WO2020179772A1 - Polyalkylene terephthalate resin molded article having engagement part - Google Patents
Polyalkylene terephthalate resin molded article having engagement part Download PDFInfo
- Publication number
- WO2020179772A1 WO2020179772A1 PCT/JP2020/008847 JP2020008847W WO2020179772A1 WO 2020179772 A1 WO2020179772 A1 WO 2020179772A1 JP 2020008847 W JP2020008847 W JP 2020008847W WO 2020179772 A1 WO2020179772 A1 WO 2020179772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terephthalate resin
- polyalkylene terephthalate
- acid
- group
- core
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
Definitions
- the present invention relates to a polyalkylene terephthalate resin molded product having an engaging portion. More specifically, the present invention relates to a polyalkylene terephthalate resin molded article having an engaging portion that is excellent in balance in both heat shock resistance and assembling with other members.
- Polyalkyleneene terephthalate resins such as polybutylene terephthalate resin (hereinafter, also referred to as "PBT resin") are excellent in mechanical properties, electrical properties, other physical and chemical properties, and have good workability. It is used as an engineering plastic in a wide range of applications such as automobile parts and electrical / electronic parts. In particular, for the purpose of protecting external moisture, dust, or damage due to impact, a case material for accommodating a board on which electronic components are mounted, an insert molded product including a sensor case, a connector terminal, etc., a gear, It is preferably used in applications such as actuator cases that protect motors and the like.
- PBT resin polybutylene terephthalate resin
- Patent Document 1 discloses a polybutylene terephthalate resin composition in which a predetermined amount of a thermoplastic elastomer or a core-shell polymer is blended as an impact resistance improving agent with respect to a polybutylene terephthalate resin.
- Documents 2 and 3 describe polybutylene terephthalate resin compositions in which a core-shell polymer having a specific particle size and a predetermined amount of glass fibers are blended with a polybutylene terephthalate resin in a core layer made of acrylic rubber. It is disclosed.
- Patent Document 4 discloses a polybutylene terephthalate resin composition having excellent heat shock resistance, which is obtained by blending a carbodiimide compound, a fibrous filler, and an elastomer with a polybutylene terephthalate resin.
- snap fittings for assembling and assembling two units, parts, etc. by a snap-fit structure are often used.
- a structure in which a protrusion or a hook provided in the other is engaged with a hole provided in one is often used.
- a structure in which an uneven shape portion such as a boss or a rib is engaged with a corresponding shape portion of a mating member is often used.
- the engaged members that make up the snap fitting, or both the engaging members and the engaged members are made of resin, it is easy to engage and disengage using the elasticity of both, and to prevent vibration. It is used for in-vehicle connectors and quick hangers for spiral hangers because it is less prone to fatigue.
- the support for fixing the built-in parts the engaging portion such as the boss and the bearing may be provided with resin. However, when assembling the parts in these, the engaging part may be broken depending on the resin used.
- An object of the present invention is to provide a molded article having an engaging portion, which is excellent in heat shock resistance and assemblability (resistance to cracking of the engaging portion) and does not generate harmful gas such as isocyanate gas during manufacturing. ..
- the present inventor has an acrylic core shell having an average particle size of 0.3 ⁇ m or less, in which (A) a polyalkylene terephthalate resin and (B) the core layer rubber is an acrylic rubber and the shell layer component has a reactive functional group.
- a molded product having an engaging portion which comprises a polyalkylene terephthalate resin composition containing a mold polymer and (C) glass fiber and not containing a carbodiimide compound.
- the present invention has been completed.
- the present invention relates to the following (1) to (4).
- (1) Polyalkylene terephthalate resin and (B) Acrylic core-shell polymer having an average particle size of 0.3 ⁇ m or less, in which the rubber of the core layer is an acrylic rubber and the components of the shell layer have reactive functional groups.
- a molded product having an engaging portion which comprises (C) glass fiber and a polyalkylene terephthalate resin composition containing no carbodiimide compound.
- the acrylic rubber is a polymer containing acrylic acid C 1 to C 12 alkyl esters as main components.
- the reactive functional group is one or more reactive functional groups selected from the group consisting of an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group and a acidified group (1).
- a molded article having an engaging portion which is excellent in heat shock resistance and assembling property (cracking resistance of the engaging portion) and does not generate harmful gas such as isocyanate gas during manufacturing. ..
- FIG. 1 It is a figure which shows the molded piece for snap fit evaluation. It is a schematic diagram which shows the state of the snap fit insertion test. It is a figure which shows the test piece used for the heat shock resistance test, (A) is a top view, (B) is sectional drawing cut
- Polyalkylene terephthalate resin composition In the polyalkylene terephthalate resin composition of the embodiment of the present invention, (A) a polyalkylene terephthalate resin and (B) an average particle in which the rubber of the core layer is an acrylic rubber and the component of the shell layer has a reactive functional group. It contains an acrylic core-shell polymer having a diameter of 0.3 ⁇ m or less, and (C) glass fiber, and does not contain a carbodiimide compound.
- each component contained in the polyalkylene terephthalate resin composition will be described.
- the (A) polyalkylene terephthalate resin which is the base resin of the polyalkylene terephthalate resin composition according to the embodiment of the present invention, is a dicarboxylic acid component containing a dicarboxylic acid compound and / or an ester-forming derivative thereof as a main component, and a diol compound. And / or among the thermoplastic polyester resins obtained by reaction with a diol component containing an ester-forming derivative as a main component, terephthalic acid and / or an ester-forming derivative thereof is a main component as a dicarboxylic acid component, and as a diol component.
- the main component is alkylene glycol and/or its ester-forming derivative.
- the polyalkylene terephthalate resin is a combination of a dicarboxylic acid component and a diol component other than the main component, and an oxycarboxylic acid component, a lactone component and the like (hereinafter, may be referred to as a copolymerizable monomer) as other copolymerizable monomers.
- Copolyester can also be used.
- dicarboxylic acid component other than the main component examples include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dotecandicarboxylic acid, hexadecane).
- aliphatic dicarboxylic acids for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dotecandicarboxylic acid, hexadecane.
- Dicarboxylic acid of about C 4-40 such as dicarboxylic acid and dimer acid, preferably dicarboxylic acid of about C 4-14 ), alicyclic dicarboxylic acid (for example, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid) , C 4-40 dicarboxylic acid such as hymic acid, preferably C 8-12 dicarboxylic acid), aromatic dicarboxylic acid other than terephthalic acid (for example, phthalic acid, isophthalic acid, methylisophthalic acid, methylterephthalic acid) , Naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenoxyetherdicarboxylic acid, 4,4'-dioxybenzoic acid, 4,4'-diphenylmethanedicarboxylic acid Acids,
- dicarboxylic acid component preferable to be used in combination with terephthalic acid examples include isophthalic acid and naphthalenedicarboxylic acid, and two or more of these can be used in combination. However, it is preferable that 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more of the entire dicarboxylic acid component as the copolymerizable monomer is an aromatic dicarboxylic acid compound. Furthermore, if necessary, a polyvalent carboxylic acid such as trimellitic acid or pyromellitic acid or an ester-forming derivative thereof (alcohol ester or the like) may be used in combination. When such a polyfunctional compound is used in combination, a branched polyalkylene terephthalate resin can also be obtained.
- diol component other than the main component examples include aliphatic alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, etc.
- aliphatic alkanediols for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, etc.
