WO2020181781A1 - 一种仿生阵列传感元件及其制备方法 - Google Patents

一种仿生阵列传感元件及其制备方法 Download PDF

Info

Publication number
WO2020181781A1
WO2020181781A1 PCT/CN2019/113681 CN2019113681W WO2020181781A1 WO 2020181781 A1 WO2020181781 A1 WO 2020181781A1 CN 2019113681 W CN2019113681 W CN 2019113681W WO 2020181781 A1 WO2020181781 A1 WO 2020181781A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
array
sensor element
crack
bionic
Prior art date
Application number
PCT/CN2019/113681
Other languages
English (en)
French (fr)
Inventor
韩志武
王大凯
刘林鹏
张俊秋
孙涛
王可军
褚文财
张斌杰
牛士超
侯涛
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2020181781A1 publication Critical patent/WO2020181781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the present disclosure relates to the field of sensors, and in particular to a bionic array sensor element and a preparation method thereof.
  • strain/stress sensors based on the piezoresistive effect can be divided into two types: structural type and material type.
  • the principle of the structural strain sensor is that the micro-nano structure senses the strain after being deformed by force.
  • the principle of material strain sensor application is the scale effect of various new types of nanomaterials.
  • the structural sensor has experienced the serpentine structure of Professor John A. Rogers' team from the University of Illinois, and the bulking strain sensor of Professor John A. Rogers' team, Kahp Yang Suh of Seoul National University, South Korea. After the development of fiber-structured cross-type strain sensors, in recent years, the use of photolithography technology to produce various templates to manufacture pyramid-shaped, nano-column sensor elements has appeared.
  • nanocomposite materials used for sensors include nano metal particles (Nps), carbon nanotubes (CNTs) or a combination of the two, as well as nano metal wires (NWs); graphene and its derivatives.
  • Nps nano metal particles
  • CNTs carbon nanotubes
  • NWs nano metal wires
  • the strain sensing mechanism of the nano-functional material strain sensor is that when strain occurs, the distance between the nanoparticles or nanosheets embedded in the flexible substrate changes, and their mutual contact state also changes. The resulting electrical characteristic changes are used for strain sensing measuring.
  • the senor is usually prepared in a single form, and the durability of a single sensor is poor and the accuracy is insufficient.
  • the technical problem to be solved by the present disclosure is to provide a bionic array sensor element and a preparation method thereof in view of the above-mentioned defects of the prior art, aiming to solve the problem that the slit sensing unit in the prior art cannot be used in a large area and can only be used for a small area.
  • a bionic array sensor element comprising: a flexible substrate on which a crack array is arranged, a plurality of conductive units arranged on the crack array, and a deposition circuit connecting the plurality of conductive units; The deposition circuit connects the conductive units in parallel.
  • the deposition circuit includes: a first circuit located in the center of the crack array, a second circuit located on both sides of the first circuit and connected to the first circuit, respectively The third circuit and the fourth circuit on both sides of the conductive unit; the third circuit and the fourth circuit are respectively located on both sides of the crack where the conductive unit is located, and the third circuit is connected with the second circuit.
  • the flexible substrate is made of the following materials: epoxy resin, thermoplastic polyurethane, polyacrylate, polyvinylidene fluoride, polystyrene, polyamide, polyimide, polymer Ethylene phthalate, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer Materials, styrene-ethylene-propylene-styrene block copolymer, natural rubber, styrene butadiene rubber, butadiene rubber, isoprene rubber, silicone rubber, neoprene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber , Fluororubber, polydimethylsiloxane, styrene-based thermoplastic elastomer,
  • the depth of the cracks in the crack array is 60-1000 nm, and the width is 800-1200 nm.
  • the thickness of the conductive unit is 40-60 nm.
  • the conductive unit is made of the following materials: carbon nanoparticles, gold nanoparticles, platinum nanoparticles, silver nanoparticles, copper nanoparticles, aluminum boron alloys, aluminum chromium alloys, iron manganese One or more of alloy, aluminum chromium yttrium alloy, silver copper palladium alloy.
  • the thickness of the flexible substrate is 200-600 ⁇ m.
  • the crack array includes a plurality of cracks, and the distance between two adjacent cracks is 50 microns.
  • each of the conductive units covers at least one crack.
  • the width of the deposition line is 1 mm, and the distance between two adjacent deposition lines is not less than 1 mm.
  • the step of preparing the flexible substrate with the cracked array specifically includes:
  • the method for preparing the bionic array sensor element, wherein the spin-coating a flexible material on the reverse structure template includes:
  • Hardener is added to the flexible material and spin-coated on the reverse structure template.
  • the mass ratio of the flexible material and the hardening agent is 8-12:1.
