH/TQ比は、当該発泡性樹脂粒子のTH/TQ比とみなすことができる。なお、ゲル浸透クロマトグラフィーを用いる発泡性樹脂粒子のGPC測定の条件等については、下記実施例にて詳述する。 FIG. 1 is a diagram showing an example of a GPC measurement chart of foamable resin particles. The point where the integrated distribution value on the GPC curve of the GPC measurement chart is the highest is set as the peak top, and is set as the point P as shown in FIG. Then, through the point P (peak top), draw a line L 1 perpendicular to the horizontal axis of the graph. Line L 1 and intersection next point P of the GPC curve, the intersection of the lines L 1 and the horizontal axis of the graph as point S. Regarding the line segment PS, the point corresponding to the length of 2/3 of the line segment PS from the point P is defined as the point T. That is, the length of the line segment ST is twice the length of the line segment PT. Then, through the point T, draw a line parallel L 2 on the horizontal axis of the graph. Of two intersections between the line L 2 and the GPC curve, the intersection of the left side (lower molecular weight) and the point Q than the line L 1, and the point H to the intersection of the right side (high molecular weight side) than the line L 1 .. The ratio of the length of the line segment TQ to the length of the line segment TH is defined as the TH / THQ ratio. The larger the TH / TQ ratio, the larger the high molecular weight component of the foamable resin particles. In the production of the foamable resin particles, the composition of the base resin does not change, and the foaming agent does not affect the TH / THQ ratio. Therefore, the TH / TQ ratio of the foamable resin particles is the TH / TH / of the base resin. It can be said to be the TQ ratio. That is, the TH / TQ ratio obtained by analyzing the base resin which is the raw material of the foamable resin particles can be regarded as the TH / TQ ratio of the foamable resin particles. The conditions for GPC measurement of foamable resin particles using gel permeation chromatography will be described in detail in the following examples.
 発泡性樹脂粒子のTH/TQ比は、1.20未満であってもよく、1.19以下であってもよく、1.18以下であってもよく、1.17以下であってもよく、1.16以下であってもよく、1.15以下であってもよく、1.14以下であってもよく、1.13以下であってもよく、1.12以下であってもよく、1.11以下であってもよく、1.10以下であってもよく、1.10未満であってもよい。発泡性樹脂粒子のTH/TQ比が低くなるのは、発泡性樹脂粒子の製造における共重合工程(基材樹脂の調製工程)において、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を使用したときに現れる特徴である。換言すれば、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を含む重合開始剤を使用して製造された発泡性樹脂粒子は、上述した範囲内のTH/TQ比を有し得る。すなわち、後述する<発泡性樹脂粒子の製造方法>の項に記載の製造方法によって製造された発泡性樹脂粒子は、上述した範囲内のTH/TQ比を有し得る。また、後述する重合開始剤(X)の中でも、重合開始剤(X)として過酸化ベンゾイル(別名;ジベンゾイルパーオキサイド)、ジトルイルパーオキサイド及びトルイルベンゾイルパーオキサイドなどを使用する場合、重合開始剤(X)としてジ-t-ブチルパーオキシヘキサハイドロテレフタレートを使用する場合と比較して、より低いTH/TQ比を有する発泡性樹脂粒子が得られ得る。構成単位としてアクリロニトリル単位を含む基材樹脂を含み、かつTH/TQ比が1.20未満である発泡性樹脂粒子は、VOC含有量が少ない傾向がある、ともいえる。また、構成単位としてアクリロニトリル単位を含む基材樹脂を含み、かつTH/TQ比が1.20未満である発泡性樹脂粒子は、VOC放散量が少ない成形体を提供できる傾向がある、ともいえる。また、TH/TQ比が1.20未満である発泡性樹脂粒子は、高倍化しやすく、すなわち発泡させやすいという利点も有する。 The TH / TQ ratio of the foamable resin particles may be less than 1.20, 1.19 or less, 1.18 or less, or 1.17 or less. , 1.16 or less, 1.15 or less, 1.14 or less, 1.13 or less, 1.12 or less. , 1.11 or less, 1.10 or less, or less than 1.10. The TH / TQ ratio of the foamable resin particles is low because the 10-hour half-life temperature is 74 ° C. or higher and 94 ° C. or lower in the copolymerization step (preparation step of the base resin) in the production of the foamable resin particles. This is a feature that appears when the initiator (X) is used. In other words, the foamable resin particles produced by using the polymerization initiator containing the polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower are TH / TQ within the above range. Can have a ratio. That is, the foamable resin particles produced by the production method described in the section <Method for producing foamable resin particles> described later may have a TH / TQ ratio within the above range. Further, among the polymerization initiators (X) described later, when benzoyl peroxide (also known as dibenzoyl peroxide), ditoluyl peroxide, toluyl benzoyl peroxide and the like are used as the polymerization initiator (X), the polymerization initiator Foamable resin particles having a lower TH / TQ ratio can be obtained as compared with the case where di-t-butylperoxyhexahydroterephthalate is used as (X). It can be said that the effervescent resin particles containing the base resin containing the acrylonitrile unit as the constituent unit and having a TH / TQ ratio of less than 1.20 tend to have a low VOC content. Further, it can be said that the effervescent resin particles containing the base resin containing the acrylonitrile unit as the constituent unit and having a TH / TQ ratio of less than 1.20 tend to be able to provide a molded product having a small amount of VOC emission. Further, the foamable resin particles having a TH / TQ ratio of less than 1.20 have an advantage that they are easily multiplied, that is, easily foamed.
 発泡性樹脂粒子のTH/TQ比は、0.90以上が好ましく、1.00以上がより好ましい。TH/TQ比が0.90以上である発泡性樹脂粒子は、耐熱性に優れる発泡成形体を提供できるという利点を有する。 The TH / TQ ratio of the foamable resin particles is preferably 0.90 or more, more preferably 1.00 or more. The foamable resin particles having a TH / TQ ratio of 0.90 or more have an advantage that a foamed molded product having excellent heat resistance can be provided.
 発泡性樹脂粒子の製造において、基材樹脂の組成は変化しない。また、発泡性樹脂粒子を用いて製造された発泡粒子において、当該発泡性樹脂粒子の構造は変化するが、発泡性樹脂粒子の組成は変化しない。また、発泡性樹脂粒子を用いて製造された発泡粒子、を用いて製造された発泡成形体において、当該発泡粒子の構造は変化するが、発泡粒子の組成は変化しない。したがって、発泡性樹脂粒子、発泡粒子、または発泡成形体を解析して得られた、構成単位の種類および各構成単位の含有量、並びに重量平均分子量は、それぞれ、それらの原料である基材樹脂に含まれる構成単位の種類および各構成単位の含有量、並びに基材樹脂の重量平均分子量であるとみなすことができる。また、発泡粒子、または発泡成形体を解析して得られたTH/TQ比は、それらの原料である発泡性樹脂粒子のTH/TQ比であるとみなすことができる。 In the production of foamable resin particles, the composition of the base resin does not change. Further, in the foamed particles produced by using the foamable resin particles, the structure of the foamable resin particles changes, but the composition of the foamable resin particles does not change. Further, in the foamed molded product produced by using the foamed particles produced by using the foamable resin particles, the structure of the foamed particles changes, but the composition of the foamed particles does not change. Therefore, the types of structural units, the content of each structural unit, and the weight average molecular weight obtained by analyzing the foamable resin particles, the foamed particles, or the foamed molded article are the base resin which is the raw material thereof. It can be regarded as the type of the structural unit contained in the above, the content of each structural unit, and the weight average molecular weight of the base resin. Further, the TH / TQ ratio obtained by analyzing the foamed particles or the foamed molded product can be regarded as the TH / TQ ratio of the foamable resin particles which are the raw materials thereof.
 発泡性樹脂粒子、発泡粒子、または発泡成形体の重量平均分子量は、発泡性樹脂粒子、発泡粒子、または発泡成形体について、ゲル浸透クロマトグラフィーを用いて測定することにより、得ることができる。基材樹脂、発泡粒子、または発泡成形体のTH/TQ比は、基材樹脂、発泡粒子、または発泡成形体について、ゲル浸透クロマトグラフィーを用いてGPC測定を行い、GPC測定チャートを得る以外、発泡性樹脂粒子のTH/TQ比と同様の方法により、算出することができる。 The weight average molecular weight of the foamable resin particles, the foamed particles, or the foamed molded product can be obtained by measuring the foamable resin particles, the foamed particles, or the foamed molded product by using gel permeation chromatography. The TH / TQ ratio of the base resin, the foamed particles, or the foamed molded product is determined by measuring the base resin, the foamed particles, or the foamed molded product by GPC using gel permeation chromatography to obtain a GPC measurement chart. It can be calculated by the same method as the TH / TQ ratio of the foamable resin particles.
 <発泡性樹脂粒子の製造方法>
 本発明の一実施形態に係る発泡性樹脂粒子の製造方法は、スチレン単量体及びアクリロニトリル単量体を含む単量体を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、前記共重合工程は、重合温度が異なる連続した第1重合工程及び第2重合工程を含む。
<Manufacturing method of foamable resin particles>
The method for producing foamable resin particles according to an embodiment of the present invention includes a copolymerization step of copolymerizing a monomer containing a styrene monomer and an acrylonitrile monomer, and a foaming agent added to the obtained copolymer. The copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures, including a foaming agent impregnation step of impregnating.
 本明細書中では、「本発明の一実施形態に係る発泡性樹脂粒子の製造方法」を、単に「本製造方法」と称する場合もある。すなわち、用語「本製造方法」は、本発明における発泡性樹脂粒子の製造方法の一実施形態を意図する。なお、本製造方法における「共重合体」は、<発泡性樹脂粒子>の項で説明した発泡性樹脂粒子が含む「基材樹脂」に相当する。 In the present specification, "a method for producing foamable resin particles according to an embodiment of the present invention" may be simply referred to as "the present production method". That is, the term "the present production method" is intended to be an embodiment of the method for producing foamable resin particles in the present invention. The "copolymer" in the present production method corresponds to the "base resin" contained in the foamable resin particles described in the section of <foamable resin particles>.
 以下、本製造方法に関する各工程について説明するが、以下に詳説した事項以外は、適宜、<発泡性樹脂粒子>の項の記載を援用する。また、本発泡性樹脂粒子、すなわち<発泡性樹脂粒子>の項で説明した発泡性樹脂粒子は、本製造方法によって製造されることが好ましいが、本製造方法以外の方法によって製造されてもよい。すなわち、本発泡性樹脂粒子の製造方法は以下に説明するような本製造方法の態様に限定されるものではない。 Hereinafter, each process related to this production method will be described, but the description in the section of <foamable resin particles> will be appropriately incorporated except for the matters described in detail below. Further, the present foamable resin particles, that is, the foamable resin particles described in the section of <Expandable resin particles> are preferably produced by the present production method, but may be produced by a method other than the present production method. .. That is, the method for producing the foamable resin particles is not limited to the mode of the present production method as described below.
 スチレン単量体は、その製造過程で使用されたエチルベンゼン単量体を少量含み得る。本製造方法で使用するスチレン単量体は、スチレン単量体中のエチルベンゼン単量体の含有量が少ないほど好ましく、例えば、130ppm以下であることが好ましく、100ppm以下であることがより好ましく、85ppm以下であることがさらに好ましく、70ppm以下であることが特に好ましい。エチルベンゼン単量体含有量の少ないスチレン単量体を用いることで、本製造方法により得られた発泡性樹脂粒子は、エチルベンゼンの放散量が更に少ない発泡成形体を提供できるという利点を有する。 The styrene monomer may contain a small amount of the ethylbenzene monomer used in the manufacturing process. The styrene monomer used in this production method is preferably as low as the content of ethylbenzene monomer in the styrene monomer, for example, preferably 130 ppm or less, more preferably 100 ppm or less, and 85 ppm. It is more preferably 70 ppm or less, and particularly preferably 70 ppm or less. By using a styrene monomer having a low ethylbenzene monomer content, the foamable resin particles obtained by this production method have an advantage that a foamed molded product having an even smaller amount of ethylbenzene emitted can be provided.
 本製造方法が有する共重合工程では、スチレン単量体およびアクリロニトリル単量体を含む単量体を共重合する方法は特に限定されず、従来公知の重合方法を使用できる。共重合工程は、水性懸濁液中で重合を行う懸濁重合法が好ましい。 In the copolymerization step of this production method, the method of copolymerizing the monomer containing the styrene monomer and the acrylonitrile monomer is not particularly limited, and a conventionally known polymerization method can be used. As the copolymerization step, a suspension polymerization method in which polymerization is carried out in an aqueous suspension is preferable.
