WO2020183679A1 - Treatment instrument - Google Patents

Treatment instrument Download PDF

Info

Publication number
WO2020183679A1
WO2020183679A1 PCT/JP2019/010398 JP2019010398W WO2020183679A1 WO 2020183679 A1 WO2020183679 A1 WO 2020183679A1 JP 2019010398 W JP2019010398 W JP 2019010398W WO 2020183679 A1 WO2020183679 A1 WO 2020183679A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
treatment tool
layer
coating
resistant structure
Prior art date
Application number
PCT/JP2019/010398
Other languages
French (fr)
Japanese (ja)
Inventor
庸高 銅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/010398 priority Critical patent/WO2020183679A1/en
Publication of WO2020183679A1 publication Critical patent/WO2020183679A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to a treatment tool.
  • a treatment tool for treating a target site in a living tissue by applying energy to a target site (hereinafter referred to as a target site) has been known (see, for example, Patent Document 1).
  • the treatment tool described in Patent Document 1 includes a pair of electrodes for gripping the target portion. Then, in the treatment tool, high frequency power is supplied between the pair of electrodes. As a result, a high-frequency current flows through the target portion gripped between the pair of electrodes. In other words, high frequency energy is applied to the target portion. Then, in the treatment tool described in Patent Document 1, the outer surface of the electrode is covered with a coating in order to prevent the target portion from sticking to the electrode.
  • a coating covering the outer surface of the electrode As a coating covering the outer surface of the electrode, a surface layer containing a siloxane bond as a main component and protruding particles such as ceramics arranged on the surface layer and partially protruding are provided. Be prepared.
  • a coating it is difficult for a high-frequency current to pass through the coating, and there is a risk that a high-frequency current will not flow appropriately to the target portion.
  • conductive particles are mixed in the coating in order to facilitate the passage of high-frequency current through the coating, the strength of the coating may decrease and the coating may peel off from the electrode. Therefore, there is a demand for a technique capable of ensuring the electrical conductivity and strength of the coating covering the outer surface of the electrode.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a treatment tool capable of ensuring the electrical conductivity and strength of the coating covering the outer surface of the electrode.
  • the treatment tool according to the present invention is composed of an electrode made of a conductive material and applying a high-frequency current to a biological tissue, and at least one of the outer surfaces of the electrode.
  • the coating comprises a coating for covering the portion, and the coating is composed of a mixture of a heat-resistant material and conductive particles, and has a heat-resistant structure maintaining layer covering at least a part of the outer surface of the electrode and the heat-resistant structure. It is provided with a sticking prevention layer that covers at least a part of the maintenance layer, is thinner than the heat-resistant structure maintenance layer, and prevents sticking of the biological tissue.
  • the electrical conductivity and strength of the coating covering the outer surface of the electrode can be ensured.
  • FIG. 1 is a diagram showing a treatment system according to an embodiment.
  • FIG. 2 is a diagram showing a grip portion.
  • FIG. 3 is a diagram showing a grip portion.
  • FIG. 4 is a diagram showing the configuration of the first coating.
  • FIG. 5 is a diagram showing an example of the first silver particle.
  • FIG. 6 is a diagram showing an example of the second silver particle.
  • FIG. 7 is a diagram showing an example of the second silver particle.
  • FIG. 8 is a diagram showing an example of the second silver particle.
  • FIG. 1 is a diagram showing a treatment system 1 according to the present embodiment.
  • the treatment system 1 treats the target site by applying high-frequency energy to the target site (hereinafter referred to as the target site) in the living tissue.
  • the treatment means, for example, coagulation and incision of a target site.
  • the treatment system 1 includes a treatment tool 2 and a control device 3.
  • the treatment tool 2 is, for example, a surgical treatment tool for treating a target site while passing through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part held by the operator.
  • the handle 5 is provided with an operation knob 51 and a switch 52.
  • the operation knob 51 accepts an opening / closing operation by the operator.
  • the switch 52 receives an output start operation by the operator. Then, the switch 52 outputs an operation signal corresponding to the output start operation to the control device 3 via the electric cable C (FIG. 1).
  • the shaft 6 has a substantially cylindrical shape.
  • the central axis of the shaft 6 will be referred to as the central axis Ax (FIG. 1).
  • one side along the central axis Ax will be referred to as the distal end side Ar1 (FIG. 1), and the other side will be referred to as the proximal end side Ar2 (FIG. 1).
  • the end of the base end side Ar2 of the shaft 6 is connected to the handle 5.
  • a grip portion 7 is attached to the end portion of the tip end side Ar1 of the shaft 6. Then, inside the shaft 6, an opening / closing mechanism for opening / closing the first and second gripping members 8 and 9 (FIG.
  • an electric cable C (FIG. 1) is arranged from the proximal end side Ar2 to the distal end side Ar1 by passing through the handle 5.
  • FIGS. 1 to 3 are views showing the grip portion 7.
  • FIG. 3 is a cross-sectional view of the grip portion 7 cut by a plane orthogonal to the central axis Ax.
  • the grip portion 7 is a portion that treats the target portion while gripping the target portion.
  • the grip portion 7 includes first and second grip members 8 and 9.
  • the first and second gripping members 8 and 9 are configured to be openable and closable in the direction of arrow R1 (FIG. 2) in response to an opening and closing operation of the operation knob 51 by the operator.
  • the first gripping member 8 is arranged at a position facing the second gripping member 9. As shown in FIG. 2 or 3, the first gripping member 8 includes a first jaw 10, a first support member 11, a first electrode 12, and a first coating 13 (FIG. 3). And. Note that in FIG. 2, for convenience of explanation, the first coating 13 is not shown.
  • the first jaw 10 is a portion in which a part of the shaft 6 extends to the tip end side Ar1, and is formed in a long shape extending along the central axis Ax.
  • the first jaw 10 is made of a metal material such as stainless steel or titanium.
  • the first support member 11 is a long flat plate extending along the central axis Ax, and is made of a resin material having a low thermal conductivity such as PEEK (polyetheretherketone). Then, the first support member 11 is fixed to the upper surface in FIG. 3 of the first jaw 10.
  • the first electrode 12 corresponds to the electrode according to the present invention.
  • the first electrode 12 is a flat plate extending along the central axis Ax, and is made of a material having conductivity and excellent thermal conductivity such as copper, aluminum, copper alloy, and aluminum alloy. ing. Then, the first electrode 12 is fixed to the upper surface of the first support member 11 in FIG. 3.
  • the surface on the side of the second gripping member 9 functions as a first gripping surface 121 (FIGS. 2 and 3) for gripping the target portion with the second gripping member 9. ..
  • the first gripping surface 121 is in a direction in which the first and second gripping members 8 and 9 face each other in a state where the target portion is gripped by the first and second gripping members 8 and 9. It is composed of flat surfaces orthogonal to A1 (FIGS. 2 and 3).
  • the first gripping surface 121 is formed of a flat surface, but is not limited to this, and may be formed of other shapes such as a convex shape and a concave shape. The same applies to the second gripping surface 931 described later.
  • FIG. 4 is a diagram showing the configuration of the first coating 13. Specifically, FIG. 4 is an enlarged view of a part of FIG.
  • the first coating 13 is a coating that prevents the target portion from sticking to the first electrode 12.
  • the first coating 13 covers the entire surface of the first electrode 12 exposed to the outside (five surfaces of the first gripping surface 121 and the four side surfaces 122 intersecting the first gripping surface 121). cover. In other words, the first coating 13 covers five surfaces 121, 122 other than the back surface 123 forming the front and back surfaces of the first gripping surface 121 of the first electrode 12.
  • the first coating 13 includes a heat-resistant structure maintaining layer 131 and a sticking prevention layer 132.
  • the heat-resistant structure maintaining layer 131 is composed of a mixture of the heat-resistant material 133 (FIG. 4) and the conductive particles 134 (FIG. 4), and is continuous with the five surfaces 121 and 122 of the first electrode 12. It is provided.
  • the heat-resistant structure maintaining layer 131 has a thickness dimension of 5 ⁇ m or more and 100 ⁇ m or less.
  • the heat-resistant material 133 ceramics and the like can be exemplified.
  • two types of silver particles, the first silver particle 134A (FIG. 4) and the second silver particle 134B (FIG. 4), are adopted as the conductive particles 134.
  • FIG. 5 is a diagram showing an example of the first silver particle 134A.
  • the first silver particle 134A has a flat shape. Therefore, in the first silver particle 134A, when three axes (X-axis, Y-axis, and Z-axis) substantially perpendicular to each other are defined, the dimension along one axis (for example, Z-axis) is set. It is extremely small compared to the dimensions along each of the other two axes (eg, the X-axis and the Y-axis).
  • FIGS. 6 to 8 are views showing an example of the second silver particle 134B.
  • the second silver particle 134B include the spherical shape shown in FIG. 6, the polyhedral shape shown in FIG. 7, and the like.
  • the second silver particle 134B having the shapes shown in FIGS. 6 and 7 when three axes (X-axis, Y-axis, and Z-axis) substantially perpendicular to each other are defined, the three axes (X-axis, The dimensions along the Y-axis and Z-axis) are about the same as each other.
