WO2020182404A1 - Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases - Google Patents

Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases Download PDF

Info

Publication number
WO2020182404A1
WO2020182404A1 PCT/EP2020/053691 EP2020053691W WO2020182404A1 WO 2020182404 A1 WO2020182404 A1 WO 2020182404A1 EP 2020053691 W EP2020053691 W EP 2020053691W WO 2020182404 A1 WO2020182404 A1 WO 2020182404A1
Authority
WO
WIPO (PCT)
Prior art keywords
process gas
cooling unit
waste heat
temperature
heat boiler
Prior art date
Application number
PCT/EP2020/053691
Other languages
English (en)
French (fr)
Inventor
Michael Babel
Thilo WÜBBELS
Joachim Rotarius
Original Assignee
Sms Group Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Group Gmbh filed Critical Sms Group Gmbh
Priority to EP20706156.5A priority Critical patent/EP3938549A1/de
Publication of WO2020182404A1 publication Critical patent/WO2020182404A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/18Arrangements of dust collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/22Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/006Systems for reclaiming waste heat using a boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a device for cooling and / or cleaning a process gas emerging from a converter, having at least one evaporation cooling unit and at least one waste heat boiler connected downstream of the evaporation cooling unit with respect to a process gas flow through the device.
  • the invention relates to a system for cooling and / or cleaning a process gas emerging from a converter, having at least one cooling chimney that can be connected to the converter and at least one electrostatic dust collector.
  • the invention also relates to a method for cooling and / or cleaning a process gas exiting a converter, the process gas exiting the converter being cooled and / or cleaned by means of at least one evaporation cooling unit and the process gas exiting the evaporation cooling unit being cooled and / or by means of at least one waste heat boiler or cleaned.
  • the process gas is cooled to a temperature of around 750 ° C to around 1,100 ° C by means of an evaporation-cooled chimney while an oxygen jet is being blown into the converter.
  • the correspondingly cooled process gas is then cooled to a temperature of about 200 ° C. by means of an evaporation cooling unit, for which purpose cooling water is sprayed or injected directly into the process gas by means of the evaporation cooling unit.
  • a large amount of water is injected into the hot process gas. The inherent heat of the process gas entering the evaporative cooling unit is not used.
  • the process gas mass flow rate is increased by about 29% to about 36% due to the water injection.
  • another conventional cooling and cleaning of a process gas emerging from a metallurgical converter is between the cooling chimney and the Evaporative cooling unit connected a waste heat boiler with which the temperature of the process gas is initially reduced to about 500 ° C to about 400 ° C before it is fed to the evaporative cooling unit.
  • DE 1 279 275 A discloses a method for the automatic control and / or regulation of induced draft fans for boilers with rapidly changing heat supply, in particular for waste heat boilers in metallurgical furnaces, e.g. B. Oxygen top-up converter. The temperature of the flue gases is continuously measured in the boiler and converted in a transducer.
  • WO 89/1 1904 A1 discloses a method for the simultaneous dry separation of solid and gaseous substances from flue gases or systems that generate corresponding pollutant-containing waste gases, such as furnace boilers, converters, rotary kilns or the like. Absorbents are added to the flue gas flow, which react with pollutants and which are separated out in a filter together with the solids carried along by the flue gas flow. The absorbents are added to the flue gas flow at temperatures above 250 ° C.
  • CN 105 648 141 A discloses a system and a method for recovering waste gas heat from a converter.
  • the system includes an evaporative cooling tower for cooling a converter exhaust gas to a temperature of 300 ° C to 500 ° C, a waste heat recovery device connected to an outlet of the evaporative cooling tower, and an electrical dust collector connected to an outlet of the waste heat recovery device.
  • the waste heat recovery device has a waste heat boiler, which is connected to a pipeline and a boiler tube, a vent, a smoke outlet, has a medium pressure evaporator, a low pressure evaporator and a coal preheater.
  • the converter flue gas successively exchanges heat with the medium pressure evaporator, the low pressure evaporator and the coal preheater, with a saturated steam being generated.
  • the device has a waste heat boiler, an evaporation cooling unit connected downstream of the waste heat boiler with regard to a process gas flow through the device, and an electrostatic filter connected downstream of the evaporation cooling unit with regard to the process gas flow.
  • the device has an evaporative cooling unit and an electrostatic filter connected downstream of the evaporative cooling unit with regard to a process gas flow through the device.
  • the process gas at the outlet of the evaporative cooling unit has a temperature of 200 ° C.
  • One object of the invention is to improve the cooling and / or cleaning of a process gas emerging from a converter.
  • the process gas temperature is only cooled to a temperature in the range from 400 ° C. to 850 ° C. instead of - as is conventional - to around 200 ° C. by means of the evaporation cooling unit.
  • the temperature of the process gas to be fed to the evaporative cooling unit can be increased from an initial temperature, which can be in a range from 1800 ° C. to 2100 ° C., by means of a cooling stack connected to the converter, to a temperature in a range from 1,100 ° C. to 750 ° C can be cooled.
  • the temperature of the process gas leaving the evaporative cooling unit depends on the temperature of the process gas to be supplied to the evaporative cooling unit.
  • the temperature of the process gas which is in the range from 400 ° C. to 850 ° C., can be reduced to a temperature in the range from 170 ° C. to 280 ° C. by means of the waste heat boiler.
  • the temperature of the process gas leaving the waste heat boiler depends on the temperature of the process gas to be supplied to the waste heat boiler.
  • the evaporation cooling unit according to the invention can be operated with a lower consumption of injection water.
  • the moisture of the process gas that can be generated by means of the evaporative cooling unit ensures, in particular, optimal operation of an electrostatic dust separator connected downstream of the device.
  • the amount of water injected into the process gas by means of the evaporative cooling unit can be determined as a function of a process gas humidity required for the operation of the electrostatic dust separator, in particular as a further cooling of the process gas takes place by means of the downstream waste heat boiler, so that there is greater freedom to inject the water into the process gas.
  • the water Since no waste heat boiler or the like is connected upstream of the evaporation cooling unit, the water is injected into a process gas at a significantly higher temperature by means of the evaporation cooling unit. In this way, complete evaporation of the water can be guaranteed, even when the process gas temperatures are slightly lower.
  • the waste heat boiler generates saturated steam in addition to steam generated by means of a cooling stack connected to the converter.
  • the waste heat boiler is an integral part of a steam generation system, with which about 25% to about 40% more steam can be generated than with a conventional steam generation system.
  • the waste heat boiler can in particular be a convection waste heat boiler.
  • the waste heat boiler functions as a buffer between the evaporative cooling unit and an electrostatic dust collector.
  • the process gas cooled and / or purified by means of the device according to the invention can be discharged or reused for another purpose.
  • the device can be used as part of a metallurgical steelmaking plant.
  • the evaporation cooling unit and / or the waste heat boiler are or is set up to reduce a proportion of coarse dust in the process gas.
  • the coarse dust content of the process gas to be fed to the waste heat boiler can thus be reduced by means of the evaporative cooling unit.
  • the heating surfaces of the waste heat boiler exposed to the process gas are less soiled with coarse dust, so that the effectiveness of the waste heat boiler heating surfaces is improved.
