JP2004252520A - Road monitoring system - Google Patents

Road monitoring system Download PDF

Info

Publication number
JP2004252520A
JP2004252520A JP2003039120A JP2003039120A JP2004252520A JP 2004252520 A JP2004252520 A JP 2004252520A JP 2003039120 A JP2003039120 A JP 2003039120A JP 2003039120 A JP2003039120 A JP 2003039120A JP 2004252520 A JP2004252520 A JP 2004252520A
Authority
JP
Japan
Prior art keywords
vibration
vehicle
road
sensor
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039120A
Other languages
Japanese (ja)
Other versions
JP4138523B2 (en
Inventor
Takeshi Kawamura
武司 川村
Showa Miyauchi
将和 宮内
Etsuji Ishibashi
悦治 石橋
Takashi Fujieda
敬史 藤枝
Toshihiko Nishihata
利彦 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport, NIKKEN CONSULTANTS Inc, Sumitomo Electric Industries Ltd filed Critical Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport
Priority to JP2003039120A priority Critical patent/JP4138523B2/en
Publication of JP2004252520A publication Critical patent/JP2004252520A/en
Application granted granted Critical
Publication of JP4138523B2 publication Critical patent/JP4138523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Signs Or Road Markings (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road monitoring system for detecting the number of passing vehicles, travel speed and vehicle weight, which are required for road management, by using one type of sensor. <P>SOLUTION: Oscillation sensors S1 and S4 are installed in a roadbed of a road by leaving a space in a travel direction of the vehicle. The number of oscillation detection times by the sensor S1 or S4 is counted and the number of the passing vehicles is obtained. Travel speed of the vehicle is obtained from a detection time difference by the sensors S1 and S4. Weight of the vehicle is estimated and obtained from a size of amplitude of detected oscillation and from travel speed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、道路の維持、管理、運用などのために利用する道路監視システムに関する。
【0002】
【従来の技術】
道路の交通量や通行車両の重量、概略車種グループ及び過積載の有無の把握は、道路管理者にとって重要な事項である。それは、交通量に応じて信号形態を変更したり、路面補修の時期を検討するといった道路管理の業務に必要な情報であるからである。
【0003】
同じ交通量であっても、重量車が多ければ道路の痛みは大きく、車両の重さの程度と走行速度によっても路面の痛み具合は変わってくる。従って、道路の交通量、車両の走行速度、車両重量、概略車種グループ及び過積載の5つの情報が得られるシステムがあれば、道路管理者にとって非常に有益なものとなる。
【0004】
この5つの情報を個々に収集する技術は既に存在する。例えば、車両の台数の検知については、路面の上方にアームを張り出し、そのアームに超音波センサを下向きに設置して超音波の反射距離の変化から通過車両数をカウントするシステムがある。
【0005】
また、車両検知器と呼ばれる磁界変化検知用のコイルセンサを路盤内に埋設し、交差点などにおける車両の有無を検知するシステムもある。
【0006】
さらに、交通の取り締まりになどのために画像監視のシステムや速度検知のシステムが用いられている。
【0007】
このほか、過積載防止のためにトラックスケールが利用されている。
【0008】
【発明が解決しようとする課題】
超音波センサで車両数をカウントするシステムは、車両重量の計測ができない。車高の違いは判断できるので、その車高の違いから車両重量や車種グループを推定することは可能と思われるが、これは信頼性に問題がある。また、このシステムでは車両速度の検出も、センサを複数台設置することで技術的には可能と思われるが、車両の形状によっては正確な速度算出が望み難い。
【0009】
速度検知には専用の超音波センサが用いられているが、これは車両台数の計測には利用されていない。
【0010】
コイルセンサも、これで通行量と速度を検知することは可能であるが、重量に係わる情報が得られない。
【0011】
また、トラックスケールは、走行中の車の重量計測には利用できない。
【0012】
このように、従来の技術では、走行中の車両の重量計測を信頼性良く行うことができない。また、車両数の計測と速度検知を別々のセンサで行う必要があり、システムが複雑化する。
【0013】
そこで、この発明は、車の通過台数、速度、重量、車種グループ及び過積載の有無を1種類のセンサを用いて検知可能となすことを課題としている。
【0014】
【課題を解決するための手段】
上記の課題を解決するため、この発明の道路監視システムにおいては、道路の路盤内に振動センサを設置し、そのセンサで車両通行による振動を検知し、その検知回数をカウントして車両の通行台数を求めるようにした。
【0015】
また、道路の同一車線の路盤内に振動センサを走行方向に所要間隔をあけて複数個設置し、各センサで車両通行による振動を検知し、間隔をあけたセンサの検知時間差から通行車両の速度を求めるようにした。
【0016】
さらに、道路の同一車線の路盤内に振動センサを走行方向に所要間隔をあけて複数個設置し、各センサで車両通行による振動を検知し、間隔をあけたセンサの検知時間差から通行車両の通過速度を求め、検知した振動の振幅の大きさ、および通過速度から通行車両の重量を推定するようにした。
【0017】
また、走行方向に所要間隔を空けて設置した複数個のセンサから得られる走行速度と、複数のセンサのいずれか1つのセンサで得られる前輪と後輪の時間差から、走行車の車軸間隔を求め、あらかじめ車軸間隔の近い車種のグループをデータベースとして保存しているデータと比較して車種グループを推定するようにした。
【0018】
さらに、計測した車両の重量と、推定した各車種グループがデータベースとして持つ許容積載重量も含めた許容総重量を比較して過積載か否かを推定するようにした。
【0019】
いずれのシステムも、使用する振動センサは、光ファイバを検知子とする光式振動センサが好ましい。
【0020】
また、アスファルト舗装道路の場合、表面の密粒度アスファルト下にある粗粒度アスファルト層内に振動センサを埋設するのがよい。
【0021】