  • the step of plating conductive elements on the crack array specifically includes:
  • the conductive unit is plated after covering the flexible substrate with the first mask
  • the step of depositing the deposition circuit connecting the conductive unit on the flexible substrate specifically includes:
  • a second mask is used to cover the flexible substrate and then the deposition circuit is plated.
  • each conductive unit has a crack structure, an independent sensing unit is formed.
  • the conductive units are connected by deposition lines and connected in parallel.
  • Each sensing unit can independently sense the stimulus in its corresponding sensing area, thereby obtaining the precise position of the stimulus, which solves the problem of low accuracy of a single sensing unit.
  • FIG. 1 is a schematic diagram of the first structure of the bionic array sensor element in the present disclosure.
  • Fig. 2 is an SEM image of a bionic crack structure on a flexible substrate in the present disclosure.
  • Figure 3 is an AFM image of the bionic crack structure on the flexible substrate in the present disclosure.
  • Figure 4 is a schematic diagram of the structure of the first template.
  • Fig. 5 is a schematic diagram of the structure of the second template.
  • FIG. 6 is a schematic diagram of the second structure of the bionic array sensor element in the present disclosure.
  • the present disclosure provides some embodiments of a bionic array sensor element.
  • Sensitive crack-shaped sensors have evolved on its body surface, which can sense very tiny vibration signals, thereby hunting food and avoiding natural enemies. Therefore, it is very important to prepare sensors by simulating the scorpion crack structure.
  • a bionic array sensor element of the present disclosure includes: a flexible substrate 10 on which a crack array 11 is arranged, and a plurality of conductive elements arranged on the crack array 11
  • the unit 20 and the deposition circuit 30 connecting a plurality of the conductive units 20; the deposition circuit 30 connects the conductive units 20 in parallel.
  • each conductive unit 20 is arranged along the length of the crack, and each conductive unit 20 has a crack structure, thus forming an independent sensing unit.
  • Several conductive units 20 form a conductive unit array, and then each conductive unit 20 is connected by a deposition line 30, and each conductive unit 20 is connected in parallel.
  • Each sensing unit can independently sense the stimulus in its corresponding sensing area, thereby obtaining the precise position of the stimulus, which solves the problem of low accuracy of a single sensing unit.
  • each conductive unit can also sense the stimulus jointly. Since the magnitude of the stimulus sensed by each conductive unit is different, the strength of the electrical signal output is different, and the overall size distribution map of the stimulus can be obtained.
  • the flexible substrate 10 with the crack array 11 is prepared by the following steps:
  • Step S110 Add a certain amount of alcohol to a polystyrene (PS) petri dish with a lid commonly used in the laboratory, and then heat the petri dish to form a crack array on the lid to obtain a crack array template.
  • PS polystyrene
  • the ethanol heating temperature is 80°C, and the heating time is 8-16h. Due to the solvent induction method and the linear molecular chain characteristics of polystyrene, a regular crack array structure appears on the surface of the polystyrene cover, and then the surface is cleaned by ultrasound. .
  • step S120 a crack array template is used to prepare a reverse structure template.
  • epoxy resin AB glue is used to prepare the reverse structure template.
  • the epoxy resin AB glue is mixed uniformly at a mass ratio of 3:1, it is put into a polystyrene cover, and vacuumed by a vacuum box. The deaeration time is 2h. Then, put it into an oven for curing, the curing temperature is 50°C, and the curing time is 7-9h.
  • the film formed by curing the epoxy resin AB glue (that is, the reverse structure template) can be separated from the crack array template by mechanical means.
  • the reverse structure template has V-shaped protrusions matching the crack array 11.
  • Step S130 after spin-coating a flexible material on the reverse structure template, perform defoaming treatment and heating treatment, and remove the reverse structure template to obtain the flexible substrate 10.
  • the flexible material is epoxy resin, thermoplastic polyurethane, polyacrylate, polyvinylidene fluoride, polystyrene, polyamide, polyimide, polyethylene terephthalate, styrene-butylene Diene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene type Block copolymer, natural rubber, styrene butadiene rubber, butadiene rubber, isoprene rubber, silicone rubber, neoprene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, fluorine rubber, polydimethylsiloxane, One or more of styrene-based thermoplastic elastomer, olefin-based thermoplastic e
  • a hardener is added to the flexible material.
  • the flexible material and the hardener are mixed in a mass ratio of 8-12:1, they are spin-coated on the reverse structure template by a spin coater.
  • the structure template has a V-shaped convex side.
  • defoaming treatment and heating treatment where vacuum defoaming is used, the heating temperature is 70-90°C, and the heating time is 3-5h.
  • the reverse structure template is mechanically removed. Since the reverse structure template has V-shaped protrusions, the flexible substrate 10 has a crack array structure consistent with the crack array template.
  • the thickness of the flexible substrate 10 is 200-600 ⁇ m.