- An aliphatic diol of about C 2-12 such as decanediol, preferably an aliphatic alkanediol other than the aliphatic diol of about C 2-10 used as a main component
- polyoxyalkylene glycol C 2- Glyls having a plurality of oxyalkylene units of about 4 such as diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.
- alicyclic diols for example, 1,4- Cyclohexanediol, 1,4-cyclohexanedimethanol, hydride bisphenol A, etc.
- aromatic diols such as hydroquinone, resorcinol, bisphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis- (4- (2-hydroxyethoxy) phenyl) propane, and xylylene glycol are used in combination. You may.
- alkylene glycol is preferably 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more of the entire diol component as the copolymerizable monomer.
- polyols such as glycerin, trimethylolpropane, trimethylolethane, and pentaerythritol or ester-forming derivatives thereof may be used in combination. When such a polyfunctional compound is used in combination, a branched thermoplastic polyester resin can also be obtained.
- Oxycarboxylic acids include, for example, oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, and oxycaproic acid, or derivatives thereof. .. Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ⁇ -caprolactone, etc.) and the like.
- the proportion of the copolymerizable monomer can be selected from the range of, for example, 0.01 mol% or more and 30 mol% or less, and is usually 1 mol% or more and 25 mol% or less, preferably 3 mol%. It is about 20 mol% or more, more preferably about 5 mol% or more and 15 mol% or less.
- the proportion of the homopolyester and the copolyester is 0.01 mol% or more and 30 mol% or less based on the total amount of the monomers.
- Preferred polyalkylene terephthalate resins include homopolyesters or copolyesters containing an alkylene terephthalate unit as a main component (for example, about 50 to 100 mol%, preferably about 75 to 100 mol%) [for example, polyethylene terephthalate (PET), polytri.
- PET polyethylene terephthalate
- Homopolyester such as methylene terephthalate (PTT), poly C 2-4 alkylene terephthalate such as polybutylene terephthalate (PBT)), copolyester containing alkylene isophthalate unit as main component and alkylene isophthalate unit as main component, alkylene terephthalate
- PBT polybutylene terephthalate
- a copolyester containing a unit as a main component and an alkylene naphthalate unit as a copolymerization component] is included, and these can be used alone or in combination of two or more.
- Particularly preferred polyalkylene terephthalate resins are homopolyester resins or copolyester resins containing 80 mol% or more (particularly 90 mol% or more) of C 2-4 alkylene terephthalate units such as ethylene terephthalate, trimethylene terephthalate, and tetramethylene terephthalate.
- polyethylene terephthalate resin and polybutylene terephthalate resin are preferable, and polybutylene terephthalate resin is particularly preferable.
- the amount of terminal carboxyl groups of the polyalkylene terephthalate resin is not particularly limited as long as it does not impair the effects of the present invention.
- the amount of terminal carboxyl groups of the polyalkylene terephthalate resin is preferably 30 meq/kg or less, more preferably 25 meq/kg or less. If the amount of terminal carboxyl groups of the polyalkylene terephthalate resin is too large, the hydrolysis resistance may be impaired.
- the intrinsic viscosity of the polyalkylene terephthalate resin is not particularly limited as long as the effect of the present invention is not impaired.
- the intrinsic viscosity of the polyalkylene terephthalate resin is preferably 0.6 to 1.3 dL/g, more preferably 0.7 to 1.2 dL/g.
- the polyalkylene terephthalate resin composition obtained will be particularly excellent in moldability.
- the intrinsic viscosity can be adjusted by blending polyalkylene terephthalate resins having different intrinsic viscosities.
- a polyalkylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g can be prepared by blending a polyalkylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polyalkylene terephthalate resin having an intrinsic viscosity of 0.8 dL / g.
- the intrinsic viscosity of the polyalkylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35°C.
- polyalkylene terephthalate resin a commercially available product may be used, and a dicarboxylic acid component or a reactive derivative thereof, a diol component or a reactive derivative thereof, and a monomer copolymerizable therewith, if necessary, are used in a conventional method.
- a dicarboxylic acid component or a reactive derivative thereof, a diol component or a reactive derivative thereof, and a monomer copolymerizable therewith, if necessary are used in a conventional method.
- those produced by copolymerization (polycondensation) by transesterification, direct esterification, etc. may be used.
- the core-shell type polymer is a polymer having a multi-layer structure including a core layer (core portion) and a shell layer covering a part or all of the core layer (surface of the core layer).
- the core layer has a rubber component (soft component)
- the shell layer is preferably composed of a hard component.
- the core layer is usually made of a rubber component in many cases, and an acrylic rubber is used in the embodiment of the present invention.
- the glass transition temperature of the rubber component is, for example, preferably less than 0 ° C. (for example, ⁇ 10 ° C. or lower), more preferably ⁇ 20 ° C. or lower (for example, about ⁇ 180 to ⁇ 25 ° C.), and further preferably ⁇ 30 ° C. or lower. (For example, about ⁇ 150 to ⁇ 40 ° C.).
- Acrylic rubber that can be used as a rubber component is an acrylic monomer [particularly, an alkyl acrylate (acrylic acid C 1 to C 12 alkyl ester such as butyl acrylate, preferably acrylic acid C 1 to C 8 alkyl ester, more preferably acrylic). acid C 2 ⁇ C 6 alkyl esters) acrylic acid esters such as is a polymer composed mainly of.
- the acrylic rubber may be an acrylic monomer alone or a copolymer (a copolymer of acrylic monomers, a copolymer of an acrylic monomer and another unsaturated bond-containing monomer, etc.), and may be an acrylic monomer. It may be a copolymer of a monomer (and other unsaturated bond-containing monomer) and a crosslinkable monomer.
- crosslinkable monomer examples include (meth) acrylic acid-based monomer ⁇ polyfunctional (meth) acrylate [for example, alkylene (meth) acrylate such as butylene di (meth) acrylate; ethylene glycol di (meth) acrylate, butylene.
- alkylene (meth) acrylate such as butylene di (meth) acrylate; ethylene glycol di (meth) acrylate, butylene.
- the ratio of acrylic acid ester is, for example, preferably 50 to 100% by mass, more preferably 70 to 99% by mass, and further preferably 80 to 100% by mass based on the whole acrylic rubber. It is about 98% by mass.
- the ratio of the crosslinkable monomer is, for example, more preferably 0.1 to 10 parts by mass, further preferably 0.2 to 5 parts by mass, and further preferably 100 parts by mass of the acrylic ester. Is about 0.3 to 5 parts by mass.
- the core layer may further contain a non-rubber component (for example, a hard resin component described later) even when the core layer mainly contains acrylic rubber.
- a non-rubber component for example, a hard resin component described later
- the structure of the core layer may be a uniform structure or a non-uniform structure (salami structure, etc.).
- the shell layer is usually composed of a hard resin component (or glassy resin component) in many cases.
- the glass transition temperature of the hard resin component can be selected from the range of, for example, 0 ° C. or higher (for example, 20 ° C. or higher), for example, 30 ° C. or higher (for example, about 30 to 300 ° C.), preferably 50 ° C. or higher (for example, 20 ° C. or higher). 60 to 250° C.), and more preferably 70° C. or higher (eg, 80 to 200° C.).
- Such a hard resin component is usually composed of a vinyl-based polymer (a polymer of a vinyl-based monomer).