  • the coarse dust separated from the process gas can be landfilled or reused in a steel production process.
  • the device has at least one firing unit, connected upstream of the evaporation cooling unit with respect to the process gas flow, for heating the process gas to be supplied to the evaporation cooling unit.
  • the firing unit can be activated if the converter is operated discontinuously (batch process), so that it can be ensured that the device is supplied with a process gas at a sufficiently high temperature.
  • the process gas cooled and / or purified by the device can be fed to the firing unit in order to burn it by means of the firing unit.
  • a system for cooling and / or cleaning a process gas emerging from a converter has at least one cooling chimney that can be connected to the converter, at least one electrostatic dust collector and at least one device according to one of the above-mentioned configurations or a combination of at least two of these configurations with one another, wherein the evaporation cooling unit and the waste heat boiler are connected between the cooling chimney and the electrostatic dust collector with respect to a process gas flow through the system.
  • the advantages mentioned above with reference to the device are correspondingly associated with the system.
  • the system can have a suction fan downstream of the electrostatic dust separator. In particular, fine dust can be separated from the process gas by means of the electrostatic dust separator.
  • the firing unit is arranged on the cooling chimney.
  • the process gas flowing through the cooling chimney can be heated by means of the firing unit.
  • the process gas emerging from the converter is cooled by means of at least one evaporative cooling unit and / or cleaned, if the process gas emerging from the evaporative cooling unit is cooled and / or cleaned by means of at least one waste heat boiler, a temperature of the process gas is lowered by means of the evaporative cooling unit to a temperature in a range from 400 ° C to 850 ° C, and a temperature of the process gas is lowered by means of the waste heat boiler to a temperature which is in a range from 170 ° C to 280 ° C.
  • the device can be used according to one of the above-mentioned configurations or a combination of at least two of these configurations with one another to carry out the method.
  • a coarse dust fraction of the process gas is reduced by means of the evaporation cooling unit and / or by means of the waste heat boiler.
  • the process gas emerging from the converter is heated by means of at least one furnace unit before it is fed to the evaporative cooling unit.
  • FIG. 1 shows a block diagram of an exemplary embodiment for a system according to the invention
  • FIG. 2 a basic diagram of an exemplary embodiment for a system according to the invention.
  • FIG. 1 shows a block diagram of an exemplary embodiment for a system 1 according to the invention for cooling and / or cleaning a process gas emerging from a converter 2
  • the system 1 has a cooling chimney 3 connected to the converter 2, with which the process gas is cooled from a temperature in a range from 1800 ° C. to 2100 ° C. to a temperature in a range from 1100 ° C. to 750 ° C. and thereby a saturated steam 4 is generated.
  • the system 1 has a device 5 connected downstream of the cooling chimney 3 for cooling and / or cleaning the from a
  • the system 1 has a (dry) electrostatic dust separator 6 connected downstream of the device 5 and a suction fan 7 connected downstream of this, with which the cooled and / or cleaned process gas is suctioned off.
  • the device 5 has an evaporation cooling unit 8 in the form of an evaporation cooling tower and a waste heat boiler 10 connected downstream of the evaporation cooling unit 8 with respect to a process gas flow indicated by an arrow 9 through the device 5.
  • the evaporative cooling unit 8 is set up to lower a temperature of the process gas supplied to the evaporative cooling unit 8 to a temperature which is in a range from 400 ° C. to 850 ° C.
  • the waste heat boiler 10 is set up to lower a temperature of the process gas supplied to the waste heat boiler 10 to a temperature which is in a range from 170 ° C. to 280 ° C.
  • the evaporation cooling unit 8 and the waste heat boiler 10 are each set up to reduce a coarse dust fraction of the process gas by each removing coarse dust 11 from the process gas.
  • the waste heat boiler 10 generates a saturated steam 12, which by means of the Cooling chimney 3 generated steam 4 is supplied.
  • An injection water 13 is supplied to the evaporative cooling unit 8.
  • the process gas leaving the evaporative cooling unit 8 can have a water content of less than 20%.
  • the evaporation cooling unit 8 and the waste heat boiler 10 are connected between the cooling chimney 3 and the electrostatic dust separator 6 with respect to a direction of the process gas flow also indicated by the arrow 9 through the system 1.
  • the device 5 also has a firing unit 14, connected upstream of the evaporation cooling unit 8 with respect to the process gas flow, for heating the process gas to be supplied to the evaporation cooling unit 8.
  • the firing unit 14 is arranged on the cooling chimney 3.
  • FIG. 2 shows a basic diagram of an exemplary embodiment for a system 1 according to the invention for cooling and / or cleaning a process gas emerging from a converter 2.
  • the system 1 has a cooling chimney 3 connected to the converter 2, with which the process gas is cooled from a temperature in a range from 1800 ° C. to 2100 ° C. to a temperature in a range from 1100 ° C. to 750 ° C. and thereby a saturated steam is generated.
  • the system 1 has a device 5, connected downstream of the cooling chimney 3, for cooling and / or cleaning the process gas emerging from a converter 2.
  • the system 1 has a (dry) electrostatic dust separator 6 connected downstream of the device 5 and a suction fan (not shown) connected downstream of this, with which the cooled and / or cleaned process gas is suctioned off.
  • the electrostatic dust separator 6 separates fine dust 18 from the process gas.
  • the device 5 has an evaporation cooling unit 8 and a waste heat boiler 10, which is connected downstream of the evaporation cooling unit 8 with respect to a direction indicated by an arrow 9 of the process gas flow through the device 5, and which has several heat exchangers 17 connected in series.
  • the evaporative cooling unit 8 is set up, a temperature of the Reduce evaporation cooling unit 8 supplied process gas to a temperature which is in a range of 400 ° C to 850 ° C.
  • the waste heat boiler 10 is set up to lower a temperature of the process gas supplied to the waste heat boiler 10 to a temperature which is in a range from 170 ° C. to 280 ° C.
  • the evaporation cooling unit 8 and the waste heat boiler 10 are each set up to reduce a coarse dust fraction of the process gas by removing coarse dust from the process gas.
  • the waste heat boiler 10 generates a saturated steam, which is fed to the steam generated by the cooling stack 3.
  • An injection water 13 is supplied to the evaporative cooling unit 8.
  • the process gas leaving the evaporative cooling unit 8 can have a water content of less than 20%.
  • the evaporation cooling unit 8 and the waste heat boiler 10 are connected between the cooling chimney 3 and the electrostatic dust separator 6 with respect to a direction of the process gas flow also indicated by the arrow 9 through the system 1.
  • the device 5 also has a firing unit 14, connected upstream of the evaporation cooling unit 8 with respect to the process gas flow, for heating the process gas to be supplied to the evaporation cooling unit 8.
  • the firing unit 14 is arranged on the cooling chimney 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung (5) zum Kühlen und/oder Reinigen eines aus einem Konverter (2) austretenden Prozessgases, aufweisend wenigstens eine Verdampfungskühleinheit (8) und wenigstens einen bezüglich einer Prozessgasströmung durch die Vorrichtung (5) der Verdampfungskühleinheit (8) nachgeschalteten Abhitzekessel (10). Um das Kühlen und/oder Reinigen des Prozessgases zu verbessern, ist die Verdampfungskühleinheit (8) eingerichtet, eine Temperatur des der Verdampfungskühleinheit (8) zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 400°C bis 850°C liegt, und ist der Abhitzekessel (10) eingerichtet, eine Temperatur des dem Abhitzekessel (10) zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 170°C bis 280°C liegt.