  • the linear shape or fiber shape shown in FIG. 8 can be exemplified.
  • the first silver particle 134A has a shape having a higher flatness than the second silver particle 134B.
  • the ratio (volume ratio) of the second silver particles 134B to the entire heat-resistant structure maintaining layer 131 is higher than that of the first silver particles 134A.
  • the volume ratio of the second silver particle 134B is about twice the volume ratio of the first silver particle 134A.
  • the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is 20% or more and 70% or less.
  • the heat-resistant structure maintaining layer 131 has a higher hardness than the sticking prevention layer 132 at a predetermined temperature or higher (at a high temperature).
  • the sticking prevention layer 132 is a layer that constitutes the outermost surface of the first coating 13 and prevents sticking of the target portion.
  • the sticking prevention layer 132 has a structure in which siloxane (silicon oil) is contained in the heat-resistant material, and is provided up to the upper surface in FIG. 3 of the first support member 11 to maintain the heat-resistant structure. Covers the entire layer 131. That is, the heat-resistant structure maintaining layer 131 is also covered with the sticking prevention layer 132 at the edge.
  • the sticking prevention layer 132 has a thickness dimension of 1 ⁇ m or more and 10 ⁇ m or less.
  • the sticking prevention layer 132 has a thickness dimension thinner than that of the heat resistant structure maintaining layer 131.
  • the heat-resistant material constituting the sticking prevention layer 132 may be the same material as the heat-resistant material 133 constituting the heat-resistant structure maintaining layer 131, or may be a different material.
  • the second gripping member 9 has the same configuration as the first gripping member 8. That is, the second grip member 9 includes a first jaw 10, a first support member 11, a first electrode 12 (including a first grip surface 121, four side surfaces 122, and a back surface 123), and a second.
  • a second jaw 91, a second support member 92, and a second electrode 93 (second gripping surfaces 931, 4) similar to the coating 13 (including the heat resistant structure maintaining layer 131 and the sticking prevention layer 132) of 1. It includes one side surface 932 and a back surface 933) and a second coating 94 (including a heat resistant structure maintaining layer 941 and a sticking prevention layer 942).
  • the second electrode 93 corresponds to the electrode according to the present invention.
  • the second coating 94 corresponds to the coating according to the present invention.
  • the base end side Ar2 is rotatably supported with respect to the shaft 6 about the fulcrum P0 (FIG. 2), and the first gripping member is rotated by rotating. It is configured to open and close with respect to 8, but is not limited to this.
  • a configuration may be adopted in which both the first and second gripping members 8 and 9 are pivotally supported by the shaft 6 and the first and second gripping members 8 and 9 are opened and closed by rotating each of them. Absent.
  • the first gripping member 8 is pivotally supported by the shaft 6, the second gripping member 9 is fixed to the shaft 6, and the first gripping member 8 rotates to the second gripping member 9.
  • a configuration that opens and closes may be adopted.
  • the treatment tool 2 is detachably connected to the control device 3 by the electric cable C. Then, the control device 3 is electrically connected to the switch 52 and the first and second electrodes 12, 93, respectively, via the electric cable C. Further, the control device 3 executes the following controls in response to the operation signal from the switch 52.
  • the control device 3 supplies high-frequency power to the first and second electrodes 12 and 93 via the electric cable C. As a result, a high-frequency current flows through the target portion gripped between the first and second electrodes 12, 93 (first and second grip surfaces 121, 931). In other words, high frequency energy is applied to the target portion. Then, Joule heat is generated by the high frequency current flowing through the target portion. As a result, the target site is treated.
  • the first coating 13 is composed of two layers, the heat-resistant structure maintaining layer 131 and the sticking prevention layer 132 described above. Therefore, the sticking prevention layer 132 is provided directly to the first electrode 12 by interposing a heat resistant structure maintaining layer 131 having high hardness between the first electrode 12 and the sticking prevention layer 132. Compared with the configuration, the adhesion of the sticking prevention layer 132 can be improved, and cracking of the sticking prevention layer 132 can be prevented. Further, the heat-resistant structure maintaining layer 131 contains the conductive particles 134. Further, the sticking prevention layer 132 is thinner than the heat resistant structure maintaining layer 131.
  • the high frequency current easily passes through the first coating 13, and the high frequency current can be appropriately passed to the target portion. From the above, according to the treatment tool 2 according to the present embodiment, it is possible to secure the electrical conductivity and strength of the first coating 13 that covers the outer surface of the first electrode 12.
  • the conductive particles 134 are composed of two types of silver particles, a first silver particle 134A and a second silver particle 134B. Therefore, in the first coating 13, a structure in which the conductive particles 134 are crosslinked is formed.
  • the structure in which the conductive particles 134 are crosslinked makes it possible to secure a large capacitance in the first coating 13 even if the volume ratio of the conductive particles 134 in the mixture constituting the first coating 13 is small. .. That is, even if the volume ratio of the conductive particles 134 in the first coating 13 is small, the impedance in the circuit of the high frequency current passing through the first coating 13 can be reduced. Therefore, even if the volume ratio of the conductive particles 134 in the first coating 13 is small, the electrical conductivity of the first coating 13 can be sufficiently ensured.
  • the first silver particle 134A has a higher flatness than the second silver particle 134B. Therefore, in the first coating 13, a crosslinked structure of the conductive particles 134 is likely to be formed. Further, the first silver particle 134A having a high flatness has a high capacitance. Therefore, since the first silver particles 134A have a shape having a high flatness, the capacitance in the first coating 13 is further increased, and the impedance in the circuit of the high frequency current passing through the first coating 13 is further reduced. can do.
  • the volume ratio of the first silver particles 134A having a high flatness smaller than the volume ratio of the second silver particles 134B having a low flatness, the crosslinked structure in the first coating 13 Is more likely to be formed, and the capacitance in the first coating 13 can be further increased.
  • the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is 20% or more and 70% or less. Therefore, when the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is less than 20%, the electrical conductivity of the first coating 13 cannot be sufficiently ensured. Further, when the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is more than 70%, the strength of the first coating 13 cannot be sufficiently secured. That is, the electrical conductivity and strength of the first coating 13 can be effectively ensured by setting the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 to be 20% or more and 70% or less. ..
  • the sticking prevention layer 132 contains siloxane. Therefore, sticking of the target portion can be effectively prevented.
  • both the heat-resistant material 133 constituting the heat-resistant structure maintaining layer 131 and the heat-resistant material forming the sticking prevention layer 132 are ceramics. Therefore, sufficient heat resistance of the first coating 13 can be ensured.
  • the heat-resistant structure maintaining layer 131 has a higher hardness at a predetermined temperature or higher than the sticking prevention layer 132. That is, by increasing the hardness of the heat-resistant structure maintaining layer 131, the strength of the first coating 13 can be sufficiently ensured.
  • the heat-resistant structure maintaining layer 131 has a thickness dimension of 5 ⁇ m or more and 100 ⁇ m or less. That is, by making the thickness dimension of the heat-resistant structure maintaining layer 131 relatively thick, the strength of the first coating 13 can be sufficiently ensured.
  • the sticking prevention layer 132 has a thickness dimension of 1 ⁇ m or more and 10 ⁇ m or less. That is, by making the thickness dimension of the sticking prevention layer 132 relatively thin, the electrical conductivity of the first coating 13 can be sufficiently ensured.
  • the heat-resistant structure maintaining layer 131 has fragile portions such as edge edges due to its high hardness.
  • the sticking prevention layer 132 covers the entire heat-resistant structure maintaining layer 131. That is, the sticking prevention layer 132 also covers a brittle portion such as an edge of the heat resistant structure maintaining layer 131. Therefore, it is possible to prevent the first coating 13 from peeling off from the first electrode 12.
  • the treatment tool 2 is configured as a bipolar treatment tool provided with the first and second electrodes 12, 93, but is not limited to this, and is not limited to this, and is a monopolar treatment tool provided with only one electrode. It may be configured as.
  • Treatment system 2 Treatment tool 3
  • Control device 5 Handle 6 Shaft 7 Grip part 8
  • Second grip member 10 First jaw 11 First support member 12
  • First electrode 13 First coating
  • Operation knob 52 Switch 91
  • Second jaw 92 Second support member 93
  • Second electrode 94 Second coating 121 First gripping surface 122 Side surface 123 Back surface 131
  • Heat-resistant structure maintenance layer 132 Anti-sticking layer 133
  • Heat-resistant material 134 Conductive particles 134A First silver particles 134B Second silver particles 931 Second grip surface 932 Side surface 933 Back surface 941
  • Heat resistant structure maintenance layer 942 Anti-sticking layer A1 direction Ar1 Tip side Ar2 Base end side Ax Central axis C Electric cable P0 fulcrum R1 arrow