- the vinyl-based monomer (vinyl-based monomer) is not particularly limited as long as the vinyl-based polymer can be adjusted to the glass transition temperature as described above, and for example, a methacrylic monomer [for example, , Alkyl methacrylates (eg, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate and the like, C 1 to C 20 alkyl methacrylates, preferably C 1 to C 10 alkyl methacrylates, more preferably C 1 ⁇ C 6 alkyl methacrylate), aryl methacrylate (phenyl methacrylate, etc.), methacrylic acid ester such as cycloalkyl methacrylate (
- the vinyl-based monomer may be used alone or in combination of two or more.
- the vinyl-based monomer contains at least one selected from a methacrylic monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer [particularly, at least a methacrylic acid ester (alkyl methacrylate such as methyl methacrylate)] as a polymerization component. In many cases, it is a polymer.
- the shell layer may be a single layer or may be formed of a plurality of layers as long as it covers a part or all of the core layer.
- the ratio of the components of the core layer to the total of the core layer and the shell layer is preferably more than 80% by mass and less than 100% by mass, more preferably 85% by mass or more and 95% by mass or less (for example, about 90% by mass). , And more preferably 90% by mass or more and 92% by mass or less.
- the proportion of the core layer is more than 80% by mass, a sufficient effect of improving heat shock resistance can be easily obtained.
- the ratio of the core layer is 95% by mass or less, it is advantageous in terms of difficulty in producing the core-shell type polymer, and is therefore preferable in terms of availability and quality stability.
- the ratio of each component of the core layer and the shell layer can be confirmed by the analysis of calculating from the integrated value of the peak part derived from each component in the 1 H-NMR chart, but usually, the core-shell type polymer is used. Since the compounding ratio of each monomer in the production is almost the same, it is possible to calculate based on this.
- the (B) core-shell type polymer has a reactive functional group as a component of the shell layer, and therefore the heat shock resistance of the resin composition is particularly excellent.
- the reactive functional group examples include an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group, and an acid chloride group, and an epoxy group is preferable.
- the amount of the reactive functional group is preferably 1 mmol or more and 40 mmol or less, more preferably 2 mmol or more and 20 mmol or less, and further preferably 3 mmol or more and 15 mmol or less with respect to 100 g of the core-shell type polymer.
- heat shock resistance tends to be further excellent.
- it is 40 mmol or less the fluidity of the resin composition tends not to be lowered, which is preferable.
- the average particle diameter of the (B) core-shell type polymer is 0.3 ⁇ m or less. If the average particle diameter exceeds 0.3 ⁇ m, the assembling property (crack resistance of the engaging portion) may be poor. When the average particle size is 0.3 ⁇ m or less, it is relatively easy to produce such a core-shell type polymer, which is also preferable in terms of production cost. Further, when the average particle diameter is 0.3 ⁇ m or less, the resulting polyalkylene terephthalate resin composition has excellent assemblability (crack resistance of the engaging portion).
- the lower limit of the average particle size of the core-shell type polymer is not particularly limited, but if it is less than 0.01 ⁇ m, it becomes difficult to control the particle size at the time of manufacturing, so that the average particle size is 0.01 ⁇ m in terms of manufacturing cost. The above is preferable.
- the "average particle size” refers to the volume average particle size ( ⁇ m) of the core-shell polymer in the latex state measured using MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd.
- Such a core-shell type polymer is a polyalkylene terephthalate resin under melt-kneading conditions at the time of extrusion or molding because the particle size is stabilized by the shell which is a hard component, especially when the shell layer is composed of a hard component. This is advantageous over other elastomers in that dispersion of the dispersed state (average particle size) in the composition can be suppressed.
- the glass fiber is a glass fiber that is made by melting and drawing glass.
- the strength of ordinary alkaline glass is significantly reduced due to surface deterioration. Therefore, it is preferable to use non-alkali glass such as quartz glass as the glass used as a raw material. Further, the glass fiber can be suitably used from the viewpoint of availability, strength and rigidity.
- carbodiimide compounds are mainly used as dehydration condensing agents.
- a commonly used example is the promotion of amide bonds or ester bond formation to carboxylic acids.
- the carbodiimide compound is added to the polyalkylene terephthalate resin composition, the effect of improving the hydrolysis resistance and the heat shock resistance can be obtained, but the toxic isocyanate derived from the carbodiimide compound is obtained at the time of molding the resin composition or the like. Inconvenience such as generation of gas occurs.
- by not using the carbodiimide compound it is possible to obtain the effect of not generating harmful gas such as isocyanate gas at the time of manufacturing the molded product having the engaging portion.
- the polyalkylene terephthalate resin composition of the embodiment of the present invention is generally added to a thermoplastic resin and a thermosetting resin in order to impart desired properties according to the purpose thereof without impairing the effect of the present invention.
- Known substances such as stabilizers such as antioxidants and ultraviolet absorbers, hydrolysis resistance improvers (eg epoxy resins, etc.), antistatic agents, flame retardants, flame retardant aids, dripping inhibitors, etc.
- Colorants such as dyes and pigments, mold release agents, lubricants, crystallization accelerators, crystal nucleating agents and the like can be added.
- the polyalkylene terephthalate resin composition of the embodiment of the present invention can be easily prepared by using the equipment and methods generally used for preparing the resin composition. For example, after mixing each component, kneading with a single-screw or twin-screw extruder and extruding to prepare pellets, then molding method, once preparing pellets with different compositions, and mixing the pellets in a predetermined amount. It is possible to use any of a method of obtaining a molded product having a target composition after molding and a method of directly charging one or more of each component into a molding machine.
- the molded article of the embodiment of the present invention is obtained by molding the polyalkylene terephthalate resin composition of the present invention.
- the molding method is not particularly limited, and a known molding method can be adopted.
- the molded product according to the embodiment of the present invention is preferably an insert molded product obtained by insert molding the polyalkylene terephthalate resin composition of the present invention and an insert member made of a metal or an inorganic solid.
- the metal and the inorganic solid are not particularly limited, and examples of the metal include aluminum, magnesium, stainless steel, copper, and the like, and a metal conductor portion such as an electronic circuit formed on a resin substrate is also included in this example. Examples of the inorganic solid include ceramics and the like. Insert molding can be performed by a conventionally known method.
- the object to which the snap fit portion of the present invention is attached is not particularly limited.
- the engaging portion and the engaged portion may be attached to a plate-shaped object, a tubular object, or a housing-shaped object, or a combination thereof may be used.
- the engaging portion and the engaged portion may be fitted and detached, or may not be detached.
- the number of snap-fit portions attached to these objects is not particularly limited, and is one or more. When a plurality of snap-fit portions are provided, they can be provided at symmetrical positions or 180-degree offset positions in the pipe in consideration of force balance and resistance to disengagement during use.
- the snap-fit portion of the present invention includes a vehicle harness (wiring) connector, a quick joint for a spiral hanger, a piping fitting, a housing cover for a flat portion, a wiring joint between a television or the like and an antenna, and the like. Used for extending the ground wire.
- the snap-fit portion is provided on a part of the molded product, but may be integrally provided at the time of molding, or may be provided later by a fixing means such as fusion bonding, adhesion, screwing, and screwing.
- the snap-fit portion when the snap-fit portion is provided at the end of the pipe or the like, a part of the snap-fit portion can be made to protrude to the outside of the pipe so that the inner surface of the pipe does not become thin, or the protrusion is formed on the outer surface of the pipe. If you don't like it, you can make it stick out inside the tube.
- A Polyalkylene terephthalate resin PBT resin manufactured by Polyplastics Co., Ltd., intrinsic viscosity 0.69 dl / g, terminal carboxyl group amount 24 meq / kg
- B Acrylic core-shell polymer B-1: A butyl acrylate polymer (acrylic rubber) is used for the core layer, and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90.
