WO2020181457A1 - 一种背光模组、显示装置以及电子设备 - Google Patents

一种背光模组、显示装置以及电子设备 Download PDF

Info

Publication number
WO2020181457A1
WO2020181457A1 PCT/CN2019/077666 CN2019077666W WO2020181457A1 WO 2020181457 A1 WO2020181457 A1 WO 2020181457A1 CN 2019077666 W CN2019077666 W CN 2019077666W WO 2020181457 A1 WO2020181457 A1 WO 2020181457A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film layer
transmitting portion
backlight module
layer unit
Prior art date
Application number
PCT/CN2019/077666
Other languages
English (en)
French (fr)
Inventor
林峰
田浦延
周扬
Original Assignee
深圳阜时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳阜时科技有限公司 filed Critical 深圳阜时科技有限公司
Priority to CN201980000395.6A priority Critical patent/CN110088674B/zh
Priority to PCT/CN2019/077666 priority patent/WO2020181457A1/zh
Publication of WO2020181457A1 publication Critical patent/WO2020181457A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • This application belongs to the field of optical technology, and in particular relates to a backlight module, a display device and an electronic device.
  • an optical film layer such as a Brightness Enhancement Film (BEF), a prism sheet, etc.
  • BEF Brightness Enhancement Film
  • the optical film layer includes a light-transmitting substrate and a microstructure of long triangular prisms formed on the light-transmitting substrate.
  • the microstructures of the elongated triangular prisms are arranged on the light-transmitting substrate closely and without intervals.
  • this elongated triangular prism has a strong condensing effect on the backlight light, it has a strong divergence effect on the detection light reflected from an external object back to the liquid crystal display. It cannot focus imaging under the backlight module. Therefore, it cannot meet the current light path requirements that require a sensor module to be provided under the liquid crystal display to realize various under-screen sensing functions.
  • this application provides a new type of backlight module, display device and electronic equipment.
  • the present application provides a backlight module for transmitting a detection light beam emitted and/or reflected by an external object to a sensor module.
  • the detection light beam is used for the detection of biometric information of the external object.
  • the backlight module A display panel can be provided with backlight light, the backlight module includes a light film structure that can transmit the detection light and converge the backlight light, wherein at least part of the detection light is passing through the optical film structure The propagation direction at time is unchanged.
  • the optical film layer structure includes one or more film layer units, and the film layer units include a first optical surface and a second optical surface that are opposed to each other, wherein the first optical surface is Non-planar, the first optical surface includes a first plane, the second optical surface includes a second plane, the first plane and the second plane are parallel and opposite to each other, defining the first plane as the first plane A light-transmitting portion, the first optical surface further includes a second light-transmitting portion, when the detected light passes through the film unit through the first light-transmitting portion and the second plane that are arranged in parallel and opposite to each other, at least There is a part of the detection light that has the same propagation direction, and when the backlight light enters the film unit and exits the second light-transmitting part, it will converge.
  • the second optical surface is a flat surface.
  • the second light-transmitting portion includes an inclined surface that is inclined between the first light-transmitting portion and the second optical surface, and the backlight light incident on the film layer unit is Convergence occurs when exiting from the inclined surface; or, the second light-transmitting portion includes a vertical surface that is perpendicular to the first light-transmitting portion and the second optical surface and enters the film The backlight light of the layer unit converges when exiting from the vertical surface; or, the second light transmitting portion includes an inclined surface and a vertical surface, and the inclined surface is inclined to the first light transmitting portion and the second optical surface In between, the vertical surface is perpendicular to between the first light-transmitting portion and the second optical surface, and the backlight light incident to the film layer unit converges when exiting from the inclined surface and the vertical surface.
  • each film layer unit includes a substrate and a plurality of microstructures, the substrate includes an upper surface and a lower surface opposite to the upper surface, and the plurality of microstructures are formed on the upper surface , wherein each microstructure includes an upper surface, the upper surface of the microstructure is a side surface of the microstructure facing away from the substrate and is flat, and the first light-transmitting portion includes the upper surface of the microstructure, The second optical surface is the lower surface of the substrate.
  • the plurality of microstructures are arranged on the upper surface of the substrate tightly without intervals or arranged at intervals with each other.
  • the first light-transmitting portion when the plurality of microstructures are arranged spaced apart from each other on the substrate, the first light-transmitting portion further includes an exposed portion where the microstructures are not formed on the upper surface of the substrate The interval part.
  • the width of each interval portion is equal, and the size and structure of each microstructure are the same.
  • the microstructure is a terrace or a cuboid.
  • the absolute value of the difference between the refractive index of the material of the microstructure and the refractive index of the material of the substrate is greater than or equal to 0 and less than 0.2.
  • the plurality of microstructures are arranged in multiple rows and multiple columns on the substrate; setting the optical film layer structure The area of the second optical surface is S1, and the total area of the first light-transmitting portion of the optical film structure is set to S2; the total area S2 of the first light-transmitting portion of the optical film structure is set to occupy the The percentage of the area S1 of the second optical surface of the optical film layer structure is P, and the percentage P is greater than or equal to 50% and less than or equal to 100%.
  • the width of the first light-transmitting part on the substrate along the column direction is smaller than that of the first light-transmitting part on the microstructure.
  • the width of a light-transmitting portion in the column direction; the width of the first light-transmitting portion on the substrate in the row direction is smaller than the width of the first light-transmitting portion on the microstructure in the row direction.
  • the width of the first light-transmitting portion on the substrate in the column direction is greater than or equal to one-fourth of the width of the first light-transmitting portion on the microstructure in the column direction; the substrate The width of the first light-transmitting portion on the microstructure in the row direction is greater than or equal to one quarter of the width of the first light-transmitting portion on the microstructure in the row direction.
  • the area of the first light-transmitting portion is smaller than the area of the pixel of the display panel.
  • the projection is performed along the direction perpendicular to the first light-transmitting part, and the plurality of first light-transmitting parts on the optical film structure
  • Each or part of the part is arranged opposite to a pixel in the display panel, and is located within the range of the opposite pixel.
  • the projection is performed along the direction perpendicular to the first light-transmitting part, and the plurality of first light-transmitting parts on the optical film structure
  • the parts are respectively arranged opposite to a plurality of pixels in the display panel one by one, and are located within the range where the opposite pixels are located.
  • the projection is performed along the direction perpendicular to the first light-transmitting part, and among the plurality of first light-transmitting parts on the optical film structure
  • Each or part of is respectively arranged opposite to a pixel in the display panel, and is located within the range of the opposite pixel.
  • the multiple microstructures on the first film layer unit are arranged in a single row and multiple columns, and the The multiple microstructures of the second film layer unit are arranged in a single column and multiple rows; set the area of the second optical surface of the first film layer unit as S1, and set the first light transmission of the first film layer unit
  • the total area of the portion is S2, the area of the second optical surface of the second film layer unit is set to S3, and the total area of the first light transmitting portion of the second film layer unit is set to S4;
  • the percentage of the total area S2 of the first light-transmitting portion of the first film layer unit to the area S1 of the second optical surface of the first film layer unit is P1, and the first light-transmitting part of the second film layer unit is set
  • the percentage of the total area S4 of the optical portion to the area S3 of the second optical surface of the second film layer unit is P2; the product of the percentage P1 and the percentage P
  • the substrate when the multiple microstructures on the first film layer unit are arranged at intervals, and the multiple microstructures on the second film layer unit are arranged at intervals, the substrate The width of the first light transmitting portion is smaller than the width of the first light transmitting portion on the microstructure, or the area of the first light transmitting portion on the substrate is smaller than that of the first light transmitting portion on the microstructure area.
  • the width of the first transparent portion on the substrate is greater than or equal to one-fourth of the width of the first transparent portion on the microstructure, or the first transparent portion on the substrate
  • the area of the light-transmitting portion is greater than or equal to a quarter of the area of the first light-transmitting portion on the microstructure.
  • the cross section of the microstructure is an isosceles trapezoid, and the height range of the microstructure
  • the width of the first light-transmitting portion on the microstructure is greater than or equal to 5 microns and less than 50 microns, and the base angle of the isosceles trapezoid ranges from 40 degrees to 50 degrees.
  • the width of the first transparent portion is greater than or equal to 5 microns and less than or equal to 25 microns.
  • the microstructures on the first film layer unit are arranged at intervals, and the plurality of microstructures on the second film layer unit are arranged at intervals, the microstructures
  • the range of the sum of the width of the first light transmitting portion on the structure and the width of the first light transmitting portion on the substrate is greater than or equal to 5 microns and less than or equal to 50 microns.
  • the projection is performed in a direction perpendicular to the first light-transmitting portion, the first light-transmitting portion on the first film layer unit and the first light-transmitting portion on the second film layer unit
  • the area of the overlapping area is smaller than the area of the pixel of the display panel.
  • the projection is performed in a direction perpendicular to the first light-transmitting portion, the first light-transmitting portion on the first film layer unit and the first light-transmitting portion on the second film layer unit
  • the area of the overlapping area is smaller than the area of the pixel of the display panel.
  • the plurality of microstructures on the first film layer unit are arranged tightly without intervals, and the plurality of microstructures on the second film layer unit are arranged tightly without intervals, along the vertical The direction of the first light-transmitting portion is projected, and the multiple first light-transmitting portions on the first film layer unit and the multiple first light-transmitting portions on the second film layer unit overlap multiple regions
  • Each or part of each is arranged opposite to a pixel in the display panel, and is located within the range of the opposite pixel.
  • the plurality of microstructures on the first film layer unit are arranged tightly without intervals, and the plurality of microstructures on the second film layer unit are arranged tightly without intervals, along Projection is performed perpendicular to the direction of the first light-transmitting portion, and multiple first light-transmitting portions on the first film layer unit overlap with multiple of the multiple first light-transmitting portions on the second film layer unit
  • the areas are respectively arranged opposite to the multiple pixels in the display panel one by one, and are located within the range where the opposite pixels are located.
  • the plurality of microstructures on the first film layer unit are arranged at intervals, and the plurality of microstructures on the second film layer unit are arranged at intervals, they are arranged along the vertical direction.
  • the direction of the first light-transmitting portion is projected, and the multiple first light-transmitting portions on the first film layer unit and the multiple first light-transmitting portions on the second film layer unit are in multiple overlapping regions
  • Each or part of is respectively arranged opposite to a pixel in the display panel, and is located within the range of the opposite pixel.
  • the backlight module further includes a diffusion sheet and a reflection sheet laminated with the optical film structure, the diffusion sheet and the optical film structure are located above the reflection sheet, wherein,
  • the detection light is infrared or near-infrared light
  • the diffusion sheet is a quantum dot film
  • the reflection sheet is made of a material that transmits infrared or near-infrared light and reflects visible light.
  • the backlight light provided by the backlight module for the display panel is visible light
  • the detection light is infrared or near-infrared light.
  • the present application also provides a liquid crystal display device, including a display panel and a backlight module, the display panel is used for displaying pictures, the backlight module is used for providing backlight light to the display panel, wherein the backlight module It is the backlight module described in any one of the above.
  • the present application also provides an electronic device, including any one of the above-mentioned liquid crystal display devices and a sensing module at least partially disposed under the liquid crystal display device, the sensing module passing through the display panel The display area and the backlight module receive the detection light reflected or/and emitted from the external object to perform corresponding sensing.
  • the sensing module is used to perform any one or more of fingerprint sensing, three-dimensional face sensing, and living body sensing according to the received detection light.
  • the backlight module of the present application includes an optical film structure that converges the backlight light and transmits the detection light, and at least part of the detection light passes through the optical film structure, the propagation direction remains unchanged and the position is shifted. Therefore, the sensor module located under the backlight module can obtain more accurate sensing data based on the detected light rays whose propagation direction is unchanged. Accordingly, the user experience of the electronic device is better.
  • the backlight module can achieve bidirectional penetration of the backlight light and the detection light without opening the backlight module.
  • the off-screen sensing is realized, so that the screen-to-body ratio of the electronic device can be further increased, and the visual experience of the electronic device can be improved.
  • FIG. 1 is a schematic front view of an electronic device provided by the first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a part of the structure of the electronic device shown in FIG. 1.
  • FIG. 3 is a schematic front view of an electronic device provided by a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of a part of the structure of the electronic device shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of a backlight module provided by a third embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a backlight module provided by a fourth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical film layer structure provided by a fifth embodiment of the present application.
  • FIG. 8 is a light path diagram when backlight light and detection light pass through the first film layer unit shown in FIG. 7.
  • FIG. 9 is a schematic diagram showing the correspondence between the pixel points and the optical film layer structure 5.
  • Fig. 10 is a cross-sectional view of the first film layer unit shown in Fig. 7 along IX-IX'.
  • FIG. 11 is a schematic structural diagram of an optical film layer structure provided by a sixth embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an optical film layer structure provided by a seventh embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical film layer structure provided by an eighth embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an optical film layer structure provided by a ninth embodiment of the present application.
  • FIG. 15 is a light path diagram when backlight light and detection light pass through the first film layer unit shown in FIG. 14.
  • Fig. 16 is a cross-sectional view of the first film layer unit shown in Fig. 14 taken along XV-XV'.
  • FIG. 17 is a schematic structural diagram of an optical film layer structure provided by a tenth embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an optical film layer structure provided by an eleventh embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an optical film layer structure provided by a twelfth embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of an optical film layer structure provided by a thirteenth embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of an optical film layer structure provided by a fourteenth embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of an optical film layer structure provided by a fifteenth embodiment of the present application.
  • connection or integral connection; it can be mechanical connection, it can be electrical connection or mutual communication; it can be direct connection or indirect connection through an intermediate medium, it can be the internal communication of two components or the mutual communication between two components Role relationship.
  • connection or integral connection; it can be mechanical connection, it can be electrical connection or mutual communication; it can be direct connection or indirect connection through an intermediate medium, it can be the internal communication of two components or the mutual communication between two components Role relationship.
  • this application may reuse reference numerals and/or reference letters in different examples. This repeated use is for simplifying and clearly expressing the application, and does not indicate the various embodiments and/or settings discussed. The specific relationship between.
  • the various specific processes and materials provided in the following description of this application are only examples for realizing the technical solutions of this application, but those of ordinary skill in the art should be aware that the technical solutions of this application can also be implemented by other methods not described below. Process and/or other materials.
  • the first embodiment of the present application provides an electronic device 1.
  • the electronic device 1 is, for example, but not limited to, a mobile phone, a notebook computer, a tablet computer, an e-book, a personal digital assistant, a touch interactive terminal device, etc.
  • the electronic device 1 includes a memory 12, a processor 14, a display device 3, and a sensor module 10 at least partially arranged on the back of the display device 3.
  • the display device 3 includes a display panel 30 and a backlight module 4 located under the display panel 30.
  • the display panel 30 is used for displaying images.
  • the backlight module 4 is used to provide backlight light for the display panel 30.
  • the backlight light emitted from the backlight module 4 to the display panel 30 is visible light. It is defined that the area of the display screen of the display device 3 is the display area, and the area outside the display area is the non-display area.
  • the display panel 30 is, for example, a liquid crystal display panel.
  • the display panel 30 may also be another suitable type of display panel, such as an electronic paper display panel.
  • the sensor module 10 is at least partially located below the backlight module 4 and is arranged directly opposite to the display area.
  • the sensing module 10 is used to receive the detection light emitted or/and reflected by the external object itself, and implement corresponding sensing according to the received detection light.
  • the sensor module 10 receives the detection light through the display panel 30 and the backlight module 4.
  • the external object is for example but not limited to the user's finger, the user's face or other suitable parts, or other suitable objects, but not limited to the human body.
  • the sensor module 10 is further configured to emit detection light to the external object.
  • the sensor module 10 transmits the detection light to an external object through the display panel 30 and the backlight module 4.
  • the sensing module 10 is, for example, but not limited to, for performing biometric information sensing, two-dimensional and/or three-dimensional image sensing, three-dimensional modeling, distance sensing, etc. according to the received detection light.
  • the biometric information sensing includes, but is not limited to, fingerprint information sensing, three-dimensional facial information sensing, living body information sensing, and so on.
  • the sensor module 10 transmits detection light to an external object through the display panel 30 and the backlight module 4, and receives light from the external object itself through the display panel 30 and the backlight module 4. Emitted or/and reflected detection light.
  • the sensor module 10 may also emit detection light to an external object without passing through the display device 3 or through some elements of the display device 3, and the sensor module 10 may pass through the The display panel 30 and the backlight module 4 receive the detection light emitted or/and reflected from the external object itself.
  • the sensor module 10 emits detection light to an external object through the display panel 30 and the backlight module 4, and the sensor module 10 does not pass through the display device 3 or through the display Some components of the device 3 receive the detection light emitted or/and reflected from the external object itself.
  • the structural arrangement of the sensor module 10 is not limited to those shown in the drawings of this application, and can also be other various suitable structures.
  • the memory 12 is, for example, but not limited to, pre-stored biometric information templates of one or more samples.
  • the memory 12 is used to store data generated by the sensing module 10 during the sensing process, sensing-related programs, or data required for implementing sensing-related functions.
  • the processor 14 is used to perform corresponding processing on the sensing information obtained by the sensing module 10, for example, comparing the biometric information obtained by the sensing module 10 with the biometric information stored in the memory 12
  • the information template realizes the identification of the external object according to the comparison result.
  • the processor 14 may be used to execute programs related to sensing.
  • the electronic device 1 can perform related functions according to the sensing result of the sensing module 10 or/and the processing result of the processor 14, such as turning off the screen, unlocking the screen, paying, logging in, and entering Lower level menus, open permissions, etc.
  • the memory 12 and the processor 14 are components provided in the electronic device 1 independently of the sensor module 10. However, alternatively, part or all of the memory 12 or/and the processor 14 may also be integrated in the sensor module 10.
  • the sensor module 10 includes a receiving unit 103.
  • the receiving unit 103 is located under the backlight module 4 and directly opposite to the display area, and is used to receive the emission or/and reflection from the external object itself through the display panel 30 and the backlight module 4
  • the returned detection light is used to realize corresponding sensing of the external object according to the received detection light.
  • the receiving unit 103 includes a lens 104 and an image sensor 106 located under the lens 104.
  • the detection light emitted or/and reflected by the external object itself passes through the display panel 30 and the backlight module 4 and is received by the image sensor 106 through the lens 104.