Abstract

This treatment instrument 2 comprises: an electrode 12 that is formed from a conductive material and applies a high frequency current to biological tissue; and a coating 13 that covers at least a part of the outer surface of the electrode 12. The coating 13 comprises: a heat resistant structure preserving layer 131 that is formed from a mixture in which a heat resistant material 133 and conductive particles 134 are mixed, and that covers at least a part of the outer surface of the electrode 12; and an adhesion prevention layer 132 that covers at least a part of the heat resistant structure preserving layer 131, is thinner than the heat resistant structure preserving layer 131, and prevents the adhesion of biological tissue.

Description

処置具Treatment tool
 本発明は、処置具に関する。 The present invention relates to a treatment tool.
 従来、生体組織における処置の対象となる部位(以下、対象部位と記載)に対してエネルギを付与することによって当該対象部位を処置する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置具では、対象部位を把持する一対の電極を備える。そして、当該処置具では、一対の電極間に高周波電力を供給する。その結果、一対の電極間に把持された対象部位には高周波電流が流れる。言い換えれば、当該対象部位には高周波エネルギが付与される。
 そして、特許文献1に記載の処置具では、電極への対象部位の貼り付きを防止するために、当該電極の外表面をコーティングによって覆っている。
Conventionally, a treatment tool for treating a target site in a living tissue by applying energy to a target site (hereinafter referred to as a target site) has been known (see, for example, Patent Document 1).
The treatment tool described in Patent Document 1 includes a pair of electrodes for gripping the target portion. Then, in the treatment tool, high frequency power is supplied between the pair of electrodes. As a result, a high-frequency current flows through the target portion gripped between the pair of electrodes. In other words, high frequency energy is applied to the target portion.
Then, in the treatment tool described in Patent Document 1, the outer surface of the electrode is covered with a coating in order to prevent the target portion from sticking to the electrode.
特開2017-193109号公報Japanese Unexamined Patent Publication No. 2017-193109
 ところで、特許文献1に記載の処置具では、電極の外表面を覆うコーティングとして、シロキサン結合を主成分とする表層と、当該表層上に配置され、一部が突出するセラミック等の突出粒子とを備える。このようなコーティングを採用した場合には、当該コーティングを高周波電流が通過し難く、対象部位に適切に高周波電流が流れない虞がある。
 一方、コーティングを高周波電流が通過し易くするために、当該コーティングに導電性粒子を混入した場合には、当該コーティングの強度が低下し、当該コーティングが電極から剥離してしまう虞がある。
 そこで、電極の外表面を覆うコーティングの通電性及び強度を確保することができる技術が要望されている。
By the way, in the treatment tool described in Patent Document 1, as a coating covering the outer surface of the electrode, a surface layer containing a siloxane bond as a main component and protruding particles such as ceramics arranged on the surface layer and partially protruding are provided. Be prepared. When such a coating is adopted, it is difficult for a high-frequency current to pass through the coating, and there is a risk that a high-frequency current will not flow appropriately to the target portion.
On the other hand, when conductive particles are mixed in the coating in order to facilitate the passage of high-frequency current through the coating, the strength of the coating may decrease and the coating may peel off from the electrode.
Therefore, there is a demand for a technique capable of ensuring the electrical conductivity and strength of the coating covering the outer surface of the electrode.
 本発明は、上記に鑑みてなされたものであって、電極の外表面を覆うコーティングの通電性及び強度を確保することができる処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a treatment tool capable of ensuring the electrical conductivity and strength of the coating covering the outer surface of the electrode.
 上述した課題を解決し、目的を達成するために、本発明に係る処置具は、導電性材料によって構成され、生体組織に対して高周波電流を付与する電極と、前記電極の外表面の少なくとも一部を覆うコーティングと、を備え、前記コーティングは、耐熱性材料と導電性粒子とが混合された混合物によって構成され、前記電極の外表面の少なくとも一部を覆う耐熱構造維持層と、前記耐熱構造維持層の少なくとも一部を覆い、前記耐熱構造維持層よりも薄く、前記生体組織の貼り付きを防止する貼り付き防止層と、を備える。 In order to solve the above-mentioned problems and achieve the object, the treatment tool according to the present invention is composed of an electrode made of a conductive material and applying a high-frequency current to a biological tissue, and at least one of the outer surfaces of the electrode. The coating comprises a coating for covering the portion, and the coating is composed of a mixture of a heat-resistant material and conductive particles, and has a heat-resistant structure maintaining layer covering at least a part of the outer surface of the electrode and the heat-resistant structure. It is provided with a sticking prevention layer that covers at least a part of the maintenance layer, is thinner than the heat-resistant structure maintenance layer, and prevents sticking of the biological tissue.
 本発明に係る処置具によれば、電極の外表面を覆うコーディングの通電性及び強度を確保することができる。 According to the treatment tool according to the present invention, the electrical conductivity and strength of the coating covering the outer surface of the electrode can be ensured.
図1は、実施の形態に係る処置システムを示す図である。FIG. 1 is a diagram showing a treatment system according to an embodiment. 図2は、把持部を示す図である。FIG. 2 is a diagram showing a grip portion. 図3は、把持部を示す図である。FIG. 3 is a diagram showing a grip portion. 図4は、第1のコーティングの構成を示す図である。FIG. 4 is a diagram showing the configuration of the first coating. 図5は、第1の銀粒子の一例を示す図である。FIG. 5 is a diagram showing an example of the first silver particle. 図6は、第2の銀粒子の一例を示す図である。FIG. 6 is a diagram showing an example of the second silver particle. 図7は、第2の銀粒子の一例を示す図である。FIG. 7 is a diagram showing an example of the second silver particle. 図8は、第2の銀粒子の一例を示す図である。FIG. 8 is a diagram showing an example of the second silver particle.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the description of the drawings, the same parts are designated by the same reference numerals.
 〔処置システムの概略構成〕
 図1は、本実施の形態に係る処置システム1を示す図である。
 処置システム1は、生体組織における処置の対象となる部位(以下、対象部位と記載)に対して高周波エネルギを付与することによって、当該対象部位を処置する。ここで、当該処置とは、例えば、対象部位の凝固及び切開を意味する。この処置システム1は、図1に示すように、処置具2と、制御装置3とを備える。
[Outline configuration of treatment system]
FIG. 1 is a diagram showing a treatment system 1 according to the present embodiment.
The treatment system 1 treats the target site by applying high-frequency energy to the target site (hereinafter referred to as the target site) in the living tissue. Here, the treatment means, for example, coagulation and incision of a target site. As shown in FIG. 1, the treatment system 1 includes a treatment tool 2 and a control device 3.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通した状態で対象部位を処置するための外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51と、スイッチ52とが設けられている。
 操作ノブ51は、術者による開閉操作を受け付ける。
 スイッチ52は、術者による出力開始操作を受け付ける。そして、スイッチ52は、電気ケーブルC(図1)を経由することによって、制御装置3に対して当該出力開始操作に応じた操作信号を出力する。
[Structure of treatment tool]
The treatment tool 2 is, for example, a surgical treatment tool for treating a target site while passing through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part held by the operator. Then, as shown in FIG. 1, the handle 5 is provided with an operation knob 51 and a switch 52.
The operation knob 51 accepts an opening / closing operation by the operator.
The switch 52 receives an output start operation by the operator. Then, the switch 52 outputs an operation signal corresponding to the output start operation to the control device 3 via the electric cable C (FIG. 1).
 シャフト6は、略円筒形状を有する。なお、以下では、シャフト6の中心軸を中心軸Ax(図1)と記載する。また、以下では、中心軸Axに沿う一方側を先端側Ar1(図1)と記載し、他方側を基端側Ar2(図1)と記載する。そして、シャフト6は、基端側Ar2の端部がハンドル5に対して接続されている。また、シャフト6における先端側Ar1の端部には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51への開閉操作に応じて、把持部7を構成する第1,第2の把持部材8,9(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、電気ケーブルC(図1)がハンドル5を経由することによって基端側Ar2から先端側Ar1まで配設されている。 The shaft 6 has a substantially cylindrical shape. In the following, the central axis of the shaft 6 will be referred to as the central axis Ax (FIG. 1). Further, in the following, one side along the central axis Ax will be referred to as the distal end side Ar1 (FIG. 1), and the other side will be referred to as the proximal end side Ar2 (FIG. 1). The end of the base end side Ar2 of the shaft 6 is connected to the handle 5. Further, a grip portion 7 is attached to the end portion of the tip end side Ar1 of the shaft 6. Then, inside the shaft 6, an opening / closing mechanism for opening / closing the first and second gripping members 8 and 9 (FIG. 1) constituting the gripping portion 7 in response to an opening / closing operation of the operation knob 51 by the operator. (Not shown) is provided. Further, inside the shaft 6, an electric cable C (FIG. 1) is arranged from the proximal end side Ar2 to the distal end side Ar1 by passing through the handle 5.