- Acrylic core-shell type polymer with mass%, average particle diameter 3 ⁇ m B-2 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass.
- Average particle size 20 ⁇ m B-3 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass.
- Average particle diameter 30 ⁇ m B-4 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle diameter 0.1 ⁇ m B-5 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle size 0.2 ⁇ m B-6 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle size 0.5 ⁇ m B-7 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle size 1.4 ⁇ m B-8 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle diameter 3.3 ⁇ m B-9 Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass.
- Average particle diameter 10.5 ⁇ m B-10 Butyl acrylate polymer (acrylic rubber) is used for the core layer, methyl methacrylate / glycidyl methacrylate copolymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass.
- Acrylic core-shell polymer in which the ratio of methyl methacrylate to glycidyl methacrylate is 9% by mass: 1% by mass, average particle diameter 3 ⁇ m ⁇ (C) Glass fiber manufactured by Nippon Electric Glass Co., Ltd., product name: ECS03T-187 -Antioxidant manufactured by BASF Japan Ltd., product name: Irganox1010 ⁇ Hydrolysis resistance improver Epoxy resin manufactured by Mitsubishi Chemical Corporation, product name: Epicoat JER1004K
- Example 1 Comparative Examples 1 to 9>
- A Each component is mixed with 100 parts by mass of the polyalkylene terephthalate resin at the ratio shown in Table 1, and then a cylinder temperature of 260 ° C. is used using a 30 mm ⁇ twin-screw extruder (TEX-30 manufactured by Japan Steel Works). It was melt-kneaded and extruded at a discharge rate of 15 kg / h and a screw rotation speed of 130 rpm to obtain pellets made of a polyalkylene terephthalate resin composition. Next, various test pieces were prepared from these pellets by injection molding, and the following physical properties were evaluated. The results are also shown in Table 1.
- a snap-fit insertion test was performed using a molded product for snap-fit evaluation as shown in FIG.
- the snap-fit insertion test it was determined whether or not the snap-fit portion would break when the snap-fit was assembled by applying the insertion force Fa as shown in FIG. 2 using the molded piece of FIG.
- FIGS. 3 and 4 were insert-molded by injection molding, and the heat shock resistance was evaluated.
- 3A and 3B are views showing the insert-molded test piece 20, where FIG. 3A is a top view, FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3, and FIG. FIG. 7 is a cross-sectional view taken along the line CC in FIG.
- FIG. 4 is a view showing the insert member 22.
- the resin member 21 is molded using the resin composition pellet obtained as described above.
- the resin temperature is 260 ° C.
- the mold temperature is 65 ° C.
- the injection time is 25 seconds
- the cooling time is 10 seconds
- the test piece molding mold [width w1 25mm x L1 70mm x L2 70 mm, thickness t1 Inside the L-shaped plate-shaped resin portion of 3.6 mm, width w2 21mm x L3 90mm x L4 90 mm, thickness t2
- a test piece 20 was manufactured by insert injection molding.
- FIG. 3 (A) shows the position of the side gate S1 (width: 4 mm, thickness: 3 mm) filled with the resin by a alternate long and short dash line.
- the side gate S1 is located above where the distance d1 from the lower end of the right side surface of the resin portion 21 is 1 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
[Problem] The present invention addresses the problem of providing a molded article which has an engagement part, and which has excellent heat shock resistance and assemblability (crack resistance of the engagement part), and does not generate a harmful gas such as an isocyanate gas during production. [Solution] The problem above is solved by a molded article having an engagement part, the molded article being characterized by comprising a polyalkylene terephthalate resin composition which includes: (A) a polyalkylene terephthalate resin; (B) an acrylic core/shell polymer having an average particle diameter of 0.3 μm or less, and containing an acrylic rubber as a rubber of a core layer and a reactive functional group as a component of a shell layer; and (C) a glass fiber, and which excludes a carbodiimide compound.
Description
本発明は、係合部を有するポリアルキレンテレフタレート樹脂成形品に関する。詳しくは、耐ヒートショック性及び他部材との組立性のいずれにおいてもバランス良く優れた係合部を有するポリアルキレンテレフタレート樹脂成形品に関する。
The present invention relates to a polyalkylene terephthalate resin molded product having an engaging portion. More specifically, the present invention relates to a polyalkylene terephthalate resin molded article having an engaging portion that is excellent in balance in both heat shock resistance and assembling with other members.
ポリブチレンテレフタレート樹脂(以下、「PBT樹脂」とも呼ぶ)などのポリアルキレンテレフタレート樹脂は、機械的性質、電気的性質、その他物理的、化学的性質に優れ、かつ、加工性が良好であるため、エンジニアリングプラスチックとして自動車部品、電気・電子部品等の広範な用途に使用されている。特に、外部からの水分や埃、または衝撃等によるダメージを保護する目的で、電子部品が搭載された基板を収容するケース材及び、センサーケースやコネクター端子等が内包されるインサート成形品、ギヤやモーターなどを保護するアクチュエーターケース等の用途において好ましく用いられている。
Polyalkyleneene terephthalate resins such as polybutylene terephthalate resin (hereinafter, also referred to as "PBT resin") are excellent in mechanical properties, electrical properties, other physical and chemical properties, and have good workability. It is used as an engineering plastic in a wide range of applications such as automobile parts and electrical / electronic parts. In particular, for the purpose of protecting external moisture, dust, or damage due to impact, a case material for accommodating a board on which electronic components are mounted, an insert molded product including a sensor case, a connector terminal, etc., a gear, It is preferably used in applications such as actuator cases that protect motors and the like.
一方でこれらの成形品には、自動車のエンジンルーム内や屋外など温度変化の厳しい環境下での使用に耐えるべく、耐ヒートショック性の更なる改善や、ケースとしての使用に必要な耐衝撃性も求められている。これらの要求に対し、例えば、特許文献1には、ポリブチレンテレフタレート樹脂に対し、耐衝撃改良剤として熱可塑性エラストマー又はコアシェルポリマーを所定量配合したポリブチレンテレフタレート樹脂組成物が開示されており、特許文献2、3には、ポリブチレンテレフタレート樹脂に対し、コア層がアクリル系ゴムで構成された、特定の粒子径を有するコアシェル型ポリマーと、ガラス繊維を所定量配合したポリブチレンテレフタレート樹脂組成物が開示されている。
On the other hand, these molded products have further improved heat shock resistance and impact resistance required for use as a case in order to withstand use in environments with severe temperature changes such as in the engine room of automobiles and outdoors. Is also required. In response to these demands, for example, Patent Document 1 discloses a polybutylene terephthalate resin composition in which a predetermined amount of a thermoplastic elastomer or a core-shell polymer is blended as an impact resistance improving agent with respect to a polybutylene terephthalate resin. Documents 2 and 3 describe polybutylene terephthalate resin compositions in which a core-shell polymer having a specific particle size and a predetermined amount of glass fibers are blended with a polybutylene terephthalate resin in a core layer made of acrylic rubber. It is disclosed.
また特許文献4には、ポリブチレンテレフタレート樹脂に対し、カルボジイミド化合物と、繊維状充填剤と、エラストマーを配合してなる、耐ヒートショック性に優れたポリブチレンテレフタレート樹脂組成物が開示されている。
Further, Patent Document 4 discloses a polybutylene terephthalate resin composition having excellent heat shock resistance, which is obtained by blending a carbodiimide compound, a fibrous filler, and an elastomer with a polybutylene terephthalate resin.
