WO2020183549A1 - Structure bending measurement device - Google Patents

Structure bending measurement device Download PDF

Info

Publication number
WO2020183549A1
WO2020183549A1 PCT/JP2019/009520 JP2019009520W WO2020183549A1 WO 2020183549 A1 WO2020183549 A1 WO 2020183549A1 JP 2019009520 W JP2019009520 W JP 2019009520W WO 2020183549 A1 WO2020183549 A1 WO 2020183549A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
deflection
amount
rigidity
weight
Prior art date
Application number
PCT/JP2019/009520
Other languages
French (fr)
Japanese (ja)
Inventor
遊哉 石井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021504629A priority Critical patent/JP7173281B2/en
Priority to PCT/JP2019/009520 priority patent/WO2020183549A1/en
Priority to US17/435,767 priority patent/US20220050009A1/en
Publication of WO2020183549A1 publication Critical patent/WO2020183549A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing

Definitions

  • the present invention relates to a structure deflection measuring device, a method thereof, and a recording medium.
  • Patent Document 1 describes a technique for measuring the amount of flexure of a bridge when a predetermined vehicle passes over the bridge using images captured by a video camera and a digital camera. Specifically, the characteristics of the vehicle traveling on the bridge are identified from the moving image of the video camera that is photographing the bridge, and the timing at which a predetermined vehicle is passing on the bridge is detected. Then, the bridge is photographed with a digital camera at the detected timing, and the distribution of the amount of deflection of the bridge is detected based on the photographed image. Further, in Patent Document 1, overloaded vehicles are detected and bridge soundness is evaluated based on the measured distribution of the amount of deflection.
  • flexural rigidity is one of the performance indicators of structures such as bridges. Since the flexural rigidity of the structure is constant in the short term, the weight of the vehicle traveling on the structure can be calculated by using the value. On the other hand, since the flexural rigidity of a structure decreases due to aged deterioration of the floor slabs constituting the structure in the long term, deterioration diagnosis of the structure can be made by using the value. However, in order to realize the above-mentioned utilization, it is necessary to find the relationship between the force applied to the structure by the vehicle weight and the bending rigidity of the structure.
  • An object of the present invention is to solve the above-mentioned problem, that is, it is difficult to grasp the relationship between the magnitude of the force applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection.
  • the purpose is to provide a deflection measuring device for a structure.
  • the structure deflection measuring device is Deflection acquisition means for acquiring the amount of deflection generated in the measurement target area on the structure by a vehicle traveling on the structure, and A vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle.
  • Rigidity coefficient calculation means for calculating the rigidity coefficient to specify To be equipped.
  • the method for measuring the deflection of a structure is described.
  • the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure is acquired.
  • the position of the vehicle on the structure at the time when the amount of deflection is acquired is acquired.
  • the position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Calculate the rigidity coefficient to specify.
  • the computer-readable recording medium is On the computer The process of acquiring the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure, and The process of acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. And the process of calculating the rigidity coefficient to specify Record the program to make you do.
  • the present invention can grasp the relationship between the magnitude of the force applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection.
  • FIG. 1 is a diagram showing a configuration example of a deflection measuring device 100 according to a first embodiment of the present invention.
  • the deflection measuring device 100 includes a computer 110 and two cameras 130 and 131.
  • the camera 130 is an imaging device for detecting deflection that captures a region 141 existing on the surface of the structure 140 to be diagnosed at a predetermined frame rate.
  • the structure 140 is a bridge over which a road 150 such as an expressway crosses over a river or the like.
  • the area 141 is a part of the floor slab that serves as a diagnostic location for the bridge.
  • the structure 140 is not limited to the bridge.
  • the structure 140 may be an elevated structure of a road or a railway.
  • the size of the area 141 is, for example, several tens of centimeters square.
  • the camera 130 is attached to a pan head (neither shown) on a tripod so that the shooting direction of the camera can be fixed in any direction.
  • the camera 130 may be, for example, a high-speed camera including a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary MOS) image sensor having a pixel capacity of about several million pixels. Further, the camera 130 may be a visible light and black and white camera, or may be an infrared camera or a color camera. Further, the camera 130 may include a GPS receiver that measures the position of the camera, or may include an azimuth sensor and an acceleration sensor that measure the shooting direction of the camera. The camera 130 is connected to the computer 110 through a cable 120. However, the camera 130 may be wirelessly connected to the computer 110.
  • CCD Charge-Coupled Device
  • CMOS Complementary MOS
  • the camera 131 is an imaging device for vehicle position detection that detects the position of a vehicle traveling on the structure 140.
  • the camera 131 is installed above the post-passage region of the structure 140 so that it can photograph a vehicle traveling on the road from the entrance to the exit of the structure 140.
  • the installation location of the camera 131 is not limited to this.
  • the camera 131 may be installed above the pre-passage area of the structure 140, or the structure 140 may be installed at a position desired from the lateral direction. Further, the number of cameras 131 is not limited to one, and there may be a plurality of cameras 131.
  • the camera 131 may be a video camera including a CCD image sensor or a CMOS image sensor.
  • the camera 131 may be a visible light and black and white camera, or may be an infrared camera or a color camera.
  • the camera 131 is wirelessly connected to the computer 110 and is configured to wirelessly transmit the captured image to the computer 110.
  • the camera 131 may be connected to the computer 110 by wire.
  • the computer 110 is configured to acquire an image of the area 141 of the structure 140 taken by the camera 130 via the cable 120. Further, the computer 110 is configured to measure the amount of deflection of the region 141 of the structure 140 based on the image acquired from the camera 130. Further, the computer 110 is configured to wirelessly acquire an image of a vehicle traveling on the structure 140 captured by the camera 131. Further, the computer 110 is configured to acquire the position of the vehicle traveling on the structure 140 based on the image acquired from the camera 131. Further, the computer 110 has a relationship between the magnitude of the force applied to the structure 140 by the vehicle weight and the flexural rigidity of the structure 140 based on the acquired amount of deflection, the vehicle position, and the parameters set and stored in advance.
  • the computer 110 is configured to calculate a numerical value that identifies. This numerical value is referred to as a rigidity coefficient in this specification. Further, the computer 110 is configured to calculate the value of the bending rigidity of the structure 140 based on the calculated rigidity coefficient and the vehicle weight. Further, the computer 110 is configured to calculate the weight of a vehicle having an unknown weight traveling on the structure 140 by using the calculated bending rigidity value. Further, the computer 110 is configured to perform a deterioration diagnosis of the structure 140 by using the calculated bending rigidity value.
  • FIG. 2 is a block diagram showing an example of the configuration of the computer 110.
  • the computer 110 includes camera I / F (interface) units 111 and 112, communication I / F unit 113, operation input unit 114, screen display unit 115, storage unit 116, and arithmetic processing. It is composed of a part 117.
  • the camera I / F unit 111 is connected to the camera 130 through a cable 120, and is configured to transmit / receive data between the camera 130 and the arithmetic processing unit 117.
  • the camera I / F unit 112 is wirelessly connected to the camera 131, and is configured to transmit and receive data between the camera 131 and the arithmetic processing unit 117.
  • the communication I / F unit 113 is composed of a data communication circuit, and is configured to perform data communication with an external device (not shown) by wire or wirelessly.
  • the operation input unit 114 is composed of an operation input device such as a keyboard and a mouse, and is configured to detect an operator's operation and output it to the arithmetic processing unit 117.
  • the screen display unit 115 is composed of a screen display device such as an LCD (Liquid Crystal Display), and is configured to display various information such as a menu screen on the screen in response to an instruction from the arithmetic processing unit 117.
  • the storage unit 116 is composed of a storage device such as a hard disk or a memory, and is configured to store processing information and a program 1161 required for various processes in the arithmetic processing unit 117.
  • the program 1161 is a program that realizes various processing units by being read and executed by the arithmetic processing unit 117, and is transmitted from an external device or recording medium (not shown) via a data input / output function such as the communication I / F unit 113. It is read in advance and stored in the storage unit 116.
  • the main processing information stored in the storage unit 116 includes images 1162, 1163, deflection amount 1164, vehicle position 1165, rigidity coefficient 1166, flexural rigidity 1167, vehicle weight 1168, and diagnosis result 1169.
  • Image 1162 is a time-series image taken by the camera 130 to detect deflection.
  • the image 1162 may be a plurality of frame images constituting the moving image of the region 141 of the structure 140 taken by the camera 130. The shooting time is added to each frame image.
  • Image 1163 is a time-series image taken by the camera 131 to detect the position of the vehicle.
  • the image 1163 may be a plurality of frame images that constitute a moving image of a vehicle traveling on the structure 140 taken by the camera 131. The shooting time is added to each frame image.
  • the amount of deflection 1164 is time-series data representing the amount of deflection generated in the region 141 of the structure 140 due to the weight of the vehicle traveling on the structure 140.
  • the amount of deflection 1164 is generated based on image 1162.
  • the deflection amount 1164 includes an acquisition time (measurement time) and a value of the deflection amount.
  • FIG. 3 shows an example of a time series in which the amount of deflection is 1164.
  • the vertical axis of the graph shown in FIG. 3 represents the amount of deflection, and the horizontal axis represents time.
  • Each of the dots described in the graph represents the value of the amount of deflection at a certain time.
  • FIG. 3 shows the temporal change in the amount of deflection of the region 141 when one vehicle passes over the structure 140.
  • the structure 140 starts to bend from the time t1 when the vehicle enters the structure 140, and the vehicle hits directly above the area 141.
  • the amount of deflection becomes maximum at the time of travel, and then the amount of deflection gradually decreases, and after the time t2 when the vehicle exits the structure 140, the amount of deflection tends to return to zero again.
  • the section from the time t1 to the time t2 in which the deflection occurs in this way is called a deflection section.
  • the deflection section can be detected as, for example, a section in which the amount of deflection is equal to or greater than the threshold value.
  • general measures such as passing through a low-pass filter may be added. That is, the polygonal line in which the dots are connected in chronological order may be regarded as a signal waveform and passed through a low-pass filter. Alternatively, it may be replaced with an approximate curve that minimizes the squared error of the distance from the amount of deflection represented by dots.
  • the vehicle position 1165 is data representing the position of the vehicle traveling on the structure 140.
  • the vehicle position 1165 is generated based on the image 1163.
  • the vehicle position 1165 includes an acquisition time (measurement time) and position data.
  • the rigidity coefficient 1166 is a numerical value that specifies the relationship between the magnitude of the force applied to the structure 140 and the bending rigidity of the structure 140 due to the weight of the vehicle traveling on the structure 140.
  • the rigidity coefficient 1166 is calculated based on the amount of deflection 1164, the vehicle position 1165, and preset parameters.
  • the rigidity coefficient 1166 includes a value and a calculated date and time. Further, the rigidity coefficient 1166 may be associated with the amount of deflection 1164 used for the calculation, the vehicle position 1165, and the like.
  • the flexural rigidity 1167 is an estimated value of the flexural rigidity of the structure 140 calculated from the rigidity coefficient 1166 and the vehicle weight.
  • the flexural rigidity 1167 includes a value of the flexural rigidity and a calculated date and time. Further, the flexural rigidity 1167 may be associated with the rigidity coefficient 1166 used for the calculation.
  • the vehicle weight 1168 is data representing the estimated weight of a vehicle whose weight is unknown, which is calculated by using the flexural rigidity 1167.
  • the diagnosis result 1169 is data representing the result of the deterioration diagnosis of the structure 140 carried out using the flexural rigidity 1167.
  • the diagnosis result 1169 includes, for example, an ID for identifying the structure 140 and the region 141 to be diagnosed, the presence or absence of deterioration, the date and time of diagnosis, and the like.
  • the arithmetic processing unit 117 has a processor such as an MPU and its peripheral circuits, and by reading and executing the program 1161 from the storage unit 116, the hardware and the program 1161 cooperate with each other to realize various processing units. It is configured as follows.
  • the main processing units realized by the arithmetic processing unit 117 are the image acquisition unit 1171, the deflection acquisition unit 1172, the vehicle position acquisition unit 1173, the rigidity coefficient calculation unit 1174, the flexural rigidity calculation unit 1175, the vehicle weight calculation unit 1176, and Diagnostic unit 1177.
  • the image acquisition unit 1171 is configured to acquire a time-series image taken by the camera 130 through the camera I / F unit 111 and store the acquired time-series image in the storage unit 116 as an image 1162. Further, the image acquisition unit 1171 is configured to acquire a time-series image taken by the camera 131 through the camera I / F unit 112 and store the acquired time-series image in the storage unit 116 as an image 1163.
  • the deflection acquisition unit 1172 Based on the image 1162 stored in the storage unit 116, the deflection acquisition unit 1172 acquires the amount of deflection generated in the region 141 of the structure 140 by the weight of the vehicle traveling on the structure 140 in chronological order. The time series of the acquired deflection amount is stored in the storage unit 116 as the deflection amount 1164. For example, the deflection acquisition unit 1172 reads out all the images 1162 stored in the storage unit 116, and measures the temporal change of the amount of deflection of the surface of the structure 140 from each of the images.
  • the photographing distance H between the camera and the floor slab is shortened by the amount of deflection ⁇ generated in the floor slab of the bridge due to the weight of the vehicle. Therefore, the captured image is magnified around the optical axis of the camera, and an apparent displacement ⁇ i is generated due to the deflection.
  • the shooting distance is H
  • the displacement is ⁇ i
  • the amount of deflection is ⁇
  • the distance from the camera optical axis of the displacement calculation position is y
  • the focal length of the camera is f
  • ⁇ i yf ⁇ 1 / (H- ⁇ )- There is a relationship of 1 / H ⁇ .
  • the amount of deflection of the surface of the structure 140 for each frame image can be calculated from the above equation.
  • the shooting distance H can be measured in advance by, for example, a laser range finder, the distance y can be obtained from the displacement calculation position of the image and the optical axis of the camera, and f is known for each imaging device.
  • the vehicle position acquisition unit 1173 acquires the position of the vehicle traveling on the structure 140 based on the image 1163 stored in the storage unit 116, and stores the acquired vehicle position in the storage unit 116 as the vehicle position 1165. It is configured as follows. For example, the vehicle position acquisition unit 1173 acquires the position of the vehicle from the image 1163 by the following method. First, as a preliminary preparation, the field of view of the camera 131 is fixed so that each pixel of the image of the camera 131 and the position on the structure 140 have a one-to-one correspondence. Further, for each pixel corresponding to the road surface of the structure shown in the image of the camera 131, a correspondence table between the pixel position and the position on the structure 140 corresponding to the pixel at that position is created in advance.
  • the vehicle position acquisition unit 1173 identifies the pixels of the road surface in which, for example, the front wheels of the vehicle shown in the image 1163 are in contact, and acquires the position on the structure corresponding to the pixels from the correspondence table. To do. Then, the vehicle position acquisition unit 1173 sets the acquired position as the position of the vehicle. Alternatively, the vehicle position acquisition unit 1173 may use the position where the acquired position is shifted to the rear side of the vehicle by a predetermined correction value as the vehicle position. The correction value can be half the distance between the front wheels and the rear wheels of a standard vehicle. However, the present invention is not limited to the above method. Any method can be used as long as the position of the vehicle on the structure can be detected from the photographed image of the vehicle traveling on the structure 140.