 〔把持部の構成〕
 図2及び図3は、把持部7を示す図である。具体的に、図3は、中心軸Axに直交する平面によって把持部7を切断した断面図である。
 把持部7は、対象部位を把持した状態で当該対象部位を処置する部分である。この把持部7は、図1ないし図3に示すように、第1,第2の把持部材8,9を備える。
 第1,第2の把持部材8,9は、術者による操作ノブ51への開閉操作に応じて、矢印R1(図2)方向に開閉可能に構成されている。
[Structure of grip]
2 and 3 are views showing the grip portion 7. Specifically, FIG. 3 is a cross-sectional view of the grip portion 7 cut by a plane orthogonal to the central axis Ax.
The grip portion 7 is a portion that treats the target portion while gripping the target portion. As shown in FIGS. 1 to 3, the grip portion 7 includes first and second grip members 8 and 9.
The first and second gripping members 8 and 9 are configured to be openable and closable in the direction of arrow R1 (FIG. 2) in response to an opening and closing operation of the operation knob 51 by the operator.
 〔第1の把持部材の構成〕
 第1の把持部材8は、第2の把持部材9に対向する位置に配設されている。この第1の把持部材8は、図2または図3に示すように、第1のジョー10と、第1の支持部材11と、第1の電極12と、第1のコーティング13(図3)とを備える。なお、図2では、説明の便宜上、第1のコーティング13の図示を省略している。
[Structure of the first gripping member]
The first gripping member 8 is arranged at a position facing the second gripping member 9. As shown in FIG. 2 or 3, the first gripping member 8 includes a first jaw 10, a first support member 11, a first electrode 12, and a first coating 13 (FIG. 3). And. Note that in FIG. 2, for convenience of explanation, the first coating 13 is not shown.
 第1のジョー10は、シャフト6の一部を先端側Ar1に延在させた部分であり、中心軸Axに沿って延在する長尺状に形成されている。この第1のジョー10は、例えば、ステンレスやチタン等の金属材料によって構成されている。
 第1の支持部材11は、中心軸Axに沿って延在する長尺状の平板であり、例えばPEEK(ポリエーテルエーテルケトン)等の低い熱伝導率を有する樹脂材料等によって構成されている。そして、第1の支持部材11は、第1のジョー10における図3中、上方側の面に固定される。
The first jaw 10 is a portion in which a part of the shaft 6 extends to the tip end side Ar1, and is formed in a long shape extending along the central axis Ax. The first jaw 10 is made of a metal material such as stainless steel or titanium.
The first support member 11 is a long flat plate extending along the central axis Ax, and is made of a resin material having a low thermal conductivity such as PEEK (polyetheretherketone). Then, the first support member 11 is fixed to the upper surface in FIG. 3 of the first jaw 10.
 第1の電極12は、本発明に係る電極に相当する。この第1の電極12は、中心軸Axに沿って延在する平板であり、例えば銅、アルミニウム、銅合金、アルミニウム合金等のように導電性を有し、熱伝導に優れた材料によって構成されている。そして、第1の電極12は、第1の支持部材11における図3中、上方側の面に固定される。
 この第1の電極12において、第2の把持部材9側の面は、第2の把持部材9との間で対象部位を把持する第1の把持面121(図2,図3)として機能する。本実施の形態では、第1の把持面121は、第1,第2の把持部材8,9によって対象部位を把持した状態で当該第1,第2の把持部材8,9が互いに対向する方向A1(図2,図3)に対して直交する平坦面によって構成されている。
 なお、第1の把持面121は、平坦面によって構成されているが、これに限らず、凸形状や凹形状等のその他の形状によって構成しても構わない。後述する第2の把持面931も同様である。
The first electrode 12 corresponds to the electrode according to the present invention. The first electrode 12 is a flat plate extending along the central axis Ax, and is made of a material having conductivity and excellent thermal conductivity such as copper, aluminum, copper alloy, and aluminum alloy. ing. Then, the first electrode 12 is fixed to the upper surface of the first support member 11 in FIG. 3.
In the first electrode 12, the surface on the side of the second gripping member 9 functions as a first gripping surface 121 (FIGS. 2 and 3) for gripping the target portion with the second gripping member 9. .. In the present embodiment, the first gripping surface 121 is in a direction in which the first and second gripping members 8 and 9 face each other in a state where the target portion is gripped by the first and second gripping members 8 and 9. It is composed of flat surfaces orthogonal to A1 (FIGS. 2 and 3).
The first gripping surface 121 is formed of a flat surface, but is not limited to this, and may be formed of other shapes such as a convex shape and a concave shape. The same applies to the second gripping surface 931 described later.
 図4は、第1のコーティング13の構成を示す図である。具体的に、図4は、図3の一部を拡大した図である。
 第1のコーティング13は、第1の電極12への対象部位の貼り付きを防止するコーティングである。この第1のコーティング13は、第1の電極12における外部に露出した面(第1の把持面121と、当該第1の把持面121と交差する4つの側面122との5つの面)全体を覆う。言い換えれば、第1のコーティング13は、第1の電極12における第1の把持面121と表裏をなす背面123以外の5つの面121,122を覆う。この第1のコーティング13は、図3または図4に示すように、耐熱構造維持層131と、貼り付き防止層132とを備える。
FIG. 4 is a diagram showing the configuration of the first coating 13. Specifically, FIG. 4 is an enlarged view of a part of FIG.
The first coating 13 is a coating that prevents the target portion from sticking to the first electrode 12. The first coating 13 covers the entire surface of the first electrode 12 exposed to the outside (five surfaces of the first gripping surface 121 and the four side surfaces 122 intersecting the first gripping surface 121). cover. In other words, the first coating 13 covers five surfaces 121, 122 other than the back surface 123 forming the front and back surfaces of the first gripping surface 121 of the first electrode 12. As shown in FIG. 3 or 4, the first coating 13 includes a heat-resistant structure maintaining layer 131 and a sticking prevention layer 132.
 耐熱構造維持層131は、耐熱性材料133(図4)と導電性粒子134(図4)とが混合された混合物によって構成され、第1の電極12における5つの面121,122に連続して設けられている。本実施の形態では、耐熱構造維持層131は、5μm以上、100μm以下の厚み寸法を有する。
 ここで、耐熱性材料133としては、セラミック等を例示することができる。また、本実施の形態では、導電性粒子134として、第1の銀粒子134A(図4)と、第2の銀粒子134B(図4)との2種類の銀粒子を採用している。
The heat-resistant structure maintaining layer 131 is composed of a mixture of the heat-resistant material 133 (FIG. 4) and the conductive particles 134 (FIG. 4), and is continuous with the five surfaces 121 and 122 of the first electrode 12. It is provided. In the present embodiment, the heat-resistant structure maintaining layer 131 has a thickness dimension of 5 μm or more and 100 μm or less.
Here, as the heat-resistant material 133, ceramics and the like can be exemplified. Further, in the present embodiment, two types of silver particles, the first silver particle 134A (FIG. 4) and the second silver particle 134B (FIG. 4), are adopted as the conductive particles 134.
 図5は、第1の銀粒子134Aの一例を示す図である。
 第1の銀粒子134Aは、図5に示すように、扁平形状を有する。このため、第1の銀粒子134Aでは、互いに対して略垂直な3軸(X軸、Y軸、及びZ軸)を規定した場合に、ある1つの軸(例えばZ軸)に沿う寸法は、他の2軸(例えばX軸及びY軸)のそれぞれに沿う寸法に比べて、極度に小さくなる。
FIG. 5 is a diagram showing an example of the first silver particle 134A.
As shown in FIG. 5, the first silver particle 134A has a flat shape. Therefore, in the first silver particle 134A, when three axes (X-axis, Y-axis, and Z-axis) substantially perpendicular to each other are defined, the dimension along one axis (for example, Z-axis) is set. It is extremely small compared to the dimensions along each of the other two axes (eg, the X-axis and the Y-axis).
 図6ないし図8は、第2の銀粒子134Bの一例を示す図である。
 第2の銀粒子134Bとしては、図6に示した球形状や、図7に示した多面体形状等を例示することができる。図6及び図7に示した形状を有する第2の銀粒子134Bでは、互いに対して略垂直な3軸(X軸、Y軸、及びZ軸)を規定した場合に、3軸(X軸、Y軸、Z軸)に沿う寸法は、互いに対して同程度の大きさとなる。
 また、第2の銀粒子134Bとしては、図8に示した線形状またはファイバ形状等を例示することができる。図8に示した形状を有する第2の銀粒子134Bでは、互いに対して略垂直な3軸(X軸、Y軸、及びZ軸)を規定した場合に、ある1つの軸(例えばX軸)に沿う寸法は、他の2軸(例えばY軸及びZ軸)のそれぞれに沿う寸法に比べて、極度に大きくなる。
6 to 8 are views showing an example of the second silver particle 134B.
Examples of the second silver particle 134B include the spherical shape shown in FIG. 6, the polyhedral shape shown in FIG. 7, and the like. In the second silver particle 134B having the shapes shown in FIGS. 6 and 7, when three axes (X-axis, Y-axis, and Z-axis) substantially perpendicular to each other are defined, the three axes (X-axis, The dimensions along the Y-axis and Z-axis) are about the same as each other.
Further, as the second silver particle 134B, the linear shape or fiber shape shown in FIG. 8 can be exemplified. In the second silver particle 134B having the shape shown in FIG. 8, when three axes (X-axis, Y-axis, and Z-axis) substantially perpendicular to each other are defined, one axis (for example, X-axis) is defined. The dimensions along are extremely large compared to the dimensions along each of the other two axes (eg, the Y-axis and the Z-axis).
 以上のように、本実施の形態では、第1の銀粒子134Aは、第2の銀粒子134Bよりも扁平率が高い形状を有する。また、本実施の形態では、第2の銀粒子134Bは、耐熱構造維持層131全体に対して占める割合(体積割合)が第1の銀粒子134Aよりも高い。例えば、第2の銀粒子134Bの体積割合は、第1の銀粒子134Aの体積割合の2倍程度である。さらに、本実施の形態では、導電性粒子134は、耐熱構造維持層131全体に対して占める割合が20%以上、70%以下である。また、本実施の形態では、耐熱構造維持層131は、貼り付き防止層132よりも所定の温度以上(高温時)における硬度が高い。 As described above, in the present embodiment, the first silver particle 134A has a shape having a higher flatness than the second silver particle 134B. Further, in the present embodiment, the ratio (volume ratio) of the second silver particles 134B to the entire heat-resistant structure maintaining layer 131 is higher than that of the first silver particles 134A. For example, the volume ratio of the second silver particle 134B is about twice the volume ratio of the first silver particle 134A. Further, in the present embodiment, the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is 20% or more and 70% or less. Further, in the present embodiment, the heat-resistant structure maintaining layer 131 has a higher hardness than the sticking prevention layer 132 at a predetermined temperature or higher (at a high temperature).