 本明細書において、「水性懸濁液」とは、攪拌機などを用いて、樹脂粒子、発泡性樹脂粒子および/または単量体液滴を、水または水溶液中に分散させた状態の液体(水溶液)を指す。水性懸濁液中には、界面活性剤および単量体が溶解していても良く、または、水に不溶の分散剤、重合開始剤、架橋剤、可塑剤、気泡調整剤、難燃剤、および難燃助剤などが単量体と共に分散していても良い。なお、共重合工程で使用した重合開始剤、架橋剤、連鎖移動剤および重合調整剤は、得られる共重合体の一部を構成する。 In the present specification, the "aqueous suspension" is a liquid (aqueous solution) in which resin particles, foamable resin particles and / or monomer droplets are dispersed in water or an aqueous solution using a stirrer or the like. Point to. Surfactants and monomers may be dissolved in the aqueous suspension, or water-insoluble dispersants, polymerization initiators, cross-linking agents, plasticizers, bubble conditioners, flame retardants, and A flame retardant aid or the like may be dispersed together with the monomer. The polymerization initiator, cross-linking agent, chain transfer agent and polymerization modifier used in the copolymerization step constitute a part of the obtained copolymer.
 共重合工程において、水性懸濁液における樹脂と水との重量比は、得られる共重合体の重量/水の重量の比として、1.0/0.6~1.0/3.0であることが好ましい。 In the copolymerization step, the weight ratio of the resin and water in the aqueous suspension is 1.0 / 0.6 to 1.0 / 3.0 as the weight / water weight ratio of the obtained copolymer. It is preferable to have.
 共重合工程において使用できる分散剤としては、例えば、(a)第三リン酸カルシウム、ピロリン酸マグネシウム、ハイドロキシアパタイト、カオリンなどの難水溶性無機塩、および(b)ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子などが挙げられる。分散剤として難水溶性無機塩を使用する場合には、分散安定性が増すため、α-オレフィンスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダなどのアニオン系界面活性剤を難水溶性無機塩と併用することが好ましい。これらの分散剤は必要に応じて共重合工程の任意の時点で、水性懸濁液にさらに追加しても良い。 Dispersants that can be used in the copolymerization step include, for example, (a) poorly water-soluble inorganic salts such as tricalcium phosphate, magnesium pyrophosphate, hydroxyapatite, and kaolin, and (b) polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinylpyrrolidone. Examples include water-soluble polymers such as. When a poorly water-soluble inorganic salt is used as the dispersant, an anionic surfactant such as α-olefin sulfonic acid sodium or dodecylbenzene sulfonic acid sodium is used in combination with the poorly water-soluble inorganic salt in order to increase dispersion stability. Is preferable. These dispersants may be further added to the aqueous suspension at any time during the copolymerization step, if desired.
 分散剤の使用量は、分散剤の種類に依存する。分散剤として難水溶性無機塩を使用する場合には、分散剤の使用量は、水100重量部に対して0.1重量部以上1.5重量部以下であることが好ましい。分散剤として水溶性高分子を使用する場合には、分散剤は水性懸濁液中30ppm以上100ppm以下となるように使用することが好ましい。また、難水溶性無機塩と共にアニオン系界面活性剤を併用する場合には、アニオン系界面活性剤は水性懸濁液中30ppm以上100ppm以下となるように使用することが好ましい。 The amount of dispersant used depends on the type of dispersant. When a poorly water-soluble inorganic salt is used as the dispersant, the amount of the dispersant used is preferably 0.1 part by weight or more and 1.5 parts by weight or less with respect to 100 parts by weight of water. When a water-soluble polymer is used as the dispersant, the dispersant is preferably used so as to be 30 ppm or more and 100 ppm or less in the aqueous suspension. When an anionic surfactant is used in combination with a poorly water-soluble inorganic salt, it is preferable to use the anionic surfactant so as to be 30 ppm or more and 100 ppm or less in the aqueous suspension.
 本製造方法における共重合工程では、さらに、連鎖移動剤および重合調整剤を使用してもよい。連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタンなどのメルカプタン系の化合物が挙げられる。重合調整剤としては、α-メチルスチレンダイマーが挙げられる。α-メチルスチレンダイマーは、共重合体の重量平均分子量の調整にも寄与しているため、連鎖移動剤ともいえる。連鎖移動剤は、主に、共重合体の重量平均分子量を調整するために機能する。重合調整剤は、主に、重合速度を調整するために機能する。 In the copolymerization step in the present production method, a chain transfer agent and a polymerization modifier may be further used. Examples of the chain transfer agent include mercaptan compounds such as n-octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan. Examples of the polymerization modifier include α-methylstyrene dimer. Since α-methylstyrene dimer also contributes to the adjustment of the weight average molecular weight of the copolymer, it can be said to be a chain transfer agent. The chain transfer agent mainly functions to adjust the weight average molecular weight of the copolymer. The polymerization modifier mainly functions to regulate the polymerization rate.
 共重合工程では、連鎖移動剤としてα-メチルスチレンダイマーを使用することが好ましい。上記構成によれば、(a)重合速度、および共重合体の重量平均分子量を調整しやすく、かつ(b)発泡性樹脂粒子が提供し得る発泡成形体から臭気が発生しにくくなる。 In the copolymerization step, it is preferable to use α-methylstyrene dimer as a chain transfer agent. According to the above configuration, (a) the polymerization rate and the weight average molecular weight of the copolymer can be easily adjusted, and (b) odor is less likely to be generated from the foamed molded product that the foamable resin particles can provide.
 連鎖移動剤および重合調整剤の使用量としては、(a)重合速度、および(b)共重合体の重量平均分子量を調整しやすい点から、単量体100重量部に対して0.6重量部以上であることが好ましく、1.4重量部以上であることがより好ましい。 The amount of the chain transfer agent and the polymerization modifier used is 0.6% by weight with respect to 100 parts by weight of the monomer because (a) the polymerization rate and (b) the weight average molecular weight of the copolymer can be easily adjusted. The amount is preferably 1 part or more, and more preferably 1.4 parts by weight or more.
 重合開始剤として、第1重合工程では重合開始剤(X)の重合開始剤を主に使用し、第2重合工程では重合開始剤(Y)を主に使用することが望ましい。 As the polymerization initiator, it is desirable to mainly use the polymerization initiator (X) in the first polymerization step and mainly use the polymerization initiator (Y) in the second polymerization step.
 第1重合工程は、第2重合工程と重合温度が異なる限り、重合温度および重合時間などの構成は特に限定されない。第1重合工程の重合温度は例えば85℃~95℃であり、第1重合工程の重合時間は例えば4時間~7時間である。 The composition of the first polymerization step, such as the polymerization temperature and the polymerization time, is not particularly limited as long as the polymerization temperature is different from that of the second polymerization step. The polymerization temperature of the first polymerization step is, for example, 85 ° C. to 95 ° C., and the polymerization time of the first polymerization step is, for example, 4 hours to 7 hours.
 第1重合工程の重合温度は87℃~93℃が好ましく、88℃~92℃がより好ましく、89℃~91℃が特に好ましい。当該構成によると、(a)D2230/D1600が0.80以上である発泡性樹脂粒子、すなわちVOC含有量(放散量)が少ない発泡性樹脂粒子を容易に得ることができるという利点を有する。また、当該構成によると、重合開始剤(例えば重合開始剤(X))の分解量を最適な範囲で調整することができる。これにより、(a)重合速度(反応速度)の調整が容易となることから重合安定性が向上し、かつ(b)適正な分子量範囲の発泡性樹脂粒子を容易に得ることができる。 The polymerization temperature in the first polymerization step is preferably 87 ° C. to 93 ° C., more preferably 88 ° C. to 92 ° C., and particularly preferably 89 ° C. to 91 ° C. According to this configuration, (a) foamable resin particles having D2230 / D1600 of 0.80 or more, that is, foamable resin particles having a small VOC content (emission amount) can be easily obtained. Further, according to the structure, the decomposition amount of the polymerization initiator (for example, the polymerization initiator (X)) can be adjusted in an optimum range. As a result, (a) the polymerization rate (reaction rate) can be easily adjusted, so that the polymerization stability is improved, and (b) foamable resin particles having an appropriate molecular weight range can be easily obtained.
 第1重合工程の重合時間は4.5時間~6.5時間が好ましく、5時間~6時間が特に好ましい。当該構成によると、生産性と重合安定性とを両立できるという利点を有する。 The polymerization time of the first polymerization step is preferably 4.5 hours to 6.5 hours, and particularly preferably 5 hours to 6 hours. According to this configuration, there is an advantage that both productivity and polymerization stability can be achieved at the same time.
 第1重合工程では、10時間半減期温度が74℃以上94℃以下である、重合開始剤(X)の重合開始剤を使用することが好ましい。 In the first polymerization step, it is preferable to use a polymerization initiator of the polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower.
 第1重合工程では、(a)10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を使用し、かつ(b)85℃以上95℃以下の重合温度にて重合反応を行うことが好ましい。上記構成によれば、重合反応を適切に制御できる。 In the first polymerization step, (a) a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and (b) a polymerization reaction is carried out at a polymerization temperature of 85 ° C. or higher and 95 ° C. or lower. It is preferable to carry out. According to the above configuration, the polymerization reaction can be appropriately controlled.
 第1重合工程における重合開始剤(X)としては、過酸化ベンゾイル、ラウロイルパーオキサイド、ジ-t-ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物、および(b)アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられる。重合開始剤(X)としては、これら重合開始剤の中で、ガスバリア性を付与できるアクリロニトリルが反応しやすくなる点で過酸化ベンゾイルを使用することが特に好ましい。 Examples of the polymerization initiator (X) in the first polymerization step include organic peroxides such as benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, and (b) azobisisobutyronitrile. Examples thereof include azo compounds such as azobisdimethylvaleronitrile. As the polymerization initiator (X), it is particularly preferable to use benzoyl peroxide among these polymerization initiators because acrylonitrile, which can impart gas barrier properties, easily reacts.
 上述した重合開始剤(X)は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 As the above-mentioned polymerization initiator (X), one type may be used alone, or two or more types may be used in combination.
 重合開始剤(X)としては、10時間半減期温度が74℃以上90℃未満である重合開始剤のみを使用することがより好ましい。すなわち、第1重合工程では、(a)重合開始剤(X)として、10時間半減期温度が74℃以上90℃未満である重合開始剤のみを使用することがより好ましく、(b)(b-1)重合開始剤(X)として、10時間半減期温度が74℃以上90℃未満である重合開始剤のみを使用し、かつ(b-2)85℃以上95℃以下の重合温度にて重合反応を行うことがさらに好ましい。上記構成によれば、第1重合工程で使用する重合開始剤(X)が、主に、第1重合工程で分解するため、重合反応をより適切に制御できる。 As the polymerization initiator (X), it is more preferable to use only the polymerization initiator having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C. That is, in the first polymerization step, it is more preferable to use only the polymerization initiator (a) having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C., and (b) (b) (b). -1) As the polymerization initiator (X), only a polymerization initiator having a 10-hour half-life temperature of 74 ° C. or higher and lower than 90 ° C. is used, and (b-2) at a polymerization temperature of 85 ° C. or higher and 95 ° C. or lower. It is more preferable to carry out a polymerization reaction. According to the above configuration, the polymerization initiator (X) used in the first polymerization step is mainly decomposed in the first polymerization step, so that the polymerization reaction can be controlled more appropriately.
 第1重合工程では、重合開始剤(X)の重合開始剤を使用し、かつ、重合開始剤(X)の重合開始剤の使用量は、単量体100重量部に対して0.08重量部以上0.25重量部以下であることが好ましく、0.15重量部0.20重量部以下であることがより好ましい。第1重合工程において、重合開始剤(X)の使用量が単量体100重量部に対して、(a)0.08重量部以上である場合、重合が十分に進行するという利点を有し、(b)0.25重量部以下である場合、重合反応が急速に進むことがなく、重合の制御が容易となる。尚、重量開始剤(X)の使用量が0.15重量部0.20重量部以下であれば、得られる発泡性樹脂粒子の重量平均分子量が17万以上20万未満となり良好な品質の発泡性樹脂粒子が得られる。 In the first polymerization step, the polymerization initiator of the polymerization initiator (X) is used, and the amount of the polymerization initiator of the polymerization initiator (X) used is 0.08 weight by weight based on 100 parts by weight of the monomer. The amount is preferably 0.25 parts by weight or less, and more preferably 0.15 parts by weight or less. In the first polymerization step, when the amount of the polymerization initiator (X) used is 0.08 part by weight or more of (a) with respect to 100 parts by weight of the monomer, there is an advantage that the polymerization proceeds sufficiently. , (B) When it is 0.25 parts by weight or less, the polymerization reaction does not proceed rapidly, and the polymerization can be easily controlled. When the amount of the weight initiator (X) used is 0.15 parts by weight and 0.20 parts by weight or less, the weight average molecular weight of the obtained foamable resin particles is 170,000 or more and less than 200,000, and foaming of good quality. Sexual resin particles are obtained.
 本製造方法では、重合開始剤、連鎖移動剤および第1重合工程の重合条件を様々に組み合わせることによって、共重合体の重量平均分子量を調整できる。 In this production method, the weight average molecular weight of the copolymer can be adjusted by variously combining the polymerization initiator, the chain transfer agent, and the polymerization conditions of the first polymerization step.
 第2重合工程は、単量体の重合転化率が85%に到達した後の任意の時点において、第1重合に連続して行われる。 The second polymerization step is carried out continuously with the first polymerization at an arbitrary time point after the polymerization conversion rate of the monomer reaches 85%.
 ここで、単量体の重合転化率は、以下のように算出される:
単量体の重合転化率(%)=(水性懸濁液に供給した単量体の量-水性懸濁液中に残存している単量体の量)/水性懸濁液に供給した単量体の量×100
上記「水性懸濁液に供給した単量体の量-水性懸濁液中に残存している単量体の量」は、換言すれば、共重合体中に構成単位として含まれた単量体の量ともいえる。また、「水性懸濁液中に残存している単量体の量」は、例えば、水性懸濁液を濾紙などにより濾過し、濾紙上に得られた残渣(単量体を含み得る)をガスクロマトグラフィーに供することによって、測定することができる。
Here, the polymerization conversion rate of the monomer is calculated as follows:
Polymerization conversion of monomer (%) = (amount of monomer supplied to aqueous suspension-amount of monomer remaining in aqueous suspension) / simple supplied to aqueous suspension Dimer amount x 100
The above-mentioned "amount of monomer supplied to the aqueous suspension-amount of monomer remaining in the aqueous suspension" is, in other words, a single amount contained as a constituent unit in the copolymer. It can be said to be the amount of body. The "amount of monomer remaining in the aqueous suspension" is, for example, the residue (which may contain a monomer) obtained by filtering the aqueous suspension with a filter paper or the like. It can be measured by subjecting it to gas chromatography.
 第2重合工程の重合温度は第1重合工程の重合温度と異なり、第2重合工程の重合温度は110~120℃が好ましい。第2重合工程の重合温度が、(a)110℃未満の場合、得られる発泡性樹脂粒子中のVOC含有量(特にスチレン含有量)を低減できず、(b)120℃を超える場合、共重合工程で使用する重合機の内圧が高くなるため、高耐圧性が要求される結果、重装備の重合機が必要となる。第2重合工程の重合温度は、第1重合工程よりも重合温度が高いことが好ましい。上記構成によれば、得られる発泡性樹脂粒子中のVOC含有量を低減できる。 The polymerization temperature in the second polymerization step is different from the polymerization temperature in the first polymerization step, and the polymerization temperature in the second polymerization step is preferably 110 to 120 ° C. When the polymerization temperature in the second polymerization step is (a) less than 110 ° C., the VOC content (particularly the styrene content) in the obtained foamable resin particles cannot be reduced, and (b) when it exceeds 120 ° C. Since the internal pressure of the polymerization machine used in the polymerization step becomes high, high pressure resistance is required, and as a result, a heavy-equipped polymerization machine is required. The polymerization temperature of the second polymerization step is preferably higher than that of the first polymerization step. According to the above configuration, the VOC content in the obtained foamable resin particles can be reduced.
 第2重合工程の重合時間は3~13時間が好ましく、4~11時間がより好ましく、5~9時間がさらに好ましく、6~8時間が特に好ましい。第2重合工程の重合時間が、(a)3時間未満である場合、得られる発泡性樹脂粒子中のVOC含有量(特にスチレン含有量)を低減できず、(b)8時間を超える場合、難燃助剤(例えばジクミルパーオキサイド)の分解量が多くなるため、発泡成形体の燃焼時に難燃助剤の効果が十分に発現されず、その結果、難燃性が悪化する傾向がある。 The polymerization time of the second polymerization step is preferably 3 to 13 hours, more preferably 4 to 11 hours, further preferably 5 to 9 hours, and particularly preferably 6 to 8 hours. When the polymerization time of the second polymerization step is (a) less than 3 hours, the VOC content (particularly the styrene content) in the obtained foamable resin particles cannot be reduced, and (b) when it exceeds 8 hours, Since the amount of decomposition of the flame-retardant aid (for example, dicumyl peroxide) is large, the effect of the flame-retardant aid is not sufficiently exhibited when the foamed molded product is burned, and as a result, the flame retardancy tends to deteriorate. ..
 第2重合工程の重合温度は111℃~119℃が好ましく、112℃~118℃がより好ましく、113℃~117℃がさらに好ましく、114℃~116℃が特に好ましい。当該構成によると、使用する重合機の重合機内部圧力の上限以下で、効率的にVOCを低減できるという利点を有する。 The polymerization temperature in the second polymerization step is preferably 111 ° C. to 119 ° C., more preferably 112 ° C. to 118 ° C., further preferably 113 ° C. to 117 ° C., and particularly preferably 114 ° C. to 116 ° C. According to this configuration, there is an advantage that VOC can be efficiently reduced below the upper limit of the internal pressure of the polymerizer of the polymerizer used.
 第2重合工程の重合時間は4時間~11時間が好ましく、5時間~9時間がより好ましく、6時間~8時間が特に好ましい。当該構成によると、難燃性などの品質を維持しつつVOCを低減できるという利点を有する。 The polymerization time of the second polymerization step is preferably 4 hours to 11 hours, more preferably 5 hours to 9 hours, and particularly preferably 6 hours to 8 hours. According to this configuration, there is an advantage that VOC can be reduced while maintaining quality such as flame retardancy.
 第2重合工程では、10時間半減期温度が90℃以上100℃以下である重合開始剤(Y)を使用することが好ましく、10時間半減期温度が90℃以上100℃以下である重合開始剤(Y)を主に使用することがより好ましい。 In the second polymerization step, it is preferable to use a polymerization initiator (Y) having a 10-hour half-life temperature of 90 ° C. or higher and 100 ° C. or lower, and a polymerization initiator having a 10-hour half-life temperature of 90 ° C. or higher and 100 ° C. or lower. It is more preferable to mainly use (Y).
 重合開始剤(Y)としては、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-アミルパーオキシイソプロピルモノカーボネート、t-アミルパーオキシ-2-エチルヘキシルモノカーボネートおよび1,1-ビス(t-ブチルパーオキシ)シクロヘキサンなどが挙げられる。これら重合開始剤(Y)は、1種を単独で使用してもよいし、2種以上を併用しても良い。重合開始剤(Y)は、第2重合工程において好適に使用できる。 Examples of the polymerization initiator (Y) include t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-amylperoxyisopropyl monocarbonate, and t-amylperoxy-2-ethylhexyl monocarbonate. And 1,1-bis (t-butylperoxy) cyclohexane and the like. These polymerization initiators (Y) may be used alone or in combination of two or more. The polymerization initiator (Y) can be suitably used in the second polymerization step.
 なお、1,1-ビス(t-ブチルパーオキシ)シクロヘキサンは、2段階で開裂が起こる。開裂前の1,1-ビス(t-ブチルパーオキシ)シクロヘキサンが1段階目の開裂を生じるときの10時間半減期温度は90℃である。1段階目の開裂後で生じた中間生成物が、2段階目の開裂を生じるときの10時間半減期温度は、1段階目の10時間半減期温度よりも5℃程度上がり、95℃以上となる。1,1-ビス(t-ブチルパーオキシ)シクロヘキサンとしては、2段階目の開裂後に生じた最終生成物が主に第2重合工程で作用する。そのため、本明細書において、1,1-ビス(t-ブチルパーオキシ)シクロヘキサンは、重合開始剤(X)とはみなさず、重合開始剤(Y)とみなす。 Note that 1,1-bis (t-butylperoxy) cyclohexane cleaves in two steps. The 10-hour half-life temperature when 1,1-bis (t-butylperoxy) cyclohexane before cleavage causes first-stage cleavage is 90 ° C. The 10-hour half-life temperature when the intermediate product produced after the first-stage cleavage causes the second-stage cleavage is about 5 ° C. higher than the 10-hour half-life temperature of the first stage, and is 95 ° C. or higher. Become. For 1,1-bis (t-butylperoxy) cyclohexane, the final product produced after the second stage cleavage acts mainly in the second polymerization step. Therefore, in the present specification, 1,1-bis (t-butylperoxy) cyclohexane is not regarded as a polymerization initiator (X) but as a polymerization initiator (Y).
 重合開始剤(Y)として、特に、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート及びt-アミルパーオキシ-2-エチルヘキシルモノカーボネートは、発泡性樹脂粒子中又は水性懸濁液中に残存しているスチレンとアクリロニトリルとの反応が促進される点で好ましい。 In particular, t-butylperoxy-2-ethylhexyl monocarbonate and t-amylperoxy-2-ethylhexyl monocarbonate as the polymerization initiator (Y) remain in the foamable resin particles or in the aqueous suspension. It is preferable in that the reaction between the styrene and acrylonitrile is promoted.
 第2重合工程における重合開始剤(Y)の使用量は、単量体100重量部に対して0.25重量部以上0.90重量部以下であることが好ましく、0.28重量部以上0.60重量部以下であることがより好ましい。この範囲であれば、発泡性樹脂粒子中又は水性懸濁液中に残存するスチレンとアクリロニトリルが反応しやすくなり、発泡性樹脂粒子の表層におけるスチレンーアクリロニトリル共重合体の割合が増加する傾向にある。 The amount of the polymerization initiator (Y) used in the second polymerization step is preferably 0.25 parts by weight or more and 0.90 parts by weight or less, and 0.28 parts by weight or more and 0 by weight with respect to 100 parts by weight of the monomer. More preferably, it is .60 parts by weight or less. Within this range, styrene remaining in the foamable resin particles or the aqueous suspension tends to react easily with acrylonitrile, and the proportion of the styrene-acrylonitrile copolymer in the surface layer of the foamable resin particles tends to increase. ..
 第2重合工程は、発泡剤含浸工程と兼ねて行われてもよく、すなわち、発泡剤の存在下で行われてもよい。 The second polymerization step may be performed in combination with the foaming agent impregnation step, that is, may be performed in the presence of a foaming agent.
 発泡剤含浸工程は、発泡剤を水性懸濁液中に添加することで開始され、具体的な処理温度(含浸温度とも称する。)および処理時間(含浸時間とも称する。)は特に限定されない。 The foaming agent impregnation step is started by adding the foaming agent to the aqueous suspension, and the specific treatment temperature (also referred to as impregnation temperature) and treatment time (also referred to as impregnation time) are not particularly limited.
 発泡性樹脂粒子が含む基材樹脂における高分子鎖間の結合力の強さと、発泡性樹脂粒子の製造における共重合体への発泡剤の含浸効率とは反比例の関係性がある。本製造方法は、高分子鎖間の結合力が強い基材樹脂を含む発泡性樹脂粒子を提供できる。そのため、共重合体に発泡剤を十分に含浸させる観点から、本製造方法における発泡剤含浸工程では、含浸温度は110℃~120℃であることが好ましく、111℃~119℃がより好ましく、112℃~118℃がさらに好ましく、114℃~116℃が特に好ましい。共重合体に発泡剤を十分に含浸させる観点から、本製造方法における発泡剤含浸工程では、含浸時間は3時間~13時間であることが好ましく、4時間~11時間がより好ましく、5時間~9時間がさらに好ましく、6時間~8時間が特に好ましい。なお、第2重合工程が発泡剤含浸工程を兼ねて行われる場合、すなわち第2重合工程及び発泡剤含浸工程が一緒に行われる場合、第2重合工程の重合温度は発泡剤含浸工程の含浸温度といえ、第2重合工程の重合時間は発泡剤含浸工程の含浸時間といえる。 There is an inverse relationship between the strength of the bonding force between the polymer chains in the base resin contained in the foamable resin particles and the efficiency of impregnation of the foaming agent into the copolymer in the production of the foamable resin particles. The present production method can provide foamable resin particles containing a base resin having a strong bonding force between polymer chains. Therefore, from the viewpoint of sufficiently impregnating the copolymer with the foaming agent, the impregnation temperature is preferably 110 ° C. to 120 ° C., more preferably 111 ° C. to 119 ° C., and 112 ° C. in the foaming agent impregnation step in the present production method. ° C. to 118 ° C. is more preferable, and 114 ° C. to 116 ° C. is particularly preferable. From the viewpoint of sufficiently impregnating the copolymer with the foaming agent, the impregnation time is preferably 3 hours to 13 hours, more preferably 4 hours to 11 hours, and 5 hours to 5 hours in the foaming agent impregnation step in the present production method. 9 hours is more preferred, and 6 to 8 hours is particularly preferred. When the second polymerization step is also performed as the foaming agent impregnation step, that is, when the second polymerization step and the foaming agent impregnation step are performed together, the polymerization temperature of the second polymerization step is the impregnation temperature of the foaming agent impregnation step. However, the polymerization time of the second polymerization step can be said to be the impregnation time of the foaming agent impregnation step.
 本製造方法は、発泡性樹脂粒子を乾燥処理する乾燥工程をさらに含むことが好ましい。発泡性樹脂粒子は水性懸濁液中に分散した状態で得られる。そのため、本製造方法が乾燥工程を含む場合には、得られた発泡性樹脂粒子を発泡粒子の製造などに好適に利用できる。 It is preferable that the present production method further includes a drying step of drying the foamable resin particles. The foamable resin particles are obtained in a state of being dispersed in an aqueous suspension. Therefore, when the present production method includes a drying step, the obtained foamable resin particles can be suitably used for producing foamed particles and the like.
 乾燥工程において、発泡性樹脂粒子を乾燥処理する方法は特に限定されず、例えば、溝型または円筒型撹拌乾燥器、箱型またはバンド型の通気乾燥器、流動層乾燥器などを用いることができる。 In the drying step, the method for drying the foamable resin particles is not particularly limited, and for example, a groove-type or cylindrical stirring dryer, a box-type or band-type aeration dryer, a fluidized bed dryer, or the like can be used. ..
 乾燥工程における乾燥処理は、発泡性樹脂粒子の発泡温度以下の温度で実施されることが好ましく、生産性の観点から、30℃~55℃にて実施されることがより好ましい。乾燥処理が実施される温度(処理温度、とも称する。)を調整することによって、得られる発泡性樹脂粒子の含水量を調整できる。乾燥工程における乾燥処理温度が、(a)30℃以上である場合、含水量が多くなりすぎないため、発泡性樹脂粒子が提供し得る発泡粒子において気泡の微細化を抑制し、VOC放散量を少なくでき、(b)55℃以下である場合、含水量が少なくなりすぎないため、発泡性樹脂粒子が提供し得る発泡成形体において難燃性が悪化する虞がない。 The drying treatment in the drying step is preferably carried out at a temperature equal to or lower than the foaming temperature of the foamable resin particles, and more preferably carried out at 30 ° C. to 55 ° C. from the viewpoint of productivity. By adjusting the temperature at which the drying treatment is carried out (also referred to as the treatment temperature), the water content of the obtained foamable resin particles can be adjusted. When the drying treatment temperature in the drying step is (a) 30 ° C. or higher, the water content does not become too large, so that the foamed particles that the foamable resin particles can provide suppress the miniaturization of bubbles and reduce the VOC emission amount. When it can be reduced and (b) 55 ° C. or lower, the water content does not become too low, so that there is no possibility that the flame retardancy of the foamed molded product that the foamable resin particles can provide deteriorates.
 重合開始剤(X)は少なくとも過酸化ベンゾイルを含むことが好ましい。すなわち、本発明の一実施形態に係る製造方法のさらに好ましい態様は、発泡性樹脂粒子の製造方法であって、スチレン単量体およびアクリロニトリル単量体を含む単量体(単量体混合物)を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、前記共重合工程は、重合温度が異なる連続した第1重合工程及び第2重合工程を含み、前記第1重合工程では、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を含む重合開始剤を使用し、前記重合開始剤(X)は、過酸化ベンゾイルを含み、前記発泡性樹脂粒子のTH/TQ比は、1.20未満であることを特徴とする、発泡性樹脂粒子の製造方法である。当該構成によると、VOC放散量が少ない発泡成形体、換言すれば生産性の高い発泡成形体を提供し得る発泡性樹脂粒子を提供できる。 The polymerization initiator (X) preferably contains at least benzoyl peroxide. That is, a more preferable aspect of the production method according to the embodiment of the present invention is a method for producing foamable resin particles, in which a monomer (polymer mixture) containing a styrene monomer and an acrylonitrile monomer is used. The copolymerization step includes a copolymerization step of copolymerizing and a foaming agent impregnation step of impregnating the obtained copolymer with a foaming agent, and the copolymerization step comprises a continuous first polymerization step and a second polymerization step having different polymerization temperatures. In the first polymerization step, a polymerization initiator (X) containing a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used, and the polymerization initiator (X) is benzoyl peroxide. This is a method for producing a foamable resin particle, which comprises the above and has a TH / TQ ratio of the foamable resin particle of less than 1.20. According to this configuration, it is possible to provide an effervescent resin particle that can provide an effervescent molded article having a small amount of VOC emission, in other words, an effervescent molded article having high productivity.
 第1重合工程における過酸化ベンゾイルの使用量は、単量体100重量部に対して0.08重量部以上0.25重量部以下であることが好ましく、0.15重量部0.20重量部以下であることがより好ましい。当該構成によると、VOC放散量がより少ない発泡成形体、換言すれば生産性のより高い発泡成形体を提供し得る発泡性樹脂粒子を提供できる。 The amount of benzoyl peroxide used in the first polymerization step is preferably 0.08 parts by weight or more and 0.25 parts by weight or less, and 0.15 parts by weight by weight of 0.20 parts by weight, based on 100 parts by weight of the monomer. The following is more preferable. According to this configuration, it is possible to provide a foamed molded product having a smaller VOC emission amount, in other words, a foamed resin particle capable of providing a foamed molded product having higher productivity.
 <発泡成形体及びその製造方法>
 発泡性樹脂粒子は、一般的な発泡方法によって、発泡粒子とすることができる。具体的な発泡方法としては、下記(1)~(3)を順次行う方法が挙げられる:(1)攪拌機を具備した容器内に発泡性樹脂粒子を入れ、(2)水蒸気などの熱源により発泡性樹脂粒子を加熱することにより、(3)所望の発泡倍率に到達するまで発泡を行い、発泡粒子を得る。なお、発泡粒子を予備発泡粒子と称する場合もあり、それ故に、予備発泡粒子を得るための発泡方法を予備発泡方法と称する場合もある。
<Effervescent molded product and its manufacturing method>
The foamable resin particles can be made into foamed particles by a general foaming method. Specific examples of the foaming method include a method in which the following (1) to (3) are sequentially performed: (1) foaming resin particles are placed in a container equipped with a stirrer, and (2) foaming is performed by a heat source such as steam. By heating the sex resin particles, (3) foaming is performed until a desired expansion ratio is reached, and foamed particles are obtained. In addition, the foamed particles may be referred to as pre-foamed particles, and therefore, the foaming method for obtaining the pre-foamed particles may be referred to as a pre-foamed method.
 本発明の一実施形態に係る発泡性樹脂粒子を発泡して得られる発泡粒子もまた、本発明の一実施形態である。本発明の一実施形態に係る発泡粒子は、VOC放散量が少ない発泡成形体、換言すれば生産性の高い発泡成形体を提供できる。 Foamed particles obtained by foaming foamable resin particles according to an embodiment of the present invention are also an embodiment of the present invention. The foamed particles according to the embodiment of the present invention can provide a foamed molded product having a small amount of VOC emissions, in other words, a foamed molded product having high productivity.
 本発明の一実施形態に係る発泡粒子は、以下のような構成であってもよい。すなわち、本発明の別の一実施形態に係る発泡粒子は、発泡性樹脂粒子を発泡して得られる発泡粒子であり、前記発泡性樹脂粒子は、(a)構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、(b)発泡剤とを含み、前記発泡粒子の表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上である。 The foamed particles according to one embodiment of the present invention may have the following constitution. That is, the foamed particles according to another embodiment of the present invention are foamed particles obtained by foaming foamable resin particles, and the foamable resin particles have (a) styrene units and acrylonitrile units as constituent units. a base resin containing, (b) and a blowing agent, wherein the ratio of absorbance at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 in the infrared absorption spectrum of the surface of the expanded beads D2230 / D1600 is 0.80 or more.
 本発明の一実施形態に係る発泡粒子は、以下のような構成であってもよい。すなわち、本発明の別の一実施形態に係る発泡粒子は、(a)構成単位としてスチレン単位及びアクリロニトリル単位を含み、(b)当該発泡粒子の表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上である。 The foamed particles according to one embodiment of the present invention may have the following constitution. That is, the foamed particles according to another embodiment of the present invention (a) contain styrene units and acrylonitrile units as constituent units, and (b) have a wavelength of 2230 cm- 1 and a wavelength in the infrared absorption spectrum of the surface of the foamed particles. The absorbance ratio D2230 / D1600 at 1600 cm -1 is 0.80 or more.
 発泡粒子は、一般的な型内成形方法によって成形することにより、発泡成形体とすることができる。具体的な型内成形方法としては、閉鎖し得るが密閉し得ない金型内に発泡粒子を充填し、水蒸気により発泡粒子を加熱および融着することで発泡成形体とする方法が挙げられる。 The foamed particles can be made into a foamed molded product by molding by a general in-mold molding method. Specific examples of the in-mold molding method include a method in which foamed particles are filled in a mold that can be closed but cannot be sealed, and the foamed particles are heated and fused with steam to form a foamed molded product.
 本発明の一実施形態に係る発泡粒子を型内成形してなる発泡成形体もまた、本発明の一実施形態である。本発明の一実施形態に係る発泡成形体は、VOC放散量が少ないという利点を有する。 A foamed molded product obtained by in-mold molding of foamed particles according to an embodiment of the present invention is also an embodiment of the present invention. The foam molded product according to the embodiment of the present invention has an advantage that the amount of VOC emitted is small.
 本発明の一実施形態に係る発泡成形体は、スチレンの放出量が2ppm以下であり、かつ、エチルベンゼンの放出量が15ppm未満であることが好ましい。ここで、スチレンの放出量およびエチルベンゼンの放出量は、0.025gの発泡成形体を、容積20mlの容器内に60℃の条件下で2時間放置するとき、当該容器内に放出される放出量である。スチレン及びエチルベンゼンの放出量は、0.025gの発泡成形体を入れた容積20mlの容器内の気体中の濃度(ppm)として示す。本発明の一実施形態に係る発泡成形体におけるスチレンの放出量は、好ましくは1.5ppm以下であり、より好ましくは1.0ppm以下であり、さらに好ましくは0.6ppm以下であり、特に好ましくは0.5ppm以下である。本発明の一実施形態に係る発泡成形体におけるエチルベンゼンの放出量は、好ましくは13ppm未満であり、より好ましくは10ppm以下であり、さらに好ましくは7ppm以下であり、特に好ましくは5ppm以下である。 In the foam molded product according to the embodiment of the present invention, it is preferable that the amount of styrene released is 2 ppm or less and the amount of ethylbenzene released is less than 15 ppm. Here, the amount of styrene released and the amount of ethylbenzene released are the amounts released when a 0.025 g foam molded product is left in a container having a volume of 20 ml under the condition of 60 ° C. for 2 hours. Is. The amount of styrene and ethylbenzene released is shown as the concentration (ppm) in the gas in a container having a volume of 20 ml containing 0.025 g of the foamed molded product. The amount of styrene released in the foam molded product according to the embodiment of the present invention is preferably 1.5 ppm or less, more preferably 1.0 ppm or less, still more preferably 0.6 ppm or less, and particularly preferably. It is 0.5 ppm or less. The amount of ethylbenzene released in the foamed molded article according to the embodiment of the present invention is preferably less than 13 ppm, more preferably 10 ppm or less, still more preferably 7 ppm or less, and particularly preferably 5 ppm or less.
 本明細書において、用語「放出量」および「放散量」は同義であり、相互置換可能である。 In the present specification, the terms "emission amount" and "emission amount" are synonymous and can be interchanged.
 本発明の一実施形態に係る発泡成形体におけるスチレンの放出量、エチルベンゼンの放出量が上述した範囲内であれば、発泡成形体を自動車内装材または建材用断熱材として使用するとき、シックハウス症候群など身体へ悪影響を与える虞がないという利点を有する。 When the amount of styrene released and the amount of ethylbenzene released in the foamed molded product according to the embodiment of the present invention are within the above ranges, when the foamed molded product is used as an automobile interior material or a heat insulating material for building materials, sick house syndrome or the like It has the advantage that there is no risk of adversely affecting the body.
 本明細書中では、「本発明の一実施形態に係る発泡成形体」を、単に「本発泡成形体」と称する場合もある。すなわち、用語「本発泡成形体」は、本発明における発泡成形体の一実施形態を意図する。 In the present specification, "the foamed molded product according to the embodiment of the present invention" may be simply referred to as "the present foamed molded product". That is, the term "present foam molded product" is intended to be an embodiment of the foam molded product in the present invention.
 本発泡成形体の酸素指数は、26%以上であることが好ましく、27%以上であることがより好ましく、28%以上であることがさらに好ましく、29%以上であることが特に好ましい。上記構成によれば、発泡成形体を自動車内装材または建材用断熱材として使用するとき、発泡成形体が十分な難燃性能を発揮することができるという利点を有する。 The oxygen index of the foamed molded product is preferably 26% or more, more preferably 27% or more, further preferably 28% or more, and particularly preferably 29% or more. According to the above configuration, when the foamed molded product is used as an automobile interior material or a heat insulating material for a building material, the foamed molded product has an advantage that it can exhibit sufficient flame retardant performance.
 本発泡成形体は、耐熱性に優れることが好ましい。例えば、本発泡成形体を保温材、または自動車部材として日光に当たる部分の材料として使用する場合には、本発泡成形体は、90℃以上で使用したときの変形が小さいことが好ましい。具体的には、発泡倍率40倍の発泡成形体を90℃の条件下で168時間放置する場合、放置前後の発泡成形体の寸法変化率が0.4%以下であることが好ましく、0.35%以下であることがより好ましく、0.3%以下であることがさらに好ましく、0.25%以下であることが特に好ましい。 It is preferable that the foam molded product has excellent heat resistance. For example, when the foamed molded product is used as a heat insulating material or a material for a portion exposed to sunlight as an automobile member, it is preferable that the foamed molded product has little deformation when used at 90 ° C. or higher. Specifically, when a foamed molded product having a foaming ratio of 40 times is left to stand for 168 hours under the condition of 90 ° C., the dimensional change rate of the foamed molded product before and after leaving is preferably 0.4% or less. It is more preferably 35% or less, further preferably 0.3% or less, and particularly preferably 0.25% or less.
 本発泡成形体は、表層の平均気泡径が50μm以上100μm未満であることが好ましく、60~90μmであることがさらに好ましい。平均気泡径が50μm以上である場合、(a)セル膜が十分な厚さを有するため温度に対する発泡成形体の寸法変化が小さくなり、(b)VOCおよび総VOCの放出量を低減でき、かつ(c)セル膜が十分な厚さを有するため、型内成形時の加圧蒸気によってセル膜が溶融することがなく、それ故に発泡成形体の表面性が良好となる。セル膜が薄い場合には、90℃以上の環境下にて、発泡成形体が膨らみ、発泡成形体の寸法安定性が悪くなる場合がある。高温環境下にて発泡成形体が膨らむことを、3次発泡と称する場合もある。平均気泡径が100μm未満である場合、発泡成形体の表面性が良好となる。 The average cell diameter of the surface layer of this foam molded product is preferably 50 μm or more and less than 100 μm, and more preferably 60 to 90 μm. When the average cell diameter is 50 μm or more, (a) the cell membrane has a sufficient thickness, so that the dimensional change of the foamed molded product with respect to temperature is small, and (b) the amount of VOC and total VOC emissions can be reduced. (C) Since the cell film has a sufficient thickness, the cell film is not melted by the pressurized steam during in-mold molding, and therefore the surface property of the foam molded product is improved. When the cell film is thin, the foamed molded product may swell in an environment of 90 ° C. or higher, and the dimensional stability of the foamed molded product may deteriorate. The expansion of the foamed molded product in a high temperature environment may be referred to as tertiary foaming. When the average cell diameter is less than 100 μm, the surface property of the foamed molded product is good.
 なお、本明細書において、「表層の平均気泡径」とは、発泡成形体の表層の切断面の一直線上に存在する発泡粒子の平均弦長とする。当該平均弦長は、発泡成形体の切断面を投影した写真を用いて、ASTM-D-2842-97に準じて測定し、得られた値である。当該平均弦長は、発泡成形体の切断面を投影した写真において、発泡成形体の表層の切断面の一直線上に存在する発泡粒子10個を任意に選択し、かかる発泡粒子各々の弦長を測定し、その平均値とする。 In the present specification, the "average cell diameter of the surface layer" is the average chord length of the foamed particles existing on a straight line of the cut surface of the surface layer of the foamed molded product. The average chord length is a value obtained by measuring according to ASTM-D-2842-97 using a photograph obtained by projecting a cut surface of a foamed molded product. For the average chord length, 10 foam particles existing on a straight line of the cut surface of the surface layer of the foamed molded body are arbitrarily selected in the photograph obtained by projecting the cut surface of the foamed molded body, and the chord length of each of the foamed particles is selected. Measure and use the average value.
 本発明の一実施形態は、以下の様な構成であってもよい。 One embodiment of the present invention may have the following configuration.
 (X1)構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、発泡剤とを含む発泡性樹脂粒子であって、前記発泡性樹脂粒子を発泡させた発泡粒子表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上であることを特徴とする発泡性樹脂粒子。 (X1) A foamable resin particle containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and having a wavelength in the infrared absorption spectrum of the surface of the foamed particle in which the foamable resin particle is foamed. Foamable resin particles having an absorbance ratio D2230 / D1600 at 2230 cm -1 and a wavelength of 1600 cm -1 of 0.80 or more.
 (X2)前記発泡性樹脂粒子中のスチレンの含有量は20ppm未満であり、かつ、エチルベンゼンの含有量は130ppm以下であることを特徴とする(X1)に記載の発泡性樹脂粒子。 (X2) The foamable resin particles according to (X1), wherein the content of styrene in the foamable resin particles is less than 20 ppm, and the content of ethylbenzene is 130 ppm or less.
 (X3)重量平均分子量が15万以上22万以下であることを特徴とする(X1)又は(X2)に記載の発泡性樹脂粒子。 (X3) The foamable resin particles according to (X1) or (X2), wherein the weight average molecular weight is 150,000 or more and 220,000 or less.
 (X4)前記基材樹脂において、(a)前記スチレン単位の含有量は55重量部以上80重量部以下であり、前記アクリロニトリル単位の含有量は20重量部以上45重量部以下であり、かつ(b)前記スチレン単位およびアクリロニトリル単位の合計含有量は100重量部であることを特徴とする(X1)~(X3)のいずれか1つに記載の発泡性樹脂粒子。 (X4) In the base resin, (a) the content of the styrene unit is 55 parts by weight or more and 80 parts by weight or less, the content of the acrylonitrile unit is 20 parts by weight or more and 45 parts by weight or less, and ( b) The foamable resin particle according to any one of (X1) to (X3), wherein the total content of the styrene unit and the acrylonitrile unit is 100 parts by weight.
 (X5)TH/TQ比は、1.20未満であることを特徴とする(X1)~(X4)のいずれか1つに記載の発泡性樹脂粒子。 The foamable resin particles according to any one of (X1) to (X4), wherein the (X5) TH / TQ ratio is less than 1.20.
 (X6)(X1)~(X5)のいずれか1つに記載の発泡性樹脂粒子を発泡して得られる発泡粒子。 Foamed particles obtained by foaming the foamable resin particles according to any one of (X6), (X1) to (X5).
 (X7)(X6)に記載の発泡粒子を型内成形してなる発泡成形体。 A foamed molded product obtained by in-mold molding of the foamed particles according to (X7) and (X6).
 (X8)表層の平均気泡径が50μm以上100μm未満であることを特徴とする(X7)に記載の発泡成形体。 (X8) The foamed molded product according to (X7), wherein the average cell diameter of the surface layer is 50 μm or more and less than 100 μm.
 (X9)スチレンの放散量が2ppm以下であり、かつエチルベンゼンの放散量が15ppm未満であることを特徴とする(X7)又は(X8)に記載の発泡成形体。 (X9) The foamed molded product according to (X7) or (X8), wherein the emission amount of styrene is 2 ppm or less and the emission amount of ethylbenzene is less than 15 ppm.
 (X10)発泡性樹脂粒子の製造方法であって、スチレン単量体およびアクリロニトリル単量体を含む単量体を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、前記共重合工程は、重合温度が異なる連続した第1重合工程及び第2重合工程を含み、前記第1重合工程では、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を含む重合開始剤を使用し、前記重合開始剤(X)は、過酸化ベンゾイルを含み、前記発泡性樹脂粒子のTH/TQ比は、1.20未満であることを特徴とする、発泡性樹脂粒子の製造方法。 (X10) A method for producing foamable resin particles, which is a copolymerization step of copolymerizing a monomer containing a styrene monomer and an acrylonitrile monomer, and foaming in which the obtained copolymer is impregnated with a foaming agent. The copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures, and the first polymerization step has a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower. A polymerization initiator (X) containing the above-mentioned polymerization initiator (X) is used, the polymerization initiator (X) contains benzoyl peroxide, and the TH / TQ ratio of the foamable resin particles is less than 1.20. A method for producing foamable resin particles, which is characterized by the above.
 本発明の一実施形態は、以下の様な構成であってもよい。 One embodiment of the present invention may have the following configuration.
 (Y1)構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、発泡剤とを含む発泡性樹脂粒子であって、前記発泡性樹脂粒子を発泡させた発泡粒子表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.8以上であることを特徴とする発泡性樹脂粒子。 (Y1) A foamable resin particle containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent, and having a wavelength in the infrared absorption spectrum of the surface of the foamed particle in which the foamable resin particle is foamed. Foamable resin particles having an absorbance ratio D2230 / D1600 of 0.8 or more at 2230 cm -1 and a wavelength of 1600 cm -1 .
 (Y2)前記発泡性樹脂粒子中のスチレンの含有量は20ppm未満であり、かつ、エチルベンゼンの含有量は130ppm以下であることを特徴とする(Y1)に記載の発泡性樹脂粒子。 (Y2) The foamable resin particles according to (Y1), wherein the content of styrene in the foamable resin particles is less than 20 ppm, and the content of ethylbenzene is 130 ppm or less.
 (Y3)重量平均分子量が15万以上22万以下であることを特徴とする(Y1)又は(Y2)に記載の発泡性樹脂粒子。 (Y3) The foamable resin particles according to (Y1) or (Y2), wherein the weight average molecular weight is 150,000 or more and 220,000 or less.
 (Y4)(Y1)~(Y3)のいずれかに記載の発泡性樹脂粒子を発泡して得られる発泡粒子。 Foamed particles obtained by foaming the foamable resin particles according to any one of (Y4), (Y1) to (Y3).
 (Y5)(Y4)に記載の発泡粒子を型内成形してなる発泡成形体。 A foam molded product obtained by in-mold molding of the foam particles according to (Y5) and (Y4).
 (Y6)表層の平均気泡径が50μm以上100μm未満であることを特徴とする(Y5)に記載の発泡成形体。 (Y6) The foamed molded product according to (Y5), wherein the average cell diameter of the surface layer is 50 μm or more and less than 100 μm.
 (Y7)スチレンの放散量が2ppm以下であり、かつエチルベンゼンの放散量が15ppm未満であることを特徴とする(Y5)又は(Y6)に記載の発泡成形体。 (Y7) The foamed molded product according to (Y5) or (Y6), wherein the emission amount of styrene is 2 ppm or less and the emission amount of ethylbenzene is less than 15 ppm.
 以下に実施例、及び比較例を挙げるが、本発明はこれによって限定されるものではない。 Examples and comparative examples are given below, but the present invention is not limited thereto.
 実施例及び比較例で使用した重合開始剤、難燃剤、難燃助剤及び連鎖移動剤は、以下通りである。
重合開始剤(X):
過酸化ベンゾイル(ナイパーBW(日油社製))(10時間半減期温度74℃);および
ジ-t-ブチルパーオキシヘキサハイドロテレフタレート(カヤエステルHTP-65W(化藥アクゾ(株)製))(10時間半減期温度83℃);
重合開始剤(Y):
t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(パーブチルE(日本油脂(株)製))(10時間半減期温度99℃);および
1,1-ビス(t-ブチルパーオキシ)シクロヘキサン(パーヘキサC(日本油脂(株)製))(10時間半減期温度90℃)
難燃剤:
テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル(ピロガードSR-130(第一工業製薬(株)製))。
難燃助剤:
ジクミルパーオキサイド(パークミルD(日本油脂(株)製))。
連鎖移動剤:
α-メチルスチレンダイマー(MSD(日本油脂(株)製))。
なお、実施例、及び比較例中の発泡性樹脂粒子の分子量、及び発泡性樹脂粒子中のスチレン及びエチルベンゼンの含有量、発泡性樹脂粒子の発泡性の評価については以下の方法で測定した。なお、「部」及び「%」はそれぞれ特に断りのない限り重量基準であり、「重量部」及び「%」をそれぞれ意図する。
The polymerization initiators, flame retardants, flame retardants and chain transfer agents used in Examples and Comparative Examples are as follows.
Polymerization initiator (X):
Benzoyl peroxide (Niper BW (manufactured by NOF Corporation)) (10-hour half-life temperature 74 ° C); and di-t-butylperoxyhexahydroterephthalate (Kayaester HTP-65W (manufactured by Kago Akzo Co., Ltd.)) (10-hour half-life temperature 83 ° C.);
Polymerization initiator (Y):
t-Butylperoxy-2-ethylhexyl monocarbonate (Perbutyl E (manufactured by NOF CORPORATION)) (10-hour half-life temperature 99 ° C.); and 1,1-bis (t-butylperoxy) cyclohexane (Perhexa C) (Manufactured by NOF CORPORATION)) (10-hour half-life temperature 90 ° C)
Flame retardants:
Tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether (Pyroguard SR-130 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)).
Flame Retardant:
Dikmil Peroxide (Park Mill D (manufactured by NOF CORPORATION)).
Chain transfer agent:
α-Methylstyrene dimer (MSD (manufactured by NOF CORPORATION)).
The molecular weight of the foamable resin particles in Examples and Comparative Examples, the content of styrene and ethylbenzene in the foamable resin particles, and the evaluation of the foamability of the foamable resin particles were measured by the following methods. In addition, "part" and "%" are based on weight unless otherwise specified, and "part by weight" and "%" are intended respectively.
 (重量平均分子量測定法)
 発泡性樹脂粒子0.02gをテトラヒドロフラン20ccに溶解し、ゲル浸透クロマトグラフィー(GPC)(東ソー(株)製HLC-8020、カラム:TSKgel Super HZM-H、カラム温度:40℃、流速:0.35ml/1min.)にて重量平均分子量Mwを測定した。重量平均分子量は標準ポリスチレンの換算値として求めた。得られた結果を表1および2に、「Mw(重量平均分子量)」として示した。
(Weight average molecular weight measurement method)
0.02 g of foamable resin particles were dissolved in tetrahydrofuran 20 cc, and gel permeation chromatography (GPC) (HLC-8020 manufactured by Toso Co., Ltd., column: TSKgel Super HZM-H, column temperature: 40 ° C., flow rate: 0.35 ml The weight average molecular weight Mw was measured at / 1 min.). The weight average molecular weight was determined as a conversion value of standard polystyrene. The results obtained are shown in Tables 1 and 2 as "Mw (weight average molecular weight)".
 (発泡性樹脂粒子のTH/TQ比の算出方法)
 得られた発泡性樹脂粒子0.02gをテトラヒドロフラン(THF)20mlに溶解させ、試料を得た。その後、得られた試料について、ゲル浸透クロマトグラフィーを用いて、以下の条件にてGPC測定を行い、GPC測定チャートを得た。
測定装置:東ソー社製、高速GPC装置 HLC-8220
使用カラム:東ソー社製、SuperHZM-Hを2本、およびSuperH-RCを2本、合計4本
カラム温度:40℃
移動相:THF(テトラヒドロフラン)
流量:0.35ml/分
注入量:10μl
検出器:RI。
(Method of calculating TH / TQ ratio of foamable resin particles)
0.02 g of the obtained foamable resin particles were dissolved in 20 ml of tetrahydrofuran (THF) to obtain a sample. Then, the obtained sample was subjected to GPC measurement under the following conditions using gel permeation chromatography to obtain a GPC measurement chart.
Measuring device: High-speed GPC device HLC-8220 manufactured by Tosoh Corporation
Columns used: Tosoh, 2 SuperHZM-H, 2 SuperH-RC, 4 in total Column temperature: 40 ° C
Mobile phase: THF (tetrahydrofuran)
Flow rate: 0.35 ml / min Injection amount: 10 μl
Detector: RI.
 得られたGPC測定チャートのGPC曲線について、上述した方法によりTH/TQ比を求めた。得られた結果を表1および2に、「TH/TQ比」として示した。 The TH / TQ ratio of the GPC curve of the obtained GPC measurement chart was determined by the method described above. The results obtained are shown in Tables 1 and 2 as "TH / TQ ratio".
 (発泡樹脂粒子中のスチレン及びエチルベンゼンの含有量の測定法)
 発泡性樹脂粒子0.25gを塩化メチレン20cc(内部標準シクロペンタノールとともに)に溶解し、(株)島津製作所製ガスクロマトグラフィーGC-2014(キャピラリーカラム:GLサイエンス製Rtx-1、カラム温度条件:50℃から80℃まで昇温(昇温速度3℃/min)後、80℃から180℃まで昇温(昇温速度10℃/min)、キャリアガス:ヘリウム)を用いて、発泡性樹脂粒子中に含まれるスチレン及びエチルベンゼンを測定した。測定したスチレン及びエチルベンゼンの検量線を用いて、得られた結果から、発泡性樹脂粒子中のスチレン及びエチルベンゼンの含有量を定量した。得られた結果を表1および2に、「残存スチレンモノマー」及び「エチルベンゼン」として示した。
(Method for measuring the content of styrene and ethylbenzene in foamed resin particles)
0.25 g of effervescent resin particles were dissolved in 20 cc of methylene chloride (with internal standard cyclopentanol), and gas chromatography GC-2014 manufactured by Shimadzu Corporation (capillary column: Rtx-1 manufactured by GL Science, column temperature condition: 50). After raising the temperature from ° C. to 80 ° C. (heating rate 3 ° C./min), raising the temperature from 80 ° C. to 180 ° C. (heating rate 10 ° C./min), carrier gas: helium) in the foamable resin particles. Styrene and ethylbenzene contained in the above were measured. The contents of styrene and ethylbenzene in the foamable resin particles were quantified from the obtained results using the measured calibration curves of styrene and ethylbenzene. The results obtained are shown in Tables 1 and 2 as "residual styrene monomer" and "ethylbenzene".
 (発泡性樹脂粒子の発泡性の評価)
 発泡性樹脂粒子を100℃の蒸し器に入れ、5分間加熱することにより、発泡粒子を得た。得られた発泡粒子10gを、1000cm3のメスシリンダーに入れ、発泡粒子の体積(cm3)を測定した。以下の式で、嵩倍率(cm3/g)を計算した。
(Evaluation of foamability of foamable resin particles)
The foamable resin particles were placed in a steamer at 100 ° C. and heated for 5 minutes to obtain foamed particles. 10 g of the obtained foamed particles were placed in a 1000 cm 3 graduated cylinder, and the volume of the foamed particles (cm 3 ) was measured. The bulk ratio (cm 3 / g) was calculated by the following formula.
 嵩倍率(cm3/g)=発泡粒子の体積(cm3)/10g
 なお、この評価にて40倍未満となる場合は、加圧式予備発泡機にて予備発泡しても嵩倍率が40倍以上にならないので、この評価結果は発泡性の指標となる。得られた結果を表1および2に、「発泡性(40倍)」として示した。
〇(良好):50倍以上
△(合格):40倍以上
×(不良):40倍未満。
Bulk ratio (cm 3 / g) = Volume of foamed particles (cm 3 ) / 10 g
If the evaluation is less than 40 times, the bulk ratio does not increase to 40 times or more even if pre-foaming is performed by a pressure type pre-foaming machine, so this evaluation result is an index of foamability. The results obtained are shown in Tables 1 and 2 as "foaming (40x)".
〇 (Good): 50 times or more △ (Pass): 40 times or more × (Bad): Less than 40 times.
 発泡粒子の製造方法は以下の通りである。 The manufacturing method of foamed particles is as follows.
 (発泡粒子の製造)
 発泡性樹脂粒子を篩い分けして粒子径0.5~1.4mmの発泡性樹脂粒子を分取した。
(Manufacturing of foamed particles)
The foamable resin particles were sieved to separate the foamable resin particles having a particle diameter of 0.5 to 1.4 mm.
 分取した発泡性樹脂粒子を、加圧式予備発泡機「大開工業製、BHP」を用いて、吹き込み蒸気圧0.09~0.10MPaの条件でかさ倍率40倍への予備発泡し、その後、予備発泡された粒子を常温下で1日放置して嵩倍率40倍の発泡粒子を得た。 The separated effervescent resin particles are pre-foamed to a bulk magnification of 40 times under the condition of a blown vapor pressure of 0.09 to 0.10 MPa using a pressure type pre-foaming machine "Ohiraki Kogyo, BHP", and then pre-foamed. The foamed particles were left at room temperature for 1 day to obtain foamed particles having a bulk ratio of 40 times.
 得られた発泡粒子について、以下の方法でブロッキング量を測定した。 The blocking amount of the obtained foamed particles was measured by the following method.
 (予備発泡時のブロッキング量の測定法)
 ブロッキングとは予備発泡操作時に発泡粒子同士が結合した塊である。ブロッキング量が多い場合は成形工程で充填不良が起こるため、ブロッキング量は少ない方が良い。尚、ブロッキング量の測定方法は以下の通りである。
(Measurement method of blocking amount at the time of preliminary foaming)
Blocking is a mass in which foamed particles are bonded to each other during a preliminary foaming operation. If the blocking amount is large, filling defects will occur in the molding process, so it is better that the blocking amount is small. The method for measuring the blocking amount is as follows.
 発泡操作により得られた発泡粒子全量を編み目間隔が1cmの金網に通す。金網に残った塊の重量を測定し、以下の式でブロッキング量を計算した。
ブロッキング量(%)=塊の重さ/発泡粒子全量の重さ×100
得られたブロッキング量からブロッキング性を以下の基準で判断した。得られた結果を表1および2に、「ブロッキング量」として示した。
〇(良好):0.05%未満
△(合格):0.01%未満0.05%以上
×(不良):0.1%以上。
The entire amount of foamed particles obtained by the foaming operation is passed through a wire mesh having a stitch spacing of 1 cm. The weight of the mass remaining on the wire net was measured, and the blocking amount was calculated by the following formula.
Blocking amount (%) = weight of mass / weight of total amount of foamed particles x 100
The blocking property was judged from the obtained blocking amount according to the following criteria. The results obtained are shown in Tables 1 and 2 as the "blocking amount".
〇 (Good): Less than 0.05% △ (Pass): Less than 0.01% 0.05% or more × (Defective): 0.1% or more.
 <吸光度比の測定>
 得られた発泡性樹脂粒子の吸光度比は、予備発泡粒子(発泡粒子)を任意に10個採取し、それぞれ予備発泡粒子(発泡倍率40倍)の表面に対して、以下の条件にて、ATR法赤外分光分析(ATR-FTIR分析)を行って、赤外吸収スペクトルを得た。
装置   :FTIR[(株)島津製作所製、FTIR-8400S]に、1回反射型全反射(ATR)測定装置[PIKE社製、MIRacle]を接続
ATRプリズム(高屈折率結晶種):セレン化亜鉛(ZnSe)
入射角  :45°
測定領域 :4000cm-1~600cm-1
検出器  :DLATGS
もぐり込み深さ:1.66
反射回数 :1回
分解能  :4cm-1
積算回数 :20回
その他  :試料と接触させずに測定した赤外線吸収スペクトルをバックグラウンドとして、測定スペクトルに関与しない処理を実施した。
なお、ATR法では、試料と高屈折率結晶の密着度合いによって測定で得られる赤外線吸収スペクトルの強度が変化するため、1600cm-1の吸光度が0.05~0.10となるように、試料と高屈折率結晶の密着度合いを調節して測定する。
<Measurement of absorbance ratio>
As for the absorbance ratio of the obtained foamable resin particles, 10 pre-foamed particles (foamed particles) were arbitrarily collected, and each of them was subjected to ATR on the surface of the pre-foamed particles (foaming ratio 40 times) under the following conditions. Infrared spectroscopic analysis (ATR-FTIR analysis) was performed to obtain an infrared absorption spectrum.
Equipment: Connect a single reflection type total reflection (ATR) measuring device [MIRacle] to FTIR [manufactured by Shimadzu Corporation, FTIR-8400S] ATR prism (high refractive index crystal species): zinc selenide (ZnSe)
Incident angle: 45 °
Measurement area: 4000cm -1 ~ 600cm -1
Detector: DLATGS
Depth of digging: 1.66
Number of reflections: 1 time Resolution: 4 cm -1
Number of integrations: 20 times Others: Processing not related to the measurement spectrum was performed with the infrared absorption spectrum measured without contact with the sample as the background.
In the ATR method, the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high-refractive index crystal, so that the absorbance at 1600 cm -1 is 0.05 to 0.10. The degree of adhesion of high refractive index crystals is adjusted for measurement.
 ここで、予備発泡粒子の表面を測定する場合は、粒子表面をそのままATRプリズムに密着させて測定した。 Here, when measuring the surface of the pre-foamed particles, the particle surface was brought into close contact with the ATR prism as it was.
 以上のようにして得られた赤外線吸収スペクトルから、1600cm-1の吸光度と2230cm-1の吸光度との吸光度比を求めた(D2230/D1600)。本発明の一実施形態では、任意の10個の予備発泡粒子の表面において、ATR-FTIR測定を行い、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を、吸光度比とした。 From the infrared absorption spectrum obtained as above, it was determined absorbance ratio between the absorbance of the absorbance and 2230 cm -1 of the 1600cm -1 (D2230 / D1600). In one embodiment of the invention, ATR-FTIR measurements are performed on the surface of any 10 prefoamed particles to exclude the minimum and maximum absorbance ratios. Then, the arithmetic mean of the absorbance ratios of the remaining eight pieces was taken as the absorbance ratio.
 吸光度比の測定に用いた予備発泡粒子(発泡粒子)は、後述する実施例および比較例にて得られた発泡性樹脂粒子を以下(1)~(3)の順で処理して得たものである:(1)発泡性樹脂粒子を加圧式の発泡機に投入した;(2)次に、吹き込み蒸気圧0.09MPa~0.10MPaにて発泡機に蒸気を吹き込み、かつ発泡機内の圧力を0.01MPa~0.02MPaの範囲で調製することにより、発泡機内の温度を100℃~104℃とし、これにより、発泡粒子を倍率40倍へ発泡させた;(3)次に、得られた発泡粒子を25℃で12時間~24時間養生し、赤外吸収スペクトルの測定に用いる発泡粒子を得た。 The preliminary foamed particles (foamed particles) used for measuring the absorptivity ratio were obtained by treating the foamable resin particles obtained in Examples and Comparative Examples described later in the order of (1) to (3) below. (1) The foamable resin particles were put into a pressurized foaming machine; (2) Next, steam was blown into the foaming machine at a blowing vapor pressure of 0.09 MPa to 0.10 MPa, and the pressure inside the foaming machine. Was prepared in the range of 0.01 MPa to 0.02 MPa to bring the temperature inside the foaming machine to 100 ° C. to 104 ° C., whereby the foamed particles were foamed at a magnification of 40 times; (3) Next, obtained. The foamed particles were cured at 25 ° C. for 12 to 24 hours to obtain foamed particles used for measuring the infrared absorption spectrum.
 発泡成形体の製造方法は以下の通りである。 The manufacturing method of the foam molded product is as follows.
 (発泡成形体の製造)
 常温下で1日放置した嵩倍率40倍の予備発泡粒子を、成形機「ダイセン製、KR-57」を用いて吹き込み蒸気圧0.05MPa、加熱時間22秒で型内成形を行うことで、厚み20mmで長さ400mm×幅350mmの平板状の発泡成形体を得た。
(Manufacturing of foam molding)
Pre-foamed particles with a bulk ratio of 40 times left at room temperature for 1 day are blown into the mold using a molding machine "Daisen, KR-57" at a vapor pressure of 0.05 MPa and a heating time of 22 seconds. A flat foam molded product having a thickness of 20 mm and a length of 400 mm and a width of 350 mm was obtained.
 得られた発泡成形体について、以下の方法で、スチレン及びエチルベンゼンの放散量、表層の平均気泡径、及び耐熱性などを評価した。 The obtained foamed molded product was evaluated for the amount of styrene and ethylbenzene emitted, the average cell diameter of the surface layer, the heat resistance, etc. by the following method.
 (発泡成形体からのスチレン及びエチルベンゼンの放散量の測定法)
 発泡成形体から、0.025gとなるようにサンプル片を切り出した。サンプル片を、容積20mlの耐圧ガラス容器に入れ、島津製作所HS-10(GC-2014に連結されている)に設置した。HS-10の保管条件を60℃×2時間として、そのときに放出されるスチレン及びエチルベンゼンを採取した。発泡性樹脂粒子中のスチレン含有量の測定方法と同様の方法によって、島津製作所ガスクロマトグラフィーGC-2014(キャピラリーカラム:GLサイエンス製Rtx-1、カラム温度条件:50℃から70℃まで昇温(昇温速度3℃/min)後、70℃から180℃まで昇温(昇温速度10℃/min)、キャリアガス:ヘリウム)を用いて採集した各物質を測定した。測定したスチレン及びエチルベンゼンの検量線を用いて、得られた結果から、発泡成形体からのスチレン及びエチルベンゼンの放散量を定量した。スチレン及びエチルベンゼンの放散量は、サンプル片を入れた耐圧ガラス容器内の気体中の濃度(ppm)として示した。
(Measurement method of emission amount of styrene and ethylbenzene from foam molded product)
A sample piece was cut out from the foam molded product so as to weigh 0.025 g. The sample piece was placed in a pressure-resistant glass container having a volume of 20 ml and installed in Shimadzu HS-10 (connected to GC-2014). The storage condition of HS-10 was set to 60 ° C. × 2 hours, and styrene and ethylbenzene released at that time were collected. Shimadzu Gas Chromatography GC-2014 (capillary column: GL Science Rtx-1, column temperature condition: temperature rise from 50 ° C to 70 ° C (rise) by the same method as the method for measuring the styrene content in foamable resin particles. After the temperature temperature was 3 ° C./min), each substance collected was measured using a temperature rise from 70 ° C. to 180 ° C. (heating rate 10 ° C./min) and carrier gas: helium). Using the measured calibration curve of styrene and ethylbenzene, the amount of styrene and ethylbenzene emitted from the foam molded product was quantified from the obtained results. The amount of styrene and ethylbenzene emitted is shown as the concentration (ppm) in the gas in the pressure-resistant glass container containing the sample piece.
 (表層の平均気泡径の測定)
 発泡成形体の発泡粒子ごとの平均弦長を、ASTM-D-2842-97に準じて、発泡成形体の切断面を投影した写真を用いて測定した。具体的には、発泡成形体の切断面を投影した写真において、発泡成形体の表層の切断面の一直線上に存在する発泡粒子から平均弦長を測定した。なお、発泡成形体表層に存在する発泡粒子10個を任意に選択し、かかる発泡粒子各々の弦長の平均を最終的な数値(平均弦長)とした。本明細書では、このように得られた平均弦長を、発泡成形体の表層の平均気泡径とした。
(Measurement of average cell diameter on the surface layer)
The average chord length of each foamed particle of the foamed molded product was measured according to ASTM-D-2842-97 using a photograph obtained by projecting a cut surface of the foamed molded product. Specifically, in a photograph of the cut surface of the foamed molded product, the average chord length was measured from the foamed particles existing on a straight line of the cut surface of the surface layer of the foamed molded product. Ten foamed particles existing on the surface layer of the foamed molded product were arbitrarily selected, and the average of the chord lengths of each of the foamed particles was used as the final value (average chord length). In the present specification, the average chord length thus obtained is defined as the average cell diameter of the surface layer of the foamed molded product.
 (耐熱性評価)
 以下のように、(a)90℃における発泡成形体の寸法変化率を算出し、かつ(b)発泡成形体の表面の膨らみを観察することにより、発泡成形体の耐熱性を評価した。
(Heat resistance evaluation)
As described below, the heat resistance of the foamed molded product was evaluated by (a) calculating the dimensional change rate of the foamed molded product at 90 ° C. and (b) observing the swelling of the surface of the foamed molded product.
 成形体倍率40倍の発泡成形体を60℃で、24時間乾燥させた。その後、発泡成形体から、長さ150、幅150、厚み20(t)mmのサンプル片を切り出した。サンプル片について、長さ方向と幅方向との寸法をそれぞれ3箇所ずつ測定することで初期の寸法(D)を求めた。その後、発泡成形体を90℃の乾燥機内で168時間放置し、放置した後に同様の測定を行い、90℃乾燥後の寸法(E)を求めた。以下の式により寸法変化率を求め、寸法変化率の絶対値が0.4以下、すなわち寸法変化率-0.4%~0.4%を合格とした。 A foam molded product having a molded product magnification of 40 times was dried at 60 ° C. for 24 hours. Then, a sample piece having a length of 150, a width of 150, and a thickness of 20 (t) mm was cut out from the foam molded product. The initial dimension (D) was obtained by measuring the dimensions of the sample piece in the length direction and the width direction at three points each. Then, the foam molded product was left to stand in a dryer at 90 ° C. for 168 hours, and after being left to stand, the same measurement was performed to determine the dimension (E) after drying at 90 ° C. The dimensional change rate was calculated by the following formula, and the absolute value of the dimensional change rate was 0.4 or less, that is, the dimensional change rate −0.4% to 0.4% was regarded as acceptable.
 尚、寸法変化率が正の値である場合、初期(乾燥前)の寸法(D)が乾燥後の寸法(E)より大きいことを示し、すなわち発泡成形体が縮んだことを示す。また、寸法変化率が負の値である場合、乾燥後の寸法(E)が初期の寸法(D)より大きいことを示し、すなわち発泡成形体が膨らんだことを示す。 When the dimensional change rate is a positive value, it indicates that the initial (before drying) dimension (D) is larger than the post-drying dimension (E), that is, the foamed molded product has shrunk. Further, when the dimensional change rate is a negative value, it indicates that the dimension (E) after drying is larger than the initial dimension (D), that is, it indicates that the foamed molded product has swelled.
 寸法変化率(%)=((D)―(E))/(D)×100
寸法変化率の絶対値が0.4以下:〇(良好)
寸法変化率の絶対値が0.4超0.5以下:△(合格)
寸法変化率の絶対値が0.5超:×(不良)
 (実施例1~10、比較例1~5)
 撹拌機付き6Lオートクレーブに水110重量部、第3リン酸カルシウム0.105重量部、α-オレインスルフォン酸ソーダ0.0075重量部、並びに、表1に記載の量の重合開始剤、連鎖移動剤、難燃剤及び難燃助剤を仕込み、真空ポンプでゲージ圧-0.06MPaまで脱酸した。
Dimensional change rate (%) = ((D)-(E)) / (D) x 100
Absolute value of dimensional change rate is 0.4 or less: 〇 (good)
Absolute value of dimensional change rate is more than 0.4 and 0.5 or less: △ (pass)
Absolute value of dimensional change rate exceeds 0.5: × (defective)
(Examples 1 to 10, Comparative Examples 1 to 5)
110 parts by weight of water, 0.105 parts by weight of tricalcium phosphate, 0.0075 parts by weight of sodium α-olein sulfonate, and the amounts of polymerization initiator, chain transfer agent, and flame retardant shown in Table 1 in a 6 L autoclave with a stirrer. A flame retardant and a flame retardant aid were charged and deoxidized to a gauge pressure of −0.06 MPa with a vacuum pump.
 その後、攪拌機による原料の攪拌を開始し、表1に記載の量のスチレン単量体、アルファメチルスチレン単量体及びアクリロニトリル単量体をオートクレーブに仕込んで、さらに30分間これらの原料の攪拌を行った。その後、表1に記載の温度(第1の重合温度)及び時間(第1の重合時間)で第一の重合(第1重合工程)を実施した。その後、ノルマルリッチブタン(ノルマルブタン重量部/イソブタン重量部=70/30)を5重量部オートクレーブに仕込んだ。次いで、表1に示す温度(第2の重合温度)及び時間(第2の重合温度)で第二の重合(第2重合工程)をおこなった。その後、オートクレーブ内の温度を40℃まで冷却し、脱水し、さらに乾燥することで発泡性樹脂粒子を得た。得られた発泡性樹脂粒子について、上述した各種測定及び評価を行い、結果を表1及び2に記載した。 Then, stirring of the raw materials by a stirrer was started, and the amounts of styrene monomer, alpha-methylstyrene monomer and acrylonitrile monomer shown in Table 1 were charged into the autoclave, and the raw materials were stirred for another 30 minutes. It was. Then, the first polymerization (first polymerization step) was carried out at the temperature (first polymerization temperature) and time (first polymerization time) shown in Table 1. Then, normal rich butane (normal butane weight part / isobutane weight part = 70/30) was charged into an autoclave of 5 parts by weight. Then, the second polymerization (second polymerization step) was carried out at the temperature (second polymerization temperature) and time (second polymerization temperature) shown in Table 1. Then, the temperature in the autoclave was cooled to 40 ° C., dehydrated, and further dried to obtain effervescent resin particles. The obtained foamable resin particles were subjected to various measurements and evaluations described above, and the results are shown in Tables 1 and 2.
 得られた発泡性樹脂粒子を、上述した方法で予備発泡することで発泡粒子を得たのち、更に上述した方法で型内成形することで40倍の発泡成形体を得た。 The obtained foamable resin particles were pre-foamed by the above-mentioned method to obtain foamed particles, and then further molded in the mold by the above-mentioned method to obtain a 40-fold foamed molded product.
 得られた発泡粒子及び発泡成形体について、上述した各種測定及び評価を行った。結果は表1及び2に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The obtained foamed particles and foamed molded product were subjected to the above-mentioned various measurements and evaluations. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の一実施形態によれば、VOCの含有量が少なく、VOCの放散量を抑制できる発泡性樹脂粒子及び予備発泡粒子(発泡粒子)並びに発泡成形体を提供できる。そのため、本発明の一実施形態は、自動車分野および建材分野において、好適に利用できる。 According to one embodiment of the present invention, it is possible to provide foamable resin particles, pre-foamed particles (foamed particles), and a foamed molded product, which have a low VOC content and can suppress the emission amount of VOC. Therefore, one embodiment of the present invention can be suitably used in the fields of automobiles and building materials.

Claims (10)

  1.  構成単位としてスチレン単位及びアクリロニトリル単位を含む基材樹脂と、発泡剤とを含む発泡性樹脂粒子であって、
     前記発泡性樹脂粒子を発泡させた発泡粒子表面の赤外吸収スペクトルにおける波長2230cm-1及び波長1600cm-1での吸光度比D2230/D1600が0.80以上であることを特徴とする発泡性樹脂粒子。
    Foamable resin particles containing a base resin containing a styrene unit and an acrylonitrile unit as a constituent unit and a foaming agent.
    Expandable resin particles, wherein the foaming ratio of absorbance at a wavelength of 2230 cm -1 and a wavelength 1600 cm -1 The resin particles in the infrared absorption spectrum of the foamed was foamed particle surface D2230 / D1600 is 0.80 or more ..
  2.  前記発泡性樹脂粒子中のスチレンの含有量は20ppm未満であり、かつ、エチルベンゼンの含有量は130ppm以下であることを特徴とする請求項1に記載の発泡性樹脂粒子。 The foamable resin particles according to claim 1, wherein the content of styrene in the foamable resin particles is less than 20 ppm, and the content of ethylbenzene is 130 ppm or less.
  3.  重量平均分子量が15万以上22万以下であることを特徴とする請求項1又は2に記載の発泡性樹脂粒子。 The foamable resin particles according to claim 1 or 2, wherein the weight average molecular weight is 150,000 or more and 220,000 or less.
  4.  前記基材樹脂において、(a)前記スチレン単位の含有量は55重量部以上80重量部以下であり、前記アクリロニトリル単位の含有量は20重量部以上45重量部以下であり、かつ
     (b)前記スチレン単位およびアクリロニトリル単位の合計含有量は100重量部であることを特徴とする請求項1~3のいずれか1項に記載の発泡性樹脂粒子。
    In the base resin, (a) the content of the styrene unit is 55 parts by weight or more and 80 parts by weight or less, the content of the acrylonitrile unit is 20 parts by weight or more and 45 parts by weight or less, and (b) the above. The effervescent resin particles according to any one of claims 1 to 3, wherein the total content of the styrene unit and the acrylonitrile unit is 100 parts by weight.
  5.  TH/TQ比は、1.20未満であることを特徴とする請求項1~4のいずれか1項に記載の発泡性樹脂粒子。 The foamable resin particles according to any one of claims 1 to 4, wherein the TH / TQ ratio is less than 1.20.
  6.  請求項1~5のいずれか1項に記載の発泡性樹脂粒子を発泡して得られる発泡粒子。 Foamed particles obtained by foaming the foamable resin particles according to any one of claims 1 to 5.
  7.  請求項6に記載の発泡粒子を型内成形してなる発泡成形体。 A foamed molded product obtained by molding the foamed particles according to claim 6 in a mold.
  8.  表層の平均気泡径が50μm以上100μm未満であることを特徴とする請求項7に記載の発泡成形体。 The foamed molded product according to claim 7, wherein the average cell diameter of the surface layer is 50 μm or more and less than 100 μm.
  9.  スチレンの放散量が2ppm以下であり、かつエチルベンゼンの放散量が15ppm未満であることを特徴とする請求項7又は8に記載の発泡成形体。 The foamed molded product according to claim 7 or 8, wherein the emission amount of styrene is 2 ppm or less and the emission amount of ethylbenzene is less than 15 ppm.
  10.  発泡性樹脂粒子の製造方法であって、
     スチレン単量体およびアクリロニトリル単量体を含む単量体を共重合する共重合工程と、
     得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、
     前記共重合工程は、重合温度が異なる連続した第1重合工程及び第2重合工程を含み、
     前記第1重合工程では、10時間半減期温度が74℃以上94℃以下である重合開始剤(X)を含む重合開始剤を使用し、
     前記重合開始剤(X)は、過酸化ベンゾイルを含み、
     前記発泡性樹脂粒子のTH/TQ比は、1.20未満であることを特徴とする、発泡性樹脂粒子の製造方法。
    A method for producing foamable resin particles.
    A copolymerization step of copolymerizing a monomer containing a styrene monomer and an acrylonitrile monomer, and
    Including a foaming agent impregnation step of impregnating the obtained copolymer with a foaming agent.
    The copolymerization step includes a continuous first polymerization step and a second polymerization step having different polymerization temperatures.
    In the first polymerization step, a polymerization initiator containing a polymerization initiator (X) having a 10-hour half-life temperature of 74 ° C. or higher and 94 ° C. or lower is used.
    The polymerization initiator (X) contains benzoyl peroxide and contains.
    A method for producing foamable resin particles, wherein the TH / TQ ratio of the foamable resin particles is less than 1.20.
PCT/JP2020/004539 2019-03-12 2020-02-06 Foamable resin particles, pre-foamed particles, and shaped foam WO2020184007A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505597A JPWO2020184007A1 (en) 2019-03-12 2020-02-06
CN202080010060.5A CN113330061A (en) 2019-03-12 2020-02-06 Expandable resin particles, pre-expanded particles, and expanded molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019045208 2019-03-12
JP2019-045208 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184007A1 true WO2020184007A1 (en) 2020-09-17

Family

ID=72427901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004539 WO2020184007A1 (en) 2019-03-12 2020-02-06 Foamable resin particles, pre-foamed particles, and shaped foam

Country Status (3)

Country Link
JP (1) JPWO2020184007A1 (en)
CN (1) CN113330061A (en)
WO (1) WO2020184007A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187142A1 (en) * 2020-03-18 2021-09-23 株式会社カネカ Expandable resin particles, expanded particles, molded foam, and method for producing expandable resin particles
JP7334077B2 (en) 2019-06-28 2023-08-28 株式会社カネカ Expandable resin particles, expanded particles and expanded molded articles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219032A (en) * 1984-04-16 1985-11-01 ザ ダウ ケミカル カンパニ− Swelling synthetic resin thermoplastic grain, manufacture thereof and utilization thereof
JPS6140335A (en) * 1984-07-25 1986-02-26 ザ ダウ ケミカル カンパニー Foamed synthetic resin thermoplastic particle and manufacture
JPH04292610A (en) * 1991-03-19 1992-10-16 Asahi Chem Ind Co Ltd Polystyrene resin particle for foaming
US5464915A (en) * 1991-06-25 1995-11-07 Plastpolymer Share Holding Company Method of preparing styrene polymers by suspension polymerization
WO2009096327A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP4621449B2 (en) * 2004-07-29 2011-01-26 富士機工株式会社 Reclining device for automobile seat
JP2011195627A (en) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd Foamable polystyrene resin particle, pre-foamed particle, foamed molded product, and method for producing foamable polystyrene resin particle
JP2014062191A (en) * 2012-09-21 2014-04-10 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product
JP2018104550A (en) * 2016-12-26 2018-07-05 積水化成品工業株式会社 Composite resin foamable particles, method for producing the same, composite resin foam particles, method for producing the same, composite resin foam molding, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831175B2 (en) * 2011-11-30 2015-12-09 株式会社ジェイエスピー Expandable composite resin particle and composite resin foam particle molded body
JP6438214B2 (en) * 2014-05-21 2018-12-12 株式会社クレハ Method for producing thermally expandable microsphere, thermally expandable microsphere produced by the production method, and method for discriminating colloidal silica used in the production method
JP6323251B2 (en) * 2014-08-20 2018-05-16 株式会社ジェイエスピー Expandable composite resin particles
JP6410642B2 (en) * 2015-03-06 2018-10-24 株式会社カネカ Expandable resin particles and method for producing the same
JP2017179212A (en) * 2016-03-31 2017-10-05 株式会社ジェイエスピー Composite resin foam particle and composite resin foam particle molded body
JP6759895B2 (en) * 2016-09-08 2020-09-23 株式会社ジェイエスピー Composite resin particles, composite resin foam particles, composite resin foam particle molded products

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219032A (en) * 1984-04-16 1985-11-01 ザ ダウ ケミカル カンパニ− Swelling synthetic resin thermoplastic grain, manufacture thereof and utilization thereof
JPS6140335A (en) * 1984-07-25 1986-02-26 ザ ダウ ケミカル カンパニー Foamed synthetic resin thermoplastic particle and manufacture
JPH04292610A (en) * 1991-03-19 1992-10-16 Asahi Chem Ind Co Ltd Polystyrene resin particle for foaming
US5464915A (en) * 1991-06-25 1995-11-07 Plastpolymer Share Holding Company Method of preparing styrene polymers by suspension polymerization
JP4621449B2 (en) * 2004-07-29 2011-01-26 富士機工株式会社 Reclining device for automobile seat
WO2009096327A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP2011195627A (en) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd Foamable polystyrene resin particle, pre-foamed particle, foamed molded product, and method for producing foamable polystyrene resin particle
JP2014062191A (en) * 2012-09-21 2014-04-10 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product
JP2018104550A (en) * 2016-12-26 2018-07-05 積水化成品工業株式会社 Composite resin foamable particles, method for producing the same, composite resin foam particles, method for producing the same, composite resin foam molding, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334077B2 (en) 2019-06-28 2023-08-28 株式会社カネカ Expandable resin particles, expanded particles and expanded molded articles
WO2021187142A1 (en) * 2020-03-18 2021-09-23 株式会社カネカ Expandable resin particles, expanded particles, molded foam, and method for producing expandable resin particles

Also Published As

Publication number Publication date
JPWO2020184007A1 (en) 2020-09-17
CN113330061A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2020184007A1 (en) Foamable resin particles, pre-foamed particles, and shaped foam
HUE034904T2 (en) Foamed articles exhibiting improved thermal properties
JP6410642B2 (en) Expandable resin particles and method for producing the same
JP6249814B2 (en) Expandable resin particles, production method, pre-expanded particles, and expanded molded body
JP2013060500A (en) Polystyrenic resin particle, foamable resin particle, foamed particle, foam molding, and method for manufacturing these
JP5371036B2 (en) Expandable styrene resin particles and method for producing the same
JP7247200B2 (en) Expandable resin particles, method for producing the same, and expanded molded article
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP6082637B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP6453995B2 (en) Composite resin particles and their expandable particles, expanded particles and expanded molded articles
JP6944914B2 (en) Composite resin particles, foamable particles, foamed particles and foamed molded products
WO2021187142A1 (en) Expandable resin particles, expanded particles, molded foam, and method for producing expandable resin particles
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
KR20100110788A (en) Flame-retardant expandable styrene resin particle, and method for production thereof
JP5903395B2 (en) Styrene resin particles, expandable particles, expanded particles, and method for producing expanded molded body
JP6031378B2 (en) Expandable styrene resin particles, expanded particles and lightweight concrete
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP5860220B2 (en) RESIN PARTICLE, PROCESS FOR PRODUCING THE SAME, FOAMABLE RESIN PARTICLE, FOAMED PARTICLE, AND FOAM MOLDED BODY
JP5337442B2 (en) Foam molded body and method for producing the same
JP5403802B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP7334077B2 (en) Expandable resin particles, expanded particles and expanded molded articles
JP7121279B2 (en) Expandable styrene resin particles
JP2023061787A (en) Foamable resin particle, foamed particle and foamed molding
Rattanakawin Production of Highly-Ordered Nanocellular Foams by UV-Induced Chemical Foaming with Self-Assembled Block Copolymers
JP5403803B2 (en) Expandable styrenic resin particles and foamed moldings thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769106

Country of ref document: EP

Kind code of ref document: A1