WO2020181658A1 - 一种电动汽车直流充电检测装置及方法 - Google Patents

一种电动汽车直流充电检测装置及方法 Download PDF

Info

Publication number
WO2020181658A1
WO2020181658A1 PCT/CN2019/087477 CN2019087477W WO2020181658A1 WO 2020181658 A1 WO2020181658 A1 WO 2020181658A1 CN 2019087477 W CN2019087477 W CN 2019087477W WO 2020181658 A1 WO2020181658 A1 WO 2020181658A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric vehicle
interface
charger
unit
Prior art date
Application number
PCT/CN2019/087477
Other languages
English (en)
French (fr)
Inventor
朱晓鹏
周文闻
宋志方
Original Assignee
北京博电新力电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博电新力电气股份有限公司 filed Critical 北京博电新力电气股份有限公司
Publication of WO2020181658A1 publication Critical patent/WO2020181658A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application relates to the technical field of electric vehicle charging detection devices, and in particular to a DC charging detection device and method for electric vehicles.
  • Electric vehicle chargers including charging piles and other specific forms
  • their quality directly affects the use of electric vehicles. Therefore, the testing of electric vehicle chargers must be carefully implemented. Especially for convenient and reliable on-site testing of electric vehicle chargers.
  • one on-site inspection method is to use a container-type inspection device for on-site inspection.
  • This type of container detection device integrates a DC load, various detection units, etc. into a huge box, which is too bulky and wiring is too complicated, which is very unsuitable for on-site detection of chargers.
  • Another detection device in the prior art includes a DC vehicle interface circuit simulator, a portable computer, an oscilloscope, a programmable DC load, and the like.
  • This kind of detection device is still highly dependent on the field environment, for example, the demand for programmable DC load, the demand for the wiring of the test system, and so on.
  • there are still disadvantages such as bulky size and inconvenient installation.
  • the third type of detection device in the prior art uses a corresponding load such as a programmable DC load to implement on-site detection of charging facilities.
  • the load uses resistance as the load, and consumes the electric energy in the form of heat during the test, which is a great waste of energy; or uses a repayable electronic load as the test load in the test system, which interferes with the power grid, etc. Many hidden dangers.
  • there are disadvantages such as large load volume, inconvenient installation and transportation.
  • the purpose of this application is to provide an electric vehicle DC charging detection device and method to overcome or at least alleviate at least one of the above-mentioned defects in the prior art.
  • the electric vehicle DC charging detection device includes: a control unit, a DC acquisition unit, an interface simulation unit, a first charging interface and a second charging interface,
  • the first charging interface is used to connect with a DC charger
  • the second charging interface is used to connect with an electric vehicle
  • the interface simulation unit is electrically connected to the first charging interface through a first internal cable, the interface simulation unit is electrically connected to the second charging interface through a second internal cable, and the interface simulation unit is powered by The control unit controls;
  • the DC collection unit is used to collect the electrical signal of the first internal cable or the second internal cable, and transmit the collected electrical signal to the control unit.
  • the interface simulation unit has any one or more of the following working states under the control of the control unit:
  • the interface simulation unit simulates the function of the electric vehicle terminal
  • the interface simulation unit simulates the function of the DC charger terminal
  • the interface simulation unit when monitoring the DC charging of the electric vehicle, directly connects the first charging interface and the second charging interface with signals.
  • the interface simulation unit simulates a battery management system (Battery Management System, BMS) of the electric vehicle, and directly communicates with the DC charger;
  • BMS Battery Management System
  • the interface simulation unit simulates the control unit of the DC charger, and directly communicates with the BMS of the electric vehicle.
  • the electric vehicle DC charging detection device further includes: an analog level conversion unit and a digital level conversion unit,
  • the analog level conversion unit is used to isolate external analog signals from other signal input interfaces through a linear isolation chip and input them to the DC acquisition unit,
  • the digital level conversion unit is used to isolate external digital signals from other signal input interfaces through a digital isolation chip, and input them to the control unit.
  • the electric vehicle DC charging detection device further includes a power supply unit
  • the power supply unit includes: a battery module, a battery charging module, a switch array, an AC-to-DC module, and a DC-to-DC module,
  • the battery module is connected to the switch array through a battery charging module
  • the AC-to-DC module is used to connect the mains power to the switch array
  • the DC-to-DC module is used to connect auxiliary power from the inside of the DC charger
  • the power source is connected to the switch array, and the priority strategy is adopted in the switch array. At the same time, only one power source is connected to the battery charging module to charge the battery module.
  • the first charging interface is in the form of a charging gun holder, which is used to cooperate with a charging gun head of a DC charger;
  • the second charging interface is in the form of a charging gun head, which is used to cooperate with a charging gun base of an electric vehicle.
  • the electrical signal includes: DC voltage, DC current, control pilot signal, auxiliary power supply voltage, and auxiliary power supply current;
  • the message signal is connected to the control unit through the interface analog unit.
  • the electric vehicle DC charging detection device is a handheld electric vehicle DC charging detection device
  • the electric vehicle DC charging detection device has a network port and/or a wireless communication interface.
  • the present application also provides a detection method for a DC charger of an electric vehicle.
  • the detection method for a DC charger of an electric vehicle uses the above-mentioned DC charging detection device for an electric vehicle for detection, and connects the first charging interface with the DC charger;
  • the second charging interface is connected to the electric vehicle.
  • control unit enables the interface simulation unit to detect the working state of the charger, and the control unit obtains a response to the electrical signal collected by the DC acquisition unit and the communication with the DC charger. The test result of the DC charger.
  • control unit makes the interface simulation unit in a monitoring charging working state, and the control unit is based on the electrical signal collected by the DC acquisition unit and based on the DC charger and the charging station monitored by the interface simulation unit.
  • the communication situation of the BMS of the electric vehicle is described to realize the on-site verification of the charging metering function of the DC charger, and/or realize the analysis and judgment of the charging failure.
  • the electric vehicle DC charging detection device of the present application is used to directly connect a DC charger and an electric vehicle, and the electric vehicle can be directly used as a charging detection load, thereby avoiding energy waste and avoiding the need for a programmable DC load for detection. Greatly reduce the input cost requirements for the entire detection system.