  • the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient 1166 and stores it in the storage unit 116 based on the deflection amount 1164 stored in the storage unit 116, the vehicle position 1165, and the parameters set and stored in advance. It is configured in.
  • the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient based on the following principle.
  • the model is a simple girder bridge 140A in which both ends a and b are fixed. Can be transformed into.
  • the span length of the bridge 140A is L
  • the coordinate value of the center of the region 141 for measuring the deflection of the bridge 140A is x
  • the coordinate value of the vehicle center existing on the bridge 140A is x w
  • the force applied to the bridge 140A by the vehicle is applied to the bridge 140A by the vehicle.
  • Equation 1 is a rigidity coefficient and is given by Equation 2 shown in FIG. That is, the rigidity coefficient K is given as the magnitude f of the applied force divided by the product of the Young's modulus E and the moment of inertia of area I multiplied by the coefficient 6. Further, assuming that the weight of the vehicle is M and the gravitational acceleration is g, f is given by the formula 3 shown in FIG.
  • the rigidity coefficient calculation unit 1174 is based on Equation 1 shown in FIG. It is configured to calculate the rigidity coefficient K.
  • the flexural rigidity calculation unit 1175 is configured to calculate the value of the flexural rigidity of the structure 140 based on the rigidity coefficient 1166 stored in the storage unit 116 and the vehicle weight separately input. Specifically, the flexural rigidity calculation unit 1175 calculates the value of f from the input vehicle weight and gravitational acceleration by the formula 3 of FIG. 5, and the calculated value of f and the rigidity coefficient stored in the storage unit 116. Substituting 1166 into f and K of Equation 2 in FIG. 5, the value of the flexural rigidity EI is calculated.
  • the weight calculation unit 1176 is configured to calculate the weight of a vehicle of unknown weight traveling on the structure 140 based on the bending rigidity 1167 stored in the storage unit 116.
  • the diagnosis unit 1177 is configured to perform deterioration diagnosis of the structure 140 based on the flexural rigidity 1167 stored in the storage unit 116.
  • FIG. 6 is a flowchart showing an example of the operation of the deflection measuring device 100 when measuring the flexural rigidity by traveling a vehicle having a predetermined weight.
  • an operation input unit 113 inputs a flexural rigidity measurement instruction. To do. Then, the computer 110 starts the process shown in FIG.
  • the image processing unit 1171 starts operation. That is, the image acquisition unit 1171 acquires a time-series image of the region 141 of the structure 140 taken by the camera 130, and sequentially stores the image 1162 in the storage unit 116 (step S1). Further, the image acquisition unit 1171 acquires a time-series image of the vehicle traveling on the structure 140 taken by the camera 131, and sequentially stores the image 1163 in the storage unit 116 (step S2). The acquisition of the time-series image by the image processing unit 1171 is continued during the period in which only one vehicle having a predetermined weight passes through the structure 140 at least once.
  • the deflection acquisition unit 1172 reads the image 1162 from the storage unit 115, analyzes the read time-series image 1162, and causes the amount of deflection generated in the region 141 of the structure 140 by the vehicle of the predetermined weight traveling on the structure 140. Is acquired in chronological order, and the acquired amount of deflection 1164 is stored in the storage unit 116 (step S3).
  • the vehicle position acquisition unit 1173 reads the image 1163 from the storage unit 115, analyzes the read time-series image 1163, and acquires the position of the vehicle having a predetermined weight traveling on the structure 140 (step S4).
  • the rigidity coefficient calculation unit 1174 reads out the deflection amount 1164 and the vehicle position 1165 from the storage unit 115, and sets the deflection amount and the vehicle positions acquired at the same time in the deflection section into one pair (step S5). ). For example, when the amount of deflection indicated by the reference numeral 1164-1 in FIG. 3 is acquired at time t3, it is paired with the vehicle position 1165 at the time closest to time t3.
  • the rigidity coefficient calculation unit 1174 generates a plurality of such pairs. However, it is not essential to generate a plurality of pairs, and only one pair may be generated.
  • the amount of deflection forming the pair is preferably closer to the center than to be closer to the end of the deflection section.
  • the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient for each pair of the amount of deflection and the vehicle position (step S6). That is, the rigidity coefficient calculation unit 1174 substitutes the amount of deflection and the vehicle position forming the pair into ⁇ and x w of Equation 1 in FIG. 5, and sets x and L as the position and length of the region 141 of the structure 140.
  • the value of the rigidity coefficient K is calculated by substituting the preset value.
  • the rigidity coefficient calculation unit 1174 compares the vehicle positions forming the pair with the positions of the region 141 of the structure 140 to determine which of the upper and lower equations of the equation 1 is used, and 0 ⁇ x.
  • the rigidity coefficient calculation unit 1174 calculates the average value of the rigidity coefficients obtained for each pair, and stores the average value as the rigidity coefficient 1166 in the storage unit 116 (step S7).
  • the flexural rigidity calculation unit 1175 reads out the rigidity coefficient 1166 from the storage unit 116, inputs a predetermined weight from the operation input unit 114, and values the flexural rigidity EI based on the equations 2 and 3 of FIG. Is calculated and stored in the storage unit 116 as the bending rigidity 1167 (step S8).
  • FIG. 7 is a flowchart showing an example of the operation of the deflection measuring device 100 when measuring the weight of the vehicle.
  • the operator When the operator installs the computer 110 and a group of measuring devices such as cameras 130 and 131 at the site and is ready to measure the vehicle weight, the operator inputs a vehicle weight measurement instruction from the operation input unit 113. The process shown in 7 is started.
  • the image processing unit 1171 starts operation. That is, the image acquisition unit 1171 acquires a time-series image of the region 141 of the structure 140 taken by the camera 130, and sequentially stores the image 1162 in the storage unit 116 (step S11). Further, the image acquisition unit 1171 acquires a time-series image of the vehicle traveling on the structure 140 taken by the camera 131, and sequentially stores the image 1163 in the storage unit 116 (step S12). The acquisition of the time-series image by the image processing unit 1171 is continued during the period when only one vehicle of unknown weight passes through the structure 140.
  • the deflection acquisition unit 1172 reads the image 1162 from the storage unit 115, analyzes the read time-series image 1162, and causes the amount of deflection generated in the region 141 of the structure 140 by a vehicle of unknown weight traveling on the structure 140. Is acquired in chronological order, and the acquired amount of deflection 1164 is stored in the storage unit 116 (step S13).
  • the vehicle position acquisition unit 1173 reads the image 1163 from the storage unit 115, analyzes the read time-series image 1163, and acquires the position of the vehicle of unknown weight traveling on the structure 140 (step S14).
  • the rigidity coefficient calculation unit 1174 reads out the deflection amount 1164 and the vehicle position 1165 from the storage unit 115, and sets the deflection amount and the vehicle positions acquired at the same time in the deflection section into one pair (step S15). ). However, it is not essential to generate a plurality of pairs, and only one pair may be generated. Next, the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient for each pair of the amount of deflection and the vehicle position by performing the same operation as in the case of (1) (step S16), and then calculates the average value thereof. Then, it is stored in the storage unit 116 as the rigidity coefficient 1166 (step S17).
  • the weight calculation unit 1176 reads out the rigidity coefficient 1166 and the flexural rigidity 1167 from the storage unit 116, calculates the weight M of the vehicle based on the formulas 2 and 3 of FIG. 5, and stores the vehicle weight as the vehicle weight 1168. (Step S18). Further, the weight calculation unit 1176 may display the calculated weight M on the screen display unit 115 and / or transmit it to an external terminal through the communication I / F unit 113.
  • FIG. 8 is a flowchart showing an example of the operation of the deflection measuring device 100 when diagnosing the deterioration of the structure 140.
  • an operation input unit 113 inputs a deterioration diagnosis instruction. .. Then, the computer 110 starts the process shown in FIG.
  • the computer 110 acquires the latest flexural rigidity of the structure 140 by (1) performing the same operation as the measurement of the flexural rigidity by traveling the vehicle with a predetermined weight, and as a new flexural rigidity 1167 in the storage unit 116. Store (step S21).
  • the diagnostic unit 1177 reads out all the flexural rigidity 1167 from the storage unit 116, and compares the latest flexural rigidity with the past flexural rigidity (step S22).
  • the flexural rigidity used in the past may be a certain period (for example, half a year) before the present.
  • the past flexural rigidity used may be the flexural rigidity before the date and time of the occurrence of a disaster such as an earthquake that occurred immediately before.
  • the diagnostic unit 1177 determines whether or not the structure 140 has deteriorated based on the above comparison result (step S23). For example, the diagnostic unit 1177 determines that the latest bending rigidity is deteriorated if it is reduced by a certain percentage or a certain value or more with respect to the past bending rigidity, and otherwise it is determined that the bending rigidity is sound. To do.
  • the computer 110 determines the magnitude of the force applied to the structure 140 by the vehicle weight and the flexural rigidity of the structure 140 based on the acquired amount of deflection, the vehicle position, and the parameters set and stored in advance. This is to calculate the rigidity coefficient that specifies the relationship.
  • the deterioration diagnosis of the structure 140 can be performed by using the calculated bending rigidity value.
  • the displacement of the structure 140 is detected based on the image of the camera 130 that captures the structure 140.
  • the sensor that detects the displacement of the structure 140 is not limited to the camera.
  • the amount of deflection of the structure 140 may be detected by a laser range finder.
  • the amount of deflection of the structure 140 may be detected by a strain gauge.
  • the position of the vehicle traveling on the structure 140 is detected based on the image of the camera 131.
  • the sensor that detects the position of the vehicle traveling on the structure 140 is not limited to the camera.
  • a vehicle sensor acceleration sensor, optical sensor, etc.
  • a speed sensor that detects the speed of a passing vehicle are installed at the entrance of the structure 140, and based on the entrance passage time and the vehicle speed, The passing time of each position on the structure 140 of the vehicle may be calculated.
  • the GPS mounted on the vehicle may be used to transmit vehicle position and time information from the vehicle to the computer 110 every moment.
  • the flexural rigidity calculation unit 1175, the vehicle weight calculation unit 1176, and the diagnosis unit 1177 are provided, but all or part of them may be omitted.
  • FIG. 9 is a block diagram of the deflection measuring device 200 for the structure according to the present embodiment.
  • the outline of the deflection measuring device for the structure of the present invention will be described.
  • the structure deflection measuring device 200 includes the deflection acquiring means 201, the vehicle position acquiring means 202, and the rigidity coefficient calculating means 203.
  • the deflection acquiring means 201 is configured to acquire the amount of deflection generated at a predetermined position on the structure by the weight of the vehicle traveling on the structure.
  • the deflection acquisition means 201 can be configured in the same manner as, for example, the deflection acquisition unit 1172 of FIG. 2, but is not limited thereto.
  • the vehicle position acquisition means 202 is configured to detect the position on the structure of the vehicle at the time when the amount of deflection is acquired by the deflection acquisition means 201.
  • the vehicle position acquisition means 202 can be configured in the same manner as, for example, the vehicle position acquisition unit 1173 of FIG. 2, but is not limited thereto.
  • the rigidity coefficient calculating means 203 includes the length of the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position on the structure to which the weight of the vehicle is applied, and the amount of deflection acquired by the deflection acquiring means 201.
  • the acquired deflection amount, vehicle position, predetermined position, and length of the structure are expressed in the relational expression established between the position of the vehicle detected by the vehicle position acquisition means 202 and the flexural rigidity of the structure. Is substituted to calculate the rigidity coefficient that specifies the relationship between the magnitude of the force and the flexural rigidity.
  • the rigidity coefficient calculation means 203 can be configured in the same manner as, for example, the rigidity coefficient calculation unit 1174 of FIG. 2, but is not limited thereto.
  • the deflection measuring device 200 of the structure configured in this way operates as follows. That is, the deflection acquiring means 201 acquires the amount of deflection generated at a predetermined position on the structure by the weight of the vehicle traveling on the structure. Further, the vehicle position acquisition means 202 detects the position on the structure of the vehicle at the time when the amount of deflection is acquired by the deflection acquisition means 201. Then, the rigidity coefficient calculating means 203 includes the length of the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position on the structure to which the weight of the vehicle is applied, and the amount of deflection acquired by the deflection acquiring means 201.
  • the rigidity coefficient that specifies the relationship between the magnitude of the force and the flexural rigidity is calculated.
  • the present embodiment can grasp the relationship between the magnitude of the force due to the vehicle weight applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection.
  • the reason is the magnitude of the force applied to the structure by the vehicle weight and the flexural rigidity of the structure based on the acquired amount of deflection, the vehicle position, and the preset and stored information such as the length of the structure. This is to calculate the rigidity coefficient that specifies the relationship between.
  • the present invention can be used when measuring the amount of displacement such as the amount of deflection of a structure caused by a vehicle passing through a structure such as a bridge.
  • [Appendix 1] Deflection acquisition means for acquiring the amount of deflection generated in the measurement target area on the structure by a vehicle traveling on the structure, and A vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure.
  • Rigidity coefficient calculation means for calculating the rigidity coefficient to specify Deflection measuring device for structures.
  • the acquisition means is configured to acquire the amount of deflection at a plurality of timings during the period during which the vehicle travels on the structure.
  • the rigidity coefficient calculating means generates a pair of the acquired amount of deflection and the acquired position of the vehicle at each timing, calculates the rigidity coefficient for each pair, and calculates the calculated pair for each pair.
  • a bending rigidity calculating means for calculating the bending rigidity from the rigidity coefficient when the vehicle is a vehicle of known weight and the weight of the vehicle is further provided.
  • a weight calculation means for calculating the weight of the vehicle of unknown weight from the rigidity coefficient and the flexural rigidity when the vehicle is a vehicle of unknown weight is further provided.
  • a diagnostic means for diagnosing deterioration of the structure is further provided based on the result of comparing the bending rigidity with the bending rigidity calculated and stored in the past by the bending rigidity calculating means.
  • the structure deflection measuring device according to Appendix 3.
  • the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure is acquired.
  • the position of the vehicle on the structure at the time when the amount of deflection is acquired is acquired.
  • the method for measuring the deflection of a structure according to Appendix 8.
  • Appendix 11 On the computer The process of acquiring the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure, and The process of acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. And the process of calculating the rigidity coefficient to specify A computer-readable recording medium on which a program is recorded to perform the program.
  • Deflection measuring device 110 Computer 111 ... Camera I / F unit 112 ... Camera I / F unit 113 ... Communication I / F unit 114 ... Operation input unit 115 ... Screen display unit 116 ... Storage unit 117 ... Arithmetic processing unit 120 ... Cable 130 ... Camera 131 ... Camera 140 ... Structure 141 ... Area 150 ... Road 200 ... Structure deflection measuring device 201 ... Acquisition means 202 ... Detection means 203 ... Calculation means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Bridges Or Land Bridges (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This invention comprises a bending acquisition means for acquiring the amount of bending produced in an area under measurement on a structure by a vehicle traveling over the structure, a vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time at which the bending amount was acquired, and a stiffness coefficient calculation means for calculating a stiffness coefficient specifying the relationship between the magnitude of the force applied to the structure as a result of the weight of the vehicle and the bending stiffness of the structure on the basis of: a relational expression between the position of the vehicle on the structure, the magnitude of the force, the position of the area under measurement on the structure, the length of the structure, the bending stiffness, and the amount of bending produced in the area under measurement; the acquired amount of bending; and the position of the detected vehicle.