  • the depth of the cracks in the crack array 11 is 60-1000 nm
  • the width is 800-1200 nm.
  • the deposition circuit 30 includes: a first circuit 31 located in the center of the crack array 11, a circuit located on both sides of the first circuit 31 and connected to the first circuit 31
  • the second circuit 32, the third circuit 33 and the fourth circuit 34 respectively arranged on both sides of the conductive unit 20; the third circuit 33 and the fourth circuit 34 are respectively located on both sides of the crack where the conductive unit 20 is located, the The third line 33 is connected to the second line 32.
  • one end of each conductive unit converges to the center of the sensor element to output through the first line 31, and the other end diverges to the edge of the sensor element to realize the parallel connection of the conductive units 20. This is beneficial to save the space of the sensing element, reduce the arrangement of the deposition circuit 30, and prevent conduction between the conductive units 20 and destroy the parallel connection mode.
  • each conductive unit has at least one crack.
  • the conductive units are arranged in 4 rows and 4 columns.
  • the third line 33 and the fourth line 34 each have 16 lines, that is, the first line 31 and the second line 31
  • the two lines 32 form a bus branch, respectively corresponding to 16 conductive units, that is to say, the third line 33 and the fourth line 34 of each conductive unit form a branch.
  • the first line 31 and the fourth line 34 are both connected with a wire 60.
  • the following steps are used to fabricate the conductive unit 20 and the deposition circuit 30 on the flexible substrate 10:
  • Step S200 plating conductive elements 20 on the crack array 11.
  • the first mask 40 is used to cover the flexible substrate 10 and then the conductive unit 20 is plated.
  • the manufacturing method of the first mask plate 40 is as follows: as shown in FIG. 4, the position of each sensing unit is determined on the template, and the first through hole 41 is arranged at the corresponding position.
  • the length and width of the first through hole 41 are 8 mm. And 4mm.
  • the 16 first through holes 41 are arranged in 4 rows and 4 columns.
  • the longitudinal spacing between the first through holes 41 in adjacent rows is between 10 mm, and the lateral spacing between the first through holes 41 in the first column and the second column, and between the third and fourth columns is between 3 mm.
  • the distance between the first row and the fourth row of sensor unit arrays and two parallel sides from the substrate is between 10 mm.
  • the distance between the second row and the third row of sensor unit arrays is 7 mm.
  • the conductive unit 20 is made of the following materials: carbon nanoparticles, gold nanoparticles, platinum nanoparticles, silver nanoparticles, copper nanoparticles, aluminum-boron alloys, aluminum-chromium alloys, iron-manganese alloys, aluminum-chromium-yttrium alloys , One or more of silver-copper-palladium alloys.
  • the thickness of the conductive unit 20 is 40-60 nm. According to economic considerations, silver can be selected as a target to spray a thin film of silver particles with a thickness of about 50 nm.
  • the deposition circuit 30 can be made of the same conductive material as the conductive unit 20.
  • Step S300 depositing a deposition circuit 30 connected to the conductive unit 20 on the flexible substrate 10.
  • the second mask 50 is used to cover the flexible substrate 10 and then the deposition circuit 30 is plated.
  • the manufacturing method of the second mask 50 is as follows: As shown in FIG. 5, the width of the deposition circuit 30 is determined to be 1 mm. And the distance between adjacent deposition lines 30 is not less than 1 mm. A total of 16 branches and one bus branch are arranged, and the position of each branch is guaranteed to be seamlessly connected to the sensing unit of the first mask. A second through hole 51 consistent with the deposition line 30 is provided on the second mask 50.
  • the first mask 40 is carefully removed with tweezers, and the second mask 50 is carefully attached to the flexible substrate 10. Both spraying sprayed 50nm thick nano-gold (or nano-silver) particles.
  • the deposition circuit 30 can be smoothly energized, more conductive materials can be sprayed and the deposition is thicker, for example, the thickness is 60-80 nm.
  • the present disclosure provides some embodiments of a method for preparing a biomimetic array sensor element as described in any of the foregoing embodiments.
  • the preparation method includes the following steps:
  • Step S100 preparing a flexible substrate with an array of cracks, as described above.
  • Step S110 Add a certain amount of alcohol to a polystyrene petri dish with a lid and heat it to form a cracked array on the lid of the petri dish to obtain a cracked array template, which is specifically described above.
  • step S120 a crack array template is used to prepare a reverse structure template, which is specifically described above.
  • Step S130 After spin-coating a flexible material on the reverse structure template, perform defoaming treatment and heating treatment, and remove the reverse structure template to obtain a flexible substrate, as specifically described above.
  • Step S200 plating conductive elements on the crack array, as described above.
  • step S210 the conductive unit is plated after covering the flexible substrate with the first mask, which is specifically described above.
  • Step S300 depositing a deposition circuit connecting the conductive unit on the flexible substrate, as described above.
