WO2020179900A1 - セラミックス部材およびその製造方法 - Google Patents

セラミックス部材およびその製造方法 Download PDF

Info

Publication number
WO2020179900A1
WO2020179900A1 PCT/JP2020/009599 JP2020009599W WO2020179900A1 WO 2020179900 A1 WO2020179900 A1 WO 2020179900A1 JP 2020009599 W JP2020009599 W JP 2020009599W WO 2020179900 A1 WO2020179900 A1 WO 2020179900A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
observed
zirconium oxide
electron microscope
scanning electron
Prior art date
Application number
PCT/JP2020/009599
Other languages
English (en)
French (fr)
Inventor
野村 直之
川崎 亮
偉偉 周
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2021503661A priority Critical patent/JPWO2020179900A1/ja
Publication of WO2020179900A1 publication Critical patent/WO2020179900A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Definitions

  • the present invention relates to a ceramic member and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-040986 filed in Japan on March 6, 2019, the contents of which are incorporated herein by reference.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • plasma spraying and the like have been used to form a ceramic coating.
  • a three-dimensional additive manufacturing method is being studied.
  • PVD is a method of forming a film by irradiating a raw material (material for forming a film) with ions under high vacuum to scatter the raw material in an atomic state and depositing the raw material in the atomic state on a substrate.
  • CVD is a method in which a gas containing a coating component (a component forming a coating film) is chemically reacted on a substrate, and the coating component is deposited on the substrate to form a film.
  • the plasma spraying method is a method in which powder of a raw material (material forming a film) is supplied to a plasma torch, and the powder of the molten raw material is brought into close contact with the plasma torch to form a film.
  • the method for forming the ceramic film by the plasma spraying method include micron-sized particles (Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZnO, La 2 O 3 , Y 2 O 3 , ZrO 2 ,).
  • micron-sized particles Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZnO, La 2 O 3 , Y 2 O 3 , ZrO 2 ,
  • Examples thereof include a film forming method using a powder raw material (see, for example, Patent Document 1).
  • PVD can form a dense film
  • CVD can form a dense film
  • it has problems such as a slow film formation rate and the need for a chamber for using a reactive gas.
  • the plasma spraying method has problems such as a high film forming speed and the ability to form a thick film, but it is difficult to form a dense film, and the obtained film has a layered structure and is easily peeled off. was there. Further, when the three-dimensional additive manufacturing method was applied to the formation of the ceramic film, the film sometimes cracked during the film formation.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ceramic member having excellent adhesion to a substrate and having a dense ceramic film, and a method for manufacturing the same.
  • a ceramic member comprising a substrate having a thermal conductivity of 60 W / m ⁇ K or more and a ceramic coating containing at least monoclinic zirconium oxide formed on one surface of the substrate.
  • the mass ratio of the monoclinic zirconium oxide to the tetragonal zirconium oxide contained in the ceramic coating is 84:16 to 92:8.
  • the present invention it is possible to provide a ceramic member having excellent adhesion to a substrate and having a dense ceramic coating and a method for manufacturing the same.
  • Experimental Example 1 it is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after performing the sintering process three times. In Experimental Example 1, it is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after performing the sintering step 5 times. In Experimental Example 1, it is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times. In Experimental Example 1, it is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 13 times. In Experimental Example 1, it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process 17 times.
  • Experimental Example 1 it is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 21 times. In Experimental Example 1, it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 5 times. In Experimental Example 1, it is a scanning electron microscope image which observed the cross section of a molybdenum substrate after performing a sintering process 9 times. In Experimental Example 1, it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 13 times. In Experimental Example 1, it is a scanning electron microscope image which observed the cross section of a molybdenum substrate after performing a sintering process 17 times.
  • Experimental Example 1 it is a scanning electron microscope image which observed the cross section of a molybdenum substrate after performing a sintering process 9 times. It is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the cross section of the molybdenum substrate after performing the sintering process 9 times in Experimental Example 1. It is a figure which shows the result of having detected aluminum (Al) by EDS analysis which observed the cross section of the molybdenum substrate after performing the sintering process 9 times in Experimental Example 1. It is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the cross section of the molybdenum substrate after performing the sintering process 9 times in Experimental Example 1.
  • Experimental example 1 after performing a sintering process 9 times, it is a figure which shows the result of having detected molybdenum (Mo) by EDS analysis which observed the cross section of the molybdenum substrate. It is a figure which shows the relationship between the number of sintering steps and the thickness of the ceramic film made of zirconium oxide formed on one surface of a molybdenum substrate in Experimental Example 1. It is a figure which shows the result of having performed the structural analysis of the ceramic film formed on one surface of a molybdenum substrate by X-ray diffraction in Experimental Example 1. In Experimental Example 2, it is a scanning electron microscope image which observed the copper substrate from one side after performing the sintering process once.
  • Mo molybdenum
  • Experimental Example 2 it is a scanning electron microscope image of a copper substrate observed from one side thereof after the sintering step was performed three times. In Experimental Example 2, it is a scanning electron microscope image which observed the copper substrate from one side after performing the sintering process 5 times. In Experimental Example 2, it is a scanning electron microscope image which observed the copper substrate from the one side after performing the sintering process 7 times. In Experimental Example 2, it is a scanning electron microscope image which observed the copper substrate from the one side after performing the sintering process 9 times. In Experimental Example 2, it is a scanning electron microscope image which observed the copper substrate from one side after performing the sintering process 5 times.
  • Experimental Example 2 it is a figure which shows the result of having detected copper (Cu) by EDS analysis which observed the copper substrate from one side of the copper substrate after performing the sintering process 5 times.
  • Experimental Example 2 it is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the copper substrate from one side of the copper substrate after performing the sintering process 5 times.
  • Experimental Example 2 it is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the copper substrate from one side of the copper substrate after performing the sintering process 5 times.
  • Experimental Example 2 it is a figure which shows the result of having detected copper (Cu) by EDS analysis which observed the copper substrate from one side of the copper substrate after performing the sintering process 9 times.
  • Experimental Example 2 it is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the copper substrate from one side of the copper substrate after performing the sintering process 9 times.
  • Experimental example 2 after performing a sintering process 9 times, it is a figure which shows the result of having detected oxygen (O) by the EDS analysis which observed the copper substrate from the one surface side. It is a figure which shows the result of having performed the structural analysis of the ceramic film formed on one surface of a copper substrate by X-ray diffraction in Experimental Example 2.
  • Experimental Example 3 it is a scanning electron microscope image which observed the aluminum substrate from one side after performing the sintering process once. In Experimental Example 3, it is a scanning electron microscope image which observed the aluminum substrate from one side after performing the sintering process three times. In Experimental Example 3, it is a scanning electron microscope image which observed the aluminum substrate from one side after performing the sintering process 7 times. In Experimental Example 3, it is a scanning electron microscope image which observed the aluminum substrate from the one side after performing the sintering process 9 times. In Experimental Example 3, it is a scanning electron microscope image which observed the aluminum substrate from one side after performing the sintering process 5 times.
  • Experimental Example 3 it is a figure which shows the result of having detected aluminum (Al) by EDS analysis which observed the aluminum substrate from one surface side after performing the sintering process 5 times.
  • Experimental Example 3 it is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the aluminum substrate from one side of the aluminum substrate after performing the sintering process 5 times.
  • Experimental Example 3 it is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the aluminum substrate from one side of the aluminum substrate after performing the sintering process 5 times. It is a figure which shows the result of having performed the structural analysis of the ceramic film formed on one surface of an aluminum substrate by X-ray diffraction in Experimental Example 3.
  • Experimental Example 4 it is a scanning electron microscope image which observed the titanium substrate from the one side after performing the sintering process once. In Experimental Example 4, it is a scanning electron microscope image which observed the titanium substrate from the one side after performing the sintering process twice. In Experimental Example 4, after performing the sintering process three times, it is a scanning electron microscope image of the titanium substrate observed from one surface side. In Experimental Example 4, it is a scanning electron microscope image which observed the titanium substrate from the one side after performing the sintering process 5 times. In Experimental Example 4, after performing the sintering step 9 times, it is a scanning electron microscope image of the titanium substrate observed from one surface side.
  • Experimental Example 4 it is a figure which shows the result of having detected titanium (Ti) by EDS analysis which observed the titanium substrate from one surface side after performing the sintering process 9 times.
  • Experimental Example 4 it is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the titanium substrate from one side of the titanium substrate after performing the sintering process 9 times.
  • Experimental Example 4 it is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the titanium substrate from one side of the titanium substrate after performing the sintering process 9 times. It is a figure which shows the result of having performed the structural analysis of the ceramic film formed on one surface of a titanium substrate by X-ray diffraction in Experimental Example 4.
  • Example 7 is a scanning electron microscope image of the zirconium substrate observed from one surface side after performing the sintering step once in Experimental Example 5.
  • it is a scanning electron microscope image of a zirconium substrate observed from one side thereof after the sintering step was performed three times.
  • it is a scanning electron microscope image which observed the zirconium substrate from the one side after performing the sintering process 5 times.
  • it is a scanning electron microscope image which observed the zirconium substrate from the one side after performing the sintering process 7 times.
  • it is a scanning electron microscope image of a zirconium substrate observed from one side thereof after the sintering step was performed three times.
  • Experimental Example 5 it is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the zirconium substrate from one side of the zirconium substrate after performing the sintering process three times.
  • Zr zirconium
  • O oxygen
  • Experimental Example 6 it is a scanning electron microscope image which observed the stainless steel substrate from the one side after performing the sintering process once.
  • Experimental Example 6 it is a scanning electron microscope image which observed the stainless steel substrate from the one side after performing the sintering process three times.
  • FIG. 7 is a scanning electron microscope image of a stainless steel substrate observed from one side thereof after performing a sintering step seven times in Experimental Example 6.
  • Experimental Example 7 it is a scanning electron microscope image which observed the molybdenum substrate from one side after performing the sintering process once.
  • FIG. 7 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step three times in Experimental Example 7.
  • it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process 5 times.
  • FIG. 7 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step 7 times in Experimental Example 7.
  • FIG. 7 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step 7 times in Experimental Example 7.
  • FIG. 13 is a diagram showing the results of structural analysis of a ceramic coating formed on one surface of a molybdenum substrate by X-ray diffraction in Experimental Example 7.
  • Experimental example 8 it is a scanning electron microscope image of the molybdenum substrate observed from one surface side after performing the sintering step once.
  • Experimental Example 8 it is a scanning electron microscope image which observed the molybdenum substrate from one side after performing the sintering process three times.
  • 9 is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after performing the sintering step 5 times in Experimental Example 8.
  • FIG. 8 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step 7 times in Experimental Example 8.
  • Experimental Example 9 it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process three times.
  • 9 is a scanning electron microscope image of a molybdenum substrate observed from one side of the molybdenum substrate after the sintering step was performed 5 times in Experimental Example 9.
  • it is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • 9 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof in Experimental Example 9.
  • Experimental Example 9 it is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the molybdenum substrate from one side of the molybdenum substrate after performing the sintering process 9 times.
  • O oxygen
  • Experimental Example 9 it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 5 times.
  • Experimental Example 9 it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 5 times.
  • Experimental Example 9 it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • Experimental Example 9 it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • Experimental Example 9 it is a scanning electron microscope image which observed the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • FIG. 9 It is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the cross section of the molybdenum substrate after performing the sintering process 9 times in Experimental Example 9.
  • O detected oxygen
  • FIG. 9 it is a scanning electron microscope image which observed one surface of a molybdenum substrate after performing a sintering process 9 times.
  • FIG. 9 it is a scanning electron microscope image which observed one surface of a molybdenum substrate after performing a sintering process 9 times.
  • FIG. 106 is a diagram showing the result of analyzing a region surrounded by a circle by electron diffraction.
  • FIG. 107 is a diagram showing the result of analyzing a region surrounded by a circle by electron diffraction.
  • Experimental Example 10 it is a scanning electron microscope image which observed the molybdenum substrate from one side after performing the sintering process once.
  • FIG. 10 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step three times in Experimental Example 10.
  • FIG. 10 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step 5 times in Experimental Example 10.
  • FIG. 10 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering step 7 times in Experimental Example 10.
  • it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process 9 times.
  • Experimental Example 10 it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process 9 times. In Experimental Example 10, it is a scanning electron microscope image which observed the molybdenum substrate from the one side after performing the sintering process 9 times. In Experimental example 10, after performing a sintering process 9 times, it is a figure which shows the result of having detected molybdenum (Mo) by the EDS analysis which observed the molybdenum substrate from one surface side. It is a figure which shows the result of having detected zirconium (Zr) by EDS analysis which observed the molybdenum substrate from one side of the molybdenum substrate after performing the sintering process 9 times in Experimental Example 10.
  • Mo molybdenum
  • Zr zirconium
  • Experimental example 10 after performing a sintering process 9 times, it is a figure which shows the result of having detected oxygen (O) by the EDS analysis which observed the molybdenum substrate from one surface side.
  • O oxygen
  • it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing a sintering step once.
  • it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed three times.
  • Experimental Example 11 it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 5 times.
  • Experimental Example 11 it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 7 times. In Experimental Example 11, it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 9 times. In Experimental Example 11, it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 11 times. In Experimental Example 11, it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 17 times.
  • Experimental Example 11 it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing a sintering step once.
  • Experimental Example 11 it is a figure which shows the result of having detected tungsten (W) by the EDS analysis which observed the cemented carbide (WC-Co) substrate from one side of the substrate after performing the sintering process once.
  • Experimental Example 11 it is a figure which shows the result of having detected carbon (C) by EDS analysis which observed the cemented carbide (WC-Co) substrate from one side of it after performing the sintering process once.
  • Experimental Example 11 it is a figure which shows the result of having detected cobalt (Co) by EDS analysis which observed the cemented carbide (WC-Co) substrate from one side of it after performing the sintering process once.
  • Experimental Example 11 it is a figure which shows the result of having detected zirconium (Zr) by the EDS analysis which observed the cemented carbide (WC-Co) substrate from the one side of it after performing the sintering process once.
  • Experimental Example 11 it is a figure which shows the result of having detected oxygen (O) by the EDS analysis which observed the cemented carbide (WC-Co) substrate from the one side of it after performing the sintering process once.
  • Experimental Example 11 it is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed 5 times.
  • Experimental Example 11 it is a figure which shows the result of having detected zirconium (Zr) by the EDS analysis which observed the cemented carbide (WC-Co) substrate from the one side of it after performing the sintering process 5 times.
  • Experimental Example 11 it is a figure which shows the result of having detected oxygen (O) by EDS analysis which observed the cemented carbide (WC-Co) substrate from one side of the carbide after performing the sintering process 5 times.
  • Experimental Example 11 it is a figure which shows the result of having detected cobalt (Co) by EDS analysis which observed the cemented carbide (WC-Co) substrate from one side of the carbide (WC-Co) substrate after performing the sintering process 5 times.
  • FIG. 1 is a schematic cross-sectional view showing a ceramic member of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a ceramic coating of the ceramic member of the present embodiment.
  • the ceramic member 10 of the present embodiment includes a substrate 11 having a thermal conductivity of 60 W / m ⁇ K or more, and a ceramic coating 12 containing at least monoclinic zirconium oxide formed on one surface 11a of the substrate 11.
  • the substrate 11 has a thermal conductivity of 60 W / m ⁇ K or more, preferably 120 W / m ⁇ K or more, and more preferably 200 W / m ⁇ K or more. If the thermal conductivity is less than 60 W/m ⁇ K, the ceramic coating 12 containing at least monoclinic zirconium oxide cannot be formed on the one surface 11a of the substrate 11 by the method for manufacturing a ceramic member of the present embodiment described later.
  • the thermal conductivity of the substrate 11 is calculated from the thermal diffusion coefficient of the substrate 11, the density of the substrate 11 and the specific heat of the substrate 11.
  • the thermal conductivity of the substrate 11 is ⁇ (W/m ⁇ K)
  • the thermal diffusion coefficient of the substrate 11 is ⁇ (m 2 /s)
  • the density of the substrate 11 is ⁇ (kg/m 3 )
  • the specific heat of the substrate 11 is c.
  • the thermal diffusion coefficient of the substrate 11 is preferably 0.5 ⁇ 10 -4 m 2 / s or more, and more preferably 0.8 ⁇ 10 -4 m 2 / s or more. If the thermal conductivity is 0.5 ⁇ 10 ⁇ 4 m 2 /s or more, the ceramic film containing at least monoclinic zirconium oxide on one surface 11a of the substrate 11 by the method for manufacturing a ceramic member of the present embodiment described later. 12 can be formed. A laser flash method is used as a method for measuring the thermal diffusion coefficient of the substrate 11.
  • the density of the substrate 11 is preferably 2500 kg/m 3 or more, more preferably 5000 kg/m 3 or more.
  • the ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on one surface 11a of the substrate 11 by the method for manufacturing a ceramic member of the present embodiment described later.
  • the Archimedes method is used as a method for measuring the density of the substrate 11.
  • the specific heat of the substrate 11 is preferably 200 J / kg ⁇ K or more, and more preferably 300 J / kg ⁇ K or more.
  • the ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on the one surface 11a of the substrate 11 by the method for manufacturing a ceramic member of the present embodiment described later.
  • a differential scanning calorimeter is used to measure the specific heat of the substrate 11.
  • the substrate 11 may be made of molybdenum (Mo), copper (Cu), aluminum (Al), tungsten (W) -based cemented carbide or the like, and may be made of molybdenum (Mo), copper (Cu) or aluminum (Al). Is preferable, and molybdenum is more preferable because it is easy to form a uniform ceramic coating 12.
  • the ceramic coating 12 is a film formed by the method for manufacturing a ceramic member of the present embodiment described later.
  • the ceramic coating 12 contains at least monoclinic zirconium oxide (ZrO 2 ).
  • the ceramic coating 12 is an insulating coating mainly composed of monoclinic zirconium oxide.
  • the ceramic film 12 is an insulating film containing dense monoclinic zirconium oxide.
  • the ceramic coating 12 may further contain tetragonal zirconium oxide in addition to monoclinic zirconium oxide.
  • the ceramic coating 12 contains monoclinic zirconium oxide and tetragonal zirconium oxide
  • the monoclinic zirconium oxide and tetragonal zirconium oxide exist at interfaces that are consistent with each other. Even when the ceramic film 12 contains monoclinic zirconium oxide and tetragonal zirconium oxide, the ceramic film 12 is an insulating film.
  • the ratio of the monoclinic zirconium oxide and the tetragonal zirconium oxide contained in the ceramic coating 12 is in a mass ratio (mass %: mass). %) Is preferably 84:16 to 92: 8, and more preferably 85:15 to 90:10.
  • mass ratio mass ratio (mass %: mass). %) Is preferably 84:16 to 92: 8, and more preferably 85:15 to 90:10.
  • the proportion of tetragonal zirconium oxide is 8% by mass or more, the ceramic film can be formed on the substrate.
  • the proportion of tetragonal zirconium oxide is 16% by mass or less, no cracks are present in the ceramic coating on the substrate.
  • the ceramic coating 12 may further contain graphene oxide (GO) when it contains at least monoclinic zirconium oxide, or when it contains monoclinic zirconium oxide and tetragonal zirconium oxide.
  • GO graphene oxide
  • the ceramic coating 12 contains at least monoclinic zirconium oxide and further contains graphene oxide
  • the ceramic coating 12 has grain boundaries of crystal grains 30 of monoclinic zirconium oxide (FIG. 2).
  • metal zirconium (Zr) is segregated (concentrated) at the portion indicated by reference numeral 35 and at the boundary between the crystal grains 30. It is the metal zirconium that is segregated at the grain boundaries of the crystal grains 30 of monoclinic zirconium oxide, not zirconium oxide.
  • the ceramic film 12 contains monoclinic zirconium oxide and tetragonal zirconium oxide and further contains graphene oxide, as shown in FIG.
  • the ceramic film 12 is made of monoclinic zirconium oxide.
  • Metallic zirconium (Zr) is segregated (concentrated) at the grain boundaries of crystal grains 30 (portions indicated by reference numeral 35 in FIG. 2, boundaries between crystal grains 30). It is the metal zirconium that is segregated at the grain boundaries of the crystal grains 30 of monoclinic zirconium oxide, not zirconium oxide.
  • the ceramic coating 12 has conductivity. That is, the ceramic coating 12 (ceramic member 10) has both insulation and conductivity.
  • the ceramic coating 12 may contain impurities other than monoclinic zirconium oxide, tetragonal zirconium oxide, and graphene oxide.
  • impurities include ceramics such as aluminum oxide and silicon oxide that do not contribute to the stabilization of zirconium oxide.
  • the ceramic member 10 of the present embodiment has excellent adhesion to the substrate 11 and has a dense ceramic coating 12. Therefore, the ceramic member 10 of the present embodiment has excellent wear resistance to the metal material in the ceramic coating 12.
  • FIG. 3 is a schematic view showing a ceramic member manufacturing apparatus used in the ceramic member manufacturing method of the present embodiment.
  • FIG. 4 is a schematic view showing a ceramic member manufacturing apparatus used in the ceramic member manufacturing method of the present embodiment.
  • FIG. 5 is a schematic view showing a method for manufacturing the ceramic member of the present embodiment.
  • the same configurations as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the ceramic member manufacturing apparatus 100 used in the ceramic member manufacturing method of the present embodiment includes a laser light source 110, a condenser lens 120, and the like.
  • the powder supply unit 130 and the pedestal 140 are provided.
  • the laser light source 110 irradiates the raw material powder containing the zirconium oxide powder disposed on the one surface 11 a of the substrate 11 with laser light.
  • the laser light source 110 is not particularly limited.
  • the condenser lens 120 collects the laser light oscillated from the laser light source 110 and irradiates the raw material powder 40 arranged on one surface 11a of the substrate 11.
  • the condensing lens 120 is not particularly limited, and examples thereof include a lens used in a general laser device.
  • the powder supply unit 130 supplies the raw material powder 40 to one surface 11a of the substrate 11 housed in the ceramic film forming unit 141 provided on the pedestal 140. As shown in FIG. 3, the powder supply unit 130 reciprocates on the upper surface 140a of the pedestal 140 along a direction perpendicular to the thickness direction of the pedestal 140 (horizontal direction in FIG. 3, arrow direction shown in FIG. 3). It is movable.
  • the pedestal 140 arranges the substrate 11 at a predetermined position and supports the powder supply unit 130.
  • the pedestal 140 has a ceramic film forming portion 141 formed of through holes penetrating in the thickness direction thereof.
  • a support member 150 that supports the substrate 11 from below in the thickness direction of the pedestal 140 is provided in the ceramic film forming portion 141.
  • the substrate 11 supported by the support member 150 is movable in the ceramic film forming portion 141 along the thickness direction of the pedestal 140.
  • the substrate 11 is supported by the support member 150, and the substrate 11 is arranged (accommodated) in the ceramic film forming portion 141.
  • the one surface 11a of the substrate 11 and the upper surface 140a of the pedestal 140 are not on the same surface. That is, one surface 11a of the substrate 11 is located below the upper surface 140a of the pedestal 140 in the thickness direction of the pedestal 140.
  • a space 160 composed of one surface 11a of the substrate 11 and the inner side surface 141a of the ceramic film forming portion 141 is formed in the ceramic film forming portion 141.
  • the powder supply unit 130 is moved on the upper surface 140a of the pedestal 140 and arranged on the ceramic film forming unit 141.
  • the raw material powder 40 is supplied from the powder supply unit 130 into the space 160 formed in the ceramic film forming unit 141. As a result, the raw material powder 40 is arranged on one surface 11a of the substrate 11.
  • the powder supply unit 130 is moved on the upper surface 140a of the pedestal 140 to a position away from the ceramic film forming unit 141.
  • the laser light is emitted from the laser light source 110, the laser light is condensed by the condenser lens 120, and the raw material powder 40 arranged on the one surface 11a of the substrate 11 is irradiated with the laser light 170. , Raw material powder 40 is sintered.
  • the ceramic coating 12 containing at least monoclinic zirconium oxide is formed on the one surface 11a of the substrate 11.
  • the speed of the laser beam 170 with which the raw material powder 40 disposed on the one surface 11a of the substrate 11 is irradiated is preferably 5 mm/s or more and 10000 mm/s or less, and more preferably 10 mm/s or more and 5000 mm/s or less. ..
  • the ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on the one surface 11a of the substrate 11.
  • the wavelength of the laser beam 170 that irradiates the raw material powder 40 arranged on one surface 11a of the substrate 11 is preferably 10 nm or more and 20000 nm or less, and more preferably 20 nm or more and 11000 nm or less.
  • a ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on one surface 11a of the substrate 11.
  • the intensity of the laser beam 170 irradiating the raw material powder 40 arranged on one surface 11a of the substrate 11 is preferably 10 W or more and 1000 W or less, and more preferably 20 W or more and 400 W or less.
  • the ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on the one surface 11a of the substrate 11.
  • the ceramic coating 12 is formed on one surface 11a of the substrate 11 a plurality of times.
  • N is a natural number of 1 or more
  • the raw material powder arranged on the one surface 11a of the substrate 11 while scanning the one surface 11a of the substrate 11 in the X direction.
  • the raw material powder 40 is sintered by irradiating the 40 with a laser beam 170. Subsequently, as shown in FIG.
  • the raw material arranged on the one surface 11a of the substrate 11 while scanning the one surface 11a of the substrate 11 in the Y direction at the first time of forming the ceramic coating 12 N (N is a natural number of 1 or more) + 1.
  • the powder 40 is irradiated with a laser beam 170 to sinter the raw material powder 40.
  • the number of times the raw material powder 40 is sintered is not particularly limited. Sintering of the raw material powder 40 is repeated until the thickness of the ceramic coating 12 reaches an arbitrary value in the range of 7.5 ⁇ m or more and 18 ⁇ m or less.
  • an interval d 1 for scanning the laser beam 170 in the X direction and an interval d 2 for scanning the laser beam 170 in the Y direction are preferably 10 ⁇ m or more and 2000 ⁇ m or less. , 100 ⁇ m or more and 1000 ⁇ m or less is more preferable.
  • a ceramic coating 12 containing at least monoclinic zirconium oxide can be formed on one surface 11a of the substrate 11.
  • the zirconium oxide powder contained in the raw material powder 40 has an average primary particle diameter of 5 nm or more and 500 nm or less, and preferably 20 nm or more and 100 nm or less. If the average primary particle size of the zirconium oxide powder is less than 5 nm, it will aggregate and it will be difficult to lay the powder. On the other hand, if the average primary particle diameter of the zirconium oxide powder exceeds 500 nm, the ceramic coating will not be formed uniformly.
  • the particle size (d50) is preferably 20 nm or more and 2000 nm or less, and more preferably 100 nm or more and 1000 nm or less. .. If the d50 of the zirconium oxide powder is 2000 nm or more, the ceramic film will not be formed uniformly. On the other hand, when the d50 of the zirconium oxide powder is 20 nm or less, the particles agglomerate and it becomes difficult to lay the powder.
  • the ceramic coating 12 is formed on one surface 11a of the substrate 11 a plurality of times. Therefore, each time the sintering of the raw material powder 40 is completed, the support member 150 moves the substrate 11 downward in the ceramic film forming portion 141 in the ceramic film forming portion 141 in the thickness direction of the pedestal 140, and inside the ceramic film forming portion 141. In addition, a space 160 composed of one surface 11a of the substrate 11 and the inner side surface 141a of the ceramic film forming portion 141 is newly formed. Then, the raw material powder 40 is supplied into the newly formed space 160 to sinter the raw material powder 40.
  • the raw material powder 40 may further contain graphene oxide powder in addition to the zirconium oxide powder. Since the raw material powder 40 contains the graphene oxide powder in addition to the zirconium oxide powder, metal zirconium is present at the grain boundaries of the monoclinic zirconium oxide crystal grains 30 contained in the ceramic coating 12, as described above. Can be segregated. As a result, the obtained ceramic member 10 has both insulating properties and conductivity.
  • the content of the graphene oxide powder in the total amount of the raw material powder 40 of 100% by mass is 8% by mass or more and 15% by mass or less. It is preferably 0.5% by mass or more and 5% by mass or less.
  • metallic zirconium can be segregated at the grain boundaries of the crystal grains 30 of the monoclinic zirconium oxide contained in the ceramic film 12.
  • the content of the graphene oxide powder exceeds 15% by mass, voids are formed in the ceramic coating.
  • the components other than the graphene oxide powder in the raw material powder 40 are mainly zirconium oxide powder.
  • the raw material powder 40 may contain a trace amount of impurities in addition to the zirconium oxide powder and the graphene oxide powder.
  • a raw material containing zirconium oxide powder having an average primary particle diameter of 5 nm or more and 500 nm or less arranged on one surface 11a of a substrate 11 having a thermal conductivity of 60 W / m ⁇ K or more.
  • the substrate 11a is covered with a ceramic film. It is possible to form a dense ceramic coating 12 that is excellent in adhesion with 11.
  • Example 1 Using the ceramic member manufacturing apparatus shown in FIGS. 3 and 4, a 1 mm thick molybdenum substrate (thermal conductivity 138 W/mK, thermal diffusion coefficient 5.4 ⁇ 10 ⁇ 5 m 2 /s, density 10280 kg/ The raw material powder arranged on one surface (m 3 , specific heat 250 J / kg ⁇ K) was irradiated with laser light, and the raw material powder was sintered on one surface of the molybdenum substrate. As the raw material powder, a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • d50 particle size
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • a fiber laser was used as the laser light source.
  • the speed of the laser light with which the zirconium oxide powder arranged on one surface of the molybdenum substrate was irradiated was set to 10 mm/s.
  • the intensity of the laser light with which the zirconium oxide powder provided on one surface of the molybdenum substrate was irradiated was set to 20.6W.
  • the zirconium oxide powder was arranged on one surface of the molybdenum substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 21 times.
  • FIG. 6 is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after the sintering step was performed once.
  • FIG. 7 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed twice.
  • FIG. 8 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 9 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after performing the sintering process five times.
  • FIG. 10 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 11 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 13 times.
  • FIG. 12 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 17 times.
  • FIG. 13 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 21 times.
  • SEM scanning electron microscope
  • FIG. 14 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process five times.
  • FIG. 15 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • FIG. 16 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process 13 times.
  • FIG. 17 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process 17 times.
  • FIG. 18 is a scanning electron microscope image in which a cross section of a molybdenum substrate is observed after performing the sintering step 9 times.
  • FIG. 19 is a diagram showing the results of detecting oxygen (O) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • O oxygen
  • FIG. 20 is a diagram showing the results of detecting aluminum (Al) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 21 is a diagram showing the results of detecting zirconium (Zr) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 22 is a diagram showing the results of detecting molybdenum (Mo) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • EDS energy dispersive X-ray analysis
  • the thickness of the ceramic coating formed on one surface of the molybdenum substrate was measured each time the sintering step was performed.
  • the thickness of the ceramic coating was measured by measuring the cross section of the sample using a scanning electron microscope (trade name: SM-6010LV, manufactured by JEOL Ltd.).
  • the relationship between the number of sintering steps and the thickness of the ceramic coating formed on one surface of the molybdenum substrate was investigated. The results are shown in FIG. From the results shown in FIG. 23, it was found that the thickness of the ceramic coating formed on one surface of the molybdenum substrate increased as the number of sintering steps increased. Further, the thickness of the ceramic coating became maximum after 17 sintering steps, and the thickness of the ceramic coating at that time was 18 ⁇ m. Further, when the sintering step exceeds 17 times, it is considered that the thickness of the ceramic coating formed on one surface of the molybdenum substrate gradually decreases.
  • the structure of the ceramic film formed on one surface of the molybdenum substrate was analyzed by X-ray diffraction.
  • the structural analysis of the ceramic film by X-ray diffraction was performed by using a fully automatic multipurpose X-ray diffractometer (Rigaku, Smart Lab) and using the diffraction peak obtained by the ⁇ -2 ⁇ method. The results are shown in FIG. From the results shown in FIG. 24, it was confirmed that a ceramic film containing monoclinic zirconium oxide was formed on one surface of the molybdenum substrate.
  • zirconium oxide contained in the ceramic coating formed on one surface of the molybdenum substrate had the same crystal structure as zirconium oxide of the raw material powder. Further, by performing the sintering step 5 times or more, the peak of tetragonal zirconium oxide was not observed, and it was confirmed that the ceramic coating contained only monoclinic zirconium oxide.
  • the thickness of the ceramic coating at this time was 7.5 ⁇ m. That is, when the thickness of the ceramic film was 7.5 ⁇ m or more, the peak of tetragonal zirconium oxide was not observed, and it was confirmed that the ceramic film contained only monoclinic zirconium oxide.
  • Example 2 In the same manner as in Experimental Example 1, a copper substrate having a thickness of 1 mm (heat conductivity 401 W/m ⁇ K, thermal diffusion coefficient 1.17 ⁇ 10 ⁇ 4 m 2 /s, density 8940 kg/m 3 , specific heat 385 J/kg ⁇ The raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the copper substrate.
  • a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • the zirconium oxide powder was arranged on one surface of the copper substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 7 times.
  • FIG. 25 is a scanning electron microscope image obtained by observing the copper substrate from one side thereof after performing the sintering step once.
  • FIG. 26 is a scanning electron microscope image obtained by observing the copper substrate from one surface side after performing the sintering process three times.
  • FIG. 27 is a scanning electron microscope image of the copper substrate observed from one surface side after the sintering step was performed 5 times.
  • FIG. 28 is a scanning electron microscope image obtained by observing the copper substrate from one side thereof after performing the sintering process seven times.
  • FIG. 29 is a scanning electron microscope image obtained by observing the copper substrate from one side thereof after performing the sintering step 9 times.
  • FIG. 30 is a scanning electron microscope image of a copper substrate observed from one side thereof after performing the sintering step five times.
  • FIG. 31 is a diagram showing the results of detecting copper (Cu) by EDS analysis of a copper substrate observed from one side of the copper substrate after the sintering step was performed 5 times.
  • FIG. 32 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the copper substrate observed from one surface side after performing the sintering step five times.
  • FIG. 33 is a diagram showing a result of detecting oxygen (O) by EDS analysis of the copper substrate observed from one surface side after performing the sintering step five times.
  • FIG. 34 is a scanning electron microscope image of a copper substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 35 is a diagram showing the results of detecting copper (Cu) by EDS analysis of the copper substrate observed from one surface side after performing the sintering step 9 times.
  • FIG. 36 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the copper substrate observed from one surface side after performing the sintering step 9 times.
  • FIG. 37 is a diagram showing the result of detecting oxygen (O) by EDS analysis of the copper substrate observed from one side of the copper substrate after the sintering step was performed 9 times.
  • the structure of the ceramic coating formed on the one surface of the copper substrate was analyzed by X-ray diffraction.
  • the structural analysis of the ceramic coating by X-ray diffraction was performed in the same manner as in Experimental Example 1. The results are shown in FIG. From the result of FIG. 38, it was confirmed that a ceramic film containing monoclinic zirconium oxide was formed on one surface of the copper substrate. It was confirmed that the zirconium oxide contained in the ceramic film formed on one surface of the copper substrate had the same crystal structure as the raw material powder zirconium oxide.
  • Example 3 In the same manner as in Experimental Example 1, an aluminum substrate having a thickness of 1 mm (thermal conductivity 237 W/mK, thermal diffusion coefficient 9.78 ⁇ 10 ⁇ 4 m 2 /s, density 2700 kg/m 3 , specific heat 897 J/kg ⁇
  • the raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the aluminum substrate.
  • a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • the zirconium oxide powder was arranged on one surface of the aluminum substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 9 times.
  • FIG. 39 is a scanning electron microscope image of an aluminum substrate observed from one side thereof after performing the sintering step once.
  • FIG. 40 is a scanning electron microscope image of an aluminum substrate observed from one side thereof after performing the sintering step three times.
  • FIG. 41 is a scanning electron microscope image obtained by observing the aluminum substrate from one surface side after performing the sintering step seven times.
  • FIG. 42 is a scanning electron microscope image obtained by observing the aluminum substrate from one surface side after performing the sintering step 9 times.
  • FIG. 43 is a scanning electron microscope image obtained by observing the aluminum substrate from one side thereof after performing the sintering step five times.
  • FIG. 44 is a diagram showing the results of detecting aluminum (Al) by EDS analysis of the aluminum substrate observed from one surface side after performing the sintering step five times.
  • FIG. 45 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the aluminum substrate observed from one surface side after performing the sintering step five times.
  • FIG. 46 is a diagram showing the results of detecting oxygen (O) by EDS analysis of an aluminum substrate observed from one side thereof after the sintering step was performed 5 times.
  • the structure of the ceramic coating formed on the one surface of the aluminum substrate was analyzed by X-ray diffraction.
  • the structural analysis of the ceramic coating by X-ray diffraction was performed in the same manner as in Experimental Example 1. The results are shown in FIG. From the results shown in FIG. 47, it was confirmed that a ceramic film containing monoclinic zirconium oxide was formed on one surface of the aluminum substrate.
  • Zirconium oxide contained in the ceramic film formed on one surface of the aluminum substrate contains monoclinic zirconium oxide and tetragonal zirconium oxide, and is stabilized in a state where the crystal structure is partially different from that of the raw material zirconium oxide. It was confirmed that.
  • Example 4 In the same manner as in Experimental Example 1, a titanium substrate having a thickness of 1 mm (thermal conductivity 21.9 W/mK, thermal diffusion coefficient 9.28 ⁇ 10 ⁇ 6 m 2 /s, density 4506 kg/m 3 , specific heat 25.
  • the raw material powder disposed on one surface of the (06 J/kg ⁇ K) was irradiated with laser light to sinter the raw material powder on one surface of the titanium substrate.
  • a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • the zirconium oxide powder was arranged on one surface of the titanium substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 5 times.
  • FIGS. 48 to 51 Each time the sintering process was completed, the scanning electron microscope (SEM) was used to observe the titanium substrate that had undergone the sintering process from one side thereof.
  • SEM scanning electron microscope
  • FIGS. 48 to 51 The results are shown in FIGS. 48 to 51.
  • FIG. 48 is a scanning electron microscope image of a titanium substrate observed from one side thereof after performing the sintering step once.
  • FIG. 49 is a scanning electron microscope image of a titanium substrate observed from one side thereof after the sintering step was performed twice.
  • FIG. 50 is a scanning electron microscope image of a titanium substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 51 is a scanning electron microscope image of a titanium substrate observed from one side thereof after performing the sintering process five times.
  • FIG. 52 is a scanning electron microscope image of the titanium substrate observed from one surface side after performing the sintering step 9 times.
  • FIG. 53 is a diagram showing the results of detecting titanium (Ti) by EDS analysis of a titanium substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 54 is a diagram showing the results of detecting oxygen (O) by EDS analysis of the titanium substrate observed from one surface side after performing the sintering step 9 times.
  • FIG. 55 is a diagram showing the result of detecting zirconium (Zr) by EDS analysis of the titanium substrate observed from one side thereof after performing the sintering step 9 times.
  • the structure of the ceramic coating formed on the one surface of the titanium substrate was analyzed by X-ray diffraction.
  • the structural analysis of the ceramic coating by X-ray diffraction was performed in the same manner as in Experimental Example 1. The results are shown in FIG. From the results shown in FIG. 56, it was confirmed that a ceramic film containing orthorhombic zirconium oxide was formed on one surface of the titanium substrate. It was confirmed that zirconium oxide contained in the ceramic coating formed on one surface of the titanium substrate was tetragonal and was stabilized in a state where the crystal structure was different from that of zirconium oxide of the raw material powder.
  • Example 5 In the same manner as in Experimental Example 1, a zirconium substrate having a thickness of 1 mm (thermal conductivity 22.6 W/m ⁇ K, thermal diffusion coefficient 1.24 ⁇ 10 ⁇ 5 m 2 /s, density 6520 kg/m 3 , specific heat 278 J/ The raw material powder arranged on one surface of (kg ⁇ K) was irradiated with laser light, and the raw material powder was sintered on one surface of the zirconium substrate. As the raw material powder, a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • the zirconium oxide powder was arranged on one surface of the zirconium oxide substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 7 times.
  • FIGS. 57 to 60 are scanning electron microscope images of the zirconium substrate observed from one surface side after performing the sintering step once.
  • FIG. 58 is a scanning electron microscope image of the zirconium substrate observed from one side thereof after the sintering process was performed three times.
  • FIG. 59 is a scanning electron microscope image of the zirconium substrate observed from one side thereof after performing the sintering step 5 times.
  • FIG. 60 is a scanning electron microscope image obtained by observing the zirconium substrate from one side thereof after performing the sintering step seven times.
  • FIGS. 61 to 63 are shown in FIGS. 61 to 63.
  • FIG. 61 is a scanning electron microscope image of a zirconium substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 62 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the zirconium substrate observed from one surface side after performing the sintering step three times.
  • FIG. 63 is a diagram showing the results of detecting oxygen (O) by EDS analysis of the zirconium substrate observed from one side of the zirconium substrate after the sintering step was performed three times.
  • the structure of the ceramic coating formed on one surface of the zirconium substrate was analyzed by X-ray diffraction.
  • the structural analysis of the ceramic coating by X-ray diffraction was performed in the same manner as in Experimental Example 1. As a result, it was confirmed that a ceramic film containing monoclinic zirconium oxide was formed on one surface of the zirconium substrate.
  • Example 6 In the same manner as in Experimental Example 1, a stainless steel substrate having a thickness of 1 mm (thermal conductivity 26 W/m ⁇ K, thermal diffusion coefficient 4.03 ⁇ 10 ⁇ 6 m 2 /s, density 7930 kg/m 3 , specific heat 510 J/kg). The raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the stainless steel substrate. As the raw material powder, a zirconium oxide powder having an average primary particle size of 50 nm and a particle size (d50) when the cumulative volume percentage of the particle size distribution was 50% was 550 nm and having a purity of 100% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • the zirconium oxide powder was arranged on one surface of the stainless steel substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 7 times.
  • FIGS. 64 to 66 are scanning electron microscope images obtained by observing the stainless steel substrate from one surface side after performing the sintering step once.
  • FIG. 65 is a scanning electron microscope image obtained by observing the stainless steel substrate from one surface side after performing the sintering process three times.
  • FIG. 66 is a scanning electron microscope image obtained by observing the stainless steel substrate from one side thereof after performing the sintering process seven times.
  • Example 7 In the same manner as in Experimental Example 1, a molybdenum substrate having a thickness of 1 mm (thermal conductivity 138 W/m ⁇ K, thermal diffusion coefficient 5.25 ⁇ 10 ⁇ 5 m 2 /s, density 10280 kg/m 3 , specific heat 250 J/kg ⁇
  • the raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the molybdenum substrate.
  • the raw material powder has an average primary particle size of 50 nm, a particle size (d50) of 500 nm when the cumulative volume percentage of the particle size distribution is 50%, and a yttria (Y 2 O 3 ) content of 3% by mass.
  • Partially stable zirconium oxide powder was used.
  • the crystal structure of this yttria partially stable zirconium oxide powder was orthorhombic and cubic.
  • the itria partially stable zirconium oxide powder was arranged on one surface of the molybdenum substrate, and the step until the sintering of the molybdenum zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 7 times.
  • FIGS. 67 to 70 are shown in FIGS. 67 to 70.
  • FIG. 67 is a scanning electron microscope image of the molybdenum substrate observed from one surface side after performing the sintering step once.
  • FIG. 68 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering process three times.
  • FIG. 69 is a scanning electron microscope image of the molybdenum substrate observed from one surface side after the sintering step was performed 5 times.
  • FIG. 70 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering step seven times.
  • Example 8 In the same manner as in Experimental Example 1, a molybdenum substrate having a thickness of 1 mm (thermal conductivity 138 W/m ⁇ K, thermal diffusion coefficient 5.35 ⁇ 10 ⁇ 5 m 2 /s, density 10280 kg/m 3 , specific heat 250 J/kg ⁇ The raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the molybdenum substrate. As the raw material powder, the average primary particle diameter is 50 nm, the particle diameter (d50) when the cumulative volume percentage of the particle size distribution is 50% is 500 nm, and the yttria (Y 2 O 3 ) content is 8% by mass.
  • Partially stable zirconium oxide powder was used.
  • the crystal structure of this yttria partially stable zirconium oxide powder was cubic.
  • the molybdenum zirconium oxide powder was placed on one surface of the molybdenum substrate, and the step until the sintering of the molybdenum zirconium oxide powder was completed was defined as a sintering step, and the sintering step was performed 1 to 7 times.
  • FIG. 72 is a scanning electron microscope image obtained by observing the molybdenum substrate from one side thereof after performing the sintering step once.
  • FIG. 73 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering process three times.
  • FIG. 74 is a scanning electron microscope image obtained by observing the molybdenum substrate from one side thereof after performing the sintering step five times.
  • FIG. 75 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering step seven times.
  • Example 9 As the raw material powder, a powder containing 100% pure zirconium oxide powder having an average primary particle diameter of 50 nm and a particle size (d50) of 550 nm when the cumulative volume percentage of the particle size distribution was 50%, and graphene oxide were prepared. .. The content of the zirconium oxide powder in this raw material powder was 98% by mass, and the content of graphene oxide was 2% by mass. This raw material powder was observed with a scanning electron microscope (SEM). The results are shown in FIGS. 77 and 78. In addition, the absorption rate of this raw material powder was measured with an ultraviolet-visible near-infrared spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The results are shown in FIG. 79.
  • SEM scanning electron microscope
  • a base molybdenum substrate having a thickness of 1 mm heat conductivity 138 W/mK, thermal diffusion coefficient 5.35 ⁇ 10 ⁇ 5 m 2 /s, density 10280 kg/m 3 , specific heat 250 J/kg.
  • the raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the molybdenum substrate.
  • the raw material powder one containing the above zirconium oxide powder and graphene oxide was used.
  • the raw material powder was placed on one surface of the molybdenum substrate, and the step until the sintering of the zirconium oxide powder was completed was set as a sintering step, and the sintering step was performed 1 to 9 times.
  • FIGS. 80 to 84 are scanning electron microscope images obtained by observing the molybdenum substrate from one side thereof after performing the sintering step once.
  • FIG. 81 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed twice.
  • FIG. 82 is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 80 is a scanning electron microscope image obtained by observing the molybdenum substrate from one side thereof after performing the sintering step once.
  • FIG. 81 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed twice.
  • FIG. 82 is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 83 is a scanning electron microscope image of the molybdenum substrate observed from one side thereof after the sintering step was performed five times.
  • FIG. 84 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 85 is a scanning electron microscope image of the molybdenum substrate observed from one surface side.
  • FIG. 86 is a diagram showing the results of detecting molybdenum (Mo) by EDS analysis of a molybdenum substrate observed from one side thereof.
  • FIG. 87 is a diagram showing a result of detecting oxygen (O) by EDS analysis in which the molybdenum substrate is observed from one side thereof.
  • FIGS. 88 to 90 are scanning electron microscope images of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 89 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the molybdenum substrate observed from one surface side after performing the sintering step 9 times.
  • FIG. 90 is a diagram showing the results of detecting oxygen (O) by EDS analysis of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIGS. 91 to 94 are scanning electron microscope images obtained by observing the cross section of the molybdenum substrate after performing the sintering step five times.
  • 93 and 94 are scanning electron microscope images obtained by observing the cross section of the molybdenum substrate after performing the sintering step 9 times.
  • FIG. 95 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering step 9 times.
  • FIG. 96 is a diagram showing the results of detecting molybdenum (Mo) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 97 is a diagram showing the results of detecting carbon (C) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 98 is a diagram showing the results of detecting zirconium (Zr) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 99 is a diagram showing the results of detecting oxygen (O) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 100 is a scanning electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • FIG. 101 is a transmission electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering step 9 times.
  • FIG. 102 is a diagram showing the results of detecting carbon (C) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 103 is a diagram showing the result of detecting zirconium (Zr) by EDS analysis by observing the cross section of the molybdenum substrate after performing the sintering step 9 times.
  • FIG. 104 is a diagram showing the results of detecting boron (B) by EDS analysis in which a cross section of a molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 105 is a diagram showing the results of detecting oxygen (O) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 106 is a scanning electron microscope image in which one surface of a molybdenum substrate is observed after the sintering step is performed 9 times.
  • FIG. 108 is a diagram showing a result of analyzing an area surrounded by a circle in FIG. 106 by electron beam diffraction.
  • FIG. 107 is a scanning electron microscope image in which one surface of a molybdenum substrate is observed after the sintering step is performed 9 times.
  • FIG. 109 is a diagram showing a result of analyzing an area surrounded by a circle in FIG. 107 by electron beam diffraction. From the results of FIGS. 108 and 109, it was confirmed that a ceramic film containing monoclinic zirconium oxide was formed on one surface of the molybdenum substrate.
  • FIG. 110 is a transmission electron microscope image obtained by observing the cross section of the molybdenum substrate after performing the sintering process 9 times.
  • FIG. 111 is a diagram showing a result of detecting molybdenum (Mo) by EDS analysis of observing a cross section of the molybdenum substrate after performing the sintering process 9 times.
  • FIG. 112 is a diagram showing the results of detecting carbon (C) by EDS analysis of observing the cross section of the molybdenum substrate after performing the sintering step 9 times.
  • FIG. 113 is a diagram showing the result of detecting zirconium (Zr) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIG. 114 is a diagram showing the results of detecting oxygen (O) by EDS analysis in which the cross section of the molybdenum substrate was observed after the sintering step was performed 9 times.
  • FIGS. 115 and 116 show scanning electron microscope images of the vicinity of the interface between the zirconium oxide coating and the molybdenum substrate. From the results of FIGS. 115 and 116, it was confirmed that no reaction layer was observed at the interface between the zirconium oxide film and the molybdenum substrate.
  • Example 10 As the raw material powder, zirconium oxide powder having an average primary particle diameter of 1 ⁇ m to 3 ⁇ m and a particle size (d50) of 2.3 nm when the cumulative volume percentage of the particle size distribution is 50% and having a purity of 100% was prepared. Scanning electron microscope images of this zirconium oxide powder are shown in FIGS. 117 and 118.
  • a molybdenum substrate having a thickness of 1 mm (thermal conductivity 138 W/m ⁇ K, thermal diffusion coefficient 5.35 ⁇ 10 ⁇ 5 m 2 /s, density 10280 kg/m 3 , specific heat 250 J/kg ⁇
  • the raw material powder arranged on one surface of K) was irradiated with laser light, and the raw material powder was sintered on one surface of the molybdenum substrate.
  • the zirconium oxide powder was placed on one surface of the molybdenum substrate, and the step until the sintering of the zirconium oxide powder was completed was defined as a sintering step, and the sintering step was performed 1 to 9 times.
  • FIGS. 119 to 124 are scanning electron microscope images of the molybdenum substrate observed from one side thereof after the sintering step was performed once.
  • FIG. 120 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering process three times.
  • FIG. 121 is a scanning electron microscope image obtained by observing the molybdenum substrate from one surface side after performing the sintering step five times.
  • FIG. 122 is a scanning electron microscope image of the molybdenum substrate observed from one surface side after the sintering process was performed seven times.
  • FIGS. 123 and 124 are scanning electron microscope images of the molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 124 is an enlarged view of a part of FIG. 123.
  • FIGS. 125 to 128 The results are shown in FIGS. 125 to 128.
  • FIG. 125 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 126 is a diagram showing the results of detecting molybdenum (Mo) by EDS analysis of the molybdenum substrate observed from one side of the molybdenum substrate after the sintering step was performed 9 times.
  • FIG. 125 is a scanning electron microscope image of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 126 is a diagram showing the results of detecting molybdenum (Mo) by EDS analysis of the molybdenum substrate observed from one side of the molybdenum substrate after the sintering step was performed 9 times.
  • FIG. 127 is a diagram showing the result of detecting zirconium (Zr) by EDS analysis of a molybdenum substrate observed from one side thereof after the sintering step was performed 9 times.
  • FIG. 128 is a diagram showing a result of detecting oxygen (O) by EDS analysis of the molybdenum substrate observed from one surface side after performing the sintering step 9 times.
  • Example 11 A cemented carbide (WC-Co) substrate having a thickness of 4.6 mm (thermal conductivity 70 W/mK, thermal diffusion coefficient 2.3 ⁇ 10 ⁇ 5 m 2 /s, density 14320 kg) was used in the same manner as in Experimental Example 1. /M 3 , specific heat 209 J/kg ⁇ K), the raw material powder disposed on one surface was irradiated with laser light to sinter the raw material powder on one surface of the cemented carbide (WC-Co) substrate.
  • a zirconium oxide powder having an average primary particle diameter of 50 nm and a particle size (d50) of 550 nm and a purity of 100% when the cumulative volume percentage of the particle size distribution was 50% was used.
  • the crystal structure of this zirconium oxide powder was monoclinic.
  • Zirconium oxide powder is arranged on one surface of a cemented carbide (WC-Co) substrate, and the process until the sintering of the zirconium oxide powder is completed is defined as a sintering process, and the sintering process is performed 1 to 17 times. went.
  • WC-Co cemented carbide
  • FIG. 129 is a scanning electron microscope image of the cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed once.
  • FIG. 130 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after the sintering step was performed three times.
  • FIG. 131 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one surface side after the sintering process was performed five times.
  • FIG. 132 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing the sintering step seven times.
  • FIG. 133 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing the sintering step 9 times.
  • FIG. 134 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one surface side after performing the sintering step 11 times.
  • FIG. 135 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one surface side after the sintering process was performed 17 times.
  • FIGS. 136 to 141 After performing the sintering process once, the cemented carbide (WC-Co) substrate that had undergone the firing process was observed from one surface side by a scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDS). .. The results are shown in FIGS. 136 to 141.
  • FIG. 136 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing the sintering step once.
  • FIG. 137 is a diagram showing a result of detecting tungsten (W) by EDS analysis of the cemented carbide (WC—Co) substrate observed from one surface side after performing the sintering step once.
  • FIG. 136 is a scanning electron microscope image of a cemented carbide (WC-Co) substrate observed from one side thereof after performing the sintering step once.
  • FIG. 137 is a diagram showing a result of detecting tungsten (W) by EDS analysis of the cemented carbide (WC
  • FIG. 138 is a diagram showing the result of detecting carbon (C) by EDS analysis of a tungsten substrate observed from one side of the tungsten substrate after the sintering step was performed once.
  • FIG. 139 is a diagram showing a result of detecting cobalt (Co) by EDS analysis of the cemented carbide (WC-Co) substrate observed from one surface side after performing the sintering step once.
  • FIG. 140 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the cemented carbide (WC—Co) substrate observed from one surface side after performing the sintering step once.
  • FIG. 141 is a diagram showing a result of detecting oxygen (O) by EDS analysis of the cemented carbide (WC-Co) substrate observed from one surface side after performing the sintering step once. Table 3 shows the results of elemental analysis by EDS analysis.
  • FIGS. 142 to 145 The results are shown in FIGS. 142 to 145.
  • FIG. 142 is a scanning electron microscope image of the cemented carbide (WC—Co) substrate observed from one surface side after the sintering step was performed 5 times.
  • FIG. 143 is a diagram showing a result of detecting zirconium (Zr) by EDS analysis of the cemented carbide (WC—Co) substrate observed from one surface side after performing the sintering process five times.
  • FIG. 144 is a diagram showing a result of detecting oxygen (O) by EDS analysis of the cemented carbide (WC—Co) substrate observed from one surface side after performing the sintering step five times.
  • FIG. 145 is a diagram showing a result of detecting cobalt (Co) by EDS analysis of the cemented carbide (WC-Co) substrate observed from one surface side after performing the sintering step five times.
  • Table 4 shows the results of elemental analysis by EDS analysis.
  • Ceramic member 11 Substrate 12 Ceramic film 30 Crystal grain 35 Grain boundary 40
  • Raw material powder 100 Ceramic member manufacturing equipment 110
  • Laser light source 120
  • Condensing lens 130
  • Powder supply unit 140
  • Pedestal 141
  • Ceramic film forming unit 150
  • Support member 160

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本発明のセラミックス部材(10)は、熱伝導率が60W/m・K以上の基板(11)と、基板(11)の一面(11a)に形成された単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜(12)と、を備える。

Description

セラミックス部材およびその製造方法
 本発明は、セラミックス部材およびその製造方法に関する。
 本願は、2019年3月6日に、日本に出願された特願2019-040986号に基づき優先権を主張し、その内容をここに援用する。
 従来、セラミックス被膜の形成には、物理蒸着法(PVD)、化学蒸着法(CVD)、プラズマ溶射法等が用いられている。また、セラミックス材料の造形方法としては、三次元積層造形法が検討されつつある。
 PVDは、高真空下で、原材料(被膜を形成する材料)にイオンを照射して、原材料を原子状態として飛散させ、基板上にその原子状態の原材料を堆積させて成膜する方法である。
 CVDは、基板上で被膜成分(被膜を形成する成分)を含有するガスを化学的に反応させて、基板上にその被膜成分を堆積させて成膜する方法である。
 プラズマ溶射法は、原材料(被膜を形成する材料)の粉体をプラズマトーチに供給し、基板上に溶融した原材料の粉体を密着させて成膜する方法である。プラズマ溶射法によるセラミックス被膜の形成方法としては、例えば、ミクロンサイズの粒子(Al、TiO、Fe、ZnO、La、Y、ZrO、)を含む粉末原料を利用した被膜形成方法が挙げられる(例えば、特許文献1参照)。
特開2013-87363号公報
 PVDは、緻密な被膜を形成することができるものの、成膜速度が遅い、高真空下で実施する必要がある、高価な成膜装置が必要である等の課題があった。
 CVDは、緻密な被膜を形成することができるものの、成膜速度が遅い、反応性ガスを使用するためのチャンバーが必要である等の課題があった。
 プラズマ溶射法は、成膜速度が高速であり、かつ、厚膜を形成することができるものの、緻密な被膜を形成することが難しい、得られる被膜が層状の構造となり、剥離し易い等の課題があった。
 また、セラミックス被膜の形成に、三次元積層造形法を適用すると、成膜中に被膜が割れることがあった。
 本発明は、上記事情に鑑みてなされたものであって、基板との密着性に優れ、緻密なセラミックス被膜を有するセラミックス部材およびその製造方法を提供することを目的とする。
 本発明は、下記の態様を有する。
[1]熱伝導率が60W/m・K以上の基板と、該基板の一面に形成された単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜と、を備えるセラミックス部材。
[2]前記セラミックス被膜は、さらに正方晶系酸化ジルコニウムを含む[1]に記載のセラミックス部材。
[3]前記セラミックス被膜に含まれる前記単斜晶系酸化ジルコニウムと前記正方晶系酸化ジルコニウムの割合は、質量比で84:16~92:8である[2]に記載のセラミックス部材。
[4]前記セラミックス被膜は、さらに酸化グラフェンを含み、前記単斜晶系酸化ジルコニウムの結晶粒の粒界に金属ジルコニウムが偏析している[1]~[3]のいずれかに記載のセラミックス部材。
[5]前記セラミックス被膜の厚さは、7.5μm以上18μm以下である[1]~[4]のいずれかに記載のセラミックス部材。
[6]前記基板は、モリブデン、銅またはアルミニウムからなる[1]~[5]のいずれかに記載のセラミックス部材。
[7]熱伝導率が60W/m・K以上の基板の一面に配した、平均一次粒子径が5nm以上500nm以下の酸化ジルコニウム粉体を含む原料粉体にレーザー光を照射して、前記原料粉体を焼結して、前記基板の一面に単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜を形成するセラミックス部材の製造方法。
[8]前記酸化ジルコニウム粉体の粒度分布の累積体積百分率が50%のときの粒径(d50)が20nm以上2000nm以下である[7]に記載のセラミックス部材の製造方法。
[9]前記レーザー光の波長は、10nm以上20000nm以下である[7]または[8]に記載のセラミックス部材の製造方法。
[10]前記原料粉体は、さらに酸化グラフェン粉体を含む[7]~[9]のいずれかに記載のセラミックス部材の製造方法。
[11]前記セラミックス被膜の厚さは、7.5μm以上18μm以下である[7]~[10]のいずれかに記載のセラミックス部材の製造方法。
[12]前記基板は、モリブデン、銅またはアルミニウムからなる[7]~[11]のいずれかに記載のセラミックス部材の製造方法。
 本発明によれば、基板との密着性に優れ、緻密なセラミックス被膜を有するセラミックス部材およびその製造方法を提供することができる。
本実施形態のセラミックス部材を示す概略断面図である。 本実施形態のセラミックス部材のセラミックス被膜を示す概略断面図である。 本実施形態のセラミックス部材の製造方法に用いられるセラミックス部材の製造装置を示す模式図である。 本実施形態のセラミックス部材の製造方法に用いられるセラミックス部材の製造装置を示す模式図である。 本実施形態のセラミックス部材の製造方法を示す模式図である。 実験例1において、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を2回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を13回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を17回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を21回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を5回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を13回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を17回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってアルミニウム(Al)を検出した結果を示す図である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例1において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。 実験例1において、焼結工程の回数とモリブデン基板の一面に形成された酸化ジルコニウムからなるセラミックス被膜の厚さとの関係を示す図である。 実験例1において、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例2において、焼結工程を1回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を3回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を5回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を7回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を9回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を5回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によって銅(Cu)を検出した結果を示す図である。 実験例2において、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例2において、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例2において、焼結工程を9回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例2において、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によって銅(Cu)を検出した結果を示す図である。 実験例2において、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例2において、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例2において、X線回折により、銅基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例3において、焼結工程を1回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例3において、焼結工程を3回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例3において、焼結工程を7回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例3において、焼結工程を9回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例3において、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例3において、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によってアルミニウム(Al)を検出した結果を示す図である。 実験例3において、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例3において、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例3において、X線回折により、アルミニウム基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例4において、焼結工程を1回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例4において、焼結工程を2回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例4において、焼結工程を3回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例4において、焼結工程を5回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例4において、焼結工程を9回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例4において、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によってチタン(Ti)を検出した結果を示す図である。 実験例4において、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例4において、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例4において、X線回折により、チタン基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例5において、焼結工程を1回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例5において、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例5において、焼結工程を5回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例5において、焼結工程を7回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例5において、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例5において、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例5において、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例6において、焼結工程を1回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例6において、焼結工程を3回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例6において、焼結工程を7回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例7において、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例7において、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例7において、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例7において、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例7において、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例8において、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例8において、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例8において、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例8において、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例8において、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った結果を示す図である。 実験例9において、原料粉体を観察した走査型電子顕微鏡像である。 実験例9において、原料粉体を観察した走査型電子顕微鏡像である。 実験例9において、原料粉体の吸収率を測定した結果を示す図である。 実験例9において、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を2回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、モリブデン基板を、その一面側から観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。 実験例9において、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例9において、焼結工程を5回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を5回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した透過型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってホウ素(B)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の一面を観察した走査型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の一面を観察した走査型電子顕微鏡像である。 実験例9において、図106において、円で囲まれた領域を電子線回折により解析した結果を示す図である。 実験例9において、図107において、円で囲まれた領域を電子線回折により解析した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察した透過型電子顕微鏡像である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例9において、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例9において、酸化ジルコニウム被膜とモリブデン基板の界面近傍を観察した走査型電子顕微鏡像である。 実験例9において、酸化ジルコニウム被膜とモリブデン基板の界面近傍を観察した走査型電子顕微鏡像である。 実験例10において、酸化ジルコニウム粉体の走査型電子顕微鏡像である。 実験例10において、酸化ジルコニウム粉体の走査型電子顕微鏡像である。 実験例10において、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例10において、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を3回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を7回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を9回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を11回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を17回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってタングステン(W)を検出した結果を示す図である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によって炭素(C)を検出した結果を示す図である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってコバルト(Co)を検出した結果を示す図である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例11において、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例11において、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。 実験例11において、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。 実験例11において、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。 実験例11において、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってコバルト(Co)を検出した結果を示す図である。
 本発明のセラミックス部材およびその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[セラミックス部材]
 図1は、本実施形態のセラミックス部材を示す概略断面図である。図2は、本実施形態のセラミックス部材のセラミックス被膜を示す概略断面図である。
 本実施形態のセラミックス部材10は、熱伝導率が60W/m・K以上の基板11と、基板11の一面11aに形成された単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12と、を備える。
 基板11は、熱伝導率が60W/m・K以上であり、120W/m・K以上であることが好ましく、200W/m・K以上であることがより好ましい。
 熱伝導率が60W/m・K未満では、後述する本実施形態のセラミックス部材の製造方法により、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができない。
 本実施形態において、基板11の熱伝導率は、基板11の熱拡散係数、基板11の密度および基板11の比熱から算出される。
 基板11の熱伝導率をλ(W/m・K)、基板11の熱拡散係数をα(m/s)、基板11の密度をρ(kg/m)、基板11の比熱をc(J/kg・K)とすると、熱伝導率λは、下記の式(1)で求めることができる。
 λ=αρc  (1)
 基板11の熱拡散係数は、0.5×10-4/s以上であることが好ましく、0.8×10-4/s以上であることがより好ましい。
 熱伝導率が0.5×10-4/s以上であれば、後述する本実施形態のセラミックス部材の製造方法により、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 基板11の熱拡散係数の測定方法としては、レーザーフラッシュ法が用いられる。
 基板11の密度は、2500kg/m以上であることが好ましく、5000kg/m以上であることがより好ましい。
 密度が2500kg/m以上であれば、後述する本実施形態のセラミックス部材の製造方法により、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 基板11の密度の測定方法としては、アルキメデス法が用いられる。
 基板11の比熱は、200J/kg・K以上であることが好ましく、300J/kg・K以上であることがより好ましい。
 比熱が200J/kg・K以上であれば、後述する本実施形態のセラミックス部材の製造方法により、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 基板11の比熱の測定には、示差走査型熱量計が用いられる。
 基板11は、モリブデン(Mo)、銅(Cu)、アルミニウム(Al)、タングステン(W)系超硬合金等からなるものが挙げられ、モリブデン(Mo)、銅(Cu)またはアルミニウム(Al)からなることが好ましく、均一なセラミックス被膜12を形成しやすい点から、モリブデンがより好ましい。
 セラミックス被膜12は、後述する本実施形態のセラミックス部材の製造方法によって形成された膜である。
 セラミックス被膜12は、単斜晶系酸化ジルコニウム(ZrO)を少なくとも含む。
 言い換えれば、セラミックス被膜12は、主に単斜晶系酸化ジルコニウムからなる絶縁性の被膜である。セラミックス被膜12は、緻密な単斜晶系酸化ジルコニウムを含む絶縁性の被膜である。
 単斜晶系酸化ジルコニウムは、通常、常温から1200℃において存在し、空間群はP21/c、格子定数はa=0.515nm、b=0.520nm、c=0.532nm、β=99.23°である。
 セラミックス被膜12は、単斜晶系酸化ジルコニウムに加えて、さらに正方晶系酸化ジルコニウムを含んでいてもよい。正方晶系酸化ジルコニウムは通常、1000℃から2370℃において存在し、空間群はP4/nmc、格子定数はa=0.509nm、b=0.518である。
 セラミックス被膜12が、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含む場合、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムは互いに整合な界面をもって存在している。セラミックス被膜12が、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含む場合も、セラミックス被膜12は絶縁性の被膜である。
 セラミックス被膜12が、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含む場合、セラミックス被膜12に含まれる単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムの割合は、質量比(質量%:質量%)で84:16~92:8であることが好ましく、85:15~90:10であることがより好ましい。
 正方晶系酸化ジルコニウムの割合が8質量%以上であれば、基板上にセラミックス被膜が成膜できる。一方、正方晶系酸化ジルコニウムの割合が16質量%以下であれば、基板上のセラミックス被膜に割れが存在しない。
 セラミックス被膜12は、単斜晶系酸化ジルコニウムを少なくとも含む場合、または、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含む場合に、さらに酸化グラフェン(GO)を含んでいてもよい。
 セラミックス被膜12が、単斜晶系酸化ジルコニウムを少なくとも含み、さらに酸化グラフェンを含む場合、図2に示すように、セラミックス被膜12は、単斜晶系酸化ジルコニウムの結晶粒30の粒界(図2において符号35で示す部分、結晶粒30同士の境界)に金属ジルコニウム(Zr)が偏析(濃縮)している。単斜晶系酸化ジルコニウムの結晶粒30の粒界に偏析しているのは、金属ジルコニウムであり、酸化ジルコニウムではない。
 また、セラミックス被膜12が、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含み、さらに酸化グラフェンを含む場合にも、図2に示すように、セラミックス被膜12は、単斜晶系酸化ジルコニウムの結晶粒30の粒界(図2において符号35で示す部分、結晶粒30同士の境界)に金属ジルコニウム(Zr)が偏析(濃縮)している。単斜晶系酸化ジルコニウムの結晶粒30の粒界に偏析しているのは、金属ジルコニウムであり、酸化ジルコニウムではない。
 単斜晶系酸化ジルコニウムの結晶粒30の粒界に金属ジルコニウムが偏析すると、その粒界において、金属ジルコニウムが導電性のパス(回路)を形成する。したがって、セラミックス被膜12は、導電性を有する。すなわち、セラミックス被膜12(セラミックス部材10)は、絶縁性と導電性を兼ね備えたものとなる。
 セラミックス被膜12は、単斜晶系酸化ジルコニウム、正方晶系酸化ジルコニウム、酸化グラフェン以外の不純物を含んでいてもよい。
 不純物としては、酸化ジルコニウムの安定化に寄与しない、酸化アルミニウムニウム、酸化ケイ素等のセラミックス等が挙げられる。
 本実施形態のセラミックス部材10は、基板11との密着性に優れ、緻密なセラミックス被膜12を有する。そのため、本実施形態のセラミックス部材10は、セラミックス被膜12において金属材料に対する耐摩耗性に優れる。
[セラミックス部材の製造方法]
 図3は、本実施形態のセラミックス部材の製造方法に用いられるセラミックス部材の製造装置を示す模式図である。図4は、本実施形態のセラミックス部材の製造方法に用いられるセラミックス部材の製造装置を示す模式図である。図5は、本実施形態のセラミックス部材の製造方法を示す模式図である。図3、図4および図5において、図1および図2に示した構成と同一の構成には同一の符号を付して、説明を省略する。
 図3に示すように、本実施形態のセラミックス部材の製造方法に用いられるセラミックス部材の製造装置(以下、「セラミックス部材製造装置」という。)100は、レーザー光源110と、集光レンズ120と、粉体供給部130と、台座140と、を備える。
 レーザー光源110は、基板11の一面11aに配した酸化ジルコニウム粉体を含む原料粉体にレーザー光を照射する。レーザー光源110は、特に限定されない。
 集光レンズ120は、レーザー光源110から発振したレーザー光を集光して、基板11の一面11aに配した原料粉体40に照射する。
 集光レンズ120としては、特に限定されず、一般的なレーザー装置に用いられるレンズが挙げられる。
 粉体供給部130は、台座140に設けられたセラミックス被膜形成部141内に収容された基板11の一面11aに、原料粉体40を供給する。図3に示すように、粉体供給部130は、台座140の上面140a上において、台座140の厚さ方向と垂直な方向(図3において左右方向、図3に示す矢印方向)に沿って往復移動可能となっている。
 台座140は、基板11を所定の位置に配置するとともに、粉体供給部130を支持する。
 台座140は、その厚さ方向に貫通する貫通孔からなるセラミックス被膜形成部141を有する。セラミックス被膜形成部141内には、基板11を、台座140の厚さ方向の下方から支持する支持部材150が設けられている。支持部材150によって支持された基板11は、セラミックス被膜形成部141内において、台座140の厚さ方向に沿って移動可能となっている。
 以下、セラミックス部材製造装置100を用いたセラミックス部材10の製造方法を説明する。
 まず、支持部材150によって基板11を支持して、セラミックス被膜形成部141内に基板11を配置(収容)する。このとき、図3および図4に示すように、基板11の一面11aと台座140の上面140aは、同一面上に存在していない。すなわち、基板11の一面11aは、台座140の上面140aよりも、台座140の厚さ方向の下方に存在するようにする。これにより、セラミックス被膜形成部141内に、基板11の一面11aとセラミックス被膜形成部141の内側面141aからなる空間160を形成する。
 次に、粉体供給部130を、台座140の上面140a上を移動させて、セラミックス被膜形成部141上に配置する。
 次に、粉体供給部130からセラミックス被膜形成部141内に形成した空間160内に原料粉体40を供給する。これにより、基板11の一面11aに、原料粉体40を配する。
 次に、粉体供給部130を、台座140の上面140a上を移動させて、セラミックス被膜形成部141から離れた位置に移動させる。
 次に、レーザー光源110からレーザー光を発振させるとともに、集光レンズ120にて、そのレーザー光を集光して、基板11の一面11aに配した原料粉体40にレーザー光170を照射して、原料粉体40を焼結する。これにより、基板11の一面11aに、単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成する。
 基板11の一面11aに配した原料粉体40に照射するレーザー光170の速度は、5mm/s以上10000mm/s以下であることが好ましく、10mm/s以上5000mm/s以下であることがより好ましい。
 レーザー光170の速度が上記の範囲内であれば、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 基板11の一面11aに配した原料粉体40に照射するレーザー光170の波長は、10nm以上20000nm以下であることが好ましく、20nm以上11000nm以下であることがより好ましい。
 レーザー光170の波長が上記の範囲内であれば、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 基板11の一面11aに配した原料粉体40に照射するレーザー光170の強度は、10W以上1000W以下であることが好ましく、20W以上400W以下であることがより好ましい。
 レーザー光170の強度が上記の範囲内であれば、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 本実施形態のセラミックス部材の製造方法では、基板11の一面11a対するセラミックス被膜12の形成は、複数回に渡って行われる。
 図5に示すように、例えば、セラミックス被膜12の形成N(Nは1以上の自然数)回目に、X方向に基板11の一面11aを走査しながら、基板11の一面11aに配した原料粉体40にレーザー光170を照射して、原料粉体40を焼結する。続いて、図5に示すように、セラミックス被膜12の形成N(Nは1以上の自然数)+1回目に、Y方向に基板11の一面11aを走査しながら、基板11の一面11aに配した原料粉体40にレーザー光170を照射して、原料粉体40を焼結する。
 原料粉体40を焼結する回数は特に限定されない。セラミックス被膜12の厚さが7.5μm以上18μm以下の範囲の任意の値となるまで、原料粉体40の焼結を繰り返す。
 図5に示すように、基板11の一面11aにおいて、X方向にレーザー光170を走査する間隔dおよびY方向にレーザー光170を走査する間隔dは、10μm以上2000μm以下であることが好ましく、100μm以上1000μm以下であることがより好ましい。
 レーザー光170を走査する間隔dおよび間隔dが上記の範囲内であれば、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜12を形成することができる。
 原料粉体40に含まれる酸化ジルコニウム粉体は、平均一次粒子径が5nm以上500nm以下であり、20nm以上100nm以下であることが好ましい。
 酸化ジルコニウム粉体の平均一次粒子径が5nm未満では、凝集し粉末の敷設が困難となる。一方、酸化ジルコニウム粉体の平均一次粒子径が500nmを超えると、セラミックス被膜が均一に形成しなくなる。
 原料粉体40に含まれる酸化ジルコニウム粉体の粒度分布の累積体積百分率が50%のときの粒径(d50)が20nm以上2000nm以下であることが好ましく、100nm以上1000nm以下であることがより好ましい。
 酸化ジルコニウム粉体のd50が2000nm以上であれば、セラミックス被膜が均一に形成しなくなる。一方、酸化ジルコニウム粉体のd50が20nm以下であれば、凝集し粉末の敷設が困難となる。
 なお、本実施形態のセラミックス部材の製造方法では、基板11の一面11a対するセラミックス被膜12の形成は、複数回に渡って行われる。そのため、原料粉体40の焼結が完了する度に、支持部材150によって、セラミックス被膜形成部141内にて基板11を台座140の厚さ方向の下方に移動させて、セラミックス被膜形成部141内に、基板11の一面11aとセラミックス被膜形成部141の内側面141aからなる空間160を新たに形成する。そして、この新たに形成した空間160内に原料粉体40を供給して、原料粉体40を焼結する。
 原料粉体40は、酸化ジルコニウム粉体に加えて、さらに酸化グラフェン粉体を含んでいてもよい。
 原料粉体40が、酸化ジルコニウム粉体に加えて、酸化グラフェン粉体を含むことにより、上述のように、セラミックス被膜12に含まれる単斜晶系酸化ジルコニウムの結晶粒30の粒界に金属ジルコニウムを偏析させることができる。これにより、得られたセラミックス部材10は、絶縁性と導電性を兼ね備えたものとなる。
 原料粉体40が、酸化ジルコニウム粉体に加えて、酸化グラフェン粉体を含む場合、原料粉体40の総量100質量%における酸化グラフェン粉体の含有量は、8質量%以上15質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。
 酸化グラフェン粉体の含有量が8質量%以上であれば、セラミックス被膜12に含まれる単斜晶系酸化ジルコニウムの結晶粒30の粒界に金属ジルコニウムを偏析させることができる。一方、酸化グラフェン粉体の含有量が15質量%を超えると、セラミック被膜中に空隙が形成する。
 なお、原料粉体40が、酸化ジルコニウム粉体に加えて、酸化グラフェン粉体を含む場合、原料粉体40における酸化グラフェン粉体以外の成分は、主に酸化ジルコニウム粉体である。原料粉体40は、酸化ジルコニウム粉体や酸化グラフェン粉体以外に、微量の不純物を含むこともある。
 本実施形態のセラミックス部材の製造方法によれば、熱伝導率が60W/m・K以上の基板11の一面11aに配した、平均一次粒子径が5nm以上500nm以下の酸化ジルコニウム粉体を含む原料粉体にレーザー光を照射して、その原料粉体を焼結して、基板11の一面11aに単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜を形成するため、基板11の一面11aに、基板11との密着性に優れ、緻密なセラミックス被膜12を形成することができる。
 以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。
[実験例1]
 図3および図4に示すセラミックス部材の製造装置を用いて、厚さ1mmのモリブデン基板(熱伝導率138W/m・K、熱拡散係数5.4×10-5/s、密度10280kg/m、比熱250J/kg・K)の一面に配された原料粉体にレーザー光を照射して、モリブデン基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 レーザー光源としては、ファイバーレーザーを用いた。
 モリブデン基板の一面に配された酸化ジルコニウム粉体に照射するレーザー光の速度を10mm/sとした。
 モリブデン基板の一面に配された酸化ジルコニウム粉体に照射するレーザー光の強度を20.6Wとした。
 モリブデン基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~21回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板を、その一面側から観察した。結果を図6~図13に示す。図6は、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図7は、焼結工程を2回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図8は、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図9は、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図10は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図11は、焼結工程を13回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図12は、焼結工程を17回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図13は、焼結工程を21回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。
 走査型電子顕微鏡(SEM)としては、日本電子社製のJSM-6010Vを用いた。
 図6~図13の結果から、焼結工程を3回以上行うことにより、モリブデン基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていることが予測された。また、焼結工程の回数が増えるに従って、セラミックス被膜の表面は亀裂が少なく、滑らかな面になることが分かった。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板の断面を観察した。結果を図14~図17に示す。図14は、焼結工程を5回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図15は、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図16は、焼結工程を13回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図17は、焼結工程を17回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。
 図14~図17の結果から、モリブデン基板の一面に、酸化ジルコニウムからなる緻密なセラミックス被膜が形成されていることが予測された。また、モリブデン基板とセラミックス被膜の間に界面が存在しており、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが予測された。また、モリブデン基板とセラミックス被膜が密着していることが予測された。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、モリブデン基板の断面を観察した。結果を図18~図22に示す。図18は、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図19は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。図20は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってアルミニウム(Al)を検出した結果を示す図である。図21は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図22は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。
 エネルギー分散型X線分析(EDS)としては、日本電子社製のJSM-6010Vを用いた。
 図18~図22の結果から、モリブデン基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素とアルミニウムは、モリブデン基板や酸化ジルコニウムに含まれる不純物である。
 また、焼結工程を行う度に、モリブデン基板の一面に形成されたセラミックス被膜の厚さを測定した。
 セラミックス被膜の厚さは、試料の断面を走査型電子顕微鏡(商品名:SM-6010LV、日本電子社製)を用いて測定した。
 焼結工程の回数とモリブデン基板の一面に形成されたセラミックス被膜の厚さとの関係を調べた。結果を図23に示す。
 図23の結果から、焼結工程を行う回数が増えるに伴って、モリブデン基板の一面に形成されたセラミックス被膜の厚さが大きくなることが分かった。また、焼結工程が17回でセラミックス被膜の厚さが最大となり、そのときのセラミックス被膜の厚さは18μmであった。また、焼結工程が17回を超えると、モリブデン基板の一面に形成されるセラミックス被膜の厚さは、次第に小さくなっていくと考えられる。
 また、焼結工程を行う度に、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、全自動多目的X線回折装置(リガク、スマートラボ)を用いて、θ-2θ法により得られた回折ピークにより行った。結果を図24に示す。
 図24の結果から、モリブデン基板の一面には、単斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。モリブデン基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、原料粉末の酸化ジルコニウムと結晶構造が同じであることが確認された。また、焼結工程を5回以上行うことにより、正方晶系酸化ジルコニウムのピークが観察されなくなり、セラミックス被膜は単斜晶系酸化ジルコニウムのみを含むことが確認された。このときのセラミックス被膜の厚さは7.5μmであった。すなわち、セラミックス被膜の厚さが7.5μm以上であれば、正方晶系酸化ジルコニウムのピークが観察されなくなり、セラミックス被膜は単斜晶系酸化ジルコニウムのみを含むことが確認された。
 また、焼成工程を1回行った後、焼成工程を3回行った後、および、焼成工程を5回行った後に、全自動多目的X線回折装置(リガク、スマートラボ)を用いて、θ-2θ法により得られた回折ピークの強度比により、セラミックス被膜における単斜晶系酸化ジルコニウムおよび正方晶系酸化ジルコニウムの含有量を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実験例2]
 実験例1と同様にして、厚さ1mmの銅基板(熱伝導率401W/m・K、熱拡散係数1.17×10-4/s、密度8940kg/m、比熱385J/kg・K)の一面に配された原料粉体にレーザー光を照射して、銅基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 銅基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~7回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経た銅基板を、その一面側から観察した。結果を図25~図29に示す。図25は、焼結工程を1回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図26は、焼結工程を3回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図27は、焼結工程を5回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図28は、焼結工程を7回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図29は、焼結工程を9回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。
 図25~図29の結果から、焼結工程を3回以上行うことにより、銅基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていることが予測された。また、焼結工程の回数が増えるに従って、セラミックス被膜の表面は亀裂が少なく、滑らかな面になることが分かった。
 焼結工程を5回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経た銅基板を、その一面側から観察した。結果を図30~図33に示す。図30は、焼結工程を5回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図31は、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によって銅(Cu)を検出した結果を示す図である。図32は、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図33は、焼結工程を5回行った後に、銅基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図30~図33の結果から、銅基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、銅基板を構成する銅がセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素は、銅基板や酸化ジルコニウムに含まれる不純物である。エネルギー分散型X線分析(EDS)により検出された銅は、銅基板に起因するものである。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経た銅基板を、その一面側から観察した。結果を図34~図37に示す。図34は、焼結工程を9回行った後に、銅基板を、その一面側から観察した走査型電子顕微鏡像である。図35は、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によって銅(Cu)を検出した結果を示す図である。図36は、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図37は、焼結工程を9回行った後に、銅基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図34~図37の結果から、銅基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、銅基板を構成する銅がセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素は、銅基板や酸化ジルコニウムに含まれる不純物である。エネルギー分散型X線分析(EDS)により検出された銅は、銅基板に起因するものである。
 また、焼結工程を7回行った後、X線回折により、銅基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。結果を図38に示す。
 図38の結果から、銅基板の一面には、単斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。銅基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、原料粉末の酸化ジルコニウムと結晶構造が同じであることが確認された。
[実験例3]
 実験例1と同様にして、厚さ1mmのアルミニウム基板(熱伝導率237W/m・K、熱拡散係数9.78×10-4/s、密度2700kg/m、比熱897J/kg・K)の一面に配された原料粉体にレーザー光を照射して、アルミニウム基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 アルミニウム基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~9回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たアルミニウム基板を、その一面側から観察した。結果を図39~図42に示す。図39は、焼結工程を1回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図40は、焼結工程を3回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図41は、焼結工程を7回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図42は、焼結工程を9回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。
 図39~図42の結果から、焼結工程を3回以上行うことにより、アルミニウム基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていることが予測された。また、焼結工程の回数が増えるに従って、セラミックス被膜の表面は亀裂が少なく、滑らかな面になることが分かった。
 焼結工程を5回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼結工程を経たアルミニウム基板を、その一面側から観察した。結果を図43~図46に示す。図43は、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図44は、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によってアルミニウム(Al)を検出した結果を示す図である。図45は、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図46は、焼結工程を5回行った後に、アルミニウム基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図43~図46の結果から、アルミニウム基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、アルミニウム基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素は、アルミニウム基板や酸化ジルコニウムに含まれる不純物である。エネルギー分散型X線分析(EDS)により検出されたアルミニウムは、アルミニウム基板に起因するものである。
 また、焼結工程を5回行った後、X線回折により、アルミニウム基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。結果を図47に示す。
 図47の結果から、アルミニウム基板の一面には、単斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。アルミニウム基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、単斜晶系酸化ジルコニウムと正方晶系酸化ジルコニウムを含み、原料粉末の酸化ジルコニウムと結晶構造が一部異なる状態で安定化していることが確認された。
 また、焼成工程を9回行った後に、実験例1と同様にして、セラミックス被膜における単斜晶系酸化ジルコニウムおよび正方晶系酸化ジルコニウムの含有量を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実験例4]
 実験例1と同様にして、厚さ1mmのチタン基板(熱伝導率21.9W/m・K、熱拡散係数9.28×10-6/s、密度4506kg/m、比熱25.06J/kg・K)の一面に配された原料粉体にレーザー光を照射して、チタン基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 チタン基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~5回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たチタン基板を、その一面側から観察した。結果を図48~図51に示す。図48は、焼結工程を1回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。図49は、焼結工程を2回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。図50は、焼結工程を3回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。図51は、焼結工程を5回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。
 図48~図51の結果から、焼結工程により、1回目からチタン基板の一面に形成されるセラミックス被膜の表面は滑らかな面になるものの、大きな亀裂が生じることが確認された。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼結工程を経たチタン基板を、その一面側から観察した。結果を図52~図55に示す。図52は、焼結工程を9回行った後に、チタン基板を、その一面側から観察した走査型電子顕微鏡像である。図53は、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によってチタン(Ti)を検出した結果を示す図である。図54は、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。図55は、焼結工程を9回行った後に、チタン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。
 図52~図55の結果から、チタン基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。しかしながら、セラミックス被膜の表面でチタンが検出されており、チタン基板を構成するチタンがセラミックス被膜を構成する酸化ジルコニウムに固溶していると考えられる。
 また、焼結工程を9回行った後、X線回折により、チタン基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。結果を図56に示す。
 図56の結果から、チタン基板の一面には、正斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。チタン基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、正方晶であり、原料粉末の酸化ジルコニウムと結晶構造が異なる状態で安定化していることが確認された。
[実験例5]
 実験例1と同様にして、厚さ1mmのジルコニウム基板(熱伝導率22.6W/m・K、熱拡散係数1.24×10-5/s、密度6520kg/m、比熱278J/kg・K)の一面に配された原料粉体にレーザー光を照射して、ジルコニウム基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 ジルコニウム基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~7回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たジルコニウム基板を、その一面側から観察した。結果を図57~図60に示す。図57は、焼結工程を1回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図58は、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図59は、焼結工程を5回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図60は、焼結工程を7回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。
 図57~図60の結果から、焼結工程により、1回目からチタン基板の一面に形成されるセラミックス被膜の表面は滑らかな面になるものの、大きな亀裂が生じることが確認された。
 焼結工程を3回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼結工程を経たジルコニウム基板を、その一面側から観察した。結果を図61~図63に示す。図61は、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察した走査型電子顕微鏡像である。図62は、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図63は、焼結工程を3回行った後に、ジルコニウム基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図61~図63の結果から、ジルコニウム基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。しかしながら、セラミックス被膜の表面でジルコニウムが検出されており、ジルコニウム基板を構成するジルコニウムがセラミックス被膜を構成する酸化ジルコニウムに固溶していると考えられる。
 また、焼結工程を3回行った後、X線回折により、ジルコニウム基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。その結果、ジルコニウム基板の一面には、単斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。
[実験例6]
 実験例1と同様にして、厚さ1mmのステンレス鋼基板(熱伝導率26W/m・K、熱拡散係数4.03×10-6/s、密度7930kg/m、比熱510J/kg・K)の一面に配された原料粉体にレーザー光を照射して、ステンレス鋼基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 ステンレス鋼基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~7回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たステンレス鋼基板を、その一面側から観察した。結果を図64~図66に示す。図64は、焼結工程を1回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。図65は、焼結工程を3回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。図66は、焼結工程を7回行った後に、ステンレス鋼基板を、その一面側から観察した走査型電子顕微鏡像である。
 図64~図66の結果から、焼結工程を何回行っても、ステンレス鋼基板の一面に、原料粉末が付着することがなく、セラミックス被膜が形成されないことが確認された。
[実験例7]
 実験例1と同様にして、厚さ1mmのモリブデン基板(熱伝導率138W/m・K、熱拡散係数5.25×10-5/s、密度10280kg/m、比熱250J/kg・K)の一面に配された原料粉体にレーザー光を照射して、モリブデン基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が500nmであり、イットリア(Y)の含有量が3質量%のイットリア部分安定酸化ジルコニウム粉体を用いた。このイットリア部分安定酸化ジルコニウム粉体の結晶構造は、正斜晶と立方晶であった。
 モリブデン基板の一面にイットリア部分安定酸化ジルコニウム粉体を配し、そのモリブデン酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~7回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板を、その一面側から観察した。結果を図67~図70示す。図67は、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図68は、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図69は、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図70は、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。
 図67~図70の結果から、モリブデン基板の一面に形成されたセラミックス被膜には、亀裂が生じていることが確認された。
 また、焼結工程を7回行った後、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。結果を図71に示す。
 図71の結果から、モリブデン基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、正方晶であり、原料粉末のイットリア部分安定酸化ジルコニウムと結晶構造が異なる状態で安定化していることが確認された。
[実験例8]
 実験例1と同様にして、厚さ1mmのモリブデン基板(熱伝導率138W/m・K、熱拡散係数5.35×10-5/s、密度10280kg/m、比熱250J/kg・K)の一面に配された原料粉体にレーザー光を照射して、モリブデン基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が500nmであり、イットリア(Y)の含有量が8質量%のイットリア部分安定酸化ジルコニウム粉体を用いた。このイットリア部分安定酸化ジルコニウム粉体の結晶構造は、立方晶であった。
 モリブデン基板の一面にモリブデン酸化ジルコニウム粉体を配置し、そのモリブデン酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~7回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板を、その一面側から観察した。結果を図72~図75示す。図72は、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図73は、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図74は、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図75は、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。
 図72~図75の結果から、モリブデン基板の一面に形成されたセラミックス被膜には、多数の亀裂が生じていることが確認された。
 また、焼結工程を7回行った後、X線回折により、モリブデン基板の一面に形成されたセラミックス被膜の構造解析を行った。
 X線回折によるセラミックス被膜の構造解析は、実験例1と同様に行った。結果を図76に示す。
 図76の結果から、モリブデン基板の一面に形成されたセラミックス被膜に含まれる酸化ジルコニウムは、立方晶であり、原料粉末のイットリア部分安定酸化ジルコニウムと結晶構造が同じであることが確認された。
[実験例9]
 原料粉体として、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体と、酸化グラフェンとを含むものを用意した。
 この原料粉体における酸化ジルコニウム粉体の含有量は98質量%、酸化グラフェンの含有量は2質量%であった。
 走査型電子顕微鏡(SEM)により、この原料粉体観察した。結果を図77および図78に示す。
 また、紫外可視近赤外分光光度計(商品名:V-670、日本分光社製)により、この原料粉体の吸収率を測定した。結果を図79に示す。
 実験例1と同様にして、厚さ1mmの基モリブデン基板(熱伝導率138W/m・K、熱拡散係数5.35×10-5/s、密度10280kg/m、比熱250J/kg・K)の一面に配された原料粉体にレーザー光を照射して、モリブデン基板の一面にて原料粉体を焼結した。
 原料粉体としては、上記の酸化ジルコニウム粉体と、酸化グラフェンとを含むものを用いた。
 モリブデン基板の一面に原料粉体を配置し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~9回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板を、その一面側から観察した。結果を図80~図84に示す。図80は、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図81は、焼結工程を2回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図82は、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図83は、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図84は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。
 図80~図84の結果から、焼結工程を3回以上行うことにより、モリブデン基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていることが予測された。
 また、焼結工程の回数が増えるに従って、セラミックス被膜の表面は亀裂が少なく、滑らかな面になることが分かった。
 走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経たモリブデン基板を、その一面側から観察した。結果を図85~図87に示す。図85は、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図86は、モリブデン基板を、その一面側から観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。図87は、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経たモリブデン基板を、その一面側から観察した。結果を図88~図90に示す。図88は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図89は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図90は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図88~図90の結果から、モリブデン基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析 (EDS)により検出された酸素は、モリブデン基板や酸化ジルコニウムに含まれる不純物である。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板の断面を観察した。結果を図91~図94に示す。図91および図92は、焼結工程を5回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図93および図94は、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。
 図91~図94の結果から、モリブデン基板の一面に、酸化ジルコニウムからなる緻密なセラミックス被膜が形成されていることが予測された。また、モリブデン基板とセラミックス被膜の間に界面が存在しており、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが予測された。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼結工程を経たモリブデン基板の断面を観察した。結果を図95~図100に示す。図95は、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。図96は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。図97は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。図98は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図99は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。図100は、焼結工程を9回行った後に、モリブデン基板の断面を観察した走査型電子顕微鏡像である。
 図95~図100の結果から、モリブデン基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、モリブデン基板とセラミックス被膜の間に界面が存在しており、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素とアルミニウムは、モリブデン基板や酸化ジルコニウムに含まれる不純物である。また、図100において、矢印で示す線は、単斜晶系酸化ジルコニウムの結晶粒の粒界である。
 焼結工程を9回行った後に、透過型電子顕微鏡(TEM)とエネルギー分散型X線分析(EDS)により、焼結工程を経たモリブデン基板の断面を観察した。結果を図101~図105に示す。図101は、焼結工程を9回行った後に、モリブデン基板の断面を観察した透過型電子顕微鏡像である。図102は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。図103は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図104は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってホウ素(B)を検出した結果を示す図である。図105は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図101~図105の結果から、単斜晶系酸化ジルコニウムの結晶粒の粒界に金属ジルコニウムが偏析(濃縮)していることが確認された。
 焼結工程を9回行った後に、電子線回折により、モリブデン基板の一面を観察した。電子線回折によるセラミックス被膜の構造解析は、透過型電子顕微鏡(日本電子社製)を用いた制限視野像から得られた逆格子パターンを用いて行った。結果を図108および図109に示す。
 図106は、焼結工程を9回行った後に、モリブデン基板の一面を観察した走査型電子顕微鏡像である。図108は、図106において、円で囲まれた領域を電子線回折により解析した結果を示す図である。図107は、焼結工程を9回行った後に、モリブデン基板の一面を観察した走査型電子顕微鏡像である。図109は、図107において、円で囲まれた領域を電子線回折により解析した結果を示す図である。
 図108および図109の結果から、モリブデン基板の一面には、単斜晶系酸化ジルコニウムを含むセラミックス被膜が形成されていることが確認された。
 焼結工程を9回行った後に、透過型電子顕微鏡(TEM)とエネルギー分散型X線分析(EDS)により、モリブデン基板の断面を観察した。結果を図110~図114に示す。図110は、焼結工程を9回行った後に、モリブデン基板の断面を観察した透過型電子顕微鏡像である。図111は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。図112は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって炭素(C)を検出した結果を示す図である。図113は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図114は、焼結工程を9回行った後に、モリブデン基板の断面を観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図110~図114の結果から、モリブデン基板の一面に、酸化ジルコニウムからなる緻密なセラミックス被膜が形成されていることが予測された。また、モリブデン基板とセラミックス被膜の間に界面が存在しており、モリブデン基板を構成するモリブデンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが予測された。また、モリブデン基板とセラミックス被膜が密着していることが予測された。
 また、図115および図116に、酸化ジルコニウム被膜とモリブデン基板の界面近傍を観察した走査型電子顕微鏡像を示す。
 図115および図116の結果から、酸化ジルコニウム被膜とモリブデン基板の界面には、反応層が観察されないことが確認された。
[実験例10]
 原料粉体として、平均一次粒子径1μm~3μm、粒度分布の累積体積百分率が50%のときの粒径(d50)が2.3nmの純度100%の酸化ジルコニウム粉体を用意した。この酸化ジルコニウム粉体の走査型電子顕微鏡像を、図117および図118に示す。
 実験例1と同様にして、厚さ1mmのモリブデン基板(熱伝導率138W/m・K、熱拡散係数5.35×10-5/s、密度10280kg/m、比熱250J/kg・K)の一面に配された原料粉体にレーザー光を照射して、モリブデン基板の一面にて原料粉体を焼結した。
 モリブデン基板の一面に酸化ジルコニウム粉体を配置し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~9回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経たモリブデン基板を、その一面側から観察した。結果を図119~図124に示す。図119は、焼結工程を1回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図120は、焼結工程を3回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図121は、焼結工程を5回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図122は、焼結工程を7回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図123および図124は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図124は、図123の一部を拡大した図である。
 図119~図124の結果から、焼結工程を繰り返しても、モリブデン基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていないことが予測された。
 焼結工程を9回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経たモリブデン基板を、その一面側から観察した。結果を図125~図128に示す。図125は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察した走査型電子顕微鏡像である。図126は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってモリブデン(Mo)を検出した結果を示す図である。図127は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図128は、焼結工程を9回行った後に、モリブデン基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 図125~図128の結果から、モリブデン基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていないことが確認された。
[実験例11]
 実験例1と同様にして、厚さ4.6mmの超硬合金(WC-Co)基板(熱伝導率70W/m・K、熱拡散係数2.3×10-5/s、密度14320kg/m、比熱209J/kg・K)の一面に配された原料粉体にレーザー光を照射して、超硬合金(WC-Co)基板の一面にて原料粉体を焼結した。
 原料粉体としては、平均一次粒子径50nm、粒度分布の累積体積百分率が50%のときの粒径(d50)が550nmの純度100%の酸化ジルコニウム粉体を用いた。この酸化ジルコニウム粉体の結晶構造は、単斜晶であった。
 超硬合金(WC-Co)基板の一面に酸化ジルコニウム粉体を配し、その酸化ジルコニウム粉体の焼結が完了するまでの工程を焼結工程とし、その焼結工程を1回~17回行った。
 焼結工程が完了する度に、走査型電子顕微鏡(SEM)により、焼結工程を経た銅基板を、その一面側から観察した。結果を図129~図135に示す。図129は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図130は、焼結工程を3回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図131は、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図132は、焼結工程を7回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図133は、焼結工程を9回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図134は、焼結工程を11回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図135は、焼結工程を17回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。
 図129~図135の結果から、焼結工程を1回以上行うことにより、超硬合金(WC-Co)基板の一面に、酸化ジルコニウムからなるセラミックス被膜が形成されていることが予測された。また、焼結工程の9回以上になると、セラミックス被膜の表面が滑らかな面でなくなることが分かった。
 焼結工程を1回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経た超硬合金(WC-Co)基板を、その一面側から観察した。結果を図136~図141に示す。図136は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図137は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってタングステン(W)を検出した結果を示す図である。図138は、焼結工程を1回行った後に、タングステン基板を、その一面側から観察したEDS分析によって炭素(C)を検出した結果を示す図である。図139は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってコバルト(Co)を検出した結果を示す図である。図140は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図141は、焼結工程を1回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。
 また、EDS分析による元素分析の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図136~図141の結果から、超硬合金(WC-Co)基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、超硬合金(WC-Co)基板を構成するタングステンがセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素は、超硬合金(WC-Co)基板や酸化ジルコニウムに含まれる構成元素である。エネルギー分散型X線分析(EDS)により検出されたコバルトは、超硬合金(WC-Co)基板に含まれる構成元素である。エネルギー分散型X線分析(EDS)により検出されたタングステンは、超硬合金(WC-Co)基板に起因するものである。
 焼結工程を5回行った後に、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDS)により、焼成行程を経た超硬合金(WC-Co)基板を、その一面側から観察した。結果を図142~図145に示す。図142は、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察した走査型電子顕微鏡像である。図143は、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってジルコニウム(Zr)を検出した結果を示す図である。図144は、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によって酸素(O)を検出した結果を示す図である。図145は、焼結工程を5回行った後に、超硬合金(WC-Co)基板を、その一面側から観察したEDS分析によってコバルト(Co)を検出した結果を示す図である。
 また、EDS分析による元素分析の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 図142~図145の結果から、超硬合金(WC-Co)基板の一面に酸化ジルコニウムからなるセラミックス被膜が形成されていることが確認された。また、超硬合金(WC-Co)基板を構成する銅がセラミックス被膜を構成する酸化ジルコニウムに固溶していないことが確認された。なお、エネルギー分散型X線分析(EDS)により検出された酸素は、超硬合金(WC-Co)基板や酸化ジルコニウムに含まれる不純物である。エネルギー分散型X線分析(EDS)により検出されたコバルトは、超硬合金(WC-Co)基板に起因するものである。
10 セラミックス部材
11 基板
12 セラミックス被膜
30 結晶粒
35 粒界
40 原料粉体
100 セラミックス部材の製造装置
110 レーザー光源
120 集光レンズ
130 粉体供給部
140 台座
141 セラミックス被膜形成部
150 支持部材
160 空間
170 レーザー光

Claims (12)

  1.  熱伝導率が60W/m・K以上の基板と、該基板の一面に形成された単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜と、を備えるセラミックス部材。
  2.  前記セラミックス被膜は、さらに正方晶系酸化ジルコニウムを含む請求項1に記載のセラミックス部材。
  3.  前記セラミックス被膜に含まれる前記単斜晶系酸化ジルコニウムと前記正方晶系酸化ジルコニウムの割合は、質量比で84:16~92:8である請求項2に記載のセラミックス部材。
  4.  前記セラミックス被膜は、さらに酸化グラフェンを含み、
     前記単斜晶系酸化ジルコニウムの結晶粒の粒界に金属ジルコニウムが偏析している請求項1~3のいずれか1項に記載のセラミックス部材。
  5.  前記セラミックス被膜の厚さは、7.5μm以上18μm以下である請求項1~4のいずれか1項に記載のセラミックス部材。
  6.  前記基板は、モリブデン、銅またはアルミニウムからなる請求項1~5のいずれか1項に記載のセラミックス部材。
  7.  熱伝導率が60W/m・K以上の基板の一面に配した、平均一次粒子径が5nm以上500nm以下の酸化ジルコニウム粉体を含む原料粉体にレーザー光を照射して、前記原料粉体を焼結して、前記基板の一面に単斜晶系酸化ジルコニウムを少なくとも含むセラミックス被膜を形成するセラミックス部材の製造方法。
  8.  前記酸化ジルコニウム粉体の粒度分布の累積体積百分率が50%のときの粒径(d50)が20nm以上2000nm以下である請求項7に記載のセラミックス部材の製造方法。
  9.  前記レーザー光の波長は、10nm以上20000nm以下である請求項7または8に記載のセラミックス部材の製造方法。
  10.  前記原料粉体は、さらに酸化グラフェン粉体を含む請求項7~9のいずれか1項に記載のセラミックス部材の製造方法。
  11.  前記セラミックス被膜の厚さは、7.5μm以上18μm以下である請求項7~10のいずれか1項に記載のセラミックス部材の製造方法。
  12.  前記基板は、モリブデン、銅またはアルミニウムからなる請求項7~11のいずれか1項に記載のセラミックス部材の製造方法。
PCT/JP2020/009599 2019-03-06 2020-03-06 セラミックス部材およびその製造方法 WO2020179900A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021503661A JPWO2020179900A1 (ja) 2019-03-06 2020-03-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040986 2019-03-06
JP2019-040986 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179900A1 true WO2020179900A1 (ja) 2020-09-10

Family

ID=72337761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009599 WO2020179900A1 (ja) 2019-03-06 2020-03-06 セラミックス部材およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2020179900A1 (ja)
WO (1) WO2020179900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411080A (zh) * 2021-12-29 2022-04-29 钢铁研究总院 一种热防护复合涂层及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472795A (en) * 1994-06-27 1995-12-05 Board Of Regents Of The University Of The University Of Wisconsin System, On Behalf Of The University Of Wisconsin-Milwaukee Multilayer nanolaminates containing polycrystalline zirconia
WO2005118919A1 (ja) * 2004-11-05 2005-12-15 Nihon Parkerizing Co., Ltd. 金属の電解セラミックコーティング方法、金属の電解セラミックコーティング用電解液および金属材料
WO2008041455A1 (fr) * 2006-09-28 2008-04-10 Nihon Parkerizing Co., Ltd. Procédé destiné à appliquer un film de céramique sur un métal, solution d'électrolyse destinée à être utilisée dans le procédé, film de céramique et matériau métallique
JP2018108914A (ja) * 2016-12-31 2018-07-12 大研化学工業株式会社 単斜晶ジルコニア系ナノ粒子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472795A (en) * 1994-06-27 1995-12-05 Board Of Regents Of The University Of The University Of Wisconsin System, On Behalf Of The University Of Wisconsin-Milwaukee Multilayer nanolaminates containing polycrystalline zirconia
WO2005118919A1 (ja) * 2004-11-05 2005-12-15 Nihon Parkerizing Co., Ltd. 金属の電解セラミックコーティング方法、金属の電解セラミックコーティング用電解液および金属材料
WO2008041455A1 (fr) * 2006-09-28 2008-04-10 Nihon Parkerizing Co., Ltd. Procédé destiné à appliquer un film de céramique sur un métal, solution d'électrolyse destinée à être utilisée dans le procédé, film de céramique et matériau métallique
JP2018108914A (ja) * 2016-12-31 2018-07-12 大研化学工業株式会社 単斜晶ジルコニア系ナノ粒子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411080A (zh) * 2021-12-29 2022-04-29 钢铁研究总院 一种热防护复合涂层及其制造方法
CN114411080B (zh) * 2021-12-29 2022-11-11 钢铁研究总院 一种热防护复合涂层及其制造方法

Also Published As

Publication number Publication date
JPWO2020179900A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
Pan et al. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique
Lassègue et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process
TWI549308B (zh) 氧化物燒結體及將其加工而成之錠
Wei et al. Densification, mechanical and thermal properties of ZrC1− x ceramics fabricated by two-step reactive hot pressing of ZrC and ZrH2 powders
TW201932216A (zh) 經加成製造之組件
Morris et al. Variations in tantalum carbide microstructures with changing carbon content
WO2015170534A1 (ja) スパッタリングターゲット材
JP6908248B2 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
KR20170118872A (ko) 피복절삭공구
WO2020179900A1 (ja) セラミックス部材およびその製造方法
Chung et al. Effect of titanium addition on the thermal properties of diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering technique
Wang et al. Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles
Liu et al. Microstructural evolution of sandwiched Cr interlayer in Cu/Cr/diamond subjected to heat treatment
JP2017025348A (ja) Mo−W酸化物スパッタリングターゲット、及び、Mo−W酸化物スパッタリングターゲットの製造方法
Pappas et al. Direct 3D printing of transparent magnesium aluminate spinel ceramics
Lin et al. Interface characterization of a Cu–Ti-coated diamond system
Al-Kamiyani et al. Improved control in elimination of white impurities on graphene by chemical vapor deposition (CVD)
TWI786336B (zh) 經添加物方式製造之耐火金屬構件,添加物方式製造方法及粉末
Hao et al. High fracture toughness of HfC through nano‐scale templating and novel sintering aids
Wang et al. Gradient interface formation in Cu–Cr/diamond (Ti) composites prepared by gas pressure infiltration
Romankov et al. Formation of composite CuWNi layers on ceramic substrates under shot impact treatment
US10066277B2 (en) Cemented carbide and coated cemented carbide
Fager et al. Thermal stability and mechanical properties of amorphous coatings in the Ti-B-Si-Al-N system grown by cathodic arc evaporation from TiB2, Ti33Al67, and Ti85Si15 cathodes
Chmielewski et al. Effect of rhenium addition on the strengthening of chromium–alumina composite materials
WO2021192916A1 (ja) 複合材料、及び放熱部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767021

Country of ref document: EP

Kind code of ref document: A1