Description

構造物のたわみ計測装置Deflection measuring device for structures
 本発明は、構造物のたわみ計測装置、その方法、および記録媒体に関する。 The present invention relates to a structure deflection measuring device, a method thereof, and a recording medium.
 橋梁などの構造物を車両が通過すると、構造物に荷重が加わり構造物が変位する。このような構造物の変位を計測する技術が、種々提案されている。 When a vehicle passes through a structure such as a bridge, a load is applied to the structure and the structure is displaced. Various techniques for measuring the displacement of such a structure have been proposed.
 例えば特許文献1には、ビデオカメラとデジタルカメラの撮影画像を用いて、所定の車両が橋梁上を通過したときの橋梁のたわみ量を計測する技術が記載されている。具体的には、橋梁を撮影しているビデオカメラの動画像から橋梁上を走行している車両の特徴を識別し、橋梁上を所定の車両が通過しているタイミングを検出する。そして、検出したタイミングでデジタルカメラにより橋梁を撮影し、その撮影画像に基づいて橋梁のたわみ量の分布を検出する。また特許文献1では、計測したたわみ量の分布に基づいて、過積載車両の検出、橋梁の健全性評価を行っている。 For example, Patent Document 1 describes a technique for measuring the amount of flexure of a bridge when a predetermined vehicle passes over the bridge using images captured by a video camera and a digital camera. Specifically, the characteristics of the vehicle traveling on the bridge are identified from the moving image of the video camera that is photographing the bridge, and the timing at which a predetermined vehicle is passing on the bridge is detected. Then, the bridge is photographed with a digital camera at the detected timing, and the distribution of the amount of deflection of the bridge is detected based on the photographed image. Further, in Patent Document 1, overloaded vehicles are detected and bridge soundness is evaluated based on the measured distribution of the amount of deflection.
 また特許文献2には、橋梁の両端部を車両が通過するタイミングを加速度センサで検知し、また車両が橋梁に存在するときの橋梁中央部のたわみ量を検出し、それらの検出結果に基づいて、Weigh-in-Motionによって車重を計測する技術が記載されている。 Further, in Patent Document 2, the timing at which the vehicle passes through both ends of the bridge is detected by an acceleration sensor, and the amount of deflection of the central portion of the bridge when the vehicle is present on the bridge is detected, and based on the detection results. , A technique for measuring vehicle weight by Weight-in-Motion is described.
2016-84579号公報2016-84579A 2017-58177号公報2017-58177
 ところで、橋梁などの構造物の性能指標の1つに曲げ剛性がある。構造物の曲げ剛性は、短期的には一定であるため、その値を利用すれば、構造物上を走行する車両の重量を算出することができる。一方、構造物の曲げ剛性は、長期的には構造物を構成する床版などの経年劣化により低下するため、その値を利用すれば、構造物の劣化診断が可能である。しかし、上記のような利用を実現するためには、車重によって構造物に加わる力と構造物の曲げ剛性との関係を求める必要がある。上述した特許文献1、2に記載する技術では、車重によって構造物に加わる力と構造物に生じるたわみ量との関係は把握できるけれども、車重によって構造物に加わる力の大きさと構造物の曲げ剛性との関係を把握するのは困難である。 By the way, flexural rigidity is one of the performance indicators of structures such as bridges. Since the flexural rigidity of the structure is constant in the short term, the weight of the vehicle traveling on the structure can be calculated by using the value. On the other hand, since the flexural rigidity of a structure decreases due to aged deterioration of the floor slabs constituting the structure in the long term, deterioration diagnosis of the structure can be made by using the value. However, in order to realize the above-mentioned utilization, it is necessary to find the relationship between the force applied to the structure by the vehicle weight and the bending rigidity of the structure. In the techniques described in Patent Documents 1 and 2 described above, the relationship between the force applied to the structure by the vehicle weight and the amount of deflection generated in the structure can be grasped, but the magnitude of the force applied to the structure by the vehicle weight and the structure It is difficult to grasp the relationship with flexural rigidity.
 本発明の目的は、上述した課題、すなわち、計測されたたわみ量に基づいて構造物に加わる力の大きさと構造物の曲げ剛性との関係を把握するのは困難である、という課題を解決する構造物のたわみ計測装置を提供することにある。 An object of the present invention is to solve the above-mentioned problem, that is, it is difficult to grasp the relationship between the magnitude of the force applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection. The purpose is to provide a deflection measuring device for a structure.
 本発明の一形態に係る構造物のたわみ計測装置は、
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得するたわみ取得手段と、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する車両位置取得手段と、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する剛性係数算出手段と、
を備える。
The structure deflection measuring device according to one embodiment of the present invention is
Deflection acquisition means for acquiring the amount of deflection generated in the measurement target area on the structure by a vehicle traveling on the structure, and
A vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Rigidity coefficient calculation means for calculating the rigidity coefficient to specify
To be equipped.
 また、本発明の他の形態に係る構造物のたわみ計測方法は、
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得し、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得し、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する。
Further, the method for measuring the deflection of a structure according to another embodiment of the present invention is described.
The amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure is acquired.
The position of the vehicle on the structure at the time when the amount of deflection is acquired is acquired.
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Calculate the rigidity coefficient to specify.
 また、本発明の他の形態に係るコンピュータ読み取り可能な記録媒体は、
 コンピュータに、
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得する処理と、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する処理と、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する処理と、
を行わせるためのプログラムを記録する。
Further, the computer-readable recording medium according to another embodiment of the present invention is
On the computer
The process of acquiring the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure, and
The process of acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. And the process of calculating the rigidity coefficient to specify
Record the program to make you do.
 本発明は上述したような構成を有することにより、計測されたたわみ量に基づいて構造物に加わる力の大きさと構造物の曲げ剛性との関係を把握することができる。 By having the above-described configuration, the present invention can grasp the relationship between the magnitude of the force applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection.
本発明の第1の実施形態に係る構造物のたわみ計測装置の構成例を示す図である。It is a figure which shows the structural example of the deflection measuring apparatus of the structure which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る構造物のたわみ計測装置におけるコンピュータの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the computer in the deflection measuring apparatus of the structure which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る構造物のたわみ計測装置で計測されたたわみ量の時系列の一例を示す図である。It is a figure which shows an example of the time series of the amount of deflection measured by the deflection measuring apparatus of the structure which concerns on 1st Embodiment of this invention. 単純桁の橋梁モデルの説明図である。It is explanatory drawing of the bridge model of a simple girder. たわみ量から力の大きさと曲げ剛性との関係を導出する式の例を示す図である。It is a figure which shows the example of the formula which derives the relationship between the magnitude of a force and flexural rigidity from the amount of deflection. 本発明の第1の実施形態に係る構造物のたわみ計測装置において、既定重量の車両走行によって曲げ剛性を測定する際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of measuring the flexural rigidity by running a vehicle of a predetermined weight in the structure deflection measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る構造物のたわみ計測装置において、車両の重量を測定する際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of measuring the weight of a vehicle in the structure deflection measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る構造物のたわみ計測装置において、構造物の劣化診断を行う際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of performing the deterioration diagnosis of a structure in the structure deflection measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る構造物のたわみ計測装置の構成例を示す図である。It is a figure which shows the structural example of the deflection measuring apparatus of the structure which concerns on 2nd Embodiment of this invention.
 次に本発明の実施の形態について図面を参照して詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1は、本発明の第1の実施形態に係るたわみ計測装置100の構成例を示す図である。図1を参照すると、たわみ計測装置100は、コンピュータ110と、2台のカメラ130、131とから構成されている。
[First Embodiment]
FIG. 1 is a diagram showing a configuration example of a deflection measuring device 100 according to a first embodiment of the present invention. Referring to FIG. 1, the deflection measuring device 100 includes a computer 110 and two cameras 130 and 131.
 カメラ130は、診断対象である構造物140の表面に存在する領域141を所定のフレームレートで撮影するたわみ検出用の撮像装置である。構造物140は、本実施形態の場合、高速道路などの道路150が河川などの上を越える橋梁である。領域141は、本実施形態の場合、橋梁の診断箇所となる床版の一部分である。但し、構造物140は橋梁に限定されない。構造物140は、道路や鉄道の高架構造物などであってもよい。領域141のサイズは、例えば数十センチメートル四方である。カメラ130は、任意の方向にカメラの撮影方向を固定できるように三脚上の雲台(何れも図示せず)に取り付けられている。カメラ130は、例えば、数百万画素程度の画素容量を有するCCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary MOS)イメージセンサを備えたハイスピードカメラであってよい。またカメラ130は、可視光かつ白黒カメラであってもよいし、赤外線カメラやカラーカメラであってもよい。またカメラ130は、カメラの位置を測定するGPS受信機を備えていてもよいし、カメラの撮影方向を測定する方位センサおよび加速度センサを備えていてもよい。カメラ130は、ケーブル120を通じてコンピュータ110に接続されている。但し、カメラ130は、無線によってコンピュータ110に接続されていてもよい。 The camera 130 is an imaging device for detecting deflection that captures a region 141 existing on the surface of the structure 140 to be diagnosed at a predetermined frame rate. In the case of the present embodiment, the structure 140 is a bridge over which a road 150 such as an expressway crosses over a river or the like. In the case of this embodiment, the area 141 is a part of the floor slab that serves as a diagnostic location for the bridge. However, the structure 140 is not limited to the bridge. The structure 140 may be an elevated structure of a road or a railway. The size of the area 141 is, for example, several tens of centimeters square. The camera 130 is attached to a pan head (neither shown) on a tripod so that the shooting direction of the camera can be fixed in any direction. The camera 130 may be, for example, a high-speed camera including a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary MOS) image sensor having a pixel capacity of about several million pixels. Further, the camera 130 may be a visible light and black and white camera, or may be an infrared camera or a color camera. Further, the camera 130 may include a GPS receiver that measures the position of the camera, or may include an azimuth sensor and an acceleration sensor that measure the shooting direction of the camera. The camera 130 is connected to the computer 110 through a cable 120. However, the camera 130 may be wirelessly connected to the computer 110.
 カメラ131は、構造物140上を走行する車両の位置を検出する車両位置検出用の撮像装置である。カメラ131は、構造物140の入口から出口までの走行路上を走行する車両を撮影し得るように、構造物140の通過後領域の上方に設置されている。しかし、カメラ131の設置場所はそれに限定されない。カメラ131は、構造物140の通過前領域の上方に設置されていてもよいし、構造物140を横方向から望む場所に設置されていてもよい。また、カメラ131は1台に限定されず、複数台あってもよい。カメラ131は、CCDイメージセンサやCMOSイメージセンサを備えたビデオカメラであってよい。またカメラ131は、可視光かつ白黒カメラであってもよいし、赤外線カメラやカラーカメラであってもよい。カメラ131は、無線によってコンピュータ110に接続され、撮影した画像を無線によりコンピュータ110へ送信するように構成されている。但し、カメラ131は、有線によってコンピュータ110に接続されていてもよい。 The camera 131 is an imaging device for vehicle position detection that detects the position of a vehicle traveling on the structure 140. The camera 131 is installed above the post-passage region of the structure 140 so that it can photograph a vehicle traveling on the road from the entrance to the exit of the structure 140. However, the installation location of the camera 131 is not limited to this. The camera 131 may be installed above the pre-passage area of the structure 140, or the structure 140 may be installed at a position desired from the lateral direction. Further, the number of cameras 131 is not limited to one, and there may be a plurality of cameras 131. The camera 131 may be a video camera including a CCD image sensor or a CMOS image sensor. Further, the camera 131 may be a visible light and black and white camera, or may be an infrared camera or a color camera. The camera 131 is wirelessly connected to the computer 110 and is configured to wirelessly transmit the captured image to the computer 110. However, the camera 131 may be connected to the computer 110 by wire.
 コンピュータ110は、カメラ130によって撮影された構造物140の領域141の画像をケーブル120経由で取得するように構成されている。また、コンピュータ110は、カメラ130から取得した画像に基づいて構造物140の領域141のたわみ量を計測するように構成されている。また、コンピュータ110は、カメラ131によって撮像された構造物140上を走行する車両の画像を無線によって取得するように構成されている。また、コンピュータ110は、カメラ131から取得した画像に基づいて構造物140上を走行する車両の位置を取得するように構成されている。また、コンピュータ110は、上記取得したたわみ量と車両位置と事前に設定され記憶しているパラメータとに基づいて、車重によって構造物140に加わる力の大きさと構造物140の曲げ剛性との関係を特定する数値を算出するように構成されている。この数値を本明細書では、剛性係数と呼ぶ。また、コンピュータ110は、上記算出した剛性係数と車両重量とに基づいて、構造物140の曲げ剛性の値を算出するように構成されている。また、コンピュータ110は、上記算出した曲げ剛性の値を利用して、構造物140を走行する重量未知の車両の重量を算出するように構成されている。また、コンピュータ110は、上記算出した曲げ剛性の値を利用して、構造物140の劣化診断を行うように構成されている。 The computer 110 is configured to acquire an image of the area 141 of the structure 140 taken by the camera 130 via the cable 120. Further, the computer 110 is configured to measure the amount of deflection of the region 141 of the structure 140 based on the image acquired from the camera 130. Further, the computer 110 is configured to wirelessly acquire an image of a vehicle traveling on the structure 140 captured by the camera 131. Further, the computer 110 is configured to acquire the position of the vehicle traveling on the structure 140 based on the image acquired from the camera 131. Further, the computer 110 has a relationship between the magnitude of the force applied to the structure 140 by the vehicle weight and the flexural rigidity of the structure 140 based on the acquired amount of deflection, the vehicle position, and the parameters set and stored in advance. It is configured to calculate a numerical value that identifies. This numerical value is referred to as a rigidity coefficient in this specification. Further, the computer 110 is configured to calculate the value of the bending rigidity of the structure 140 based on the calculated rigidity coefficient and the vehicle weight. Further, the computer 110 is configured to calculate the weight of a vehicle having an unknown weight traveling on the structure 140 by using the calculated bending rigidity value. Further, the computer 110 is configured to perform a deterioration diagnosis of the structure 140 by using the calculated bending rigidity value.
 図2は、コンピュータ110の構成の一例を示すブロック図である。図2を参照すると、コンピュータ110は、カメラI/F(インターフェース)部111、112と、通信I/F部113と、操作入力部114と、画面表示部115と、記憶部116と、演算処理部117とから構成されている。 FIG. 2 is a block diagram showing an example of the configuration of the computer 110. Referring to FIG. 2, the computer 110 includes camera I / F (interface) units 111 and 112, communication I / F unit 113, operation input unit 114, screen display unit 115, storage unit 116, and arithmetic processing. It is composed of a part 117.
 カメラI/F部111は、ケーブル120を通じてカメラ130に接続され、カメラ130と演算処理部117との間でデータの送受信を行うように構成されている。カメラI/F部112は、無線を通じてカメラ131に接続され、カメラ131と演算処理部117との間でデータの送受信を行うように構成されている。通信I/F部113は、データ通信回路から構成され、有線または無線によって図示しない外部装置との間でデータ通信を行うように構成されている。操作入力部114は、キーボードやマウスなどの操作入力装置から構成され、オペレータの操作を検出して演算処理部117に出力するように構成されている。画面表示部115は、LCD(Liquid Crystal Display)などの画面表示装置から構成され、演算処理部117からの指示に応じて、メニュー画面などの各種情報を画面表示するように構成されている。 The camera I / F unit 111 is connected to the camera 130 through a cable 120, and is configured to transmit / receive data between the camera 130 and the arithmetic processing unit 117. The camera I / F unit 112 is wirelessly connected to the camera 131, and is configured to transmit and receive data between the camera 131 and the arithmetic processing unit 117. The communication I / F unit 113 is composed of a data communication circuit, and is configured to perform data communication with an external device (not shown) by wire or wirelessly. The operation input unit 114 is composed of an operation input device such as a keyboard and a mouse, and is configured to detect an operator's operation and output it to the arithmetic processing unit 117. The screen display unit 115 is composed of a screen display device such as an LCD (Liquid Crystal Display), and is configured to display various information such as a menu screen on the screen in response to an instruction from the arithmetic processing unit 117.