 貼り付き防止層132は、第1のコーティング13の最外面を構成し、対象部位の貼り付きを防止する層である。この貼り付き防止層132は、耐熱性材料に対してシロキサン(シリコンオイル)を含有した構成を有し、第1の支持部材11における図3中、上方側の面にまで設けられ、耐熱構造維持層131全体を覆う。すなわち、耐熱構造維持層131は、端縁をも貼り付き防止層132によって覆われている。本実施の形態では、貼り付き防止層132は、1μm以上、10μm以下の厚み寸法を有する。なお、貼り付き防止層132は、耐熱構造維持層131よりも薄い厚み寸法を有する。
 ここで、耐熱性材料としては、セラミックを例示することができる。なお、貼り付き防止層132を構成する耐熱性材料としては、耐熱構造維持層131を構成する耐熱性材料133と同一の材料としてもよく、あるいは、異なる材料としても構わない。
The sticking prevention layer 132 is a layer that constitutes the outermost surface of the first coating 13 and prevents sticking of the target portion. The sticking prevention layer 132 has a structure in which siloxane (silicon oil) is contained in the heat-resistant material, and is provided up to the upper surface in FIG. 3 of the first support member 11 to maintain the heat-resistant structure. Covers the entire layer 131. That is, the heat-resistant structure maintaining layer 131 is also covered with the sticking prevention layer 132 at the edge. In the present embodiment, the sticking prevention layer 132 has a thickness dimension of 1 μm or more and 10 μm or less. The sticking prevention layer 132 has a thickness dimension thinner than that of the heat resistant structure maintaining layer 131.
Here, as the heat-resistant material, ceramic can be exemplified. The heat-resistant material constituting the sticking prevention layer 132 may be the same material as the heat-resistant material 133 constituting the heat-resistant structure maintaining layer 131, or may be a different material.
 〔第2の把持部材の構成〕
 第2の把持部材9は、図2または図3に示すように、第1の把持部材8と同様の構成を有する。すなわち、第2の把持部材9は、第1のジョー10、第1の支持部材11、第1の電極12(第1の把持面121、4つの側面122、及び背面123を含む)、及び第1のコーティング13(耐熱構造維持層131及び貼り付き防止層132を含む)とそれぞれ同様の第2のジョー91、第2の支持部材92、第2の電極93(第2の把持面931、4つの側面932、及び背面933を含む)、及び第2のコーティング94(耐熱構造維持層941及び貼り付き防止層942を含む)を備える。
 なお、第2の電極93は、本発明に係る電極に相当する。また、第2のコーティング94は、本発明に係るコーティングに相当する。
[Structure of second gripping member]
As shown in FIG. 2 or 3, the second gripping member 9 has the same configuration as the first gripping member 8. That is, the second grip member 9 includes a first jaw 10, a first support member 11, a first electrode 12 (including a first grip surface 121, four side surfaces 122, and a back surface 123), and a second. A second jaw 91, a second support member 92, and a second electrode 93 (second gripping surfaces 931, 4) similar to the coating 13 (including the heat resistant structure maintaining layer 131 and the sticking prevention layer 132) of 1. It includes one side surface 932 and a back surface 933) and a second coating 94 (including a heat resistant structure maintaining layer 941 and a sticking prevention layer 942).
The second electrode 93 corresponds to the electrode according to the present invention. Further, the second coating 94 corresponds to the coating according to the present invention.
 本実施の形態では、第2のジョー91は、基端側Ar2が支点P0(図2)を中心としてシャフト6に対して回動可能に軸支され、回動することによって第1の把持部材8に対して開閉する構成としているが、これに限らない。例えば、第1,第2の把持部材8,9の双方がシャフト6に軸支され、それぞれ回動することによって第1,第2の把持部材8,9が開閉する構成を採用しても構わない。また、例えば、第1の把持部材8がシャフト6に軸支され、第2の把持部材9がシャフト6に固定され、第1の把持部材8が回動することによって第2の把持部材9に対して開閉する構成を採用しても構わない。 In the present embodiment, in the second jaw 91, the base end side Ar2 is rotatably supported with respect to the shaft 6 about the fulcrum P0 (FIG. 2), and the first gripping member is rotated by rotating. It is configured to open and close with respect to 8, but is not limited to this. For example, a configuration may be adopted in which both the first and second gripping members 8 and 9 are pivotally supported by the shaft 6 and the first and second gripping members 8 and 9 are opened and closed by rotating each of them. Absent. Further, for example, the first gripping member 8 is pivotally supported by the shaft 6, the second gripping member 9 is fixed to the shaft 6, and the first gripping member 8 rotates to the second gripping member 9. On the other hand, a configuration that opens and closes may be adopted.
 〔制御装置の構成〕
 制御装置3には、電気ケーブルCによって、処置具2が着脱自在に接続される。そして、制御装置3は、電気ケーブルCを経由することによって、スイッチ52、第1,第2の電極12,93とそれぞれ電気的に接続する。また、制御装置3は、スイッチ52からの操作信号に応じて、以下に示す制御を実行する。
 制御装置3は、電気ケーブルCを経由することによって、第1,第2の電極12,93に対して高周波電力を供給する。これによって、第1,第2の電極12,93(第1,第2の把持面121,931)の間に把持された対象部位には、高周波電流が流れる。言い換えれば、当該対象部位には、高周波エネルギが付与される。そして、当該対象部位には、高周波電流が流れることによって、ジュール熱が発生する。これによって、当該対象部位が処置される。
[Control device configuration]
The treatment tool 2 is detachably connected to the control device 3 by the electric cable C. Then, the control device 3 is electrically connected to the switch 52 and the first and second electrodes 12, 93, respectively, via the electric cable C. Further, the control device 3 executes the following controls in response to the operation signal from the switch 52.
The control device 3 supplies high-frequency power to the first and second electrodes 12 and 93 via the electric cable C. As a result, a high-frequency current flows through the target portion gripped between the first and second electrodes 12, 93 (first and second grip surfaces 121, 931). In other words, high frequency energy is applied to the target portion. Then, Joule heat is generated by the high frequency current flowing through the target portion. As a result, the target site is treated.
 以上説明した本実施の形態によれば、以下の効果を奏する。
 本実施の形態に係る処置具2では、第1のコーティング13は、上述した耐熱構造維持層131及び貼り付き防止層132の2層によって構成されている。
 このため、第1の電極12と貼り付き防止層132との間に硬度の高い耐熱構造維持層131を介在させることによって、第1の電極12に対して直接、貼り付き防止層132を設けた構成と比較して、貼り付き防止層132の密着性を向上させ、当該貼り付き防止層132の割れを防止することができる。
 また、耐熱構造維持層131に導電性粒子134が含まれている。さらに、貼り付き防止層132は、耐熱構造維持層131よりも厚み寸法が薄い。このため、第1のコーティング13を高周波電流が通過し易く、対象部位に適切に高周波電流を流すことができる。
 以上のことから、本実施の形態に係る処置具2によれば、第1の電極12の外表面を覆う第1のコーティング13の通電性及び強度を確保することができる。
According to the present embodiment described above, the following effects are obtained.
In the treatment tool 2 according to the present embodiment, the first coating 13 is composed of two layers, the heat-resistant structure maintaining layer 131 and the sticking prevention layer 132 described above.
Therefore, the sticking prevention layer 132 is provided directly to the first electrode 12 by interposing a heat resistant structure maintaining layer 131 having high hardness between the first electrode 12 and the sticking prevention layer 132. Compared with the configuration, the adhesion of the sticking prevention layer 132 can be improved, and cracking of the sticking prevention layer 132 can be prevented.
Further, the heat-resistant structure maintaining layer 131 contains the conductive particles 134. Further, the sticking prevention layer 132 is thinner than the heat resistant structure maintaining layer 131. Therefore, the high frequency current easily passes through the first coating 13, and the high frequency current can be appropriately passed to the target portion.
From the above, according to the treatment tool 2 according to the present embodiment, it is possible to secure the electrical conductivity and strength of the first coating 13 that covers the outer surface of the first electrode 12.
 また、本実施の形態に係る処置具2では、導電性粒子134は、第1の銀粒子134Aと、第2の銀粒子134Bの2種類の銀粒子によって構成されている。
 このため、第1のコーティング13において、導電性粒子134が架橋する構造が形成される。そして、導電性粒子134が架橋する構造によって、第1のコーティング13を構成する混合物における導電性粒子134の体積割合が小さくても、第1のコーティング13における静電容量を大きく確保することができる。すなわち、第1のコーティング13における導電性粒子134の体積割合が小さくても、第1のコーティング13を通過する高周波電流の回路におけるインピーダンスを低減することができる。したがって、第1のコーティング13における導電性粒子134の体積割合が小さくても、第1のコーティング13の通電性を十分に確保することができる。
Further, in the treatment tool 2 according to the present embodiment, the conductive particles 134 are composed of two types of silver particles, a first silver particle 134A and a second silver particle 134B.