Description

Vorrichtung und Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases
Die Erfindung betrifft eine Vorrichtung zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases, aufweisend wenigstens eine Verdampfungskühleinheit und wenigstens einen bezüglich einer Prozessgasströmung durch die Vorrichtung der Verdampfungskühleinheit nachgeschalteten Abhitzekessel. Zudem betrifft die Erfindung ein System zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases, aufweisend wenigstens einen mit dem Konverter verbindbaren Kühlkamin und wenigstens einen elektrostatischen Staubabscheider. Ferner betrifft die Erfindung ein Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases, wobei das aus dem Konverter austretende Prozessgas mittels wenigstens einer Verdampfungskühleinheit gekühlt und/oder gereinigt wird und das aus der Verdampfungskühleinheit austretende Prozessgas mittels wenigstens eines Abhitzekessels gekühlt und/oder gereinigt wird.
Beim herkömmlichen Kühlen und Reinigen eines aus einem metallurgischen Konverter, insbesondere Blasstrahl-Konverter, austretenden Prozessgases wird das Prozessgas während eines Einblasens eines Sauerstoffstrahls in den Konverter mittels eines Verdampfungsgekühlten Kühlkamins auf eine Temperatur von etwa 750°C bis etwa 1 100°C abgekühlt. Anschließend wird das entsprechend abgekühlte Prozessgas mittels einer Verdampfungskühleinheit auf eine Temperatur von etwa 200°C abgekühlt, wozu mittels der Verdampfungskühleinheit ein Kühlwasser direkt in das Prozessgas eingesprüht bzw. eingespritzt wird. Um diese Abkühlung zu garantieren, wird eine große Wassermenge in das heiße Prozessgas eingespritzt. Die Eigenwärme des in die Verdampfungskühleinheit eintretenden Prozessgases wird nicht genutzt. Der Prozessgasmassendurchsatz wird aufgrund der Wassereinspritzung um etwa 29 % bis etwa 36 % erhöht. Bei einem anderen herkömmlichen Kühlen und Reinigen eines aus einem metallurgischen Konverter austretenden Prozessgases ist zwischen den Kühlkamin und die Verdampfungskühleinheit ein Abhitzekessel geschaltet, mit dem die Temperatur des Prozessgases zunächst auf etwa 500°C bis etwa 400°C reduziert wird, bevor sie der Verdampfungskühleinheit zugeführt wird. DE 1 279 275 A offenbart ein Verfahren zur selbsttätigen Steuerung und/oder Regelung von Saugzuggebläsen für Kessel mit schnell wechselndem Wärmeangebot, insbesondere für Abhitzekessel metallurgischer Öfen, z. B. Sauerstoffaufblaskonverter. Im Kessel wird die Temperatur der Abgase fortlaufend gemessen und in einem Messwertumformer umgeformt. Gleichzeitig wird im Abgaskamin der der Abgasgeschwindigkeit proportionale Differenzdruck fortlaufend gemessen und in einem Messwertumformer umgeformt. Die beiden umgeformten Messwerte werden einem die Leistung des Saugzuggebläses steuernden Regler zugeführt. WO 89/1 1904 A1 offenbart ein Verfahren zur simultanen Trockenabscheidung von festen und gasförmigen Stoffen aus Rauchgasen bzw. entsprechend schadstoffhaltige Abgase entwickelnden Anlagen, wie Feuerungskessel, Konverter, Drehöfen oder dergleichen. Dem Rauchgasstrom werden Absorbenzien zugesetzt, die mit Schadstoffen reagieren und die zusammen mit vom Rauchgasstrom mitgeführten Feststoffen in einem Filter abgeschieden werden. Die Absorbenzien werden dem Rauchgasstrom bei Temperaturen oberhalb von 250°C zugesetzt und bei diesen Temperaturen zusammen mit den Feststoffen in einem Filter aus keramischen Fasern oder aus perforierten Metallfolien abgeschieden. CN 105 648 141 A offenbart ein System und ein Verfahren zum Rückgewinnen von Abgasabwärme eines Konverters. Das System weist einen Verdampfungskühlturm zum Kühlen eines Konverterabgases auf eine Temperatur von 300°C bis 500°C, eine mit einem Auslass des Verdampfungskühlturms verbundene Abwärmerückgewinnungsvorrichtung und einen mit einem Auslass der Abwärmerückgewinnungsvorrichtung verbundenen elektrischen Staubabscheider auf. Die Abwärmerückgewinnungsvorrichtung weist einen Abhitzekessel auf, der mit einer Rohrleitung verbunden ist und ein Kesselrohr, einen Entlüfter, einen Rauchabzug, einen Mitteldruckverdampfer, einen Niederdruckverdampfer und einen Kohlevorwärmer aufweist. Das Konverterrauchgas tauscht aufeinanderfolgend Wärme mit dem Mitteldruckverdampfer, dem Niederdruckverdampfer und dem Kohlevorwärmer aus, wobei ein gesättigter Dampf erzeugt wird.
Der Artikel„Recovery and utilization of Converter gas from Thyssen Stahl AG’s BOF shop in Bruckhausen - an important contribution towards energy saving and environmental protection”, Erich Höffken et al., Verlag Stahleisen mbH, 1983 offenbart eine Vorrichtung zum Kühlen und Reinigen eines aus einem Konvektor austretenden Prozessgases. Die Vorrichtung weist einen Abhitzekessel, eine dem Abhitzekessel bezüglich einer Prozessgasströmung durch die Vorrichtung nachgeschaltete Verdampfungskühleinheit und einen der Verdampfungskühleinheit bezüglich der Prozessgasströmung nachgeschalteten elektrostatischen Filter auf. Der Artikel„BOF Gas Cleaning; 2nd Generation of Dry-type ESP and Hydro Hybrid Filter Technology”, Jan Adams et al., AISTech 2010 Proceedings, Volume I und das Prospekt „Umwelttechnik Elektrofilter für Stahlwerke“ von SMS ELEX offenbaren jeweils eine Vorrichtung zum Kühlen und Reinigen eines aus einem Konvektor austretenden Prozessgases. Die Vorrichtung weist Verdampfungskühleinheit und einen der Verdampfungskühleinheit bezüglich einer Prozessgasströmung durch die Vorrichtung nachgeschalteten elektrostatischen Filter auf. Das Prozessgas am Auslass der Verdampfungskühleinheit weist eine Temperatur von 200°C auf.
Eine Aufgabe der Erfindung ist es, ein Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases zu verbessern.
Diese Aufgabe wird durch die unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen sind in der nachfolgenden Beschreibung, den abhängigen Patentansprüchen und den Figuren wiedergegeben, wobei diese Ausgestaltungen jeweils für sich genommen oder in Kombination von wenigstens zwei dieser Ausgestaltungen miteinander einen weiterbildenden, insbesondere auch bevorzugten oder vorteilhaften, Aspekt der Erfindung darstellen können. Ausgestaltungen der Vorrichtung und/oder des Systems können dabei Ausgestaltungen des Verfahrens entsprechen, und umgekehrt, selbst wenn im Folgenden hierauf im Einzelfall nicht explizit hingewiesen wird. Erfindungsgemäß ist der Abhitzekessel bezüglich der Prozessgasströmung durch die Vorrichtung der Verdampfungskühleinheit nachgeschaltet und die Reduzierung der Temperatur des Prozessgases unterscheidet sich deutlich von herkömmlichen Temperaturreduzierungen mittels entsprechender Kühlbauteile. Insbesondere wird mittels der Verdampfungskühleinheit die Prozessgastemperatur lediglich auf eine in dem Bereich von 400°C bis 850°C liegende Temperatur abgekühlt, statt - wie herkömmlich - auf etwa 200°C. Dabei kann die Temperatur des der Verdampfungskühleinheit zuzuführenden Prozessgases von einer anfänglichen Temperatur, die in einem Bereich von 1800°C bis 2100°C liegen kann, mittels eines mit dem Konverter verbundenen Kühlkamins auf eine Temperatur, die in einem Bereich von 1 100°C bis 750°C liegen kann, abgekühlt sein. Dabei hängt die Temperatur des die Verdampfungskühleinheit verlassenden Prozessgases von der Temperatur des der Verdampfungskühleinheit zuzuführenden Prozessgases ab. Mittels des Abhitzekessels kann die in dem Bereich von 400°C bis 850°C liegende Temperatur des Prozessgases auf eine in dem Bereich von 170°C bis 280°C liegende Temperatur abgesenkt werden. Dabei hängt die Temperatur des dem Abhitzekessel verlassenden Prozessgases von der Temperatur des dem Abhitzekessel zuzuführenden Prozessgases ab.
Da mittels der erfindungsgemäßen Verdampfungskühleinheit eine geringere Kühlung des Prozessgases als herkömmlich erfolgt, kann die erfindungsgemäße Verdampfungskühleinheit mit einem geringeren Einspritzwasserverbrauch betrieben werden. Die mittels der Verdampfungskühleinheit erzeugbare Feuchtigkeit des Prozessgases gewährleistet insbesondere einen optimalen Betrieb eines der Vorrichtung nachgeschalteten elektrostatischen Staubabscheiders. Die in das Prozessgas mittels der Verdampfungskühleinheit eingespritzte Wassermenge kann in Abhängigkeit einer für den Betrieb des elektrostatischen Staubabscheiders erforderlichen Prozessgasfeuchtigkeit festgelegt werden, insbesondere da eine weitere Abkühlung des Prozessgases mittels des nachgeschalteten Abhitzekessels erfolgt, so dass eine größere Freiheit zur Einspritzung des Wassers in das Prozessgas gegeben ist. Da der Verdampfungskühleinheit kein Abhitzekessel oder dergleichen vorgeschaltet ist, wird mittels der Verdampfungskühleinheit das Wasser in ein Prozessgas mit deutlich höherer Temperatur eingespritzt. Hierdurch kann eine vollständige Verdampfung des Wassers gewährleistet werden, selbst bei Auslastungen mit etwas geringeren Prozessgastemperaturen.
Der Abhitzekessel erzeugt einen gesättigten Dampf, zusätzlich zu einem mittels eines mit dem Konverter verbundenen Kühlkamins erzeugten Dampfs. Dadurch ist der Abhitzekessel ein integraler Bestandteil eines Dampferzeugungssystems, mit dem etwa 25 % bis etwa 40 % mehr Dampf als mit einem herkömmlichen Dampferzeugungssystem erzeugt werden kann. Der Abhitzekessel kann insbesondere ein Konvektionsabhitzekessel sein. Der Abhitzekessel weist die Funktion eines Puffers zwischen der Verdampfungskühleinheit und einem elektrostatischen Staubabscheider auf.
Das mittels der erfindungsgemäßen Vorrichtung gekühlte und/oder gereinigte Prozessgas kann abgeführt oder zu einem anderen Zweck wiederverwendet werden. Die Vorrichtung kann als Teil einer metallurgischen Stahlherstellungsanlage eingesetzt werden.
Gemäß einer vorteilhaften Ausgestaltung sind bzw. ist die Verdampfungskühleinheit und/oder der Abhitzekessel eingerichtet, einen Grobstaubanteil des Prozessgases zu reduzieren. Mittels der Verdampfungskühleinheit kann so der Grobstaubanteil des dem Abhitzekessel zuzuführenden Prozessgases reduziert werden. Hierdurch werden die mit dem Prozessgas beaufschlagten Heizflächen des Abhitzekessels weniger mit Grobstaub verschmutzt, so dass die Wirksamkeit der Abhitzekesselheizflächen verbessert wird. Der aus dem Prozessgas ausgeschiedene Grobstaub kann deponiert oder in einem Stahlherstellungsprozess wiederverwendet werden. Gemäß einer weiteren vorteilhaften Ausgestaltung weist die Vorrichtung wenigstens eine bezüglich der Prozessgasströmung der Verdampfungskühleinheit vorgeschaltete Feuerungseinheit zum Aufheizen des der Verdampfungskühleinheit zuzuführenden Prozessgases auf. Die Feuerungseinheit kann aktiviert werden, wenn der Konverter diskontinuierlich betrieben wird (Batch-Prozess), so dass gewährleistet werden kann, dass der Vorrichtung ein Prozessgas mit einer ausreichend hohen Temperatur zugeführt wird. Der Feuerungseinheit kann beispielsweise das mit der Vorrichtung gekühlte und/oder gereinigte Prozessgas zugeführt werden, um dieses mittels der Feuerungseinheit zu verfeuern.
Ein erfindungsgemäßes System zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases weist wenigstens einen mit dem Konverter verbindbaren Kühlkamin, wenigstens einen elektrostatischen Staubabscheider und wenigstens eine Vorrichtung nach einer der oben genannten Ausgestaltungen oder einer Kombination von wenigstens zwei dieser Ausgestaltungen miteinander auf, wobei die Verdampfungskühleinheit und der Abhitzekessel bezüglich einer Prozessgasströmung durch das System zwischen den Kühlkamin und den elektrostatischen Staubabscheider geschaltet sind. Mit dem System sind die oben mit Bezug auf die Vorrichtung genannten Vorteile entsprechend verbunden. Das System kann ein dem elektrostatischen Staub abscheider nachgeschaltetes Absauggebläse aufweisen. Mittels des elektrostatischen Staubabscheiders kann insbesondere ein Feinstaub aus dem Prozessgas abgeschieden werden.
Gemäß einer vorteilhaften Ausgestaltung ist die Feuerungseinheit an dem Kühlkamin angeordnet. Mittels der Feuerungseinheit kann das durch den Kühlkamin strömende Prozessgas aufgeheizt werden. Bei einem erfindungsgemäßen Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases wird das aus dem Konverter austretende Prozessgas mittels wenigstens einer Verdampfungskühleinheit gekühlt und/oder gereinigt, wird das aus der Verdampfungskühleinheit austretende Prozessgas mittels wenigstens eines Abhitzekessels gekühlt und/oder gereinigt, wird eine Temperatur des Prozessgases mittels der Verdampfungskühleinheit auf eine Temperatur abgesenkt, die in einem Bereich von 400°C bis 850°C liegt, und wird eine Temperatur des Prozessgases mittels des Abhitzekessels auf eine Temperatur abgesenkt, die in einem Bereich von 170°C bis 280°C liegt.
Mit dem Verfahren sind die oben mit Bezug auf die Vorrichtung genannten Vorteile entsprechend verbunden. Insbesondere kann die Vorrichtung gemäß einer der oben genannten Ausgestaltungen oder einer Kombination von wenigstens zwei dieser Ausgestaltungen miteinander zur Durchführung des Verfahrens verwendet werden.
Gemäß einer vorteilhaften Ausgestaltung wird ein Grobstaubanteil des Prozessgases mittels der Verdampfungskühleinheit und/oder mittels des Abhitzekessels reduziert. Mit dieser Ausgestaltung sind die oben mit Bezug auf die entsprechende Ausgestaltung der Vorrichtung genannten Vorteile entsprechend verbunden.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird das aus dem Konverter austretende Prozessgas mittels wenigstens einer Feuerungseinheit aufgeheizt, bevor es der Verdampfungskühleinheit zugeführt wird. Mit dieser Ausgestaltung sind die oben mit Bezug auf die entsprechende Ausgestaltung der Vorrichtung genannten Vorteile entsprechend verbunden.
Im Folgenden wird die Erfindung unter Bezugnahme auf die anliegenden Figuren anhand bevorzugter Ausführungsformen beispielhaft erläutert, wobei die nachfolgend erläuterten Merkmale sowohl jeweils für sich genommen als auch in unterschiedlicher technisch sinnvoller Kombination miteinander einen vorteilhaften oder weiterbildenden Aspekt der Erfindung darstellen können. Es zeigt Figur 1 : ein Blockdiagramm eines Ausführungsbeispiels für ein erfindungsgemäßes System und Figur 2: ein Prinzipdiagramm eines Ausführungsbeispiels für ein erfindungsgemäßes System.
In den Figuren sind gleiche bzw. funktionsgleiche Bauteile mit denselben Bezugszeichen versehen.
Figur 1 zeigt ein Blockdiagramm eines Ausführungsbeispiels für ein erfindungsgemäßes System 1 zum Kühlen und/oder Reinigen eines aus einem Konverter 2 austretenden Prozessgases
Das System 1 weist einen mit dem Konverter 2 verbundenen Kühlkamin 3 auf, mit dem das Prozessgas von einer Temperatur in einem Bereich von 1800°C bis 2100°C auf eine Temperatur in einem Bereich von 1 100°C bis 750°C abgekühlt und hierbei ein gesättigter Dampf 4 erzeugt wird. Zudem weist das System 1 eine dem Kühlkamin 3 nachgeschaltete Vorrichtung 5 zum Kühlen und/oder Reinigen des aus einem
Konverter 2 austretenden Prozessgases auf. Des Weiteren weist das System 1 einen der Vorrichtung 5 nachgeschalteten (trockenen) elektrostatischen Staubabscheider 6 und ein diesem nachgeschaltetes Absauggebläse 7 auf, mit dem das gekühlte und/oder gereinigte Prozessgas abgesaugt wird.
Die Vorrichtung 5 weist eine Verdampfungskühleinheit 8 in Form eines Verdampfungskühlturms und einen bezüglich einer durch einen Pfeil 9 angedeuteten Prozessgasströmung durch die Vorrichtung 5 der Verdampfungskühleinheit 8 nachgeschalteten Abhitzekessel 10 auf. Die Verdampfungskühleinheit 8 ist eingerichtet, eine Temperatur des der Verdampfungskühleinheit 8 zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 400°C bis 850°C liegt. Der Abhitzekessel 10 ist eingerichtet, eine Temperatur des dem Abhitzekessel 10 zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 170°C bis 280°C liegt. Die Verdampfungskühleinheit 8 und der Abhitzekessel 10 sind jeweils eingerichtet, einen Grobstaubanteil des Prozessgases zu reduzieren, indem sie jeweils Grobstaub 1 1 aus dem Prozessgas abführen. Der Abhitzekessel 10 erzeugt einen gesättigten Dampf 12, der dem mittels des Kühlkamins 3 erzeugten Dampf 4 zugeführt wird. Der Verdampfungskühleinheit 8 wird ein Einspritzwasser 13 zugeführt. Das die Verdampfungskühleinheit 8 verlassende Prozessgas kann einen Wassergehalt von weniger als 20 % aufweisen. Die Verdampfungskühleinheit 8 und der Abhitzekessel 10 sind bezüglich einer ebenfalls durch den Pfeil 9 angedeuteten Richtung der Prozessgasströmung durch das System 1 zwischen den Kühlkamin 3 und den elektrostatischen Staubabscheider 6 geschaltet.
Die Vorrichtung 5 weist ferner eine bezüglich der Prozessgasströmung der Verdampfungskühleinheit 8 vorgeschaltete Feuerungseinheit 14 zum Aufheizen des der Verdampfungskühleinheit 8 zuzuführenden Prozessgases auf. Die Feuerungseinheit 14 ist an dem Kühlkamin 3 angeordnet.
Figur 2 zeigt ein Prinzipdiagramm eines Ausführungsbeispiels für ein erfindungsgemäßes System 1 zum Kühlen und/oder Reinigen eines aus einem Konverter 2 austretenden Prozessgases.
Das System 1 weist einen mit dem Konverter 2 verbundenen Kühlkamin 3 auf, mit dem das Prozessgas von einer Temperatur in einem Bereich von 1800°C bis 2100°C auf eine Temperatur in einem Bereich von 1 100°C bis 750°C abgekühlt und hierbei ein gesättigter Dampf erzeugt wird. Zudem weist das System 1 eine dem Kühlkamin 3 nachgeschaltete Vorrichtung 5 zum Kühlen und/oder Reinigen des aus einem Konverter 2 austretenden Prozessgases auf. Des Weiteren weist das System 1 einen der Vorrichtung 5 nachgeschalteten (trockenen) elektrostatischen Staubabscheider 6 und ein diesem nachgeschaltetes, nicht gezeigtes Absauggebläse auf, mit dem das gekühlte und/oder gereinigte Prozessgas abgesaugt wird. Der elektrostatische Staubabscheider 6 scheidet Feinstaub 18 aus dem Prozessgas ab.
Die Vorrichtung 5 weist eine Verdampfungskühleinheit 8 und einen bezüglich einer durch einen Pfeil 9 angedeuteten Richtung der Prozessgasströmung durch die Vorrichtung 5 der Verdampfungskühleinheit 8 nachgeschalteten Abhitzekessel 10 auf, der mehrere in Reihe geschaltete Wärmetauscher 17 aufweist. Die Verdampfungskühleinheit 8 ist eingerichtet, eine Temperatur des der Verdampfungskühleinheit 8 zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 400°C bis 850°C liegt. Der Abhitzekessel 10 ist eingerichtet, eine Temperatur des dem Abhitzekessel 10 zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 170°C bis 280°C liegt. Die Verdampfungskühleinheit 8 und der Abhitzekessel 10 sind jeweils eingerichtet, einen Grobstaubanteil des Prozessgases zu reduzieren, indem sie jeweils Grobstaub aus dem Prozessgas abführen. Der Abhitzekessel 10 erzeugt einen gesättigten Dampf, der dem mittels des Kühlkamins 3 erzeugten Dampf zugeführt wird. Der Verdampfungskühleinheit 8 wird ein Einspritzwasser 13 zugeführt. Das die Verdampfungskühleinheit 8 verlassende Prozessgas kann einen Wassergehalt von weniger als 20 % aufweisen. Die Verdampfungskühleinheit 8 und der Abhitzekessel 10 sind bezüglich einer ebenfalls durch den Pfeil 9 angedeuteten Richtung der Prozessgasströmung durch das System 1 zwischen den Kühlkamin 3 und den elektrostatischen Staubabscheider 6 geschaltet.
Die Vorrichtung 5 weist ferner eine bezüglich der Prozessgasströmung der Verdampfungskühleinheit 8 vorgeschaltete Feuerungseinheit 14 zum Aufheizen des der Verdampfungskühleinheit 8 zuzuführenden Prozessgases auf. Die Feuerungseinheit 14 ist an dem Kühlkamin 3 angeordnet.
Bezugszeichenliste
1 System
2 Konverter
3 Kühlkamin
4 Dampf aus 3
5 Vorrichtung
6 Staubabscheider
7 Absauggebläse
8 Verdampfungskühleinheit
9 Pfeil (Prozessgasströmung)
10 Abhitzekessel
1 1 Grobstaub
12 Dampf aus 10
13 Einspritzwasser
14 Feuerungseinheit
15 Feinstaub
17 Wärmetauscher von 10

Claims

Patentansprüche:
1. Vorrichtung (5) zum Kühlen und/oder Reinigen eines aus einem Konverter (2) austretenden Prozessgases, aufweisend wenigstens eine Verdampfungskühleinheit (8) und wenigstens einen bezüglich einer Prozessgasströmung durch die Vorrichtung (5) der Verdampfungskühleinheit (8) nachgeschalteten Abhitzekessel (10),
dadurch gekennzeichnet, dass
die Verdampfungskühleinheit (8) eingerichtet ist, eine Temperatur des der Verdampfungskühleinheit (8) zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 400°C bis 850°C liegt, und
der Abhitzekessel (10) eingerichtet ist, eine Temperatur des dem Abhitzekessel (10) zugeführten Prozessgases auf eine Temperatur abzusenken, die in einem Bereich von 170°C bis 280°C liegt.
2. Vorrichtung (5) nach Anspruch 1 , dadurch gekennzeichnet, dass die Verdampfungskühleinheit (8) und/oder der Abhitzekessel (10) eingerichtet sind bzw. ist, einen Grobstaubanteil des Prozessgases zu reduzieren.
3. Vorrichtung (5) nach Anspruch 1 oder 2, gekennzeichnet durch wenigstens eine bezüglich der Prozessgasströmung der Verdampfungskühleinheit (8) vorgeschaltete Feuerungseinheit (14) zum Aufheizen des der Verdampfungskühleinheit (8) zuzuführenden Prozessgases.
4. System (1 ) zum Kühlen und/oder Reinigen eines aus einem Konverter (2) austretenden Prozessgases, aufweisend wenigstens einen mit dem Konverter (2) verbindbaren Kühlkamin (3) und wenigstens einen elektrostatischen Staubabscheider (6), gekennzeichnet durch wenigstens eine Vorrichtung (5) nach einem der Ansprüche 1 bis 3, wobei die Verdampfungskühleinheit (8) und der Abhitzekessel (10) bezüglich einer Prozessgasströmung durch das System (1 ) zwischen den Kühlkamin (3) und den elektrostatischen Staubabscheider (6) geschaltet sind.
5. System (1 ) nach Anspruch 4, dadurch gekennzeichnet, dass die Feuerungseinheit (14) an dem Kühlkamin (3) angeordnet ist.
6. Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter
(2) austretenden Prozessgases, wobei das aus dem Konverter (2) austretende Prozessgas mittels wenigstens einer Verdampfungskühleinheit (8) gekühlt und/oder gereinigt wird und das aus der Verdampfungskühleinheit (8) austretende Prozessgas mittels wenigstens eines Abhitzekessels (10) gekühlt und/oder gereinigt wird
dadurch gekennzeichnet, dass
eine Temperatur des Prozessgases mittels der Verdampfungskühleinheit (8) auf eine Temperatur abgesenkt wird, die in einem Bereich von 400°C bis
850°C liegt, und
eine Temperatur des Prozessgases mittels des Abhitzekessels (10) auf eine Temperatur abgesenkt wird, die in einem Bereich von 170°C bis 280°C liegt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass ein
Grobstaubanteil des Prozessgases mittels der Verdampfungskühleinheit (8) und/oder mittels des Abhitzekessels (10) reduziert wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das aus dem Konverter (2) austretende Prozessgas mittels wenigstens einer
Feuerungseinheit (14) aufgeheizt wird, bevor es der Verdampfungskühleinheit (8) zugeführt wird.
PCT/EP2020/053691 2019-03-11 2020-02-13 Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases WO2020182404A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20706156.5A EP3938549A1 (de) 2019-03-11 2020-02-13 Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102019203223.0 2019-03-11
DE102019203223 2019-03-11
DE102019212314.7 2019-08-16
DE102019212314.7A DE102019212314A1 (de) 2019-03-11 2019-08-16 Vorrichtung und Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases

Publications (1)

Publication Number Publication Date
WO2020182404A1 true WO2020182404A1 (de) 2020-09-17

Family

ID=72241090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/053691 WO2020182404A1 (de) 2019-03-11 2020-02-13 Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases

Country Status (3)

Country Link
EP (1) EP3938549A1 (de)
DE (1) DE102019212314A1 (de)
WO (1) WO2020182404A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725558A (zh) * 2020-12-23 2021-04-30 苏州航明环保节能科技有限公司 转炉煤气干法除尘装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1279275B (de) 1964-11-07 1968-10-03 Babcock & Wilcox Dampfkessel W Verfahren zur Steuerung und/oder Regelung von Saugzuggeblaesen
WO1989011904A1 (en) 1988-06-01 1989-12-14 Thyssen Industrie Ag Process and installation for dry separation of noxious substances from flue gases
US5687657A (en) 1995-06-12 1997-11-18 Asea Brown Boveri Ag Method of and device for reducing the dust content of the exhaust gases of a steam generator
AT510419A4 (de) * 2011-04-22 2012-04-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zur rückgewinnung von konvertergas
US20120320941A1 (en) * 2010-04-20 2012-12-20 Jp Steel Plantech Co Waste heat recovery structure for steel making electric arc furnaces, steel making electric arc furnace facility, and waste heat recovery method for steel making electric arc furnaces
CN105648141A (zh) 2015-12-30 2016-06-08 中冶华天工程技术有限公司 转炉低温段烟气余热回收系统及工艺
CN106906331A (zh) * 2017-03-30 2017-06-30 河北华奥节能科技有限公司 一种回收转炉烟气余热的干法除尘装置及方法
CN107893143A (zh) * 2017-12-18 2018-04-10 北京京诚泽宇能源环保工程技术有限公司 一种转炉煤气干法除尘余热回收系统和工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1279275B (de) 1964-11-07 1968-10-03 Babcock & Wilcox Dampfkessel W Verfahren zur Steuerung und/oder Regelung von Saugzuggeblaesen
WO1989011904A1 (en) 1988-06-01 1989-12-14 Thyssen Industrie Ag Process and installation for dry separation of noxious substances from flue gases
US5687657A (en) 1995-06-12 1997-11-18 Asea Brown Boveri Ag Method of and device for reducing the dust content of the exhaust gases of a steam generator
US20120320941A1 (en) * 2010-04-20 2012-12-20 Jp Steel Plantech Co Waste heat recovery structure for steel making electric arc furnaces, steel making electric arc furnace facility, and waste heat recovery method for steel making electric arc furnaces
AT510419A4 (de) * 2011-04-22 2012-04-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zur rückgewinnung von konvertergas
CN105648141A (zh) 2015-12-30 2016-06-08 中冶华天工程技术有限公司 转炉低温段烟气余热回收系统及工艺
CN106906331A (zh) * 2017-03-30 2017-06-30 河北华奥节能科技有限公司 一种回收转炉烟气余热的干法除尘装置及方法
CN107893143A (zh) * 2017-12-18 2018-04-10 北京京诚泽宇能源环保工程技术有限公司 一种转炉煤气干法除尘余热回收系统和工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICH HÖFFKEN ET AL.: "Recovery and utilization of converter gas from Thyssen Stahl AG's BOF shop in Bruckhausen - an important contribution towards energy saving and environmental protection", 1983, VERLAG STAHLEISEN MBH
JAN ADAMS ET AL.: "BOF Gas Cleaning; 2nd Generation of Dry-type ESP and Hydro Hybrid Filter Technology", AISTECH 2010 PROCEEDINGS, vol. I

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725558A (zh) * 2020-12-23 2021-04-30 苏州航明环保节能科技有限公司 转炉煤气干法除尘装置

Also Published As

Publication number Publication date
DE102019212314A1 (de) 2020-09-17
EP3938549A1 (de) 2022-01-19

Similar Documents

Publication Publication Date Title
EP0143395B1 (de) Verfahren und Anlage zum Brennen von feinkörnigem Gut zur Herstellung von Zementklinker
DE3324388A1 (de) Verfahren und anlage zur wiederaufwaermung von rauchgasen hinter einer nassen rauchgasentschwefelungsanlage
DE2453488C2 (de) Verfahren und Anlage zum Ableiten von Abgasen mit geringem Schadstoffgehalt in die Atmosphäre
WO2020182404A1 (de) Vorrichtung und verfahren zum kühlen und/oder reinigen eines aus einem konverter austretenden prozessgases
DE4110337A1 (de) Verfahren und einrichtung zur regeneration verbrauchter deno(pfeil abwaerts)x(pfeil abwaerts)-katalysatoren
DE69120927T2 (de) Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel
DE3225140C2 (de)
DE3332663C2 (de) Verfahren zur Optimierung der Reduktion von NO↓x↓ in Rauchgasen aus mit fossilen Brennstoffen befeuerten Feuerungseinrichtungen
DE3136480A1 (de) Verfahren und anordnung zum wiederaufheizen von nassentschwefelten rauchgasen
DE3303475A1 (de) Verfahren und vorrichtung zur reinigung von rauchgas und ruechgewinnung von abgaswaerme
DE4303170A1 (de) Verfahren und Anlage zur thermischen Behandlung von mehlförmigen Rohmaterialien
EP2846088A1 (de) Rauchgasreinigungseinrichtung für Kleinfeuerungsanlagen
DE2232258B2 (de) Verfahren zur behandlung von schaedliche bestandteile enthaltenden abgasen aus industrieanlagen
DE20106186U1 (de) Einrichtung zur Energierückgewinnung
DE3607896A1 (de) Dampferzeugeranlage mit einem mit einer kohlenstaubtrockenfeuerung beheizten dampferzeuger
DE3932540A1 (de) Verfahren und anlage zur rauchgasreinigung
WO2011141106A1 (de) Verbrennungsanlage für nasstreber und dergleichen
DE102022105954A1 (de) Vorrichtung und Verfahren zur Herstellung von Zementklinker
DE4302357C1 (de) Verfahren zum umweltverträglichen Abführen der Abgase aus einem Stahlerzeugungsaggregat und einem Kupolofen
DE102022201570A1 (de) Verfahren und Vorrichtung zur Behandlung von Primärgas aus einem metallurgischen Gefäß
EP0162199A1 (de) Verfahren und Vorrichtung zur Entschwefelung heisser, schadstoffhaltiger Abgase
DE3444665A1 (de) Vorrichtung zur entschwefelung heisser, schadstoffhaltiger abgase
EP0158689A1 (de) Verfahren und Einrichtung zur Gichtgasentschwefelung eines Heisswind-Kupolofens
DE2805605A1 (de) Abluft erzeugender betrieb mit einer gichtgas erzeugenden ofenanlage und verfahren beim betrieb eines solchen betriebes
DE2358195A1 (de) Heissgasentstaubung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20706156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020706156

Country of ref document: EP

Effective date: 20211011