 記憶部116は、ハードディスクやメモリなどの記憶装置から構成され、演算処理部117における各種処理に必要な処理情報およびプログラム1161を記憶するように構成されている。プログラム1161は、演算処理部117に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部113などのデータ入出力機能を介して図示しない外部装置や記録媒体から予め読み込まれて記憶部116に保存される。記憶部116に記憶される主な処理情報には、画像1162、1163、たわみ量1164、車両位置1165、剛性係数1166、曲げ剛性1167、車重1168、診断結果1169がある。 The storage unit 116 is composed of a storage device such as a hard disk or a memory, and is configured to store processing information and a program 1161 required for various processes in the arithmetic processing unit 117. The program 1161 is a program that realizes various processing units by being read and executed by the arithmetic processing unit 117, and is transmitted from an external device or recording medium (not shown) via a data input / output function such as the communication I / F unit 113. It is read in advance and stored in the storage unit 116. The main processing information stored in the storage unit 116 includes images 1162, 1163, deflection amount 1164, vehicle position 1165, rigidity coefficient 1166, flexural rigidity 1167, vehicle weight 1168, and diagnosis result 1169.
 画像1162は、たわみ検出を行うためにカメラ130で撮影された時系列画像である。画像1162は、カメラ130で撮影された構造物140の領域141の動画を構成する複数のフレーム画像であってよい。各フレーム画像には、撮影時刻が付加されている。 Image 1162 is a time-series image taken by the camera 130 to detect deflection. The image 1162 may be a plurality of frame images constituting the moving image of the region 141 of the structure 140 taken by the camera 130. The shooting time is added to each frame image.
 画像1163は、車両の位置を検出するためにカメラ131で撮影された時系列画像である。画像1163は、カメラ131で撮影された構造物140上を走行する車両の動画を構成する複数のフレーム画像であってよい。各フレーム画像には、撮影時刻が付加されている。 Image 1163 is a time-series image taken by the camera 131 to detect the position of the vehicle. The image 1163 may be a plurality of frame images that constitute a moving image of a vehicle traveling on the structure 140 taken by the camera 131. The shooting time is added to each frame image.
 たわみ量1164は、構造物140上を走行する車両の重量によって構造物140の領域141に生じるたわみ量を表す時系列データである。たわみ量1164は、画像1162に基づいて生成される。たわみ量1164は、取得時刻(計測時刻)とたわみ量の値とが含まれている。図3は、たわみ量1164の時系列の一例を示す。図3に示すグラフの縦軸はたわみ量、横軸は時間をそれぞれ表している。グラフ中に記載されるドットの1つ1つが、或る時刻におけるたわみ量の値を表している。図3に示す例は、1台の車両が構造物140上を通過したときの領域141のたわみ量の時間的な変化を示している。図3に例示するように、1台の車両が構造物140上を通過する状況では、車両が構造物140に侵入した時刻t1から構造物140がたわみ始め、領域141の真上当たりを車両が走行する時刻でたわみ量が最大になり、その後、たわみ量が徐々に小さくなって、車両が構造物140から退出する時刻t2以降、たわみ量は再び零に戻るような傾向を示す。このようにたわみが発生している時刻t1から時刻t2までの区間をたわみ区間と呼ぶ。たわみ区間は、例えば、たわみ量が閾値以上となる区間として検出することができる。なお、計測されるたわみは微小振動まで拾うため、低域通過フィルタを通すなどの一般的な工夫を加えてもよい。即ち、ドットを時刻順に接続した折れ線を信号波形と見做してローパスフィルタを通すようにしてよい。或いは、ドットで表されるたわみ量との距離の二乗誤差を最小とする近似曲線に置き換えてもよい。 The amount of deflection 1164 is time-series data representing the amount of deflection generated in the region 141 of the structure 140 due to the weight of the vehicle traveling on the structure 140. The amount of deflection 1164 is generated based on image 1162. The deflection amount 1164 includes an acquisition time (measurement time) and a value of the deflection amount. FIG. 3 shows an example of a time series in which the amount of deflection is 1164. The vertical axis of the graph shown in FIG. 3 represents the amount of deflection, and the horizontal axis represents time. Each of the dots described in the graph represents the value of the amount of deflection at a certain time. The example shown in FIG. 3 shows the temporal change in the amount of deflection of the region 141 when one vehicle passes over the structure 140. As illustrated in FIG. 3, in a situation where one vehicle passes over the structure 140, the structure 140 starts to bend from the time t1 when the vehicle enters the structure 140, and the vehicle hits directly above the area 141. The amount of deflection becomes maximum at the time of travel, and then the amount of deflection gradually decreases, and after the time t2 when the vehicle exits the structure 140, the amount of deflection tends to return to zero again. The section from the time t1 to the time t2 in which the deflection occurs in this way is called a deflection section. The deflection section can be detected as, for example, a section in which the amount of deflection is equal to or greater than the threshold value. In addition, since the measured deflection picks up even minute vibrations, general measures such as passing through a low-pass filter may be added. That is, the polygonal line in which the dots are connected in chronological order may be regarded as a signal waveform and passed through a low-pass filter. Alternatively, it may be replaced with an approximate curve that minimizes the squared error of the distance from the amount of deflection represented by dots.
 車両位置1165は、構造物140上を走行する車両の位置を表すデータである。車両位置1165は、画像1163に基づいて生成される。車両位置1165は、取得時刻(計測時刻)と位置データとが含まれている。 The vehicle position 1165 is data representing the position of the vehicle traveling on the structure 140. The vehicle position 1165 is generated based on the image 1163. The vehicle position 1165 includes an acquisition time (measurement time) and position data.
 剛性係数1166は、構造物140上を走行する車両の重量によって構造物140に加わる力の大きさと構造物140の曲げ剛性との関係を特定する数値である。剛性係数1166は、たわみ量1164と車両位置1165と事前に設定されたパラメータとに基づいて算出される。剛性係数1166は、値と算出された日時とが含まれている。また、剛性係数1166は、その算出に用いられたたわみ量1164、車両位置1165などと紐付けられていてもよい。 The rigidity coefficient 1166 is a numerical value that specifies the relationship between the magnitude of the force applied to the structure 140 and the bending rigidity of the structure 140 due to the weight of the vehicle traveling on the structure 140. The rigidity coefficient 1166 is calculated based on the amount of deflection 1164, the vehicle position 1165, and preset parameters. The rigidity coefficient 1166 includes a value and a calculated date and time. Further, the rigidity coefficient 1166 may be associated with the amount of deflection 1164 used for the calculation, the vehicle position 1165, and the like.
 曲げ剛性1167は、剛性係数1166と車両重量とから算出された構造物140の曲げ剛性の推定値である。曲げ剛性1167は、曲げ剛性の値と算出された日時とが含まれている。また、曲げ剛性1167は、その算出に用いられた剛性係数1166と紐付けられていてもよい。 The flexural rigidity 1167 is an estimated value of the flexural rigidity of the structure 140 calculated from the rigidity coefficient 1166 and the vehicle weight. The flexural rigidity 1167 includes a value of the flexural rigidity and a calculated date and time. Further, the flexural rigidity 1167 may be associated with the rigidity coefficient 1166 used for the calculation.
 車重1168は、曲げ剛性1167を利用して算出された重量未知の車両の推定重量を表すデータである。 The vehicle weight 1168 is data representing the estimated weight of a vehicle whose weight is unknown, which is calculated by using the flexural rigidity 1167.
 診断結果1169は、曲げ剛性1167を利用して実施された構造物140の劣化診断の結果を表すデータである。診断結果1169は、例えば、診断対象とした構造物140および領域141を特定するID、劣化の有無、診断日時などが含まれている。 The diagnosis result 1169 is data representing the result of the deterioration diagnosis of the structure 140 carried out using the flexural rigidity 1167. The diagnosis result 1169 includes, for example, an ID for identifying the structure 140 and the region 141 to be diagnosed, the presence or absence of deterioration, the date and time of diagnosis, and the like.
 演算処理部117は、MPUなどのプロセッサとその周辺回路を有し、記憶部116からプログラム1161を読み込んで実行することにより、上記ハードウェアとプログラム1161とを協働させて各種処理部を実現するように構成されている。演算処理部117で実現される主な処理部は、画像取得部1171、たわみ取得部1172、車両位置取得部1173、剛性係数算出部1174、曲げ剛性算出部1175、車重算出部1176、および、診断部1177である。 The arithmetic processing unit 117 has a processor such as an MPU and its peripheral circuits, and by reading and executing the program 1161 from the storage unit 116, the hardware and the program 1161 cooperate with each other to realize various processing units. It is configured as follows. The main processing units realized by the arithmetic processing unit 117 are the image acquisition unit 1171, the deflection acquisition unit 1172, the vehicle position acquisition unit 1173, the rigidity coefficient calculation unit 1174, the flexural rigidity calculation unit 1175, the vehicle weight calculation unit 1176, and Diagnostic unit 1177.
 画像取得部1171は、カメラI/F部111を通じてカメラ130で撮影された時系列画像を取得し、取得した時系列画像を記憶部116に画像1162として記憶するように構成されている。また、画像取得部1171は、カメラI/F部112を通じてカメラ131で撮影された時系列画像を取得し、取得した時系列画像を記憶部116に画像1163として記憶するように構成されている。 The image acquisition unit 1171 is configured to acquire a time-series image taken by the camera 130 through the camera I / F unit 111 and store the acquired time-series image in the storage unit 116 as an image 1162. Further, the image acquisition unit 1171 is configured to acquire a time-series image taken by the camera 131 through the camera I / F unit 112 and store the acquired time-series image in the storage unit 116 as an image 1163.
 たわみ取得部1172は、記憶部116に記憶された画像1162に基づいて、構造物140上を走行する車両の重量によって構造物140の領域141に生じるたわみ量を時系列に沿って取得し、この取得したたわみ量の時系列を記憶部116にたわみ量1164として記憶するように構成されている。例えば、たわみ取得部1172は、記憶部116に記憶されている画像1162を全て読み出し、画像のそれぞれから、構造物140の表面のたわみ量の時間的な変化を計測する。例えば、橋梁の床版を下方向からカメラ130で撮影する場合、車両重量による橋梁の床版に生じるたわみ量δによって、カメラから床版間の撮影距離Hが短くなる。そのため、撮影画像はカメラの光軸を中心として拡大され、たわみによるみかけの変位δiが発生する。撮影距離をH、変位をδi、たわみ量をδ、変位算出位置のカメラ光軸からの距離をy、カメラの焦点距離をfとすると、δi=yf{1/(H-δ)-1/H}なる関係がある。そのため、フレーム画像毎の変位δiをデジタル画像相関法などによって検出することにより、上記式から、フレーム画像毎の構造物140の表面のたわみ量を算出することができる。なお、撮影距離Hは例えばレーザ距離計によって事前に計測することができ、距離yは画像の変位算出位置とカメラ光軸とから求めることができ、fは撮像装置毎に既知である。 Based on the image 1162 stored in the storage unit 116, the deflection acquisition unit 1172 acquires the amount of deflection generated in the region 141 of the structure 140 by the weight of the vehicle traveling on the structure 140 in chronological order. The time series of the acquired deflection amount is stored in the storage unit 116 as the deflection amount 1164. For example, the deflection acquisition unit 1172 reads out all the images 1162 stored in the storage unit 116, and measures the temporal change of the amount of deflection of the surface of the structure 140 from each of the images. For example, when the floor slab of a bridge is photographed by the camera 130 from below, the photographing distance H between the camera and the floor slab is shortened by the amount of deflection δ generated in the floor slab of the bridge due to the weight of the vehicle. Therefore, the captured image is magnified around the optical axis of the camera, and an apparent displacement δ i is generated due to the deflection. If the shooting distance is H, the displacement is δ i , the amount of deflection is δ, the distance from the camera optical axis of the displacement calculation position is y, and the focal length of the camera is f, then δ i = yf {1 / (H-δ)- There is a relationship of 1 / H}. Therefore, by detecting the displacement δ i for each frame image by a digital image correlation method or the like, the amount of deflection of the surface of the structure 140 for each frame image can be calculated from the above equation. The shooting distance H can be measured in advance by, for example, a laser range finder, the distance y can be obtained from the displacement calculation position of the image and the optical axis of the camera, and f is known for each imaging device.
 車両位置取得部1173は、記憶部116に記憶された画像1163に基づいて、構造物140上を走行する車両の位置を取得し、この取得した車両位置を記憶部116に車両位置1165として記憶するように構成されている。例えば、車両位置取得部1173は、以下のような方法によって画像1163から車両の位置を取得する。先ず、事前準備として、カメラ131の画像の各画素と構造物140上の位置とが1対1に対応するように、カメラ131の視野を固定しておく。また、カメラ131の画像に写っている構造物の路面に対応する画素毎に、画素の位置と、その位置の画素に対応する構造物140上の位置との対応表を事前に作成しておく。そして、実際の計測時には、車両位置取得部1173は、画像1163に写っている車両の例えば前輪が接している路面の画素を特定し、その画素に対応する構造物上の位置を対応表から取得する。そして、車両位置取得部1173は、その取得した位置を車両の位置とする。或いは、車両位置取得部1173は、上記取得した位置を予め定められた補正値だけ車両後方側にシフトした位置を車両の位置としてもよい。上記補正値としては、標準的な車両の前輪と後輪との間隔の半分の距離とすることができる。但し、本発明は、上記の方法に限定されない。構造物140を走行する車両を撮影した画像から車両の構造物上における位置を検出することができれば、どのような方法であっても利用可能である。 The vehicle position acquisition unit 1173 acquires the position of the vehicle traveling on the structure 140 based on the image 1163 stored in the storage unit 116, and stores the acquired vehicle position in the storage unit 116 as the vehicle position 1165. It is configured as follows. For example, the vehicle position acquisition unit 1173 acquires the position of the vehicle from the image 1163 by the following method. First, as a preliminary preparation, the field of view of the camera 131 is fixed so that each pixel of the image of the camera 131 and the position on the structure 140 have a one-to-one correspondence. Further, for each pixel corresponding to the road surface of the structure shown in the image of the camera 131, a correspondence table between the pixel position and the position on the structure 140 corresponding to the pixel at that position is created in advance. .. Then, at the time of actual measurement, the vehicle position acquisition unit 1173 identifies the pixels of the road surface in which, for example, the front wheels of the vehicle shown in the image 1163 are in contact, and acquires the position on the structure corresponding to the pixels from the correspondence table. To do. Then, the vehicle position acquisition unit 1173 sets the acquired position as the position of the vehicle. Alternatively, the vehicle position acquisition unit 1173 may use the position where the acquired position is shifted to the rear side of the vehicle by a predetermined correction value as the vehicle position. The correction value can be half the distance between the front wheels and the rear wheels of a standard vehicle. However, the present invention is not limited to the above method. Any method can be used as long as the position of the vehicle on the structure can be detected from the photographed image of the vehicle traveling on the structure 140.
 剛性係数算出部1174は、記憶部116に記憶されたたわみ量1164と車両位置1165と事前に設定され記憶しているパラメータとに基づいて、剛性係数1166を算出して記憶部116に記憶するように構成されている。剛性係数算出部1174は、以下のような原理で剛性係数を算出する。 The rigidity coefficient calculation unit 1174 calculates the rigidity coefficient 1166 and stores it in the storage unit 116 based on the deflection amount 1164 stored in the storage unit 116, the vehicle position 1165, and the parameters set and stored in advance. It is configured in. The rigidity coefficient calculation unit 1174 calculates the rigidity coefficient based on the following principle.
 構造物140が、単純桁の橋梁である場合あるいは単純桁を連設した多径間単純橋梁である場合、図4に示すように、両端a、bが固定された単純桁の橋梁140Aとしてモデル化することができる。今、座標系として、端点aを原点とし、橋軸方向に平行なX軸を有する座標系を考える。また、橋梁140Aの支間長をL、橋梁140Aのたわみ計測を行う領域141中心の座標値をx、橋梁140A上に存在する車両中心の座標値をxw、その車両によって橋梁140Aに加わる力の大きさをf、橋梁140Aのヤング率をE、その断面二次モーメントをIとする。このとき、車両の重量によって橋梁140Aの領域141に生じるたわみ量δは、図5に示す式1によって与えられる。ここで、式1におけるKは、剛性係数であり、図5に示す式2によって与えられる。即ち、剛性係数Kは、加わる力の大きさfを、ヤング率Eと断面二次モーメントIの積に係数6をかけたもので割ったものとして与えられる。また、車両の重量をM、重力加速度をgとすると、fは、図5に示す式3によって与えられる。 When the structure 140 is a simple girder bridge or a multi-span simple bridge with a series of simple girders, as shown in FIG. 4, the model is a simple girder bridge 140A in which both ends a and b are fixed. Can be transformed into. Now, consider a coordinate system having an end point a as the origin and an X-axis parallel to the bridge axis direction. Further, the span length of the bridge 140A is L, the coordinate value of the center of the region 141 for measuring the deflection of the bridge 140A is x, the coordinate value of the vehicle center existing on the bridge 140A is x w , and the force applied to the bridge 140A by the vehicle. Let f be the magnitude, E be the Young's modulus of the bridge 140A, and I be the moment of inertia of area. At this time, the amount of deflection δ generated in the region 141 of the bridge 140A due to the weight of the vehicle is given by the formula 1 shown in FIG. Here, K in Equation 1 is a rigidity coefficient and is given by Equation 2 shown in FIG. That is, the rigidity coefficient K is given as the magnitude f of the applied force divided by the product of the Young's modulus E and the moment of inertia of area I multiplied by the coefficient 6. Further, assuming that the weight of the vehicle is M and the gravitational acceleration is g, f is given by the formula 3 shown in FIG.