Therefore, in the first coating 13, a structure in which the conductive particles 134 are crosslinked is formed. The structure in which the conductive particles 134 are crosslinked makes it possible to secure a large capacitance in the first coating 13 even if the volume ratio of the conductive particles 134 in the mixture constituting the first coating 13 is small. .. That is, even if the volume ratio of the conductive particles 134 in the first coating 13 is small, the impedance in the circuit of the high frequency current passing through the first coating 13 can be reduced. Therefore, even if the volume ratio of the conductive particles 134 in the first coating 13 is small, the electrical conductivity of the first coating 13 can be sufficiently ensured.
 特に、第1の銀粒子134Aは、第2の銀粒子134Bに比べて扁平率が高い。このため、第1のコーティング13において、導電性粒子134の架橋構造が形成され易いものとなる。また、扁平率の高い第1の銀粒子134Aでは、静電容量が高くなる。したがって、第1の銀粒子134Aが扁平率の高い形状であることによって、第1のコーティング13における静電容量をさらに大きくし、第1のコーティング13を通過する高周波電流の回路におけるインピーダンスをさらに低減することができる。また、扁平率の高い形状である第1の銀粒子134Aの体積割合を扁平率の低い形状である第2の銀粒子134Bの体積割合よりも小さくすることによって、第1のコーティング13における架橋構造がさらに形成され易くなり、第1のコーティング13における静電容量をさらに大きくすることができる。 In particular, the first silver particle 134A has a higher flatness than the second silver particle 134B. Therefore, in the first coating 13, a crosslinked structure of the conductive particles 134 is likely to be formed. Further, the first silver particle 134A having a high flatness has a high capacitance. Therefore, since the first silver particles 134A have a shape having a high flatness, the capacitance in the first coating 13 is further increased, and the impedance in the circuit of the high frequency current passing through the first coating 13 is further reduced. can do. Further, by making the volume ratio of the first silver particles 134A having a high flatness smaller than the volume ratio of the second silver particles 134B having a low flatness, the crosslinked structure in the first coating 13 Is more likely to be formed, and the capacitance in the first coating 13 can be further increased.
 また、本実施の形態に係る処置具2では、導電性粒子134は、耐熱構造維持層131全体に対して占める割合が20%以上、70%以下である。
 このため、導電性粒子134における耐熱構造維持層131全体に対して占める割合を20%未満とした場合には、第1のコーティング13における通電性を十分に確保することができない。また、導電性粒子134における耐熱構造維持層131全体に対して占める割合を70%超とした場合には、第1のコーティング13における強度を十分に確保することができない。すなわち、導電性粒子134における耐熱構造維持層131全体に対して占める割合を20%以上、70%以下とすることによって、第1のコーティング13の通電性及び強度を効果的に確保することができる。
Further, in the treatment tool 2 according to the present embodiment, the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is 20% or more and 70% or less.
Therefore, when the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is less than 20%, the electrical conductivity of the first coating 13 cannot be sufficiently ensured. Further, when the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 is more than 70%, the strength of the first coating 13 cannot be sufficiently secured. That is, the electrical conductivity and strength of the first coating 13 can be effectively ensured by setting the ratio of the conductive particles 134 to the entire heat-resistant structure maintaining layer 131 to be 20% or more and 70% or less. ..
 また、本実施の形態に係る処置具2では、貼り付き防止層132には、シロキサンが含まれている。このため、対象部位の貼り付きを効果的に防止することができる。 Further, in the treatment tool 2 according to the present embodiment, the sticking prevention layer 132 contains siloxane. Therefore, sticking of the target portion can be effectively prevented.
 また、本実施の形態に係る処置具2では、耐熱構造維持層131を構成する耐熱性材料133、及び貼り付き防止層132を構成する耐熱性材料の双方は、セラミックである。
 このため、第1のコーティング13における耐熱性を十分に確保することができる。
Further, in the treatment tool 2 according to the present embodiment, both the heat-resistant material 133 constituting the heat-resistant structure maintaining layer 131 and the heat-resistant material forming the sticking prevention layer 132 are ceramics.
Therefore, sufficient heat resistance of the first coating 13 can be ensured.
 また、本実施の形態に係る処置具2では、耐熱構造維持層131は、貼り付き防止層132よりも所定の温度以上における硬度が高い。すなわち、耐熱構造維持層131の硬度を高めることによって、第1のコーティング13の強度を十分に確保することができる。 Further, in the treatment tool 2 according to the present embodiment, the heat-resistant structure maintaining layer 131 has a higher hardness at a predetermined temperature or higher than the sticking prevention layer 132. That is, by increasing the hardness of the heat-resistant structure maintaining layer 131, the strength of the first coating 13 can be sufficiently ensured.
 また、本実施の形態に係る処置具2では、耐熱構造維持層131は、5μm以上、100μm以下の厚み寸法を有する。すなわち、耐熱構造維持層131の厚み寸法を比較的に厚くすることによって、第1のコーティング13の強度を十分に確保することができる。 Further, in the treatment tool 2 according to the present embodiment, the heat-resistant structure maintaining layer 131 has a thickness dimension of 5 μm or more and 100 μm or less. That is, by making the thickness dimension of the heat-resistant structure maintaining layer 131 relatively thick, the strength of the first coating 13 can be sufficiently ensured.
 また、本実施の形態に係る処置具2では、貼り付き防止層132は、1μm以上、10μm以下の厚み寸法を有する。すなわち、貼り付き防止層132の厚み寸法を比較的に薄くすることによって、第1のコーティング13の通電性を十分に確保することができる。 Further, in the treatment tool 2 according to the present embodiment, the sticking prevention layer 132 has a thickness dimension of 1 μm or more and 10 μm or less. That is, by making the thickness dimension of the sticking prevention layer 132 relatively thin, the electrical conductivity of the first coating 13 can be sufficiently ensured.
 ところで、耐熱構造維持層131は、硬度が高い分、端縁等の脆い部分が存在する。
 本実施の形態に係る処置具2では、貼り付き防止層132は、耐熱構造維持層131全体を覆う。すなわち、貼り付き防止層132は、耐熱構造維持層131における端縁等の脆い部分も覆う。このため、第1のコーティング13が第1の電極12から剥離してしまうことを防止することができる。
By the way, the heat-resistant structure maintaining layer 131 has fragile portions such as edge edges due to its high hardness.
In the treatment tool 2 according to the present embodiment, the sticking prevention layer 132 covers the entire heat-resistant structure maintaining layer 131. That is, the sticking prevention layer 132 also covers a brittle portion such as an edge of the heat resistant structure maintaining layer 131. Therefore, it is possible to prevent the first coating 13 from peeling off from the first electrode 12.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。
 上述した実施の形態に係る処置具2では、対象部位に対して付与するエネルギとして、高周波エネルギを採用していたが、これに限らない。例えば、対象部位に対して、高周波エネルギの他、熱エネルギや超音波エネルギを付与する構成を採用しても構わない。なお、「対象部位に対して熱エネルギを付与する」とは、ヒータ等の熱を対象部位に伝達することを意味する。また、「対象部位に対して超音波エネルギを付与する」とは、対象部位に対して超音波振動を付与することを意味する。
(Other embodiments)
Although the embodiments for carrying out the present invention have been described so far, the present invention should not be limited only to the above-described embodiments.
In the treatment tool 2 according to the above-described embodiment, high-frequency energy is used as the energy applied to the target portion, but the present invention is not limited to this. For example, a configuration in which thermal energy or ultrasonic energy is applied to the target portion in addition to high frequency energy may be adopted. In addition, "giving heat energy to the target part" means transferring heat of a heater or the like to the target part. Further, "applying ultrasonic energy to the target portion" means applying ultrasonic vibration to the target portion.
 上述した実施の形態に係る処置具2は、第1,第2の電極12,93を備えたバイポーラ処置具として構成されていたが、これに限らず、電極を1つのみ備えたモノポーラ処置具として構成しても構わない。 The treatment tool 2 according to the above-described embodiment is configured as a bipolar treatment tool provided with the first and second electrodes 12, 93, but is not limited to this, and is not limited to this, and is a monopolar treatment tool provided with only one electrode. It may be configured as.
 1 処置システム
 2 処置具
 3 制御装置
 5 ハンドル
 6 シャフト
 7 把持部
 8 第1の把持部材
 9 第2の把持部材
 10 第1のジョー
 11 第1の支持部材
 12 第1の電極
 13 第1のコーティング
 51 操作ノブ
 52 スイッチ
 91 第2のジョー
 92 第2の支持部材
 93 第2の電極
 94 第2のコーティング
 121 第1の把持面
 122 側面
 123 背面
 131 耐熱構造維持層
 132 貼り付き防止層
 133 耐熱性材料
 134 導電性粒子
 134A 第1の銀粒子
 134B 第2の銀粒子
 931 第2の把持面
 932 側面
 933 背面
 941 耐熱構造維持層
 942 貼り付き防止層
 A1 方向
 Ar1 先端側
 Ar2 基端側
 Ax 中心軸
 C 電気ケーブル
 P0 支点
 R1 矢印
1 Treatment system 2 Treatment tool 3 Control device 5 Handle 6 Shaft 7 Grip part 8 First grip member 9 Second grip member 10 First jaw 11 First support member 12 First electrode 13 First coating 51 Operation knob 52 Switch 91 Second jaw 92 Second support member 93 Second electrode 94 Second coating 121 First gripping surface 122 Side surface 123 Back surface 131 Heat-resistant structure maintenance layer 132 Anti-sticking layer 133 Heat-resistant material 134 Conductive particles 134A First silver particles 134B Second silver particles 931 Second grip surface 932 Side surface 933 Back surface 941 Heat resistant structure maintenance layer 942 Anti-sticking layer A1 direction Ar1 Tip side Ar2 Base end side Ax Central axis C Electric cable P0 fulcrum R1 arrow