一方、従来から、2つのユニット、部品等をスナップフィット構造(一方に設けた穴等に他方に設けた突起またはフックを係合させる構造)により係合させて組み付けるためのスナップフィッティングが多用されている。また、ボスやリブ等の凹凸形状部を相手部材の対応形状部と係合させるといった構造も多用されている。スナップフィッティングを構成する被係合部材が、あるいは係合部材と被係合部材の両者が樹脂製の場合には、両者の弾力性を利用して係合や取り外しが容易であること、振動に対して疲労しにくいこと等から、車載用コネクターやスパイラルハンガー用クイックジョイント等に使用されている。また、センサーやアクチュエーターケースにおいても、内蔵部品を固定するためのサポートやボス、軸受け等の係合部が樹脂で設けられる場合がある。ただし、これらにおいて部品を組み付ける際、使用する樹脂によっては係合部が折損してしまうことがあった。
On the other hand, conventionally, snap fittings for assembling and assembling two units, parts, etc. by a snap-fit structure (a structure in which a protrusion or a hook provided in the other is engaged with a hole provided in one) are often used. There is. Further, a structure in which an uneven shape portion such as a boss or a rib is engaged with a corresponding shape portion of a mating member is often used. If the engaged members that make up the snap fitting, or both the engaging members and the engaged members are made of resin, it is easy to engage and disengage using the elasticity of both, and to prevent vibration. It is used for in-vehicle connectors and quick hangers for spiral hangers because it is less prone to fatigue. Further, in the case of the sensor or the actuator case as well, the support for fixing the built-in parts, the engaging portion such as the boss and the bearing may be provided with resin. However, when assembling the parts in these, the engaging part may be broken depending on the resin used.
本発明は、耐ヒートショック性及び組立性(係合部の割れ耐性)に優れ、製造時においてイソシアネートガスなどの有害ガスを発生しない、係合部を有する成形品を提供することを課題とする。
An object of the present invention is to provide a molded article having an engaging portion, which is excellent in heat shock resistance and assemblability (resistance to cracking of the engaging portion) and does not generate harmful gas such as isocyanate gas during manufacturing. ..
本発明者は、(A)ポリアルキレンテレフタレート樹脂と、(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、(C)ガラス繊維とを含み、カルボジイミド化合物を含まないポリアルキレンテレフタレート樹脂組成物からなることを特徴とする、係合部を有する成形品により、上記の課題を解決できることを見出し、本発明を完成させるに至った。
The present inventor has an acrylic core shell having an average particle size of 0.3 μm or less, in which (A) a polyalkylene terephthalate resin and (B) the core layer rubber is an acrylic rubber and the shell layer component has a reactive functional group. We have found that the above problems can be solved by a molded product having an engaging portion, which comprises a polyalkylene terephthalate resin composition containing a mold polymer and (C) glass fiber and not containing a carbodiimide compound. The present invention has been completed.
すなわち、本発明は以下の(1)~(4)に関する。
(1)(A)ポリアルキレンテレフタレート樹脂と、(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、(C)ガラス繊維とを含み、カルボジイミド化合物を含まないポリアルキレンテレフタレート樹脂組成物からなることを特徴とする、係合部を有する成形品。
(2)アクリル系ゴムが、アクリル酸C1~C12アルキルエステルを主成分とするポリマーである、(1)に記載の成形品。
(3)シェル層の成分が、0℃以上のガラス転移温度を有する硬質樹脂成分である、(1)または(2)に記載の成形品。
(4)反応性官能基が、エポキシ基、ヒドロキシ基、カルボキシ基、アルコキシ基、酸無水物基、酸塩化物基からなる群から選択される一種以上の反応性官能基である、(1)から(3)のいずれか一項に記載の成形品。 That is, the present invention relates to the following (1) to (4).
(1) (A) Polyalkylene terephthalate resin and (B) Acrylic core-shell polymer having an average particle size of 0.3 μm or less, in which the rubber of the core layer is an acrylic rubber and the components of the shell layer have reactive functional groups. A molded product having an engaging portion, which comprises (C) glass fiber and a polyalkylene terephthalate resin composition containing no carbodiimide compound.
(2) The molded product according to (1), wherein the acrylic rubber is a polymer containing acrylic acid C 1 to C 12 alkyl esters as main components.
(3) The molded product according to (1) or (2), wherein the component of the shell layer is a hard resin component having a glass transition temperature of 0 ° C. or higher.
(4) The reactive functional group is one or more reactive functional groups selected from the group consisting of an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group and a acidified group (1). The molded article according to any one of (3) to (3).
(1)(A)ポリアルキレンテレフタレート樹脂と、(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、(C)ガラス繊維とを含み、カルボジイミド化合物を含まないポリアルキレンテレフタレート樹脂組成物からなることを特徴とする、係合部を有する成形品。
(2)アクリル系ゴムが、アクリル酸C1~C12アルキルエステルを主成分とするポリマーである、(1)に記載の成形品。
(3)シェル層の成分が、0℃以上のガラス転移温度を有する硬質樹脂成分である、(1)または(2)に記載の成形品。
(4)反応性官能基が、エポキシ基、ヒドロキシ基、カルボキシ基、アルコキシ基、酸無水物基、酸塩化物基からなる群から選択される一種以上の反応性官能基である、(1)から(3)のいずれか一項に記載の成形品。 That is, the present invention relates to the following (1) to (4).
(1) (A) Polyalkylene terephthalate resin and (B) Acrylic core-shell polymer having an average particle size of 0.3 μm or less, in which the rubber of the core layer is an acrylic rubber and the components of the shell layer have reactive functional groups. A molded product having an engaging portion, which comprises (C) glass fiber and a polyalkylene terephthalate resin composition containing no carbodiimide compound.
(2) The molded product according to (1), wherein the acrylic rubber is a polymer containing acrylic acid C 1 to C 12 alkyl esters as main components.
(3) The molded product according to (1) or (2), wherein the component of the shell layer is a hard resin component having a glass transition temperature of 0 ° C. or higher.
(4) The reactive functional group is one or more reactive functional groups selected from the group consisting of an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group and a acidified group (1). The molded article according to any one of (3) to (3).
本発明によれば、耐ヒートショック性及び組立性(係合部の割れ耐性)に優れ、製造時においてイソシアネートガスなどの有害ガスを発生しない、係合部を有する成形品を提供することができる。
According to the present invention, it is possible to provide a molded article having an engaging portion which is excellent in heat shock resistance and assembling property (cracking resistance of the engaging portion) and does not generate harmful gas such as isocyanate gas during manufacturing. ..
以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、本発明において「A~B」とは、「A以上B以下」であることを示している。
Hereinafter, an embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired. In the present invention, “AB” means “A or more and B or less”.
<ポリアルキレンテレフタレート樹脂組成物>
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物は、(A)ポリアルキレンテレフタレート樹脂と、(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、(C)ガラス繊維とを含み、カルボジイミド化合物を含まない。以下、ポリアルキレンテレフタレート樹脂組成物に含まれる各成分について説明する。 <Polyalkylene terephthalate resin composition>
In the polyalkylene terephthalate resin composition of the embodiment of the present invention, (A) a polyalkylene terephthalate resin and (B) an average particle in which the rubber of the core layer is an acrylic rubber and the component of the shell layer has a reactive functional group. It contains an acrylic core-shell polymer having a diameter of 0.3 μm or less, and (C) glass fiber, and does not contain a carbodiimide compound. Hereinafter, each component contained in the polyalkylene terephthalate resin composition will be described.
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物は、(A)ポリアルキレンテレフタレート樹脂と、(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、(C)ガラス繊維とを含み、カルボジイミド化合物を含まない。以下、ポリアルキレンテレフタレート樹脂組成物に含まれる各成分について説明する。 <Polyalkylene terephthalate resin composition>
In the polyalkylene terephthalate resin composition of the embodiment of the present invention, (A) a polyalkylene terephthalate resin and (B) an average particle in which the rubber of the core layer is an acrylic rubber and the component of the shell layer has a reactive functional group. It contains an acrylic core-shell polymer having a diameter of 0.3 μm or less, and (C) glass fiber, and does not contain a carbodiimide compound. Hereinafter, each component contained in the polyalkylene terephthalate resin composition will be described.
[(A)ポリアルキレンテレフタレート樹脂]
本発明の実施形態に係るポリアルキレンテレフタレート樹脂組成物のベース樹脂である(A)ポリアルキレンテレフタレート樹脂は、ジカルボン酸化合物及び/又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、ジオール化合物及び/又はそのエステル形成性誘導体を主成分とするジオール成分との反応により得られる熱可塑性ポリエステル樹脂のうち、ジカルボン酸成分としてテレフタル酸及び/又はそのエステル形成性誘導体を主成分とし、ジオール成分としてアルキレングリコール及び/又はそのエステル形成性誘導体を主成分とするものである。 [(A) Polyalkylene terephthalate resin]
The (A) polyalkylene terephthalate resin, which is the base resin of the polyalkylene terephthalate resin composition according to the embodiment of the present invention, is a dicarboxylic acid component containing a dicarboxylic acid compound and / or an ester-forming derivative thereof as a main component, and a diol compound. And / or among the thermoplastic polyester resins obtained by reaction with a diol component containing an ester-forming derivative as a main component, terephthalic acid and / or an ester-forming derivative thereof is a main component as a dicarboxylic acid component, and as a diol component. The main component is alkylene glycol and/or its ester-forming derivative.
本発明の実施形態に係るポリアルキレンテレフタレート樹脂組成物のベース樹脂である(A)ポリアルキレンテレフタレート樹脂は、ジカルボン酸化合物及び/又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、ジオール化合物及び/又はそのエステル形成性誘導体を主成分とするジオール成分との反応により得られる熱可塑性ポリエステル樹脂のうち、ジカルボン酸成分としてテレフタル酸及び/又はそのエステル形成性誘導体を主成分とし、ジオール成分としてアルキレングリコール及び/又はそのエステル形成性誘導体を主成分とするものである。 [(A) Polyalkylene terephthalate resin]
The (A) polyalkylene terephthalate resin, which is the base resin of the polyalkylene terephthalate resin composition according to the embodiment of the present invention, is a dicarboxylic acid component containing a dicarboxylic acid compound and / or an ester-forming derivative thereof as a main component, and a diol compound. And / or among the thermoplastic polyester resins obtained by reaction with a diol component containing an ester-forming derivative as a main component, terephthalic acid and / or an ester-forming derivative thereof is a main component as a dicarboxylic acid component, and as a diol component. The main component is alkylene glycol and/or its ester-forming derivative.
ポリアルキレンテレフタレート樹脂としては、主成分以外のジカルボン酸成分やジオール成分、さらに他の共重合可能なモノマーとして、オキシカルボン酸成分、ラクトン成分等(以下、共重合性モノマーという場合がある)を組み合わせたコポリエステルも使用できる。
The polyalkylene terephthalate resin is a combination of a dicarboxylic acid component and a diol component other than the main component, and an oxycarboxylic acid component, a lactone component and the like (hereinafter, may be referred to as a copolymerizable monomer) as other copolymerizable monomers. Copolyester can also be used.
主成分以外のジカルボン酸成分としては、例えば、脂肪族ジカルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドテカンジカルボン酸、ヘキサデカンジカルボン酸、ダイマー酸などのC4-40程度のジカルボン酸、好ましくはC4-14程度のジカルボン酸)、脂環族ジカルボン酸(例えば、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ハイミック酸などのC4-40程度のジカルボン酸、好ましくはC8-12程度のジカルボン酸)、テレフタル酸以外の芳香族ジカルボン酸(例えば、フタル酸、イソフタル酸、メチルイソフタル酸、メチルテレフタル酸、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェノキシエーテルジカルボン酸、4,4’-ジオキシ安息香酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸などのC8-16程度のジカルボン酸)、又はこれらの誘導体(例えば、低級アルキルエステル、アリールエステル、酸無水物などのエステル形成可能な誘導体)などが挙げられる。テレフタル酸と組み合わせて用いるのに好ましいジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸などが挙げられ、これらを二種以上組み合わせて用いることもできる。ただし、共重合性モノマーとしてのジカルボン酸成分全体の好ましくは50モル%以上、さらに好ましくは80モル%以上、特に好ましくは90モル%以上が芳香族ジカルボン酸化合物であるとよい。さらに必要に応じて、トリメリット酸、ピロメリット酸などの多価カルボン酸又はそのエステル形成誘導体(アルコールエステル等)等を併用してもよい。このような多官能性化合物を併用すると、分岐状のポリアルキレンテレフタレート樹脂を得ることもできる。
Examples of the dicarboxylic acid component other than the main component include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dotecandicarboxylic acid, hexadecane). Dicarboxylic acid of about C 4-40 such as dicarboxylic acid and dimer acid, preferably dicarboxylic acid of about C 4-14 ), alicyclic dicarboxylic acid (for example, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid) , C 4-40 dicarboxylic acid such as hymic acid, preferably C 8-12 dicarboxylic acid), aromatic dicarboxylic acid other than terephthalic acid (for example, phthalic acid, isophthalic acid, methylisophthalic acid, methylterephthalic acid) , Naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenoxyetherdicarboxylic acid, 4,4'-dioxybenzoic acid, 4,4'-diphenylmethanedicarboxylic acid Acids, dicarboxylic acids of about C8-16 such as 4,4'-diphenylketone dicarboxylic acid), or derivatives thereof (for example, esters capable of forming esters such as lower alkyl esters, aryl esters, and acid anhydrides) and the like. Can be mentioned. Examples of the dicarboxylic acid component preferable to be used in combination with terephthalic acid include isophthalic acid and naphthalenedicarboxylic acid, and two or more of these can be used in combination. However, it is preferable that 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more of the entire dicarboxylic acid component as the copolymerizable monomer is an aromatic dicarboxylic acid compound. Furthermore, if necessary, a polyvalent carboxylic acid such as trimellitic acid or pyromellitic acid or an ester-forming derivative thereof (alcohol ester or the like) may be used in combination. When such a polyfunctional compound is used in combination, a branched polyalkylene terephthalate resin can also be obtained.
主成分以外のジオール成分としては、脂肪族アルカンジオール(例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール、オクタンジオール、デカンジオールなどのC2-12程度の脂肪族ジオール、好ましくはC2-10程度の脂肪族ジオールのうち、主成分として使用するもの以外の脂肪族アルカンジオール)、ポリオキシアルキレングリコール(C2-4程度のオキシアルキレン単位を複数有するグリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコールなど)、脂環族ジオール(例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールAなど)などが挙げられる。また、ハイドロキノン、レゾルシノール、ビスフェノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス-( 4-(2-ヒドロキシエトキシ)フェニル)プロパン、キシリレングリコールなどの芳香族ジオールを併用してもよい。ただし、共重合性モノマーとしてのジオール成分全体の好ましくは50モル%以上、さらに好ましくは80モル%以上、特に好ましくは90モル%以上がアルキレングリコールであるとよい。さらに必要に応じて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールなどのポリオール又はそのエステル形成性誘導体を併用してもよい。このような多官能性化合物を併用すると、分岐状の熱可塑性ポリエステル樹脂を得ることもできる。
Examples of the diol component other than the main component include aliphatic alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, etc. An aliphatic diol of about C 2-12 such as decanediol, preferably an aliphatic alkanediol other than the aliphatic diol of about C 2-10 used as a main component), polyoxyalkylene glycol (C 2- Glyls having a plurality of oxyalkylene units of about 4 such as diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc., alicyclic diols (for example, 1,4- Cyclohexanediol, 1,4-cyclohexanedimethanol, hydride bisphenol A, etc.) and the like. In addition, aromatic diols such as hydroquinone, resorcinol, bisphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis- (4- (2-hydroxyethoxy) phenyl) propane, and xylylene glycol are used in combination. You may. However, alkylene glycol is preferably 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more of the entire diol component as the copolymerizable monomer. Further, if necessary, polyols such as glycerin, trimethylolpropane, trimethylolethane, and pentaerythritol or ester-forming derivatives thereof may be used in combination. When such a polyfunctional compound is used in combination, a branched thermoplastic polyester resin can also be obtained.
オキシカルボン酸(又はオキシカルボン酸成分又はオキシカルボン酸類)には、例えば、オキシ安息香酸、オキシナフトエ酸、ヒドロキシフェニル酢酸、グリコール酸、オキシカプロン酸等のオキシカルボン酸又はこれらの誘導体等が含まれる。ラクトンには、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(例えば、ε-カプロラクトン等)等のC3-12ラクトン等が含まれる。
Oxycarboxylic acids (or oxycarboxylic acid components or oxycarboxylic acids) include, for example, oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, and oxycaproic acid, or derivatives thereof. .. Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ε-caprolactone, etc.) and the like.
なお、コポリエステルにおいて、共重合性モノマーの割合は、例えば、0.01モル%以上30モル%以下程度の範囲から選択でき、通常、1モル%以上25モル%以下程度、好ましくは3モル%以上20モル%以下程度、更に好ましくは5モル%以上15モル%以下程度である。また、ホモポリエステルとコポリエステルとを組み合わせて使用する場合、ホモポリエステルとコポリエステルとの割合は、共重合性モノマーの割合が、全単量体に対して0.01モル%以上30モル%以下(好ましくは1モル%以上25モル%以下程度、更に好ましくは3モル%以上20モル%以下程度、特に好ましくは5モル%以上15モル%以下程度)となる範囲であり、通常、前者/後者=99/1~1/99(質量比)、好ましくは95/5~5/95(質量比)、更に好ましくは90/10~10/90(質量比)程度の範囲から選択できる。
In the copolyester, the proportion of the copolymerizable monomer can be selected from the range of, for example, 0.01 mol% or more and 30 mol% or less, and is usually 1 mol% or more and 25 mol% or less, preferably 3 mol%. It is about 20 mol% or more, more preferably about 5 mol% or more and 15 mol% or less. When a homopolyester and a copolyester are used in combination, the proportion of the homopolyester and the copolyester is 0.01 mol% or more and 30 mol% or less based on the total amount of the monomers. (Preferably 1 mol% or more and 25 mol% or less, more preferably 3 mol% or more and 20 mol% or less, particularly preferably 5 mol% or more and 15 mol% or less), and usually the former / the latter. =99/1 to 1/99 (mass ratio), preferably 95/5 to 5/95 (mass ratio), and more preferably 90/10 to 10/90 (mass ratio).
好ましいポリアルキレンテレフタレート樹脂には、アルキレンテレフタレート単位を主成分(例えば、50~100モル%、好ましくは75~100モル%程度)とするホモポリエステル又はコポリエステル[例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)などのポリC2-4アルキレンテレフタレート)などのホモポリエステル、アルキレンテレフタレート単位を主成分として共重合成分にアルキレンイソフタレート単位を含有するコポリエステル、アルキレンテレフタレート単位を主成分として共重合成分にアルキレンナフタレート単位を含有するコポリエステル]が含まれ、これらを1種単独で又は2種以上組み合わせて使用できる。
Preferred polyalkylene terephthalate resins include homopolyesters or copolyesters containing an alkylene terephthalate unit as a main component (for example, about 50 to 100 mol%, preferably about 75 to 100 mol%) [for example, polyethylene terephthalate (PET), polytri. Homopolyester such as methylene terephthalate (PTT), poly C 2-4 alkylene terephthalate such as polybutylene terephthalate (PBT)), copolyester containing alkylene isophthalate unit as main component and alkylene isophthalate unit as main component, alkylene terephthalate A copolyester containing a unit as a main component and an alkylene naphthalate unit as a copolymerization component] is included, and these can be used alone or in combination of two or more.
特に好ましいポリアルキレンテレフタレート樹脂は、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレートなどのC2-4アルキレンテレフタレート単位を80モル%以上(特に90モル%以上)含むホモポリエステル樹脂又はコポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、イソフタル酸変性ポリエチレンテレフタレート樹脂、イソフタル酸変性ポリトリメチレンテレフタレート樹脂、イソフタル酸変性ポリブチレンテレフタレート樹脂、ナフタレンジカルボン酸変性ポリエチレンテレフタレート樹脂、ナフタレンジカルボン酸変性ポリトリメチレンテレフタレート樹脂、ナフタレンジカルボン酸変性ポリブチレンテレフタレート樹脂など)である。
Particularly preferred polyalkylene terephthalate resins are homopolyester resins or copolyester resins containing 80 mol% or more (particularly 90 mol% or more) of C 2-4 alkylene terephthalate units such as ethylene terephthalate, trimethylene terephthalate, and tetramethylene terephthalate. Polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, isophthalic acid modified polyethylene terephthalate resin, isophthalic acid modified polytrimethylene terephthalate resin, isophthalic acid modified polybutylene terephthalate resin, naphthalenedicarboxylic acid modified polyethylene terephthalate resin, naphthalenedicarboxylic acid Modified polytrimethylene terephthalate resin, naphthalene dicarboxylic acid modified polybutylene terephthalate resin, etc.).
これらの内、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂が好ましく、特にポリブチレンテレフタレート樹脂が好ましい。
Of these, polyethylene terephthalate resin and polybutylene terephthalate resin are preferable, and polybutylene terephthalate resin is particularly preferable.
ポリアルキレンテレフタレート樹脂の末端カルボキシル基量は、本発明の効果を阻害しない限り特に限定されない。ポリアルキレンテレフタレート樹脂の末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。ポリアルキレンテレフタレート樹脂の末端カルボキシル基量が多過ぎると、耐加水分解性を損なう可能性がある。
The amount of terminal carboxyl groups of the polyalkylene terephthalate resin is not particularly limited as long as it does not impair the effects of the present invention. The amount of terminal carboxyl groups of the polyalkylene terephthalate resin is preferably 30 meq/kg or less, more preferably 25 meq/kg or less. If the amount of terminal carboxyl groups of the polyalkylene terephthalate resin is too large, the hydrolysis resistance may be impaired.