振動センサを検知子の両側に金属ロッドを接続して構成し、この振動センサをほぼ車線幅となる長さにして車線を横切る方向に配置したり、振動センサ設置点の直近の路面に、通過車両を振動させる段差を形成したり、路盤内の振動センサと路面との間に路盤に繋留される振動伝達部材を設けてこの振動伝達部材を振動センサに接触させたり、その振動伝達部材の上端を路面と同一面内に配置して振動伝達部材の上端の路面に対する露出部を路面に貼った防護テープで覆い隠したりするのも好ましい。
【0022】
【作用】
振動センサで車両通行による振動を検知して車両の通行台数を求めると、道路の同一車線の路盤内に振動センサを走行方向に間隔をあけて複数個設置して間隔をあけたセンサの振動検知の時間差から通行車両の速度を求めることができ、また、複数個のセンサから得られる走行速度と、複数のセンサのいずれか1つのセンサで得られる前輪と後輪の時間差から、走行車の車軸間隔を求め、あらかじめ車軸間隔の近い車種のグループをデータベースとして保存しているデータと比較して車種グループを推定すること、および、推定した車種グループのデータベースとして保存している許容積載重量を比較して過積載か否かを推定する、さらには、検知した振動の振幅と車両速度から通行車両の重量をある程度正確に推定することもでき、1種類のセンサで道路管理に必要な5つの情報、すなわち、通行台数、車両速度、車両重量、車種、過積載か否かを検知することが可能になって、システムの簡素化、設置効率向上などが図れるようになる。
【0023】
車両の通過台数は、振動センサでもはっきりとした信号が得られるので、正確に検知できる。
【0024】
また、車両速度は、間隔をあけて設置したセンサ間の距離が予め分かっており、その距離と前後のセンサによる検出の時間差から正確に割り出すことができる。
【0025】
さらに、車両の重量は検出した振動の振幅(振動の大きさ)のみから推定することもできるが、この発明では通過速度も判定の材料として利用するので、加速度による力の影響分を補正することができ、従って、車両重量もある程度精度良く推定することができる。なお、光ファイバを検知子とする光式振動センサを用いると、電磁誘導による誤作動が無くなり、システムの信頼性が高まる。また、長距離区間を1つのシステムで構築できるので、信号伝送端末器の数量削減、信号伝送の簡易化なども図れる。
【0026】
また、振動センサを、アスファルト舗装道路の表層の密粒度アスファルト層に埋設すると、道路の改修工事等で表層をグレーダでかき均したきにセンサがダメージを受け、破損や寿命低下など経済負担の増加につながる問題が起こるので、アスファルト舗装道路においては密粒度アスファルトの下にある粗粒度アスファルト層にセンサを埋設するのがよい。さらに下の層に埋めることも可能であるが、深すぎると施工が大変であるし、振動が伝達されにくくなってセンサの感度も低下するので、必要以上に埋設点を深くするのは好ましくない。
【0027】
振動センサを車線幅とほぼ同じ長さにして車線を横切る方向に配置するものは、車両の走行位置が左右に多少ずれても振動検知がなされ、監視の信頼性がより高まる。センサ自体を限られた長さに分割すれば、取り扱い性が良く、搬入施工も容易になる。
【0028】
このほか、振動センサを路盤内に埋設すると、路面から伝達される振動が減衰して小さくなるので、必要ならば、センサ近傍の路面に段差をつけて発生する振動を増幅するなどの補助策を施す。段差を設ける代わりに路盤内の振動センサと路面との間に振動伝達部材を設けてもよい。この場合、振動伝達部材が抜けて路面上に浮きだすと車の走行に支障をきたすことがあり得るので、振動伝達部材は路盤に繋留されて抜止めされる構造にしておくのがよい。また、振動伝達部材が路面に露出するとアスファルトとの界面に雨水などが入り込み、アスファルトが剥離しやすくなって路面の傷みを早める可能性が高まるので、振動伝達部材の路面に対する露出部を路面に貼った防護テープで覆い隠すようにしておくのがよい。防護テープの、材質、厚み次第では、このシートに振動を増幅する役割を期待することもできる。また、この防護テープで振動伝達部材の路面上への飛び出しを防止することもできる。
【0029】
【発明の実施の形態】
図1に、道路に埋設した振動センサで車両通過時の振動(振幅)を検知し、時間差計測を行うときの状況を模式的に示す。この図1は、車両の前輪と後輪による振動を別々に検知したものにしている。
【0030】
車両が振動センサの近くを通過したとき、通常の2輪車や4輪車であればセンサが先ず前輪からの影響による振動を検知し、次いで、後輪からの振動を検知する。これを、ある一定距離を離して設置した別のセンサ(特性を同じように調整したもの)からの情報と合わせることで、センサ間距離Lと通過時間差(t2−t1)から車両の走行速度Vを計算して正確に求めることができる。
【0031】
また、前輪と後輪の通過時の振動が車両1台分であるので、これをカウントして車両の通過台数を知ることができる。さらには、前輪と後輪の時間差から、走行車の車軸間隔を求め、あらかじめ車軸間隔の近い車種のグループをデータベースとして保存しておいたデータと比較して車種グループを推定すること、および、推定した車種グループのデータベースとして保存している許容積載重量を比較して過積載か否かを推定することもできる。
【0032】
さらに、振動の振幅Wは車両の重量によって変わる。重量車通過時の振幅は大きく、軽量車通過時の振幅は小さい。この振幅の大きさから車両の重量を推定できる。この推定重量は、車両速度が高まるほど加速度による力の増加が大きくなってその影響が検知した振動の振幅に現れるので、実重量からずれることがあるが、車両速度が分かればその速度を判定に利用して加速度による推定重量の誤差成分を補正することができるので、道路管理で要求される信頼性は問題なく確保することができる。
【0033】
図2は振動センサの設置状況の一例である。図2(a)は片側2車線の道路を示している。図中Sは、路盤内に埋設した振動センサである。このセンサSの本体部は筐体に収納して保護している。また、車両通行時の振動を確実に検知するために、本体部の両側に金属ロッドを接続し、全体の長さを車線の幅とほぼ同じにして車線を横切る向きに配置している。ここでは、各車線にそれぞれ2個、計4個のセンサを設けており、各センサを区別するために、符号に1〜4の数字を付記した。Rは各センサにつないだ信号伝送用のリード線、CZは道路の中央分離帯である。
【0034】
振動センサS1〜S4は、図2(b)に示すように、舗装道路の表面(密粒度アスファルト層1)ではなく、その下の粗粒度アスファルト層2に埋設している。その理由は、アスファルト舗装面は車両の走行によって痛みやすく、補修或いは改修される頻度が高く、その際に、センサも掘り返される可能性が高い。この掘り返しを回避するために振動センサSを粗粒度アスファルト層2に埋設している。これにより、密粒度アスファルト層1を入れ換える補修の場合には、センサが掘り返されることが無くなる。また、改修の場合には、どの程度路盤が痛んでいるかによってどの程度の深さ領域まで改修するかが決まるため一概には言えないが、この場合にもセンサが掘り返される可能性は低くなり、掘り返しがあったとしてもその頻度が低下する。
【0035】
アスファルト舗装道路には、路盤クラッシャーランまたは鉱滓上に細粒度アスファルト層や密粒度アスファルト層を設けたものと、路盤クラッシャーランまたは鉱滓上に粗粒度アスファルト層と密粒度アスファルト層を積層して設けたものがある。前者は細粒度アスファルト層や密粒度アスファルト層の厚さが4〜5cm、後者は密粒度アスファルト層の厚さが5cmあり、このため、振動センサは4〜5cm以上の深さ位置に配置されることになる。この場合、ある意味で路面からセンサまでの間に緩衝層が存在することになり、センサに振動が伝わり難くなる。これでも、重量車であればある程度の感度を期待できるが、軽量の乗用車等は振動検知が難しくなる。
【0036】
その問題は、図2(c)に示すように、密粒度アスファルト層1内にセンサ保護板(振動伝達板)3を設ける、図3に示すように、路面に凸部4や凹部による振動増幅用の段差をつける、あるいは、図4に示すように、路盤内に振動伝達部材5を設けるといった方法で解決することができる。
【0037】
図2(c)のセンサ保護板(振動伝達板)3の目的は、密粒度アスファルトでの振動の減衰を抑制し、より大きな振動をセンサに伝達するためで、振動の減衰層を薄くしたことによる効果を期待したものである。この場合、薄くなった部分のアスファルトの強度を上げる必要がある。
【0038】
図3の段差は、車の走行に支障を来さない高さ、例えば、1cm以下とする。イメージ的には道路の急カーブ点に設けられている注意喚起用の凹凸と同等のものでよい。注意喚起用の凹凸は、その数が多いが、この発明のシステムでは1回衝撃を発生させればよいので、段差は1ヵ所でよい。
【0039】