Claims (11)

  1.  導電性材料によって構成され、生体組織に対して高周波電流を付与する電極と、
     前記電極の外表面の少なくとも一部を覆うコーティングと、を備え、
     前記コーティングは、
     耐熱性材料と導電性粒子とが混合された混合物によって構成され、前記電極の外表面の少なくとも一部を覆う耐熱構造維持層と、
     前記耐熱構造維持層の少なくとも一部を覆い、前記耐熱構造維持層よりも薄く、前記生体組織の貼り付きを防止する貼り付き防止層と、を備える処置具。
    An electrode made of a conductive material that applies a high-frequency current to living tissue,
    With a coating covering at least a portion of the outer surface of the electrode.
    The coating is
    A heat-resistant structure maintenance layer composed of a mixture of a heat-resistant material and conductive particles and covering at least a part of the outer surface of the electrode.
    A treatment tool comprising at least a part of the heat-resistant structure maintaining layer, a sticking prevention layer thinner than the heat-resistant structure maintaining layer, and preventing sticking of the biological tissue.
  2.  前記導電性粒子は、
     銀粒子である請求項1に記載の処置具。
    The conductive particles are
    The treatment tool according to claim 1, which is a silver particle.
  3.  前記導電性粒子は、
     第1の銀粒子と、前記第1の銀粒子よりも扁平率が低い第2の銀粒子と、を備える請求項2に記載の処置具。
    The conductive particles are
    The treatment tool according to claim 2, further comprising a first silver particle and a second silver particle having a flattening ratio lower than that of the first silver particle.
  4.  前記第2の銀粒子は、
     前記耐熱構造維持層全体に対して占める割合が前記第1の銀粒子よりも高い請求項3に記載の処置具。
    The second silver particle is
    The treatment tool according to claim 3, wherein the proportion of the heat-resistant structure maintaining layer to the whole is higher than that of the first silver particles.
  5.  前記導電性粒子は、
     前記耐熱構造維持層全体に対して占める割合が20%以上、70%以下である請求項2に記載の処置具。
    The conductive particles are
    The treatment tool according to claim 2, wherein the proportion of the entire heat-resistant structure maintaining layer is 20% or more and 70% or less.
  6.  前記貼り付き防止層には、
     シロキサンが含まれている請求項1に記載の処置具。
    The sticking prevention layer has
    The treatment tool according to claim 1, which contains siloxane.
  7.  前記耐熱性材料は、
     セラミックである請求項1に記載の処置具。
    The heat-resistant material is
    The treatment tool according to claim 1, which is ceramic.
  8.  前記耐熱構造維持層は、
     前記貼り付き防止層よりも所定の温度以上における硬度が高い請求項1に記載の処置具。
    The heat-resistant structure maintenance layer is
    The treatment tool according to claim 1, which has a hardness higher than that of the sticking prevention layer at a predetermined temperature or higher.
  9.  前記耐熱構造維持層は、
     5μm以上、100μm以下の厚み寸法を有する請求項1に記載の処置具。
    The heat-resistant structure maintenance layer is
    The treatment tool according to claim 1, which has a thickness dimension of 5 μm or more and 100 μm or less.
  10.  前記貼り付き防止層は、
     1μm以上、10μm以下の厚み寸法を有する請求項1に記載の処置具。
    The sticking prevention layer is
    The treatment tool according to claim 1, which has a thickness dimension of 1 μm or more and 10 μm or less.
  11.  前記貼り付き防止層は、
     前記耐熱構造維持層全体を覆う請求項1に記載の処置具。
    The sticking prevention layer is
    The treatment tool according to claim 1, which covers the entire heat-resistant structure maintenance layer.
PCT/JP2019/010398 2019-03-13 2019-03-13 Treatment instrument WO2020183679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010398 WO2020183679A1 (en) 2019-03-13 2019-03-13 Treatment instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010398 WO2020183679A1 (en) 2019-03-13 2019-03-13 Treatment instrument