  • the image sensor 106 obtains an image of the external object or related sensing data, for example, according to the detected light, so as to achieve corresponding sensing.
  • the lens 104 may also be omitted or replaced with other elements, for example, replaced with a beam collimating element.
  • the sensor module 10 further includes a transmitting unit 102.
  • the emitting unit 102 is arranged under the backlight module 4.
  • the emitting unit 102 emits detection light to the external object through the backlight module 4 and the display panel 30.
  • the emitting unit 102 includes a sensing light source.
  • the detection light emitted by the sensing light source 102 passes through the display device 3, is reflected by an external object, and then folds back, passes through the display device 3 again, and is received by the receiving unit 103, so as to, for example, but not limited to, extract the light from it. Identify the relevant feature data of the external object.
  • the detection light has a specific wavelength.
  • the detection light can be used, but is not limited to, to sense a three-dimensional image of a fingerprint or a human face. It can be infrared or near-infrared light with a wavelength range of 800 nm to 1650 nm. Alternatively, in other embodiments, the detection light may also be other suitable detection signals, such as ultraviolet light, ultrasonic waves, electromagnetic waves, and so on.
  • the second embodiment of the present application provides an electronic device 2, which has roughly the same structure as the electronic device 1 provided in the first embodiment.
  • the main difference between the two is: the sensor
  • the emitting unit 202 of the module 20 is not arranged on the back of the display device 3, but is arranged outside the display area of the display device 3, for example but not limited to being arranged beside the display panel 30, Or beside the backlight module 4, or other suitable positions of the electronic device 1, etc.
  • the detection light emitted by the emitting unit 202 does not need to pass through the display device 3 or part of the components of the display device 3 before being projected on an external object.
  • Such a setting can be suitable for requiring the emitting power of the emitting unit 202 to be lower.
  • the emitting unit 202 needs to project a light spot with a preset pattern on an external object to realize three-dimensional surface sensing.
  • the emitting unit 202 is arranged at the center of the top front surface of the electronic device 2 and emits a detection beam to an external object through a protective cover (not labeled) of the electronic device 2.
  • the receiving unit 203 of the sensor module 20 is arranged under the backlight module 4 and is used to receive the detection light emitted or/and reflected by the external object itself through the display device 3.
  • the sensing module 10 or 20 receives the detection light emitted or/and reflected by the external object itself through the display panel 30 and the backlight module 4 for description.
  • this application is not limited to this.
  • taking the sensor module 20 as an example no matter whether any one or both of the transmitting unit 202 and the receiving unit 203 of the sensor module 20 are placed under the backlight module 4, they should fall into The scope of protection of this application.
  • the third embodiment of the present application provides a backlight module 4 that can be used in the above-mentioned display device 3.
  • the backlight module 4 can be used to gather the backlight light emitted to the display panel 30 and to transmit the detection light, so as to simultaneously provide backlight for the display panel 30 and provide the sensor module under the display device 3. Group 10 or 20 requirements.
  • the backlight module 4 includes a backlight source 40, a light guide plate 42, a reflection sheet 44, a diffusion sheet 46 and an optical film structure 5.
  • the light guide plate 42 includes a light emitting surface 420, a bottom surface 422 opposite to the light emitting surface 420, and a light incident surface 424 connected between the light emitting surface 420 and the bottom surface 422.
  • the backlight source 40 is disposed corresponding to the light incident surface 424 and is used to provide backlight light to the light guide plate 42.
  • the backlight light is mixed in the light guide plate 42 and then emitted from the light emitting surface 420.
  • the reflective sheet 44 is disposed on the bottom surface 422 of the light guide plate 42 and is used to reflect the backlight light leaked from the light guide plate 42 back into the light guide plate 42 to improve the utilization rate of the backlight light.
  • the reflective sheet 44 is made of, for example, a material that can transmit the detection light and reflect visible light, so that the backlight light in the visible light wavelength range can be reflected back to the light guide plate 42 and can transmit infrared or near-infrared detection. Light.
  • the optical film layer structure 5 is arranged on the light-emitting surface 420 side of the light guide plate 42 and is used to gather the backlight light emitted from the light guide plate 42 to improve the backlight brightness provided by the backlight module 4.
  • the optical film layer structure 5 includes a first film layer unit 501 and a second film layer unit 502.
  • the structures of the first film layer unit 501 and the second film layer unit 502 are, for example, but not limited to, completely the same.
  • the first film layer unit 501 is taken as an example for description.
  • the first film layer unit 501 includes a first optical surface 503 and a second optical surface 504 disposed oppositely.
  • the first optical surface 503 faces away from the light emitting surface 420 of the light guide plate 42.
  • the second optical surface 504 faces the light emitting surface 420 of the light guide plate 42.
  • the first optical surface 503 is a continuous surface, and the second optical surface 504 is a continuous surface. Wherein, the entire first optical surface 503 is non-planar.
  • the stacking direction of the light guide plate 42, the diffusion sheet 46, and the optical film structure 5 is defined as the vertical direction Y.
  • the first optical surface 503 includes a first plane 520 perpendicular to the vertical direction Y
  • the second optical surface 504 includes a second plane perpendicular to the vertical direction.
  • the second optical surface 504 is a plane as a whole, and correspondingly, the second optical surface 504 is the second plane.
  • the second optical surface 504 may not be a flat surface as a whole, but in addition to including a second flat surface, it may also include a curved surface or a vertical direction.
  • Y is not perpendicular to the slope, etc.
  • the first plane 520 is parallel to the second plane. According to the principle of optical refraction, when the detected light passes through the first film layer unit 501, at least part of the detected light passes through the parallel first plane 520 and After the second plane passes, the propagation direction remains unchanged and the position shifts.
  • the first optical surface 503 includes a plurality of first planes 520 arranged at intervals. Each first plane 520 is opposite to the second plane. At least a part of the first film layer unit 501 through the opposing first plane 520 and the second plane passes through at least a part of the detection light that has the same propagation direction and position shift.
  • the sensing information obtained by the sensing module 10 or 20 according to the received part of the detected light whose propagation direction is unchanged is more accurate.
  • the first plane 520 and the second plane of the first film layer unit 501 when manufacturing the first film layer unit 501, due to errors in the manufacturing process or other process factors and other adverse effects, the first plane 520 and the second plane of the first film layer unit 501 actually manufactured They may not be parallel as ideally, that is, the first plane 520 and the second plane are substantially parallel. Correspondingly, the propagation direction of at least a part of the detection light beam passing through the first film layer unit 501 through the first plane 520 and the second plane is substantially unchanged.
  • the first plane 520 is defined as a first transparent portion, and the first optical surface 503 further includes a second transparent portion 522, and the second transparent portion 522 is not perpendicular to the vertical direction Y.
  • the backlight light incident to the first film layer unit 501 emerges from the second light transmitting portion 522, it will converge.
  • the second transparent portion 522 includes an inclined surface or/and a vertical surface.
  • the second light transmitting portion 522 includes an inclined surface and a vertical surface (see FIG. 7 together).
  • the inclined surface is inclined between the first transparent portion 520 and the second optical surface 504.
  • the vertical plane is perpendicular to between the first transparent portion 520 and the second optical surface 504.
  • two inclined surfaces are connected between adjacent first light-transmitting portions 520.
  • the included angle between the adjacent first transparent portion 520 and the inclined surface is an obtuse angle.
  • the included angle between the two inclined surfaces located between the adjacent first light transmitting portions 520 is an acute angle.
  • the second light-transmitting portion 522 may also be an inclined surface or a vertical surface.
  • the first light-transmitting portions 520 and the second light-transmitting portions 522 may also alternately appear, for example, respectively.
  • the vertical distances from the adjacent first light-transmitting portions 520 to the second optical surface 504 are different, and the angles between the second light-transmitting portions 522 and the adjacent first light-transmitting portions 520 are all obtuse angles .
  • the second film layer unit 502 and the first film layer unit 501 have the same or similar structure, and the second film layer unit 502 will not be repeated here.
  • the first film layer unit 501 is located above the second film layer unit 502.
  • Each first light transmitting portion 520 on the first film layer unit 501 extends along a first direction, for example.
  • Each first light transmitting portion 520 on the second film layer unit 502 extends along the second direction.
  • the first direction is perpendicular to the second direction.
  • the area of the second optical surface 504 of the first film layer unit 501 is set as S1.
  • the area of the second optical surface 504 of the second film layer unit 502 is set as S3.
  • the inventor found that when the product N is equal to or greater than 50% and less than 100%, the amount of detection light emitted from the optical film structure 5 with the same propagation direction is more appropriate, so The sensing information obtained by the sensing module 10 according to the received detection light is more accurate.
  • the optical film layer structure 5 may also be a single-layer film structure.
  • the percentage of the total area of each first light-transmitting portion 520 of the single-piece film structure 5 to the area of the second optical surface 504 is, for example, greater than or equal to 50% and less than or equal to 100%.
  • the diffusion sheet 46 is arranged on one side of the light exit surface 420 of the light guide plate 42 and is used to diffuse the backlight light to achieve an atomization effect.
  • the diffusion sheet 46 diffuses the backlight light in the visible light wavelength range and transmits infrared or near-infrared detection light.
  • the wavelength range of the backlight light is, for example, 380 nm to 760 nm.
  • the wavelength range of the detection light is, for example, 800 nm to 1650 nm.
  • the diffusion effect of the diffusion sheet 46 on the light can be measured by haze.
  • the haze refers to the percentage of the light intensity of the transmitted light that deviates from the incident direction by more than 2.5 degrees after passing through the diffuser 46 to the light intensity of the original incident light. The greater the haze of the light after passing through the diffusion sheet 46, the stronger the diffusion effect of the diffusion sheet 46 on the light. If the haze exceeds 30%, it is considered that the diffusion sheet 46 has a diffusion effect on the light.
  • the diffusing effect of the diffusion sheet 46 on the backlight light is greater than that on the detection light.
  • the haze of the diffusion sheet 46 to the passing detection light is less than 30%.
  • the diffusion sheet 46 can realize the diffusion of light by forming a light diffusion structure on the substrate.
  • the light diffusion structure may be a ground glass-like rough microstructure.
  • the substrate is a light-transmitting material, which can be selected from any one or more of polycarbonate (PC), polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET) Combinations, or other materials that meet the above requirements for light transmission.
  • the average size of the ground glass-like rough microstructures is in the visible light wavelength range from 380 nanometers (nm) to 760 nm, so that the backlight light belonging to the visible light range can have a more obvious diffusion effect and the longer wavelength infrared or Near-infrared detection light has strong penetrability.
  • the diffusion sheet 46 can be made by incorporating diffusion particles on a substrate.
  • the diffusion particles may be made of materials that transmit infrared or near-infrared light and reflect visible light.
  • the average size range of the diffusion particles is the same as the visible light wavelength range between 380 nanometers (Nanometer, nm) and 760 nm, so that the backlight light belonging to the visible light range can have a more obvious diffusion effect and the longer wavelength infrared or near infrared
  • the detection light has strong penetrability.
  • the diffusion sheet 46 is a membrane layer with a nanoporous structure.
  • the material of the nanoporous membrane layer may be, but is not limited to, a polyethylene fabric (Nanoporous Polythylene Textile).
  • the polyethylene fabric material is formed with a plurality of nano-sized pores, and the pores have a size range of 100 nm to 1000 nm, so that they can transmit infrared or near-infrared light but can scatter visible light.
  • the present application is not limited to the diffusion sheet 46 listed in the above embodiments, and the diffusion sheet 46 may also be of other suitable structures or/and materials.
  • the diffusion sheet 46 may include an upper diffusion sheet 461 and a lower diffusion sheet 462.
  • the upper diffusion sheet 461 and the lower diffusion sheet 462 have a similar structure, and both can be used to diffuse the backlight light and transmit the detection light emitted or/and reflected by an external object.
  • the upper diffuser 461 and the lower diffuser 462 have their own functional bias.
  • the upper diffuser 461 emphasizes the fogging effect of the backlight light, while the lower diffuser 462 has a relatively high transmittance of the backlight light.
  • the order of the upper diffusion sheet 461, the lower diffusion sheet 462, the first film layer unit 501 and the second film layer unit 502 is not specifically limited.
  • the first film layer unit 501 and the second film layer unit 502 are disposed between the upper diffusion sheet 461 and the lower diffusion sheet 462.
  • the upper diffusion sheet 461 is disposed between the first film layer unit 501 and the second film layer unit 502.
  • the lower diffusion sheet 462 is disposed between the second film layer unit 502 and the light guide plate 42.
  • the fourth embodiment of the present application provides a backlight module 4'that can be used in the above-mentioned display device 3 for replacing the above-mentioned backlight module 4 in the display device 3.
  • the structure of the backlight module 4'and the backlight module 4 are substantially the same.
  • the main difference between the two is that the diffuser 46 of the backlight module 4 is replaced with a quantum dot film.
  • the diffusion effect of the quantum dot film 46 on the backlight light is greater than the diffusion effect on the infrared light or the near-infrared light.
  • the quantum dot film 46 contains a quantum dot material 463.
  • the quantum dot material 463 can absorb blue backlight light and convert it into green backlight light and red backlight light respectively. Therefore, the backlight light source 40 only needs to be a blue light source, and the blue backlight light emitted is A part of the quantum dot film 46 is absorbed by the quantum dot material 463 and converted into green backlight light and red backlight light, and then mixed with the unabsorbed part of the blue backlight light to form white backlight light and exit. Since the quantum dot material 463 emits the converted light from itself as the center during the conversion of light emission, and also has a scattering effect, the white backlight light converted by the quantum dot film 46 also has good diffusibility.
  • the quantum dot material 463 does not absorb light in the wavelength range of infrared or near-infrared light or absorbs less infrared or near-infrared light, so it can transmit the detection light.
  • the backlight light source 40 can also emit ultraviolet light to the light guide plate 42, and the ultraviolet light emitted from the light guide plate 42 enters the quantum dot film 46, and the quantum dot film 46 converts The ultraviolet light is red light, green light and blue light and emits a converted visible light beam.
  • the inventor found that when the quantum dot film 46 is used as a diffuser, it does not need to be provided with two upper and lower diffusers, and has a small effect on the diffusion of the detection beam. Therefore, the The corresponding sensing data obtained by the sensing module 10 according to the received detection beam is more accurate.
  • this application is not limited to the backlight modules mentioned in the above embodiments.
  • the structure or materials of the backlight module may also have other suitable modifications.
  • the application of this application focuses on the structure of the optical film layer.
  • the fifth embodiment of the present application provides an optical film layer structure 5, which can be used in the backlight module of each embodiment having the two-piece optical film layer unit described above.
  • the optical film structure 5 is used to gather the backlight light and at least part of the detection light has the same propagation direction and position shift when passing through the detection light, so as to simultaneously increase the display brightness of the display device 3 and the display
  • the sensor module 10 or 20 is arranged below the device 3 for sensing requirements.
  • the optical film layer structure 5 includes a first film layer unit 501 and a second film layer unit 502.
  • the structures of the first film layer unit 501 and the second film layer unit 502 are, for example, but not limited to, completely the same, and the first film layer unit 501 is now taken as an example for description.
  • the first film layer unit 501 includes a substrate 500 and a plurality of microstructures 52.
  • the substrate 500 includes an upper surface and a lower surface opposite to the upper surface.
  • the plurality of microstructures 52 are closely arranged on the upper surface of the substrate 500.
  • the plurality of microstructures 52 are used to converge the backlight light and transmit the detection light. At least a part of the detection light passes through the microstructure 52 and the substrate 500 in the same propagation direction and position Offset occurred.
  • the plurality of microstructures 52 on the first film layer unit 501 are arranged in a single row and multiple columns, and each microstructure 52 extends in a first direction and is arranged in a second direction.
  • One direction is the column direction
  • the second direction is the row direction.
  • the multiple microstructures 52 on the second film layer unit 502 are arranged in a single column and multiple rows, wherein each microstructure 52 extends along the second direction and is arranged along the first direction.
  • the first direction is perpendicular to the second direction.
  • the multiple microstructures 52 on the first film layer unit 501 may also be arranged in a single row and multiple rows, and the multiple microstructures 52 on the second film layer unit 502 are arranged in a single row and multiple rows.
  • the substrate 500 and the microstructure 52 are made separately, and made of different materials.
  • the material of the substrate 500 can be selected from any one or a combination of polycarbonate (PC), polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET). , Or other materials that meet the above light transmission requirements.
  • the microstructure 52 is made of, for example, a curable material. During production, a curable material, such as UV glue, is first coated on the substrate 500, and the curable material is formed into a specific shape of the microstructure 52 by a molding process, and finally the microstructure 52 is cured.
  • the absolute value of the refractive index difference between the substrate 500 and the microstructure 52 is less than 0.3.
  • the refractive index of the microstructure 52 is, for example, 1.45 to 1.55, and the refractive index of the substrate 500 is, for example, 1.6 to 1.8.
  • the absolute value of the refractive index difference between the substrate 500 and the microstructure 52 is less than 0.2.
  • the refractive index of the microstructure 52 is less than the refractive index of the substrate 500.
  • the refractive index of the microstructure 52 is, for example, 1.45 to 1.55, and the refractive index of the substrate 500 is, for example, 1.64.
  • the absolute value of the refractive index difference between the substrate 500 and the microstructure 52 is small, the direction of the detection light emitted from the first film layer unit 501 is compared with the direction of the detection light when it is incident. The deflection is small or there is no deflection.
  • the sensing module 10 can restore the real situation of the information to be sensed to a greater extent;
  • the absolute value of the refractive index difference between the substrate 500 and the microstructure 52 is smaller, the more detection light transmitted by the first film layer unit 501, the less the reflected detection light, which can improve detection
  • the light transmittance of the light, and further, the detection light obtained by the sensor module 10 increases, which further improves the sensing accuracy.
  • the refractive index difference between the substrate 500 and the microstructure 52 will correspond to different values. Accordingly, the absolute value of the refractive index difference between the two can also be selected to be greater than 0.3 , But the sensing accuracy of the sensing module 10 or 20 is correspondingly reduced.
  • Each microstructure 52 includes an upper surface (or called a top surface), and the upper surface of the microstructure 52 is a side surface of the microstructure 52 facing away from the substrate 500.
  • the upper surface of the microstructure 52 is a plane as a whole.
  • the upper surface of the microstructure 52 is perpendicular to the vertical direction Y.
  • the upper surface and the lower surface of the substrate 500 are planes parallel to each other and perpendicular to the vertical direction Y.
  • the second optical surface 504 is the lower surface of the substrate 500.
  • the first light transmitting portion 520 of the first optical surface 503 is the upper surface of the microstructure 52.
  • each microstructure 52 further includes two first side surfaces 523 and two second side surfaces 524, wherein the first side surface 523 is opposite to the first direction or Intersecting side surfaces, the second side surface 524 is a side surface extending along the first direction.
  • the second side surface 524 is an inclined surface
  • the first side surface 523 is a vertical surface.
  • the second transparent portion 522 includes the second side surface 524 and the first side surface 523.
  • second side surfaces 524 Between the arrangement direction of the microstructures 52, there are two connected second side surfaces 524 between adjacent first light-transmitting parts 520.
  • the angle between the adjacent first transparent portion 520 and the second side surface 524 is an obtuse angle.
  • the included angle between the two second side surfaces 524 located between the adjacent first transparent portions 520 is an acute angle.
  • the microstructure 52 is, for example, but not limited to, a ladder.
  • each microstructure 52 is the same.
  • the vertical distances from the first light-transmitting portions 520 to the second optical surface 504 are the same.
  • the vertical distances from the first transparent portion 520 to the second optical surface 504 of the plurality of microstructures 52 may also be different.
  • the sensing module 10 or 20 performs sensing, when the detection light emitted or/and reflected by the external object itself is transmitted to the first film layer unit 501, there is At least part of the detected light passes through the second optical surface 504 of the first film layer unit 501 through the first light transmitting portion 520, and at the second optical surface 504 of the second film layer unit 502 through the first light transmitting portion 520. After the two optical surfaces 504, the propagation direction thereof is basically unchanged, and the position is shifted, so that the relevant sensing data or information about the external object obtained by the receiving unit 103 or 203 is more accurate.
  • the light path is reversible. After the detection beam emitted by the sensor module 10 passes through the optical film structure 5, at least some of the detection beams have the same propagation direction and position shift.
  • the sensor module 10 receives the detection light beam emitted or/and reflected by the external object itself through the display device 3. It is required that the propagation direction of the detection light beam when passing through the optical film layer structure 5 is unchanged, so that a more accurate sensing result can be obtained.
  • the backlight light will converge when passing through the second light transmitting portion 522 of the second film layer unit 502 and the second light transmitting portion 522 of the first film layer unit 501, so as to improve the brightness of the backlight light.
  • the product N is greater than or equal to 50% and less than 100%.
  • the distance between the first light-transmitting portion 520 and the second optical surface 504 of the first optical surface 503 remains substantially unchanged, that is, they maintain a substantially parallel relationship with each other.
  • optical refraction The law shows that the propagation direction of the detected light rays passing through at least a part of the second optical surface 504 through the first light transmitting portion 520 is basically unchanged, but the position is shifted D.
  • the detection light incident from the first light-transmitting portion 520 is named O1
  • the detection light O1 exits the second optical surface 504 after being refracted multiple times in the first film layer unit 501 named
  • the detection light emitted from the second optical surface 504 is O2. It can be seen from the law of optical refraction that the detection light O2 has a position shift D compared to the detection light O1, and the transmission direction remains unchanged.
  • FIG. 8 is a schematic diagram.
  • FIG. 8 does not clearly show the refraction phenomenon that occurs when the detection light is transmitted at the interface between the microstructure 52 and the substrate 500.
  • the detection light when the detection light is transmitted from the second optical surface 504 to the first optical surface 503, at least part of the detection light passes through the first light-transmitting portion 520, and its transmission direction remains unchanged and the position Offset occurred.
  • the emission unit 102 when the detection light emitted by it passes through the optical film structure 5, at least part of the detection light passes through the optical film structure and before passing through the optical film structure. After passing through the optical film layer structure, the transmission direction is basically unchanged and the position is shifted.
  • the parallel relationship between the first transparent portion 520 of the first optical surface 503 and the second optical surface 504 may have a reasonable deviation range.
  • the optical film Since the second light-transmitting portion 522 of the first optical surface 503 is not parallel to the second optical surface 504, according to the law of light refraction, the optical film is transmitted through the second light-transmitting portion 522 The light of the layer structure 5 will be deflected in a more obvious direction, which can be used to gather the backlight light in a preset direction to improve the brightness of the backlight.
  • the microstructure 52 may be an integral structure with the substrate 500, and the materials of the two may be the same or different. In addition, when the microstructure 52 and the substrate are made separately, the materials of the two may also be the same.
  • the microstructure 52 and the substrate 500 may also be two independent film layers bonded together by an adhesive.
  • the adhesive may include, but is not limited to, a pressure sensitive adhesive or an ultraviolet curable adhesive.
  • FIG. 9 is a schematic diagram of the corresponding relationship between a pixel point R of the display panel 30 and the optical film structure 5.
  • the display panel 30 includes a plurality of pixels, and the plurality of pixels includes, for example, but not limited to, a plurality of red (R) pixels, a plurality of green (G) pixels, and a plurality of blue (B) pixels.
  • the multiple red (R) pixel points, multiple green (G) pixel points, and multiple blue (B) pixel points are arranged according to a predetermined rule.
  • the size of each pixel is the same, for example, a square with a length and width ranging from 30 microns to 50 microns. Now take the red (R) pixel as an example for description.
  • the backlight light passing through the second light-transmitting portion 522 is more concentrated than the backlight light passing through the first light-transmitting portion 520.
  • the brightness of the backlight light is stronger than the brightness of the backlight light that passes through the first light transmitting portion 520.
  • first light-transmitting portion 520 on the first film layer unit 501 and the first light-transmitting portion 520 on the second film layer unit 502 are in the opposite direction along the vertical direction Y.
  • the overlap area during projection is M.
  • the overlapping area M is also square.
  • the area or width of the overlapping region M is smaller than the area or width of the pixel point R, so that the backlight light passing through the first light transmitting portion 520 and the second light transmitting portion 522 Any of the backlight light can illuminate the pixel point R.
  • the backlight brightness of each pixel on the display panel 30 is more uniform.
  • the transmittance of the detected light that has a small or substantially constant change in the propagation direction after passing through the optical film structure 5 is also more suitable, which is beneficial to the sensor module 10 or 20 to perform corresponding detection.
  • each pixel point or each overlapping area M may also be rectangular, but not limited to a square.
  • the area of the overlapping area M is smaller than the area of the pixel.
  • the projection is performed along a direction perpendicular to the first light-transmitting portion 520, and the plurality of first light-transmitting portions 520 on the first film layer unit 501 and the second film
  • the multiple overlapping regions M of the multiple first light-transmitting portions 520 on the layer unit 502 are respectively arranged opposite to the multiple pixels of the display panel 30, and are located within the range of the opposite pixels.
  • the projection is performed in a direction perpendicular to the first light-transmitting portion 520, and the multiple first light-transmitting portions 520 on the first film layer unit 501 and the second film layer unit 502
  • Each or part of the multiple overlapping regions M of the multiple first light-transmitting parts 520 is respectively arranged opposite to a pixel in the display panel 30, and is located within the range of the opposite pixel or does not fall completely. Within the range of the opposite pixel.
  • one pixel can also correspond to multiple overlapping areas M and is not limited to one overlapping area M.
  • the area of the overlapping area M may also be larger than the area of the pixel points, and the display effect of the display panel is relatively deteriorated.
  • the cross section of the first film layer unit 501 is trapezoidal.
  • the trapezoid is an isosceles trapezoid
  • the base angle ⁇ of the isosceles trapezoid ranges from 40 degrees to 50 degrees
  • the width K of the first light-transmitting portion 520 ranges from greater than or equal to 5 microns and less than 50 microns
  • the height H ranges from 10 microns to 25 microns.
  • the inventor found that after the detection light passes through the optical film structure 5 of the microstructure 52 with the above-mentioned size range, the amount of the detection light with the same propagation direction and position shift is more appropriate, which is beneficial to The sensing module 10 or 20 performs corresponding sensing.
  • the convergence of the backlight light after passing through the optical film layer structure 5 is also relatively suitable for the display effect.
  • the base angle ⁇ of the isosceles trapezoid is the angle between the second side surface 524 and the second plane.
  • the bottom angle ⁇ is preferably 45 degrees.
  • the width K is less than or equal to 25 micrometers, the backlight converging effect of the first film layer unit 501 is stronger, and the detection light passing through the first film layer unit 501 with the same propagation direction
  • the luminous flux is also relatively suitable.
  • the manufacturer can further adjust the width, height H, bottom angle ⁇ and other parameters of the microstructure 52 to meet the different needs of different customers.
  • the sixth embodiment of the present application provides an optical film layer structure 5', which can replace the above-mentioned optical film layer structure 5 and be applied to the backlight mold of each embodiment with the two-piece optical film layer unit. Group.
  • the structure of the optical film layer structure 5'and the optical film layer structure 5 are roughly the same. The main difference between the two is: the optical film layer structure 5'is on the second optical surface 504 of the first film layer unit 501 A light diffusion layer 505 for diffusing light is provided.
  • the light diffusion layer 505 is a layer of ground glass-like rough textures to diffuse incident backlight light.
  • the light diffusion layer 505 may be directly formed on the second optical surface 504, or a coating layer may be laid on the second optical surface 504 and then the coating layer may be formed into ground glass-like rough textures.
  • the material of the light diffusion layer 505 may be different from that of the substrate 500 of the first film layer unit 501, and is a material that can transmit infrared or near-infrared light and reflect visible light.
  • the rough texture for example, may be a plurality of small protrusions.
  • the average size of the small protrusions can be in the visible light wavelength range from 380 nanometers (nm) to 760 nm, so that it can have a more obvious scattering effect on visible light and a longer wavelength infrared or near-infrared detection light. Strong penetration.
  • the optical film layer structure 5' is applied to the aforementioned backlight module 4, one of the upper diffusion sheet 461 or the lower diffusion sheet 462 may be omitted.
  • the diffusion layer 505 may alternatively be formed on the second optical surface 504 of the second film layer unit 502.
  • the seventh embodiment of the present application provides an optical film layer structure 5", which can replace the above-mentioned optical film layer structure 5 and be applied to the backlight mold of each embodiment with the two-piece optical film layer unit.
  • the optical film structure 5" and the optical film structure 5' have substantially the same structure, and the main difference between the two is that the light diffusion layer 505 of the optical film structure 5" includes a flat portion 506.
  • the flat portion 506 has a flat surface on the side facing away from the second optical surface 504, so that when the detection light emitted or/reflected by the external object itself passes through the flat portion 506, the impact on the Detection of light scattering.
  • the sensing information obtained by the sensor module 10 or 20 located under the display device 3 according to the received detection light is closer to real information.
  • the eighth embodiment of the present application provides an optical film layer structure 5"', which can replace the above-mentioned optical film layer structure 5 and be applied to the backlight of each embodiment having a two-piece optical film layer unit.
  • the structure of the optical film structure 5"' and the optical film structure 5' are roughly the same.
  • the main difference between the two is that the light diffusion layer 505 of the optical film structure 5"' is formed A coating on the second optical surface 504, and a plurality of diffusion particles 507 for diffusing light are incorporated in the coating.
  • the diffusion particles 507 can be transparent to infrared or near It is made of material that reflects infrared light and reflects visible light.
  • the average size range of the diffusion particles 507 is the same as the visible light wavelength range between 380 nanometers (Nanometer, nm) and 760 nm, so that it can have a more obvious scattering effect on visible light. Longer wavelength infrared or near-infrared detection light has stronger penetrability.
  • the ninth embodiment of the present application provides an optical film layer structure 5"", which can replace the above-mentioned optical film layer structure 5 and be applied to the above-mentioned two-piece optical film layer unit In the backlight module of each embodiment.
  • the structure of the optical film layer structure 5"" is substantially the same as that of the optical film layer structure 5.
  • the main difference between the two is that the multiple microstructures 52 of the optical film layer structure 5"" are on the substrate 500 Arranged at intervals.
  • the structure and size of the plurality of microstructures 52 are the same, and the plurality of microstructures 52 are arranged at equal intervals.
  • the structures and sizes of the plurality of microstructures 52 can also be different, and they are arranged at non-equal intervals.
  • the portion where the microstructure 52 is not formed on the upper surface of the substrate 500 is a flat plane and is parallel to the second plane, the microstructure 52 is not formed on the upper surface of the substrate 500
  • the part is also the first plane of the first optical film layer unit 501, that is, the first light-transmitting portion 520.
  • At least part of the detected light beams after passing through the first transparent portion 520 and the second optical surface 504 on the substrate 500 have the same transmission direction and position shift.
  • a second light transmitting portion 522 is connected between adjacent first light transmitting portions 520, and the angle between the second light transmitting portion 520 and the adjacent first light transmitting portion 520 is obtuse.
  • two second light-transmitting parts 522 are connected between adjacent second light-transmitting parts 520 of the optical film structure 5. Therefore, in this embodiment, the area of the second light-transmitting portion 522 between the adjacent first light-transmitting portions 520 can be relatively small, so that when the detection light passes through the optical film structure 5"" The uniformity of is better than that when passing through the optical film structure 5.
  • the sensing data obtained by the sensing module 10 or 20 is better.
  • the optical film layer structure 5"" has a better backlight convergence effect.
  • the area or width of the overlapping area M of the first light transmitting portion 520 of the optical film structure 5"" is smaller than that of the pixel The area or width of the point R, so that both the backlight light passing through the first light transmitting portion 520 and the backlight light passing through the second light transmitting portion 522 can irradiate the pixel point R.
  • the backlight brightness of each pixel on the display panel 30 is more uniform, and the sensing module 10 or 20 located under the backlight module 4 is also more suitable for receiving the detection light, thereby obtaining a better sensing effect .
  • the cross section of the first film layer unit 501 is trapezoidal.
  • the spacing G between adjacent microstructures 52 is equal, and the spacing G is smaller than the width K of the first light-transmitting portion 520 on the microstructure 52 and greater than or It is equal to a quarter of the width K. Therefore, while ensuring that the number of microstructures 52 on the first film layer unit 501 is sufficient, the uniformity of the detection light and the backlight light can also be ensured.
  • the trapezoid is an isosceles trapezoid
  • the base angle ⁇ of the isosceles trapezoid ranges from 40 degrees to 50 degrees
  • the height ranges from 10 microns to 25 microns
  • the width K ranges from greater than or equal to 5 microns and less than 50. Micrometers.
  • the inventor found that after the detection light passes through the first film layer unit 501 with the above-mentioned size range, the amount of detection light with the same propagation direction and position shift is more appropriate, which is beneficial to the sensor model.
  • Group 10 or 20 (see Figure 2 and Figure 4) perform corresponding sensing.
  • the convergence of the backlight light after passing through the optical film layer structure 5 is also relatively suitable for the display effect.
  • the sum of the width of the first light transmitting portion 520 on the microstructure 52 and the width of the first light transmitting portion 520 on the substrate 500 is Greater than or equal to 5 microns and less than 50 microns.
  • the gap G is less than the width K of the first light-transmitting portion 520 on the microstructure 52 and greater than or equal to one-half of the width K.
  • the distance G is smaller than the width K of the first light-transmitting portion 520 on the microstructure 52.
  • the manufacturer can further adjust the width K, height H, bottom angle ⁇ and other parameters between the microstructures 52 to meet different customer requirements for products. Different needs.
  • the total area S2 of the first light transmitting portion 520 of the first film layer unit 501 includes the total area of the first light transmitting portion 520 on the microstructure 52 and the total area of the first light transmitting portion 520 on the substrate 500.
  • the total area S4 of the first light transmitting portion 520 of the second film layer unit 502 includes the total area of the first light transmitting portion 520 on the microstructure 52 and the total area of the first light transmitting portion 520 on the substrate 500.
  • the product N is greater than or equal to 50% and less than 100%.
  • the tenth embodiment of the present application provides an optical film layer structure 6, which can replace the above-mentioned optical film layer structure 5 and be applied to the backlight module of each embodiment having a two-piece optical film layer unit. in.
  • the structure of the optical film layer structure 6 and the optical film layer structure 5"" are roughly the same.
  • the main difference between the two is that the second light-transmitting portion 622 of the microstructure 62 of the optical film layer structure 6 is a vertical surface , Perpendicular to between the first transparent portion 620 and the second optical surface 604.
  • the microstructure 62 is a cuboid.
  • the product N is equal to 100%.
  • the eleventh embodiment of the present application provides an optical film layer structure 7, which can replace the above-mentioned optical film layer structure 5 and be applied to the backlight mold of each embodiment having a two-piece optical film layer unit. Group.
  • the structure of the optical film layer structure 7 and the optical film layer structure 6 are substantially the same.
  • the main difference between the two is that the microstructure 72 of the optical film layer structure 7 is a long triangular prism.
  • the microstructures 72 on the first film layer unit 701 and the second film layer unit 702 are all arranged at intervals.
  • a twelfth embodiment of the present application provides an optical film layer structure 8, which can replace the optical film layer structure 5 and be applied to the backlight modules of the foregoing embodiments.
  • the optical film layer structure 8 is a single-piece film layer unit, which is roughly the same as the first film layer unit 501 of the optical film layer structure 5, and the main difference between the two is: the plurality of optical film layer structures 8
  • the microstructures 82 are arranged in an array of multiple rows and multiple columns on the substrate 800.
  • the microstructure 82 is a terrace.
  • the area of the second optical surface 804 of the optical film structure 8 is set as S1, and the total area (or the sum of the areas) of the first light transmitting portion 820 of the optical film structure 8 is S2; Set the percentage of the total area S2 of the first light-transmitting portion 820 of the optical film structure 8 to the area S1 of the second optical surface 804 of the optical film structure 8 as P, and the percentage P is greater than or Equal to 50% and less than 100%.
  • the area of the first light transmitting portion 820 is smaller than the area of the pixel of the display panel 30.
  • the area of the first light-transmitting portion 820 may also be greater than or equal to the area of the pixels of the display panel 30.
  • each or part of the first light-transmitting portion 820 is arranged opposite to a pixel of the display panel 30, and is located within the range of the opposite pixel or does not completely fall on the opposite pixel. Within the range of the pixel.
  • the projection is performed along a direction perpendicular to the first light-transmitting portion 820, and the multiple first light-transmitting portions 820 on the optical film structure 8 and the multiple pixels of the display panel 30 They are arranged one by one, and are located within the range of the opposite pixels.
  • one pixel can also correspond to multiple first light-transmitting parts 820.
  • the thirteenth embodiment of the present application provides an optical film layer structure 8'that can be used in the above-mentioned backlight module, which is roughly the same as the optical film layer structure 8, and the main difference between the two is:
  • the microstructures of the film structure 8 ′ are arranged at intervals on the substrate 800.
  • the width of the first light transmitting portion 820 on the substrate 800 along the column direction is smaller than the width of the first light transmitting portion 820 on the microstructure 82 along the column direction and greater than or equal to the first light transmitting portion 820 on the microstructure 82.
  • a quarter of the width of the light portion 820 in the column direction; the width of the first light transmission portion 820 on the substrate 800 in the row direction is smaller than the width of the first light transmission portion 820 on the microstructure 82 in the row direction It is greater than or equal to a quarter of the width of the first light-transmitting portion 820 on the microstructure 82 in the row direction.
  • the width of the first light-transmitting portion 820 on the substrate 800 in the column direction is smaller than the width of the first light-transmitting portion 820 on the microstructure 82 in the column direction and is greater than or equal to that of the microstructure 82.
  • One half of the width of the first light-transmitting portion 820 in the column direction; the width of the first light-transmitting portion 820 on the substrate 800 in the row direction is smaller than that of the first light-transmitting portion 820 on the microstructure 82
  • the width in the row direction is greater than or equal to one half of the width in the row direction of the first light transmitting portion 820 on the microstructure 82.
  • the width of the first light-transmitting portion 820 on the substrate 800 in the column direction is smaller than the width of the first light-transmitting portion 820 on the microstructure 82 in the column direction;
  • the width of the light portion 820 in the row direction is smaller than the width of the first light transmission portion 820 on the microstructure 82 in the row direction.
  • the fourteenth embodiment of the present application provides an optical film layer structure 9 that can be used in the above-mentioned backlight module, which is roughly the same as the optical film layer structure 8'.
  • the main difference between the two is:
  • the second light-transmitting parts 922 of the microstructure of the film structure 9 are all vertical surfaces.
  • each of the microstructures 82 is a rectangular parallelepiped.
  • the percentage P is equal to 100%
  • the fifteenth embodiment of the present application provides an optical film layer structure 9'that can be used in the above-mentioned backlight module, which is roughly the same as the optical film layer structure 8', and the main difference between the two is:
  • the microstructure of the optical film structure 9' is a triangular prism.
  • microstructures described in the above embodiments, and the microstructures can also be structures with other suitable shapes.
  • some of the microstructures may be arranged closely and some of the microstructures may be arranged at intervals.
  • the optical film structure, backlight module, display device, and electronic equipment provided by the various embodiments of the present application can be provided with reasonable microstructure shapes without opening holes in the display area of the display device. Realizing the two-way penetration of the backlight light and the detection light is beneficial to realize under-screen sensing without affecting the display effect, thereby further increasing the screen-to-body ratio of the electronic device and enhancing the visual experience of the electronic device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组(4)以及包括背光模组(4)的显示装置(3)和电子设备(1)。背光模组(4)用于透过由外部对象发射和/或反射的检测光束至一传感模组(10),检测光束用于外部对象的生物特征信息检测,背光模组(4)能够给一个显示面板(30)提供背光光线。背光模组(4)包括能够透过检测光线且对背光光线进行会聚的光学膜层结构(5),至少存在部分检测光线(O1)在透过光学膜层结构(5)后的传播方向不变、位置发生偏移。

Description

一种背光模组、显示装置以及电子设备 技术领域
本申请属于光学技术领域,尤其涉及一种背光模组、显示装置以及电子设备。
背景技术
现有技术中,为了增加液晶显示屏的背光亮度,通常在背光模组中设置光学膜层,比如:增亮膜(Brightness Enhancement Film,BEF)、棱镜片等。目前,所述光学膜层包括透光基板和在所述透光基板上形成的长条形三棱柱的微结构。所述长条形三棱柱的微结构彼此紧密无间隔排布在所述透光基板上。当来自所述背光模组的背光光线入射至所述膜层单元时,所述长条形三棱柱的微结构用于将散乱的背光光线进行集中。
然而,此种长条形三棱柱的微结构虽然对于所述背光光线有较强的聚拢作用,但是对于被从外部对象反射回至液晶显示屏的检测光线却会有较强的发散作用,使其无法在背光模组下方聚焦成像。因此无法满足当前需要在液晶显示屏下方设置传感模组以实现各种屏下感测功能的光路要求。
申请内容
为解决上述技术问题,本申请提供一种新式的背光模组、显示装置和电子设备。
本申请提供一种背光模组,用于透过由外部对象发射和/或反射的检测光束至一传感模组,所述检测光束用于外部对象的生物特征信息检测,所述背光模组能够给一个显示面板提供背光光线,所述背光模组包括能够透过所述检测光线且对背光光线进行会聚的光线膜层结构,其中,至少存在部分检测光线在透 过所述光学膜层结构时的传播方向不变。
在某些实施方式中,所述光学膜层结构包括一个或多个膜层单元,所述膜层单元包括相对设置的第一光学表面和第二光学表面,其中,所述第一光学表面为非平面,所述第一光学表面包括第一平面,所述第二光学表面包括第二平面,所述第一平面与所述第二平面相平行且相对设置,定义所述第一平面为第一透光部,所述第一光学表面还包括第二透光部,当检测光线通过平行且相对设置的所述第一透光部和第二平面而透过所述膜层单元时,至少存在部分检测光线的传播方向不变,当背光光线入射至所述膜层单元并从所述第二透光部射出时发生会聚。
在某些实施方式中,所述第二光学表面为一平面。
在某些实施方式中,所述第二透光部包括斜面,所述斜面倾斜于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述斜面出射时发生会聚;或,所述第二透光部包括垂面,所述垂面垂直于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述垂面出射时发生会聚;或,所述第二透光部包括斜面和垂面,所述斜面倾斜于所述第一透光部与所述第二光学表面之间,所述垂面垂直于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述斜面和垂面出射时发生会聚。
在某些实施方式中,所述每个膜层单元包括基底和多个微结构,所述基底包括上表面和与上表面相对设置的下表面,所述多个微结构形成在所述上表面,其中,每一微结构包括上表面,所述微结构的上表面为所述微结构背对所述基底的一侧表面且为平面,所述第一透光部包括微结构的上表面,所述第二光学表面为所述基底的下表面。
在某些实施方式中,所述多个微结构在所述基底的上表面上紧密无间隔排布或彼此间隔排布。
在某些实施方式中,当所述多个微结构在所述基底上彼此间隔排布时,所 述第一透光部还包括所述基底的上表面上未形成有所述微结构而露出的间隔部分。
在某些实施方式中,各间隔部分的宽度相等,各微结构大小和结构相同。
在某些实施方式中,所述微结构为梯台或长方体。
在某些实施方式中,所述微结构的材料折射率与所述基底的材料折射率之间的差值绝对值大于或等于0且小于0.2。
在某些实施方式中,当所述光学膜层结构为单片膜层单元时,所述多个微结构在所述基底上呈多行多列排布;设定所述光学膜层结构的第二光学表面的面积为S1,设定所述光学膜层结构的第一透光部的总面积为S2;设定所述光学膜层结构的第一透光部的总面积S2占所述光学膜层结构的第二光学表面的面积S1的百分比为P,所述百分比P大于或等于50%且小于或等于100%。
在某些实施方式中,当所述学膜层结构上的多个微结构为彼此间隔排布时,所述基底上的第一透光部沿列方向的宽度小于所述微结构上的第一透光部沿列方向的宽度;所述基底上的第一透光部沿行方向的宽度小于所述微结构上的第一透光部沿行方向的宽度。
在某些实施方式中,所述基底上的第一透光部沿列方向的宽度大于或等于所述微结构上的第一透光部沿列方向的宽度的四分之一;所述基底上的第一透光部沿行方向的宽度大于或等于所述微结构上的第一透光部沿行方向的宽度的四分之一。
在某些实施方式中,所述第一透光部的面积小于所述显示面板的像素点的面积。
在某些实施方式中,当所述多个微结构为紧密无间隔排布时,沿垂直所述第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中的每个或部分分别与所述显示面板中的一个像素点相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,当所述多个微结构为紧密无间隔排布时,沿垂直所述 第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中分别与所述显示面板中的多个像素点一一相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,当所述多个微结构为间隔排布时,沿垂直所述第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中的每个或部分分别与所述显示面板中的一个像素点相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,当所述光学膜层结构包括第一膜层单元和第二膜层单元时,所述第一膜层单元上的多个微结构呈单行多列排布,所述第二膜层单元的多个微结构呈单列多行排布;设定所述第一膜层单元的第二光学表面的面积为S1,设定所述第一膜层单元的第一透光部的总面积为S2,设定所述第二膜层单元的第二光学表面的面积为S3,设定所述第二膜层单元的第一透光部的总面积为S4;设定所述第一膜层单元的第一透光部的总面积S2占所述第一膜层单元的第二光学表面的面积S1的百分比为P1,设定所述第二膜层单元的第一透光部的总面积S4占所述第二膜层单元的第二光学表面的面积S3的百分比为P2;设定所述百分比P1与所述百分比P2的乘积为N,所述乘积N大于或等于50%且小于或等于100%。
在某些实施方式中,所述第一膜层单元上的多个微结构为彼此间隔排布、所述第二膜层单元上的多个微结构为彼此间隔排布时,所述基底上的第一透光部的宽度小于所述微结构上的第一透光部的宽度,或,所述基底上的第一透光部的面积小于所述微结构上的第一透光部的面积。
在某些实施方式中,所述基底上的第一透光部的宽度大于或等于所述微结构上的第一透光部的宽度的四分之一,或,所述基底上的第一透光部的面积大于或等于所述微结构上的第一透光部的面积的四分之一。
在某些实施方式中,沿着垂直所述第一光部的方向且沿着所述多个微结构的排布方向,所述微结构的截面为等腰梯形,所述微结构的高度范围为10微米 至25微米,所述微结构上的第一透光部的宽度范围为大于或等于5微米且小于50微米,所述等腰梯形的底角范围为40度至50度。
在某些实施方式中,当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时,所述第一透光部的宽度范围为大于或等于5微米且小于或等于25微米。
在某些实施方式中,当所述第一膜层单元上的多个微结构为彼此间隔排布、所述第二膜层单元上的多个微结构为彼此间隔排布时,所述微结构上的第一透光部的宽度与所述基底上的第一透光部的宽度之和的范围为大于或等于5微米且小于或等于50微米。
在某些实施方式中,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的第一透光部与所述第二膜层单元上的第一透光部的重叠区域的面积小于所述显示面板的像素点的面积。
在某些实施方式中,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的第一透光部与所述第二膜层单元上的第一透光部的重叠区域的面积小于所述显示面板的像素点的面积。
在某些实施方式中,当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域中的每个或部分分别与所述显示面板中的一像素点相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域分别与所述显示面板中的多个像素点一一相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,当所述第一膜层单元上的多个微结构为彼此间隔排布、 所述第二膜层单元上的多个微结构为彼此间隔排布时,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域中的每个或部分分别与所述显示面板中的一像素点相对设置,且位于相对的像素点所在的范围之内。
在某些实施方式中,所述背光模组进一步包括与所述光学膜层结构层叠设置的扩散片和反射片,所述扩散片和所述光学膜层结构位于所述反射片上方,其中,所述检测光线为红外或近红外光线,所述扩散片为量子点膜,所述反射片由透过红外或近红外光而反射可见光的材料制成。
在某些实施方式中,所述背光模组用于给显示面板提供的背光光线为可见光,所述检测光线为红外或近红外光。
本申请还提供一种液晶显示装置,包括显示面板和背光模组,所述显示面板用于显示画面,所述背光模组用于提供背光光线给所述显示面板,其中,所述背光模组为上述中任意一项所述的背光模组。
本申请还提供一种电子设备,包括上述中任一所述的液晶显示装置和至少部分设置在所述液晶显示装置下方的传感模组,所述传感模组透过所述显示面板的显示区域和背光模组接收来自外部对象反射或/和发射的检测光线,以执行相应的感测。
在某些实施方式中,所述传感模组用于根据接收到的检测光线执行指纹感测、三维面部感测、和活体感测中的任意一种或几种。
由于本申请的背光模组包括对背光光线进行会聚又对检测光线透过的光学膜层结构,且至少存在部分检测光线在透过所述光学膜层结构后的传播方向不变、位置发生偏移,因此,位于所述背光模组下方的传感模组根据这部分传播方向不变的检测光线所获得的相关感测数据较准确。相应地,所述电子设备的用户体验较好。
进一步地,由于本申请通过改变所述膜层单元的微结构形状或/和间隔设置微结构,在背光模组不开孔的前提下实现背光光线和检测光线的双向穿透,有 利于在不影响显示装置的显示效果的前提下实现屏下感测,从而可以进一步提高电子设备的屏占比,提升电子设备的视觉感受。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请实施方式的实践了解到。
附图说明
图1是本申请第一实施方式提供的电子设备的正面示意图。
图2是图1中所示电子设备的部分结构示意图。
图3是本申请第二实施方式提供的电子设备的正面示意图。
图4是图3所示电子设备的部分结构示意图。
图5是本申请第三实施方式提供的背光模组的结构示意图。
图6是本申请第四实施方式提供的背光模组的结构示意图。
图7是本申请第五实施方式提供的光学膜层结构的结构示意图。
图8是背光光线与检测光线穿过图7中所示的第一膜层单元时的光路图。
图9是显示像素点与光学膜层结构5的对应关系示意图。
图10是图7所示第一膜层单元沿IX-IX’的剖视图。
图11是本申请第六实施方式提供的光学膜层结构的结构示意图。
图12是本申请第七实施方式提供的光学膜层结构的结构示意图。
图13是本申请第八实施方式提供的光学膜层结构的结构示意图。
图14是本申请第九实施方式提供的光学膜层结构的结构示意图。
图15是背光光线与检测光线穿过图14中所示的第一膜层单元时的光路图。
图16是图14所示第一膜层单元沿XV-XV’的剖视图。
图17是本申请第十实施方式提供的光学膜层结构的结构示意图。
图18是本申请第十一实施方式提供的光学膜层结构的结构示意图。
图19是本申请第十二实施方式提供的光学膜层结构的结构示意图。
图20是本申请第十三实施方式提供的光学膜层结构的结构示意图。
图21是本申请第十四实施方式提供的光学膜层结构的结构示意图。
图22是本申请第十五实施方式提供的光学膜层结构的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或排列顺序。由此,限定有“第一”、“第二”的技术特征可以明示或者隐含地包括一个或者更多个所述技术特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定或限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体化连接;可以是机械连接,也可以是电连接或相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件之间的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或示例用来实现本申请的不同结构。为了简化本申请的公开,下文仅对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。
此外,本申请可以在不同例子中重复使用参考数字和/或参考字母,这种重复使用是为了简化和清楚地表述本申请,其本身不指示所讨论的各种实施方式和/或设定之间的特定关系。此外,本申请在下文描述中所提供的各种特定的工艺和材料仅为实现本申请技术方案的示例,但是本领域普通技术人员应该意识到本申请的技术方案也可以通过下文未描述的其他工艺和/或其他材料来实现。
进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下文的描述中,提供许多具体细节以便能够充分理解本申请的实施方式。然而,本领域技术人员应意识到,即使没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本申请的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本申请之重点。
请一并参阅图1与图2,本申请第一实施方式提供一种电子设备1。所述电子设备1例如但不局限于手机、笔记本电脑、平板电脑、电子书、个人数字助理、触控交互终端设备等。所述电子设备1包括存储器12、处理器14、显示装置3、以及至少部分设置在所述显示装置3背面的传感模组10。
所述显示装置3包括显示面板30和位于所述显示面板30下方的背光模组4。所述显示面板30用于显示画面。所述背光模组4用于为所述显示面板30提供背光光线。从所述背光模组4出射至所述显示面板30的背光光线为可见光。定义所述显示装置3显示画面的区域为显示区域,而显示区域之外的区域为非显示区域。在本实施方式中,所述显示面板30例如为液晶显示面板。然,可变更地,所述显示面板30也可为其它合适类型的显示面板,例如电子纸显示面板。
所述传感模组10至少部分位于所述背光模组4的下方,且正对所述显示区域设置。所述传感模组10用于接收由外部对象本身发射或/和反射的检测光线,并根据所述接收到的检测光线实现相应的感测。例如,所述传感模组10透过所述显示面板30和背光模组4接收所述检测光线。所述外部对象例如但不局限于用户手指、用户面部或其它合适的部位、又或者其它合适的物体而并不局限于人体等。
可选地,所述传感模组10进一步用于发射检测光线至所述外部对象。例如,所述传感模组10透过所述显示面板30和背光模组4发射所述检测光线至外部对象。
所述传感模组10例如但不局限于用于根据接收到的检测光线执行生物特征信息感测、二维和/或三维图像感测、三维立体建模、距离感测等。其中,所 述生物特征信息感测例如包括但不限于指纹信息感测、三维面部信息感测、活体信息感测等等。
在本实施方式中,所述传感模组10透过所述显示面板30和背光模组4发射检测光线至外部对象,并透过所述显示面板30和背光模组4接收来自外部对象本身发射或/和反射的检测光线。然,可变更地,所述传感模组10也可不透过显示装置3或透过所述显示装置3的部分元件发射检测光线至外部对象,而所述传感模组10透过所述显示面板30和背光模组4接收来自外部对象本身发射或/和反射的检测光线。或者,所述传感模组10透过所述显示面板30和背光模组4发射检测光线至外部对象,而所述传感模组10不透过所述显示装置3或透过所述显示装置3的部分元件接收来自外部对象本身发射或/和反射的检测光线。
需要说明的是,所述传感模组10的结构设置并不限于本申请附图中所示,也可为其它各种合适结构。
所述存储器12例如但不局限于用于预存一个或多个样本的生物特征信息模板。再例如,所述存储器12用于存储所述传感模组10在感测过程中产生的数据、与感测相关的程序或实施感测相关功能所需要的资料。所述处理器14用于对所述传感模组10获得的感测信息进行相应的处理,例如,比对所述传感模组10获得的生物特征信息与存储器12中所存储的生物特征信息模板,根据比对结果实现对所述外部对象进行身份识别。再例如,所述处理器14可用于执行与感测相关的程序。所述电子设备1可根据所述传感模组10的感测结果或/和所述处理器14的处理结果对应执行相关的功能,比如:熄灭屏幕、解除屏幕锁定、支付、登陆账号、进入下一级菜单、开放权限等。
在本实施方式中,所述存储器12及处理器14为所述电子设备1内独立于传感模组10设置的部件。然,可变更地,所述存储器12或/和处理器14中的部分或全部也可集成在所述传感模组10中。
所述传感模组10包括接收单元103。所述接收单元103位于所述背光模组 4的下方,且正对所述显示区域,其用于透过所述显示面板30和背光模组4接收由所述外部对象本身发射或/和反射回来的检测光线,并根据接收到的检测光线来实现对所述外部对象的相应的感测。
可选地,所述接收单元103包括镜头104和位于所述镜头104下方的图像传感器106。由所述外部对象本身发射或/和反射回来的检测光线透过所述显示面板30和背光模组4后通过所述镜头104被所述图像传感器106接收。所述图像传感器106例如根据所述检测光线获得所述外部对象的图像或相关感测数据,从而实现相应的感测。然,在某些实施方式中,所述镜头104也可被省略或被替换为其它元件,例如被替换为光束准直元件。
在本实施方式中,所述传感模组10进一步包括发射单元102。所述发射单元102设置在所述背光模组4下方。所述发射单元102透过所述背光模组4和所述显示面板30发射检测光线到所述外部对象。
可选地,所述发射单元102包括感测光源。所述感测光源102发出的检测光线透过显示装置3后经由外部对象反射后而折返,再次透过显示装置3后被所述接收单元103所述接收,以便例如但不局限于从中提取所述外部对象的相关特征数据进行身份识别。
根据感测原理及应用场景,所述检测光线具有特定的波长。在本实施方式中,所述检测光线可用于,但不局限于,感测指纹或人脸的三维图像,其可以为红外或近红外光线,波长范围为800nm至1650nm。可变更地,在其它实施方式中,所述检测光线也可为其它合适的检测信号,例如紫外光、超声波、电磁波等等。
请一并参阅图3与图4,本申请第二实施方式提供了一种电子设备2,其与第一实施方式提供的电子设备1的结构大致相同,二者主要区别在于:所述传感模组20的发射单元202并没有设置在所述显示装置3的背面,而是设置在所述显示装置3的显示区域的外面,例如但不局限于设置在所述显示面板30的旁侧,或者背光模组4的旁侧,或电子设备1的其它合适位置等。所述发射单元 202所发出的检测光线不需要透过所述显示装置3或透过显示装置3的部分元件后投射在外部对象上,如此设置可适用于要求所述发射单元202的发射功率较高的场景,例如但不局限于:所述发射单元202需要投射具有预设图案的光斑在外部对象上,以实现三维表面的感测。
在本实施方式中,所述发射单元202设置在电子设备2的顶端正面中心位置,透过电子设备2的保护盖板(未标示)发射检测光束至外部对象。所述传感模组20的接收单元203设置在所述背光模组4的下方,用于透过所述显示装置3接收由外部对象本身发射或/和反射的检测光线。
需要说明的是,本申请各实施方式中主要以所述传感模组10或20透过所述显示面板30和背光模组4接收由外部对象本身发射或/和反射回来的检测光线进行说明,但本申请并不以此为局限。例如以传感模组20为例,不管是所述传感模组20的发射单元202和接收单元203中的任意一者或二者均放置在所述背光模组4下方,均应落入本申请的保护范围。
请参阅图5,本申请第三实施方式提供了一种可用于上述显示装置3内的背光模组4。所述背光模组4可用于聚拢向所述显示面板30出射的背光光线以及用于透过所述检测光线,以同时满足为显示面板30提供背光和在显示装置3下方设置所述传感模组10或20的要求。所述背光模组4包括背光光源40、导光板42、反射片44、扩散片46及光学膜层结构5。
所述导光板42包括出光面420、与所述出光面420相对的底面422、以及连接所述出光面420与底面422之间的入光面424。所述背光光源40对应所述入光面424设置,用于提供背光光线至导光板42。所述背光光线在导光板42内混合后从出光面420射出。所述反射片44设置在导光板42的底面422上,用于将从导光板42泄出的背光光线反射回导光板42内,以提高背光光线的利用率。所述反射片44例如由可透过所述检测光线而反射可见光的材料制成,从而可以将位于可见光波长范围内的背光光线反射回导光板42,同时又可以透过红外或近红外的检测光线。
所述光学膜层结构5设置在导光板42的出光面420一侧,用于聚拢从所述导光板42出射的背光光线,以提高背光模组4所提供的背光亮度。在本实施方式中,所述光学膜层结构5包括第一膜层单元501及第二膜层单元502。所述第一膜层单元501与所述第二膜层单元502的结构例如但不局限于完全相同。下面以所述第一膜层单元501为例进行说明。
所述第一膜层单元501包括相对设置的第一光学表面503及第二光学表面504。所述第一光学表面503背对所述导光板42的出光面420。所述第二光学表面504面对所述导光板42的出光面420。所述背光光线透过所述第一膜层单元501时会从所述第二光学表面504入射后再从所述第一光学表面503透出。由外部对象本身发射或/和反射回来的检测光线在透过所述第一膜层单元501时会从所述第一光学表面503入射后再从所述第二光学表面504透出。
所述第一光学表面503为一连续的表面,所述第二光学表面504为一连续的表面。其中,所述第一光学表面503整体为非平面。
定义所述导光板42、扩散片46、与光学膜层结构5的堆叠方向为竖直方向Y。所述第一光学表面503包括与所述竖直方向Y相垂直的第一平面520,所述第二光学表面504包括与所述竖直方向相垂直的第二平面。在本实施方式中,所述第二光学表面504整体为一平面,相应地,所述第二光学表面504为所述第二平面。然,可变更地,在某些实施方式中,所述第二光学表面504也可作为整体并非为一平面,而是除了包括第二平面之外,还可包括曲面或与所述竖直方向Y不垂直的斜面等。
所述第一平面520与所述第二平面相平行,由光学折射原理可知,当检测光线通过所述第一膜层单元501时,至少存在部分检测光线在从相平行的第一平面520与第二平面通过后的传播方向不变、位置发生偏移。
在本实施方式中,所述第一光学表面503包括多个间隔设置的第一平面520。每一第一平面520分别与所述第二平面相对设置。经由相对的所述第一平面520和所述第二平面而透过所述第一膜层单元501的至少一部分检测光线的传播方 向不变、位置发生偏移。相应地,所述传感模组10或20根据接收到的这部分传播方向不变的检测光线所获得的感测信息较准确。
需要说明的是,在制作所述第一膜层单元501时,由于制作工艺存在误差或其它工艺因素等不利影响,导致实际制造出来的第一膜层单元501的第一平面520与第二平面之间可能并非如理想般平行,即第一平面520与第二平面大致平行。相应地,经由所述第一平面520和第二平面而透过所述第一膜层单元501的至少一部分检测光束的传播方向基本不变。
定义所述第一平面520为第一透光部,所述第一光学表面503进一步包括第二透光部522,所述第二透光部522不垂直所述竖直方向Y。当入射至所述第一膜层单元501的背光光线在从所述第二透光部522出射时会发生会聚。
每一第一透光部520的侧边都分别连接有第二透光部522。所述第二透光部522包括斜面或/和垂面。在本实施方式中,所述第二透光部522包括斜面和垂面(一并参见图7)。所述斜面倾斜于所述第一透光部520与所述第二光学表面504之间。所述垂面垂直于所述第一透光部520与所述第二光学表面504之间。其中,相邻的第一透光部520之间连接二所述斜面。相邻的所述第一透光部520与所述斜面之间的夹角为钝角。位于相邻的第一透光部520之间的二所述斜面之间的夹角为锐角。
然,可变更地,在其它实施方式中,所述第二透光部522也可均为斜面或垂面。
可变更地,在某些实施方式中,在沿着所述第一透光部520排布的方向,所述第一透光部520与所述第二透光部522例如也可分别交替出现,相邻的第一透光部520至所述第二光学表面504的垂直距离不同,且所述第二透光部522与相邻的第一透光部520之间的夹角均为钝角。
所述第二膜层单元502与所述第一膜层单元501的结构相同或相似,在此不再对所述第二膜层单元502进行赘述。所述第一膜层单元501位于所述第二膜层单元502上方。所述第一膜层单元501上的各第一透光部520例如沿第一 方向延伸。所述第二膜层单元502上的各第一透光部520沿第二方向延伸。所述第一方向垂直第二方向。
设定所述第一膜层单元501的第二光学表面504的面积为S1。设定所述第一膜层单元501的第一透光部520的总面积(或称为:面积之和)为S2。设定所述第二膜层单元502的第二光学表面504的面积为S3。设定所述第二膜层单元502的第一透光部520的总面积(或称为:面积之和)为S4。
进一步地,设定所述第一膜层单元501的第一透光部520的总面积S2占所述第一膜层单元501的第二光学表面504的面积S1的百分比为P1。设定所述第二膜层单元502的第一透光部520的总面积S4占所述第二膜层单元502的第二光学表面504的面积S3的百分比为P2。设定所述百分比P1与所述百分比P2的乘积为N。
发明人经过大量的实验与分析验证发现,当所述乘积N等于或大于50%且小于100%时,从所述光学膜层结构5出射的传播方向不变的检测光线的量较合适,从而,所述传感模组10根据接收到的检测光线获得的感测信息较准确。
可变更地,在某些实施方式中,所述光学膜层结构5也可以为单层膜片结构。相应地,所述单片膜层结构5的各第一透光部520的总面积占第二光学表面504的面积的百分比例如大于或等于50%且小于或等于100%。
所述扩散片46设置在所述导光板42的出光面420的一侧,用于将所述背光光线扩散以实现雾化效果。
所述扩散片46扩散位于可见光波长范围内的背光光线而透过红外或近红外的检测光线。例如:所述背光光线的波长范围例如为380nm至760nm。所述检测光线的波长范围例如为800nm至1650nm。所述扩散片46对光线的扩散作用可以用雾度来衡量。所述雾度指的是光线经过扩散片46后偏离入射方向2.5度以上透射光线的光强占原来全部入射光线的光强的百分比。透过所述扩散片46后光线的雾度越大说明扩散片46对该光线的扩散作用越强,雾度超过30%则认为扩散片46对所述光线具有扩散作用。
所述扩散片46对所述背光光线的扩散作用大于对所述检测光线的扩散作用。可选地,所述扩散片46对于穿过的检测光线的雾度小于30%。
所述扩散片46可通过在基材上形成光扩散结构来实现对光线的扩散作用。在本实施方式中,所述光扩散结构可以为毛玻璃状的粗糙微结构。所述基材为透光材料,可选自聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)中的任意一种或多种的组合,或者其他满足上述透光要求的材料。所述毛玻璃状的粗糙微结构的平均尺寸在380纳米(Nanometer,nm)至760nm的可见光波长范围内,从而可以对属于可见光范围的背光光线有较明显的扩散效果而对波长更长的红外或近红外的检测光线具有较强的穿透性。
可变更地,在其它施方式中,所述扩散片46可通过在基材上掺入扩散粒子制成。所述背光光线在穿过所述扩散片46时不断在折射率相异的扩散粒子与透明材质的基材之间穿越,发生多次折射、反射与散射现象,从而达到光学扩散的效果。所述扩散粒子可以由透过红外或近红外光而反射可见光的材料制成。所述扩散粒子的平均尺寸范围与位于380纳米(Nanometer,nm)至760nm的可见光波长范围相同,从而可以对属于可见光范围的背光光线有较明显的扩散效果而对波长更长的红外或近红外的检测光线具有较强的穿透性。
可变更地,在其它施方式中,所述扩散片46为一种具有纳米多孔结构的膜层。所述纳米多孔膜层的材料可以为,但不限于,一种聚乙烯织物(Nanoporous Polythylene Textile)。所述聚乙烯织物材料上形成有多个纳米级别尺寸的小孔,所述小孔的尺寸范围为100nm至1000nm,使其具有透过红外或近红外光线却能够散射可见光的特性。
本申请并不局限于上述实施方式列举的扩散片46,所述扩散片46也可为其它合适的结构或/和材料。
所述扩散片46可包括上扩散片461和下扩散片462。所述上扩散片461和下扩散片462具有类似的结构,均可用于扩散背光光线并透过由外部对象发射或/和反射回来的检测光线。所述上扩散片461和下扩散片462会有各自的功能 偏向,比如:上扩散片461更强调对背光光线的雾化效果,而下扩散片462具有相对较高的背光光线的透过率。所述上扩散片461、下扩散片462、第一膜层单元501及第二膜层单元502之间的排列顺序不做具体限制。例如,在本实施方式中,所述第一膜层单元501及第二膜层单元502设置在上扩散片461与下扩散片462之间。然,可变更地,在某些实施方式中,所述上扩散片461设置在第一膜层单元501与第二膜层单元502之间。所述下扩散片462设置在第二膜层单元502与导光板42之间。
请参阅图6,本申请第四实施方式提供了一种可用于上述显示装置3内的背光模组4’,用于替换上述背光模组4应用在所述显示装置3中。所述背光模组4’与所述背光模组4的结构大致相同,二者主要区别在于:所述背光模组4的扩散片46被替换为量子点膜。所述量子点膜46对背光光线的扩散作用大于对红外光或近红外光的扩散作用。
所述量子点膜46内含有量子点材料463。所述量子点材料463可吸收蓝色背光光线将其分别转换为绿色背光光线和红色背光光线,因此,所述背光光源40只需要为蓝色发光光源即可,所发出的蓝色背光光线在所述量子点膜46中一部分被量子点材料463吸收后转换为绿色背光光线和红色背光光线,再与所述未被吸收的部分蓝色背光光线相互混合成白色背光光线射出。因所述量子点材料463在转换发光时以本身为中心向外发射转换后的光线,同时也具有散射效果,所以所述量子点膜46转换成的白色背光光线也具有较好的扩散性。所述量子点材料463不吸收红外或近红外光波长范围的光线或吸收的红外或近红外光较少,因此可以透过所述检测光线。
可变更地,在其它实施方式中,所述背光光源40也可发射紫外光至导光板42,从所述导光板42出射的紫外光进入所述量子点膜46,所述量子点膜46转换所述紫外光为红光、绿光和蓝光并射出转换后的可见光束。
发明人经过大量的实验分析与验证发现,当采用所述量子点膜46作为扩散片时,其不需要设置上下两片扩散片,且对所述检测光束的扩散作用较小,因 此,所述传感模组10根据接收到的检测光束所获得的相应感测数据更准确。
需要说明的是,本申请并不限于上述各实施方式提到的背光模组,所述背光模组的结构或材料等也可以有其它合适的变形,本申请的申请重点主要在于光学膜层结构5的结构或材料改变和/或扩散片46的结构或材料的改变,因此,只要技术思想与本申请的申请重点相似或相同的所有技术方案均应落入本申请的保护范围。
请一并参阅图5与图7,本申请第五实施方式提供了一种光学膜层结构5,其可用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构5用于聚拢背光光线以及在透过所述检测光线时至少存在部分检测光线的传播方向不变、位置发生偏移,以同时满足增加显示装置3的显示亮度和在显示装置3的下方设置传感模组10或20进行感测的需求。
所述光学膜层结构5包括第一膜层单元501及第二膜层单元502。所述第一膜层单元501和所述第二膜层单元502的结构例如但不局限于完全相同,现以第一膜层单元501为例进行说明。在本实施方式中,所述第一膜层单元501包括基底500和多个微结构52。所述基底500包括上表面和与上表面相对设置的下表面。所述多个微结构52紧密排布在所述基底500的上表面上。所述多个微结构52用于对所述背光光线进行会聚,对所述检测光线进行透过,至少一部分检测光线在通过所述微结构52与所述基底500之后的传播方向不变、位置发生偏移。
在本实施方式中,所述第一膜层单元501上的多个微结构52呈单行多列排布,各微结构52沿第一方向延伸、沿第二方向排布,其中,所述第一方向为列方向,所述第二方向为行方向。所述第二膜层单元502上的多个微结构52呈单列多行排布,其中,各微结构52沿所述第二方向延伸、沿所述第一方向排布。所述第一方向与所述第二方向垂直。可变更地,所述第一膜层单元501上的多个微结构52也可呈单列多行排布,所述第二膜层单元502上的多个微结构52呈单行多列排布。
在本实施方式中,所述基底500与所述微结构52被分别制作,且由不同材料分别制成。例如,所述基底500的材料可选自聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)中的任意一种或多种的组合,或者满足上述透光要求的其他材料。所述微结构52例如由可固化的材料制成。制作时,先在所述基底500上涂布可固化的材料,例如UV胶,对所述可固化材料利用成型工艺制成微结构52的特定形状,最后再对所述微结构52进行固化。
可选地,所述基底500与所述微结构52之间的折射率差值的绝对值小于0.3。所述微结构52的折射率例如为1.45~1.55,所述基底500的折射率例如为1.6~1.8。
较佳地,所述基底500与所述微结构52之间的折射率差值的绝对值小于0.2。所述微结构52的折射率小于所述基底500的折射率。所述微结构52的折射率例如为1.45~1.55,所述基底500的折射率例如为1.64。
发明人通过大量实验分析与验证等发现,所述基底500与微结构52之间的折射率差值的绝对值越小,越有利于提升传感模组10的感测精度。一方面,由于所述基底500与微结构52之间的折射率差值的绝对值较小,因此,从所述第一膜层单元501出射的检测光线相较于入射时的检测光线的方向偏转较小或无偏转,相应地,根据透过所述背光模组4接收到的所述检测光线,所述传感模组10能较大限度地还原所要感测信息的真实情况;另一方面,由于所述基底500与微结构52之间的折射率差值的绝对值较小,所述第一膜层单元501透射的检测光线越多,反射的检测光线变少,从而可以提高检测光线的透光率,进而,所述传感模组10获得的检测光线增多,进一步提高感测精度。
然而,由于不同厂家使用的材料不一样,所述基底500与微结构52的折射率差值会分别对应有不同,相应地,二者之间的折射率差值的绝对值也可选择大于0.3,但所述传感模组10或20的感测精度对应降低。
每一微结构52包括上表面(或称:顶面),所述微结构52的上表面为所述微结构52背对所述基底500的一侧表面。在本实施方式中,所述微结构52的 上表面整体为一平面。所述微结构52的上表面与所述竖直方向Y相垂直。
所述基底500的上表面与下表面为相互平行的平面,且与所述竖直方向Y相垂直。相应地,所述第二光学表面504为所述基底500的下表面。所述第一光学表面503的第一透光部520为所述微结构52的上表面。
以所述第一膜层单元501为例进行说明,每一微结构52还包括二第一侧面523与二第二侧面524,其中,所述第一侧面523为与所述第一方向相对或相交的侧面,所述第二侧面524为沿所述第一方向延伸的侧面。在本实施方式中,所述第二侧面524为斜面,所述第一侧面523为垂面。所述第二透光部522包括所述第二侧面524与所述第一侧面523。
沿所述微结构52的排布方向,相邻的第一透光部520之间存在二相连接的第二侧面524。相邻的第一透光部520与第二侧面524之间的夹角为钝角。位于相邻的第一透光部520之间的二第二侧面524之间的夹角为锐角。
可选地,所述微结构52例如但不局限于为梯台。
在本实施方式中,各微结构52的结构和大小相同。各第一透光部520至第二光学表面504的垂直距离相同。
然,可变更地,在某些实施方式中,所述多个微结构52的第一透光部520至第二光学表面504的垂直距离也可不同。
请一并参见图2或图4,当所述传感模组10或20执行感测时,由外部对象本身发射或/和反射的检测光线传输至所述第一膜层单元501时,存在至少部分检测光线在经由第一透光部520透过所述第一膜层单元501的第二光学表面504、以及在经由第一透光部520透过所述第二膜层单元502的第二光学表面504后,其传播方向基本不变,位置发生偏移,从而使得所述接收单元103或203所获得的关于所述外部对象的相关感测数据或信息比较准确。
光路可逆地,当所述传感模组10发射的检测光束在透过所述光学膜层结构5后,至少存在部分检测光束的传播方向不变,位置发生偏移。
然,相比于透过所述显示装置3发射检测光束至外部对象,所述传感模组 10透过所述显示装置3接收由所述外部对象本身发射或/和反射的检测光束,更需要检测光束在穿过所述光学膜层结构5时的传播方向不变,从而可以获得较准确的感测结果。
进一步地,所述背光光线在通过所述第二膜层单元502的第二透光部522和第一膜层单元501的第二透光部522时会发生会聚,以提高背光光线的亮度。
在本实施方式中,所述乘积N大于或等于50%且小于100%。
请一并参阅图8,因所述第一光学表面503的第一透光部520与第二光学表面504之间的距离大致保持不变,即相互之间保持大致平行的关系,根据光学折射定律可知:经由所述第一透光部520透过所述第二光学表面504的至少一部分检测光线的传播方向基本不变,而位置发生了偏移D。为了理解清楚,例如,命名从所述第一透光部520入射的检测光线为O1,所述检测光线O1在第一膜层单元501中经过多次折射后从第二光学表面504出射,命名从所述第二光学表面504出射出来的这一检测光线为O2。由光学折射定律可知,检测光线O2相较于检测光线O1主要发生了位置偏移D,而传输方向不变。
可以理解的是,图8是示意图。当微结构52与基底500的材质的折射率不同时,图8中并未明确示出检测光线在微结构52与基底500的分界面传输时发生的折射现象。
可逆地,当检测光线从所述第二光学表面504向所述第一光学表面503传输时,存在至少部分检测光线在穿过所述第一透光部520后,其传输方向不变、位置发生偏移。例如,当发射单元102(见图2)位于背光模组下方,其发射的检测光线在穿过所述光学膜层结构5时,至少存在部分检测光线在穿过所述光学膜层结构前和穿过所述光学膜层结构后的传输方向基本不变、位置发生偏移。
可以理解的是,因制作公差或加工精度的关系,所述第一光学表面503的第一透光部520与所述第二光学表面504之间的平行关系可以存在合理的偏差范围。
由于所述第一光学表面503的第二透光部522与所述第二光学表面504之 间并不平行,根据光的折射规律,经由所述第二透光部522透过所述光学膜层结构5的光线会发生较明显的方向偏转,从而可以用于沿预设方向聚拢背光光线以提高背光亮度。
可变更地,在某些实施方式中,所述微结构52可以与基底500为一体结构,二者的材料相同或不同。另外,当所述微结构52与所述基底被分别制作时,二者的材料也可相同。
在某些实施方式中,所述微结构52与基底500还可以是通过粘合剂粘结在一起的两个独立的膜层。所述粘合剂可以包括,但不限于,压敏粘合剂或紫外光可固化粘合剂。
请一并参阅图2与图9,图9为显示面板30的一像素点R与光学膜层结构5的对应关系示意图。所述显示面板30包括多个像素点,所述多个像素点例如但不局限包括多个红色(R)像素点、多个绿色(G)像素点、和多个蓝色(B)像素点,所述多个红色(R)像素点、多个绿色(G)像素点、和多个蓝色(B)像素点按照预定规则进行排布。通常,各像素点的大小相同,例如长宽范围为30微米到50微米的正方形。现在以红色(R)像素点为例进行说明。
由光学原理可知,透过所述第二透光部522的背光光线要比透过所述第一透光部520的背光光线要会聚,相应地,透过所述第二透光部522的背光光线的亮度会比透过所述第一透光部520的背光光线的亮度要强。
为了简洁清楚,定义所述第一膜层单元501上的第一透光部520与所述第二膜层单元502上的第一透光部520在沿所述竖直方向Y的反方向进行投影时的重叠区域为M。所述重叠区域M也为正方形。
较佳地,所述重叠区域M的面积或宽度小于所述像素点R的面积或宽度,从而,透过所述第一透光部520的背光光线和透过所述第二透光部522的背光光线均可以照射到所述像素点R。如此设置,所述显示面板30上的各像素点的背光光亮较均匀。另外,穿过所述光学膜层结构5后的传播方向变化较小或基本不变的检测光线的透过率也较合适,从而有利于传感模组10或20执行相应 的检测。
可以理解的是,在某些实施方式中,所述显示面板30的红色(R)像素点、绿色(G)像素点、和蓝色(B)像素点的大小也可并不完全相同。另外,各像素点或各重叠区域M例如也可为长方形,而并不局限于正方形。较佳地,所述重叠区域M的面积小于所述像素点的面积。
可选地,在一具体实施例中,沿垂直所述第一透光部520的方向进行投影,所述第一膜层单元501上的多个第一透光部520与所述第二膜层单元502上的多个第一透光部520的多个重叠区域M是与所述显示面板30的多个像素点分别一一相对设置,且位于相对的像素点所在的范围之内。
然,可变更地,沿垂直所述第一透光部520的方向进行投影,所述第一膜层单元501上的多个第一透光部520与所述第二膜层单元502上的多个第一透光部520的多个重叠区域M中的每个或部分分别与所述显示面板30中的一像素点相对设置,且位于相对的像素点所在的范围之内或不完全落在相对的像素点所在的范围之内。
另外,一个像素点也可对应多个重叠区域M而并不局限为一个重叠区域M。
当然,所述重叠区域M的面积也可以大于像素点的面积,所述显示面板的显示效果相对变差。
请参阅图10,以所述微结构52为梯台为例进行说明,沿所述竖直方向Y且沿微结构52间的排布方向,所述第一膜层单元501的横截面为梯形。较佳地,所述梯形为等腰梯形,所述等腰梯形的底角θ范围为40度至50度,第一透光部520的宽度K的范围为大于或等于5微米且小于50微米、高度H的范围为10微米至25微米。
发明人通过大量的实验与分析验证,发现当检测光线通过具有上述尺寸范围的微结构52的光学膜层结构5后,传播方向不变、位置发生偏移的检测光线的量较合适,有利于传感模组10或20执行相应的感测。另外,背光光线经过所述光学膜层结构5后的会聚作用对显示效果也相对合适。
需要说明的是,所述等腰梯形的底角θ为第二侧面524与第二平面之间的夹角。所述底角θ优选为45度。
进一步地,当所述宽度K小于或等于25微米时,所述第一膜层单元501的背光会聚效果较强、且透过所述第一膜层单元501而传播方向不变的检测光线的光通量也相对合适。
然,可变更地,在某些实施方式中,根据客户对背光效果和检测效果的综合需求,另外,考虑到产品的尺寸大小、材料等的差异,在保证所述乘积N大于或等于50%且小于100%的条件下,厂商可进一步结合调整所述微结构52的宽度、高度H、底角θ等参数,来满足不同客户对产品的不同需求。
请参阅图11,本申请第六实施方式提供了一种光学膜层结构5’,其可替换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构5’与所述光学膜层结构5的结构大致相同,二者的主要区别在于:所述光学膜层结构5’的第一膜层单元501的第二光学表面504上设置有一层用于扩散光线的光扩散层505。所述光扩散层505为一层毛玻璃状的粗糙纹路以扩散入射的背光光线。可以理解的是,所述光扩散层505可直接在第二光学表面504上成型,或者在所述第二光学表面504上铺设一涂层再将所述涂层成型为毛玻璃状的粗糙纹路。所述光扩散层505的材料可以与所述第一膜层单元501的基底500不同,为可以透过红外或近红外光而反射可见光的材料。所述粗糙纹路,例如,可以为多个小凸起。所述小凸起的平均尺寸可以在380纳米(Nanometer,nm)至760nm的可见光波长范围内,从而可以对可见光有较明显的散射效果而对波长更长的红外或近红外的检测光线具有较强的穿透性。
需要说明的是,当光学膜层结构5’应用于上述背光模组4时,上扩散片461或下扩散片462中的一者可以被省略。另外,所述扩散层505也可替换地形成在所述第二膜层单元502的第二光学表面504上。
请参阅图12,本申请第七实施方式提供了一种光学膜层结构5”,其可替 换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构5”与所述光学膜层结构5’的结构大致相同,二者的主要区别在于:所述光学膜层结构5”的光扩散层505包括平坦部506。所述平坦部506在背对第二光学表面504的一侧具有平整表面,从而,当由外部对象本身发射或/反射回来的检测光线从所述平坦部506穿出时,能够减少对所述检测光线的散射。相应地,位于显示装置3下方的传感模组10或20根据接收到的检测光线所获得的感测信息更接近真实信息。
请参阅图13,本申请第八实施方式提供了一种光学膜层结构5”’,其可替换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构5”’与所述光学膜层结构5’的结构大致相同,二者的主要区别在于:所述光学膜层结构5”’的光扩散层505为形成在第二光学表面504上的涂层,并在所述涂层内掺入有多个用于扩散光线的扩散粒子507。可以理解的是,所述扩散粒子507可以由可透过红外或近红外光而反射可见光的材料制成。所述扩散粒子507的平均尺寸范围与位于380纳米(Nanometer,nm)至760nm之间的可见光波长范围相同,从而可以对可见光有较明显的散射效果而对波长更长的红外或近红外的检测光线具有较强的穿透性。
请一并参阅图14与图15,本申请第九实施方式提供了一种光学膜层结构5””,其可替换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构5””与所述光学膜层结构5的结构大致相同,二者的主要区别在于:所述光学膜层结构5””的多个微结构52在所述基底500上彼此间隔排布。
较佳地,所述多个微结构52的结构和大小相同,且所述多个微结构52等间隔排布。然,可变更地,所述多个微结构52的结构和大小也可不同,且非等间隔排布。
由于所述基底500的上表面上未形成有所述微结构52的部分为平整平面,且与所述第二平面平行,因此,所述基底500的上表面上未形成有所述微结构 52的部分也为所述第一光学膜层单元501的第一平面,即第一透光部520。至少存在部分检测光线在通过所述基底500上的第一透光部520和第二光学表面504后的传输方向不变、位置发生偏移。
相邻的第一透光部520之间连接有一第二透光部522,且所述第二透光部520与相邻的第一透光部520之间的夹角均为钝角。相对地,所述光学膜层结构5的相邻第二透光部520之间连接有二第二透光部522。因此,本实施方式中相邻的第一透光部520之间的第二透光部522的区域可相对变小,从而,所述检测光线在透过所述光学膜层结构5””时的均匀性要比透过所述光学膜层结构5时要好。相应地,所述传感模组10或20获得的感测数据较好。另外,所述光学膜层结构5””的背光会聚效果也较好。
请再参阅图9,与所述光学膜层结构5的结构类似,较佳地,所述光学膜层结构5””的第一透光部520的重叠区域M的面积或宽度小于所述像素点R的面积或宽度,从而,透过所述第一透光部520的背光光线和透过所述第二透光部522的背光光线均可以照射到所述像素点R。如此设置,所述显示面板30上的各像素点的背光光亮较均匀、且位于背光模组4下方的传感模组10或20接收到检测光线也较合适,从而获得较好的感测效果。
请参阅图16,以所述微结构52为梯台为例进行说明,沿所述竖直方向Y且沿所述第二方向,所述第一膜层单元501的横截面为梯形。较佳地,沿各微结构52的排布方向,各相邻微结构52之间的间距G相等,且所述间距G小于微结构52上的第一透光部520的宽度K且大于或等于所述宽度K的四分之一。从而,在确保第一膜层单元501上的微结构52的数量足够的情况下,也能确保检测光线和背光光线的均匀性较好。
进一步地,所述梯形为等腰梯形,所述等腰梯形的底角θ范围为40度至50度,高度范围为10微米至25微米,宽度K的范围为大于或等于5微米且小于50微米。
发明人通过大量的实验与分析验证,发现当检测光线通过具有上述尺寸范 围的第一膜层单元501后,传播方向不变、位置发生偏移的检测光线的量较合适,有利于传感模组10或20(见图2及图4)执行相应的感测。另外,背光光线经过所述光学膜层结构5后的会聚作用对显示效果也相对合适。
可选地,对于相邻的第一透光部520:所述微结构52上的第一透光部520的宽度与所述基底500上的第一透光部520的宽度之和的范围为大于或等于5微米且小于50微米。如此设置,所述显示装置3的背光会聚效果较强且传感模组10或20的感测效果也较准确。
可选地,所述间距G小于微结构52上的第一透光部520的宽度K且大于或等于所述宽度K的二分之一。
可选地,所述间距G小于微结构52上的第一透光部520的宽度K。
然,可变更地,在某些实施方式中,根据客户对背光效果和检测效果的综合需求,另外,考虑到产品的尺寸大小、材料等的差异,在保证所述乘积N大于或等于50%且小于100%、且所述间距G小于所述宽度K的条件下,厂商可进一步结合调整所述微结构52之间的宽度K、高度H、底角θ等参数,来满足不同客户对产品的不同需求。
在本实施方式中,第一膜层单元501的第一透光部520的总面积S2包括微结构52上的第一透光部520的总面积与基底500上的第一透光部520的总面积。类似地,第二膜层单元502的第一透光部520的总面积S4包括微结构52上的第一透光部520的总面积与基底500上的第一透光部520的总面积。所述乘积N大于或等于50%且小于100%。
请参阅图17,本申请第十实施方式提供了一种光学膜层结构6,其可替换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构6与所述光学膜层结构5””的结构大致相同,二者的主要区别在于:所述光学膜层结构6的微结构62的第二透光部622为垂面,垂直于第一透光部620与第二光学表面604之间。
在本实施方式中,所述微结构62为长方体。
所述乘积N等于100%。
请参阅图18,本申请第十一实施方式提供了一种光学膜层结构7,其可替换上述光学膜层结构5而被应用在上述具有双片光学膜层单元的各实施方式的背光模组中。所述光学膜层结构7与所述光学膜层结构6的结构大致相同,二者的主要区别在于:所述光学膜层结构7的微结构72为长条形的三棱柱。所述第一膜层单元701和所述第二膜层单元702上的微结构72都彼此间隔排列。
请参阅图19,本申请第十二实施方式提供了一种光学膜层结构8,其可替换所述光学膜层结构5而被应用在上述各实施方式的背光模组中。所述光学膜层结构8为单片膜层单元,其与所述光学膜层结构5的第一膜层单元501大致相同,二者的主要区别在于:所述光学膜层结构8的多个微结构82在基底800上呈多行多列的阵列排布。
在本实施方式中,所述微结构82为梯台。
另外,设定所述光学膜层结构8的第二光学表面804的面积为S1,设定所述光学膜层结构8的第一透光部820的总面积(或称:面积之和)为S2;设定所述光学膜层结构8的第一透光部820的总面积S2占所述光学膜层结构8的第二光学表面804的面积S1的百分比为P,所述百分比P大于或等于50%且小于100%。
较佳地,所述第一透光部820的面积小于所述显示面板30的像素点的面积。然,可变更地,所述第一透光部820的面积也可大于或等于所述显示面板30的像素点的面积。
可选地,所述第一透光部820中的每个或部分分别与所述显示面板30的一个像素点相对设置,且位于相对的像素点所在的范围之内或不完全落在相对的像素点所在的范围之内。
在一具体实施例中,沿垂直所述第一透光部820的方向进行投影,所述光学膜层结构8上的多个第一透光部820与所述显示面板30的多个像素点一一相对设置,且位于相对的像素点所在的范围之内。
另外,一个像素点也可对应多个第一透光部820。
请参阅图20,本申请第十三实施方式提供了一种可用于上述背光模组中的光学膜层结构8’,其与光学膜层结构8大致相同,二者主要区别在于:所述光学膜层结构8’的微结构在基底800上间隔排布。
所述基底800上的第一透光部820沿列方向的宽度小于所述微结构82上的第一透光部820沿列方向的宽度且大于或等于所述微结构82上的第一透光部820沿列方向的宽度的四分之一;所述基底800上的第一透光部820沿行方向的宽度小于所述微结构82上的第一透光部820沿行方向的宽度且大于或等于所述微结构82上的第一透光部820沿行方向的宽度的四分之一。
可选地,所述基底800上的第一透光部820沿列方向的宽度小于所述微结构82上的第一透光部820沿列方向的宽度且大于或等于所述微结构82上的第一透光部820沿列方向的宽度的二分之一;所述基底800上的第一透光部820沿行方向的宽度小于所述微结构82上的第一透光部820沿行方向的宽度且大于或等于所述微结构82上的第一透光部820沿行方向的宽度的二分之一。
可选地,所述基底800上的第一透光部820沿列方向的宽度小于所述微结构82上的第一透光部820沿列方向的宽度;所述基底800上的第一透光部820沿行方向的宽度小于所述微结构82上的第一透光部820沿行方向的宽度。
请参阅图21,本申请第十四实施方式提供了一种可用于上述背光模组中的光学膜层结构9,其与光学膜层结构8’大致相同,二者主要区别在于:所述光学膜层结构9的微结构的第二透光部922均为垂面。
在本实施方式中,所述每一个微结构82为长方体。
所述百分比P等于100%
请参阅图22,本申请第十五实施方式提供了一种可用于上述背光模组中的光学膜层结构9’,其与光学膜层结构8’大致相同,二者主要区别在于:所述光学膜层结构9’的微结构为三棱柱。
本申请并不限于以上各实施方式所描述的微结构的形状,所述微结构也可 为其它合适形状的结构。
可变更地,对于上述各实施方式的微结构,也可部分微结构紧密排布,部分微结构间隔排布。
与现有技术相比,本申请各实施方式所提供的光学膜层结构、背光模组、显示装置及电子设备通过设置合理的微结构形状,能够在显示装置的显示区域不开孔的前提下实现背光光线和检测光线的双向穿透,有利于在不影响显示效果的前提下实现屏下感测,从而进一步提高电子设备的屏占比,提升电子设备的视觉感受。
需要说明的是,本领域技术人员可以理解,在不付出创造性劳动的前提下,本申请实施例的部分或全部,以及对于实施例的部分或全部的变形、替换、变更、拆分、组合、扩展等均应认为被本申请的申请创造思想所涵盖,属于本申请的保护范围。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述仅为本申请的较佳实施方式而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (35)

  1. 一种背光模组,用于透过由外部对象发射和/或反射的检测光线至一传感模组,所述检测光线用于外部对象的生物特征信息检测,所述背光模组能够给一个显示面板提供背光光线,其特征在于:所述背光模组包括能够透过所述检测光线且对背光光线进行会聚的光学膜层结构,其中,至少存在部分检测光线在透过所述光学膜层结构后的传播方向不变、位置发生偏移。
  2. 如权利要求1所述的背光模组,其特征在于:所述光学膜层结构包括一个或多个膜层单元,所述膜层单元包括相对设置的第一光学表面和第二光学表面,其中,所述第一光学表面为非平面,所述第一光学表面包括第一平面,所述第二光学表面包括第二平面,所述第一平面与所述第二平面相平行且相对设置,定义所述第一平面为第一透光部,所述第一光学表面还包括第二透光部,当检测光线通过平行且相对设置的所述第一透光部和第二平面而透过所述膜层单元时,至少存在部分检测光线的传播方向不变,当背光光线入射至所述膜层单元并从所述第二透光部射出时发生会聚。
  3. 如权利要求2所述的背光模组,其特征在于:所述第二光学表面为一平面。
  4. 如权利要求3所述的背光模组,其特征在于:所述第二透光部包括斜面,所述斜面倾斜于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述斜面出射时发生会聚;或,所述第二透光部包括垂面,所述垂面垂直于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述垂面出射时发生会聚;或,所述第二透光部包括斜面和垂面,所述斜面倾斜于所述第一透光部与所述第二光学表面之间,所述垂面垂直于所述第一透光部与所述第二光学表面之间,入射至所述膜层单元的背光光线在从所述斜面和垂面出射时发生会聚。
  5. 如权利要求2所述的背光模组,其特征在于:所述每个膜层单元包括基底和多个微结构,所述基底包括上表面和与上表面相对设置的下表面,所述多 个微结构形成在所述上表面上,其中,每一微结构包括上表面,所述微结构的上表面为所述微结构背对所述基底的一侧表面且为平面,所述第一透光部包括微结构的上表面,所述第二光学表面为所述基底的下表面。
  6. 如权利要求5所述的背光模组,其特征在于:所述多个微结构在所述基底的上表面上紧密无间隔排布或彼此间隔排布。
  7. 如权利要求6所述的背光模组,其特征在于:当所述多个微结构在所述基底上彼此间隔排布时,所述第一透光部还包括所述基底的上表面上未形成有所述微结构而露出的间隔部分。
  8. 如权利要求7所述的背光模组,其特征在于:各微结构大小和结构相同且等间隔排布。
  9. 如权利要求5所述的背光模组,其特征在于:所述微结构为梯台或长方体。
  10. 如权利要求5所述的背光模组,其特征在于:所述微结构的材料折射率与所述基底的材料折射率之间的差值绝对值大于或等于0且小于0.2。
  11. 如权利要求5或7所述的背光模组,其特征在于:当所述光学膜层结构为单片膜层单元时,所述多个微结构在所述基底上呈多行多列排布;设定所述光学膜层结构的第二光学表面的面积为S1,设定所述光学膜层结构的第一透光部的总面积为S2;设定所述光学膜层结构的第一透光部的总面积S2占所述光学膜层结构的第二光学表面的面积S1的百分比为P,所述百分比P大于或等于50%且小于或等于100%。
  12. 如权利要求11所述的背光模组,其特征在于:当所述学膜层结构上的多个微结构为彼此间隔排布时,所述基底上的第一透光部沿列方向的宽度小于所述微结构上的第一透光部沿列方向的宽度;所述基底上的第一透光部沿行方向的宽度小于所述微结构上的第一透光部沿行方向的宽度。
  13. 如权利要求12所述的背光模组,其特征在于:所述基底上的第一透光部沿列方向的宽度大于或等于所述微结构上的第一透光部沿列方向的宽度的四 分之一;所述基底上的第一透光部沿行方向的宽度大于或等于所述微结构上的第一透光部沿行方向的宽度的四分之一。
  14. 如权利要求12所述的背光模组,其特征在于:所述基底上的第一透光部沿列方向的宽度大于或等于所述微结构上的第一透光部沿列方向的宽度的二分之一;所述基底上的第一透光部沿行方向的宽度大于或等于所述微结构上的第一透光部沿行方向的宽度的二分之一。
  15. 如权利要求11所述的背光模组,其特征在于:所述第一透光部的面积小于所述显示面板的像素点的面积。
  16. 如权利要求11所述的背光模组,其特征在于:当所述多个微结构为紧密无间隔排布时,沿垂直所述第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中的每个或部分分别与所述显示面板中的一个像素点相对设置,且位于相对的像素点所在的范围之内。
  17. 如权利要求16所述的背光模组,其特征在于:当所述多个微结构为紧密无间隔排布时,沿垂直所述第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中分别与所述显示面板中的多个像素点一一相对设置,且位于相对的像素点所在的范围之内。
  18. 如权利要求11所述的背光模组,其特征在于:当所述多个微结构为间隔排布时,沿垂直所述第一透光部的方向进行投影,所述光学膜层结构上的多个第一透光部中的每个或部分分别与所述显示面板中的一个像素点相对设置,且位于相对的像素点所在的范围之内。
  19. 如权利要求5或7所述的背光模组,其特征在于:当所述光学膜层结构包括第一膜层单元和第二膜层单元时,所述第一膜层单元上的多个微结构呈单行多列排布,所述第二膜层单元的多个微结构呈单列多行排布;设定所述第一膜层单元的第二光学表面的面积为S1,设定所述第一膜层单元的第一透光部的总面积为S2,设定所述第二膜层单元的第二光学表面的面积为S3,设定所述第二膜层单元的第一透光部的总面积为S4;设定所述第一膜层单元的第一透 光部的总面积S2占所述第一膜层单元的第二光学表面的面积S1的百分比为P1,设定所述第二膜层单元的第一透光部的总面积S4占所述第二膜层单元的第二光学表面的面积S3的百分比为P2;设定所述百分比P1与所述百分比P2的乘积为N,所述乘积N大于或等于50%且小于或等于100%。
  20. 如权利要求19所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为彼此间隔排布、所述第二膜层单元上的多个微结构为彼此间隔排布时,所述基底上的第一透光部的宽度小于所述微结构上的第一透光部的宽度,或,所述基底上的第一透光部的面积小于所述微结构上的第一透光部的面积。
  21. 如权利要求20所述的背光模组,其特征在于:所述基底上的第一透光部的宽度大于或等于所述微结构上的第一透光部的宽度的四分之一,或,所述基底上的第一透光部的面积大于或等于所述微结构上的第一透光部的面积的四分之一。
  22. 如权利要求20所述的背光模组,其特征在于:所述基底上的第一透光部的宽度大于或等于所述微结构上的第一透光部的宽度的二分之一,或,所述基底上的第一透光部的面积大于或等于所述微结构上的第一透光部的面积的二分之一。
  23. 如权利要求19所述的背光模组,其特征在于:沿着垂直所述第一透光部的方向且沿着所述多个微结构的排布方向,所述微结构的截面为等腰梯形,所述微结构的高度范围为10微米至25微米,所述微结构上的第一透光部的宽度范围为大于或等于5微米且小于50微米,所述等腰梯形的底角范围为40度至50度。
  24. 如权利要求23所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时,所述第一透光部的宽度范围为大于或等于5微米且小于或等于25微米。
  25. 如权利要求23所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为彼此间隔排布、所述第二膜层单元上的多个微结构为彼此间隔排布时,对于相邻的第一透光部:所述微结构上的第一透光部的宽度与所述基底上的第一透光部的宽度之和的范围为大于或等于5微米且小于50微米。
  26. 如权利要求19所述的背光模组,其特征在于:沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的第一透光部与所述第二膜层单元上的第一透光部的重叠区域的面积小于所述显示面板的像素点的面积。
  27. 如权利要求23所述的背光模组,其特征在于:沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的第一透光部与所述第二膜层单元上的第一透光部的重叠区域的面积小于所述显示面板的像素点的面积。
  28. 如权利要求19所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域中的每个或部分分别与所述显示面板中的一像素点相对设置,且位于相对的像素点所在的范围之内。
  29. 如权利要求28所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为紧密无间隔排布、所述第二膜层单元上的多个微结构为紧密无间隔排布时,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域分别与所述显示面板中的多个像素点一一相对设置,且位于相对的像素点所在的范围之内。
  30. 如权利要求19所述的背光模组,其特征在于:当所述第一膜层单元上的多个微结构为彼此间隔排布、所述第二膜层单元上的多个微结构为彼此间隔排布时,沿垂直所述第一透光部的方向进行投影,所述第一膜层单元上的多个第一透光部与所述第二膜层单元上的多个第一透光部的多个重叠区域中的每个 或部分分别与所述显示面板中的一像素点相对设置,且位于相对的像素点所在的范围之内。
  31. 如权利要求1所述的背光模组,其特征在于:所述背光模组进一步包括与所述光学膜层结构层叠设置的扩散片和反射片,所述扩散片和所述光学膜层结构位于所述反射片上方,其中,所述检测光线为红外或近红外光线,所述扩散片为量子点膜,所述反射片由透过红外或近红外光而反射可见光的材料制成。
  32. 如权利要求1所述的背光模组,其特征在于:所述背光模组用于给显示面板提供的背光光线为可见光,所述检测光线为红外或近红外光。
  33. 一种液晶显示装置,其特征在于:包括显示面板和背光模组,所述显示面板用于显示画面,所述背光模组用于提供背光光线给所述显示面板,其中,所述背光模组为上述权利要求1-32中任意一项所述的背光模组。
  34. 一种电子设备,其特征在于:包括上述权利要求33所述的液晶显示装置和至少部分设置在所述液晶显示装置下方的传感模组,所述传感模组透过所述显示面板的显示区域和背光模组接收来自外部对象反射或/和发射的检测光线,以执行相应的感测。
  35. 如权利要求34所述的电子设备,其特征在于:所述传感模组用于根据接收到的检测光线执行指纹感测、三维面部感测、和活体感测中的任意一种或几种。
PCT/CN2019/077666 2019-03-11 2019-03-11 一种背光模组、显示装置以及电子设备 WO2020181457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980000395.6A CN110088674B (zh) 2019-03-11 2019-03-11 一种背光模组、显示装置以及电子设备
PCT/CN2019/077666 WO2020181457A1 (zh) 2019-03-11 2019-03-11 一种背光模组、显示装置以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077666 WO2020181457A1 (zh) 2019-03-11 2019-03-11 一种背光模组、显示装置以及电子设备

Publications (1)

Publication Number Publication Date
WO2020181457A1 true WO2020181457A1 (zh) 2020-09-17

Family

ID=67424434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077666 WO2020181457A1 (zh) 2019-03-11 2019-03-11 一种背光模组、显示装置以及电子设备

Country Status (2)

Country Link
CN (1) CN110088674B (zh)
WO (1) WO2020181457A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828972B2 (en) * 2019-10-11 2023-11-28 3M Innovative Properties Company Optical layers, films and systems
CN111007680A (zh) * 2019-11-25 2020-04-14 华为技术有限公司 液晶显示装置
WO2021191749A1 (en) * 2020-03-24 2021-09-30 3M Innovative Properties Company Optical stack featuring truncated structures
CN113437100B (zh) * 2021-06-15 2022-11-25 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN114594629B (zh) * 2022-04-15 2023-12-08 武汉华星光电技术有限公司 指纹识别显示面板及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688991A (zh) * 2007-06-22 2010-03-31 3M创新有限公司 控制背光源输出特性的系统和方法
CN203413546U (zh) * 2013-06-28 2014-01-29 3M材料技术(广州)有限公司 光学膜层、背光模组和液晶显示装置
WO2016036177A1 (ko) * 2014-09-04 2016-03-10 크루셜텍(주) 이미지 센싱이 가능한 표시 장치
CN205374937U (zh) * 2015-12-30 2016-07-06 中新科技集团股份有限公司 一种新型的液晶显示背光模组
CN108153053A (zh) * 2018-01-02 2018-06-12 京东方科技集团股份有限公司 一种显示装置及驱动方法
CN109031782A (zh) * 2018-07-31 2018-12-18 Oppo广东移动通信有限公司 显示屏组件、电子设备及电子设备的控制方法
CN109061922A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备
WO2019007424A1 (en) * 2017-07-06 2019-01-10 Shenzhen GOODIX Technology Co., Ltd. MULTILAYER OPTICAL DESIGNS OF OPTICAL SENSOR MODULE SUB-SCREEN HAVING A SPACED OPTIC COLLIMATOR NETWORK AND AN OPTICAL SENSOR ARRAY FOR DETECTION OF DIGITAL SCREENS ON SCREEN
CN109313703A (zh) * 2018-08-15 2019-02-05 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、背光模组、显示屏幕及电子设备
CN110088673A (zh) * 2019-03-11 2019-08-02 深圳阜时科技有限公司 一种光学膜层结构、背光模组、显示装置以及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105114867B (zh) * 2015-08-31 2017-08-29 京东方科技集团股份有限公司 一种背光模组及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688991A (zh) * 2007-06-22 2010-03-31 3M创新有限公司 控制背光源输出特性的系统和方法
CN203413546U (zh) * 2013-06-28 2014-01-29 3M材料技术(广州)有限公司 光学膜层、背光模组和液晶显示装置
WO2016036177A1 (ko) * 2014-09-04 2016-03-10 크루셜텍(주) 이미지 센싱이 가능한 표시 장치
CN205374937U (zh) * 2015-12-30 2016-07-06 中新科技集团股份有限公司 一种新型的液晶显示背光模组
WO2019007424A1 (en) * 2017-07-06 2019-01-10 Shenzhen GOODIX Technology Co., Ltd. MULTILAYER OPTICAL DESIGNS OF OPTICAL SENSOR MODULE SUB-SCREEN HAVING A SPACED OPTIC COLLIMATOR NETWORK AND AN OPTICAL SENSOR ARRAY FOR DETECTION OF DIGITAL SCREENS ON SCREEN
CN108153053A (zh) * 2018-01-02 2018-06-12 京东方科技集团股份有限公司 一种显示装置及驱动方法
CN109031782A (zh) * 2018-07-31 2018-12-18 Oppo广东移动通信有限公司 显示屏组件、电子设备及电子设备的控制方法
CN109313703A (zh) * 2018-08-15 2019-02-05 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、背光模组、显示屏幕及电子设备
CN109061922A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110088673A (zh) * 2019-03-11 2019-08-02 深圳阜时科技有限公司 一种光学膜层结构、背光模组、显示装置以及电子设备

Also Published As

Publication number Publication date
CN110088674B (zh) 2023-07-04
CN110088674A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020181457A1 (zh) 一种背光模组、显示装置以及电子设备
TWI484389B (zh) 觸控顯示裝置
WO2020181446A1 (zh) 一种光学膜层结构、背光模组、显示装置以及电子设备
WO2020181447A1 (zh) 一种光学膜层结构、背光模组、显示装置及电子设备
CN210573819U (zh) 一种背光模组、液晶显示装置以及电子设备
CN110955083B (zh) 显示装置
CN210155480U (zh) 光学膜层结构、背光模组、液晶显示装置以及电子设备
WO2020181443A1 (zh) 生物特征检测模组和背光模组及电子装置
CN210155479U (zh) 一种光学膜层结构、背光模组、液晶显示装置以及电子设备
CN210401947U (zh) 一种背光模组、液晶显示装置以及电子设备
CN210155477U (zh) 一种背光模组、液晶显示装置以及电子设备
CN209728221U (zh) 一种背光模组、显示装置以及电子设备
CN210401944U (zh) 一种背光模组、显示装置以及电子设备
CN210402373U (zh) 一种传感模组
CN210155478U (zh) 一种光学膜层结构、背光模组、液晶显示装置及电子设备
CN212483348U (zh) 光学检测装置
CN210402381U (zh) 光学检测装置
CN210402386U (zh) 光学检测装置
CN210402385U (zh) 光学检测装置
CN210402384U (zh) 光学检测装置
CN210402388U (zh) 光学检测装置
CN210401945U (zh) 一种光学膜层结构、背光模组、显示装置及电子设备
CN210402375U (zh) 背光模组、显示器、生物特征检测模组及电子装置
CN209962256U (zh) 生物特征检测模组和背光模组、显示器及电子装置
CN210401946U (zh) 一种光学膜层结构、背光模组、显示装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919354

Country of ref document: EP

Kind code of ref document: A1