  • step S310 after removing the first mask, a second mask is used to cover the flexible substrate and then the deposition circuit is plated, as described above.
  • the present disclosure provides a bionic array sensor element and a preparation method thereof.
  • the bionic array sensor element includes a flexible substrate on which an array of cracks is arranged, and the array of cracks is arranged on the A plurality of conductive units on the upper side and a deposition circuit connecting the plurality of conductive units; the deposition circuit connects the conductive units in parallel. Since each conductive unit has a crack structure, an independent sensing unit is formed. The conductive units are connected by deposition lines and connected in parallel. Each sensing unit can independently sense the stimulus in its corresponding sensing area, thereby obtaining the precise position of the stimulus, which solves the problem of low accuracy of a single sensing unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种仿生阵列传感元件及其制备方法,仿生阵列传感元件包括:柔性基底(10),柔性基底(10)上设置有裂纹阵列(11),设置在裂纹阵列(11)上的若干个导电单元(20)以及连接若干个导电单元(20)的沉积线路(30);沉积线路(30)将各导电单元(20)并联连接。由于每个导电单元(20)都有裂纹结构,因而形成一个独立的传感单元;各导电单元(20)采用沉积线路(30)连接,且采用并联方式连接,每个传感单元可以独立感知其对应感应区域内的刺激,从而获得刺激的精确位置,解决了单个传感单元精确性不高的问题。

Description

一种仿生阵列传感元件及其制备方法 技术领域
本公开涉及传感器领域,尤其涉及的是一种仿生阵列传感元件及其制备方法。
背景技术
目前,基于压阻效应的应变/应力传感器可以分为结构型和材料型两类。结构型应变传感器利用的原理是微纳结构在受力变形后感知应变。材料型应变传感器应用的原理是各类新型纳米材料的尺度效应。结构型传感器经历了美国Illinois大学的JohnA.Rogers教授团队的蜿蜒蛇形结构,JohnA.Rogers教授团队的褶皱型(bulking)应变传感器韩国首尔国立大学的Kahp Yang Suh等人,制造的相互交叉微米纤维结构的交叉型应变传感器的发展之后,近年来又出现了利用光刻技术生产各种模板来制造金字塔形,纳米柱型传感元件。材料型应变传感器的发展主要是基于利用通过各种化学自组装,聚合的纳米材料。目前,用于传感器的纳米复合材料包括纳米金属粒子(Nps),纳米碳管(CNTs)或其两者的复合,还有纳米金属线(NWs);石墨烯(Graphene)及其衍生物型。纳米功能材料型应变传感器的应变感知机理是当发生应变时,嵌入到柔性基底内的纳米粒子或纳米片的间距改变,其相互接触状态也发生变化,由此导致的电学特征变化用于应变感知测量。
现有技术中,传感器通常是以单个的形式制备,单个传感器的耐用度差,精确度不够。
因此,现有技术还有待于改进和发展。
发明内容
本公开要解决的技术问题在于,针对现有技术的上述缺陷,提供一种仿生阵列传感元件及其制备方法,旨在解决现有技术中缝传感单元无法大面积使用,只能针对小区域 小范围使用的问题。
本公开解决技术问题所采用的技术方案如下:
一种仿生阵列传感元件,其中,包括:柔性基底,所述柔性基底上设置有裂纹阵列,设置在所述裂纹阵列上的若干个导电单元以及连接若干个所述导电单元的沉积线路;所述沉积线路将各导电单元并联连接。
所述仿生阵列传感元件,其中,所述沉积线路包括:位于所述裂纹阵列中央的第一线路、位于所述第一线路两侧并与所述第一线路连接的第二线路、分别设置在导电单元两侧的第三线路和第四线路;所述第三线路和第四线路分别位于所述导电单元所在裂纹的两侧,所述第三线路与所述第二线路连接。
所述仿生阵列传感元件,其中,所述柔性基底采用如下材料制成:环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、二烯类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
所述仿生阵列传感元件,其中,所述裂纹阵列中裂纹的深度为60-1000nm,宽度为800-1200nm。
所述仿生阵列传感元件,其中,所述导电单元的厚度为40-60nm。
所述仿生阵列传感元件,其中,所述导电单元采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。
所述仿生阵列传感元件,其中,所述柔性基底的厚度为200-600μm。
所述仿生阵列传感元件,其中,所述裂纹阵列包括若干个裂纹,相邻两个裂纹之间的间距为50微米。
所述仿生阵列传感元件,其中,每个所述导电单元至少覆盖一个裂纹。
所述仿生阵列传感元件,其中,所述沉积线路的宽为1mm,相邻两个沉积线路之间的间距不小于1mm。
一种如上述任意一项所述的仿生阵列传感元件的制备方法,其特征在于,包括以下步骤:
制备带有裂纹阵列的柔性基底;
在裂纹阵列上镀导电单元;
在柔性基底上沉积连接导电单元的沉积线路。
所述仿生阵列传感元件的制备方法,其中,所述制备带有裂纹阵列的柔性基底步骤具体包括:
在带盖聚苯乙烯培养皿中加入定量酒精后加热,在培养皿上盖上形成裂纹阵列得到裂纹阵列模板;
以裂纹阵列模板制备反结构模板;
在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底。
所述仿生阵列传感元件的制备方法,其中,所述在反结构模板上旋涂柔性材料,包括:
在柔性材料中加入硬化剂并旋涂在反结构模板上。
所述仿生阵列传感元件的制备方法,其中,所述柔性材料和所述硬化剂的质量比为8-12:1。
所述仿生阵列传感元件的制备方法,其中,所述在裂纹阵列上镀导电单元步骤具体包括:
采用第一掩模板覆盖柔性基底后镀导电单元;
所述在柔性基底上沉积连接导电单元的沉积线路步骤具体包括:
去除第一掩模板后采用第二掩模板覆盖柔性基底后镀沉积线路。
有益效果:由于每个导电单元都有裂纹结构,因而形成一个独立的传感单元。各导 电单元采用沉积线路连接,且采用并联方式连接。每个传感单元可以独立感知其对应感应区域内的刺激,从而获得刺激的精确位置,解决了单个传感单元精确性不高的问题。
附图说明
图1是本公开中仿生阵列传感元件的第一结构示意图。
图2是本公开中柔性基底上仿生裂纹结构的SEM图。
图3是本公开中柔性基底上仿生裂纹结构的AFM图。
图4是第一模板的结构示意图。
图5是第二模板的结构示意图。
图6是本公开中仿生阵列传感元件的第二结构示意图。
具体实施方式
为使本公开的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
请同时参阅图1-图6,本公开提供了一种仿生阵列传感元件的一些实施例。
实施例1
蝎类经过亿万年的漫长进化,其形态结构没有发生显著变化。其体表进化出了敏锐的裂缝形式的传感器,能够感知十分微小的振动信号,由此来捕猎食物与躲避天敌。因此,通过模拟蝎子裂缝结构来制备传感器具有十分重要的意义。
如图1和图2所示,本公开的一种仿生阵列传感元件,包括:柔性基底10,所述柔性基底10上设置有裂纹阵列11,设置在所述裂纹阵列11上的若干个导电单元20以及连接若干个所述导电单元20的沉积线路30;所述沉积线路30将各导电单元20并联连接。
针对裂纹阵列11中每条裂纹,沿裂纹的长度方向设置导电单元20,每个导电单元20都有裂纹结构,因而形成一个独立的传感单元。若干个导电单元20组成导电单元阵 列,再将各导电单元20采用沉积线路30连接,各导电单元20采用并联方式连接。每个传感单元可以独立感知其对应感应区域内的刺激,从而获得刺激的精确位置,解决了单个传感单元精确性不高的问题。当然,各导电单元也可以联合感知刺激,由于各导电单元感知的刺激的大小不一样,其输出的电信号的强弱不相同,可以获得刺激的整体的大小分布图。
带有裂纹阵列11的柔性基底10采用如下步骤制备:
步骤S110、在实验室常用的带盖聚苯乙烯(PS)培养皿中加入定量酒精后对加热,在培养皿上盖上形成裂纹阵列得到裂纹阵列模板。
具体地,乙醇加热温度为80℃,加热时间为8-16h,由于溶剂诱导法与聚苯乙烯线性分子链特性,聚苯乙烯制上盖表面出现规则的裂纹阵列结构,然后采用超声波清洗其表面。
步骤S120、以裂纹阵列模板制备反结构模板。
具体地,本公开中采用环氧树脂AB胶制备反结构模板,将环氧树脂AB胶以3:1的质量比混合均匀后,放入聚苯乙烯制上盖中,并通过真空箱进行真空脱泡,脱泡时间为2h。然后,放入烘箱中进行固化,固化温度为50℃,固化时间为7-9h。环氧树脂AB胶固化后,可以采用机械方式将环氧树脂AB胶固化形成的膜(即反结构模板)与裂纹阵列模板分离,反结构模板具有与裂纹阵列11配合的V型凸起。
步骤S130、在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底10。
具体地,所述柔性材料为环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、二烯类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
为了加快柔性材料的固化,在柔性材料中加入硬化剂,柔性材料与硬化剂以质量比8-12:1的比例混合后,通过旋涂机旋涂在反结构模板上,具体旋涂在反结构模板上具有V型凸起的一面。然后进行脱泡处理和加热处理,这里采用真空脱泡,加热温度为70-90℃,加热时间为3-5h。最后采用机械方式去除反结构模板,由于反结构模板上有V型凸起,那么柔性基底10具有与裂纹阵列模板一致的裂纹阵列结构。通过控制柔性材料的加入量,可以得到不同厚度的柔性基底10,本实施例中,柔性基底10的厚度为200-600μm。如图3所示,裂纹阵列11中裂纹的深度为60-1000nm,宽度为800-1200nm。
在本公开中一个较佳实施例中,所述沉积线路30包括:位于所述裂纹阵列11中央的第一线路31、位于所述第一线路31两侧并与所述第一线路31连接的第二线路32、分别设置在导电单元20两侧的第三线路33和第四线路34;所述第三线路33和第四线路34分别位于所述导电单元20所在裂纹的两侧,所述第三线路33与所述第二线路32连接。也就是说,各导电单元一端汇聚到传感元件的中央以第一线路31输出,另一端发散到传感元件边缘,以实现各导电单元20的并联连接。这样有利于节省传感元件的空间,减少沉积线路30的排布,防止各导电单元20之间发生导通而破坏并联连接方式。
具体实施例中,如图1和图2所示,裂纹阵列中有若干个裂纹,两个裂纹之间的间距约50微米,每个导电单元至少有一个裂纹,当然也可以覆盖多条裂纹,本实施例中导电单元采用4行4列布置。第一线路31只有一条,第二线路32有两条,分别连通第一线路31两侧的导电单元,第三线路33和第四线路34各有16条,也就是说第一线路31和第二线路32形成总线支路,分别对应于16个导电单元,也就是说每个导电单元的第三线路33和第四线路34形成一条支路。如图6所示,第一线路31和第四线路34均连接有导线60。
本公开中采用如下步骤在柔性基底10上制作导电单元20和沉积线路30:
步骤S200、在裂纹阵列11上镀导电单元20。
具体地,采用第一掩模板40覆盖柔性基底10后镀导电单元20。第一掩模板40的制作方法如下:如图4所示,在模板上确定每一个传感单元的位置,在对应位置设置第一通孔41,第一通孔41的长和宽分别为8mm和4mm。分4行4列布置16个第一通孔 41。相邻行第一通孔41之间的纵向间距为10mm之间,第一列与第二列,第三列与第四列之间各第一通孔41的横向间距为3mm之间。第一列与第四列传感单元阵列与距基底平行两侧面的距离为10mm之间。第二列与第三列传感单元阵列的间距为7mm之间。
先通过第一掩模板40进行传感单元阵列溅射镀膜,模板放置方向要与裂缝基本平行,保证使得每个第一通孔41中裂纹都与第一通孔41的短边平行。
具体地,所述导电单元20采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。所述导电单元20的厚度为40-60nm,根据经济性考量可以选择银作为靶材,喷涂约为50nm厚度的银粒子薄膜。当然沉积线路30可以采用与导电单元20一样的导电材料制成。
步骤S300、在柔性基底10上沉积连接导电单元20的沉积线路30。
具体地,去除第一掩模板40后采用第二掩模板50覆盖柔性基底10后镀沉积线路30。第二掩模板50的制作方法如下:如图5所示,确定沉积线路30的宽为1mm。且相邻沉积线路30之间的间距不小于1mm。总共布置16条支路与一条总线支路,每一条支路的位置均保证与第一次掩膜版的传感单元达到无缝连接。在第二掩模板50上设置与沉积线路30一致的第二通孔51。
当导电单元20溅射完成后,用镊子小心取下第一掩模板40,再将第二掩模板50小心贴附于柔性基底10上。两次喷涂均喷涂了50nm厚的纳米金(或者纳米银)粒子颗粒。当然,为了确保沉积线路30能顺畅通电,可以多喷涂导电材料,沉积更厚,例如厚度为60-80nm。
实施例2
本公开提供了一种如上述任意实施例所述的仿生阵列传感元件的制备方法一些实施例。
所述制备方法包括以下步骤:
步骤S100、制备带有裂纹阵列的柔性基底,具体如上所述。
步骤S110、在带盖聚苯乙烯培养皿中加入定量酒精后加热,在培养皿上盖上形成裂 纹阵列得到裂纹阵列模板,具体如上所述。
步骤S120、以裂纹阵列模板制备反结构模板,具体如上所述。
步骤S130、在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底,具体如上所述。
步骤S200、在裂纹阵列上镀导电单元,具体如上所述。
步骤S210、采用第一掩模板覆盖柔性基底后镀导电单元,具体如上所述。
步骤S300、在柔性基底上沉积连接导电单元的沉积线路,具体如上所述。
步骤S310、去除第一掩模板后采用第二掩模板覆盖柔性基底后镀沉积线路,具体如上所述。
综上所述,本公开所提供的一种仿生阵列传感元件及其制备方法,所示仿生阵列传感元件包括:柔性基底,所述柔性基底上设置有裂纹阵列,设置在所述裂纹阵列上的若干个导电单元以及连接若干个所述导电单元的沉积线路;所述沉积线路将各导电单元并联连接。由于每个导电单元都有裂纹结构,因而形成一个独立的传感单元。各导电单元采用沉积线路连接,且采用并联方式连接。每个传感单元可以独立感知其对应感应区域内的刺激,从而获得刺激的精确位置,解决了单个传感单元精确性不高的问题。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (15)

  1. 一种仿生阵列传感元件,其特征在于,包括:柔性基底,所述柔性基底上设置有裂纹阵列,设置在所述裂纹阵列上的若干个导电单元以及连接若干个所述导电单元的沉积线路;所述沉积线路将各导电单元并联连接。
  2. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述沉积线路包括:位于所述裂纹阵列中央的第一线路、位于所述第一线路两侧并与所述第一线路连接的第二线路、分别设置在导电单元两侧的第三线路和第四线路;所述第三线路和第四线路分别位于所述导电单元所在裂纹的两侧,所述第三线路与所述第二线路连接。
  3. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述柔性基底采用如下材料制成:环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、二烯类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
  4. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述裂纹阵列中裂纹的深度为60-1000nm,宽度为800-1200nm。
  5. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述导电单元的厚度为40-60nm。
  6. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述导电单元采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。
  7. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述柔性基底的厚度为200-600μm。
  8. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述裂纹阵列包括若干个裂纹,相邻两个裂纹之间的间距为50微米。
  9. 根据权利要求8所述仿生阵列传感元件,其特征在于,每个所述导电单元至少覆盖一个裂纹。
  10. 根据权利要求1所述仿生阵列传感元件,其特征在于,所述沉积线路的宽为1mm,相邻两个沉积线路之间的间距不小于1mm。
  11. 一种如权利要求1-10任意一项所述的仿生阵列传感元件的制备方法,其特征在于,包括以下步骤:
    制备带有裂纹阵列的柔性基底;
    在裂纹阵列上镀导电单元;
    在柔性基底上沉积连接导电单元的沉积线路。
  12. 根据权利要求11所述仿生阵列传感元件的制备方法,其特征在于,所述制备带有裂纹阵列的柔性基底步骤具体包括:
    在带盖聚苯乙烯培养皿中加入定量酒精后加热,在培养皿上盖上形成裂纹阵列得到裂纹阵列模板;
    以裂纹阵列模板制备反结构模板;
    在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底。
  13. 根据权利要求11所述仿生阵列传感元件的制备方法,其特征在于,所述在反结构模板上旋涂柔性材料,包括:
    在柔性材料中加入硬化剂并旋涂在反结构模板上。
  14. 根据权利要求13所述仿生阵列传感元件的制备方法,其特征在于,所述柔性材料和所述硬化剂的质量比为8-12:1。
  15. 根据权利要求11所述仿生阵列传感元件的制备方法,其特征在于,所述在裂纹阵列上镀导电单元步骤具体包括:
    采用第一掩模板覆盖柔性基底后镀导电单元;
    所述在柔性基底上沉积连接导电单元的沉积线路步骤具体包括:
    去除第一掩模板后采用第二掩模板覆盖柔性基底后镀沉积线路。
PCT/CN2019/113681 2019-03-08 2019-10-28 一种仿生阵列传感元件及其制备方法 WO2020181781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910175777.4 2019-03-08
CN201910175777.4A CN109900394A (zh) 2019-03-08 2019-03-08 一种仿生阵列传感元件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020181781A1 true WO2020181781A1 (zh) 2020-09-17

Family

ID=66946653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113681 WO2020181781A1 (zh) 2019-03-08 2019-10-28 一种仿生阵列传感元件及其制备方法

Country Status (2)

Country Link
CN (1) CN109900394A (zh)
WO (1) WO2020181781A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900394A (zh) * 2019-03-08 2019-06-18 吉林大学 一种仿生阵列传感元件及其制备方法
CN110974171B (zh) * 2019-12-13 2023-04-07 深圳先进技术研究院 一种创面监测装置及其制备方法和创面敷料组件
CN111521305B (zh) * 2020-04-03 2021-12-14 吉林大学 一种用于测量机械信号的仿生传感器及其制造方法
CN112432589B (zh) * 2020-11-30 2022-06-24 中南大学 一种并联式柔性应变传感器及其制备方法
CN113310395B (zh) * 2021-05-26 2022-06-14 苏州大学 微裂纹应变传感元件及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248557A (ja) * 1998-02-28 1999-09-17 Porimatec Kk 感圧導電センサー
CN202442824U (zh) * 2012-02-20 2012-09-19 浙江大学 一种基于压阻式和电容式组合的仿生柔性触觉传感阵列
CN102754053A (zh) * 2009-12-11 2012-10-24 弗莱克斯电子有限责任公司 多驱动器触摸面板
CN103720463A (zh) * 2013-12-31 2014-04-16 上海交通大学 基于柔性mems传感器的智能压力导丝及传感器制备方法
CN204286649U (zh) * 2014-11-19 2015-04-22 衢州学院 一种触手结构的仿生三维电容式触觉传感器
CN105783697A (zh) * 2016-05-18 2016-07-20 郑州大学 具有裂纹结构的柔性应变传感器及其制备方法
CN108444377A (zh) * 2018-03-18 2018-08-24 吉林大学 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法
CN108801514A (zh) * 2018-03-27 2018-11-13 中国科学院宁波材料技术与工程研究所 一种弹性应力分布传感阵列及其制备方法
CN109900394A (zh) * 2019-03-08 2019-06-18 吉林大学 一种仿生阵列传感元件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136355B (zh) * 2015-09-10 2017-10-20 江苏大学 一种基于柔性碳纤维丝的传感器
JP2017146134A (ja) * 2016-02-16 2017-08-24 アルプス電気株式会社 抵抗値調整回路および荷重検出装置ならびに抵抗値調整方法
CN106370327B (zh) * 2016-10-08 2020-09-15 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248557A (ja) * 1998-02-28 1999-09-17 Porimatec Kk 感圧導電センサー
CN102754053A (zh) * 2009-12-11 2012-10-24 弗莱克斯电子有限责任公司 多驱动器触摸面板
CN202442824U (zh) * 2012-02-20 2012-09-19 浙江大学 一种基于压阻式和电容式组合的仿生柔性触觉传感阵列
CN103720463A (zh) * 2013-12-31 2014-04-16 上海交通大学 基于柔性mems传感器的智能压力导丝及传感器制备方法
CN204286649U (zh) * 2014-11-19 2015-04-22 衢州学院 一种触手结构的仿生三维电容式触觉传感器
CN105783697A (zh) * 2016-05-18 2016-07-20 郑州大学 具有裂纹结构的柔性应变传感器及其制备方法
CN108444377A (zh) * 2018-03-18 2018-08-24 吉林大学 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法
CN108801514A (zh) * 2018-03-27 2018-11-13 中国科学院宁波材料技术与工程研究所 一种弹性应力分布传感阵列及其制备方法
CN109900394A (zh) * 2019-03-08 2019-06-18 吉林大学 一种仿生阵列传感元件及其制备方法

Also Published As

Publication number Publication date
CN109900394A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020181781A1 (zh) 一种仿生阵列传感元件及其制备方法
Gong et al. Local crack‐programmed gold nanowire electronic skin tattoos for in‐plane multisensor integration
Oren et al. High‐resolution patterning and transferring of graphene‐based nanomaterials onto tape toward roll‐to‐roll production of tape‐based wearable sensors
Choi et al. Ultra-sensitive pressure sensor based on guided straight mechanical cracks
Song et al. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks
CN108291797B (zh) 含直线诱导的裂纹的高灵敏度传感器及其制造方法
Yang et al. Facile and highly efficient fabrication of robust Ag nanowire–elastomer composite electrodes with tailored electrical properties
CN110608825A (zh) 基于聚酰亚胺基底微结构的柔性压力传感器及其制备方法
CN111693188B (zh) 基于可视化电阻抗层析成像技术的压阻式柔性传感器及其制造方法
Ko et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics
WO2020114367A1 (zh) 压力传感器及其制备方法
CN110701992B (zh) 以砂纸表面微结构为模板的电容式应变传感器制作方法
KR101990193B1 (ko) 스트레인 게이지 및 그 제조방법
Kim et al. Microdome-induced strain localization for biaxial strain decoupling toward stretchable and wearable human motion detection
Li et al. Highly conductive Ag paste for recoverable wiring and reliable bonding used in stretchable electronics
CN111693189B (zh) 一种新型柔性力敏传感器及其制备方法
Su et al. Microsphere‐assisted robust epidermal strain gauge for static and dynamic gesture recognition
Zhang et al. Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions
Shi et al. Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes
Bose et al. Screen printed silver/carbon composite strain gauge on a TPU platform for wearable applications
Khan et al. Inkjet printing of multi-stripes based deflection monitoring sensor on flexible substrate
Wu et al. Ultrasensitive Strain Sensors Based on Cu‐Al Alloy Films with Voided Cluster Boundaries
Ling et al. High-adhesion vertically aligned gold nanowire stretchable electrodes via a thin-layer soft nailing strategy
Cao et al. A general strategy for high performance stretchable conductors based on carbon nanotubes and silver nanowires
US9000764B2 (en) Method for the production of printed magnetic functional elements for resistive sensors and printed magnetic functional elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919530

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.03.2022)