  • FIG. 1 is a schematic diagram of an electric vehicle DC charging detection device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a power supply unit of an electric vehicle DC charging detection device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a method of using the DC charging detection device for electric vehicles according to an embodiment of the present application.
  • the electric vehicle DC charging detection device of the present application includes a control unit 1, a DC acquisition unit 2, an interface analog unit 3, an analog level conversion unit 4, a digital level conversion unit 5, a power supply unit 6, a first Charging interface 7 and second charging interface 8.
  • the above-mentioned first charging interface 7 is used to connect with the DC charger 200;
  • the above-mentioned second charging interface 8 is used to connect with the electric vehicle 300;
  • the aforementioned interface simulation unit 3 is electrically connected to the first charging interface 7 through a first internal cable 403; and is electrically connected to the second charging interface 8 through a second internal cable 404, and the interface simulation unit 3 is controlled by the Unit 1 control;
  • the DC collection unit 2 is used to collect the electrical signals of the first internal cable 403 or the second internal cable 404 and transmit the collected electrical signals to the control unit 1.
  • the electrical signal includes, for example, DC voltage, DC current, control pilot signal, auxiliary power supply voltage, and auxiliary power supply current.
  • the message signal between the first charging interface 7 and the second charging interface 8 (that is, between the charger and the BMS) can be transmitted to the control unit 1 through the interface simulation unit 3.
  • Each part of the electric vehicle DC charging detection device of the present application is integrated into an integrated small device. More specifically, the entire electric vehicle DC charging detection device of the present application is a handheld device.
  • the electric vehicle DC charging detection device of the present application is used to directly connect a DC charger and an electric vehicle, and the electric vehicle can be directly used as a charging detection load, thereby avoiding energy waste and avoiding the need for a programmable DC load for detection. Greatly reduce the input cost requirements for the entire detection system.
  • the electric vehicle DC charging detection device of the present application can be configured to be adapted to various DC chargers of different forms or specifications and various electric vehicles of different forms or specifications.
  • the control unit 1 is the control center of the entire device, and other units are controlled by the control unit 1.
  • the control unit 1 may adopt any appropriate form, structure, and circuit, as long as it can perform the necessary control functions.
  • the DC collection unit 2 is used to collect DC signals.
  • the DC collection unit 2 is preferably a high-precision DC collection unit.
  • the DC acquisition unit 2 is provided with a high-precision and high-speed analog-to-digital converter. Through the high-precision and high-speed analog-to-digital converter, in the process of DC charging of electric vehicles (electric vehicles), all electrical signals in the charging gun cable are processed.
  • the analog-to-digital conversion provides data support for the detection and monitoring of the charging pile (DC charger 200) or electric vehicle 300.
  • the electrical signals in the charging gun cable include, for example, DC voltage, DC current, Connection Confirm (CC) 1 voltage, CC2 voltage, auxiliary power supply voltage, auxiliary power supply current, and other analog signals.
  • the DC collection unit 2 is configured to collect electrical signals on the side of the first charging interface 7. In another alternative embodiment, the DC collection unit 2 is configured to collect electrical signals on the side of the second charging interface 8.
  • the DC collection unit 2 also collects signals from the analog level conversion unit 4, and more specifically, collects analog level signals from other signal input interfaces 9.
  • the interface simulation unit 3 can simulate the DC charging detection of electric vehicles and monitor various states of the charging interface during the charging process.
  • the DC charger and the electric vehicle do not communicate directly, but through the detection device provided in this application, the DC charger and the electric vehicle can be Work as expected.
  • the interface simulation unit 3 corresponds to different detection functions and has three different working states: detecting the working state of the charger, detecting the working state of the electric vehicle, and monitoring the charging working state.
  • the interface simulation unit 3 has the following three working states under the control of the control unit 1.
  • the interface simulation unit 3 simulates the function of the electric vehicle terminal
  • the interface simulation unit 3 detects the working status of the charger, which is used to detect the performance of the charger.
  • the interface simulation unit 3 simulates the battery management system (Battery Management System, BMS) of the electric vehicle, and directly communicates with the DC charger 200. Then, as necessary, the interface simulation unit 3 sends the signal from the charger to the BMS of the electric vehicle; or, after changing the signal from the charger, sends it to the BMS of the electric vehicle; or, it does not send part of the signal to the BMS of the electric vehicle. BMS for electric vehicles.
  • BMS Battery Management System
  • SOC state of charge
  • the interface simulation unit 3 simulates the function of the DC charger terminal
  • Detecting the working status of electric vehicles is used to detect whether the charging function of electric vehicles is normal.
  • the interface simulation unit 3 simulates the DC charger 200 and directly communicates with the BMS of the electric vehicle. Then, as required, the interface simulation unit 3 sends the signal from the BMS of the electric vehicle to the charger; or changes the signal from the BMS of the electric vehicle and sends it to the charger; or, does not send part of the signal to the charger machine.
  • the control unit 1 has a set program for detecting the charging function of the electric vehicle, so that, according to the set program, the analog charger sends various signals to the BMS of the electric vehicle to detect the electric vehicle's charging function. Whether the response and processing of the BMS to the various signals (analog BMS signals) are normal.
  • “Voltage 30% of rated voltage”
  • “Voltage 40% of rated voltage”
  • “Voltage 50% of rated voltage”
  • “Voltage 60% of rated voltage”
  • “Voltage 70% of rated voltage”
  • “Voltage 80%
  • the interface simulation unit 3 directly connects the first charging interface 7 and the second charging interface 8 with signals.
  • the interface simulation unit 3 In monitoring the charging working state, the interface simulation unit 3 only monitors the communication message between the first charging interface 7 and the second charging interface 8, but does not change the signal between the first charging interface 7 and the second charging interface 8. .
  • the electric vehicle DC charging detection device further includes:
  • the analog level conversion unit 4 is used to isolate external analog signals from other signal input interfaces 9 through a linear isolation chip, and input them to the DC acquisition unit 2.
  • the digital level conversion unit 5 is used to isolate external digital signals from other signal input interfaces 9 through a digital isolation chip and input them to the control unit 1.
  • the electric vehicle charging state is monitored through the digital signal acquisition function inside the DC acquisition unit 2 and the control unit 1, and the data characteristics of the charging state are obtained, and the detection results are obtained through the characteristics of the data at the critical moment.
  • the critical moment refers to, for example, a detection and judgment moment.
  • the electric vehicle DC charging detection device of the present application further includes a power supply unit 6.
  • the power supply unit 6 of the electric vehicle DC charging detection device includes: a battery module 61, a battery charging module 62, a switch array 63, an AC-to-DC module (AC/DC) 64 and a DC-to-DC module (DC/DC) DC) 65, the power supply unit 6 has a battery module 61, that is, the electric vehicle DC charging detection device of the present application adopts battery power supply, so there is no need to supply power from outside, and the whole device can still work.
  • the battery module 61 is connected to the switch array 63 through the battery charging module 62, the AC-to-DC module 64 is used to connect the mains power to the switch array 63, and the DC-to-DC module 65 is used to
  • the auxiliary power source from the inside of the DC charger 200 is connected to the switch array 63, and the switch array 63 adopts a priority strategy so that only one power source is connected to the battery charging module 62 at the same time, which is the battery model Group 61 is charged.
  • the battery module 61 is a large-capacity battery. That is to say, the electric vehicle DC charging detection device of the present application is equipped with a large-capacity battery and has the ability to obtain auxiliary power in the DC charging interface, so that the detection device provided in the present application can work for a long time without requiring an external power supply during the test. .
  • the electric vehicle DC charging detection device of the present application can use the DC power in the charging gun to charge the battery module 61, and can also use the city power to charge the battery module 61.
  • the electric energy required by the DC charging detection device for electric vehicles of the present application is provided by the battery module 61 in the power supply unit 6 thereof.
  • the entire detection device can work normally.
  • the battery module 61 When the internal electric energy of the battery module 61 is insufficient, the battery module 61 is charged by the city power and the DC charger under test, and the required electric energy is provided for the entire device.
  • the city power is connected to the switch array 63 through an AC to DC module (AC/DC converter) 64.
  • AC/DC converter AC to DC module
  • the auxiliary power supply inside the DC charger 200 passes through the DC-to-DC module (DC/DC converter) 65 and is also connected to the switch array 63.
  • DC/DC converter DC-to-DC module
  • This flexible way of obtaining power allows the detection to be carried out for a long time without the need to provide external power supply.
  • the first charging interface 7 is in the form of a charging gun holder, which is used to cooperate with the charging gun head of the DC charger 200;
  • the second charging interface 8 is in the form of The charging gun head is used to cooperate with the charging gun holder of the electric car 300.
  • the charging gun holder and the charging gun head are directly connected, and the external load is connected by the charging gun head and the charging gun holder, so that no external connection is required.
  • electric vehicles as the load of the detection system, while enabling the detection to proceed, the energy consumed is used as the power source of the electric vehicles to transport equipment and to other test sites. In other words, charging electric vehicles while performing inspections makes the inspection system more energy-efficient.
  • the electric vehicle DC charging detection device is a handheld electric vehicle DC charging detection device.
  • the detection device provided in this application integrates the required functions into the instrument, and has no other modules except the load.
  • Each functional module is integrated into the system in the form of a board card, and the connection method of the charging gun base and the charging gun head is used to make the detection connection method more flexible.
  • the volume is extremely compact.
  • the electric vehicle DC charging detection device is highly integrated, so that it has a strong performance and a small and 17.
  • the net weight of the equipment in this application is only 2.5KG. Makes handheld electric vehicle charging equipment possible.
  • the interface uses a charging gun base and a gun head, making the equipment more suitable for on-site testing needs.
  • the detection device provided in this application can use real electric vehicles for detection, so that it is consistent with the actual application environment, and is the most direct and scientific detection solution.
  • the detection device provided by this application is between the charging pile (DC charging facility for electric vehicles) and the electric vehicle, can accurately collect all signals during the charging process, can monitor all the data during the charging process, and make it possible to monitor the charging process. And through the analysis of these data, the analysis and judgment of charging faults can be realized.
  • the electric vehicle DC charging detection device has a network port and/or a wireless communication interface. Thereby, it is possible to interact with other external devices, send the detected conditions to other external devices, and receive control commands from other external devices.
  • the electric vehicle DC charger detection method uses the above-mentioned electric vehicle DC charging detection device for detection, connecting the first charging interface 7 with the DC charger 200; connecting the second charging interface 8 with the electric vehicle 300.
  • control unit 1 enables the interface simulation unit 3 to detect the working state of the charger, and the control unit 1 is based on the electrical signals collected by the DC collection unit 2 and the communication with the DC charger 200 , The detection result of the DC charger 200 is obtained.
  • control unit 1 enables the interface simulation unit 3 to detect the working state of the electric vehicle, and the control unit 1 is based on the electrical signals collected by the DC collection unit 2 and the communication with the electric vehicle 300, The detection result of the electric vehicle 300 is obtained.
  • the control unit 1 makes the interface simulation unit 3 in a monitoring charging working state, and the control unit 1 is based on the electrical signal collected by the DC collection unit 2 and based on the interface simulation
  • the communication between the DC charger 200 and the BMS of the electric vehicle monitored by the unit 3 can realize the on-site verification of the charging metering function of the DC charger, or realize the analysis and judgment of the charging failure.
  • the detection device provided in this application can be used in conjunction with electric vehicles.
  • the electric vehicle is used as a load for on-site verification of the DC charging metering function of the electric vehicle, eliminating the bulk of the resistive load, inconvenient operation and many other shortcomings.
  • the detection device provided by the present application can also be matched with a load (DC load or electric vehicle) to realize on-site verification of the charging metering function of on-site charging facilities (DC chargers for electric vehicles).
  • a load DC load or electric vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车直流充电检测装置及方法,所述电动汽车直流充电检测装置包括:控制单元(1)、直流采集单元(2)、接口模拟单元(3)、第一充电接口(7)和第二充电接口(8),所述第一充电接口(7)用于与直流充电机(200)连接;所述第二充电接口(8)用于与电动汽车(300)连接;所述接口模拟单元(3)和第一充电接口(7)、第二充电接口(8)电连接;该装置用于直接连接直流充电机(200)和电动汽车(300),能够直接以电动汽车(300)作为充电检测的负载,从而避免了能源浪费,且避免了对检测用可编程直流负载的需求,降低了对整个检测系统的投入成本要求。

Description

一种电动汽车直流充电检测装置及方法
本申请要求在2019年03月08日提交中国专利局、申请号为201910175569.4、申请名称为“一种电动汽车直流充电检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车充电检测装置技术领域,特别是涉及一种电动汽车直流充电检测装置及方法。
背景技术
随着技术发展,电动汽车日益普及,对电动汽车辅助充电设备需求日益剧增。电动汽车充电机(含充电桩等各种具体形式)作为电动汽车充电的关键设备,其品质直接影响电动汽车的使用。所以,必须认真执行对电动汽车充电机的检测。尤其是对电动汽车充电机进行便捷、可靠的现场检测。
在现有技术中,一种现场检测方式为采用集装箱式检测装置来进行现场检测。此种集装箱式检测装置将直流负载、各种检测单元等集成在一个庞大的箱体内,体积过于庞大,接线过于复杂,非常不适合充电机的现场检测。
现有技术的另一种检测装置包括直流车辆接口电路模拟器、便携式电脑、示波器、可编程直流负载等。该种检测装置对现场环境的依赖程度依旧很高,例如,对可编程直流负载的需求,对测试系统接线的需求等等。此外,仍然存在体积庞大,安装不便等缺点。
现有技术的第三种检测装置利用配备的可编程直流负载等相应负载来实现对充电设施的现场检测。所述负载采用电阻作为负载,在测试的过程中将电能以热量的方式消耗掉,是对能源的极大浪费;或者采用可回馈的电子负载作为测试系统中的测试负载,又存在干扰电网等诸多的隐患。且同时存在负载体积大、安装与运输不便等缺点。
因此,希望有一种技术方案来克服或至少减轻现有技术的上述缺陷中的至少一个。
发明内容
本申请的目的在于提供一种电动汽车直流充电检测装置及方法来克服或至少减轻现有技术的上述缺陷中的至少一个。
为实现上述目的,本申请提供一种手持式的电动汽车直流充电检测装置。所述电动汽车直流充电检测装置包括:控制单元、直流采集单元、接口模拟单元、第一充电接口和第二充电接口,
所述第一充电接口用于与直流充电机连接;
所述第二充电接口用于与电动汽车连接;
所述接口模拟单元通过第一内部线缆和所述第一充电接口电连接,所述接口模拟单元通过第二内部线缆与所述第二充电接口电连接,且所述接口模拟单元由所述控制单元控制;
所述直流采集单元用于采集所述第一内部线缆或第二内部线缆的电气信号,并将采集的电气信号传送至所述控制单元。
优选地,所述接口模拟单元在所述控制单元控制下,具有下述任一或任多种工作状态:
检测充电机工作状态:当检测直流充电机时,所述接口模拟单元模拟为电动汽车端功能;
检测电动汽车工作状态:当检测电动汽车的直流充电功能时,所述接口模拟单元模拟为直流充电机端功能;
监测充电工作状态:当监测电动汽车直流充电时,所述接口模拟单元直接将第一充电接口和第二充电接口信号连通。
优选地,在检测充电机工作状态下,所述接口模拟单元模拟电动汽车的电池管理系统(Battery Management System,BMS),且直接与直流充电机进行通讯;
在检测充电功能工作状态下,所述接口模拟单元模拟直流充电机的控制单元,且直接与电动汽车的BMS进行通讯。
优选地,所述的电动汽车直流充电检测装置还包括:模拟电平转换单元和数字电平转换单元,
其中,所述模拟电平转换单元用于将来自其它信号输入接口的外部模拟信号通过线性隔离芯片进行隔离,输入至所述直流采集单元,
所述数字电平转换单元用于将来自其它信号输入接口的外部数字信号通过数字隔离芯片进行隔离,输入至所述控制单元。
优选地,所述电动汽车直流充电检测装置还包括电源单元;
所述电源单元包括:电池模组、电池充电模块、开关阵列、交流转直流模块和直流转直流模块,
其中,所述电池模组通过电池充电模块与开关阵列连接,所述交流转直流模块用于将市电接入所述开关阵列,所述直流转直流模块用于将来自直流充电机内部的辅助电源接入所述开关阵列,在所述开关阵列采用优先级策略,在同一时刻仅有一种电源接入所述电池充电模块,为所述电池模组充电。
优选地,所述第一充电接口的形式为充电枪座,用于与直流充电机的充电枪头配合;
所述第二充电接口的形式为充电枪头,用于与电动汽车的充电枪座配合。
优选地,所述电气信号包括:直流电压、直流电流、控制导引信号、辅助电源电压以及辅助电源电流;
报文信号通过接口模拟单元接入到控制单元。
优选地,所述电动汽车直流充电检测装置为手持式的电动汽车直流充电检测装置;
所述电动汽车直流充电检测装置带有网口和/或无线通讯接口。
本申请还提供一种电动汽车直流充电机检测方法,所述电动汽车直流充电机检测方法使用上述的电动汽车直流充电检测装置进行检测,将所述第一充电接口与直流充电机连接;将所述第二充电接口与电动汽车连接。
优选地,所述控制单元使得所述接口模拟单元处于检测充电机工作状态,所述控制单元基于所述直流采集单元采集的电气信号以及与所述直流充电机的通讯情况,得出对所述直流充电机的检测结果。
优选地,所述控制单元使得所述接口模拟单元处于监测充电工作状态,所述控制单元基于所述直流采集单元采集的电气信号以及基于所述接口模拟单元监听到的所述直流充电机与所述电动汽车的BMS的通讯情况,实现对直流充电机充电计量功能的现场检定,以及或者实现对充电故障的分析和判断。
本申请的电动汽车直流充电检测装置用于直接连接直流充电机和电动汽车,能够直接以电动汽车作为充电检测的负载,从而避免了能源浪费,且避免了对检测用可编程直流负载的需求,大大降低了对整个检测系统的投入成本要求。
附图说明
图1是根据本申请一实施例的电动汽车直流充电检测装置的示意图;
图2是根据本申请一实施例的电动汽车直流充电检测装置的电源单元的示意图;
图3是根据本申请一实施例的电动汽车直流充电检测装置的使用方法的示意图。
附图标记:
1-控制单元;2-直流采集单元;3-接口模拟单元;4-模拟电平转换单元;5-数字电平转换单元;6-电源单元;7-第一充电接口;8-第二充电接口;9-其它信号输入接口;61-电池模组;62-电池充电模块;63-开关阵列;64-AC/DC;65-DC/DC;100-直流充电检测装置;200-直流充电机;300-电动汽车;401-第一连接线缆;402-第二连接线缆;403-第一内部线缆;404-第二内部线缆。
具体实施方式
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
下面结合附图对本申请的实施例进行详细说明。
参见图1-3,本申请的电动汽车直流充电检测装置包括控制单元1、直流采集单元2、接口模拟单元3、模拟电平转换单元4、数字电平转换单元5、电源单元6、第一充电接口7和第二充电接口8。
上述第一充电接口7用于与直流充电机200连接;
上述第二充电接口8用于与电动汽车300连接;
上述接口模拟单元3通过第一内部线缆403和第一充电接口7电连接;通过第二内部线缆404与所述第二充电接口8电连接,且所述接口模拟单元3由所述控制单元1控制;
所述直流采集单元2用于采集所述第一内部线缆403或第二内部线缆404的电气信号,并将采集的电气信号传送至所述控制单元1。
所述电气信号例如包括:直流电压、直流电流、控制导引信号、辅助电源电压以及辅助电源电流。
第一充电接口7和第二充电接口8之间(即充电机和BMS之间)的报文信号可以通过接口模拟单元3传送到控制单元1。
本申请的电动汽车直流充电检测装置的各部分集成为一个一体化的小型装置,更具体地,本申请的整个电动汽车直流充电检测装置为一个手持式装置。
本申请的电动汽车直流充电检测装置用于直接连接直流充电机和电动汽车,能够直接以电动汽车作为充电检测的负载,从而避免了能源浪费,且避免了对检测用可编程直流负载的需求,大大降低了对整个检测系统的投入成本要求。
本申请的电动汽车直流充电检测装置可以设置为适应于各种不同形式或规格的直流充电机和各种不同形式或规格的电动汽车。
控制单元1为整个装置的控制中心,其他单元都受控制单元1的控制。 控制单元1可以采用任何适当的形式、构造与电路,只要能够完成必须的控制功能即可。
直流采集单元2用于采集直流信号。直流采集单元2优选为高精度直流采集单元。直流采集单元2内设置有高精度高速的模数转换器,通过高精度高速的模数转换器,在对电动汽车(电能车辆)直流充电过程中,通过对充电枪线缆中所有电气信号进行模数转换,为充电桩(直流充电机200)或电动汽车300的检测、监测提供数据支撑。充电枪线缆中的电气信号例如包括:直流电压、直流电流、连接确认(Connection confirm,CC)1电压、CC2电压、辅助电源电压、辅助电源电流、以及其他模拟信号等等。
在一种可选的实施方式中,直流采集单元2设置为采集第一充电接口7侧的电气信号。在另一种可选的实施方式中,直流采集单元2设置为采集第二充电接口8侧的电气信号。
参见图3,直流采集单元2还采集来自模拟电平转换单元4的信号,更具体地,采集来自其它信号输入接口9的模拟电平信号。
接口模拟单元3能够模拟电动汽车直流充电检测、监测充电过程中充电接口的各种状态。
为了将电动汽车的内部电池作为灵活的负载使用,本申请中,直流充电机和电动汽车非直接通讯,而是通过本申请提供的检测装置辗转了一次,使得直流充电机和电动汽车都能够按照预期的方式工作。
在一个可选的实施方式中,接口模拟单元3对应于不同的检测功能,具有三种不同的工作状态:检测充电机工作状态、检测电动汽车工作状态、以及监测充电工作状态。
也就是说,接口模拟单元3在控制单元1控制下,具有下述三种工作状态。
检测充电机工作状态:当检测直流充电机200时,所述接口模拟单元3模拟为电动汽车端功能;
接口模拟单元3的检测充电机工作状态,用于对充电机的性能进行检测。
在检测充电机工作状态下,所述接口模拟单元3模拟电动汽车的电池管理系统(Battery Management System,BMS),且直接与直流充电机200进行通讯。然后根据需要,接口模拟单元3将来自充电机的信号再发给电动汽车的BMS;或者,将来自充电机的信号进行变更后,再发给电动汽车的BMS;或者,将部分信号不发给电动汽车的BMS。
在一个可选的实施例中,控制单元1对于充电机检测具有设定的程序,从而,根据设定的程序,模拟电动汽车的BMS向充电机发出各种信号,检测充电机对于所述各种信号(模拟的BMS信号)的反应与处理是否正常。例如,不管电动汽车的实际电池储电量状态(State ofcharge,SOC)如何,控制单元1控制接口模拟单元3在较短的时间内依次向充电机发出SOC=10%、SOC=20%、SOC=30%、SOC=40%SOC=50%、SOC=60%、SOC=70%、SOC=80%、SOC=90%、SOC=95%、SOC=100%的信号;同时检测充电机的输出电流、输出电压、通讯报文等是否符合标准要求。
检测电动汽车工作状态:当检测电动汽车300的直流充电功能时,所述接口模拟单元3模拟为直流充电机端功能;
检测电动汽车工作状态用于检测电动汽车的充电功能是否正常。
在检测电动汽车工作状态下,所述接口模拟单元3模拟直流充电机200,且直接与电动汽车的BMS进行通讯。然后根据需要,接口模拟单元3将来自电动汽车的BMS的信号再发给充电机;或者将来自电动汽车的BMS的信号进行变更后,再发给充电机;或者,将部分信号不发给充电机。在一个可选的实施例中,控制单元1对于电动汽车的充电功能检测具有设定的程序,从而,根据设定的程序,模拟充电机向电动汽车的BMS发出各种信号,检测电动汽车的BMS对于所述各种信号(模拟的BMS信号)的反应与处理是否正常。例如,不管充电机是实际输出电流和电压如何,控制单元1控制接口模拟单元3在较短的时间内依次向电动汽车输出“电压=10%额定电压”、“电压=20%额定电压”、“电压=30%额定电压”、“电压=40%额定电压”、“电压=50%额定电压”、“电压=60%额定电压”、“电压=70%额定电压”、“电压=80%额定 电压”、“电压=90%额定电压”、“电压=95%额定电压”、“电压=100%额定电压”、“电压=105%额定电压”的不同输出电压;同时检测电动汽车的BMS发出的通讯信号,以及充电电流,等等,并由此判断电动汽车的充电功能是否正常。
监测充电工作状态:当监测电动汽车直流充电功能时,所述接口模拟单元3直接将第一充电接口7和第二充电接口8信号连通。
在监测充电工作状态下,接口模拟单元3仅仅监测第一充电接口7和第二充电接口8之间的通讯报文,但是不对第一充电接口7和第二充电接口8之间的信号进行改变。
在一种可选的实施方式中,所述电动汽车直流充电检测装置还包括:
模拟电平转换单元4,用于将来自其它信号输入接口9的外部模拟信号通过线性隔离芯片进行隔离,输入至所述直流采集单元2。
数字电平转换单元5,用于将来自其它信号输入接口9的外部数字信号通过数字隔离芯片进行隔离,输入至所述控制单元1。
在监测充电工作状态下,通过直流采集单元2和控制单元1内部的数字信号采集功能,对电动汽车充电状态进行监测,获取充电状态的数据特征,并通过关键时刻数据的特性,对检测结果得出结论。所述关键时刻例如是指检测判断时刻点。
本申请的电动汽车直流充电检测装置还包括电源单元6。参考图2,所述电动汽车直流充电检测装置的电源单元6包括:电池模组61、电池充电模块62、开关阵列63、交流转直流模块(AC/DC)64和直流转直流模块(DC/DC)65,电源单元6带有电池模组61,也就是说,本申请的电动汽车直流充电检测装置采用电池供电,从而无需从外部供电,整个装置依然能够工作。
所述电池模组61通过所述电池充电模块62与所述开关阵列63连接,所述交流转直流模块64用于将市电接入所述开关阵列63,所述直流转直流模块65用于将来自直流充电机200内部的辅助电源接入所述开关阵列63,所述开关阵列63采用优先级策略,使在同一时刻仅有一种电源接入所述电池充电模块62,为所述电池模组61充电。
在本申请的实施例中,电池模组61为大容量电池。也就是说,本申请的电动汽车直流充电检测装置通过配备大容量电池和获取直流充电接口中辅助电源的能力,使得本申请提供的检测装置能够长时间工作,无需在测试的过程中外接其他电源。
此外,在电池模组61内部电能不足时,本申请的电动汽车直流充电检测装置可使用充电枪中的直流电能为电池模组61充电,还可以使用市电为电池模组61充电。
具体而言,本申请的电动汽车直流充电检测装置工作时所需的电能通过其电源单元6内的电池模组61提供。在电池模组61内部电量充足时,整个检测装置能够正常工作。
在电池模组61内部电能不足时,通过市电、被测直流充电机为所述电池模组61充电,并为整个装置提供所需的电能。
其中,市电通过交流转直流模块(AC/DC转换器)64,接入开关阵列63。在直流充电机200启动后,直流充电机200内部的辅助电源经过直流转直流模块(DC/DC转换器)65,同样也接入开关阵列63。此两种电能来源具备在开关阵列63中经过优先级策略,在同一时刻仅有一种接入电池充电模块62,为内部的电池模组61充电。
这种灵活的电源获取方式,使得检测可以长时间进行,而无需提供外部供电。
为解决检测系统模块之间的接线繁多的问题,所述第一充电接口7的形式为充电枪座,用于与直流充电机200的充电枪头配合;所述第二充电接口8的形式为充电枪头,用于与电动汽车300的充电枪座配合。
采用充电枪座和充电枪头直连的方式,外接负载采用充电枪头与充电枪座连接的方式,使得无需外部连线。从而更加便于直接使用电动汽车作为外接负载。采用电动汽车作为检测系统的负载,在使得检测能够进行下去的同时,所耗的能量作为电动汽车的动力来源,用来运输设备和辗转到其他测试场所。也就是说,在进行检测的同时,为电动汽车充电,检测系统更加节能。
所述电动汽车直流充电检测装置为手持式的电动汽车直流充电检测装置。本申请提供的检测装置将所需功能集成在仪器内部,除负载外,没有其他模块。将各个功能模块以板卡的形式,集成到系统内部,并以充电枪座和充电枪头为连接方式,使得检测的连接方式更加灵活。使得体积相对于常规检测系统,显得极其精巧。所述电动汽车直流充电检测装置高度集成化,使得在具备强大性能的同时,外形小巧,很是精妙。本申请设备净重仅2.5KG。使手持式电动汽车充电设备成为可能。接口使用充电枪座和枪头,使得设备更适应于现场检测的需求。
本申请提供的检测装置能够使用真实的电动汽车进行检测,从而与现实应用环境一致,是最直接,最科学的检测方案。
本申请提供的检测装置介于充电桩(电动汽车直流充电设施)与电动汽车之间,能够准确地采集充电过程中的所有信号,能够监测充电过程中的所有数据,使得充电过程监测成为可能。并可以通过对这些数据的分析,实现对充电故障的分析和判断。
为了便于与外部装置进行连接,所述电动汽车直流充电检测装置带有网口和/或无线通讯接口。从而,能够与其他外部装置进行交互,将检测的情况发送至其他外部装置,以及从其他外部装置接收控制指令等。
本申请还提供一种电动汽车直流充电检测方法。所述电动汽车直流充电机检测方法使用上述的电动汽车直流充电检测装置进行检测,将所述第一充电接口7与直流充电机200连接;将所述第二充电接口8与电动汽车300连接。
可选的,所述控制单元1使得所述接口模拟单元3处于检测充电机工作状态,所述控制单元1基于所述直流采集单元2采集的电气信号以及与所述直流充电机200的通讯情况,得出对所述直流充电机200的检测结果。
可选的,所述控制单元1使得所述接口模拟单元3处于检测电动汽车工作状态,所述控制单元1基于所述直流采集单元2采集的电气信号以及与所述电动汽车300的通讯情况,得出对所述电动汽车300的检测结果。
在充电检测或充电计量功能检测中,所述控制单元1使得所述接口模拟单元3处于监测充电工作状态,所述控制单元1基于所述直流采集单元2采集的电气信号以及基于所述接口模拟单元3监听到的所述直流充电机200与所述电动汽车的BMS的通讯情况,实现对直流充电机充电计量功能的现场检定,以及或者实现对充电故障的分析和判断。
本申请提供的检测装置可配合电动汽车使用,将电动汽车作为电动汽车直流充电计量功能现场检定的负载,免去电阻负载体积庞大,操作不便等诸多缺点。
本申请提供的检测装置还可配合负载(直流负载或者电动汽车),可实现对现场充电设施(电动汽车直流充电机)充电计量功能的现场检定。
最后需要指出的是:以上实施例仅用以说明本申请的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种电动汽车直流充电检测装置,其特征在于,包括:控制单元(1)、直流采集单元(2)、接口模拟单元(3)、第一充电接口(7)和第二充电接口(8);
    所述第一充电接口(7)用于与直流充电机(200)连接;
    所述第二充电接口(8)用于与电动汽车(300)连接;
    所述接口模拟单元(3)通过第一内部线缆(403)和所述第一充电接口(7)电连接,所述接口模拟单元(3)通过第二内部线缆(404)与所述第二充电接口(8)电连接,且所述接口模拟单元(3)由所述控制单元(1)控制;
    所述直流采集单元(2)用于采集所述第一内部线缆(403)或第二内部线缆(404)的电气信号,并将采集的电气信号传送至所述控制单元(1)。
  2. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,所述接口模拟单元(3)在所述控制单元(1)控制下,具有下述任一或任多种工作状态:
    检测充电机工作状态:当检测直流充电机(200)时,所述接口模拟单元(3)模拟为电动汽车端功能;
    检测电动汽车工作状态:当检测电动汽车(300)的直流充电功能时,所述接口模拟单元(3)模拟为直流充电机端功能;
    监测充电工作状态:当监测直流充电机为电动汽车直流充电时,所述接口模拟单元(3)直接将第一充电接口(7)和第二充电接口(8)信号连通。
  3. 如权利要求2所述的电动汽车直流充电检测装置,其特征在于,
    在检测充电机工作状态下,所述接口模拟单元(3)模拟电动汽车的电池管理系统BMS且直接与直流充电机(200)进行通讯;
    在检测电动汽车工作状态下,所述接口模拟单元(3)模拟直流充电机的控制单元,且直接与电动汽车的BMS进行通讯。
  4. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,所述 电动汽车直流充电检测装置还包括:
    模拟电平转换单元(4)和数字电平转换单元(5),
    其中,所述模拟电平转换单元(4)用于将来自其它信号输入接口(9)的外部模拟信号通过线性隔离芯片进行隔离,输入至所述直流采集单元(2),
    所述数字电平转换单元(5)用于将来自其它信号输入接口(9)的外部数字信号通过数字隔离芯片进行隔离,输入至所述控制单元(1)。
  5. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,所述电动汽车直流充电检测装置还包括电源单元(6);
    所述电源单元(6)包括:电池模组(61)、电池充电模块(62)、开关阵列(63)、交流转直流模块(64)和直流转直流模块(65),
    其中,所述电池模组(61)通过电池充电模块(62)与开关阵列(63)连接,所述交流转直流模块(64)用于将市电接入所述开关阵列(63),所述直流转直流模块(65)用于将来自直流充电机(200)内部的辅助电源接入所述开关阵列(63),所述开关阵列(63)采用优先级策略,使在同一时刻仅有一种电源接入所述电池充电模块(62),为所述电池模组(61)充电。
  6. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,
    所述第一充电接口(7)的形式为充电枪座,用于与直流充电机(200)的充电枪头配合;
    所述第二充电接口(8)的形式为充电枪头,用于与电动汽车(300)的充电枪座配合。
  7. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,
    所述电气信号包括:直流电压、直流电流、控制导引信号、辅助电源电压以及辅助电源电流;
    第一充电接口和第二充电接口之间的报文信号通过接口模拟单元(3)接入到控制单元(1)。
  8. 如权利要求1所述的电动汽车直流充电检测装置,其特征在于,
    所述电动汽车直流充电检测装置为手持式的电动汽车直流充电检测装置;
    所述电动汽车直流充电检测装置带有网口和/或无线通讯接口。
  9. 一种电动汽车直流充电检测方法,其特征在于,使用如权利要求1-8中任一项所述电动汽车直流充电检测装置进行检测,将所述第一充电接口(7)与直流充电机(200)连接;将所述第二充电接口(8)与电动汽车(300)连接。
  10. 如权利要求9所述的电动汽车直流充电检测方法,其特征在于,所述控制单元(1)使得所述接口模拟单元(3)处于检测充电机工作状态,所述控制单元(1)基于所述直流采集单元(2)采集的电气信号以及与所述直流充电机(200)的通讯情况,得出对所述直流充电机(200)的检测结果。
  11. 如权利要求9所述的电动汽车直流充电检测方法,其特征在于,
    所述控制单元(1)使得所述接口模拟单元(3)处于检测电动汽车工作状态,所述控制单元(1)基于所述直流采集单元(2)采集的电气信号以及与所述电动汽车(300)的通讯情况,得出对所述电动汽车(300)的检测结果。
  12. 如权利要求9所述的电动汽车直流充电检测方法,其特征在于,所述控制单元(1)使得所述接口模拟单元(3)处于监测充电工作状态,所述控制单元(1)基于所述直流采集单元(2)采集的电气信号以及基于所述接口模拟单元(3)监听到的所述直流充电机(200)与所述电动汽车的BMS的通讯情况,实现对直流充电机充电计量功能的现场检定,或者实现对充电故障的分析和判断。
PCT/CN2019/087477 2019-03-08 2019-05-17 一种电动汽车直流充电检测装置及方法 WO2020181658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910175569.4 2019-03-08
CN201910175569.4A CN109747468A (zh) 2019-03-08 2019-03-08 一种电动汽车直流充电检测装置

Publications (1)

Publication Number Publication Date
WO2020181658A1 true WO2020181658A1 (zh) 2020-09-17

Family

ID=66408292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087477 WO2020181658A1 (zh) 2019-03-08 2019-05-17 一种电动汽车直流充电检测装置及方法

Country Status (2)

Country Link
CN (1) CN109747468A (zh)
WO (1) WO2020181658A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109747468A (zh) * 2019-03-08 2019-05-14 北京博电新力电气股份有限公司 一种电动汽车直流充电检测装置
CN111762050B (zh) * 2020-09-02 2020-11-20 中认南信(江苏)检测技术有限公司 一种电动汽车bms和直流充电桩双向测试系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022811A1 (en) * 2009-09-08 2012-01-26 Blake Edward Dickinson Electric vehicle simulator and analyzer (evsa) for electric vehicle supply equipment
CN104865531A (zh) * 2014-02-25 2015-08-26 拉碧斯半导体株式会社 电池监视系统以及电池监视芯片
CN105823957A (zh) * 2016-02-26 2016-08-03 保定友源电力科技有限公司 一种电动汽车直流充电接口连接状态和通信性能测试系统
CN106226610A (zh) * 2016-02-26 2016-12-14 保定友源电力科技有限公司 一种电动汽车直流充电接口测试系统及测试方法
CN106663959A (zh) * 2014-07-24 2017-05-10 矢崎总业株式会社 充电率均等化装置以及电源系统
CN108390546A (zh) * 2018-04-19 2018-08-10 湖南德熠智能科技有限公司 一种应用于物联网的智能配电终端
CN108732456A (zh) * 2018-05-30 2018-11-02 南方电网科学研究院有限责任公司 一种电动汽车直流充电接口连接状态检测仪
CN109747468A (zh) * 2019-03-08 2019-05-14 北京博电新力电气股份有限公司 一种电动汽车直流充电检测装置
CN109884431A (zh) * 2019-03-08 2019-06-14 北京博电新力电气股份有限公司 一种积木式的电动汽车直流充电设施检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978422B2 (ja) * 2003-11-26 2007-09-19 Necインフロンティア株式会社 自動切替給電方法およびその機能を有する給電装置
CN204947714U (zh) * 2015-09-18 2016-01-06 四川达兴能源股份有限公司 甲醇工段抗电网晃电系统
CN205353247U (zh) * 2016-02-19 2016-06-29 北京群菱能源科技有限公司 交流充电接口电路模拟器
CN106410955B (zh) * 2016-10-28 2019-03-22 北京航天控制仪器研究所 一种用于重力测量的不间断电源电路
CN107255759A (zh) * 2017-06-09 2017-10-17 国网重庆市电力公司电力科学研究院 一种电动汽车交流充电桩自动检测系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022811A1 (en) * 2009-09-08 2012-01-26 Blake Edward Dickinson Electric vehicle simulator and analyzer (evsa) for electric vehicle supply equipment
CN104865531A (zh) * 2014-02-25 2015-08-26 拉碧斯半导体株式会社 电池监视系统以及电池监视芯片
CN106663959A (zh) * 2014-07-24 2017-05-10 矢崎总业株式会社 充电率均等化装置以及电源系统
CN105823957A (zh) * 2016-02-26 2016-08-03 保定友源电力科技有限公司 一种电动汽车直流充电接口连接状态和通信性能测试系统
CN106226610A (zh) * 2016-02-26 2016-12-14 保定友源电力科技有限公司 一种电动汽车直流充电接口测试系统及测试方法
CN108390546A (zh) * 2018-04-19 2018-08-10 湖南德熠智能科技有限公司 一种应用于物联网的智能配电终端
CN108732456A (zh) * 2018-05-30 2018-11-02 南方电网科学研究院有限责任公司 一种电动汽车直流充电接口连接状态检测仪
CN109747468A (zh) * 2019-03-08 2019-05-14 北京博电新力电气股份有限公司 一种电动汽车直流充电检测装置
CN109884431A (zh) * 2019-03-08 2019-06-14 北京博电新力电气股份有限公司 一种积木式的电动汽车直流充电设施检测装置

Also Published As

Publication number Publication date
CN109747468A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN105974243B (zh) 一种应用于现场的供电及充电设备的检测系统及方法
CN201628747U (zh) 悬式绝缘子绝缘电阻在线检测装置
WO2020181658A1 (zh) 一种电动汽车直流充电检测装置及方法
CN107219421A (zh) 逆变器或充电机的检测试验设备及其方法
CN213689799U (zh) 一种交直流充电桩一体化检测平台
CN109188147A (zh) 一种电动汽车充电设备检测系统
CN201344948Y (zh) 一种测试仪表
CN105501455B (zh) 一种无人机地面综合电源集成系统及方法
CN102680908B (zh) 电池状态检测记录分析仪的内部控制方法
CN207611129U (zh) 电池包测试系统
CN212391553U (zh) 直流充电机检测系统
CN109581097A (zh) 一种充电桩测试系统
CN207074241U (zh) 一种运载火箭高可靠测发控系统检测装置
CN112578206A (zh) 一种电池管理系统性能测试装置
CN206331096U (zh) 一种恒压恒流充电老化测试系统
CN112285477A (zh) 一种交直流充电桩一体化检测平台及充电桩现场检测方法
WO2020181657A1 (zh) 电动汽车交流充电检测装置及相应交流充电机检测方法
CN211061617U (zh) 一种电动汽车高压安全检测装置
CN210514572U (zh) 一种兼具快充测试电压转换和电子负载的测试仪器
CN111627286A (zh) 一种电动车动力电池pack装调教学平台及其教学方法
CN209417165U (zh) 一种充电桩测试系统
CN214174518U (zh) 电池管理系统性能测试装置
CN106527413B (zh) 一种现场故障诊断系统
CN207268773U (zh) 一种电池试验台
CN106772202A (zh) 一种电能表rs485通信接口综合性能测试模组及方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19919207

Country of ref document: EP

Kind code of ref document: A1