図4の振動伝達部材5は、補修時に撤去されることが避けられないが、これをセンサに接触させると振動がセンサに確実に伝わる。この振動伝達部材5は、アスファルトから剥離して路面上に大きく突出すると車両の走行の妨げとなる。従って、路盤から抜けないようにしておく必要があり、その要求に応えるために、ここでは繋留効果が得られるT字型の金属板を倒立させて路盤に埋め込んでいる。
【0040】
この振動伝達部材5は、センサの本体部の保護用筐体に拘束されずにセンサに振動を伝えられるようにしておく。筐体等に一体化すると振動が途中で吸収されて伝わり難くなるので好ましくない。
【0041】
この振動伝達部材5の材質は金属に限定されず、セラミックスや樹脂などで形成されたものでも構わない。形状も路盤に繋留されて路面上に飛び出さないようにしてあればよい。例えば、起立させた単純な形状の板材を振動伝達部材とし、その板材の下部両側にチェーンを付けてこれを板材と一緒に路盤に埋めてもよいが、これは、路面の補修、改修時にチェーンも撤去される可能性が高く、復旧に要する手間がT字型の部材を使用する場合よりも多くなると思われる。
【0042】
図4の6は、路面に貼った防護テープである。この防護テープ6も振動伝達部材5を押さえ込んで路面上への飛び出しを防止する。振動伝達部材5の飛び出し防止はこのテープのみで行うこともできるが、安全性を考慮してさきに述べた抜止め策と併用してもよい。この防護テープ6としては、高速道路の高架橋の接続部に使用実績のあるテープを適用するとよい。
【0043】
この防護テープ6の効用はほかにもある。振動伝達部材5とアスファルトの界面に対する雨水などの流入を抑えて両者の剥離、それによる路面の傷みを抑制する。また、平らな道路に段差を生じさせて車両通過時に振動増幅のための衝撃を生じさせる。
【0044】
なお、振動センサSは、従来からあるもの、例えば、歪ゲージを使用したセンサ、抵抗変化を利用して振動を検知するセンサ、静電容量の変化を利用して振動を検知するセンサなどを用いてもよいが、光ファイバを検知子にして歪みによる光の伝送ロスや反射波の波長変化等から振動を検知する光式振動センサが特に好適である。この光式振動センサを用いると、電源のない場所でも検知が行え、落雷等による機器への誘導障害による計測不能の事態も回避できる。また、信号伝送用の1本の光ファイバ(図2(a)のリード線Rがそれに相当する)に振動センサを直列に接続して長距離区間を1つのシステムで構築でき、システムの簡素化、コスト低減、信頼性向上などが図れる。
【0045】
【発明の効果】
以上述べたように、この発明の道路監視システムは、車両の通過台数、走行速度、車両重量を一種類の数少ないセンサで検出することができ、道路管理者に対して多大の恩恵をもたらす。
【0046】
光式センサを使用するものは特に、システムが簡単で、構築費も安く抑えられ、信頼性も高く、より大きな効果を期待できる。
【図面の簡単な説明】
【図1】この発明のシステムによる検出状況を模式的に示す図
【図2】(a)振動センサの設置状況を簡略化して示す平面図
(b)図2(a)のA−A線部の断面図
(c)センサ保護板の設置例を示す断面図
【図3】振動増幅用の段差の設置状況を示す断面図
【図4】感度向上用振動伝達部材の設置状況を示す断面図
【符号の説明】
S 振動センサ
R リード線
1 密粒度アスファルト層
2 粗粒度アスファルト層
3 センサ保護板
4 凸部
5 振動伝達部材
6 防護テープ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a road monitoring system used for road maintenance, management, operation, and the like.
[0002]
[Prior art]
It is important for the road manager to grasp the traffic volume on the road, the weight of the passing vehicles, the approximate vehicle type group, and the presence or absence of overloading. This is because the information is necessary for road management operations such as changing the signal form according to the traffic volume and examining the timing of road surface repair.
[0003]
Even with the same traffic volume, the pain on the road is large if there are many heavy vehicles, and the pain on the road surface also changes depending on the weight of the vehicle and the traveling speed. Therefore, a system that can obtain five pieces of information such as traffic volume on a road, traveling speed of a vehicle, vehicle weight, approximate vehicle type group, and overloading would be very useful for a road manager.
[0004]
Techniques for individually collecting these five pieces of information already exist. For example, for detection of the number of vehicles, there is a system in which an arm extends above a road surface, and an ultrasonic sensor is installed on the arm in a downward direction, and the number of passing vehicles is counted based on a change in an ultrasonic reflection distance.
[0005]
There is also a system in which a coil sensor for detecting a magnetic field change called a vehicle detector is embedded in a roadbed to detect the presence or absence of a vehicle at an intersection or the like.
[0006]
Further, an image monitoring system and a speed detection system are used for traffic control and the like.
[0007]
In addition, truck scales are used to prevent overloading.
[0008]
[Problems to be solved by the invention]
A system that counts the number of vehicles using an ultrasonic sensor cannot measure vehicle weight. Since the difference in vehicle height can be determined, it seems possible to estimate the vehicle weight and the vehicle type group from the difference in vehicle height, but this has a problem in reliability. In this system, the vehicle speed can be detected technically by installing a plurality of sensors, but it is difficult to accurately calculate the speed depending on the shape of the vehicle.
[0009]
Although a dedicated ultrasonic sensor is used for speed detection, it is not used for measuring the number of vehicles.
[0010]
The coil sensor can also detect the traffic amount and the speed with this, but cannot obtain information on weight.
[0011]
Also, a truck scale cannot be used for measuring the weight of a running car.
[0012]
As described above, according to the related art, it is not possible to reliably measure the weight of a running vehicle. Further, the measurement of the number of vehicles and the speed detection need to be performed by different sensors, which complicates the system.
[0013]
Accordingly, an object of the present invention is to make it possible to detect the number of vehicles passing, speed, weight, vehicle type group, and presence / absence of overloading using one type of sensor.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the road monitoring system of the present invention, a vibration sensor is installed in a roadbed of a road, the sensor detects vibration caused by vehicle traffic, and counts the number of times of detection to count the number of vehicles traveling. Was asked.
[0015]
In addition, a plurality of vibration sensors are installed at required intervals in the traveling direction in the roadbed in the same lane of the road, and each sensor detects vibration due to vehicle traffic, and the speed of the passing vehicle is determined based on the detection time difference of the sensors at intervals. Was asked.
[0016]
In addition, a plurality of vibration sensors are installed at required intervals in the traveling direction in the roadbed in the same lane of the road, and each sensor detects vibration due to vehicle traffic, and the passing time of passing vehicles is determined based on the detection time difference of the spaced sensors. The speed is obtained, and the weight of the passing vehicle is estimated from the magnitude of the amplitude of the detected vibration and the passing speed.
[0017]
Further, the axle interval of the traveling vehicle is determined from the traveling speed obtained from a plurality of sensors installed at required intervals in the traveling direction and the time difference between the front wheel and the rear wheel obtained from any one of the plurality of sensors. The vehicle type group is estimated by comparing a group of vehicle types with close axle intervals in advance with data stored as a database.
[0018]
Further, the measured weight of the vehicle is compared with the allowable total weight including the estimated allowable load weight of each estimated vehicle type group as a database to estimate whether or not the vehicle is overloaded.
[0019]
In any system, the vibration sensor used is preferably an optical vibration sensor using an optical fiber as a detector.
[0020]
In the case of an asphalt paved road, it is preferable to embed the vibration sensor in a coarse-grained asphalt layer below the dense-grained asphalt on the surface.
[0021]
The vibration sensor is configured by connecting metal rods to both sides of the detector, and this vibration sensor is set to a length that is almost the lane width and is arranged in the direction crossing the lane, or it passes through the road surface near the vibration sensor installation point, Forming a step that vibrates the vehicle, providing a vibration transmitting member anchored to the roadbed between the vibration sensor in the roadbed and the road surface, bringing the vibration transmitting member into contact with the vibration sensor, and an upper end of the vibration transmitting member. It is also preferable to dispose in the same plane as the road surface and cover the exposed portion of the upper end of the vibration transmitting member to the road surface with a protective tape stuck on the road surface.
[0022]
[Action]
When the vibration sensor detects the vibration caused by vehicle traffic and determines the number of vehicles passing, the vibration sensors are installed at intervals in the direction of travel in the subgrade on the same lane of the road to detect the vibration of the spaced sensors. The speed of the passing vehicle can be obtained from the time difference between the vehicle and the traveling speed obtained from the plurality of sensors and the time difference between the front wheel and the rear wheel obtained from any one of the plurality of sensors. The interval is calculated, and the vehicle group is estimated by comparing the group of the vehicle types with close axle intervals with the data stored in the database in advance, and comparing the allowable load weight stored in the database of the estimated vehicle type group. It is also possible to estimate the weight of the passing vehicle from the amplitude of the detected vibration and the vehicle speed to some extent accurately. Sensors can detect five pieces of information necessary for road management, that is, the number of passing vehicles, vehicle speed, vehicle weight, vehicle type, and whether or not the vehicle is overloaded, thereby simplifying the system and improving the installation efficiency. Become like
[0023]
The number of vehicles passing can be accurately detected because a clear signal is obtained even with a vibration sensor.
[0024]
In addition, the vehicle speed can be accurately determined from the distance between the sensors installed at an interval, which is known in advance, and the time difference between the distance and the time detected by the front and rear sensors.
[0025]
Furthermore, the weight of the vehicle can be estimated only from the amplitude of the detected vibration (magnitude of the vibration). However, in the present invention, the passing speed is also used as a material for the determination, so that the influence of the force due to the acceleration is corrected. Therefore, the vehicle weight can be estimated with some accuracy. When an optical vibration sensor using an optical fiber as a detector is used, malfunction due to electromagnetic induction is eliminated, and the reliability of the system is improved. In addition, since a long distance section can be constructed by one system, the number of signal transmission terminals can be reduced, and signal transmission can be simplified.
[0026]
In addition, if the vibration sensor is buried in the fine-grained asphalt layer on the surface of asphalt-paved roads, the sensor will be damaged when the surface is leveled with a grader during road renovation work, etc. Therefore, on asphalt-paved roads, it is preferable to bury the sensor in a coarse-grained asphalt layer underneath dense-grained asphalt. It is also possible to bury it in the lower layer, but if it is too deep, it will be difficult to construct, and vibration will be difficult to transmit, and the sensitivity of the sensor will decrease, so it is not preferable to make the burying point deeper than necessary .
[0027]
When the vibration sensor is arranged in the direction crossing the lane with a length substantially equal to the lane width, the vibration is detected even if the running position of the vehicle is slightly shifted left and right, and the reliability of monitoring is further improved. If the sensor itself is divided into a limited length, handling properties are good and carrying-in work is easy.
[0028]
In addition, if the vibration sensor is embedded in the roadbed, the vibration transmitted from the road surface will be attenuated and reduced, so if necessary, auxiliary measures such as amplifying the vibration generated by providing a step on the road surface near the sensor will be necessary. Apply. Instead of providing a step, a vibration transmitting member may be provided between the vibration sensor in the roadbed and the road surface. In this case, if the vibration transmitting member comes off and rises on the road surface, the traveling of the vehicle may be hindered. Therefore, it is preferable that the vibration transmitting member is fixed to the roadbed so as to be prevented from coming off. Also, when the vibration transmitting member is exposed on the road surface, rainwater or the like enters the interface with the asphalt, and the asphalt is easily peeled, and the possibility of hastening the road surface is increased. Therefore, the exposed portion of the vibration transmitting member to the road surface is attached to the road surface. It is better to cover it with protective tape. Depending on the material and thickness of the protective tape, this sheet can be expected to play a role of amplifying vibration. Further, the protection tape can prevent the vibration transmitting member from jumping out onto the road surface.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 schematically illustrates a situation in which a vibration sensor embedded in a road detects vibration (amplitude) when passing a vehicle and measures a time difference. In FIG. 1, vibrations caused by the front and rear wheels of the vehicle are separately detected.
[0030]
When the vehicle passes near the vibration sensor, if the vehicle is a normal two-wheeled or four-wheeled vehicle, the sensor first detects the vibration due to the influence from the front wheels, and then detects the vibration from the rear wheels. By combining this with information from another sensor (one whose characteristics are similarly adjusted) installed at a certain distance, the traveling speed V of the vehicle is calculated from the distance L between the sensors and the transit time difference (t2−t1). Can be calculated and found accurately.
[0031]
Further, since the vibration at the time of passing the front wheel and the rear wheel corresponds to one vehicle, the number of vehicles passing can be known by counting the vibration. Further, from the time difference between the front wheel and the rear wheel, the axle interval of the traveling vehicle is obtained, and the vehicle type group is estimated by comparing the group of the vehicle type having the close axle interval with the data stored in the database in advance, and It is also possible to estimate whether or not the vehicle is overloaded by comparing the allowable loading weight stored as a database of the vehicle type groups.
[0032]
Further, the amplitude W of the vibration varies depending on the weight of the vehicle. The amplitude when passing heavy vehicles is large, and the amplitude when passing light vehicles is small. The weight of the vehicle can be estimated from the magnitude of the amplitude. This estimated weight may deviate from the actual weight because the increase in force due to acceleration increases as the vehicle speed increases and its effect appears in the amplitude of the detected vibration, but if the vehicle speed is known, the speed can be determined. Since the error component of the estimated weight due to the acceleration can be corrected by using this, the reliability required in road management can be secured without any problem.
[0033]
FIG. 2 shows an example of the installation state of the vibration sensor. FIG. 2A shows a road having two lanes on each side. S in the figure is a vibration sensor embedded in the roadbed. The main body of the sensor S is housed and protected in a housing. In addition, in order to reliably detect vibrations when the vehicle is passing, metal rods are connected to both sides of the main body, and the entire length is substantially the same as the width of the lane, and is disposed so as to cross the lane. Here, two sensors are provided in each lane, that is, a total of four sensors, and numerals 1 to 4 are added to the reference numerals to distinguish the sensors. R is a signal transmission lead connected to each sensor, and CZ is a median strip on the road.
[0034]
As shown in FIG. 2B, the vibration sensors S1 to S4 are embedded not in the surface of the pavement road (dense-grain asphalt layer 1) but in the coarse-grain asphalt layer 2 thereunder. The reason is that the asphalt pavement surface is easily damaged by running of the vehicle, and is frequently repaired or repaired. At that time, there is a high possibility that the sensor is also dug up. In order to avoid this excavation, the vibration sensor S is embedded in the coarse-grained asphalt layer 2. Thereby, in the case of the repair in which the dense grain asphalt layer 1 is replaced, the sensor is not dug. In addition, in the case of renovation, it is impossible to say unconditionally because the extent to which the roadbed is damaged determines how much depth area to repair, but in this case the possibility of excavating the sensor is low, Even if there is excavation, the frequency decreases.
[0035]
Asphalt-paved roads include those with a fine-grained asphalt layer or dense-grained asphalt layer on a roadbed crusher run or slag, and those with a coarse-grained asphalt layer and a fine-grained asphalt layer stacked on a roadbed crusher run or slag. is there. The former has a thickness of the fine-grained asphalt layer or the dense-grained asphalt layer of 4 to 5 cm, and the latter has a thickness of the fine-grained asphalt layer of 5 cm. Therefore, the vibration sensor is arranged at a depth of 4 to 5 cm or more. Will be. In this case, in a sense, the buffer layer exists between the road surface and the sensor, and it becomes difficult for the vibration to be transmitted to the sensor. Even with this, a certain degree of sensitivity can be expected for heavy vehicles, but it becomes difficult to detect vibrations for light passenger vehicles and the like.
[0036]
The problem is that a sensor protection plate (vibration transmission plate) 3 is provided in the dense-grained asphalt layer 1 as shown in FIG. 2 (c). As shown in FIG. The problem can be solved by, for example, providing a step for use, or providing a vibration transmitting member 5 in the roadbed as shown in FIG.
[0037]
The purpose of the sensor protection plate (vibration transmission plate) 3 in FIG. 2 (c) is to suppress the attenuation of the vibration in the fine-grained asphalt and transmit a larger vibration to the sensor. This is expected to be effective. In this case, it is necessary to increase the strength of the asphalt in the thinned portion.
[0038]
The step in FIG. 3 is set to a height that does not hinder the running of the car, for example, 1 cm or less. In terms of image, it may be the same as the alerting unevenness provided at the sharp curve point of the road. The number of asperities for alerting is large, but the system of the present invention only needs to generate an impact once, so that only one step is required.
[0039]
The vibration transmitting member 5 in FIG. 4 is inevitably removed during repair, but when this is brought into contact with the sensor, the vibration is reliably transmitted to the sensor. If the vibration transmitting member 5 peels off from the asphalt and protrudes largely on the road surface, it hinders the running of the vehicle. Therefore, it is necessary to prevent the vehicle from falling out of the roadbed, and in order to meet the demand, a T-shaped metal plate capable of obtaining the anchoring effect is inverted and embedded in the roadbed.
[0040]
The vibration transmitting member 5 is configured to transmit vibration to the sensor without being restricted by the protective housing of the main body of the sensor. When integrated with a housing or the like, vibration is absorbed in the middle and becomes difficult to be transmitted, which is not preferable.
[0041]
The material of the vibration transmitting member 5 is not limited to metal, and may be formed of ceramics, resin, or the like. The shape only needs to be anchored to the roadbed so as not to protrude on the road surface. For example, it is possible to use an upright simple plate material as a vibration transmission member, attach a chain to the lower side of the plate material and embed it in the roadbed together with the plate material, but this is necessary when repairing and repairing the road surface Is likely to be removed, and the time and effort required for recovery will be greater than when a T-shaped member is used.
[0042]
Reference numeral 6 in FIG. 4 denotes a protective tape stuck on the road surface. The protective tape 6 also presses the vibration transmitting member 5 to prevent the vibration transmitting member 5 from jumping out onto the road surface. The protrusion of the vibration transmitting member 5 can be prevented by using only this tape, but it may be used in combination with the above-mentioned retaining measure in consideration of safety. As the protective tape 6, it is preferable to use a tape which has been used in a connection portion of a viaduct on a highway.
[0043]
The protective tape 6 has another utility. The flow of rainwater or the like to the interface between the vibration transmitting member 5 and the asphalt is suppressed, and the separation of the two and the damage to the road surface due to the separation are suppressed. In addition, a step is generated on a flat road to generate an impact for amplifying vibration when the vehicle passes.
[0044]
The vibration sensor S may be a conventional one, for example, a sensor using a strain gauge, a sensor that detects vibration using a change in resistance, a sensor that detects vibration using a change in capacitance, or the like. However, an optical vibration sensor that uses an optical fiber as a detector and detects vibration from transmission loss of light due to distortion, wavelength change of a reflected wave, or the like is particularly preferable. If this optical vibration sensor is used, detection can be performed even in a place where there is no power supply, and it is possible to avoid a situation in which measurement cannot be performed due to an obstacle to equipment due to a lightning strike or the like. Further, by connecting a vibration sensor in series to one optical fiber for signal transmission (the lead wire R in FIG. 2A corresponds thereto), a long distance section can be constructed by one system, and the system is simplified. In addition, cost reduction and reliability improvement can be achieved.
[0045]
【The invention's effect】
As described above, the road monitoring system according to the present invention can detect the number of vehicles passing, the traveling speed, and the vehicle weight with one kind of few sensors, which brings great benefits to the road manager.
[0046]
In particular, those using an optical sensor have a simple system, low construction cost, high reliability, and higher effects can be expected.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a detection situation by the system of the present invention; FIG. 2 (a) is a plan view showing a simplified installation situation of a vibration sensor; FIG. 1 (b) is a line AA in FIG. 2 (a); FIG. 3C is a cross-sectional view showing an example of installation of a sensor protection plate. FIG. 3 is a cross-sectional view showing an installation state of a step for amplifying vibration. FIG. 4 is a cross-sectional view showing an installation state of a vibration transmission member for improving sensitivity. Explanation of code]
S Vibration sensor R Lead wire 1 Fine-grained asphalt layer 2 Coarse-grained asphalt layer 3 Sensor protection plate 4 Convex portion 5 Vibration transmission member 6 Protective tape

Claims (11)

道路の路盤内に振動センサを設置し、そのセンサで車両通行による振動を検知し、その検知回数をカウントして車両の通行台数を求める道路監視システム。A road monitoring system that installs a vibration sensor in the roadbed, detects vibrations caused by vehicle traffic with the sensor, counts the number of detections, and obtains the number of vehicles passing. 道路の同一車線の路盤内に振動センサを走行方向に所要間隔をあけて複数個設置し、各センサで車両通行による振動を検知し、間隔をあけたセンサの検知時間差から通行車両の速度を求める道路監視システム。A plurality of vibration sensors are installed in the same lane on the road at a required interval in the traveling direction, and each sensor detects the vibration caused by the traffic of the vehicle, and calculates the speed of the passing vehicle from the detection time difference of the sensors at the intervals. Road monitoring system. 道路の同一車線の路盤内に振動センサを走行方向に所要間隔をあけて複数個設置し、各センサで車両通行による振動を検知し、間隔をあけたセンサの検知時間差から通行車両の通過速度を求め、検知した振動の振幅の大きさ、および通過速度から通行車両の重量を推定する道路監視システム。A plurality of vibration sensors are installed at required intervals in the traveling direction in the roadbed in the same lane of the road, and each sensor detects vibration due to vehicle traffic, and determines the passing speed of the passing vehicle based on the detection time difference of the spaced sensors. A road monitoring system that estimates the weight of a passing vehicle based on the magnitude of the amplitude of the vibration detected and detected, and the passing speed. 道路の同一車線の路盤内に複数布設したセンサから求める走行速度と、1つのセンサの検出する前輪と後輪の時間差から、走行する車の車軸間隔を求め、各車種グループの車軸間距離のデータベースから走行車種グループを推定する道路監視システム。Based on the traveling speed obtained from a plurality of sensors laid in the roadbed in the same lane of the road and the time difference between the front wheel and the rear wheel detected by one sensor, the axle interval of the traveling vehicle is obtained, and a database of the interaxle distance of each vehicle group is obtained. Road surveillance system for estimating the vehicle type group from vehicle. 道路の同一車線の路盤内に複数布設したセンサから求める走行速度と、そのうち1つのセンサが検知した振動の振幅の大きさから推定した車両の重量と、車軸間距離から推定した車種グループのデータベースとして保存している許容積載重量を比較して過積載か否かを推定する道路監視システム。As a database of the traveling speed obtained from a plurality of sensors laid in the roadbed in the same lane of the road, the vehicle weight estimated from the magnitude of the vibration amplitude detected by one of the sensors, and the vehicle group estimated from the inter-axle distance. A road monitoring system that estimates overload by comparing stored allowable load weights. 振動センサとして、光ファイバを検知子とする光式振動センサを用いる請求項1乃至5のいずれかに記載の道路監視システム。The road monitoring system according to any one of claims 1 to 5, wherein an optical vibration sensor using an optical fiber as a detector is used as the vibration sensor. アスファルト舗装道路において表面の密粒度アスファルト下にある粗粒度アスファルト層内に振動センサを埋設した請求項1乃至6のいずれかに記載の道路監視システム。The road monitoring system according to any one of claims 1 to 6, wherein the vibration sensor is embedded in a coarse-grained asphalt layer under the dense-grained asphalt on the surface of the asphalt-paved road. 振動センサを検知子の両側に金属ロッドを接続して構成し、この振動センサをほぼ車線幅となる長さにして車線を横切る方向に配置した請求項1乃至7のいずれかに記載の道路監視システム。The road monitoring device according to any one of claims 1 to 7, wherein the vibration sensor is configured by connecting metal rods to both sides of the detector, and the vibration sensor is arranged to have a length substantially equal to the lane width and to cross the lane. system. 振動センサ設置点の直近の路面に、通過車両を振動させる段差を形成した請求項1乃至8のいずれかに記載の道路監視システム。The road monitoring system according to any one of claims 1 to 8, wherein a step for vibrating a passing vehicle is formed on a road surface immediately near the vibration sensor installation point. 路盤内の振動センサと路面との間に路盤に繋留される振動伝達部材を設け、この振動伝達部材を振動センサに接触させた請求項1乃至9のいずれかに記載の道路監視システム。The road monitoring system according to any one of claims 1 to 9, wherein a vibration transmitting member fixed to the roadbed is provided between the vibration sensor in the roadbed and the road surface, and the vibration transmitting member is brought into contact with the vibration sensor. 上記振動伝達部材の上端を路面と同一面内に配置し、振動伝達部材の上端の路面に対する露出部を路面に貼った防護テープで覆い隠した請求項1乃至10のいずれかに記載の道路監視システム。The road surveillance according to any one of claims 1 to 10, wherein an upper end of the vibration transmitting member is arranged in the same plane as a road surface, and an exposed portion of the upper end of the vibration transmitting member with respect to the road surface is covered with a protective tape stuck on the road surface. system.
JP2003039120A 2003-02-18 2003-02-18 Road monitoring system Expired - Lifetime JP4138523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039120A JP4138523B2 (en) 2003-02-18 2003-02-18 Road monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039120A JP4138523B2 (en) 2003-02-18 2003-02-18 Road monitoring system

Publications (2)

Publication Number Publication Date
JP2004252520A true JP2004252520A (en) 2004-09-09
JP4138523B2 JP4138523B2 (en) 2008-08-27

Family

ID=33023383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039120A Expired - Lifetime JP4138523B2 (en) 2003-02-18 2003-02-18 Road monitoring system

Country Status (1)

Country Link
JP (1) JP4138523B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361264A (en) * 2003-06-05 2004-12-24 Nikken Consultants Inc Optical vibration sensor
CN102622881A (en) * 2012-03-19 2012-08-01 深圳市锐明视讯技术有限公司 Method and device for detecting vibration
JP2012246755A (en) * 2007-05-15 2012-12-13 Univ Kanagawa Vehicle deceleration hump
JP2017089102A (en) * 2015-11-02 2017-05-25 学校法人日本大学 System and program for determining road deterioration
JP2017101416A (en) * 2015-11-30 2017-06-08 西日本高速道路エンジニアリング四国株式会社 Pot hole generation preventing method
CN109798835A (en) * 2019-02-20 2019-05-24 同济大学 Asphalt pavement surface water film thickness single-point monitoring device and installation method
KR20200048022A (en) * 2018-10-29 2020-05-08 한국건설기술연구원 System for Calculating Traffic Information using Vehicle Driving Noise and Method Thereof
JP2020095534A (en) * 2018-12-13 2020-06-18 学校法人五島育英会 Vehicle detection method
JP2020148623A (en) * 2019-03-13 2020-09-17 沖電気工業株式会社 Structure monitoring device, structure monitoring method, and structure monitoring program
WO2020183549A1 (en) * 2019-03-08 2020-09-17 日本電気株式会社 Structure bending measurement device
JP2020147953A (en) * 2019-03-12 2020-09-17 東京瓦斯株式会社 Road restoration support system, road restoration support method, and road restoration support program
WO2020257167A1 (en) * 2019-06-19 2020-12-24 Nec Laboratories America, Inc. Distributed intelligent traffic informatics using fiber sensing
WO2021038695A1 (en) * 2019-08-26 2021-03-04 日本電気株式会社 Optical fiber sensing system, road monitoring method, and optical fiber sensing equipment
CN112781551A (en) * 2020-12-30 2021-05-11 北京万集科技股份有限公司 Road surface condition monitoring system and monitoring method thereof
WO2021181594A1 (en) * 2020-03-12 2021-09-16 Nec Corporation Vehicle detection apparatus, method and program
US11150263B2 (en) 2018-12-14 2021-10-19 Seiko Epson Corporation Measurement device and measurement system
KR102365476B1 (en) * 2021-09-23 2022-02-23 주식회사 자람앤수엔지니어링 An intelligent traffic control system real-time gathering traffic information
EP3992939A1 (en) * 2020-10-27 2022-05-04 Kabushiki Kaisha Toshiba Vehicle information estimation system, vehicle information estimation method, and computer program
US11579040B2 (en) 2017-12-07 2023-02-14 Nec Corporation Damage diagnosis device, damage diagnosis method, and recording medium in which damage diagnosis program is stored
WO2024053069A1 (en) * 2022-09-08 2024-03-14 日本電信電話株式会社 Deposit estimation system and deposit estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12049233B2 (en) * 2019-06-13 2024-07-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Overheight vehicles impact avoidance and incident detection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518776A (en) * 1978-07-27 1980-02-09 Kensetsusho Kamto Chiho Kenset Vehicle type discriminator
JPS61115295U (en) * 1984-12-28 1986-07-21
JPS63106899A (en) * 1986-10-24 1988-05-11 松村 洋 4-item traffic data simultaneously recording/measuring apparatus for traffic volume, vehicle speed, length and weight of vehicle with strip-shaped switch set on road
JPH08235486A (en) * 1995-02-23 1996-09-13 Fujita Corp Automatic traffic density measuring system
JPH08313331A (en) * 1995-05-22 1996-11-29 Matsushita Electric Ind Co Ltd Apparatus for measuring axle load
JPH11232586A (en) * 1998-02-18 1999-08-27 Omron Corp Wheel interval calculating device
WO2002065426A1 (en) * 2001-02-15 2002-08-22 Qinetiq Ltd Traffic monitoring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518776A (en) * 1978-07-27 1980-02-09 Kensetsusho Kamto Chiho Kenset Vehicle type discriminator
JPS61115295U (en) * 1984-12-28 1986-07-21
JPS63106899A (en) * 1986-10-24 1988-05-11 松村 洋 4-item traffic data simultaneously recording/measuring apparatus for traffic volume, vehicle speed, length and weight of vehicle with strip-shaped switch set on road
JPH08235486A (en) * 1995-02-23 1996-09-13 Fujita Corp Automatic traffic density measuring system
JPH08313331A (en) * 1995-05-22 1996-11-29 Matsushita Electric Ind Co Ltd Apparatus for measuring axle load
JPH11232586A (en) * 1998-02-18 1999-08-27 Omron Corp Wheel interval calculating device
WO2002065426A1 (en) * 2001-02-15 2002-08-22 Qinetiq Ltd Traffic monitoring
JP2004527030A (en) * 2001-02-15 2004-09-02 キネテイツク・リミテツド Traffic monitoring

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361264A (en) * 2003-06-05 2004-12-24 Nikken Consultants Inc Optical vibration sensor
JP2012246755A (en) * 2007-05-15 2012-12-13 Univ Kanagawa Vehicle deceleration hump
CN102622881A (en) * 2012-03-19 2012-08-01 深圳市锐明视讯技术有限公司 Method and device for detecting vibration
JP2017089102A (en) * 2015-11-02 2017-05-25 学校法人日本大学 System and program for determining road deterioration
JP2017101416A (en) * 2015-11-30 2017-06-08 西日本高速道路エンジニアリング四国株式会社 Pot hole generation preventing method
US11579040B2 (en) 2017-12-07 2023-02-14 Nec Corporation Damage diagnosis device, damage diagnosis method, and recording medium in which damage diagnosis program is stored
KR102200723B1 (en) * 2018-10-29 2021-01-11 한국건설기술연구원 System for Calculating Traffic Information using Vehicle Driving Noise and Method Thereof
KR20200048022A (en) * 2018-10-29 2020-05-08 한국건설기술연구원 System for Calculating Traffic Information using Vehicle Driving Noise and Method Thereof
US11402403B2 (en) 2018-12-13 2022-08-02 Seiko Epson Corporation Vehicle detection method
JP7234616B2 (en) 2018-12-13 2023-03-08 セイコーエプソン株式会社 Vehicle detection method
JP2020095534A (en) * 2018-12-13 2020-06-18 学校法人五島育英会 Vehicle detection method
US11150263B2 (en) 2018-12-14 2021-10-19 Seiko Epson Corporation Measurement device and measurement system
CN109798835A (en) * 2019-02-20 2019-05-24 同济大学 Asphalt pavement surface water film thickness single-point monitoring device and installation method
WO2020183549A1 (en) * 2019-03-08 2020-09-17 日本電気株式会社 Structure bending measurement device
US12092551B2 (en) 2019-03-08 2024-09-17 Nec Corporation Structure deflection measurement apparatus
JP7173281B2 (en) 2019-03-08 2022-11-16 日本電気株式会社 Deflection measurement device for structures
JPWO2020183549A1 (en) * 2019-03-08 2021-12-16 日本電気株式会社 Deflection measuring device for structures
JP2020147953A (en) * 2019-03-12 2020-09-17 東京瓦斯株式会社 Road restoration support system, road restoration support method, and road restoration support program
JP7129364B2 (en) 2019-03-12 2022-09-01 東京瓦斯株式会社 Road restoration support system, road restoration support method and road restoration support program
JP2020148623A (en) * 2019-03-13 2020-09-17 沖電気工業株式会社 Structure monitoring device, structure monitoring method, and structure monitoring program
WO2020257167A1 (en) * 2019-06-19 2020-12-24 Nec Laboratories America, Inc. Distributed intelligent traffic informatics using fiber sensing
JP2023014212A (en) * 2019-08-26 2023-01-26 日本電気株式会社 Optical fiber sensing system, road monitoring method, and optical fiber sensing device
JP7332020B2 (en) 2019-08-26 2023-08-23 日本電気株式会社 Optical fiber sensing system, road monitoring method, and optical fiber sensing device
WO2021038695A1 (en) * 2019-08-26 2021-03-04 日本電気株式会社 Optical fiber sensing system, road monitoring method, and optical fiber sensing equipment
JPWO2021038695A1 (en) * 2019-08-26 2021-03-04
JP7188604B2 (en) 2019-08-26 2022-12-13 日本電気株式会社 Optical fiber sensing system, road monitoring method, and optical fiber sensing device
WO2021181594A1 (en) * 2020-03-12 2021-09-16 Nec Corporation Vehicle detection apparatus, method and program
JP2023517592A (en) * 2020-03-12 2023-04-26 日本電気株式会社 Vehicle detection device, method and program
JP7452686B2 (en) 2020-03-12 2024-03-19 日本電気株式会社 Vehicle detection device, method and program
EP3992939A1 (en) * 2020-10-27 2022-05-04 Kabushiki Kaisha Toshiba Vehicle information estimation system, vehicle information estimation method, and computer program
JP7480019B2 (en) 2020-10-27 2024-05-09 株式会社東芝 VEHICLE INFORMATION ESTIMATION SYSTEM, VEHICLE INFORMATION ESTIMATION DEVICE, VEHICLE INFORMATION ESTIMATION METHOD, AND COMPUTER PROGRAM
CN114487126A (en) * 2020-10-27 2022-05-13 株式会社东芝 Vehicle information estimation system, vehicle information estimation device, vehicle information estimation method, and computer program
CN112781551A (en) * 2020-12-30 2021-05-11 北京万集科技股份有限公司 Road surface condition monitoring system and monitoring method thereof
KR102365476B1 (en) * 2021-09-23 2022-02-23 주식회사 자람앤수엔지니어링 An intelligent traffic control system real-time gathering traffic information
WO2024053069A1 (en) * 2022-09-08 2024-03-14 日本電信電話株式会社 Deposit estimation system and deposit estimation method

Also Published As

Publication number Publication date
JP4138523B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP2004252520A (en) Road monitoring system
US7668692B2 (en) Method for weighing vehicles crossing a bridge
JP6717995B2 (en) How to equip a roadway with a non-stop weighing sensor
US6137424A (en) Passive road sensor for automatic monitoring and method thereof
US10013813B2 (en) System and method for automatic registration of use of studded tires
EP2372322B1 (en) System and method for determining the axle load of a vehicle and a sensor device
KR100860394B1 (en) A traffic detector device and vehicle information with high and low speed weight
KR102140793B1 (en) High-speed Weigh-In-Motion for detecting overload vehicles in Expressway Limit Vehicle Surveillance System
Hallenbeck et al. Equipment for collecting traffic load data
WO2012038955A1 (en) Piezoelectric-based weigh-in-motion system and method for moving vehicles
JP3375968B2 (en) Magnetometer vehicle detector
WO2017222271A1 (en) System and method for rapidly detecting ground subsidence
CN106017844A (en) Raised obstacle for simulating actual impact test on wheels
CN202090301U (en) Integral dot-matrix type pressure sensitive sensor device for motor vehicle axle identification
JP3702238B2 (en) Vehicle weight measuring method, vehicle axle weight measuring system, and overloaded vehicle warning system
JP2017061786A (en) Detection method of slab deterioration range or slab deterioration status using ae
US6692567B1 (en) Seismic weigh-in-motion system
EP1222445B1 (en) Seismic weigh-in-motion system
KR102200723B1 (en) System for Calculating Traffic Information using Vehicle Driving Noise and Method Thereof
KR101059472B1 (en) Traffic information collection method, system and optical traffic sensor
KR102414212B1 (en) Truck scale and vehicle weight measurement monitoring system
KR100977249B1 (en) A unit tread weighing system for moving vehicles and its methodology
KR200214995Y1 (en) Vehicle Detection System using Optical fiber Array Grating sensors.
RO135230A2 (en) Sensor for weighing motor vehicles while running and for monitoring urban traffic
Talebsafa Evaluation of Comparative Damaging Effects of Multiple Truck Axles for Flexible Pavements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Ref document number: 4138523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term