 剛性係数算出部1174は、構造物140が単純桁の橋梁である場合、および、構造物140が単純桁を連設した多径間単純橋梁である場合、図5に示す式1に基づいて、剛性係数Kを算出するように構成されている。 When the structure 140 is a bridge with a simple girder and when the structure 140 is a multi-span simple bridge with a series of simple girders, the rigidity coefficient calculation unit 1174 is based on Equation 1 shown in FIG. It is configured to calculate the rigidity coefficient K.
 曲げ剛性算出部1175は、記憶部116に記憶された剛性係数1166と別途入力された車両重量とに基づいて、構造物140の曲げ剛性の値を算出するように構成されている。具体的には、曲げ剛性算出部1175は、入力された車両重量と重力加速度から図5の式3によってfの値を算出し、この算出したfの値と記憶部116に記憶された剛性係数1166とを図5の式2のf、Kに代入して、曲げ剛性EIの値を算出する。 The flexural rigidity calculation unit 1175 is configured to calculate the value of the flexural rigidity of the structure 140 based on the rigidity coefficient 1166 stored in the storage unit 116 and the vehicle weight separately input. Specifically, the flexural rigidity calculation unit 1175 calculates the value of f from the input vehicle weight and gravitational acceleration by the formula 3 of FIG. 5, and the calculated value of f and the rigidity coefficient stored in the storage unit 116. Substituting 1166 into f and K of Equation 2 in FIG. 5, the value of the flexural rigidity EI is calculated.
 重量算出部1176は、記憶部116に記憶された曲げ剛性1167に基づいて、構造物140を走行する重量未知の車両の重量を算出するように構成されている。 The weight calculation unit 1176 is configured to calculate the weight of a vehicle of unknown weight traveling on the structure 140 based on the bending rigidity 1167 stored in the storage unit 116.
 診断部1177は、記憶部116に記憶された曲げ剛性1167に基づいて、構造物140の劣化診断を行うように構成されている。 The diagnosis unit 1177 is configured to perform deterioration diagnosis of the structure 140 based on the flexural rigidity 1167 stored in the storage unit 116.
 次に、たわみ計測装置100の動作を説明する。たわみ計測装置100の動作には、以下のような種類がある。
(1)既定重量の車両走行による曲げ剛性の測定
(2)未知重量の車両の重量の測定
(3)構造物の劣化診断
Next, the operation of the deflection measuring device 100 will be described. There are the following types of operations of the deflection measuring device 100.
(1) Measurement of flexural rigidity by running a vehicle of a predetermined weight (2) Measurement of the weight of a vehicle of unknown weight (3) Deterioration diagnosis of a structure
(1)既定重量の車両走行による曲げ剛性の測定
 先ず、既定重量の車両を走行させて構造物140の曲げ剛性を測定する動作について説明する。図6は、既定重量の車両走行によって曲げ剛性を測定する際のたわみ計測装置100の動作の一例を示すフローチャートである。
(1) Measurement of Flexural Rigidity by Running a Vehicle of a Default Weight First, an operation of running a vehicle of a predetermined weight and measuring the flexural rigidity of the structure 140 will be described. FIG. 6 is a flowchart showing an example of the operation of the deflection measuring device 100 when measuring the flexural rigidity by traveling a vehicle having a predetermined weight.
 オペレータが、コンピュータ110およびカメラ130、131などの計測装置群を現場に設置し、既定重量の車両だけを構造物140に走行させる準備が整うと、操作入力部113から曲げ剛性の測定指示を入力する。すると、コンピュータ110によって図6に示す処理が開始される。 When the operator installs a group of measuring devices such as a computer 110 and cameras 130 and 131 at the site and is ready to drive only a vehicle having a predetermined weight on the structure 140, an operation input unit 113 inputs a flexural rigidity measurement instruction. To do. Then, the computer 110 starts the process shown in FIG.
 先ず、画像処理部1171が動作を開始する。すなわち、画像取得部1171は、カメラ130で撮影された構造物140の領域141の時系列画像を取得し、記憶部116に画像1162として順次記憶していく(ステップS1)。また、画像取得部1171は、カメラ131で撮影された構造物140上を走行する車両の時系列画像を取得し、記憶部116に画像1163として順次記憶していく(ステップS2)。この画像処理部1171による時系列画像の取得は、1台の既定重量の車両のみが構造物140を少なくとも1回通過する期間中継続される。 First, the image processing unit 1171 starts operation. That is, the image acquisition unit 1171 acquires a time-series image of the region 141 of the structure 140 taken by the camera 130, and sequentially stores the image 1162 in the storage unit 116 (step S1). Further, the image acquisition unit 1171 acquires a time-series image of the vehicle traveling on the structure 140 taken by the camera 131, and sequentially stores the image 1163 in the storage unit 116 (step S2). The acquisition of the time-series image by the image processing unit 1171 is continued during the period in which only one vehicle having a predetermined weight passes through the structure 140 at least once.
 次に、たわみ取得部1172は、記憶部115から画像1162を読み出し、読み出した時系列画像1162を解析し、構造物140上を走行する既定重量の車両によって構造物140の領域141に生じるたわみ量を時系列に沿って取得し、この取得したたわみ量1164を記憶部116に記憶する(ステップS3)。次に、車両位置取得部1173は、記憶部115から画像1163を読み出し、読み出した時系列画像1163を解析し、構造物140上を走行する既定重量の車両の位置を取得する(ステップS4)。 Next, the deflection acquisition unit 1172 reads the image 1162 from the storage unit 115, analyzes the read time-series image 1162, and causes the amount of deflection generated in the region 141 of the structure 140 by the vehicle of the predetermined weight traveling on the structure 140. Is acquired in chronological order, and the acquired amount of deflection 1164 is stored in the storage unit 116 (step S3). Next, the vehicle position acquisition unit 1173 reads the image 1163 from the storage unit 115, analyzes the read time-series image 1163, and acquires the position of the vehicle having a predetermined weight traveling on the structure 140 (step S4).
 次に、剛性係数算出部1174は、記憶部115からたわみ量1164と車両位置1165とを読み出し、たわみ区間内における同じ時刻に取得されたたわみ量と車両位置どうしを1つのペアにする(ステップS5)。例えば、図3の符号1164-1で示すたわみ量が時刻t3で取得されたものである場合、時刻t3に最も近い時刻の車両位置1165とペアにする。剛性係数算出部1174は、このようなペアを複数生成する。但し、ペアを複数生成するのは必須でなく、1つのペアを生成するだけでもよい。ここで、ペアを構成するたわみ量は、たわみ区間の区間端に近いものよりは中央部に近いものの方が大きいので、好ましい。 Next, the rigidity coefficient calculation unit 1174 reads out the deflection amount 1164 and the vehicle position 1165 from the storage unit 115, and sets the deflection amount and the vehicle positions acquired at the same time in the deflection section into one pair (step S5). ). For example, when the amount of deflection indicated by the reference numeral 1164-1 in FIG. 3 is acquired at time t3, it is paired with the vehicle position 1165 at the time closest to time t3. The rigidity coefficient calculation unit 1174 generates a plurality of such pairs. However, it is not essential to generate a plurality of pairs, and only one pair may be generated. Here, the amount of deflection forming the pair is preferably closer to the center than to be closer to the end of the deflection section.
 次に、剛性係数算出部1174は、たわみ量と車両位置のペア毎に剛性係数を算出する(ステップS6)。即ち、剛性係数算出部1174は、図5の式1のδ、xwにペアを構成するたわみ量、車両位置を代入し、x、Lには構造物140の領域141の位置、長さとして事前に設定された値を代入し、剛性係数Kの値を算出する。ここで、剛性係数算出部1174は、式1の上側と下側の何れの式を使用するかは、ペアを構成する車両位置と構造物140の領域141の位置とを比較し、0≦x≦xwならば上側の式を使用し、xw<x≦Lならば下側の式を使用する。次に、剛性係数算出部1174は、ペア毎に求めた剛性係数の平均値を算出し、その平均値を剛性係数1166として記憶部116に記憶する(ステップS7)。 Next, the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient for each pair of the amount of deflection and the vehicle position (step S6). That is, the rigidity coefficient calculation unit 1174 substitutes the amount of deflection and the vehicle position forming the pair into δ and x w of Equation 1 in FIG. 5, and sets x and L as the position and length of the region 141 of the structure 140. The value of the rigidity coefficient K is calculated by substituting the preset value. Here, the rigidity coefficient calculation unit 1174 compares the vehicle positions forming the pair with the positions of the region 141 of the structure 140 to determine which of the upper and lower equations of the equation 1 is used, and 0 ≦ x. If ≤ x w , the upper equation is used, and if x w <x ≤ L, the lower equation is used. Next, the rigidity coefficient calculation unit 1174 calculates the average value of the rigidity coefficients obtained for each pair, and stores the average value as the rigidity coefficient 1166 in the storage unit 116 (step S7).
 次に、曲げ剛性算出部1175は、記憶部116から剛性係数1166を読み出し、また、操作入力部114から既定重量を入力し、図5の式2、式3に基づいて、曲げ剛性EIの値を算出し、曲げ剛性1167として記憶部116に記憶する(ステップS8)。 Next, the flexural rigidity calculation unit 1175 reads out the rigidity coefficient 1166 from the storage unit 116, inputs a predetermined weight from the operation input unit 114, and values the flexural rigidity EI based on the equations 2 and 3 of FIG. Is calculated and stored in the storage unit 116 as the bending rigidity 1167 (step S8).
(2)未知重量の車両の重量の測定
 次に、構造物140を走行する未知重量の車両の重量を測定する動作について説明する。なお、未知重量の車両の重量測定は、(1)で測定された最新の曲げ剛性1167を使用して行う。図7は、車両の重量を測定する際のたわみ計測装置100の動作の一例を示すフローチャートである。
(2) Measurement of Weight of Vehicle of Unknown Weight Next, an operation of measuring the weight of a vehicle of unknown weight traveling on the structure 140 will be described. The weight of a vehicle of unknown weight is measured using the latest flexural rigidity 1167 measured in (1). FIG. 7 is a flowchart showing an example of the operation of the deflection measuring device 100 when measuring the weight of the vehicle.
 オペレータが、コンピュータ110およびカメラ130、131などの計測装置群を現場に設置し、車両重量を測定する準備が整った後、操作入力部113から車両重量の測定指示を入力すると、コンピュータ110によって図7に示す処理が開始される。 When the operator installs the computer 110 and a group of measuring devices such as cameras 130 and 131 at the site and is ready to measure the vehicle weight, the operator inputs a vehicle weight measurement instruction from the operation input unit 113. The process shown in 7 is started.
 先ず、画像処理部1171が動作を開始する。すなわち、画像取得部1171は、カメラ130で撮影された構造物140の領域141の時系列画像を取得し、記憶部116に画像1162として順次記憶していく(ステップS11)。また、画像取得部1171は、カメラ131で撮影された構造物140上を走行する車両の時系列画像を取得し、記憶部116に画像1163として順次記憶していく(ステップS12)。この画像処理部1171による時系列画像の取得は、1台の未知重量の車両のみが構造物140を通過する期間中継続される。 First, the image processing unit 1171 starts operation. That is, the image acquisition unit 1171 acquires a time-series image of the region 141 of the structure 140 taken by the camera 130, and sequentially stores the image 1162 in the storage unit 116 (step S11). Further, the image acquisition unit 1171 acquires a time-series image of the vehicle traveling on the structure 140 taken by the camera 131, and sequentially stores the image 1163 in the storage unit 116 (step S12). The acquisition of the time-series image by the image processing unit 1171 is continued during the period when only one vehicle of unknown weight passes through the structure 140.
 次に、たわみ取得部1172は、記憶部115から画像1162を読み出し、読み出した時系列画像1162を解析し、構造物140上を走行する未知重量の車両によって構造物140の領域141に生じるたわみ量を時系列に沿って取得し、この取得したたわみ量1164を記憶部116に記憶する(ステップS13)。次に、車両位置取得部1173は、記憶部115から画像1163を読み出し、読み出した時系列画像1163を解析し、構造物140上を走行する未知重量の車両の位置を取得する(ステップS14)。 Next, the deflection acquisition unit 1172 reads the image 1162 from the storage unit 115, analyzes the read time-series image 1162, and causes the amount of deflection generated in the region 141 of the structure 140 by a vehicle of unknown weight traveling on the structure 140. Is acquired in chronological order, and the acquired amount of deflection 1164 is stored in the storage unit 116 (step S13). Next, the vehicle position acquisition unit 1173 reads the image 1163 from the storage unit 115, analyzes the read time-series image 1163, and acquires the position of the vehicle of unknown weight traveling on the structure 140 (step S14).
 次に、剛性係数算出部1174は、記憶部115からたわみ量1164と車両位置1165とを読み出し、たわみ区間内における同じ時刻に取得されたたわみ量と車両位置どうしを1つのペアにする(ステップS15)。但し、ペアを複数生成するのは必須でなく、1つのペアを生成するだけでもよい。次に、剛性係数算出部1174は、(1)の場合と同様の動作を行うことにより、たわみ量と車両位置のペア毎に剛性係数を算出した後(ステップS16)、その平均値を算出して、剛性係数1166として記憶部116に記憶する(ステップS17)。 Next, the rigidity coefficient calculation unit 1174 reads out the deflection amount 1164 and the vehicle position 1165 from the storage unit 115, and sets the deflection amount and the vehicle positions acquired at the same time in the deflection section into one pair (step S15). ). However, it is not essential to generate a plurality of pairs, and only one pair may be generated. Next, the rigidity coefficient calculation unit 1174 calculates the rigidity coefficient for each pair of the amount of deflection and the vehicle position by performing the same operation as in the case of (1) (step S16), and then calculates the average value thereof. Then, it is stored in the storage unit 116 as the rigidity coefficient 1166 (step S17).
 次に、重量算出部1176は、記憶部116から剛性係数1166と曲げ剛性1167を読み出し、図5の式2、式3に基づいて、車両の重量Mを算出し、車重1168として記憶部116に記憶する(ステップS18)。また、重量算出部1176は、算出した重量Mを画面表示部115に表示し、または/および、通信I/F部113を通じて外部の端末へ送信してもよい。 Next, the weight calculation unit 1176 reads out the rigidity coefficient 1166 and the flexural rigidity 1167 from the storage unit 116, calculates the weight M of the vehicle based on the formulas 2 and 3 of FIG. 5, and stores the vehicle weight as the vehicle weight 1168. (Step S18). Further, the weight calculation unit 1176 may display the calculated weight M on the screen display unit 115 and / or transmit it to an external terminal through the communication I / F unit 113.
(3)構造物の劣化診断
 次に、構造物140の劣化診断を行う動作について説明する。なお、構造物140の劣化診断は、(1)で測定されて記憶した過去の曲げ剛性1167と診断時に取得した最新の曲げ剛性とを比較して行う。図8は、構造物140の劣化診断を行う際のたわみ計測装置100の動作の一例を示すフローチャートである。
(3) Deterioration Diagnosis of Structure Next, the operation of performing deterioration diagnosis of the structure 140 will be described. The deterioration diagnosis of the structure 140 is performed by comparing the past flexural rigidity 1167 measured and stored in (1) with the latest flexural rigidity acquired at the time of diagnosis. FIG. 8 is a flowchart showing an example of the operation of the deflection measuring device 100 when diagnosing the deterioration of the structure 140.
 オペレータが、コンピュータ110およびカメラ130、131などの計測装置群を現場に設置し、既定重量の車両だけを構造物140に走行させる準備が整うと、操作入力部113から劣化診断の指示を入力する。すると、コンピュータ110によって図8に示す処理が開始される。 When the operator installs a group of measuring devices such as a computer 110 and cameras 130 and 131 at the site and is ready to drive only a vehicle having a predetermined weight on the structure 140, an operation input unit 113 inputs a deterioration diagnosis instruction. .. Then, the computer 110 starts the process shown in FIG.
 先ず、コンピュータ110は、(1)既定重量の車両走行によって曲げ剛性の測定と同様の動作を行うことにより、構造物140の最新の曲げ剛性を取得し、記憶部116に新たな曲げ剛性1167として記憶する(ステップS21)。次に、診断部1177は、記憶部116から全ての曲げ剛性1167を読み出し、そのうちの最新の曲げ剛性と過去の曲げ剛性とを比較する(ステップS22)。使用する過去の曲げ剛性は、現在から一定期間(例えば半年など)前のものであってよい。或いは、使用する過去の曲げ剛性は、直前に起きた地震などの災害発生日時より前の曲げ剛性であってもよい。次に、診断部1177は、上記の比較結果に基づいて、構造物140の劣化の有無を判定する(ステップS23)。例えば、診断部1177は、最新の曲げ剛性が、過去の曲げ剛性に対して一定割合あるいは一定値以上、低下していれば、劣化していると判定し、そうでなければ健全であると判定する。 First, the computer 110 acquires the latest flexural rigidity of the structure 140 by (1) performing the same operation as the measurement of the flexural rigidity by traveling the vehicle with a predetermined weight, and as a new flexural rigidity 1167 in the storage unit 116. Store (step S21). Next, the diagnostic unit 1177 reads out all the flexural rigidity 1167 from the storage unit 116, and compares the latest flexural rigidity with the past flexural rigidity (step S22). The flexural rigidity used in the past may be a certain period (for example, half a year) before the present. Alternatively, the past flexural rigidity used may be the flexural rigidity before the date and time of the occurrence of a disaster such as an earthquake that occurred immediately before. Next, the diagnostic unit 1177 determines whether or not the structure 140 has deteriorated based on the above comparison result (step S23). For example, the diagnostic unit 1177 determines that the latest bending rigidity is deteriorated if it is reduced by a certain percentage or a certain value or more with respect to the past bending rigidity, and otherwise it is determined that the bending rigidity is sound. To do.
 以上説明したように、本実施形態によれば、計測されたたわみ量に基づいて構造物140に加わる車重による力の大きさと構造物140の曲げ剛性との関係を把握することができる。その理由は、コンピュータ110は、取得したたわみ量と車両位置と事前に設定され記憶しているパラメータとに基づいて、車重によって構造物140に加わる力の大きさと構造物140の曲げ剛性との関係を特定する剛性係数を算出するためである。 As described above, according to the present embodiment, it is possible to grasp the relationship between the magnitude of the force due to the vehicle weight applied to the structure 140 and the bending rigidity of the structure 140 based on the measured amount of deflection. The reason is that the computer 110 determines the magnitude of the force applied to the structure 140 by the vehicle weight and the flexural rigidity of the structure 140 based on the acquired amount of deflection, the vehicle position, and the parameters set and stored in advance. This is to calculate the rigidity coefficient that specifies the relationship.
 また、本実施形態によれば、算出した曲げ剛性の値を利用して、構造物140を走行する重量未知の車両の重量を算出することができる。 Further, according to the present embodiment, it is possible to calculate the weight of a vehicle of unknown weight traveling on the structure 140 by using the calculated value of the bending rigidity.
 また、本実施形態によれば、算出した曲げ剛性の値を利用して、構造物140の劣化診断を行うことができる。 Further, according to the present embodiment, the deterioration diagnosis of the structure 140 can be performed by using the calculated bending rigidity value.
 なお、本実施形態は各種の付加変更が可能である。例えば、本実施形態では、構造物140の変位は構造物140を撮影するカメラ130の画像に基づいて検出した。しかし、構造物140の変位を検出するセンサはカメラに限定されない。例えば、レーザ距離計によって構造物140のたわみ量を検出するようにしてもよい。また、例えば、ひずみゲージによって構造物140のたわみ量を検出するようにしてもよい。 In this embodiment, various additions and changes are possible. For example, in this embodiment, the displacement of the structure 140 is detected based on the image of the camera 130 that captures the structure 140. However, the sensor that detects the displacement of the structure 140 is not limited to the camera. For example, the amount of deflection of the structure 140 may be detected by a laser range finder. Further, for example, the amount of deflection of the structure 140 may be detected by a strain gauge.
 また、本実施形態では、構造物140を走行する車両の位置をカメラ131の画像に基づいて検出した。しかし、構造物140を走行する車両の位置を検出するセンサはカメラに限定されない。例えば、構造物140の入口箇所に車両の通過を検出する車両センサ(加速度センサ、光センサなど)と通過する車両の速度を検出する速度センサを設置し、入口通過時刻と車速とに基づいて、当該車両の構造物140上の各位置の通過時刻を算出するようにしてもよい。或いは、車両に搭載したGPSによって車両の位置と時刻の情報を車両からコンピュータ110へ時々刻々と送信するようにしてもよい。 Further, in the present embodiment, the position of the vehicle traveling on the structure 140 is detected based on the image of the camera 131. However, the sensor that detects the position of the vehicle traveling on the structure 140 is not limited to the camera. For example, a vehicle sensor (acceleration sensor, optical sensor, etc.) that detects the passage of a vehicle and a speed sensor that detects the speed of a passing vehicle are installed at the entrance of the structure 140, and based on the entrance passage time and the vehicle speed, The passing time of each position on the structure 140 of the vehicle may be calculated. Alternatively, the GPS mounted on the vehicle may be used to transmit vehicle position and time information from the vehicle to the computer 110 every moment.
 また、本実施形態では、曲げ剛性算出部1175、車重算出部1176、および、診断部1177を備えているが、それらの全部または一部を省略してもよい。 Further, in the present embodiment, the flexural rigidity calculation unit 1175, the vehicle weight calculation unit 1176, and the diagnosis unit 1177 are provided, but all or part of them may be omitted.
[第2の実施の形態]
 次に、本発明の第2の実施形態について図9参照して説明する。図9は、本実施形態に係る構造物のたわみ計測装置200のブロック図である。なお、本実施形態は、本発明の構造物のたわみ計測装置の概略を説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 9 is a block diagram of the deflection measuring device 200 for the structure according to the present embodiment. In this embodiment, the outline of the deflection measuring device for the structure of the present invention will be described.
 図9を参照すると、本実施形態に係る構造物のたわみ計測装置200は、たわみ取得手段201と車両位置取得手段202と剛性係数算出手段203とを含んで構成されている。 Referring to FIG. 9, the structure deflection measuring device 200 according to the present embodiment includes the deflection acquiring means 201, the vehicle position acquiring means 202, and the rigidity coefficient calculating means 203.
 たわみ取得手段201は、構造物上を走行する車両の重量によって構造物上の所定の位置に生じるたわみ量を取得するように構成されている。たわみ取得手段201は、例えば図2のたわみ取得部1172と同様に構成することができるが、それに限定されない。 The deflection acquiring means 201 is configured to acquire the amount of deflection generated at a predetermined position on the structure by the weight of the vehicle traveling on the structure. The deflection acquisition means 201 can be configured in the same manner as, for example, the deflection acquisition unit 1172 of FIG. 2, but is not limited thereto.
 車両位置取得手段202は、たわみ取得手段201によってたわみ量が取得された時刻における車両の構造物上の位置を検出するように構成されている。車両位置取得手段202は、例えば図2の車両位置取得部1173と同様に構成することができるが、それに限定されない。 The vehicle position acquisition means 202 is configured to detect the position on the structure of the vehicle at the time when the amount of deflection is acquired by the deflection acquisition means 201. The vehicle position acquisition means 202 can be configured in the same manner as, for example, the vehicle position acquisition unit 1173 of FIG. 2, but is not limited thereto.
 剛性係数算出手段203は、構造物の長さと、車両の重量によって構造物に加わる力の大きさと、車両の重量が加わる構造物上の位置と、たわみ取得手段201によって取得されたたわみ量と、車両位置取得手段202によって検出された車両の位置と、構造物の曲げ剛性との間に成立する関係式に、上記取得されたたわみ量、車両位置、上記所定の位置、上記構造物の長さを代入して、上記力の大きさと上記曲げ剛性との関係を特定する剛性係数を算出するように構成されている。剛性係数算出手段203は、例えば図2の剛性係数算出部1174と同様に構成することができるが、それに限定されない。 The rigidity coefficient calculating means 203 includes the length of the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position on the structure to which the weight of the vehicle is applied, and the amount of deflection acquired by the deflection acquiring means 201. The acquired deflection amount, vehicle position, predetermined position, and length of the structure are expressed in the relational expression established between the position of the vehicle detected by the vehicle position acquisition means 202 and the flexural rigidity of the structure. Is substituted to calculate the rigidity coefficient that specifies the relationship between the magnitude of the force and the flexural rigidity. The rigidity coefficient calculation means 203 can be configured in the same manner as, for example, the rigidity coefficient calculation unit 1174 of FIG. 2, but is not limited thereto.
 このように構成された構造物のたわみ計測装置200は以下のように動作する。即ち、たわみ取得手段201は、構造物上を走行する車両の重量によって構造物上の所定の位置に生じるたわみ量を取得する。また、車両位置取得手段202は、たわみ取得手段201によってたわみ量が取得された時刻における車両の構造物上の位置を検出する。そして、剛性係数算出手段203は、構造物の長さと、車両の重量によって構造物に加わる力の大きさと、車両の重量が加わる構造物上の位置と、たわみ取得手段201によって取得されたたわみ量と、車両位置取得手段202によって検出された車両の位置と、構造物の曲げ剛性との間に成立する関係式に、上記取得されたたわみ量、車両位置、上記所定の位置、上記構造物の長さを代入して、上記力の大きさと上記曲げ剛性との関係を特定する剛性係数を算出する。 The deflection measuring device 200 of the structure configured in this way operates as follows. That is, the deflection acquiring means 201 acquires the amount of deflection generated at a predetermined position on the structure by the weight of the vehicle traveling on the structure. Further, the vehicle position acquisition means 202 detects the position on the structure of the vehicle at the time when the amount of deflection is acquired by the deflection acquisition means 201. Then, the rigidity coefficient calculating means 203 includes the length of the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position on the structure to which the weight of the vehicle is applied, and the amount of deflection acquired by the deflection acquiring means 201. In the relational expression established between the position of the vehicle detected by the vehicle position acquisition means 202 and the flexural rigidity of the structure, the acquired amount of deflection, the vehicle position, the predetermined position, and the structure By substituting the length, the rigidity coefficient that specifies the relationship between the magnitude of the force and the flexural rigidity is calculated.
 本実施形態は以上のように構成され動作することにより、計測されたたわみ量に基づいて構造物に加わる車重による力の大きさと構造物の曲げ剛性との関係を把握することができる。その理由は、取得したたわみ量と車両位置と事前に設定され記憶している構造物の長さなどの情報とに基づいて、車重によって構造物に加わる力の大きさと構造物の曲げ剛性との関係を特定する剛性係数を算出するためである。 By configuring and operating as described above, the present embodiment can grasp the relationship between the magnitude of the force due to the vehicle weight applied to the structure and the flexural rigidity of the structure based on the measured amount of deflection. The reason is the magnitude of the force applied to the structure by the vehicle weight and the flexural rigidity of the structure based on the acquired amount of deflection, the vehicle position, and the preset and stored information such as the length of the structure. This is to calculate the rigidity coefficient that specifies the relationship between.
 以上、上記各実施形態を参照して本発明を説明したが、本発明は、上述した実施形態に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to each of the above embodiments, the present invention is not limited to the above-described embodiments. Various modifications that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 本発明は、橋梁などの構造物を通過する車両によって生じる構造物のたわみ量などの変位量を計測する場合などに利用できる。 The present invention can be used when measuring the amount of displacement such as the amount of deflection of a structure caused by a vehicle passing through a structure such as a bridge.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得するたわみ取得手段と、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する車両位置取得手段と、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する剛性係数算出手段と、
を備える構造物のたわみ計測装置。
[付記2]
 前記取得手段は、前記車両が前記構造物上を走行する期間中の複数のタイミングで前記たわみ量を取得するように構成され、
 前記剛性係数算出手段は、前記タイミング毎に前記取得されたたわみ量と前記取得された前記車両の位置とのペアを生成し、前記ペア毎に前記剛性係数を算出し、前記算出した前記ペア毎の前記剛性係数の平均値を算出するように構成されている、
付記1に記載の構造物のたわみ計測装置。
[付記3]
 前記車両が重量既知の車両である場合の前記剛性係数と前記車両の重量とから、前記曲げ剛性を算出する曲げ剛性算出手段を、さらに備える、
付記1に記載の構造物のたわみ計測装置。
[付記4]
 前記車両が重量未知の車両である場合の前記剛性係数と前記曲げ剛性とから、前記重量未知の車両の重量を算出する重量算出手段を、さらに備える、
付記3に記載の構造物のたわみ計測装置。
[付記5]
 前記曲げ剛性と、前記曲げ剛性算出手段によって過去に算出されて記憶された曲げ剛性とを比較した結果に基づいて、前記構造物の劣化診断を行う診断手段を、さらに備える、
付記3に記載の構造物のたわみ計測装置。
[付記6]
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得し、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得し、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する、
構造物のたわみ計測方法。
[付記7]
 前記たわみ量の取得では、前記車両が前記構造物上を走行する期間中の複数のタイミングで前記たわみ量を取得し、
 前記剛性係数の算出では、前記タイミング毎に前記取得されたたわみ量と前記取得された前記車両の位置とのペアを生成し、前記ペア毎に前記剛性係数を算出し、前記算出した前記ペア毎の前記剛性係数の平均値を算出する、
付記6に記載の構造物のたわみ計測方法。
[付記8]
 さらに、前記車両が重量既知の車両である場合の前記剛性係数と前記車両の重量とから、前記曲げ剛性を算出する、
付記6に記載の構造物のたわみ計測方法。
[付記9]
 さらに、前記車両が重量未知の車両である場合の前記剛性係数と前記曲げ剛性とから、前記重量未知の車両の重量を算出する、
付記8に記載の構造物のたわみ計測方法。
[付記10]
 さらに、前記曲げ剛性と、過去に算出されて記憶された曲げ剛性とを比較した結果に基づいて、前記構造物の劣化診断を行う、
付記8に記載の構造物のたわみ計測方法。
[付記11]
 コンピュータに、
 構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得する処理と、
 前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する処理と、
 前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する処理と、
を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
Some or all of the above embodiments may also be described, but not limited to:
[Appendix 1]
Deflection acquisition means for acquiring the amount of deflection generated in the measurement target area on the structure by a vehicle traveling on the structure, and
A vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Rigidity coefficient calculation means for calculating the rigidity coefficient to specify
Deflection measuring device for structures.
[Appendix 2]
The acquisition means is configured to acquire the amount of deflection at a plurality of timings during the period during which the vehicle travels on the structure.
The rigidity coefficient calculating means generates a pair of the acquired amount of deflection and the acquired position of the vehicle at each timing, calculates the rigidity coefficient for each pair, and calculates the calculated pair for each pair. Is configured to calculate the average value of the stiffness coefficients of
The structure deflection measuring device according to Appendix 1.
[Appendix 3]
A bending rigidity calculating means for calculating the bending rigidity from the rigidity coefficient when the vehicle is a vehicle of known weight and the weight of the vehicle is further provided.
The structure deflection measuring device according to Appendix 1.
[Appendix 4]
A weight calculation means for calculating the weight of the vehicle of unknown weight from the rigidity coefficient and the flexural rigidity when the vehicle is a vehicle of unknown weight is further provided.
The structure deflection measuring device according to Appendix 3.
[Appendix 5]
A diagnostic means for diagnosing deterioration of the structure is further provided based on the result of comparing the bending rigidity with the bending rigidity calculated and stored in the past by the bending rigidity calculating means.
The structure deflection measuring device according to Appendix 3.
[Appendix 6]
The amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure is acquired.
The position of the vehicle on the structure at the time when the amount of deflection is acquired is acquired.
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Calculate the rigidity coefficient to identify
Deflection measurement method for structures.
[Appendix 7]
In the acquisition of the amount of deflection, the amount of deflection is acquired at a plurality of timings during the period in which the vehicle travels on the structure.
In the calculation of the rigidity coefficient, a pair of the acquired deflection amount and the acquired position of the vehicle is generated at each timing, the rigidity coefficient is calculated for each pair, and each of the calculated pairs. Calculate the average value of the rigidity coefficients of
The method for measuring the deflection of a structure according to Appendix 6.
[Appendix 8]
Further, the flexural rigidity is calculated from the rigidity coefficient when the vehicle is a vehicle of known weight and the weight of the vehicle.
The method for measuring the deflection of a structure according to Appendix 6.
[Appendix 9]
Further, the weight of the vehicle of unknown weight is calculated from the rigidity coefficient and the flexural rigidity when the vehicle is a vehicle of unknown weight.
The method for measuring the deflection of a structure according to Appendix 8.
[Appendix 10]
Further, the deterioration diagnosis of the structure is performed based on the result of comparing the flexural rigidity with the flexural rigidity calculated and stored in the past.
The method for measuring the deflection of a structure according to Appendix 8.
[Appendix 11]
On the computer
The process of acquiring the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure, and
The process of acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. And the process of calculating the rigidity coefficient to specify
A computer-readable recording medium on which a program is recorded to perform the program.
100…たわみ計測装置
110…コンピュータ
111…カメラI/F部
112…カメラI/F部
113…通信I/F部
114…操作入力部
115…画面表示部
116…記憶部
117…演算処理部
120…ケーブル
130…カメラ
131…カメラ
140…構造物
141…領域
150…道路
200…構造物のたわみ計測装置
201…取得手段
202…検出手段
203…算出手段
100 ... Deflection measuring device 110 ... Computer 111 ... Camera I / F unit 112 ... Camera I / F unit 113 ... Communication I / F unit 114 ... Operation input unit 115 ... Screen display unit 116 ... Storage unit 117 ... Arithmetic processing unit 120 ... Cable 130 ... Camera 131 ... Camera 140 ... Structure 141 ... Area 150 ... Road 200 ... Structure deflection measuring device 201 ... Acquisition means 202 ... Detection means 203 ... Calculation means

Claims (7)

  1.  構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得するたわみ取得手段と、
     前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する車両位置取得手段と、
     前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する剛性係数算出手段と、
    を備える構造物のたわみ計測装置。
    Deflection acquisition means for acquiring the amount of deflection generated in the measurement target area on the structure by a vehicle traveling on the structure, and
    A vehicle position acquisition means for acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
    The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Rigidity coefficient calculation means for calculating the rigidity coefficient to specify
    Deflection measuring device for structures.
  2.  前記取得手段は、前記車両が前記構造物上を走行する期間中の複数のタイミングで前記たわみ量を取得するように構成され、
     前記剛性係数算出手段は、前記タイミング毎に前記取得されたたわみ量と前記取得された前記車両の位置とのペアを生成し、前記ペア毎に前記剛性係数を算出し、前記算出した前記ペア毎の前記剛性係数の平均値を算出するように構成されている、
    請求項1に記載の構造物のたわみ計測装置。
    The acquisition means is configured to acquire the amount of deflection at a plurality of timings during the period during which the vehicle travels on the structure.
    The rigidity coefficient calculating means generates a pair of the acquired amount of deflection and the acquired position of the vehicle at each timing, calculates the rigidity coefficient for each pair, and calculates the calculated pair for each pair. Is configured to calculate the average value of the stiffness coefficients of
    The structure deflection measuring device according to claim 1.
  3.  前記車両が重量既知の車両である場合の前記剛性係数と前記車両の重量とから、前記曲げ剛性を算出する曲げ剛性算出手段を、さらに備える、
    請求項1に記載の構造物のたわみ計測装置。
    A bending rigidity calculating means for calculating the bending rigidity from the rigidity coefficient when the vehicle is a vehicle of known weight and the weight of the vehicle is further provided.
    The structure deflection measuring device according to claim 1.
  4.  前記車両が重量未知の車両である場合の前記剛性係数と前記曲げ剛性とから、前記重量未知の車両の重量を算出する重量算出手段を、さらに備える、
    請求項3に記載の構造物のたわみ計測装置。
    A weight calculation means for calculating the weight of the vehicle of unknown weight from the rigidity coefficient and the flexural rigidity when the vehicle is a vehicle of unknown weight is further provided.
    The structure deflection measuring device according to claim 3.
  5.  前記曲げ剛性と、前記曲げ剛性算出手段によって過去に算出されて記憶された曲げ剛性とを比較した結果に基づいて、前記構造物の劣化診断を行う診断手段を、さらに備える、
    請求項3に記載の構造物のたわみ計測装置。
    A diagnostic means for diagnosing deterioration of the structure is further provided based on the result of comparing the bending rigidity with the bending rigidity calculated and stored in the past by the bending rigidity calculating means.
    The structure deflection measuring device according to claim 3.
  6.  構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得し、
     前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得し、
     前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する、
    構造物のたわみ計測方法。
    The amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure is acquired.
    The position of the vehicle on the structure at the time when the amount of deflection is acquired is acquired.
    The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. Calculate the rigidity coefficient to identify
    Deflection measurement method for structures.
  7.  コンピュータに、
     構造物上を走行する車両によって前記構造物上の計測対象領域に生じるたわみ量を取得する処理と、
     前記たわみ量が取得された時刻における前記構造物上の前記車両の位置を取得する処理と、
     前記構造物上における前記車両の位置、前記車両の重量によって前記構造物に加わる力の大きさ、前記構造物上における前記計測対象領域の位置、前記構造物の長さ、前記構造物の曲げ剛性、および、前記計測対象領域に生じるたわみ量の間に成立する関係式と、前記取得されたたわみ量と、前記検出された前記車両の位置とから、前記力の大きさと前記曲げ剛性との関係を特定する剛性係数を算出する処理と、
    を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    On the computer
    The process of acquiring the amount of deflection generated in the measurement target area on the structure by the vehicle traveling on the structure, and
    The process of acquiring the position of the vehicle on the structure at the time when the amount of deflection is acquired, and
    The position of the vehicle on the structure, the magnitude of the force applied to the structure by the weight of the vehicle, the position of the measurement target area on the structure, the length of the structure, and the flexural rigidity of the structure. , And the relationship between the magnitude of the force and the flexural rigidity from the relational expression established between the amount of deflection generated in the measurement target region, the acquired amount of deflection, and the detected position of the vehicle. And the process of calculating the rigidity coefficient to specify
    A computer-readable recording medium on which a program is recorded to perform the program.
PCT/JP2019/009520 2019-03-08 2019-03-08 Structure bending measurement device WO2020183549A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021504629A JP7173281B2 (en) 2019-03-08 2019-03-08 Deflection measurement device for structures
PCT/JP2019/009520 WO2020183549A1 (en) 2019-03-08 2019-03-08 Structure bending measurement device
US17/435,767 US20220050009A1 (en) 2019-03-08 2019-03-08 Structure deflection measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009520 WO2020183549A1 (en) 2019-03-08 2019-03-08 Structure bending measurement device

Publications (1)

Publication Number Publication Date
WO2020183549A1 true WO2020183549A1 (en) 2020-09-17

Family

ID=72426189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009520 WO2020183549A1 (en) 2019-03-08 2019-03-08 Structure bending measurement device

Country Status (3)

Country Link
US (1) US20220050009A1 (en)
JP (1) JP7173281B2 (en)
WO (1) WO2020183549A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902691B (en) * 2018-03-26 2022-09-06 松下知识产权经营株式会社 Measurement device and measurement method
CN117890043B (en) * 2024-03-15 2024-05-24 山东省汶上县丝杠有限责任公司 Bending deflection detection device and method for ball screw

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055776A (en) * 1998-08-06 2000-02-25 Kobe Steel Ltd Measuring method for bending rigidity of structure
JP2004252520A (en) * 2003-02-18 2004-09-09 Sumitomo Electric Ind Ltd Road monitoring system
WO2017200380A1 (en) * 2016-05-18 2017-11-23 Heijmans N.V. Method for determining the structural integrity of an infrastructural element
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327796B2 (en) 2009-02-25 2013-10-30 国立大学法人東京工業大学 Vehicle weight measuring system for vehicles passing through bridge, vehicle weight measuring method for vehicles passing through bridge, and computer program
JP6565037B2 (en) 2016-02-10 2019-08-28 国立研究開発法人産業技術総合研究所 Displacement measuring device, displacement measuring method and program thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055776A (en) * 1998-08-06 2000-02-25 Kobe Steel Ltd Measuring method for bending rigidity of structure
JP2004252520A (en) * 2003-02-18 2004-09-09 Sumitomo Electric Ind Ltd Road monitoring system
WO2017200380A1 (en) * 2016-05-18 2017-11-23 Heijmans N.V. Method for determining the structural integrity of an infrastructural element
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISU, HIROYUKI; RONG, GUIMING: "A Study for Identification of Bending Rigidity of a Beam", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES A, vol. 70, no. 698, 25 October 2004 (2004-10-25), pages 1462 - 1467 *

Also Published As

Publication number Publication date
JPWO2020183549A1 (en) 2021-12-16
JP7173281B2 (en) 2022-11-16
US20220050009A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020179188A1 (en) Device for measuring displacement in structural object
JP5327796B2 (en) Vehicle weight measuring system for vehicles passing through bridge, vehicle weight measuring method for vehicles passing through bridge, and computer program
JP6863383B2 (en) Defect detectors, defect detection methods, and computer-readable recording media
JP5909890B2 (en) Displacement observation method and displacement observation system
US20220074808A1 (en) System and method for testing structure mode of vibration based on digital image recognition
JP4948660B2 (en) Structure displacement measurement method
WO2020194539A1 (en) Structure displacement measurement device
JP6364845B2 (en) Vibration measuring device
WO2020183549A1 (en) Structure bending measurement device
JP5109074B2 (en) Vehicle speed determination device and vehicle speed determination method
JP6954367B2 (en) Measurement system, correction processing device, correction processing method, and program
WO2020194540A1 (en) Device for measuring displacement of structure
WO2020145004A1 (en) Photography guide device
JP7067668B2 (en) Displacement / weight mapping device
JP2019011995A (en) Rigidity measuring device, rigidity measuring method, and program
JP7067667B2 (en) Displacement-weight mapping device
JP2013161281A (en) Traffic image acquisition device, traffic image acquisition method, and traffic image acquisition program
JP5834532B2 (en) Mode analysis method and mode analysis system
JP2016197074A (en) Interlayer displacement measurement system, interlayer displacement measurement method, and program
JP6770052B2 (en) Structure soundness evaluation device
JP7409637B2 (en) Calculation method
JP6989036B2 (en) Image processing device
JPH07260562A (en) Vibration waveform measuring device for long and large structure
JP2020201292A (en) Structure soundness evaluation apparatus
JPH10253649A (en) Congestion monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919077

Country of ref document: EP

Kind code of ref document: A1