Publications (1)

Publication Number Publication Date
WO2020183679A1 true WO2020183679A1 (en) 2020-09-17

Family

ID=72426170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010398 WO2020183679A1 (en) 2019-03-13 2019-03-13 Treatment instrument

Country Status (1)

Country Link
WO (1) WO2020183679A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116792A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Anti-microbial electrosurgical blade and method of manufacturing same
WO2016051918A1 (en) * 2014-09-30 2016-04-07 トーカロ株式会社 Energy device for surgical operations
WO2017130383A1 (en) * 2016-01-29 2017-08-03 オリンパス株式会社 High-frequency treatment instrument
JP2017148479A (en) * 2016-02-22 2017-08-31 オリンパス株式会社 Adherence prevention membrane for medical equipment and medical equipment
JP2018075303A (en) * 2016-11-11 2018-05-17 オリンパス株式会社 Medical conductive attachment prevention film and medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116792A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Anti-microbial electrosurgical blade and method of manufacturing same
WO2016051918A1 (en) * 2014-09-30 2016-04-07 トーカロ株式会社 Energy device for surgical operations
WO2017130383A1 (en) * 2016-01-29 2017-08-03 オリンパス株式会社 High-frequency treatment instrument
JP2017148479A (en) * 2016-02-22 2017-08-31 オリンパス株式会社 Adherence prevention membrane for medical equipment and medical equipment
JP2018075303A (en) * 2016-11-11 2018-05-17 オリンパス株式会社 Medical conductive attachment prevention film and medical device

Similar Documents

Publication Publication Date Title
WO2018061124A1 (en) Treatment tool
US10357273B2 (en) Medical device and coating material
US7397016B2 (en) Heat generating element, medical therapeutic instrument implementing the same, and treatment apparatus
US11179174B2 (en) High-frequency treatment instrument and end effector
WO2020183679A1 (en) Treatment instrument
JP6745706B2 (en) Medical conductive anti-adhesion film and medical device
US11253286B2 (en) Surgical treatment device
WO2017126051A1 (en) Surgical instrument
US10603096B2 (en) Treatment-energy applying structure and medical treatment device
JP6833849B2 (en) Treatment tool
WO2020183681A1 (en) Medical heater, and treatment instrument
WO2018198339A1 (en) Energy treatment tool and treatment system
JP7044895B2 (en) Medical heaters, treatment tools, and methods for manufacturing treatment tools
WO2020012623A1 (en) Treatment tool
WO2018092278A1 (en) Energy treatment tool
WO2022049644A1 (en) Treatment tool and treatment system
US20230363812A1 (en) Thermal cutter assembly and seal plate assembly and method for manufacturing same
WO2018198209A1 (en) Treatment tool
WO2020183673A1 (en) Treatment instrument, and method for manufacturing treatment instrument
WO2020183680A1 (en) Treatment instrument
WO2020012622A1 (en) Treatment tool
WO2017163410A1 (en) Energy treatment tool
WO2020044563A1 (en) Medical heater, treatment instrument, and production method for treatment instrument
WO2023187734A1 (en) High temperature spacer for jaw member and method for manufacturing same
WO2023187737A1 (en) Thermal cutting assembly for mechanical engagement within jaw member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP