WO2020183901A1 - Electrification control device - Google Patents

Electrification control device Download PDF

Info

Publication number
WO2020183901A1
WO2020183901A1 PCT/JP2020/001279 JP2020001279W WO2020183901A1 WO 2020183901 A1 WO2020183901 A1 WO 2020183901A1 JP 2020001279 W JP2020001279 W JP 2020001279W WO 2020183901 A1 WO2020183901 A1 WO 2020183901A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
voltage
semiconductor switch
control unit
unit
Prior art date
Application number
PCT/JP2020/001279
Other languages
French (fr)
Japanese (ja)
Inventor
竜乃介 力田
幸幹 松下
沼崎 浩二
祐介 増元
淳平 ▲高▼石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020183901A1 publication Critical patent/WO2020183901A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the disclosure in this specification relates to an energization control device.
  • Patent Document 1 discloses an energization control device.
  • the energization control device includes a switch provided in the energization path between the power supply and the load, and a drive control unit that controls the drive of the switch.
  • One object of the present disclosure is to provide an energization control device capable of supplying dark current to a load in standby mode.
  • Another object of the present disclosure is to suppress the current consumption of the energization control device while supplying a dark current to the load.
  • the energization control device includes a semiconductor switch provided in an energization path between a power source and a load, and a drive control unit for controlling the drive of the semiconductor switch.
  • the drive control unit controls the semiconductor switch to an on state in which a current flows in a state where the resistance value is lower than in the standby mode, and in the standby mode, the semiconductor switch is operated in a state where the resistance value is higher than that in the normal mode. Control to flow on state.
  • the drive control unit controls the on state of the semiconductor switch to be different between the normal mode and the standby mode.
  • the drive control unit controls the semiconductor switch so that the semiconductor switch is turned on with a higher resistance value than in the normal mode.
  • the semiconductor switch is turned on with a high resistance value, so that a dark current smaller than the current flowing in the normal mode can be supplied to the load. As described above, the dark current can be supplied to the load in the standby mode.
  • FIG. 1 is a diagram showing a schematic configuration of a power supply system including an energization control device according to the first embodiment.
  • FIG. 2 is a diagram showing an energization control device.
  • FIG. 3 is a flowchart showing a process executed by the control unit.
  • FIG. 4 is a flowchart showing the standby mode processing.
  • FIG. 5 is a timing chart showing various waveforms in the standby mode.
  • FIG. 6 is a diagram showing a modified example of the first embodiment.
  • FIG. 7 is a diagram showing another modification of the first embodiment.
  • FIG. 8 is a diagram showing another modification of the first embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a power supply system including an energization control device according to the first embodiment.
  • FIG. 2 is a diagram showing an energization control device.
  • FIG. 3 is a flowchart showing a process executed by the control unit.
  • FIG. 4 is a flowchart showing the stand
  • FIG. 9 is a diagram showing another modification of the first embodiment.
  • FIG. 10 is a diagram showing another modification of the first embodiment.
  • FIG. 11 is a diagram showing another modification of the first embodiment.
  • FIG. 12 is a diagram showing an energization control device according to the second embodiment.
  • FIG. 13 is a diagram showing a drive unit.
  • FIG. 14 is a diagram showing a modified example.
  • FIG. 15 is a diagram showing a modified example of the second embodiment.
  • FIG. 16 is a diagram showing another modification of the second embodiment.
  • FIG. 17 is a diagram showing a schematic configuration of a power supply system including an energization control device according to another embodiment.
  • FIG. 18 is a diagram showing a schematic configuration of a power supply system including an energization control device according to another embodiment.
  • the energization control device of this embodiment is applied to a power supply system.
  • a power supply system a redundant power supply system mounted on a vehicle will be shown.
  • the power supply system 10 includes a first power supply 11 and a second power supply 12, buses 13a and 13b, and an energization control device 20, which are vehicle-mounted power supplies.
  • the power supply system 10 is a redundant power supply system including two vehicle-mounted power supplies.
  • the first power supply 11 and the second power supply 12 are DC voltage sources.
  • the first power source 11 and the second power source 12 for example, a secondary battery or a capacitor can be adopted.
  • the battery capacity of the second power supply 12 is set to be equal to or less than the battery capacity of the first power supply 11.
  • the first power source 11 may be referred to as a main power source, and the second power source 12 may be referred to as a sub power source.
  • a lead storage battery is used as the first power source 11, and a lithium ion battery is used as the second power source 12.
  • the battery capacity of the second power source 12 is set smaller than the battery capacity of the first power source 11.
  • the rated voltage of the first power supply 11 and the second power supply 12 is, for example, 12V.
  • the first power supply 11 is connected to the energization control device 20 via the bus 13a.
  • the second power supply 12 is connected to the energization control device 20 via the bus 13b.
  • the bus 13a may be referred to as a first power system bus, and the bus 13b may be referred to as a second power system bus.
  • a relay 14 is provided between the second power supply 12 and the bus 13b.
  • the relay 14 is, for example, an electromagnetic relay having mechanical contacts.
  • the relay 14 can be turned on and off by a controller 25, which will be described later, or an Electronic Control Unit (ECU) (not shown), which is different from the energization control device 20.
  • ECU Electronic Control Unit
  • the relay 14 When the relay 14 is turned on, the second power supply 12 is connected to the bus 13b. When the relay 14 is turned off, the second power supply 12 is electrically disconnected from the bus 13b.
  • the relay 14 is an emergency relay, and is always on at normal times. For example, when a failure such as a ground fault occurs in the second power supply 12, the relay 14 is turned off when the second power supply 12 may be overcharged or overdischarged. In FIG. 1, the relay 14 is provided outside the second power supply 12, but the relay 14 may be provided inside the second power supply 12.
  • the energization control device 20 is provided between the buses 13a and 13b.
  • various loads are connected to the buses 13a and 13b.
  • Power for operation is supplied to the various loads from the first power supply 11 and the second power supply 12 via the buses 13a and 13b.
  • At least one load is connected to each of the buses 13a and 13b.
  • the bus 13a and the bus 13b are electrically connected. By turning on the semiconductor switch 24, electric power can be transferred between the buses 13a and 13b.
  • the semiconductor switch 24 is turned off, the bus 13a and the bus 13b are electrically cut off. For example, even if one of the first power supply 11 and the second power supply 12 fails or a ground fault occurs on one of the buses 13a and 13b, the semiconductor switch 24 is turned off to shut off the bus 13a and the bus 13b. Can be done. This makes it possible to prevent all of the loads from becoming inoperable.
  • the first load 15 is connected to the bus 13a, and the second load 16 is connected to the bus 13b.
  • the vehicle is equipped with an ignition switch (hereinafter referred to as an IG switch) (hereinafter referred to as an IG switch) (not shown).
  • the first load 15 is a load that operates by receiving power supply at least when the IG switch is turned on.
  • the second load 16 is a load that operates by receiving power supply not only when the IG switch is turned on but also when it is turned off.
  • the second load 16 is a load that operates by a dark current described later when the IG switch is turned off.
  • the battery capacity of the second power supply 12 is set smaller than the battery capacity of the first power supply 11.
  • the relay 14 is turned off in response to the turning off of the IG switch. As a result, over-discharging of the second power supply 12 is suppressed when the IG switch is turned off.
  • the IG switch is off, power is supplied from the first power supply 11 to the second load 16 via the semiconductor switch 24, and the second load 16 operates. With the relay 14 turned off, power is supplied to the second load 16 from the first power source 11. Therefore, the first power supply 11 corresponds to the power supply.
  • the second load 16 corresponds to a load to which power is supplied from the power source via the semiconductor switch.
  • the first power supply 11 and the second power supply 12 are secondary batteries that can be charged and discharged.
  • the first power source 11 and the second power source 12 can be charged by the generator.
  • the generator is connected to, for example, the bus 13a
  • the first power source 11 can be charged by the generator.
  • the second power source 12 can be charged by at least one of the first power source 11 and the generator. It is also possible to supply the electric power generated by the generator to the load via the buses 13a and 13b.
  • the voltage of the high-voltage power source may be stepped down by a DCDC converter to charge the first power source 11 and the like.
  • the energization control device 20 will be described with reference to FIGS. 1 and 2.
  • the energization control device 20 includes terminals 21 and 22 for external connection, a semiconductor switch 24, and a controller 25.
  • the terminal 21 is connected to the bus 13a on the first power supply 11 side.
  • the terminal 22 is connected to the bus 13b on the second power supply 12 side.
  • An energization path 23 connecting the buses 13a and 13b is provided between the terminals 21 and 22.
  • the energization path 23 is sometimes referred to as wiring.
  • the semiconductor switch 24 is provided in the energization path 23.
  • the semiconductor switch 24 switches the energization path 23 into a conduction state or a cutoff state.
  • the semiconductor switch 24 switches the buses 13a and 13b into a conductive state or a cutoff state.
  • the semiconductor switch 24 is configured to include a switching element.
  • MOSFET n-channel MOSFET
  • MOSFETs are normally-off type switching elements. Structurally, this MOSFET has a parasitic diode (body diode) between the drain and the source. Since current flows through the parasitic diode even when the MOSFET is turned off, it is not possible to cut off the bidirectional current with only one MOSFET.
  • the semiconductor switch 24 is composed of a pair of MOSFETs Q1 and Q2 in which the directions of the parasitic diodes are opposite to each other.
  • the MOSFETs Q1 and Q2 have diodes D1 and D2.
  • the diodes D1 and D2 are parasitic diodes. Even if a power failure occurs, by turning off both MOSFETs Q1 and Q2, the current can be completely cut off regardless of the direction in which the current flows.
  • MOSFET Q1 is arranged on the first power source 11 (bus 13a) side, and the MOSFET Q2 is arranged on the second power source 12 (bus 13b) side.
  • the anodes of the diodes D1 and D2 are connected to each other.
  • MOSFETs Q1 and Q2 have a source common type connection structure in which sources are connected to each other.
  • the drain of the MOSFET Q1 is electrically connected to the terminal 21, and the drain of the MOSFET Q2 is electrically connected to the terminal 22.
  • the configuration of the semiconductor switch 24 is not limited to the above example.
  • a drain common connection structure in which drains are connected to each other can be adopted.
  • the parasitic diodes are opposite to each other.
  • the cathodes of the parasitic diode are connected to each other.
  • a semiconductor element having a parasitic diode instead of the semiconductor element having a parasitic diode, a semiconductor element having no parasitic diode, for example, an IGBT or a normalion type element may be adopted.
  • the semiconductor switch 24 can be configured by one semiconductor element.
  • the MOSFETs Q1 and Q2 include capacitors C1 and C2.
  • the capacitor C1 is formed between the gate and the source of the MOSFET Q1.
  • the capacitor C2 is formed between the gate and the source of the MOSFET Q2.
  • Capacitors C1 and C2 are charged when an on-drive signal, that is, a Hi level signal is input to the gates of MOSFETs Q1 and Q2.
  • the capacitors C1 and C2 of this embodiment are parasitic capacitors. Capacitors C1 and C2 correspond to gate capacitors.
  • the controller 25 controls the drive of the semiconductor switch 24.
  • the controller 25 controls the drive of each of the MOSFETs Q1 and Q2.
  • the controller 25 is sometimes referred to as an electronic control unit.
  • the controller 25 operates by being supplied with electric power from, for example, the first power supply 11.
  • the energization control device 20 may include a power supply terminal separately from the terminal 21. The electric power may be supplied through the terminal 21.
  • the controller 25 corresponds to the drive control unit.
  • the controller 25 is provided by a control system that includes at least one computer.
  • the control system includes at least one processor (hardware processor) which is hardware.
  • the hardware processor can be provided by the following (i), (ii), or (iii).
  • the hardware processor may be a hardware logic circuit.
  • the computer is provided by a digital circuit that includes a large number of programmed logic units (gate circuits).
  • Digital circuits may include memory for storing programs and / or data.
  • Computers may be provided by analog circuits.
  • Computers may be provided by a combination of digital and analog circuits.
  • the hardware processor may be at least one processor core that executes a program stored in at least one memory.
  • the computer is provided by at least one memory and at least one processor core.
  • the processor core is referred to as, for example, a CPU.
  • the memory is also referred to as a storage medium. Memory is a non-transitional and substantive storage medium that non-temporarily stores "programs and / or data" that can be read by a processor.
  • the hardware processor may be a combination of the above (i) and the above (ii). (I) and (ii) are arranged on different chips or on a common chip.
  • the means and / or functions provided by the controller 25 can be provided by hardware only, software only, or a combination thereof. In this embodiment, it is realized by using an Application Special Integrated Circuit (ASIC).
  • ASIC Application Special Integrated Circuit
  • the controller 25 and the ECU (not shown) described above can communicate with each other via the bus of the in-vehicle network.
  • the controller 25 determines the control state of the semiconductor switch 24 based on the command value from the ECU which is the upper control device, the storage state of the first power supply 11 and the second power supply 12, and generates a drive signal of the semiconductor switch 24. To do. Then, the generated drive signal is output to the gates (control terminals) of MOSFETs Q1 and Q2.
  • the buses 13a and 13b are provided with voltage sensors for detecting the battery voltages of the first power supply 11 and the second power supply 12, respectively.
  • the controller 25 calculates, for example, the SOC of the second power supply 12, and controls the charge amount and the discharge amount of the second power supply 12 so that the SOC is kept within a predetermined use range.
  • the controller 25 switches the relay 14 on and off so as to prevent overcharging and overdischarging.
  • the controller 25 includes a drive unit 30, a detection unit 31, a determination unit 32, and a control unit 33.
  • the control unit 33 corresponds to an intermittent control unit.
  • the drive unit 30 is a circuit that outputs a drive signal to the gates of MOSFETs Q1 and Q2 in accordance with an instruction signal from the control unit 33.
  • the drive unit 30 outputs an on drive signal as a drive signal in order to turn on the MOSFETs Q1 and Q2.
  • the drive unit 30 outputs a Hi level signal as an on drive signal.
  • the drive unit 30 outputs an off drive signal as a drive signal in order to turn off the MOSFETs Q1 and Q2.
  • the drive unit 30 outputs a Lo level signal as an off drive signal.
  • the drive unit 30 has a drive unit 30a corresponding to the MOSFET Q1 and a drive unit 30b corresponding to the MOSFET Q2.
  • the drive units 30a and 30b each include a booster circuit 300 and a driver 301.
  • the booster circuit 300 is, for example, a circuit that boosts the voltage supplied from the first power supply 11, and is configured to include a capacitor (not shown) or the like.
  • a charge pump circuit can be adopted.
  • the driver 301 is a drive circuit that generates a drive signal and outputs the drive signal to the gate.
  • the driver 301 outputs an on drive signal corresponding to the boosted voltage by the booster circuit 300.
  • the detection unit 31 is a circuit that detects the gate voltage with reference to the source.
  • the detection unit 31 has a differential amplifier 31a.
  • the detection unit 31 outputs a voltage signal VGS according to the difference between the voltage VG of the gate of the MOSFET Q1 arranged on the side of the first power supply 11 and the voltage VS of the source.
  • a reference voltage Vref-a is input to the non-inverting input terminal of the differential amplifier 31a.
  • the differential amplifier 31a When the voltage VG is higher than the voltage VS, the differential amplifier 31a outputs a voltage signal VGS higher than the reference voltage Vref-a by the amount corresponding to the difference.
  • the voltage signal VGS may be referred to as a gate voltage VGS.
  • the determination unit 32 is a circuit that determines the voltage level of the voltage signal VGS.
  • the determination unit 32 has two comparators 32a and 32b.
  • the comparator 32a compares the voltage signal VGS with the threshold voltage Vth1.
  • the comparator 32b compares the voltage signal VGS with the threshold voltage Vth2.
  • the threshold voltage Vth1 is a voltage higher than the threshold voltage Vth2.
  • a limit value at which current does not flow a so-called threshold voltage (Vt) may be set, or a value higher than the threshold voltage may be set by adding a margin.
  • the threshold voltage Vth2 is set to a limit value at which current does not flow. Further, when the gate voltage exceeds the threshold voltage Vth1, the MOSFET is held in the full-on state. That is, the MOSFET is held in the half-on state within the range where the gate voltage is the threshold voltage Vth2 or more and the threshold voltage Vth1 or less. Half-on is a state in which the on-resistance is larger than that of full-on, although it is substantially on and current flows.
  • the comparator 32a When the voltage signal VGS becomes larger than the threshold voltage Vth1, the comparator 32a outputs a Hi level signal indicating that the voltage signal VGS is large to the control unit 33. When the voltage signal VGS becomes smaller than the threshold voltage Vth2, the comparator 32b outputs a Lo level signal indicating that the voltage signal VGS is small to the control unit 33.
  • the control unit 33 outputs an instruction signal to the drive unit 30.
  • a signal (hereinafter referred to as an IG signal) that correlates on and off of the IG switch is input to the control unit 33 from, for example, an ECU that is a higher-level control device. As described above, the determination result by the determination unit 32 is input to the control unit 33.
  • the controller 25 has an overcurrent detection unit (not shown). Overcurrent flows when an abnormality such as a vehicle power failure, a bus ground fault, or a load ground fault occurs.
  • the overcurrent detection unit determines whether or not an overcurrent is flowing based on the current and / or voltage of the buses 13a and 13b and the energization path 23.
  • the overcurrent detection result is also input to the control unit 33.
  • the control unit 33 is configured to be able to switch the control mode according to the IG signal, the determination result by the determination unit 32, the overcurrent detection result, and the like.
  • the control unit 33 outputs an instruction signal corresponding to the control mode to the drive unit 30.
  • the control unit 33 is configured so that a plurality of control modes can be set.
  • a plurality of control modes there are a conduction mode in which the buses 13a and 13b are in a conductive state and a cutoff mode in which the buses 13a and 13b are in a cutoff state.
  • the conduction mode there are a normal mode and a standby mode.
  • FIG. 3 shows a process executed by the control unit 33.
  • the control unit 33 is supplied with electric power for operation, for example, from the first power supply 11 not only during the period when the IG switch is turned on but also during the period when the IG switch is turned off. While the power is turned on, the control unit 33 repeatedly executes the following processes at a predetermined cycle.
  • control unit 33 first determines whether or not the semiconductor switch 24 needs to shut off (S10).
  • the control unit 33 determines whether or not to shut off is necessary based on the output of the overcurrent detection unit.
  • the control unit 33 When it is determined in S10 that shutoff is necessary, the control unit 33 then sets the shutoff mode (S11). When the cutoff mode is set, the control unit 33 outputs an off instruction signal to the drive units 30a and 30b, and ends a series of processing. Due to the off instruction signal, the booster circuit 300 does not boost the drive units 30a and 30b, and the booster voltage is not supplied to the driver 301. An off drive signal is output from the driver 301. As a result, both MOSFETs Q1 and Q2 are turned off, and the buses 13a and 13b are cut off.
  • the control unit 33 determines whether or not the IG switch is turned on based on the IG signal (S12). When the IG switch is turned on, the control unit 33 sets the normal mode as the conduction mode (S13).
  • the control unit 33 When the normal mode is set, the control unit 33 outputs an ON instruction signal to the drive units 30a and 30b regardless of the determination result of the determination unit 32. Then, a series of processes is completed.
  • the booster circuit 300 is boosted in the drive units 30a and 30b by the ON instruction signal.
  • the driver 301 operates in response to the on instruction signal and outputs an on drive signal in response to the boosted voltage. As a result, the MOSFETs Q1 and Q2 are both turned on, and the buses 13a and 13b are brought into a conductive state.
  • the drive units 30a and 30b continuously output the on drive signal.
  • the voltage signals VGS of MOSFETs Q1 and Q2 are all held at a value higher than the threshold voltage Vth1.
  • the MOSFETs Q1 and Q2 are driven in a fully on state with a small resistance value (on resistance).
  • the control unit 33 sets the standby mode as the conduction mode (S14).
  • the control unit 33 outputs an instruction signal corresponding to the determination result of the determination unit 32 to the drive unit 30, and ends a series of processing.
  • the process executed by the control unit 33 is not limited to the above example.
  • FIG. 4 shows the standby mode processing executed by the control unit 33.
  • the control unit 33 outputs an off instruction signal to the drive unit 30b of the MOSFET Q2 (S20). Due to the off instruction signal, the drive unit 30b does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal (Lo level signal). As a result, the MOSFET Q2 is turned off. A current flows from the bus 13a to the bus 13b through the diode D2.
  • the control unit 33 determines whether or not the mode is switched from the normal mode (S21). In the case of the timing immediately after switching from the normal mode, the control unit 33 switches the instruction signal for the drive unit 30a of the MOSFET Q1 to the off instruction signal (S22), and shifts to S23. Due to the off instruction signal, the booster circuit 300 does not execute the booster operation in the drive unit 30a, and the driver 301 outputs an off drive signal to the MOSFET Q1. If it is not immediately after the switch, the process proceeds to S23 without going through the process of S22.
  • control unit 33 determines whether or not the voltage signal VGS of the MOSFET Q1 is smaller than the threshold voltage Vth2 (S23). The control unit 33 determines whether or not the voltage signal VGS is smaller than the threshold voltage Vth2 based on the output of the comparator 32b.
  • the control unit 33 switches the instruction signal output to the drive unit 30a to the on instruction signal (S24).
  • the booster circuit 300 executes a boost operation in the drive unit 30a, and the driver 301 outputs an ON drive signal (Hi level signal) to the MOSFET Q1.
  • the control unit 33 determines whether or not the voltage signal VGS is larger than the threshold voltage Vth1 based on the output of the comparator 32a. When the voltage signal VGS is larger than the threshold voltage Vth1, the control unit 33 switches the instruction signal output to the drive unit 30a to the off instruction signal (S26). Due to the off instruction signal, the drive unit 30a does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal.
  • FIG. 5 shows various waveforms in the standby mode.
  • the instruction signal shown in FIG. 5 is a signal output from the control unit 33 to the drive unit 30a on the MOSFET Q1 side.
  • the voltage signal VGS on the MOSFET Q1 side is shown as VGS (Q1)
  • the voltage signal VGS on the MOSFET Q2 side is shown as VGS (Q2).
  • FIG. 5 shows a state in which a predetermined time has elapsed, not immediately after switching to the standby mode.
  • the MOSFET Q1 includes the capacitor C1.
  • the control unit 33 outputs an ON instruction signal to the drive unit 30a.
  • the drive unit 30a outputs an on drive signal to the gate of the MOSFET Q1.
  • the on drive signal charges the capacitor C1 and raises the voltage signal VGS (Q1).
  • the control unit 33 When the voltage signal VGS (Q1) rises and exceeds the threshold voltage Vth1 at time t2, the control unit 33 outputs an off instruction signal to the drive unit 30a. As a result, the drive unit 30a stops the boosting operation and outputs an off drive signal to the gate of the MOSFET Q1. The voltage signal VGS (Q1) gradually drops due to the charge accumulated in the capacitor C1. When the voltage signal VGS (Q1) falls below the threshold voltage Vth2 at time t3, the control unit 33 outputs an ON instruction signal to the drive unit 30a again.
  • control unit 33 alternately executes the output of the on instruction signal and the output of the off instruction signal in the standby mode.
  • the control unit 33 causes the drive unit 30a to intermittently execute the output operation of the on drive signal.
  • the drive unit 30a outputs an on drive signal between times t1 and t2, and outputs an off drive signal between times t2 and t3. Due to the effect of the capacitor C1, the period for outputting the off drive signal is longer than the period for outputting the on drive signal in one cycle of operation.
  • the control unit 33 When the voltage signal VGS (Q1) falls below the threshold voltage Vth2, the control unit 33 immediately switches to the on instruction signal. When the voltage signal VGS (Q1) exceeds the threshold voltage Vth1, the control unit 33 immediately switches to the off instruction signal.
  • the control unit 33 controls so that the voltage signal VGS (Q1) is within the range of the threshold voltage Vth2 or more and the threshold voltage Vth1 or less. Therefore, during almost the entire period of the standby mode, the MOSFET Q1 is held in an on state in which a current flows in a state where the resistance value is higher than that in the normal mode. In the standby mode, the MOSFET Q1 is held in the half-on state. In the present embodiment, the voltage signal VGS (Q1) is lowered as compared with the full-on by the above-mentioned intermittent operation, so that the half-on state is set.
  • the control unit 33 outputs an off instruction signal to the drive unit 30b during the standby mode. Therefore, as shown in FIG. 5, the voltage signal VGS (Q2) is set to a predetermined voltage at which the MOSFET Q2 does not turn on, for example, 0V. The MOSFET Q2 is turned off. In the standby mode, a current flows through the MOSFET Q1 and the diode D2.
  • the control unit 33 controls the on state of the semiconductor switch 24 to different states in the normal mode in which the IG switch is turned on and the standby mode in which the IG switch is turned off.
  • the control unit 33 controls the MOSFET Q1 constituting the semiconductor switch 24 so as to be turned on (fully on) in a state where the resistance value is low in the normal mode.
  • the control unit 33 controls the MOSFET Q1 so as to be turned on (half-on) in a state where the resistance value is higher than that in the normal mode in the standby mode.
  • the semiconductor switch 24 In the standby mode, since the semiconductor switch 24 is turned on with a high resistance value, a current (dark current) smaller than the current (normal current) flowing in the normal mode is supplied to the second load 16 via the semiconductor switch 24. Can be done. As described above, the dark current can be supplied to the load in the standby mode.
  • the standby mode is sometimes referred to as a dark current supply mode.
  • the resistance value of the semiconductor switch 24 is increased by lowering the voltage (gate voltage) of the on drive signal as compared with the normal mode.
  • the voltage of the on drive signal is lowered by stopping the operation of the booster circuit 300 as described above. Therefore, the current consumption of the energization control device 20 can be reduced.
  • the control unit 33 in the standby mode, temporarily outputs an ON instruction signal.
  • the control unit 33 alternately outputs an on instruction signal and an off instruction signal.
  • the drive unit 30a operates intermittently and temporarily outputs an on drive signal.
  • the capacitor C1 of the MOSFET Q1 is charged by the output of the on drive signal. Even if the signal is switched to the off drive signal, the MOSFET Q1 is held in the half-on state due to the electric charge accumulated in the capacitor C1.
  • the semiconductor switch 24 is configured to include two MOSFETs Q1 and Q2. Sources of MOSFETs Q1 and Q2 are connected to each other. The anodes of the diodes D1 and D2 are connected to each other. Then, the control unit 33 intermittently operates the drive unit 30a and continuously outputs an off instruction signal to the drive unit 30b. Therefore, a dark current flows through the MOSFET Q1 and the diode D2 in the half-on state. Since the MOSFET Q2 is turned off, the current consumption of the energization control device 20 can be further reduced.
  • the source-referenced gate voltage VGS is detected, and the drive unit 30a is intermittently operated according to the level of the gate voltage VGS. Since the gate voltage VGS is monitored, it is easy to switch the operating state of the MOSFET Q1.
  • the configurations of the power supply system 10 and the energization control device 20 are not limited to the above examples.
  • the power supply system 10 includes only one power supply 11A.
  • the energization control device 20 is arranged between the power supply 11A and the load 16A.
  • the semiconductor switch 24 constituting the energization control device 20 has only one MOSFET Q1. In such a configuration, the above control is applied.
  • the control unit 33 (not shown) of the controller 25 controls the semiconductor switch 24 so that the ON state is different between the normal mode and the standby mode.
  • the ON state of the MOSFET Q1 is controlled so as to be turned on (full on) with a low resistance value in the normal mode and turned on (half on) with a high resistance value in the standby mode.
  • the MOSFET Q1 can be held in the half-on state by intermittently operating the drive unit 30a (not shown).
  • the drive unit 30a of the MOSFET Q1 on the first power supply 11 side is intermittently operated to turn off the MOSFET Q2 on the second load 16 side, but the present invention is not limited to this.
  • the MOSFET Q2 may be controlled to a state similar to that of the MOSFET Q1, that is, a half-on state.
  • the drive unit 30 can be shared by the MOSFETs Q1 and Q2.
  • a dark current can be supplied from the first power supply 11 to the second load 16 through the MOSFETs Q1 and Q2 in the half-on state.
  • the intermittent operation of the drive unit 30 can reduce the current consumption of the energization control device 20. As described above, when the MOSFET Q2 is turned off, the current consumption can be further reduced.
  • the control unit 33 has shown an example of switching the instruction signal based on the gate voltage VGS, but the present invention is not limited to this. Instead of the gate voltage VGS, the voltage across the semiconductor switch 24 may be detected as in the modified example shown in FIG. That is, the state of the current flowing through the semiconductor switch 24 may be detected based on the voltage across the semiconductor.
  • the differential amplifier 31a of the detection unit 31 outputs a voltage signal V12 according to the difference between the voltage V1 on one end side and the voltage V2 on the other end side of the semiconductor switch 24.
  • the voltage signal V12 may be referred to as a voltage across V12.
  • the differential amplifier 31a outputs a voltage signal V12 higher than the reference voltage Vref-b by the amount corresponding to the difference.
  • the determination unit 32 has two comparators 32a and 32b as described above.
  • the comparator 32a compares the voltage signal V12 with the threshold voltage Vth3.
  • the comparator 32b compares the voltage signal V12 with the threshold voltage Vth4.
  • the threshold voltage Vth3 is a voltage higher than the threshold voltage Vth4.
  • the threshold voltage Vth3 is the upper limit threshold value
  • the threshold voltage Vth4 is the lower limit threshold value.
  • the control unit 33 switches the instruction signal output to the drive unit 30a to the on instruction signal when the Hi signal is output from the comparator 32a.
  • the Lo signal is output from the comparator 32b, the signal is switched to the off instruction signal output to the drive unit 30a.
  • FIG. 7 shows an example of the voltage across the semiconductor switch 24 as the voltage across V12, but the voltage is not limited to this.
  • a shunt resistor 26 for current detection may be provided, and the voltage across the shunt resistor 26 may be a voltage V12 across the shunt resistor 26.
  • a shunt resistor 26 is provided between MOSFETs Q1 and Q2 in the energization path 23. Instead of this, it may be provided between the terminal 21 and the MOSFET Q1 and between the terminal 22 and the MOSFET Q2.
  • FIGS. 7 and 8 can be applied to both a configuration in which only the drive unit 30a is intermittently operated and a configuration in which the drive units 30a and 30b are intermittently operated.
  • the voltage across the diode D2 may be the voltage across V12. It can be applied to a configuration in which the drive unit 30a is operated intermittently to turn off the MOSFET Q2. In the standby mode, the MOSFET Q2 on the second load 16 side is turned off, and a dark current flows through the diode D2. Therefore, the instruction signal of the control unit 33 can be switched based on the voltage across the diode D2.
  • the present invention is not limited to this.
  • the dark current may be supplied intermittently.
  • the MOSFET Q1 is controlled to be in the half-on state for almost the entire period of the standby mode, but it may be controlled so that the half-on state and the off state are alternately repeated.
  • the control state may include at least a half-on state.
  • the controller 25 may be configured to include the timer unit 34.
  • the timer unit 34 is a circuit including a timer counter and the like.
  • the timer unit 34 generates a signal that repeats on and off at a predetermined cycle, and outputs the signal to the control unit 33.
  • the timer unit 34 generates a timing signal for the control unit 33 to switch the instruction signal in the standby mode. In the standby mode, the control unit 33 outputs an on instruction signal during the time T1 and then outputs an off instruction signal during the time T2.
  • the time T2 is longer than the time T1, the current consumption can be further reduced.
  • the timer unit 34 may be operated intermittently.
  • the intermittent operation can reduce the current consumption of the energization control device 20.
  • the detection unit 31 and the determination unit 32 may be operated intermittently. As a result, the current consumption of the energization control device 20 can be reduced.
  • the intermittent operation enables intermittent supply of dark current.
  • capacitors C1 and C2 examples of the parasitic capacitors of MOSFETs Q1 and Q2 are shown as the capacitors C1 and C2, but the present invention is not limited to this.
  • an external capacitor can be adopted as in the modified example shown in FIG.
  • Capacitors C1 and C2 shown in FIG. 10 are set to have a larger capacitance than the gate-source parasitic capacitors included in MOSFETs Q1 and Q2 in order to hold the gate voltage VGS.
  • Capacitor C1 is connected in series with switch SW1 between the gate and source of MOSFET Q1.
  • the capacitor C2 is connected in series with the switch SW2 between the gate and the source of the MOSFET Q2.
  • the switches SW1 and SW2 are turned off in the normal mode and turned on in the standby mode by, for example, the control unit 33. Since the capacitances of the capacitors C1 and C2 are larger than those of the parasitic capacitors, the gate voltage VGS can be held at the threshold voltage Vth2 or higher for a longer time after switching to the off instruction signal.
  • the semiconductor switch 24 and the controller 25 constituting the energization control device 20 may be separated.
  • the semiconductor switch 24 may be a switch module together with the terminals 21 and 22 and the energization path 23, and the controller 25 may be an electronic control unit separate from the switch module.
  • the load connected to the buses 13a and 13b is not limited to the above example. Other loads may be connected to the bus 13a together with the first load 15. Other loads may be connected to the bus 13b together with the second load 16.
  • energization control device 20 is arranged between the buses 13a and 13b, but the present invention is not limited to this.
  • a plurality of energization control devices 20 may be connected in parallel between the buses 13a and 13b.
  • the power supply system 10 was a system in which the second power system was simply added to the first power system via the energization control device 20.
  • the application of the energization control device 20 is not limited to such an add-on type power supply system 10.
  • it can be applied to a backbone type system in which three or more power systems are connected in series via an energization control device 20.
  • the modified example shown in FIG. 11 is a backbone type power supply system 10 provided with two energization control devices 20A and 20B as the energization control device 20.
  • the energization control device 20A is arranged between the buses 13a and 13c
  • the energization control device 20B is arranged between the buses 13b and 13c.
  • the first power supply 11 is connected to the bus 13a
  • the second power supply 12 is connected to the bus 13b.
  • a load 16B is connected to the bus 13c.
  • the IG switch is turned off, a dark current is supplied to the load 16B from, for example, the first power supply 11 via the semiconductor switch 24 of the energization control device 20.
  • the energization control device 20B also functions as the relay 14 described above.
  • the energization control device 20 can also be applied to the ring-type power supply system 10.
  • the ring-type power supply system 10 has a structure in which backbone structures as shown in FIG. 11 are connected in an annular shape.
  • the present invention is not limited to this.
  • the first power supply 11 may be cut off from the bus 13a, and a dark current may be supplied from the second power supply 12 to the first load 15 via the semiconductor switch 24.
  • This embodiment is a modification based on the preceding embodiment.
  • the description of the prior embodiment can be incorporated.
  • the semiconductor switch 24 (MOSFET Q1) is turned on by the intermittent operation of the drive unit 30 so that the current flows in a state where the on resistance is higher than that in the normal mode.
  • the semiconductor switch 24 may be put into an on state in which a current flows in a state where the on resistance is higher than that in the normal mode.
  • the configuration of the power supply system 10 is the same as that of the preceding embodiment (see FIG. 1).
  • the energization control device 20 of this embodiment also includes terminals 21 and 22 for external connection, a semiconductor switch 24, and a controller 25.
  • the configuration of the semiconductor switch 24 is also the same as that of the prior embodiment (see FIG. 1).
  • the controller 25 includes a drive unit 30 and a control unit 33.
  • the control unit 33 outputs an instruction signal to the drive unit 30.
  • An IG signal and an overcurrent detection result are input to the control unit 33.
  • the control unit 33 is configured to be able to switch the control mode according to the IG signal, the overcurrent detection result, and the like.
  • the control unit 33 outputs an instruction signal corresponding to the control mode to the drive unit 30.
  • the drive unit 30 outputs a drive signal to the gates of MOSFETs Q1 and Q2 in accordance with the instruction signal from the control unit 33.
  • the drive unit 30 outputs an on drive signal as a drive signal in order to turn on the MOSFETs Q1 and Q2.
  • the drive unit 30 outputs an off drive signal as a drive signal in order to turn off the MOSFETs Q1 and Q2.
  • FIG. 13 shows the drive unit 30 of the controller 25.
  • the drive unit 30 includes a drive unit 30c having a booster circuit 300 and drive units 30d and 30e not having a booster circuit 300.
  • the drive unit 30c has a booster circuit 300 and a driver 301, as in the drive units 30a and 30b shown in the preceding embodiment.
  • the booster circuit 300 executes a booster operation.
  • the driver 301 operates in response to the on-instruction signal, and outputs an on-drive signal in response to the boost voltage by the booster circuit 300.
  • the drive unit 30c is common to the MOSFETs Q1 and Q2. Both MOSFETs Q1 and Q2 are turned on by the on drive signal output from the drive unit 30c.
  • the drive unit 30d has a low voltage circuit 302 and a driver 301.
  • the low voltage circuit 302 outputs a voltage lower than the boost voltage of the booster circuit 300 to the driver 301.
  • the driver 301 operates in response to the on instruction signal, and outputs an on drive signal in response to the low voltage of the low voltage circuit 302.
  • the drive unit 30d outputs an on drive signal to the gate of the MOSFET Q1.
  • the low voltage circuit 302 has a differential amplifier 302a.
  • the low-voltage circuit 302 outputs a voltage signal Vout1 corresponding to the difference between the voltage V21 on the terminal 21 side and the voltage V22 on the terminal 22 side in the energization path 23.
  • the voltage V22 is also input to the non-inverting input terminal of the differential amplifier 302a.
  • the differential amplifier 302a When the voltage V21 is higher than the voltage V22, the differential amplifier 302a outputs a voltage signal Vout1 higher than the voltage V22 by the amount corresponding to the difference.
  • the driver 301 outputs an on-drive signal corresponding to the voltage signal Vout1 to the gate of the MOSFET Q1 with reference to the source voltage VS.
  • the drive unit 30e has a low voltage circuit 303 and a driver 301.
  • the low voltage circuit 303 also outputs a voltage lower than the boost voltage of the booster circuit 300 to the driver 301.
  • the driver 301 operates in response to the on instruction signal, and outputs an on drive signal in response to the low voltage of the low voltage circuit 303.
  • the drive unit 30e outputs an on drive signal to the gate of the MOSFET Q2.
  • the low voltage circuit 303 has a differential amplifier 303a.
  • the low voltage circuit 303 outputs a voltage signal Vout2 corresponding to the difference between the voltage V22 and the voltage V21.
  • the voltage signal Vout2 is represented by the following equation. (Equation 2)
  • Vout2 (V22-V21) ⁇ (R5 / R6) + V21
  • the voltage V21 is also input to the non-inverting input terminal of the differential amplifier 303a.
  • the differential amplifier 303a When the voltage V22 is higher than the voltage V21, the differential amplifier 303a outputs a voltage signal Vout2 higher than the voltage V21 by the amount corresponding to the difference.
  • the driver 301 outputs an on-drive signal corresponding to the voltage signal Vout2 to the gate of the MOSFET Q2 with reference to the source voltage VS.
  • R1, R2, R3, R4, R5, R6, R7, and R8 indicate the resistance value of each resistor.
  • VS indicates the voltage of the source of MOSFETs Q1 and Q2.
  • the voltage signals Vout1 and Vout2 are lower than the boosted voltage. Therefore, the on-drive signal output from the drive units 30d and 30e has a lower voltage than the on-drive signal output from the drive unit 30c.
  • control unit 33 executes the same processing as in the preceding embodiment (see FIG. 3).
  • the control unit 33 outputs an off instruction signal to the drive unit 30c and ends a series of processing. Due to the off instruction signal, the drive unit 30c does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal. As a result, both MOSFETs Q1 and Q2 are turned off, and the buses 13a and 13b are cut off.
  • the control unit 33 When the normal mode is set, the control unit 33 outputs an on instruction signal to the drive unit 30c and ends a series of processing.
  • the booster circuit 300 is boosted by the ON instruction signal in the drive unit 30c.
  • the driver 301 operates in response to the on instruction signal and outputs an on drive signal in response to the boosted voltage.
  • the MOSFETs Q1 and Q2 are both turned on, and the buses 13a and 13b are brought into a conductive state.
  • a signal corresponding to the boosted voltage is input to the gates of MOSFETs Q1 and Q2 as an on-drive signal.
  • This on-drive signal is sufficiently higher than the threshold voltage (Vt) of MOSFETs Q1 and Q2. Therefore, the MOSFETs Q1 and Q2 are driven in a fully on state where the resistance value (on resistance) is small.
  • the control unit 33 When the standby mode is set, the control unit 33 outputs an on instruction signal to the drive units 30d and 30e.
  • the control unit 33 switches the output destination of the ON instruction signal from the drive unit 30c to the drive units 30d and 30e as the mode is switched from the normal mode to the standby mode.
  • signals corresponding to the corresponding voltage signals Vout1 and Vout2 are input to the gates of MOSFETs Q1 and Q2 as on-drive signals.
  • the on-drive signal corresponding to the voltage signal Vout1 is higher than the threshold voltage (Vt), but lower than the on-drive signal according to the boosted voltage. Therefore, the MOSFET Q1 is driven in a half-on state in which the resistance value (on resistance) is larger than in the normal mode. As a result, in the standby mode, a dark current smaller than the current flowing in the normal mode flows.
  • an off drive signal is output from the driver 301 of the drive unit 30e. Therefore, the MOSFET Q2 is turned off. A dark current flows from the first power supply 11 to the second load 16 through the MOSFET Q1 and the diode D2.
  • the on-drive signal corresponding to the voltage signal Vout2 is higher than the threshold voltage (Vt), but lower than the on-drive signal according to the boosted voltage. Therefore, the MOSFET Q2 is driven in a half-on state in which the resistance value (on resistance) is larger than in the normal mode. As a result, in the standby mode, a dark current smaller than the current flowing in the normal mode flows.
  • the off drive signal is output from the driver 301 of the drive unit 30d. Therefore, the MOSFET Q1 is turned off. A dark current flows from the second power source 12 to the first load 15 through the MOSFET Q2 and the diode D1.
  • the drive unit 30c corresponds to the first drive unit.
  • the on-drive signal output by the drive unit 30c corresponds to the first on-drive signal.
  • the drive units 30d and 30e correspond to the second drive unit.
  • the on-drive signals output by the drive units 30d and 30e correspond to the second on-drive signals.
  • the control unit 33 corresponds to the switching unit.
  • the control unit 33 controls the on state of the semiconductor switch 24 to different states in the normal mode in which the IG switch is turned on and the standby mode in which the IG switch is turned off.
  • the control unit 33 controls the MOSFETs Q1 and Q2 constituting the semiconductor switch 24 so as to be turned on (fully on) in a state where the resistance value is low in the normal mode.
  • the control unit 33 controls the MOSFET Q1 so as to be turned on (half-on) in a state where the resistance value is higher than that in the normal mode in the standby mode. Therefore, a current (dark current) smaller than the current (normal current) flowing in the normal mode can be supplied to the second load 16 via the semiconductor switch 24. As described above, the dark current can be supplied to the load in the standby mode.
  • the resistance value of the semiconductor switch 24 is increased by lowering the voltage of the on drive signal as compared with the normal mode. In standby mode, no boost is required to generate the on-drive signal. Therefore, the current consumption of the energization control device 20 can be reduced.
  • the control unit 33 drives the drive unit 30c provided with the booster circuit 300.
  • the control unit 33 drives, for example, the drive unit 30d not provided with the booster circuit 300.
  • the standby mode an on drive signal having a lower voltage than in the normal mode is output, and the MOSFET Q1 is held in the half-on state. Therefore, it is possible to reduce the current consumption of the energization control device 20 while supplying the dark current in the standby mode.
  • the semiconductor switch 24 is configured to include two MOSFETs Q1 and Q2. Sources of MOSFETs Q1 and Q2 are connected to each other. The anodes of the diodes D1 and D2 are connected to each other.
  • the control unit 33 outputs an ON instruction signal to the drive units 30d and 30e.
  • One of the drive units 30d and 30e outputs an on drive signal, and the other outputs an off drive signal. Therefore, the current consumption of the energization control device 20 can be further reduced as compared with the configuration in which the on-drive signal is output from both the drive units 30d and 30e.
  • the configurations of the power supply system 10 and the energization control device 20 are not limited to the above examples. For example, it can be combined with the configuration shown in the modified example of the preceding embodiment (see FIG. 6).
  • the energization control device 20 is arranged between the power supply 11A and the load 16A.
  • the semiconductor switch 24 constituting the energization control device 20 has only one MOSFET Q1. In such a configuration, the above control is applied.
  • the control unit 33 controls so that the ON state of the MOSFET Q1 differs between the normal mode and the standby mode.
  • the ON state of the MOSFET Q1 is controlled so as to be turned on (full on) with a low resistance value in the normal mode and turned on (half on) with a high resistance value in the standby mode.
  • the control unit 33 outputs an on instruction signal to the drive unit 30c described above in the normal mode, and outputs an on instruction signal to the drive unit 30d in the standby mode.
  • the MOSFET Q1 can be held in the half-on state in the standby mode.
  • MOSFETs Q1 and Q2 In the standby mode, one of MOSFETs Q1 and Q2 is in the half-on state and the other one is in the off state, but the present invention is not limited to this. Both MOSFETs Q1 and Q2 may be in the half-on state.
  • the drive units 30d and 30e for the standby mode can be combined (shared) into one. For example, when it is sufficient to consider only the configuration in which the dark current is supplied from the first power supply 11 to the second load 16, only the drive unit 30d may be provided for the standby mode.
  • both the MOSFETs Q1 and Q2 By outputting the on drive signal from the drive unit 30d to the MOSFETs Q1 and Q2, both the MOSFETs Q1 and Q2 are put into the half-on state.
  • the drive units 30d and 30e output an on drive signal corresponding to Vout1 and Vout2, and the MOSFETs Q1 and Q2 are in a half-on state, but the present invention is not limited to this.
  • the configuration shown in the modified example of FIG. 14 may be adopted.
  • the drive unit 30d outputs an on drive signal corresponding to the voltage V21 with reference to the voltage VS.
  • the drive unit 30e outputs an on drive signal corresponding to the voltage V22 with reference to the voltage VS. Therefore, when the voltage V21> the voltage V22, the on drive signal is output from the drive unit 30d, and the MOSFET Q1 is controlled to the half-on state. MOSFET Q2 is controlled to the off state. On the other hand, when the voltage V22> the voltage V21, the on drive signal is output from the drive unit 30e, and the MOSFET Q2 is controlled to the half-on state. MOSFET Q1 is controlled to the off state. Therefore, in the standby mode, it is possible to supply dark current in both directions. When the dark current supply direction is determined in one direction, the drive units 30d and 30e can be combined into one drive unit in FIG.
  • the controller 25 of the energization control device 20 has a timer unit 35.
  • the timer unit 35 has, for example, a timer counter.
  • the timer unit 35 starts counting when an on instruction signal is output from the control unit 33 to the drive units 30d and 30e, and outputs a permission signal to the drive units 30d and 30e when a predetermined time elapses.
  • the drive units 30d and 30e are driven for a predetermined time after the permission signal is output.
  • the timer unit 35 clears the count value and starts counting again.
  • the ON instruction signal to the drive units 30d and 30e is stopped, the timer unit 35 stops counting and clears the count value.
  • the drive unit 30d When voltage V21> voltage V22, the drive unit 30d operates intermittently based on the permission signal from the timer unit 35. As a result, an on-drive signal corresponding to the voltage signal Vout1 is intermittently output to the MOSFET Q1. Therefore, the current consumption of the energization control device 20 can be reduced.
  • the timer unit 35 is sometimes referred to as an intermittent control unit because it controls the intermittent operation of the drive units 30d and 30e.
  • the timer unit 35 may output a standby signal instead of the permission signal.
  • the timer unit 35 When the predetermined time elapses from the start of counting, the timer unit 35 outputs a standby signal to the drive units 30d and 30e.
  • the drive units 30d and 30e stop driving for a predetermined time after the standby signal is output.
  • the timer unit 35 When the timer unit 35 outputs the standby signal, the timer unit 35 clears the count value and starts counting again.
  • the drive units 30d and 30e stop driving in a drive stop period based on the standby signal, and drive in a period excluding the drive stop.
  • the drive unit 30c that operates in the normal mode and the cutoff mode is common to the two MOSFETs Q1 and Q2 is shown, they may be provided individually.
  • the driver 301 is individually provided for each drive unit 30c, 30d, 30e, but the present invention is not limited to this.
  • the driver 301 may be shared in the drive unit 30.
  • the controller 25 has drive units 30c and 30d.
  • the driver 301 is shared (also used).
  • a drive unit 30c is configured with a booster circuit 300 and a driver 301.
  • the drive unit 30d is provided with the low-voltage circuit 302 and the driver 301.
  • the control unit 33 In the normal mode, the control unit 33 outputs an ON instruction signal to the drive unit 30c. As a result, the booster circuit 300 executes the booster operation, and the booster voltage is supplied to the driver 301. Then, the driver 301 outputs an on-drive signal according to the boosted voltage. In the standby mode, the control unit 33 outputs an ON instruction signal to the drive unit 30d. As a result, the low voltage circuit 302 operates and a low voltage is supplied to the driver 301. Then, the driver 301 outputs an on-drive signal corresponding to the low voltage.
  • the semiconductor switch 24 and the controller 25 constituting the energization control device 20 may be separated.
  • the semiconductor switch 24 may be a switch module together with the terminals 21 and 22 and the energization path 23, and the controller 25 may be an electronic control unit separate from the switch module.
  • the load connected to the buses 13a and 13b is not limited to the above example. Other loads may be connected to the bus 13a together with the first load 15. Other loads may be connected to the bus 13b together with the second load 16.
  • energization control device 20 is arranged between the buses 13a and 13b, but the present invention is not limited to this.
  • a plurality of energization control devices 20 may be connected in parallel between the buses 13a and 13b.
  • the power supply system 10 was a system in which the second power system was simply added to the first power system via the energization control device 20.
  • the application of the energization control device 20 is not limited to such an add-on type power supply system 10. It can also be applied to backbone type systems. It can also be applied to the ring-type power supply system 10.
  • Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations on them based on them.
  • disclosure is not limited to the parts and / or combinations of elements shown in the embodiments. Disclosure can be carried out in various combinations.
  • the disclosure may have additional parts that may be added to the embodiments.
  • the disclosure includes parts and / or elements of the embodiment omitted. Disclosures include replacement or combination of parts and / or elements between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments.
  • a semiconductor switch 24 composed of p-channel type MOSFETs Q1 and Q2 may be used.
  • the drains of MOSFETs Q1 and Q2 are connected to each other.
  • the anodes of the diodes D1 and D2 are connected to each other.
  • the Lo level signal output from the controller 25 causes the buses 13a and 13b to become conductive. Therefore, the dark current can be supplied to the load without operating the booster circuit 300.
  • a semiconductor switch 24 may be configured by combining a normally-off type switching element and a normally-on type switching element.
  • MOSFET Q1 is a normalization type and MOSFET Q2 is a normal off type. Due to the Lo level signal output from the controller 25, the MOSFET Q1 is turned on and the MOSFET Q2 is turned off. Therefore, a dark current can be supplied from the first power supply 11 to the second load 16 through the MOSFET Q1 and the diode D2. Dark current can be supplied without operating the booster circuit 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

This electrification control device is provided with: a semiconductor switch (24) disposed in an energizing path (23) between a power supply (11) and a load (16); and a drive control unit (25) for controlling the driving of the semiconductor switch. In a normal mode, the drive control unit turns the semiconductor switch to an ON-state in which a current flows in a state where the resistance value is lower than that in a standby mode, while in the standby mode, the drive control unit turns the semiconductor switch to an ON-state in which a current flows in a state where the resistance value is higher than that in the normal mode.

Description

通電制御装置Energization control device 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年3月8日に出願された日本特許出願番号2019-042805号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-042805 filed on March 8, 2019, the contents of which are incorporated herein by reference.
 この明細書における開示は、通電制御装置に関する。 The disclosure in this specification relates to an energization control device.
 特許文献1には、通電制御装置が開示されている。通電制御装置は、電源と負荷との通電経路に設けられたスイッチと、スイッチの駆動を制御する駆動制御部を備えている。 Patent Document 1 discloses an energization control device. The energization control device includes a switch provided in the energization path between the power supply and the load, and a drive control unit that controls the drive of the switch.
特開2004-248093号公報Japanese Unexamined Patent Publication No. 2004-248093
 特許文献1に記載の技術によれば、操作者により操作スイッチがオフされて通常モードから待機モードに切り替わると、通電制御装置を構成する回路のうち、操作スイッチからの入力回路以外のすべてが遮断される。これにより、通電制御装置において、入力回路以外に流れる暗電流をすべて遮断することができる。しかしながら、ゲート駆動回路もオフ状態となり、スイッチもオフされる。よって、待機モード時に、負荷に対して暗電流を供給することができない。 According to the technique described in Patent Document 1, when the operation switch is turned off by the operator and the normal mode is switched to the standby mode, all the circuits constituting the energization control device other than the input circuit from the operation switch are cut off. Will be done. As a result, in the energization control device, all dark currents flowing other than the input circuit can be cut off. However, the gate drive circuit is also turned off and the switch is turned off. Therefore, the dark current cannot be supplied to the load in the standby mode.
 本開示のひとつの目的は、待機モード時に負荷へ暗電流を供給できる通電制御装置を提供することにある。 One object of the present disclosure is to provide an energization control device capable of supplying dark current to a load in standby mode.
 本開示の他のひとつの目的は、負荷に対して暗電流を供給しつつ、通電制御装置の消費電流を抑制することにある。 Another object of the present disclosure is to suppress the current consumption of the energization control device while supplying a dark current to the load.
 本開示の一態様に係る通電制御装置は、電源と負荷との通電経路に設けられた半導体スイッチと、半導体スイッチの駆動を制御する駆動制御部と、を備えている。駆動制御部は、通常モードにおいて、半導体スイッチを、待機モードより抵抗値が低い状態で電流が流れるオン状態に制御し、待機モードにおいて、半導体スイッチを、通常モードより抵抗値が高い状態で電流が流れるオン状態に制御する。 The energization control device according to one aspect of the present disclosure includes a semiconductor switch provided in an energization path between a power source and a load, and a drive control unit for controlling the drive of the semiconductor switch. In the normal mode, the drive control unit controls the semiconductor switch to an on state in which a current flows in a state where the resistance value is lower than in the standby mode, and in the standby mode, the semiconductor switch is operated in a state where the resistance value is higher than that in the normal mode. Control to flow on state.
 上記通電制御装置によると、駆動制御部が、半導体スイッチのオン状態を通常モードと待機モードとで異なる状態に制御する。待機モードにおいて、駆動制御部は、通常モードより抵抗値が高い状態でオンするように半導体スイッチを制御する。待機モードにおいて、半導体スイッチは抵抗値が高い状態でオンするため、通常モード時に流れる電流より小さい暗電流を、負荷に供給することができる。以上により、待機モード時に負荷へ暗電流を供給することができる。 According to the above-mentioned energization control device, the drive control unit controls the on state of the semiconductor switch to be different between the normal mode and the standby mode. In the standby mode, the drive control unit controls the semiconductor switch so that the semiconductor switch is turned on with a higher resistance value than in the normal mode. In the standby mode, the semiconductor switch is turned on with a high resistance value, so that a dark current smaller than the current flowing in the normal mode can be supplied to the load. As described above, the dark current can be supplied to the load in the standby mode.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る通電制御装置を備えた電源システムの概略構成を示す図である。 図2は、通電制御装置を示す図である。 図3は、制御部が実行する処理を示すフローチャートである。 図4は、待機モード処理を示すフローチャートである。 図5は、待機モードにおける各種波形を示すタイミングチャートである。 図6は、第1実施形態のひとつの変形例を示す図である。 図7は、第1実施形態の他の変形例を示す図である。 図8は、第1実施形態の他の変形例を示す図である。 図9は、第1実施形態の他の変形例を示す図である。 図10は、第1実施形態の他の変形例を示す図である。 図11は、第1実施形態の他の変形例を示す図である。 図12は、第2実施形態に係る通電制御装置を示す図である。 図13は、駆動部を示す図である。 図14は、変形例を示す図である。 図15は、第2実施形態のひとつの変形例を示す図である。 図16は、第2実施形態の他の変形例を示す図である。 図17は、他の実施形態に係る通電制御装置を備えた電源システムの概略構成を示す図である。 図18は、他の実施形態に係る通電制御装置を備えた電源システムの概略構成を示す図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a diagram showing a schematic configuration of a power supply system including an energization control device according to the first embodiment. FIG. 2 is a diagram showing an energization control device. FIG. 3 is a flowchart showing a process executed by the control unit. FIG. 4 is a flowchart showing the standby mode processing. FIG. 5 is a timing chart showing various waveforms in the standby mode. FIG. 6 is a diagram showing a modified example of the first embodiment. FIG. 7 is a diagram showing another modification of the first embodiment. FIG. 8 is a diagram showing another modification of the first embodiment. FIG. 9 is a diagram showing another modification of the first embodiment. FIG. 10 is a diagram showing another modification of the first embodiment. FIG. 11 is a diagram showing another modification of the first embodiment. FIG. 12 is a diagram showing an energization control device according to the second embodiment. FIG. 13 is a diagram showing a drive unit. FIG. 14 is a diagram showing a modified example. FIG. 15 is a diagram showing a modified example of the second embodiment. FIG. 16 is a diagram showing another modification of the second embodiment. FIG. 17 is a diagram showing a schematic configuration of a power supply system including an energization control device according to another embodiment. FIG. 18 is a diagram showing a schematic configuration of a power supply system including an energization control device according to another embodiment.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分には同一の参照符号を付与する。 A plurality of embodiments will be described with reference to the drawings. In a plurality of embodiments, the functionally and / or structurally corresponding parts are assigned the same reference numerals.
 (第1実施形態)
 本実施形態の通電制御装置は、電源システムに適用される。以下では、電源システムの一例として、車両に搭載される冗長電源システムを示す。
(First Embodiment)
The energization control device of this embodiment is applied to a power supply system. In the following, as an example of the power supply system, a redundant power supply system mounted on a vehicle will be shown.
 <電源システム>
 図1に基づき、電源システムの概略構成について説明する。図1に示すように、電源システム10は、車載電源である第1電源11及び第2電源12と、バス13a,13bと、通電制御装置20を備えている。電源システム10は、2つの車載電源を備えた冗長電源システムとされている。
<Power system>
A schematic configuration of the power supply system will be described with reference to FIG. As shown in FIG. 1, the power supply system 10 includes a first power supply 11 and a second power supply 12, buses 13a and 13b, and an energization control device 20, which are vehicle-mounted power supplies. The power supply system 10 is a redundant power supply system including two vehicle-mounted power supplies.
 第1電源11及び第2電源12は、直流電圧源である。第1電源11及び第2電源12として、たとえば二次電池やキャパシタを採用することができる。第2電源12の電池容量は、第1電源11の電池容量以下とされている。第1電源11はメイン電源と称され、第2電源12はサブ電源と称されることがある。 The first power supply 11 and the second power supply 12 are DC voltage sources. As the first power source 11 and the second power source 12, for example, a secondary battery or a capacitor can be adopted. The battery capacity of the second power supply 12 is set to be equal to or less than the battery capacity of the first power supply 11. The first power source 11 may be referred to as a main power source, and the second power source 12 may be referred to as a sub power source.
 本実施形態では、第1電源11として鉛蓄電池を採用し、第2電源12としてリチウムイオン電池を採用している。第2電源12の電池容量は、第1電源11の電池容量に対して小さく設定されている。第1電源11及び第2電源12の定格電圧は、たとえば12Vである。 In this embodiment, a lead storage battery is used as the first power source 11, and a lithium ion battery is used as the second power source 12. The battery capacity of the second power source 12 is set smaller than the battery capacity of the first power source 11. The rated voltage of the first power supply 11 and the second power supply 12 is, for example, 12V.
 第1電源11は、バス13aを介して通電制御装置20に接続されている。第2電源12は、バス13bを介して通電制御装置20に接続されている。バス13aは、第1電力系統バスと称され、バス13bは第2電力系統バスと称されることがある。第2電源12とバス13bとの間には、リレー14が設けられている。リレー14は、たとえば機械式接点を有する電磁リレーである。リレー14のオンオフは、後述するコントローラ25や、通電制御装置20とは別の図示しないElectronic Control Unit(ECU)により切り替えられる。 The first power supply 11 is connected to the energization control device 20 via the bus 13a. The second power supply 12 is connected to the energization control device 20 via the bus 13b. The bus 13a may be referred to as a first power system bus, and the bus 13b may be referred to as a second power system bus. A relay 14 is provided between the second power supply 12 and the bus 13b. The relay 14 is, for example, an electromagnetic relay having mechanical contacts. The relay 14 can be turned on and off by a controller 25, which will be described later, or an Electronic Control Unit (ECU) (not shown), which is different from the energization control device 20.
 リレー14がオンすると、第2電源12は、バス13bに接続される。リレー14がオフすると、第2電源12は、バス13bに対して電気的に切り離される。リレー14は、緊急時用のリレーであり、通常時には常時オンされる。たとえば第2電源12に地絡などの故障が生じたとき、第2電源12が過充電又は過放電となる虞があるときに、リレー14はオフされる。図1では、リレー14を第2電源12の外側に設けているが、リレー14を第2電源12内に設けてもよい。 When the relay 14 is turned on, the second power supply 12 is connected to the bus 13b. When the relay 14 is turned off, the second power supply 12 is electrically disconnected from the bus 13b. The relay 14 is an emergency relay, and is always on at normal times. For example, when a failure such as a ground fault occurs in the second power supply 12, the relay 14 is turned off when the second power supply 12 may be overcharged or overdischarged. In FIG. 1, the relay 14 is provided outside the second power supply 12, but the relay 14 may be provided inside the second power supply 12.
 通電制御装置20は、バス13a,13bの間に設けられている。車両において、バス13a,13bには、各種の負荷が接続されている。各種負荷には、第1電源11、第2電源12からバス13a,13bを介して動作のための電力が供給される。バス13a,13bのそれぞれには、少なくともひとつの負荷が接続されている。 The energization control device 20 is provided between the buses 13a and 13b. In the vehicle, various loads are connected to the buses 13a and 13b. Power for operation is supplied to the various loads from the first power supply 11 and the second power supply 12 via the buses 13a and 13b. At least one load is connected to each of the buses 13a and 13b.
 後述する半導体スイッチ24がオンされると、バス13aとバス13bとが、電気的に接続される。半導体スイッチ24のオンにより、バス13a,13b間での電力の受け渡しが可能となる。半導体スイッチ24がオフされると、バス13aとバス13bとが、電気的に遮断される。たとえば第1電源11、第2電源12の一方が故障したり、バス13a,13bの一方で地絡が生じたりしても、半導体スイッチ24のオフにより、バス13aとバス13bとを遮断することができる。これにより、負荷のすべてが動作不能となるのを回避することができる。 When the semiconductor switch 24 described later is turned on, the bus 13a and the bus 13b are electrically connected. By turning on the semiconductor switch 24, electric power can be transferred between the buses 13a and 13b. When the semiconductor switch 24 is turned off, the bus 13a and the bus 13b are electrically cut off. For example, even if one of the first power supply 11 and the second power supply 12 fails or a ground fault occurs on one of the buses 13a and 13b, the semiconductor switch 24 is turned off to shut off the bus 13a and the bus 13b. Can be done. This makes it possible to prevent all of the loads from becoming inoperable.
 図1に示すように、バス13aには第1負荷15が接続され、バス13bには第2負荷16が接続されている。車両は、図示しないイグニッションスイッチ(以下、IGスイッチと示す)を備えている。第1負荷15は、少なくともIGスイッチがオンされているときに、電力の供給を受けて動作する負荷である。第2負荷16は、IGスイッチがオンされているときだけでなく、オフされているときにも電力の供給を受けて動作する負荷である。第2負荷16は、IGスイッチがオフされているときに、後述する暗電流によって動作する負荷である。 As shown in FIG. 1, the first load 15 is connected to the bus 13a, and the second load 16 is connected to the bus 13b. The vehicle is equipped with an ignition switch (hereinafter referred to as an IG switch) (hereinafter referred to as an IG switch) (not shown). The first load 15 is a load that operates by receiving power supply at least when the IG switch is turned on. The second load 16 is a load that operates by receiving power supply not only when the IG switch is turned on but also when it is turned off. The second load 16 is a load that operates by a dark current described later when the IG switch is turned off.
 上記したように、本実施形態では、第2電源12の電池容量が、第1電源11の電池容量に対して小さく設定されている。IGスイッチのオフに応じて、リレー14はオフされる。これにより、IGスイッチがオフされているときに第2電源12の過放電が抑制される。IGスイッチがオフされているとき、第1電源11から半導体スイッチ24を介して第2負荷16に電力が供給され、第2負荷16が動作する。リレー14がオフされている状態で、第2負荷16には、第1電源11から電力が供給される。よって、第1電源11が電源に相当する。第2負荷16が、半導体スイッチを介して電源から電力が供給される負荷に相当する。 As described above, in the present embodiment, the battery capacity of the second power supply 12 is set smaller than the battery capacity of the first power supply 11. The relay 14 is turned off in response to the turning off of the IG switch. As a result, over-discharging of the second power supply 12 is suppressed when the IG switch is turned off. When the IG switch is off, power is supplied from the first power supply 11 to the second load 16 via the semiconductor switch 24, and the second load 16 operates. With the relay 14 turned off, power is supplied to the second load 16 from the first power source 11. Therefore, the first power supply 11 corresponds to the power supply. The second load 16 corresponds to a load to which power is supplied from the power source via the semiconductor switch.
 第1電源11及び第2電源12は、充放電可能な二次電池である。車両が発電機(オルタネータ)を備える構成の場合、第1電源11及び第2電源12は、発電機によって充電が可能である。発電機がたとえばバス13aに接続されている場合、第1電源11は、発電機によって充電が可能である。第2電源12は、第1電源11及び発電機の少なくとも一方によって充電が可能である。発電機の生じた電力を、バス13a,13bを介して負荷に供給することも可能である。車両が、走行駆動用のモータと、モータの電源としての高圧電源を備える場合、高圧電源の電圧をDCDCコンバータによって降圧し、第1電源11などを充電可能に構成してもよい。 The first power supply 11 and the second power supply 12 are secondary batteries that can be charged and discharged. When the vehicle is configured to include a generator (alternator), the first power source 11 and the second power source 12 can be charged by the generator. When the generator is connected to, for example, the bus 13a, the first power source 11 can be charged by the generator. The second power source 12 can be charged by at least one of the first power source 11 and the generator. It is also possible to supply the electric power generated by the generator to the load via the buses 13a and 13b. When the vehicle is provided with a motor for driving a traveling drive and a high-voltage power source as a power source for the motor, the voltage of the high-voltage power source may be stepped down by a DCDC converter to charge the first power source 11 and the like.
 <通電制御装置>
 図1及び図2に基づき、通電制御装置20について説明する。通電制御装置20は、外部接続用の端子21,22と、半導体スイッチ24と、コントローラ25を備えている。
<Energization control device>
The energization control device 20 will be described with reference to FIGS. 1 and 2. The energization control device 20 includes terminals 21 and 22 for external connection, a semiconductor switch 24, and a controller 25.
 端子21は、第1電源11側のバス13aに接続される。端子22は、第2電源12側のバス13bに接続される。端子21,22間には、バス13a,13b間をつなぐ通電経路23が設けられている。通電経路23は、配線と称されることがある。 The terminal 21 is connected to the bus 13a on the first power supply 11 side. The terminal 22 is connected to the bus 13b on the second power supply 12 side. An energization path 23 connecting the buses 13a and 13b is provided between the terminals 21 and 22. The energization path 23 is sometimes referred to as wiring.
 半導体スイッチ24は、通電経路23に設けられている。半導体スイッチ24は、通電経路23を導通状態又は遮断状態に切り替える。半導体スイッチ24は、バス13a,13bを導通状態又は遮断状態に切り替える。半導体スイッチ24は、スイッチング素子を備えて構成されている。 The semiconductor switch 24 is provided in the energization path 23. The semiconductor switch 24 switches the energization path 23 into a conduction state or a cutoff state. The semiconductor switch 24 switches the buses 13a and 13b into a conductive state or a cutoff state. The semiconductor switch 24 is configured to include a switching element.
 本実施形態では、スイッチング素子として、nチャネル型のMOSFETを採用している。MOSFETは、ノーマリオフ型のスイッチング素子である。このMOSFETは、構造上、ドレイン-ソース間に寄生ダイオード(ボディダイオード)を有している。MOSFETをオフしても寄生ダイオードを介して電流が流れるので、ひとつのMOSFETだけでは、双方向の電流を遮断することができない。 In this embodiment, an n-channel MOSFET is used as the switching element. MOSFETs are normally-off type switching elements. Structurally, this MOSFET has a parasitic diode (body diode) between the drain and the source. Since current flows through the parasitic diode even when the MOSFET is turned off, it is not possible to cut off the bidirectional current with only one MOSFET.
 冗長電源システムでは、バス13aとバス13bとの間で双方向に電流が流れる可能性がある。そこで、半導体スイッチ24を、寄生ダイオードの順方向となる向きを互いに逆方向とした1対のMOSFETQ1,Q2により構成している。MOSFETQ1,Q2は、ダイオードD1,D2を有している。ダイオードD1,D2は寄生ダイオードである。電源失陥が生じても、MOSFETQ1,Q2をともにオフすることで、電流の流れる方向によらず、電流を完全に遮断することができる。 In a redundant power supply system, there is a possibility that current will flow in both directions between the bus 13a and the bus 13b. Therefore, the semiconductor switch 24 is composed of a pair of MOSFETs Q1 and Q2 in which the directions of the parasitic diodes are opposite to each other. The MOSFETs Q1 and Q2 have diodes D1 and D2. The diodes D1 and D2 are parasitic diodes. Even if a power failure occurs, by turning off both MOSFETs Q1 and Q2, the current can be completely cut off regardless of the direction in which the current flows.
 具体的には、MOSFETQ1が第1電源11(バス13a)側に配置され、MOSFETQ2が第2電源12(バス13b)側に配置されている。ダイオードD1,D2は、アノード同士が接続されている。MOSFETQ1,Q2は、ソース同士が接続されたソースコモン型の接続構造をなしている。MOSFETQ1のドレインが端子21に電気的に接続され、MOSFETQ2のドレインが端子22に電気的に接続されている。 Specifically, the MOSFET Q1 is arranged on the first power source 11 (bus 13a) side, and the MOSFET Q2 is arranged on the second power source 12 (bus 13b) side. The anodes of the diodes D1 and D2 are connected to each other. MOSFETs Q1 and Q2 have a source common type connection structure in which sources are connected to each other. The drain of the MOSFET Q1 is electrically connected to the terminal 21, and the drain of the MOSFET Q2 is electrically connected to the terminal 22.
 半導体スイッチ24の構成は、上記例に限定されない。たとえばドレイン同士が互いに接続されたドレインコモンの接続構造を採用することもできる。この場合も、寄生ダイオードは互いに逆向きとなる。寄生ダイオードは、カソード同士が接続される。また、寄生ダイオードを有する半導体素子に代えて、寄生ダイオードを有さない半導体素子、たとえばIGBTやノーマリオン型の素子を採用してもよい。この場合、半導体スイッチ24を、ひとつの半導体素子により構成することができる。 The configuration of the semiconductor switch 24 is not limited to the above example. For example, a drain common connection structure in which drains are connected to each other can be adopted. Again, the parasitic diodes are opposite to each other. The cathodes of the parasitic diode are connected to each other. Further, instead of the semiconductor element having a parasitic diode, a semiconductor element having no parasitic diode, for example, an IGBT or a normalion type element may be adopted. In this case, the semiconductor switch 24 can be configured by one semiconductor element.
 図2に示すように、MOSFETQ1,Q2は、キャパシタC1,C2を備えている。キャパシタC1は、MOSFETQ1のゲート-ソース間に形成されている。キャパシタC2は、MOSFETQ2のゲート-ソース間に形成されている。キャパシタC1,C2は、MOSFETQ1,Q2のゲートにオン駆動信号、すなわちHiレベルの信号が入力されると、充電される。本実施形態のキャパシタC1,C2は、寄生キャパシタである。キャパシタC1,C2が、ゲートキャパシタに相当する。 As shown in FIG. 2, the MOSFETs Q1 and Q2 include capacitors C1 and C2. The capacitor C1 is formed between the gate and the source of the MOSFET Q1. The capacitor C2 is formed between the gate and the source of the MOSFET Q2. Capacitors C1 and C2 are charged when an on-drive signal, that is, a Hi level signal is input to the gates of MOSFETs Q1 and Q2. The capacitors C1 and C2 of this embodiment are parasitic capacitors. Capacitors C1 and C2 correspond to gate capacitors.
 コントローラ25は、半導体スイッチ24の駆動を制御する。コントローラ25は、MOSFETQ1,Q2それぞれの駆動を制御する。コントローラ25は、電子制御装置と称されることがある。コントローラ25は、たとえば第1電源11から電力が供給され、動作する。通電制御装置20は、端子21とは別に電源端子を備えてもよい。端子21を介して電力が供給される構成としてもよい。コントローラ25が、駆動制御部に相当する。 The controller 25 controls the drive of the semiconductor switch 24. The controller 25 controls the drive of each of the MOSFETs Q1 and Q2. The controller 25 is sometimes referred to as an electronic control unit. The controller 25 operates by being supplied with electric power from, for example, the first power supply 11. The energization control device 20 may include a power supply terminal separately from the terminal 21. The electric power may be supplied through the terminal 21. The controller 25 corresponds to the drive control unit.
 コントローラ25は、少なくともひとつのコンピュータを含む制御システムによって提供される。制御システムは、ハードウェアである少なくともひとつのプロセッサ(ハードウェアプロセッサ)を含む。ハードウェアプロセッサは、下記(i)、(ii)、又は(iii)により提供することができる。 The controller 25 is provided by a control system that includes at least one computer. The control system includes at least one processor (hardware processor) which is hardware. The hardware processor can be provided by the following (i), (ii), or (iii).
 (i)ハードウェアプロセッサは、ハードウェア論理回路である場合がある。この場合、コンピュータは、プログラムされた多数の論理ユニット(ゲート回路)を含むデジタル回路によって提供される。デジタル回路は、プログラム及び/又はデータを格納したメモリを備える場合がある。コンピュータは、アナログ回路によって提供される場合がある。コンピュータは、デジタル回路とアナログ回路との組み合わせによって提供される場合がある。 (I) The hardware processor may be a hardware logic circuit. In this case, the computer is provided by a digital circuit that includes a large number of programmed logic units (gate circuits). Digital circuits may include memory for storing programs and / or data. Computers may be provided by analog circuits. Computers may be provided by a combination of digital and analog circuits.
 (ii)ハードウェアプロセッサは、少なくともひとつのメモリに格納されたプログラムを実行する少なくともひとつのプロセッサコアである場合がある。この場合、コンピュータは、少なくともひとつのメモリと、少なくともひとつのプロセッサコアとによって提供される。プロセッサコアは、たとえばCPUと称される。メモリは、記憶媒体とも称される。メモリは、プロセッサによって読み取り可能な「プログラム及び/又はデータ」を非一時的に格納する非遷移的かつ実体的な記憶媒体である。 (Ii) The hardware processor may be at least one processor core that executes a program stored in at least one memory. In this case, the computer is provided by at least one memory and at least one processor core. The processor core is referred to as, for example, a CPU. The memory is also referred to as a storage medium. Memory is a non-transitional and substantive storage medium that non-temporarily stores "programs and / or data" that can be read by a processor.
 (iii)ハードウェアプロセッサは、上記(i)と上記(ii)との組み合わせである場合がある。(i)と(ii)とは、異なるチップの上、又は共通のチップの上に配置される。 (Iii) The hardware processor may be a combination of the above (i) and the above (ii). (I) and (ii) are arranged on different chips or on a common chip.
 すなわち、コントローラ25が提供する手段及び/又は機能は、ハードウェアのみ、ソフトウェアのみ、又はそれらの組み合わせにより提供することができる。本実施形態では、Application Specific Integrated Circuit(ASIC)を用いて実現されている。 That is, the means and / or functions provided by the controller 25 can be provided by hardware only, software only, or a combination thereof. In this embodiment, it is realized by using an Application Special Integrated Circuit (ASIC).
 コントローラ25と、上記した図示しないECUとは、車載ネットワークのバスを介して相互に通信可能となっている。コントローラ25は、上位制御装置であるECUからの指令値、第1電源11及び第2電源12の蓄電状態などに基づいて、半導体スイッチ24の制御状態を決定し、半導体スイッチ24の駆動信号を生成する。そして、生成した駆動信号をMOSFETQ1,Q2のゲート(制御端子)に対して出力する。なお、バス13a,13bには、第1電源11及び第2電源12のバッテリ電圧を検出する電圧センサがそれぞれ設けられている。コントローラ25は、たとえば第2電源12のSOCを算出し、SOCが所定の使用範囲内に保持されるよう、第2電源12の充電量及び放電量を制御する。コントローラ25は、過充電や過放電を防ぐように、リレー14のオンオフを切り替える。 The controller 25 and the ECU (not shown) described above can communicate with each other via the bus of the in-vehicle network. The controller 25 determines the control state of the semiconductor switch 24 based on the command value from the ECU which is the upper control device, the storage state of the first power supply 11 and the second power supply 12, and generates a drive signal of the semiconductor switch 24. To do. Then, the generated drive signal is output to the gates (control terminals) of MOSFETs Q1 and Q2. The buses 13a and 13b are provided with voltage sensors for detecting the battery voltages of the first power supply 11 and the second power supply 12, respectively. The controller 25 calculates, for example, the SOC of the second power supply 12, and controls the charge amount and the discharge amount of the second power supply 12 so that the SOC is kept within a predetermined use range. The controller 25 switches the relay 14 on and off so as to prevent overcharging and overdischarging.
 図2に示すように、コントローラ25は、駆動部30と、検出部31と、判定部32と、制御部33を有している。制御部33が、間欠制御部に相当する。 As shown in FIG. 2, the controller 25 includes a drive unit 30, a detection unit 31, a determination unit 32, and a control unit 33. The control unit 33 corresponds to an intermittent control unit.
 駆動部30は、制御部33からの指示信号に従い、MOSFETQ1,Q2のゲートに対して駆動信号を出力する回路である。駆動部30は、駆動信号として、MOSFETQ1,Q2をオンさせるために、オン駆動信号を出力する。駆動部30は、オン駆動信号として、Hiレベルの信号を出力する。駆動部30は、駆動信号として、MOSFETQ1,Q2をオフさせるために、オフ駆動信号を出力する。駆動部30は、オフ駆動信号として、Loレベルの信号を出力する。 The drive unit 30 is a circuit that outputs a drive signal to the gates of MOSFETs Q1 and Q2 in accordance with an instruction signal from the control unit 33. The drive unit 30 outputs an on drive signal as a drive signal in order to turn on the MOSFETs Q1 and Q2. The drive unit 30 outputs a Hi level signal as an on drive signal. The drive unit 30 outputs an off drive signal as a drive signal in order to turn off the MOSFETs Q1 and Q2. The drive unit 30 outputs a Lo level signal as an off drive signal.
 駆動部30は、MOSFETQ1に対応する駆動部30aと、MOSFETQ2に対応する駆動部30bを有している。駆動部30a,30bは、昇圧回路300と、ドライバ301をそれぞれ有している。昇圧回路300は、たとえば第1電源11から供給される電圧を昇圧する回路であり、図示しないコンデンサなどを備えて構成されている。昇圧回路300としては、たとえばチャージポンプ回路を採用することができる。ドライバ301は、駆動信号を生成してゲートに出力するドライブ回路である。ドライバ301は、昇圧回路300による昇圧電圧に応じたオン駆動信号を出力する。 The drive unit 30 has a drive unit 30a corresponding to the MOSFET Q1 and a drive unit 30b corresponding to the MOSFET Q2. The drive units 30a and 30b each include a booster circuit 300 and a driver 301. The booster circuit 300 is, for example, a circuit that boosts the voltage supplied from the first power supply 11, and is configured to include a capacitor (not shown) or the like. As the booster circuit 300, for example, a charge pump circuit can be adopted. The driver 301 is a drive circuit that generates a drive signal and outputs the drive signal to the gate. The driver 301 outputs an on drive signal corresponding to the boosted voltage by the booster circuit 300.
 検出部31は、ソースを基準とするゲート電圧を検出する回路である。検出部31は、差動増幅器31aを有している。検出部31は、第1電源11側に配置されたMOSFETQ1のゲートの電圧VGとソースの電圧VSとの差に応じた電圧信号VGSを出力する。差動増幅器31aの非反転入力端子には、基準電圧Vref-aが入力されている。差動増幅器31aは、電圧VGが電圧VSよりも高いときには、その差に応じた分だけ、基準電圧Vref-aよりも高い電圧信号VGSを出力する。以下において、電圧信号VGSを、ゲート電圧VGSと称することがある。 The detection unit 31 is a circuit that detects the gate voltage with reference to the source. The detection unit 31 has a differential amplifier 31a. The detection unit 31 outputs a voltage signal VGS according to the difference between the voltage VG of the gate of the MOSFET Q1 arranged on the side of the first power supply 11 and the voltage VS of the source. A reference voltage Vref-a is input to the non-inverting input terminal of the differential amplifier 31a. When the voltage VG is higher than the voltage VS, the differential amplifier 31a outputs a voltage signal VGS higher than the reference voltage Vref-a by the amount corresponding to the difference. In the following, the voltage signal VGS may be referred to as a gate voltage VGS.
 判定部32は、電圧信号VGSの電圧レベルを判定する回路である。判定部32は、2つのコンパレータ32a,32bを有している。コンパレータ32aは、電圧信号VGSと閾値電圧Vth1とを比較する。コンパレータ32bは、電圧信号VGSと閾値電圧Vth2とを比較する。閾値電圧Vth1は、閾値電圧Vth2よりも高い電圧である。閾値電圧Vth2としては、電流が流れなくなる限界の値、いわゆるスレッショルド電圧(Vt)を設定してもよいし、マージンを加算してスレッショルド電圧よりも高めた値を設定してもよい。 The determination unit 32 is a circuit that determines the voltage level of the voltage signal VGS. The determination unit 32 has two comparators 32a and 32b. The comparator 32a compares the voltage signal VGS with the threshold voltage Vth1. The comparator 32b compares the voltage signal VGS with the threshold voltage Vth2. The threshold voltage Vth1 is a voltage higher than the threshold voltage Vth2. As the threshold voltage Vth2, a limit value at which current does not flow, a so-called threshold voltage (Vt), may be set, or a value higher than the threshold voltage may be set by adding a margin.
 本実施形態では、閾値電圧Vth2として、電流が流れなくなる限界の値を設定している。また、ゲート電圧が閾値電圧Vth1を超えると、MOSFETがフルオン状態に保持される。つまり、ゲート電圧が閾値電圧Vth2以上、閾値電圧Vth1以下の範囲内で、MOSFETはハーフオン状態に保持される。ハーフオンとは、実質的にオンであり電流が流れるものの、オン抵抗はフルオンに較べて大きい状態である。 In this embodiment, the threshold voltage Vth2 is set to a limit value at which current does not flow. Further, when the gate voltage exceeds the threshold voltage Vth1, the MOSFET is held in the full-on state. That is, the MOSFET is held in the half-on state within the range where the gate voltage is the threshold voltage Vth2 or more and the threshold voltage Vth1 or less. Half-on is a state in which the on-resistance is larger than that of full-on, although it is substantially on and current flows.
 コンパレータ32aは、電圧信号VGSが閾値電圧Vth1より大きくなると、電圧信号VGSが大きいことを示すHiレベルの信号を制御部33に出力する。コンパレータ32bは、電圧信号VGSが閾値電圧Vth2より小さくなると、電圧信号VGSが小さいことを示すLoレベルの信号を制御部33に出力する。 When the voltage signal VGS becomes larger than the threshold voltage Vth1, the comparator 32a outputs a Hi level signal indicating that the voltage signal VGS is large to the control unit 33. When the voltage signal VGS becomes smaller than the threshold voltage Vth2, the comparator 32b outputs a Lo level signal indicating that the voltage signal VGS is small to the control unit 33.
 制御部33は、駆動部30に対して指示信号を出力する。制御部33には、たとえば上位制御装置であるECUから、IGスイッチのオン、オフに相関する信号(以下、IG信号と示す)が入力される。制御部33には、上記したように、判定部32による判定結果が入力される。 The control unit 33 outputs an instruction signal to the drive unit 30. A signal (hereinafter referred to as an IG signal) that correlates on and off of the IG switch is input to the control unit 33 from, for example, an ECU that is a higher-level control device. As described above, the determination result by the determination unit 32 is input to the control unit 33.
 コントローラ25は、図示しない過電流検出部を有している。車載電源失陥、バス地絡、負荷地絡などの異常が生じると、過電流が流れる。過電流検出部は、バス13a,13bや通電経路23の電流及び/又は電圧に基づいて、過電流が流れているか否かを判定する。制御部33には、過電流検出結果も入力される。制御部33は、IG信号、判定部32による判定結果、過電流検出結果などに応じて、制御モードを切り替え可能に構成されている。制御部33は、制御モードに応じた指示信号を、駆動部30に対して出力する。 The controller 25 has an overcurrent detection unit (not shown). Overcurrent flows when an abnormality such as a vehicle power failure, a bus ground fault, or a load ground fault occurs. The overcurrent detection unit determines whether or not an overcurrent is flowing based on the current and / or voltage of the buses 13a and 13b and the energization path 23. The overcurrent detection result is also input to the control unit 33. The control unit 33 is configured to be able to switch the control mode according to the IG signal, the determination result by the determination unit 32, the overcurrent detection result, and the like. The control unit 33 outputs an instruction signal corresponding to the control mode to the drive unit 30.
 <制御部が実行する処理>
 図2~図4に基づき、制御部33が実行する処理の一例について説明する。制御部33は、複数の制御モードを設定可能に構成されている。複数の制御モードとして、バス13a,13bを導通状態にする導通モードと、バス13a,13bを遮断状態にする遮断モードがある。また、導通モードとして、通常モードと、待機モードがある。
<Processes executed by the control unit>
An example of the process executed by the control unit 33 will be described with reference to FIGS. 2 to 4. The control unit 33 is configured so that a plurality of control modes can be set. As a plurality of control modes, there are a conduction mode in which the buses 13a and 13b are in a conductive state and a cutoff mode in which the buses 13a and 13b are in a cutoff state. Further, as the conduction mode, there are a normal mode and a standby mode.
 図3は、制御部33が実行する処理を示している。制御部33には、IGスイッチがオンされている期間だけでなく、オフされている期間にも、たとえば第1電源11から動作のための電力が供給される。電源が投入されている間において、制御部33は、以下に示す処理を所定の周期で繰り返し実行する。 FIG. 3 shows a process executed by the control unit 33. The control unit 33 is supplied with electric power for operation, for example, from the first power supply 11 not only during the period when the IG switch is turned on but also during the period when the IG switch is turned off. While the power is turned on, the control unit 33 repeatedly executes the following processes at a predetermined cycle.
 図3に示すように、制御部33は、先ず半導体スイッチ24による遮断が必要か否かを判定する(S10)。制御部33は、過電流検出部の出力に基づいて、遮断の要否を判定する。 As shown in FIG. 3, the control unit 33 first determines whether or not the semiconductor switch 24 needs to shut off (S10). The control unit 33 determines whether or not to shut off is necessary based on the output of the overcurrent detection unit.
 S10において遮断が必要であると判定すると、次いで制御部33は、遮断モードを設定する(S11)。遮断モードを設定すると、制御部33は、駆動部30a,30bに対してオフ指示信号を出力し、一連の処理を終了する。オフ指示信号により、駆動部30a,30bにおいて、昇圧回路300での昇圧は行われず、昇圧電圧がドライバ301に供給されない。ドライバ301から、オフ駆動信号が出力される。これにより、MOSFETQ1,Q2がともにオフ状態となり、バス13a,13b間が遮断される。 When it is determined in S10 that shutoff is necessary, the control unit 33 then sets the shutoff mode (S11). When the cutoff mode is set, the control unit 33 outputs an off instruction signal to the drive units 30a and 30b, and ends a series of processing. Due to the off instruction signal, the booster circuit 300 does not boost the drive units 30a and 30b, and the booster voltage is not supplied to the driver 301. An off drive signal is output from the driver 301. As a result, both MOSFETs Q1 and Q2 are turned off, and the buses 13a and 13b are cut off.
 一方、S10において遮断が必要ではないと判定すると、制御部33は、IG信号に基づいて、IGスイッチがオンされているか否かを判定する(S12)。IGスイッチがオンされている場合、制御部33は、導通モードとして通常モードを設定する(S13)。 On the other hand, if it is determined in S10 that the cutoff is not necessary, the control unit 33 determines whether or not the IG switch is turned on based on the IG signal (S12). When the IG switch is turned on, the control unit 33 sets the normal mode as the conduction mode (S13).
 通常モードを設定すると、制御部33は、判定部32の判定結果によらず、駆動部30a,30bに対してオン指示信号を出力する。そして、一連の処理を終了する。オン指示信号により、駆動部30a,30bにおいて、昇圧回路300が昇圧動作する。ドライバ301は、オン指示信号に応じて動作し、昇圧電圧に応じたオン駆動信号を出力する。これにより、MOSFETQ1,Q2がともにオン状態となり、バス13a,13bが導通状態となる。通常モードの設定期間において、駆動部30a,30bは、オン駆動信号を継続して出力する。 When the normal mode is set, the control unit 33 outputs an ON instruction signal to the drive units 30a and 30b regardless of the determination result of the determination unit 32. Then, a series of processes is completed. The booster circuit 300 is boosted in the drive units 30a and 30b by the ON instruction signal. The driver 301 operates in response to the on instruction signal and outputs an on drive signal in response to the boosted voltage. As a result, the MOSFETs Q1 and Q2 are both turned on, and the buses 13a and 13b are brought into a conductive state. During the setting period of the normal mode, the drive units 30a and 30b continuously output the on drive signal.
 通常モードにおいて、MOSFETQ1,Q2の電圧信号VGSは、いずれも閾値電圧Vth1よりも高い値に保持される。これにより、MOSFETQ1,Q2は、抵抗値(オン抵抗)が小さいフルオン状態で駆動する。 In the normal mode, the voltage signals VGS of MOSFETs Q1 and Q2 are all held at a value higher than the threshold voltage Vth1. As a result, the MOSFETs Q1 and Q2 are driven in a fully on state with a small resistance value (on resistance).
 S12においてIGスイッチがオンされていない、すなわちオフされていると判定すると、制御部33は、導通モードとして待機モードを設定する(S14)。待機モードを設定すると、制御部33は、判定部32の判定結果に応じた指示信号を、駆動部30に対して出力し、一連の処理を終了する。なお、制御部33が実行する処理は、上記した例に限定されない。 When it is determined in S12 that the IG switch is not turned on, that is, turned off, the control unit 33 sets the standby mode as the conduction mode (S14). When the standby mode is set, the control unit 33 outputs an instruction signal corresponding to the determination result of the determination unit 32 to the drive unit 30, and ends a series of processing. The process executed by the control unit 33 is not limited to the above example.
 <待機モード>
 図4は、制御部33が実行する待機モード処理を示している。図4に示すように、先ず制御部33は、MOSFETQ2の駆動部30bに対して、オフ指示信号を出力する(S20)。オフ指示信号により、駆動部30bにおいて、昇圧回路300での昇圧は行われず、ドライバ301からオフ駆動信号(Loレベルの信号)が出力される。これにより、MOSFETQ2はオフ状態となる。ダイオードD2を通じて、バス13aからバス13bに向けた電流が流れる。
<Standby mode>
FIG. 4 shows the standby mode processing executed by the control unit 33. As shown in FIG. 4, first, the control unit 33 outputs an off instruction signal to the drive unit 30b of the MOSFET Q2 (S20). Due to the off instruction signal, the drive unit 30b does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal (Lo level signal). As a result, the MOSFET Q2 is turned off. A current flows from the bus 13a to the bus 13b through the diode D2.
 次いで、制御部33は、通常モードからの切り替わりか否かを判定する(S21)。通常モードからの切り替わり直後のタイミングの場合、制御部33は、MOSFETQ1の駆動部30aに対する指示信号をオフ指示信号に切り替え(S22)、S23へ移行する。オフ指示信号により、駆動部30aにおいて、昇圧回路300が昇圧動作を実行せず、ドライバ301からMOSFETQ1に対してオフ駆動信号が出力される。切り替わり直後ではない場合、S22の処理を経ずに、S23へ移行する。 Next, the control unit 33 determines whether or not the mode is switched from the normal mode (S21). In the case of the timing immediately after switching from the normal mode, the control unit 33 switches the instruction signal for the drive unit 30a of the MOSFET Q1 to the off instruction signal (S22), and shifts to S23. Due to the off instruction signal, the booster circuit 300 does not execute the booster operation in the drive unit 30a, and the driver 301 outputs an off drive signal to the MOSFET Q1. If it is not immediately after the switch, the process proceeds to S23 without going through the process of S22.
 次いで、制御部33は、MOSFETQ1の電圧信号VGSが閾値電圧Vth2より小さいか否かを判定する(S23)。制御部33は、コンパレータ32bの出力に基づいて、電圧信号VGSが閾値電圧Vth2より小さいか否かを判定する。 Next, the control unit 33 determines whether or not the voltage signal VGS of the MOSFET Q1 is smaller than the threshold voltage Vth2 (S23). The control unit 33 determines whether or not the voltage signal VGS is smaller than the threshold voltage Vth2 based on the output of the comparator 32b.
 電圧信号VGSが閾値電圧Vth2より小さい場合、制御部33は、駆動部30aに対して出力する指示信号を、オン指示信号に切り替える(S24)。オン指示信号により、駆動部30aにおいて、昇圧回路300が昇圧動作を実行し、ドライバ301からMOSFETQ1に対してオン駆動信号(Hiレベルの信号)が出力される。 When the voltage signal VGS is smaller than the threshold voltage Vth2, the control unit 33 switches the instruction signal output to the drive unit 30a to the on instruction signal (S24). In response to the ON instruction signal, the booster circuit 300 executes a boost operation in the drive unit 30a, and the driver 301 outputs an ON drive signal (Hi level signal) to the MOSFET Q1.
 S23において、電圧信号VGSが閾値電圧Vth2より小さくない場合、MOSFETQ1の電圧信号VGSが閾値電圧Vth1より大きいか否かを判定する(S25)。制御部33は、コンパレータ32aの出力に基づいて、電圧信号VGSが閾値電圧Vth1より大きいか否かを判定する。電圧信号VGSが閾値電圧Vth1より大きい場合、制御部33は、駆動部30aに対して出力する指示信号を、オフ指示信号に切り替える(S26)。オフ指示信号により、駆動部30aにおいて、昇圧回路300での昇圧は行われず、ドライバ301からオフ駆動信号が出力される。 In S23, when the voltage signal VGS is not smaller than the threshold voltage Vth2, it is determined whether or not the voltage signal VGS of the MOSFET Q1 is larger than the threshold voltage Vth1 (S25). The control unit 33 determines whether or not the voltage signal VGS is larger than the threshold voltage Vth1 based on the output of the comparator 32a. When the voltage signal VGS is larger than the threshold voltage Vth1, the control unit 33 switches the instruction signal output to the drive unit 30a to the off instruction signal (S26). Due to the off instruction signal, the drive unit 30a does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal.
 S25において、電圧信号VGSが閾値電圧Vth1より大きくない場合、すなわちVth2≦VGS≦Vth1の場合、制御部33は、駆動部30aに対して出力している現状の指示信号を保持する(S27)。 In S25, when the voltage signal VGS is not larger than the threshold voltage Vth1, that is, when Vth2 ≦ VGS ≦ Vth1, the control unit 33 holds the current instruction signal output to the drive unit 30a (S27).
 図5は、待機モードにおける各種波形を示している。図5に示す指示信号は、制御部33から、MOSFETQ1側の駆動部30aに対して出力される信号である。図5では、MOSFETQ1側の電圧信号VGSをVGS(Q1)と示し、MOSFETQ2側の電圧信号VGSをVGS(Q2)と示している。図5は、待機モードに切り替わった直後ではなく、所定時間経過した状態を示している。 FIG. 5 shows various waveforms in the standby mode. The instruction signal shown in FIG. 5 is a signal output from the control unit 33 to the drive unit 30a on the MOSFET Q1 side. In FIG. 5, the voltage signal VGS on the MOSFET Q1 side is shown as VGS (Q1), and the voltage signal VGS on the MOSFET Q2 side is shown as VGS (Q2). FIG. 5 shows a state in which a predetermined time has elapsed, not immediately after switching to the standby mode.
 上記したように、MOSFETQ1は、キャパシタC1を備えている。時刻t1で電圧信号VGS(Q1)が閾値電圧Vth2を下回ると、制御部33は、駆動部30aに対してオン指示信号を出力する。これにより、駆動部30aは、MOSFETQ1のゲートに対してオン駆動信号を出力する。オン駆動信号によりキャパシタC1が充電され、電圧信号VGS(Q1)が上昇する。 As described above, the MOSFET Q1 includes the capacitor C1. When the voltage signal VGS (Q1) falls below the threshold voltage Vth2 at time t1, the control unit 33 outputs an ON instruction signal to the drive unit 30a. As a result, the drive unit 30a outputs an on drive signal to the gate of the MOSFET Q1. The on drive signal charges the capacitor C1 and raises the voltage signal VGS (Q1).
 電圧信号VGS(Q1)が上昇し、時刻t2で閾値電圧Vth1を上回ると、制御部33は、駆動部30aに対してオフ指示信号を出力する。これにより、駆動部30aは、昇圧動作を停止し、MOSFETQ1のゲートに対してオフ駆動信号を出力する。キャパシタC1に蓄積された電荷により、電圧信号VGS(Q1)は、緩やかに下降する。電圧信号VGS(Q1)が時刻t3で閾値電圧Vth2を下回ると、制御部33は、駆動部30aに対して再びオン指示信号を出力する。 When the voltage signal VGS (Q1) rises and exceeds the threshold voltage Vth1 at time t2, the control unit 33 outputs an off instruction signal to the drive unit 30a. As a result, the drive unit 30a stops the boosting operation and outputs an off drive signal to the gate of the MOSFET Q1. The voltage signal VGS (Q1) gradually drops due to the charge accumulated in the capacitor C1. When the voltage signal VGS (Q1) falls below the threshold voltage Vth2 at time t3, the control unit 33 outputs an ON instruction signal to the drive unit 30a again.
 このように、制御部33は、待機モードにおいて、オン指示信号の出力とオフ指示信号の出力を、交互に実行する。制御部33は、駆動部30aに対して、オン駆動信号の出力動作を間欠で実行させる。駆動部30aは、時刻t1からt2までの間においてオン駆動信号を出力し、時刻t2からt3までの間においてオフ駆動信号を出力する。キャパシタC1の効果により、動作の一周期において、オフ駆動信号を出力する期間のほうが、オン駆動信号を出力する期間よりも長くなっている。 In this way, the control unit 33 alternately executes the output of the on instruction signal and the output of the off instruction signal in the standby mode. The control unit 33 causes the drive unit 30a to intermittently execute the output operation of the on drive signal. The drive unit 30a outputs an on drive signal between times t1 and t2, and outputs an off drive signal between times t2 and t3. Due to the effect of the capacitor C1, the period for outputting the off drive signal is longer than the period for outputting the on drive signal in one cycle of operation.
 制御部33は、電圧信号VGS(Q1)が閾値電圧Vth2を下回ると、直ちに、オン指示信号に切り替える。制御部33は、電圧信号VGS(Q1)が閾値電圧Vth1を上回ると、直ちに、オフ指示信号に切り替える。制御部33は、電圧信号VGS(Q1)が閾値電圧Vth2以上、閾値電圧Vth1以下の範囲内となるように制御する。よって、待機モードのほぼ全期間において、MOSFETQ1は、通常モードよりも抵抗値が高い状態で、電流が流れるオン状態に保持される。待機モードにおいて、MOSFETQ1は、ハーフオン状態に保持される。本実施形態では、上記した間欠動作により、電圧信号VGS(Q1)をフルオンに較べて低くすることで、ハーフオン状態としている。 When the voltage signal VGS (Q1) falls below the threshold voltage Vth2, the control unit 33 immediately switches to the on instruction signal. When the voltage signal VGS (Q1) exceeds the threshold voltage Vth1, the control unit 33 immediately switches to the off instruction signal. The control unit 33 controls so that the voltage signal VGS (Q1) is within the range of the threshold voltage Vth2 or more and the threshold voltage Vth1 or less. Therefore, during almost the entire period of the standby mode, the MOSFET Q1 is held in an on state in which a current flows in a state where the resistance value is higher than that in the normal mode. In the standby mode, the MOSFET Q1 is held in the half-on state. In the present embodiment, the voltage signal VGS (Q1) is lowered as compared with the full-on by the above-mentioned intermittent operation, so that the half-on state is set.
 上記したように、制御部33は、待機モード中、駆動部30bに対してオフ指示信号を出力する。よって、電圧信号VGS(Q2)は、図5に示すように、MOSFETQ2がオンしない所定の電圧、たとえば0Vとされる。MOSFETQ2は、オフ状態となる。待機モードでは、MOSFETQ1及びダイオードD2を介して電流が流れる。 As described above, the control unit 33 outputs an off instruction signal to the drive unit 30b during the standby mode. Therefore, as shown in FIG. 5, the voltage signal VGS (Q2) is set to a predetermined voltage at which the MOSFET Q2 does not turn on, for example, 0V. The MOSFET Q2 is turned off. In the standby mode, a current flows through the MOSFET Q1 and the diode D2.
 <第1実施形態のまとめ>
 本実施形態では、制御部33が、半導体スイッチ24のオン状態を、IGスイッチがオンされている通常モードと、IGスイッチがオフされている待機モードとで、異なる状態に制御する。制御部33は、通常モードにおいて、半導体スイッチ24を構成するMOSFETQ1を、抵抗値が低い状態でオン(フルオン)するように制御する。制御部33は、待機モードにおいて、MOSFETQ1を、通常モードよりも抵抗値が高い状態でオン(ハーフオン)するように制御する。待機モードにおいて、半導体スイッチ24は抵抗値が高い状態でオンするため、通常モード時に流れる電流(通常電流)より小さい電流(暗電流)を、半導体スイッチ24を介して第2負荷16に供給することができる。以上により、待機モード時に負荷へ暗電流を供給することができる。待機モードは、暗電流供給モードと称されることがある。
<Summary of the first embodiment>
In the present embodiment, the control unit 33 controls the on state of the semiconductor switch 24 to different states in the normal mode in which the IG switch is turned on and the standby mode in which the IG switch is turned off. The control unit 33 controls the MOSFET Q1 constituting the semiconductor switch 24 so as to be turned on (fully on) in a state where the resistance value is low in the normal mode. The control unit 33 controls the MOSFET Q1 so as to be turned on (half-on) in a state where the resistance value is higher than that in the normal mode in the standby mode. In the standby mode, since the semiconductor switch 24 is turned on with a high resistance value, a current (dark current) smaller than the current (normal current) flowing in the normal mode is supplied to the second load 16 via the semiconductor switch 24. Can be done. As described above, the dark current can be supplied to the load in the standby mode. The standby mode is sometimes referred to as a dark current supply mode.
 また、待機モードにおいて、通常モードよりもオン駆動信号の電圧(ゲート電圧)を低くすることで、半導体スイッチ24の抵抗値を高くする。待機モードでは、たとえば、上記したように昇圧回路300の動作を停止させることで、オン駆動信号の電圧を低くする。したがって、通電制御装置20の消費電流を低減することができる。 Further, in the standby mode, the resistance value of the semiconductor switch 24 is increased by lowering the voltage (gate voltage) of the on drive signal as compared with the normal mode. In the standby mode, for example, the voltage of the on drive signal is lowered by stopping the operation of the booster circuit 300 as described above. Therefore, the current consumption of the energization control device 20 can be reduced.
 本実施形態では、待機モードにおいて、制御部33が、オン指示信号を一時的に出力する。制御部33は、オン指示信号とオフ指示信号を交互に出力する。これにより、駆動部30aは間欠動作し、オン駆動信号を一時的に出力する。オン駆動信号の出力により、MOSFETQ1のキャパシタC1が充電される。オフ駆動信号に切り替えても、キャパシタC1に蓄積された電荷により、MOSFETQ1はハーフオン状態に保持される。このように、駆動部30aを間欠動作させることで、待機モード時に暗電流を供給しつつ、通電制御装置20の消費電流を低減することができる。 In the present embodiment, in the standby mode, the control unit 33 temporarily outputs an ON instruction signal. The control unit 33 alternately outputs an on instruction signal and an off instruction signal. As a result, the drive unit 30a operates intermittently and temporarily outputs an on drive signal. The capacitor C1 of the MOSFET Q1 is charged by the output of the on drive signal. Even if the signal is switched to the off drive signal, the MOSFET Q1 is held in the half-on state due to the electric charge accumulated in the capacitor C1. By intermittently operating the drive unit 30a in this way, it is possible to reduce the current consumption of the energization control device 20 while supplying dark current in the standby mode.
 本実施形態では、半導体スイッチ24が2つのMOSFETQ1,Q2を備えて構成されている。MOSFETQ1,Q2は、ソース同士が接続されている。ダイオードD1,D2は、アノード同士が接続されている。そして、制御部33は、駆動部30aを間欠動作させ、駆動部30bに対してオフ指示信号を継続して出力する。したがって、ハーフオン状態のMOSFETQ1及びダイオードD2を通じて、暗電流が流れる。MOSFETQ2をオフ状態にするので、通電制御装置20の消費電流をさらに低減することができる。 In the present embodiment, the semiconductor switch 24 is configured to include two MOSFETs Q1 and Q2. Sources of MOSFETs Q1 and Q2 are connected to each other. The anodes of the diodes D1 and D2 are connected to each other. Then, the control unit 33 intermittently operates the drive unit 30a and continuously outputs an off instruction signal to the drive unit 30b. Therefore, a dark current flows through the MOSFET Q1 and the diode D2 in the half-on state. Since the MOSFET Q2 is turned off, the current consumption of the energization control device 20 can be further reduced.
 本実施形態では、ソース基準のゲート電圧VGSを検出し、ゲート電圧VGSのレベルに応じて駆動部30aを間欠動作させる。ゲート電圧VGSをモニタしているため、MOSFETQ1の動作状態を切り替えやすい。 In the present embodiment, the source-referenced gate voltage VGS is detected, and the drive unit 30a is intermittently operated according to the level of the gate voltage VGS. Since the gate voltage VGS is monitored, it is easy to switch the operating state of the MOSFET Q1.
 <第1実施形態の変形例>
 電源システム10及び通電制御装置20の構成は、上記した例に限定されない。たとえば図6に示す変形例において、電源システム10は、ひとつの電源11Aのみを備えている。通電制御装置20は、電源11Aと負荷16Aの間に配置されている。通電制御装置20を構成する半導体スイッチ24は、ひとつのMOSFETQ1のみを有している。このような構成において、上記した制御が適用される。コントローラ25の図示しない制御部33は、通常モードと待機モードとで、半導体スイッチ24のオン状態が異なるように制御する。具体的には、MOSFETQ1のオン状態を、通常モードにおいて抵抗値が低い状態でオン(フルオン)し、待機モードにおいて抵抗値が高い状態でオン(ハーフオン)するように制御する。待機モードにおいて、図示しない駆動部30aを間欠動作させることで、MOSFETQ1をハーフオン状態に保持することができる。
<Modified example of the first embodiment>
The configurations of the power supply system 10 and the energization control device 20 are not limited to the above examples. For example, in the modification shown in FIG. 6, the power supply system 10 includes only one power supply 11A. The energization control device 20 is arranged between the power supply 11A and the load 16A. The semiconductor switch 24 constituting the energization control device 20 has only one MOSFET Q1. In such a configuration, the above control is applied. The control unit 33 (not shown) of the controller 25 controls the semiconductor switch 24 so that the ON state is different between the normal mode and the standby mode. Specifically, the ON state of the MOSFET Q1 is controlled so as to be turned on (full on) with a low resistance value in the normal mode and turned on (half on) with a high resistance value in the standby mode. In the standby mode, the MOSFET Q1 can be held in the half-on state by intermittently operating the drive unit 30a (not shown).
 第1電源11側のMOSFETQ1の駆動部30aを間欠動作させ、第2負荷16側のMOSFETQ2をオフ状態にする例を示したが、これに限定されない。半導体スイッチ24が直列接続された2つのMOSFETQ1,Q2を備える構成において、MOSFETQ2を、MOSFETQ1同様の状態、すなわちハーフオン状態に制御してもよい。この場合、MOSFETQ1,Q2で駆動部30を共通にすることも可能である。ハーフオン状態のMOSFETQ1,Q2を通じて、第1電源11から第2負荷16へ暗電流を供給することができる。駆動部30の間欠動作により、通電制御装置20の消費電流を低減することができる。なお、上記したように、MOSFETQ2をオフ状態にすると、消費電流をさらに低減することができる。 An example is shown in which the drive unit 30a of the MOSFET Q1 on the first power supply 11 side is intermittently operated to turn off the MOSFET Q2 on the second load 16 side, but the present invention is not limited to this. In a configuration including two MOSFETs Q1 and Q2 in which the semiconductor switches 24 are connected in series, the MOSFET Q2 may be controlled to a state similar to that of the MOSFET Q1, that is, a half-on state. In this case, the drive unit 30 can be shared by the MOSFETs Q1 and Q2. A dark current can be supplied from the first power supply 11 to the second load 16 through the MOSFETs Q1 and Q2 in the half-on state. The intermittent operation of the drive unit 30 can reduce the current consumption of the energization control device 20. As described above, when the MOSFET Q2 is turned off, the current consumption can be further reduced.
 制御部33が、ゲート電圧VGSに基づいて指示信号を切り替える例を示したが、これに限定されない。ゲート電圧VGSに代えて、図7に示す変形例のように、半導体スイッチ24の両端電圧を検出してもよい。すなわち、両端電圧に基づいて、半導体スイッチ24に流れる電流の状態を検出してもよい。 The control unit 33 has shown an example of switching the instruction signal based on the gate voltage VGS, but the present invention is not limited to this. Instead of the gate voltage VGS, the voltage across the semiconductor switch 24 may be detected as in the modified example shown in FIG. That is, the state of the current flowing through the semiconductor switch 24 may be detected based on the voltage across the semiconductor.
 図7において、検出部31の差動増幅器31aは、半導体スイッチ24の一端側の電圧V1と、他端側の電圧V2との差に応じた電圧信号V12を出力する。以下では、電圧信号V12を、両端電圧V12と称することがある。差動増幅器31aは、電圧V1が電圧V2よりも高いときには、その差に応じた分だけ、基準電圧Vref-bよりも高い電圧信号V12を出力する。判定部32は、上記同様、2つのコンパレータ32a,32bを有している。コンパレータ32aは、電圧信号V12と閾値電圧Vth3とを比較する。コンパレータ32bは、電圧信号V12と閾値電圧Vth4とを比較する。閾値電圧Vth3は、閾値電圧Vth4よりも高い電圧である。閾値電圧Vth3が上限閾値、閾値電圧Vth4が下限閾値である。たとえば駆動部30aのみを間欠動作させる場合、制御部33は、コンパレータ32aからHi信号が出力されると、駆動部30aに出力する指示信号を、オン指示信号に切り替える。コンパレータ32bからLo信号が出力されると、駆動部30aに出力するオフ指示信号に切り替える。 In FIG. 7, the differential amplifier 31a of the detection unit 31 outputs a voltage signal V12 according to the difference between the voltage V1 on one end side and the voltage V2 on the other end side of the semiconductor switch 24. Hereinafter, the voltage signal V12 may be referred to as a voltage across V12. When the voltage V1 is higher than the voltage V2, the differential amplifier 31a outputs a voltage signal V12 higher than the reference voltage Vref-b by the amount corresponding to the difference. The determination unit 32 has two comparators 32a and 32b as described above. The comparator 32a compares the voltage signal V12 with the threshold voltage Vth3. The comparator 32b compares the voltage signal V12 with the threshold voltage Vth4. The threshold voltage Vth3 is a voltage higher than the threshold voltage Vth4. The threshold voltage Vth3 is the upper limit threshold value, and the threshold voltage Vth4 is the lower limit threshold value. For example, when only the drive unit 30a is operated intermittently, the control unit 33 switches the instruction signal output to the drive unit 30a to the on instruction signal when the Hi signal is output from the comparator 32a. When the Lo signal is output from the comparator 32b, the signal is switched to the off instruction signal output to the drive unit 30a.
 図7では、両端電圧V12として、半導体スイッチ24の両端の電圧の例を示したが、これに限定されない。図8に示す変形例のように、電流検出用のシャント抵抗26を設け、シャント抵抗26の両端の電圧を、両端電圧V12としてもよい。図8では、シャント抵抗26を、通電経路23において、MOSFETQ1,Q2の間に設けている。これに代えて、端子21とMOSFETQ1の間、端子22とMOSFETQ2の間に設けてもよい。図7及び図8に示す例は、駆動部30aのみ間欠動作させる構成、駆動部30a,30bを間欠動作させる構成のいずれにも適用が可能である。 FIG. 7 shows an example of the voltage across the semiconductor switch 24 as the voltage across V12, but the voltage is not limited to this. As in the modified example shown in FIG. 8, a shunt resistor 26 for current detection may be provided, and the voltage across the shunt resistor 26 may be a voltage V12 across the shunt resistor 26. In FIG. 8, a shunt resistor 26 is provided between MOSFETs Q1 and Q2 in the energization path 23. Instead of this, it may be provided between the terminal 21 and the MOSFET Q1 and between the terminal 22 and the MOSFET Q2. The examples shown in FIGS. 7 and 8 can be applied to both a configuration in which only the drive unit 30a is intermittently operated and a configuration in which the drive units 30a and 30b are intermittently operated.
 図示を省略するが、ダイオードD2の両端電圧を、両端電圧V12としてもよい。駆動部30aを間欠動作させ、MOSFETQ2をオフ状態にする構成に適用が可能である。待機モードにおいて、第2負荷16側のMOSFETQ2がオフされ、暗電流がダイオードD2を流れる。したがって、ダイオードD2の両端電圧に基づいて、制御部33の指示信号を切り替えることができる。 Although not shown, the voltage across the diode D2 may be the voltage across V12. It can be applied to a configuration in which the drive unit 30a is operated intermittently to turn off the MOSFET Q2. In the standby mode, the MOSFET Q2 on the second load 16 side is turned off, and a dark current flows through the diode D2. Therefore, the instruction signal of the control unit 33 can be switched based on the voltage across the diode D2.
 待機モードにおいて、暗電流を連続的に供給する例を示したが、これに限定されない。第2負荷16の機能に応じて、暗電流を断続的に供給するようにしてもよい。上記した例では、待機モードのほぼ全期間において、MOSFETQ1をハーフオン状態に制御したが、ハーフオン状態とオフ状態とを交互に繰り返すように制御してもよい。オフ状態を設けることで、暗電流が供給されない期間を設けることができる。また、フルオン状態と、ハーフオン状態と、オフ状態の順に繰り返すよう制御してもよい。制御状態として、少なくともハーフオン状態を含めばよい。 An example of continuously supplying dark current in the standby mode is shown, but the present invention is not limited to this. Depending on the function of the second load 16, the dark current may be supplied intermittently. In the above example, the MOSFET Q1 is controlled to be in the half-on state for almost the entire period of the standby mode, but it may be controlled so that the half-on state and the off state are alternately repeated. By providing the off state, it is possible to provide a period during which the dark current is not supplied. Further, it may be controlled to repeat in the order of full-on state, half-on state, and off state. The control state may include at least a half-on state.
 制御部33が、ゲート電圧VGSや両端電圧V12に基づいて、指示信号を切り替える例を示したが、これに限定されない。図9に示す変形例のように、コントローラ25が、タイマ部34を備える構成としてもよい。タイマ部34は、タイマカウンタなどを備えた回路である。タイマ部34は、オン、オフを所定周期で繰り返す信号を生成し、制御部33に出力する。タイマ部34は、待機モードにおいて制御部33が指示信号を切り替えるタイミング信号を生成する。待機モードにおいて、制御部33は、時間T1の間、オン指示信号を出力し、次いで時間T2の間、オフ指示信号を出力する。時間T2を時間T1よりも長くすると、消費電流をより低減することができる。 Although the control unit 33 has shown an example of switching the instruction signal based on the gate voltage VGS and the voltage across the ends V12, the present invention is not limited to this. As in the modified example shown in FIG. 9, the controller 25 may be configured to include the timer unit 34. The timer unit 34 is a circuit including a timer counter and the like. The timer unit 34 generates a signal that repeats on and off at a predetermined cycle, and outputs the signal to the control unit 33. The timer unit 34 generates a timing signal for the control unit 33 to switch the instruction signal in the standby mode. In the standby mode, the control unit 33 outputs an on instruction signal during the time T1 and then outputs an off instruction signal during the time T2. When the time T2 is longer than the time T1, the current consumption can be further reduced.
 時間T1,T2を適宜設定することで、暗電流を連続的に供給する構成、暗電流を断続的に供給する構成のいずれも可能である。その際、タイマ部34を間欠動作させてもよい。間欠動作によって、通電制御装置20の消費電流を低減することができる。なお、上記した他の構成において、検出部31及び判定部32を間欠動作させてもよい。これにより、通電制御装置20の消費電流を低減することができる。また、間欠動作により、暗電流の断続的な供給も可能となる。 By appropriately setting the times T1 and T2, both a configuration in which the dark current is continuously supplied and a configuration in which the dark current is intermittently supplied are possible. At that time, the timer unit 34 may be operated intermittently. The intermittent operation can reduce the current consumption of the energization control device 20. In the other configuration described above, the detection unit 31 and the determination unit 32 may be operated intermittently. As a result, the current consumption of the energization control device 20 can be reduced. In addition, the intermittent operation enables intermittent supply of dark current.
 キャパシタC1,C2として、MOSFETQ1,Q2の寄生キャパシタの例を示したが、これに限定されない。キャパシタC1,C2として、図10に示す変形例のように、外付けのキャパシタを採用することもできる。図10に示すキャパシタC1,C2は、ゲート電圧VGSを保持するために、MOSFETQ1,Q2が備えるゲート-ソース間の寄生キャパシタより大きい容量が設定されている。 Examples of the parasitic capacitors of MOSFETs Q1 and Q2 are shown as the capacitors C1 and C2, but the present invention is not limited to this. As the capacitors C1 and C2, an external capacitor can be adopted as in the modified example shown in FIG. Capacitors C1 and C2 shown in FIG. 10 are set to have a larger capacitance than the gate-source parasitic capacitors included in MOSFETs Q1 and Q2 in order to hold the gate voltage VGS.
 MOSFETQ1のゲートとソースとの間において、キャパシタC1は、スイッチSW1と直列接続されている。MOSFETQ2のゲートとソースとの間において、キャパシタC2は、スイッチSW2と直列接続されている。スイッチSW1,SW2は、たとえば制御部33により、通常モードにおいてオフされ、待機モードにおいてオンされる。キャパシタC1,C2の容量は寄生キャパシタよりも大きいので、オフ指示信号に切り替えた後、たとえばゲート電圧VGSをより長い時間において閾値電圧Vth2以上に保持することができる。 Capacitor C1 is connected in series with switch SW1 between the gate and source of MOSFET Q1. The capacitor C2 is connected in series with the switch SW2 between the gate and the source of the MOSFET Q2. The switches SW1 and SW2 are turned off in the normal mode and turned on in the standby mode by, for example, the control unit 33. Since the capacitances of the capacitors C1 and C2 are larger than those of the parasitic capacitors, the gate voltage VGS can be held at the threshold voltage Vth2 or higher for a longer time after switching to the off instruction signal.
 図示を省略するが、通電制御装置20を構成する半導体スイッチ24及びコントローラ25を別体としてもよい。たとえば半導体スイッチ24を、端子21,22及び通電経路23とともにスイッチモジュールとし、コントローラ25を、スイッチモジュールとは別の電子制御装置としてもよい。 Although not shown, the semiconductor switch 24 and the controller 25 constituting the energization control device 20 may be separated. For example, the semiconductor switch 24 may be a switch module together with the terminals 21 and 22 and the energization path 23, and the controller 25 may be an electronic control unit separate from the switch module.
 バス13a,13bに接続される負荷は、上記した例に限定されない。バス13aに対して、第1負荷15とともに、その他の負荷が接続されてもよい。バス13bに対して、第2負荷16とともに、その他の負荷が接続されてもよい。 The load connected to the buses 13a and 13b is not limited to the above example. Other loads may be connected to the bus 13a together with the first load 15. Other loads may be connected to the bus 13b together with the second load 16.
 バス13a,13bの間に、ひとつの通電制御装置20が配置される例を示したが、これに限定されない。たとえばバス13a,13b間において、複数の通電制御装置20が互いに並列接続された構成としてもよい。 An example is shown in which one energization control device 20 is arranged between the buses 13a and 13b, but the present invention is not limited to this. For example, a plurality of energization control devices 20 may be connected in parallel between the buses 13a and 13b.
 電源システム10は、第1電力系統に、通電制御装置20を介して、第2電力系統が単純にアドオンされたシステムであった。通電制御装置20の適用は、このようなアドオン型の電源システム10に限定されない。たとえば3つ以上の電力系統が、通電制御装置20を介して直列に連なるバックボーン型のシステムにも適用することができる。 The power supply system 10 was a system in which the second power system was simply added to the first power system via the energization control device 20. The application of the energization control device 20 is not limited to such an add-on type power supply system 10. For example, it can be applied to a backbone type system in which three or more power systems are connected in series via an energization control device 20.
 図11に示す変形例は、通電制御装置20として2つの通電制御装置20A,20Bを備えたバックボーン型の電源システム10となっている。図11では、バス13a,13cの間に通電制御装置20Aが配置され、バス13b,13cの間に通電制御装置20Bが配置されている。バス13aには第1電源11が接続され、バス13bには第2電源12が接続されている。バス13cには、負荷16Bが接続されている。IGスイッチがオフされると、たとえば第1電源11から通電制御装置20の半導体スイッチ24を介して、負荷16Bに暗電流が供給される。図11に示す構成では、通電制御装置20Bが上記したリレー14の機能も兼ねる。 The modified example shown in FIG. 11 is a backbone type power supply system 10 provided with two energization control devices 20A and 20B as the energization control device 20. In FIG. 11, the energization control device 20A is arranged between the buses 13a and 13c, and the energization control device 20B is arranged between the buses 13b and 13c. The first power supply 11 is connected to the bus 13a, and the second power supply 12 is connected to the bus 13b. A load 16B is connected to the bus 13c. When the IG switch is turned off, a dark current is supplied to the load 16B from, for example, the first power supply 11 via the semiconductor switch 24 of the energization control device 20. In the configuration shown in FIG. 11, the energization control device 20B also functions as the relay 14 described above.
 また、図示を省略するが、通電制御装置20を、リング型の電源システム10に適用することもできる。リング型の電源システム10は、図11に示したようなバックボーン構造を、環状に繋げた構造をなしている。 Although not shown, the energization control device 20 can also be applied to the ring-type power supply system 10. The ring-type power supply system 10 has a structure in which backbone structures as shown in FIG. 11 are connected in an annular shape.
 半導体スイッチ24を介して、第1電源11から第2負荷16へ暗電流を供給する例を示したが、これに限定されない。たとえば第1電源11をバス13aに対して遮断し、半導体スイッチ24を介して、第2電源12から第1負荷15へ暗電流を供給するように構成してもよい。 An example of supplying a dark current from the first power supply 11 to the second load 16 via the semiconductor switch 24 has been shown, but the present invention is not limited to this. For example, the first power supply 11 may be cut off from the bus 13a, and a dark current may be supplied from the second power supply 12 to the first load 15 via the semiconductor switch 24.
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。先行実施形態の記載を援用することができる。先行実施形態では、駆動部30の間欠動作によって、半導体スイッチ24(MOSFETQ1)を、通常モードよりもオン抵抗が高い状態で電流が流れるオン状態にした。これに代えて、待機モードにおいて用いる駆動部30を切り替えることで、半導体スイッチ24を、通常モードよりもオン抵抗が高い状態で電流が流れるオン状態にしてもよい。
(Second Embodiment)
This embodiment is a modification based on the preceding embodiment. The description of the prior embodiment can be incorporated. In the preceding embodiment, the semiconductor switch 24 (MOSFET Q1) is turned on by the intermittent operation of the drive unit 30 so that the current flows in a state where the on resistance is higher than that in the normal mode. Instead of this, by switching the drive unit 30 used in the standby mode, the semiconductor switch 24 may be put into an on state in which a current flows in a state where the on resistance is higher than that in the normal mode.
 電源システム10の構成は、先行実施形態(図1参照)と同じである。本実施形態の通電制御装置20も、外部接続用の端子21,22と、半導体スイッチ24と、コントローラ25を備えている。半導体スイッチ24の構成も、先行実施形態(図1参照)と同じとされている。 The configuration of the power supply system 10 is the same as that of the preceding embodiment (see FIG. 1). The energization control device 20 of this embodiment also includes terminals 21 and 22 for external connection, a semiconductor switch 24, and a controller 25. The configuration of the semiconductor switch 24 is also the same as that of the prior embodiment (see FIG. 1).
 図12に示すように、コントローラ25は、駆動部30と、制御部33を備えている。制御部33は、駆動部30に対して指示信号を出力する。制御部33には、IG信号や過電流検出結果が入力される。制御部33は、IG信号、過電流検出結果などに応じて、制御モードを切り替え可能に構成されている。制御部33は、制御モードに応じた指示信号を、駆動部30に対して出力する。 As shown in FIG. 12, the controller 25 includes a drive unit 30 and a control unit 33. The control unit 33 outputs an instruction signal to the drive unit 30. An IG signal and an overcurrent detection result are input to the control unit 33. The control unit 33 is configured to be able to switch the control mode according to the IG signal, the overcurrent detection result, and the like. The control unit 33 outputs an instruction signal corresponding to the control mode to the drive unit 30.
 駆動部30は、制御部33からの指示信号に従い、MOSFETQ1,Q2のゲートに対して駆動信号を出力する。駆動部30は、駆動信号として、MOSFETQ1,Q2をオンさせるために、オン駆動信号を出力する。駆動部30は、駆動信号として、MOSFETQ1,Q2をオフさせるために、オフ駆動信号を出力する。 The drive unit 30 outputs a drive signal to the gates of MOSFETs Q1 and Q2 in accordance with the instruction signal from the control unit 33. The drive unit 30 outputs an on drive signal as a drive signal in order to turn on the MOSFETs Q1 and Q2. The drive unit 30 outputs an off drive signal as a drive signal in order to turn off the MOSFETs Q1 and Q2.
 図13は、コントローラ25のうち、駆動部30を示している。図12及び図13に示すように、駆動部30は、昇圧回路300を備えた駆動部30cと、昇圧回路300を備えない駆動部30d,30eを有している。 FIG. 13 shows the drive unit 30 of the controller 25. As shown in FIGS. 12 and 13, the drive unit 30 includes a drive unit 30c having a booster circuit 300 and drive units 30d and 30e not having a booster circuit 300.
 駆動部30cは、先行実施形態に示した駆動部30a,30b同様、昇圧回路300と、ドライバ301を有している。オン指示信号が入力されると、昇圧回路300は、昇圧動作を実行する。ドライバ301は、オン指示信号に応じて動作し、昇圧回路300による昇圧電圧に応じたオン駆動信号を出力する。本実施形態では、MOSFETQ1,Q2に対して駆動部30cが共通とされている。駆動部30cから出力されたオン駆動信号により、MOSFETQ1,Q2がともにオン状態となる。 The drive unit 30c has a booster circuit 300 and a driver 301, as in the drive units 30a and 30b shown in the preceding embodiment. When the ON instruction signal is input, the booster circuit 300 executes a booster operation. The driver 301 operates in response to the on-instruction signal, and outputs an on-drive signal in response to the boost voltage by the booster circuit 300. In this embodiment, the drive unit 30c is common to the MOSFETs Q1 and Q2. Both MOSFETs Q1 and Q2 are turned on by the on drive signal output from the drive unit 30c.
 駆動部30dは、低圧回路302と、ドライバ301を有している。低圧回路302は、昇圧回路300の昇圧電圧より低い電圧をドライバ301に出力する。ドライバ301は、オン指示信号に応じて動作し、低圧回路302による低電圧に応じたオン駆動信号を出力する。駆動部30dは、MOSFETQ1のゲートに、オン駆動信号を出力する。 The drive unit 30d has a low voltage circuit 302 and a driver 301. The low voltage circuit 302 outputs a voltage lower than the boost voltage of the booster circuit 300 to the driver 301. The driver 301 operates in response to the on instruction signal, and outputs an on drive signal in response to the low voltage of the low voltage circuit 302. The drive unit 30d outputs an on drive signal to the gate of the MOSFET Q1.
 図13に示すように、低圧回路302は、差動増幅器302aを有している。低圧回路302は、通電経路23において端子21側の電圧V21と、端子22側の電圧V22との差に応じた電圧信号Vout1を出力する。電圧信号Vout1は、下記式で示される。
 (数1)Vout1=(V21-V22)×(R1/R2)+V22
As shown in FIG. 13, the low voltage circuit 302 has a differential amplifier 302a. The low-voltage circuit 302 outputs a voltage signal Vout1 corresponding to the difference between the voltage V21 on the terminal 21 side and the voltage V22 on the terminal 22 side in the energization path 23. The voltage signal Vout1 is represented by the following equation.
(Equation 1) Vout1 = (V21-V22) × (R1 / R2) + V22
 差動増幅器302aの非反転入力端子には、電圧V22も入力される。差動増幅器302aは、電圧V21が電圧V22よりも高いときには、その差に応じた分だけ、電圧V22よりも高い電圧信号Vout1を出力する。ドライバ301は、ソースの電圧VSを基準として、電圧信号Vout1に応じたオン駆動信号を、MOSFETQ1のゲートに出力する。 The voltage V22 is also input to the non-inverting input terminal of the differential amplifier 302a. When the voltage V21 is higher than the voltage V22, the differential amplifier 302a outputs a voltage signal Vout1 higher than the voltage V22 by the amount corresponding to the difference. The driver 301 outputs an on-drive signal corresponding to the voltage signal Vout1 to the gate of the MOSFET Q1 with reference to the source voltage VS.
 駆動部30eは、低圧回路303と、ドライバ301を有している。低圧回路303も、昇圧回路300の昇圧電圧より低い電圧をドライバ301に出力する。ドライバ301は、オン指示信号に応じて動作し、低圧回路303による低電圧に応じたオン駆動信号を出力する。駆動部30eは、MOSFETQ2のゲートに、オン駆動信号を出力する。 The drive unit 30e has a low voltage circuit 303 and a driver 301. The low voltage circuit 303 also outputs a voltage lower than the boost voltage of the booster circuit 300 to the driver 301. The driver 301 operates in response to the on instruction signal, and outputs an on drive signal in response to the low voltage of the low voltage circuit 303. The drive unit 30e outputs an on drive signal to the gate of the MOSFET Q2.
 図13に示すように、低圧回路303は、差動増幅器303aを有している。低圧回路303は、電圧V22と電圧V21との差に応じた電圧信号Vout2を出力する。電圧信号Vout2は、下記式で示される。
 (数2)Vout2=(V22-V21)×(R5/R6)+V21
As shown in FIG. 13, the low voltage circuit 303 has a differential amplifier 303a. The low voltage circuit 303 outputs a voltage signal Vout2 corresponding to the difference between the voltage V22 and the voltage V21. The voltage signal Vout2 is represented by the following equation.
(Equation 2) Vout2 = (V22-V21) × (R5 / R6) + V21
 差動増幅器303aの非反転入力端子には、電圧V21も入力される。差動増幅器303aは、電圧V22が電圧V21よりも高いときには、その差に応じた分だけ、電圧V21よりも高い電圧信号Vout2を出力する。ドライバ301は、ソースの電圧VSを基準として、電圧信号Vout2に応じたオン駆動信号を、MOSFETQ2のゲートに出力する。なお、R1,R2,R3,R4,R5,R6,R7,R8は各抵抗の抵抗値を示している。VSは、MOSFETQ1,Q2のソースの電圧を示している。 The voltage V21 is also input to the non-inverting input terminal of the differential amplifier 303a. When the voltage V22 is higher than the voltage V21, the differential amplifier 303a outputs a voltage signal Vout2 higher than the voltage V21 by the amount corresponding to the difference. The driver 301 outputs an on-drive signal corresponding to the voltage signal Vout2 to the gate of the MOSFET Q2 with reference to the source voltage VS. Note that R1, R2, R3, R4, R5, R6, R7, and R8 indicate the resistance value of each resistor. VS indicates the voltage of the source of MOSFETs Q1 and Q2.
 電圧信号Vout1,Vout2は、昇圧電圧よりも低い電圧である。このため、駆動部30d,30eから出力されるオン駆動信号は、駆動部30cから出力されるオン駆動信号よりも電圧が低い。 The voltage signals Vout1 and Vout2 are lower than the boosted voltage. Therefore, the on-drive signal output from the drive units 30d and 30e has a lower voltage than the on-drive signal output from the drive unit 30c.
 <制御部が実行する処理>
 図示を省略するが、制御部33は、先行実施形態(図3参照)同様の処理を実行する。遮断モードを設定すると、制御部33は、駆動部30cに対してオフ指示信号を出力し、一連の処理を終了する。オフ指示信号により、駆動部30cにおいて、昇圧回路300での昇圧は行われず、ドライバ301から、オフ駆動信号が出力される。これにより、MOSFETQ1,Q2がともにオフ状態となり、バス13a,13b間が遮断される。
<Processes executed by the control unit>
Although not shown, the control unit 33 executes the same processing as in the preceding embodiment (see FIG. 3). When the cutoff mode is set, the control unit 33 outputs an off instruction signal to the drive unit 30c and ends a series of processing. Due to the off instruction signal, the drive unit 30c does not boost the voltage in the booster circuit 300, and the driver 301 outputs an off drive signal. As a result, both MOSFETs Q1 and Q2 are turned off, and the buses 13a and 13b are cut off.
 通常モードを設定すると、制御部33は、駆動部30cに対してオン指示信号を出力し、一連の処理を終了する。オン指示信号により、駆動部30cにおいて、昇圧回路300が昇圧動作する。ドライバ301は、オン指示信号に応じて動作し、昇圧電圧に応じたオン駆動信号を出力する。これにより、MOSFETQ1,Q2がともにオン状態となり、バス13a,13bが導通状態となる。 When the normal mode is set, the control unit 33 outputs an on instruction signal to the drive unit 30c and ends a series of processing. The booster circuit 300 is boosted by the ON instruction signal in the drive unit 30c. The driver 301 operates in response to the on instruction signal and outputs an on drive signal in response to the boosted voltage. As a result, the MOSFETs Q1 and Q2 are both turned on, and the buses 13a and 13b are brought into a conductive state.
 通常モードにおいて、MOSFETQ1,Q2のゲートには、オン駆動信号として昇圧電圧に応じた信号が入力される。このオン駆動信号は、MOSFETQ1,Q2のスレッショルド電圧(Vt)よりも十分に高い。このため、MOSFETQ1,Q2は、抵抗値(オン抵抗)が小さいフルオン状態で駆動する。 In the normal mode, a signal corresponding to the boosted voltage is input to the gates of MOSFETs Q1 and Q2 as an on-drive signal. This on-drive signal is sufficiently higher than the threshold voltage (Vt) of MOSFETs Q1 and Q2. Therefore, the MOSFETs Q1 and Q2 are driven in a fully on state where the resistance value (on resistance) is small.
 待機モードを設定すると、制御部33は、駆動部30d,30eに対してオン指示信号を出力する。制御部33は、通常モードから待機モードへの切り替えにともなって、オン指示信号の出力先を、駆動部30cから駆動部30d,30eに切り替える。待機モードにおいて、MOSFETQ1,Q2のゲートには、オン駆動信号として対応する電圧信号Vout1,Vout2に応じた信号が入力される。 When the standby mode is set, the control unit 33 outputs an on instruction signal to the drive units 30d and 30e. The control unit 33 switches the output destination of the ON instruction signal from the drive unit 30c to the drive units 30d and 30e as the mode is switched from the normal mode to the standby mode. In the standby mode, signals corresponding to the corresponding voltage signals Vout1 and Vout2 are input to the gates of MOSFETs Q1 and Q2 as on-drive signals.
 電圧V21>電圧V22の場合、電圧信号Vout1に応じたオン駆動信号は、スレッショルド電圧(Vt)よりも高いものの、昇圧電圧に応じたオン駆動信号よりも低い。したがって、MOSFETQ1は、通常モード時よりも抵抗値(オン抵抗)が大きいハーフオン状態で駆動する。これにより、待機モード時において、通常モード時に流れる電流よりも小さい暗電流が流れる。電圧V21>電圧V22により、駆動部30eのドライバ301からオフ駆動信号が出力される。このため、MOSFETQ2はオフ状態となる。第1電源11から、MOSFETQ1及びダイオードD2を通じて、第2負荷16に暗電流が流れる。 When voltage V21> voltage V22, the on-drive signal corresponding to the voltage signal Vout1 is higher than the threshold voltage (Vt), but lower than the on-drive signal according to the boosted voltage. Therefore, the MOSFET Q1 is driven in a half-on state in which the resistance value (on resistance) is larger than in the normal mode. As a result, in the standby mode, a dark current smaller than the current flowing in the normal mode flows. When voltage V21> voltage V22, an off drive signal is output from the driver 301 of the drive unit 30e. Therefore, the MOSFET Q2 is turned off. A dark current flows from the first power supply 11 to the second load 16 through the MOSFET Q1 and the diode D2.
 電圧V22>電圧V21の場合、電圧信号Vout2に応じたオン駆動信号は、スレッショルド電圧(Vt)よりも高いものの、昇圧電圧に応じたオン駆動信号よりも低い。したがって、MOSFETQ2は、通常モード時よりも抵抗値(オン抵抗)が大きいハーフオン状態で駆動する。これにより、待機モード時において、通常モード時に流れる電流よりも小さい暗電流が流れる。電圧V22>電圧V21により、駆動部30dのドライバ301からオフ駆動信号が出力される。このため、MOSFETQ1はオフ状態となる。第2電源12から、MOSFETQ2及びダイオードD1を通じて、第1負荷15に暗電流が流れる。 When voltage V22> voltage V21, the on-drive signal corresponding to the voltage signal Vout2 is higher than the threshold voltage (Vt), but lower than the on-drive signal according to the boosted voltage. Therefore, the MOSFET Q2 is driven in a half-on state in which the resistance value (on resistance) is larger than in the normal mode. As a result, in the standby mode, a dark current smaller than the current flowing in the normal mode flows. When the voltage V22> the voltage V21, the off drive signal is output from the driver 301 of the drive unit 30d. Therefore, the MOSFET Q1 is turned off. A dark current flows from the second power source 12 to the first load 15 through the MOSFET Q2 and the diode D1.
 なお、駆動部30cが、第1駆動部に相当する。駆動部30cが出力するオン駆動信号が、第1オン駆動信号に相当する。駆動部30d,30eが、第2駆動部に相当する。駆動部30d,30eが出力するオン駆動信号が、第2オン駆動信号に相当する。制御部33が、切替部に相当する。 The drive unit 30c corresponds to the first drive unit. The on-drive signal output by the drive unit 30c corresponds to the first on-drive signal. The drive units 30d and 30e correspond to the second drive unit. The on-drive signals output by the drive units 30d and 30e correspond to the second on-drive signals. The control unit 33 corresponds to the switching unit.
 <第2実施形態のまとめ>
 本実施形態では、制御部33が、半導体スイッチ24のオン状態を、IGスイッチがオンされている通常モードと、IGスイッチがオフされている待機モードとで、異なる状態に制御する。制御部33は、通常モードにおいて、半導体スイッチ24を構成するMOSFETQ1,Q2を、抵抗値が低い状態でオン(フルオン)するように制御する。たとえば電圧V21>電圧V22の場合、制御部33は、待機モードにおいて、MOSFETQ1を、通常モードよりも抵抗値が高い状態でオン(ハーフオン)するように制御する。よって、通常モード時に流れる電流(通常電流)より小さい電流(暗電流)を、半導体スイッチ24を介して第2負荷16に供給することができる。以上により、待機モード時に負荷へ暗電流を供給することができる。
<Summary of the second embodiment>
In the present embodiment, the control unit 33 controls the on state of the semiconductor switch 24 to different states in the normal mode in which the IG switch is turned on and the standby mode in which the IG switch is turned off. The control unit 33 controls the MOSFETs Q1 and Q2 constituting the semiconductor switch 24 so as to be turned on (fully on) in a state where the resistance value is low in the normal mode. For example, when voltage V21> voltage V22, the control unit 33 controls the MOSFET Q1 so as to be turned on (half-on) in a state where the resistance value is higher than that in the normal mode in the standby mode. Therefore, a current (dark current) smaller than the current (normal current) flowing in the normal mode can be supplied to the second load 16 via the semiconductor switch 24. As described above, the dark current can be supplied to the load in the standby mode.
 また、待機モードにおいて、通常モードよりもオン駆動信号の電圧を低くすることで、半導体スイッチ24の抵抗値を高くする。待機モードでは、オン駆動信号の生成に、昇圧が不要である。したがって、通電制御装置20の消費電流を低減することができる。 Further, in the standby mode, the resistance value of the semiconductor switch 24 is increased by lowering the voltage of the on drive signal as compared with the normal mode. In standby mode, no boost is required to generate the on-drive signal. Therefore, the current consumption of the energization control device 20 can be reduced.
 本実施形態では、通常モードにおいて、制御部33が、昇圧回路300を備えた駆動部30cを駆動させる。これにより、通常モードでは、昇圧電圧に応じたオン駆動信号が出力され、MOSFETQ1,Q2がフルオン状態となる。一方、待機モードにおいて、制御部33が、たとえば昇圧回路300を備えない駆動部30dを駆動させる。これにより、待機モードでは、通常モードよりも電圧の低いオン駆動信号が出力され、MOSFETQ1はハーフオン状態に保持される。したがって、待機モード時に暗電流を供給しつつ、通電制御装置20の消費電流を低減することができる。 In the present embodiment, in the normal mode, the control unit 33 drives the drive unit 30c provided with the booster circuit 300. As a result, in the normal mode, an on drive signal corresponding to the boosted voltage is output, and the MOSFETs Q1 and Q2 are in a fully on state. On the other hand, in the standby mode, the control unit 33 drives, for example, the drive unit 30d not provided with the booster circuit 300. As a result, in the standby mode, an on drive signal having a lower voltage than in the normal mode is output, and the MOSFET Q1 is held in the half-on state. Therefore, it is possible to reduce the current consumption of the energization control device 20 while supplying the dark current in the standby mode.
 本実施形態でも、半導体スイッチ24が2つのMOSFETQ1,Q2を備えて構成されている。MOSFETQ1,Q2は、ソース同士が接続されている。ダイオードD1,D2は、アノード同士が接続されている。待機モードにおいて、制御部33は、オン指示信号を駆動部30d,30eに出力する。駆動部30d,30eのひとつはオン駆動信号を出力し、他のひとつはオフ駆動信号を出力する。したがって、駆動部30d,30eの両方からオン駆動信号を出力する構成に較べて、通電制御装置20の消費電流をさらに低減することができる。 Also in this embodiment, the semiconductor switch 24 is configured to include two MOSFETs Q1 and Q2. Sources of MOSFETs Q1 and Q2 are connected to each other. The anodes of the diodes D1 and D2 are connected to each other. In the standby mode, the control unit 33 outputs an ON instruction signal to the drive units 30d and 30e. One of the drive units 30d and 30e outputs an on drive signal, and the other outputs an off drive signal. Therefore, the current consumption of the energization control device 20 can be further reduced as compared with the configuration in which the on-drive signal is output from both the drive units 30d and 30e.
 <第2実施形態の変形例>
 電源システム10及び通電制御装置20の構成は、上記した例に限定されない。たとえば先行実施形態の変形例(図6参照)に示した構成との組み合わせが可能である。通電制御装置20は、電源11Aと負荷16Aの間に配置されている。通電制御装置20を構成する半導体スイッチ24は、ひとつのMOSFETQ1のみを有している。このような構成において、上記した制御が適用される。制御部33は、通常モードと待機モードとで、MOSFETQ1のオン状態が異なるように制御する。具体的には、MOSFETQ1のオン状態を、通常モードにおいて抵抗値が低い状態でオン(フルオン)し、待機モードにおいて抵抗値が高い状態でオン(ハーフオン)するように制御する。制御部33は、通常モードにおいて上記した駆動部30cにオン指示信号を出力し、待機モードにおいて駆動部30dにオン指示信号を出力する。これにより、待機モードにおいてMOSFETQ1をハーフオン状態に保持することができる。
<Modified example of the second embodiment>
The configurations of the power supply system 10 and the energization control device 20 are not limited to the above examples. For example, it can be combined with the configuration shown in the modified example of the preceding embodiment (see FIG. 6). The energization control device 20 is arranged between the power supply 11A and the load 16A. The semiconductor switch 24 constituting the energization control device 20 has only one MOSFET Q1. In such a configuration, the above control is applied. The control unit 33 controls so that the ON state of the MOSFET Q1 differs between the normal mode and the standby mode. Specifically, the ON state of the MOSFET Q1 is controlled so as to be turned on (full on) with a low resistance value in the normal mode and turned on (half on) with a high resistance value in the standby mode. The control unit 33 outputs an on instruction signal to the drive unit 30c described above in the normal mode, and outputs an on instruction signal to the drive unit 30d in the standby mode. As a result, the MOSFET Q1 can be held in the half-on state in the standby mode.
 待機モードにおいて、MOSFETQ1,Q2のひとつをハーフオン状態にし、他のひとつをオフ状態にする例を示したが、これに限定されない。MOSFETQ1,Q2をともにハーフオン状態にしてもよい。この場合、待機モード用の駆動部30d,30eをひとつにまとめる(共通化する)ことが可能である。たとえば第1電源11から第2負荷16に対して暗電流を供給する構成のみを考慮すればよい場合、待機モード用に駆動部30dのみを備えればよい。駆動部30dからMOSFETQ1,Q2に対してオン駆動信号を出力することで、MOSFETQ1,Q2をともにハーフオン状態とされる。 In the standby mode, one of MOSFETs Q1 and Q2 is in the half-on state and the other one is in the off state, but the present invention is not limited to this. Both MOSFETs Q1 and Q2 may be in the half-on state. In this case, the drive units 30d and 30e for the standby mode can be combined (shared) into one. For example, when it is sufficient to consider only the configuration in which the dark current is supplied from the first power supply 11 to the second load 16, only the drive unit 30d may be provided for the standby mode. By outputting the on drive signal from the drive unit 30d to the MOSFETs Q1 and Q2, both the MOSFETs Q1 and Q2 are put into the half-on state.
 待機モードにおいて、駆動部30d,30eが、Vout1,Vout2に応じたオン駆動信号を出力し、MOSFETQ1,Q2がハーフオン状態とされる例を示したが、これに限定されない。たとえば図14の変形例に示す構成を採用してもよい。 In the standby mode, the drive units 30d and 30e output an on drive signal corresponding to Vout1 and Vout2, and the MOSFETs Q1 and Q2 are in a half-on state, but the present invention is not limited to this. For example, the configuration shown in the modified example of FIG. 14 may be adopted.
 待機モードにおいて、駆動部30dは、電圧VSを基準として、電圧V21に応じたオン駆動信号を出力する。駆動部30eは、電圧VSを基準として、電圧V22に応じたオン駆動信号を出力する。よって、電圧V21>電圧V22の場合、駆動部30dからオン駆動信号が出力され、MOSFETQ1はハーフオン状態に制御される。MOSFETQ2は、オフ状態に制御される。一方、電圧V22>電圧V21の場合、駆動部30eからオン駆動信号が出力され、MOSFETQ2はハーフオン状態に制御される。MOSFETQ1はオフ状態に制御される。よって、待機モードにおいて、双方向への暗電流供給が可能である。なお、暗電流の供給方向が一方向に決まっている場合には、図14において、駆動部30d,30eをひとつの駆動部にまとめることができる。 In the standby mode, the drive unit 30d outputs an on drive signal corresponding to the voltage V21 with reference to the voltage VS. The drive unit 30e outputs an on drive signal corresponding to the voltage V22 with reference to the voltage VS. Therefore, when the voltage V21> the voltage V22, the on drive signal is output from the drive unit 30d, and the MOSFET Q1 is controlled to the half-on state. MOSFET Q2 is controlled to the off state. On the other hand, when the voltage V22> the voltage V21, the on drive signal is output from the drive unit 30e, and the MOSFET Q2 is controlled to the half-on state. MOSFET Q1 is controlled to the off state. Therefore, in the standby mode, it is possible to supply dark current in both directions. When the dark current supply direction is determined in one direction, the drive units 30d and 30e can be combined into one drive unit in FIG.
 暗電流が供給される負荷の機能に応じて、暗電流を断続的に供給するようにしてもよい。図15に示す変形例では、通電制御装置20のコントローラ25が、タイマ部35を有している。タイマ部35は、たとえばタイマカウンタを有している。タイマ部35は、制御部33から駆動部30d,30eへオン指示信号が出力されるとカウントを開始し、所定時間が経過すると、駆動部30d,30eに許可信号を出力する。駆動部30d,30eは、許可信号が出力されてから所定時間、駆動する。タイマ部35は、許可信号を出力するとカウント値をクリアし、再度カウントを開始する。駆動部30d,30eへのオン指示信号が停止されると、タイマ部35はカウントを停止して、カウント値をクリアする。 Depending on the function of the load to which the dark current is supplied, the dark current may be supplied intermittently. In the modified example shown in FIG. 15, the controller 25 of the energization control device 20 has a timer unit 35. The timer unit 35 has, for example, a timer counter. The timer unit 35 starts counting when an on instruction signal is output from the control unit 33 to the drive units 30d and 30e, and outputs a permission signal to the drive units 30d and 30e when a predetermined time elapses. The drive units 30d and 30e are driven for a predetermined time after the permission signal is output. When the timer unit 35 outputs the permission signal, the timer unit 35 clears the count value and starts counting again. When the ON instruction signal to the drive units 30d and 30e is stopped, the timer unit 35 stops counting and clears the count value.
 電圧V21>電圧V22の場合、タイマ部35からの許可信号に基づいて、駆動部30dは間欠動作する。これにより、MOSFETQ1に対して、電圧信号Vout1に応じたオン駆動信号が断続的に出力される。したがって、通電制御装置20の消費電流を低減することができる。タイマ部35は、駆動部30d,30eの間欠動作を制御するため、間欠制御部と称されることがある。なお、タイマ部35が、許可信号に代えて、待機信号を出力するようにしてもよい。カウントを開始して所定時間が経過すると、タイマ部35は、駆動部30d,30eに待機信号を出力する。駆動部30d,30eは、待機信号が出力されてから所定時間、駆動を停止する。タイマ部35は、待機信号を出力するとカウント値をクリアし、再度カウントを開始する。待機モードにおいて、駆動部30d,30eは、待機信号に基づく駆動停止期間で駆動を停止し、駆動停止を除く期間で駆動する。 When voltage V21> voltage V22, the drive unit 30d operates intermittently based on the permission signal from the timer unit 35. As a result, an on-drive signal corresponding to the voltage signal Vout1 is intermittently output to the MOSFET Q1. Therefore, the current consumption of the energization control device 20 can be reduced. The timer unit 35 is sometimes referred to as an intermittent control unit because it controls the intermittent operation of the drive units 30d and 30e. The timer unit 35 may output a standby signal instead of the permission signal. When the predetermined time elapses from the start of counting, the timer unit 35 outputs a standby signal to the drive units 30d and 30e. The drive units 30d and 30e stop driving for a predetermined time after the standby signal is output. When the timer unit 35 outputs the standby signal, the timer unit 35 clears the count value and starts counting again. In the standby mode, the drive units 30d and 30e stop driving in a drive stop period based on the standby signal, and drive in a period excluding the drive stop.
 通常モード及び遮断モード時に動作する駆動部30cを、2つのMOSFETQ1,Q2で共通とする例を示したが、個別に設けてもよい。 Although the example in which the drive unit 30c that operates in the normal mode and the cutoff mode is common to the two MOSFETs Q1 and Q2 is shown, they may be provided individually.
 ドライバ301を、各駆動部30c,30d,30eで個別に設ける例を示したが、これに限定されない。駆動部30において、ドライバ301を共通化してもよい。図16に示す変形例では、コントローラ25が、駆動部30c,30dを有している。駆動部30c,30dにおいて、ドライバ301は共通化(兼用)されている。昇圧回路300とドライバ301を備えて駆動部30cが構成されている。低圧回路302とドライバ301を備えて駆動部30dが構成されている。 An example is shown in which the driver 301 is individually provided for each drive unit 30c, 30d, 30e, but the present invention is not limited to this. The driver 301 may be shared in the drive unit 30. In the modified example shown in FIG. 16, the controller 25 has drive units 30c and 30d. In the drive units 30c and 30d, the driver 301 is shared (also used). A drive unit 30c is configured with a booster circuit 300 and a driver 301. The drive unit 30d is provided with the low-voltage circuit 302 and the driver 301.
 通常モードにおいて、制御部33は、駆動部30cに対してオン指示信号が出力する。これにより、昇圧回路300が昇圧動作を実行し、昇圧電圧がドライバ301に供給される。そして、ドライバ301から、昇圧電圧に応じたオン駆動信号が出力される。待機モードにおいて、制御部33は、駆動部30dに対してオン指示信号を出力する。これにより、低圧回路302が動作し、低電圧がドライバ301に供給される。そして、ドライバ301から、低電圧に応じたオン駆動信号が出力される。 In the normal mode, the control unit 33 outputs an ON instruction signal to the drive unit 30c. As a result, the booster circuit 300 executes the booster operation, and the booster voltage is supplied to the driver 301. Then, the driver 301 outputs an on-drive signal according to the boosted voltage. In the standby mode, the control unit 33 outputs an ON instruction signal to the drive unit 30d. As a result, the low voltage circuit 302 operates and a low voltage is supplied to the driver 301. Then, the driver 301 outputs an on-drive signal corresponding to the low voltage.
 図示を省略するが、通電制御装置20を構成する半導体スイッチ24及びコントローラ25を別体としてもよい。たとえば半導体スイッチ24を、端子21,22及び通電経路23とともにスイッチモジュールとし、コントローラ25を、スイッチモジュールとは別の電子制御装置としてもよい。 Although not shown, the semiconductor switch 24 and the controller 25 constituting the energization control device 20 may be separated. For example, the semiconductor switch 24 may be a switch module together with the terminals 21 and 22 and the energization path 23, and the controller 25 may be an electronic control unit separate from the switch module.
 バス13a,13bに接続される負荷は、上記した例に限定されない。バス13aに対して、第1負荷15とともに、その他の負荷が接続されてもよい。バス13bに対して、第2負荷16とともに、その他の負荷が接続されてもよい。 The load connected to the buses 13a and 13b is not limited to the above example. Other loads may be connected to the bus 13a together with the first load 15. Other loads may be connected to the bus 13b together with the second load 16.
 バス13a,13bの間に、ひとつの通電制御装置20が配置される例を示したが、これに限定されない。たとえばバス13a,13b間において、複数の通電制御装置20が互いに並列接続された構成としてもよい。 An example is shown in which one energization control device 20 is arranged between the buses 13a and 13b, but the present invention is not limited to this. For example, a plurality of energization control devices 20 may be connected in parallel between the buses 13a and 13b.
 電源システム10は、第1電力系統に、通電制御装置20を介して、第2電力系統が単純にアドオンされたシステムであった。通電制御装置20の適用は、このようなアドオン型の電源システム10に限定されない。バックボーン型のシステムにも適用することができる。また、リング型の電源システム10に適用することもできる。 The power supply system 10 was a system in which the second power system was simply added to the first power system via the energization control device 20. The application of the energization control device 20 is not limited to such an add-on type power supply system 10. It can also be applied to backbone type systems. It can also be applied to the ring-type power supply system 10.
 (他の実施形態)
 この明細書及び図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品及び/又は要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品及び/又は要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品及び/又は要素の置き換え、又は組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
(Other embodiments)
Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations on them based on them. For example, disclosure is not limited to the parts and / or combinations of elements shown in the embodiments. Disclosure can be carried out in various combinations. The disclosure may have additional parts that may be added to the embodiments. The disclosure includes parts and / or elements of the embodiment omitted. Disclosures include replacement or combination of parts and / or elements between one embodiment and another. The disclosed technical scope is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the statements of the claims and should be understood to include all modifications within the meaning and scope equivalent to the statements of the claims.
 明細書及び図面等における開示は、請求の範囲の記載によって限定されない。明細書及び図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書及び図面等の開示から、多様な技術的思想を抽出することができる。 Disclosure in the description, drawings, etc. is not limited by the description of the scope of claims. The disclosure in the specification, drawings, etc. includes the technical ideas described in the claims, and further covers a wider variety of technical ideas than the technical ideas described in the claims. Therefore, various technical ideas can be extracted from the disclosure of the description, drawings, etc. without being bound by the description of the claims.
 図17に示すように、pチャネル型のMOSFETQ1,Q2により構成された半導体スイッチ24を用いてもよい。図17では、MOSFETQ1,Q2のドレインが互いに接続されている。また、ダイオードD1,D2のアノードが互いに接続されている。コントローラ25から出力されるLoレベルの信号により、バス13a,13bが導通状態となる。よって、昇圧回路300を動作させることなく、暗電流を負荷へ供給することができる。 As shown in FIG. 17, a semiconductor switch 24 composed of p-channel type MOSFETs Q1 and Q2 may be used. In FIG. 17, the drains of MOSFETs Q1 and Q2 are connected to each other. Further, the anodes of the diodes D1 and D2 are connected to each other. The Lo level signal output from the controller 25 causes the buses 13a and 13b to become conductive. Therefore, the dark current can be supplied to the load without operating the booster circuit 300.
 ノーマリオフ型のスイッチング素子と、ノーマリオン型のスイッチング素子とを組み合わせて半導体スイッチ24を構成してもよい。図18に示す例では、MOSFETQ1がノーマリオン型とされ、MOSFETQ2がノーマリオフ型とされている。コントローラ25から出力されるLoレベルの信号により、MOSFETQ1はオン状態となり、MOSFETQ2はオフ状態となる。よって、MOSFETQ1及びダイオードD2を通じて、第1電源11から第2負荷16へ暗電流を供給することができる。昇圧回路300を動作させることなく、暗電流を供給することができる。 A semiconductor switch 24 may be configured by combining a normally-off type switching element and a normally-on type switching element. In the example shown in FIG. 18, MOSFET Q1 is a normalization type and MOSFET Q2 is a normal off type. Due to the Lo level signal output from the controller 25, the MOSFET Q1 is turned on and the MOSFET Q2 is turned off. Therefore, a dark current can be supplied from the first power supply 11 to the second load 16 through the MOSFET Q1 and the diode D2. Dark current can be supplied without operating the booster circuit 300.

Claims (10)

  1.  電源(11)と負荷(16)との通電経路(23)に設けられた半導体スイッチ(24)と、
     前記半導体スイッチの駆動を制御する駆動制御部(25)と、
    を備え、
     前記駆動制御部は、
    通常モードにおいて、前記半導体スイッチを、待機モードより抵抗値が低い状態で電流が流れるオン状態に制御し、
    前記待機モードにおいて、前記半導体スイッチを、前記通常モードより抵抗値が高い状態で電流が流れるオン状態に制御する通電制御装置。
    A semiconductor switch (24) provided in the energization path (23) between the power supply (11) and the load (16), and
    A drive control unit (25) that controls the drive of the semiconductor switch,
    With
    The drive control unit
    In the normal mode, the semiconductor switch is controlled to an on state in which a current flows in a state where the resistance value is lower than that in the standby mode.
    An energization control device that controls the semiconductor switch in the standby mode to an on state in which a current flows in a state where the resistance value is higher than that in the normal mode.
  2.  車両に搭載される請求項1に記載の通電制御装置において、
     前記駆動制御部は、前記車両のイグニッションスイッチがオンされている期間において、前記通常モードの制御を実行し、前記イグニッションスイッチがオフされている期間において、前記待機モードの制御を実行する通電制御装置。
    In the energization control device according to claim 1, which is mounted on a vehicle,
    The drive control unit executes the control of the normal mode during the period when the ignition switch of the vehicle is on, and executes the control of the standby mode during the period when the ignition switch is off. ..
  3.  前記半導体スイッチは、ゲートキャパシタ(C1,C2)を有し、
     前記駆動制御部は、
    前記半導体スイッチのゲートに駆動信号を出力する駆動部(30)と、
    前記待機モードにおいて、前記駆動信号として、前記半導体スイッチをオンさせるためのオン駆動信号を一時的に出力し、前記半導体スイッチをオフさせるためのオフ駆動信号を、前記オン駆動信号とは異なるタイミングで出力するよう、前記駆動部を間欠動作させる間欠制御部(33)と、を有し、
    前記待機モードにおいて、一時的な前記オン駆動信号の出力により前記ゲートキャパシタを充電し、前記オフ駆動信号の出力時に、前記ゲートキャパシタに蓄積された電荷により前記半導体スイッチを前記抵抗値の高い状態に保持する請求項1又は請求項2に記載の通電制御装置。
    The semiconductor switch has gate capacitors (C1, C2) and has.
    The drive control unit
    A drive unit (30) that outputs a drive signal to the gate of the semiconductor switch,
    In the standby mode, an on drive signal for turning on the semiconductor switch is temporarily output as the drive signal, and an off drive signal for turning off the semiconductor switch is output at a timing different from the on drive signal. It has an intermittent control unit (33) that intermittently operates the drive unit so as to output.
    In the standby mode, the gate capacitor is charged by the temporary output of the on drive signal, and when the off drive signal is output, the semiconductor switch is brought into a state of high resistance value by the electric charge accumulated in the gate capacitor. The energization control device according to claim 1 or 2, which is held.
  4.  前記半導体スイッチは、前記通電経路において並んで配置された2つのスイッチング素子(Q1,Q2)と、前記2つのスイッチング素子にそれぞれ並列接続され、互いに逆向きとなるように配置されたダイオード(D1,D2)と、を有する請求項3に記載の通電制御装置。 The semiconductor switch consists of two switching elements (Q1, Q2) arranged side by side in the energization path and diodes (D1, D1, which are connected in parallel to the two switching elements and arranged in opposite directions to each other. The energization control device according to claim 3, which has D2) and.
  5.  前記半導体スイッチにおいて、前記ダイオードのアノード同士が接続されており、
     前記待機モードにおいて、前記駆動制御部は、前記電源側の前記スイッチング素子にのみ前記オン駆動信号を断続的に出力し、前記負荷側の前記スイッチング素子に並列接続された前記ダイオードを通じて、前記負荷へ電流を供給する請求項4に記載の通電制御装置。
    In the semiconductor switch, the anodes of the diodes are connected to each other.
    In the standby mode, the drive control unit intermittently outputs the on drive signal only to the switching element on the power supply side, and to the load through the diode connected in parallel to the switching element on the load side. The energization control device according to claim 4, wherein a current is supplied.
  6.  前記駆動制御部は、
    前記半導体スイッチのゲート電圧を検出する検出部(31)と、
    検出された前記ゲート電圧と所定の上限閾値及び下限閾値とを比較し、比較結果を前記間欠制御部に出力する判定部(32)と、をさらに有し、
     前記間欠制御部は、前記比較結果に基づいて、前記駆動部を間欠動作させる請求項3~5いずれか1項に記載の通電制御装置。
    The drive control unit
    A detection unit (31) for detecting the gate voltage of the semiconductor switch and
    It further has a determination unit (32) that compares the detected gate voltage with a predetermined upper limit threshold value and lower limit threshold value, and outputs the comparison result to the intermittent control unit.
    The energization control device according to any one of claims 3 to 5, wherein the intermittent control unit intermittently operates the drive unit based on the comparison result.
  7.  前記駆動制御部は、
    前記通電経路における電圧または電流を検出する検出部(31)と、
    前記検出部により検出された値と所定の上限閾値及び下限閾値とを比較し、比較結果を前記間欠制御部に出力する判定部(32)と、をさらに有し、
     前記間欠制御部は、前記比較結果に基づいて、前記駆動部を間欠動作させる請求項3~5いずれか1項に記載の通電制御装置。
    The drive control unit
    A detection unit (31) that detects voltage or current in the energization path, and
    It further has a determination unit (32) that compares the value detected by the detection unit with a predetermined upper limit threshold value and lower limit threshold value and outputs the comparison result to the intermittent control unit.
    The energization control device according to any one of claims 3 to 5, wherein the intermittent control unit intermittently operates the drive unit based on the comparison result.
  8.  前記駆動制御部は、
    前記半導体スイッチのゲートに駆動信号を出力する駆動部(30)であって、前記半導体スイッチをオンさせるためのオン駆動信号として、昇圧電圧に応じた第1オン駆動信号を出力する第1駆動部(30c)、及び、前記第1オン駆動信号よりも電圧の低い第2オン駆動信号を出力する第2駆動部(30d,30e)と、
    前記通常モードにおいて前記第1オン駆動信号を出力し、前記待機モードにおいて前記第2オン駆動信号を出力するように、前記駆動部を切り替える切替部(33)と、
    を有する請求項1又は請求項2に記載の通電制御装置。
    The drive control unit
    A drive unit (30) that outputs a drive signal to the gate of the semiconductor switch, and is a first drive unit that outputs a first on drive signal corresponding to a boosted voltage as an on drive signal for turning on the semiconductor switch. (30c), and the second drive unit (30d, 30e) that outputs a second on drive signal having a voltage lower than that of the first on drive signal.
    A switching unit (33) that switches the drive unit so as to output the first on drive signal in the normal mode and output the second on drive signal in the standby mode.
    The energization control device according to claim 1 or 2.
  9.  前記半導体スイッチは、前記通電経路において並んで配置された2つのスイッチング素子(Q1,Q2)と、前記2つのスイッチング素子にそれぞれ並列接続され、互いに逆向きとなるように配置されたダイオード(D1,D2)と、を有する請求項8に記載の通電制御装置。 The semiconductor switch consists of two switching elements (Q1, Q2) arranged side by side in the energization path and diodes (D1, D1, which are connected in parallel to the two switching elements and arranged in opposite directions to each other. The energization control device according to claim 8, which has D2) and.
  10.  前記半導体スイッチにおいて、前記ダイオードのアノード同士が接続されており、
     前記待機モードにおいて、前記電源側の前記スイッチング素子をオンさせ、前記負荷側の前記スイッチング素子をオフさせて、前記負荷側の前記スイッチング素子に並列接続された前記ダイオードを通じて、前記負荷へ電流を供給する請求項9に記載の通電制御装置。
    In the semiconductor switch, the anodes of the diodes are connected to each other.
    In the standby mode, the switching element on the power supply side is turned on, the switching element on the load side is turned off, and a current is supplied to the load through the diode connected in parallel to the switching element on the load side. The energization control device according to claim 9.
PCT/JP2020/001279 2019-03-08 2020-01-16 Electrification control device WO2020183901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-042805 2019-03-08
JP2019042805A JP2020145655A (en) 2019-03-08 2019-03-08 Energization control device

Publications (1)

Publication Number Publication Date
WO2020183901A1 true WO2020183901A1 (en) 2020-09-17

Family

ID=72354611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001279 WO2020183901A1 (en) 2019-03-08 2020-01-16 Electrification control device

Country Status (2)

Country Link
JP (1) JP2020145655A (en)
WO (1) WO2020183901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198070A1 (en) * 2022-04-11 2023-10-19 北京车和家汽车科技有限公司 Anti-reverse-flow control circuit for in-vehicle redundant power source, and vehicle controller and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225179B2 (en) * 2020-10-07 2023-02-20 矢崎総業株式会社 SWITCH CONTROL DEVICE, SWITCH CONTROL METHOD, AND VEHICLE POWER SUPPLY SYSTEM
JP7548788B2 (en) 2020-11-18 2024-09-10 株式会社デンソーテン On-board power supply device and on-board power supply control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172154A (en) * 2009-01-26 2010-08-05 Fujitsu Semiconductor Ltd Power supply control circuit, power supply control method, and electronic device
JP2013193738A (en) * 2012-03-20 2013-09-30 Samsung Sdi Co Ltd Battery pack and control method of battery pack
JP2015109741A (en) * 2013-12-04 2015-06-11 株式会社デンソー Battery control device
JP2016187235A (en) * 2015-03-27 2016-10-27 矢崎総業株式会社 Battery system control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172154A (en) * 2009-01-26 2010-08-05 Fujitsu Semiconductor Ltd Power supply control circuit, power supply control method, and electronic device
JP2013193738A (en) * 2012-03-20 2013-09-30 Samsung Sdi Co Ltd Battery pack and control method of battery pack
JP2015109741A (en) * 2013-12-04 2015-06-11 株式会社デンソー Battery control device
JP2016187235A (en) * 2015-03-27 2016-10-27 矢崎総業株式会社 Battery system control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198070A1 (en) * 2022-04-11 2023-10-19 北京车和家汽车科技有限公司 Anti-reverse-flow control circuit for in-vehicle redundant power source, and vehicle controller and vehicle

Also Published As

Publication number Publication date
JP2020145655A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
KR102285228B1 (en) Secondary battery protection circuit, secondary battery protection device, battery pack and method of controlling secondary battery protection circuit
US10236776B2 (en) Inter-supply bidirectional DC-DC converter of a non-insulation type
CN110165761B (en) Power supply system
WO2020183901A1 (en) Electrification control device
RU2696539C2 (en) Onboard network for vehicle
US9243601B2 (en) On-board electrical system for a vehicle
US11247567B2 (en) Semiconductor relay control device
CN111952933B (en) Driving circuit
US9843184B2 (en) Voltage conversion apparatus
US20050242780A1 (en) Battery protection device, battery protection system using the same, and battery protection method
KR20100032378A (en) Relay driving circuit and battery pack using same
CN110460226B (en) Switching power supply device
US10884445B2 (en) Power supply control device for maintaining power supply to a load
US20190238123A1 (en) Driver circuit having overcurrent protection function
US10164628B2 (en) Switch box
US7477040B2 (en) Circuit for a motor vehicle electrical distribution system and an associated operating method
CN113711481B (en) Driving circuit
JP7277775B2 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method for secondary battery protection circuit
JP4360263B2 (en) Transistor driving circuit and transistor driving method
CN110268631B (en) Gate driver circuit for high side switch
CN112740503A (en) Power supply control device and power supply device
US20230318445A1 (en) Automotive dc-dc power converter with flyback converter for input capacitor charging
JP6700060B2 (en) Power system
EP4096365A1 (en) Lighting circuit and vehicular direction indicator lamp
JP3361712B2 (en) Charge / discharge control circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769695

Country of ref document: EP

Kind code of ref document: A1