ポリアルキレンテレフタレート樹脂の固有粘度は本発明の効果を阻害しない範囲で特に制限されない。ポリアルキレンテレフタレート樹脂の固有粘度は0.6~1.3dL/gであるのが好ましく、0.7~1.2dL/gであるのがより好ましい。かかる範囲の固有粘度のポリアルキレンテレフタレート樹脂を用いる場合には、得られるポリアルキレンテレフタレート樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するポリアルキレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリアルキレンテレフタレート樹脂と固有粘度0.8dL/gのポリアルキレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.9dL/gのポリアルキレンテレフタレート樹脂を調製することができる。ポリアルキレンテレフタレート樹脂の固有粘度は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
The intrinsic viscosity of the polyalkylene terephthalate resin is not particularly limited as long as the effect of the present invention is not impaired. The intrinsic viscosity of the polyalkylene terephthalate resin is preferably 0.6 to 1.3 dL/g, more preferably 0.7 to 1.2 dL/g. When a polyalkylene terephthalate resin having an intrinsic viscosity within this range is used, the polyalkylene terephthalate resin composition obtained will be particularly excellent in moldability. Also, the intrinsic viscosity can be adjusted by blending polyalkylene terephthalate resins having different intrinsic viscosities. For example, a polyalkylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g can be prepared by blending a polyalkylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polyalkylene terephthalate resin having an intrinsic viscosity of 0.8 dL / g. You can The intrinsic viscosity of the polyalkylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35°C.
なお、ポリアルキレンテレフタレート樹脂は、市販品を使用してもよく、ジカルボン酸成分又はその反応性誘導体と、ジオール成分又はその反応性誘導体と、必要により共重合可能なモノマーとを、慣用の方法、例えばエステル交換、直接エステル化法等により共重合(重縮合)することにより製造したものを使用してもよい。
As the polyalkylene terephthalate resin, a commercially available product may be used, and a dicarboxylic acid component or a reactive derivative thereof, a diol component or a reactive derivative thereof, and a monomer copolymerizable therewith, if necessary, are used in a conventional method. For example, those produced by copolymerization (polycondensation) by transesterification, direct esterification, etc. may be used.
[(B)アクリル系コアシェル型ポリマー]
コアシェル型ポリマーは、コア層(コア部)と、このコア層(コア層の表面)の一部又は全部を被覆するシェル層とを含む多層構造を有するポリマーである。コアシェル型ポリマーにおいて、好ましくは、コア層はゴム成分(軟質成分)を有し、シェル層は好ましくは硬質成分で構成される。 [(B) Acrylic core-shell polymer]
The core-shell type polymer is a polymer having a multi-layer structure including a core layer (core portion) and a shell layer covering a part or all of the core layer (surface of the core layer). In the core-shell type polymer, preferably, the core layer has a rubber component (soft component), and the shell layer is preferably composed of a hard component.
コアシェル型ポリマーは、コア層(コア部)と、このコア層(コア層の表面)の一部又は全部を被覆するシェル層とを含む多層構造を有するポリマーである。コアシェル型ポリマーにおいて、好ましくは、コア層はゴム成分(軟質成分)を有し、シェル層は好ましくは硬質成分で構成される。 [(B) Acrylic core-shell polymer]
The core-shell type polymer is a polymer having a multi-layer structure including a core layer (core portion) and a shell layer covering a part or all of the core layer (surface of the core layer). In the core-shell type polymer, preferably, the core layer has a rubber component (soft component), and the shell layer is preferably composed of a hard component.
コア層は、通常、ゴム成分で構成されている場合が多く、本発明の実施形態では、アクリル系ゴムが用いられる。ゴム成分のガラス転移温度は、例えば、好ましくは0℃未満(例えば、-10℃以下)、より好ましくは-20℃以下(例えば、-180~-25℃程度)、更に好ましくは-30℃以下(例えば、-150~-40℃程度)である。
The core layer is usually made of a rubber component in many cases, and an acrylic rubber is used in the embodiment of the present invention. The glass transition temperature of the rubber component is, for example, preferably less than 0 ° C. (for example, −10 ° C. or lower), more preferably −20 ° C. or lower (for example, about −180 to −25 ° C.), and further preferably −30 ° C. or lower. (For example, about −150 to −40 ° C.).
ゴム成分として用いられ得るアクリル系ゴムは、アクリル系モノマー[特に、アルキルアクリレート(ブチルアクリレート等のアクリル酸C1~C12アルキルエステル、好ましくはアクリル酸C1~C8アルキルエステル、更に好ましくはアクリル酸C2~C6アルキルエステル)等のアクリル酸エステル]を主成分とするポリマーである。アクリル系ゴムは、アクリル系モノマーの単独又は共重合体(アクリル系モノマー同士の共重合体、アクリル系モノマーと他の不飽和結合含有モノマーとの共重合体等)であってもよく、アクリル系モノマー(及び他の不飽和結合含有モノマー)と架橋性モノマーとの共重合体であってもよい。
Acrylic rubber that can be used as a rubber component is an acrylic monomer [particularly, an alkyl acrylate (acrylic acid C 1 to C 12 alkyl ester such as butyl acrylate, preferably acrylic acid C 1 to C 8 alkyl ester, more preferably acrylic). acid C 2 ~ C 6 alkyl esters) acrylic acid esters such as is a polymer composed mainly of. The acrylic rubber may be an acrylic monomer alone or a copolymer (a copolymer of acrylic monomers, a copolymer of an acrylic monomer and another unsaturated bond-containing monomer, etc.), and may be an acrylic monomer. It may be a copolymer of a monomer (and other unsaturated bond-containing monomer) and a crosslinkable monomer.
架橋性モノマーとしては、例えば、(メタ)アクリル酸系単量体{多官能性(メタ)アクリレート[例えば、ブチレンジ(メタ)アクリレート等のアルキレン(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ポリ(又はオリゴ)エチレングリコールジ(メタ)アクリレート(ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等、グリセリントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(ポリ)ヒドロキシアルカンポリ(メタ)アクリレート等]のビニル系単量体(例えば、ビニル(メタ)アクリレート、ジビニルベンゼン等);グリシジル(メタ)アクリレート等}、重合性不飽和結合を有する加水分解縮合性化合物[例えば、(メタ)アクリロイル基を有するシランカップリング剤(3-トリメトキシプロピル(メタ)アクリレート等の(メタ)アクリロイルオキシアルキルトリアルコキシシラン等)等]、アリル系化合物(例えば、アリル(メタ)アクリレート、ジアリルマレート、ジアリルフマレート、ジアリルイタコネート、モノアリルマレート、モノアリルフマレート、トリアリル(イソ)シアヌレート等)等が挙げられる。これらの架橋性モノマーは、単独又は2種以上組み合わせて使用されてもよい。
Examples of the crosslinkable monomer include (meth) acrylic acid-based monomer {polyfunctional (meth) acrylate [for example, alkylene (meth) acrylate such as butylene di (meth) acrylate; ethylene glycol di (meth) acrylate, butylene. Glycoldi (meth) acrylate, poly (or oligo) ethylene glycol di (meth) acrylate (diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, etc., glycerin tri (meth) acrylate, trimethylol ethanetri (meth) ) Acrylate, Trimethylol Propane Di (Meta) Acrylate, Trimethylol Propanetri (Meta) Acrylate, Pentaerythritol Di (Meta) Acrylate, Pentaerythritol Tetra (Meta) Acrylate, Dipentaerythritol Tetra (Meta) Acrylate, Dipentaerythritol Hexa (Poly) hydroxyalkanepoly (meth) acrylate such as (meth) acrylate] vinyl-based monomer (for example, vinyl (meth) acrylate, divinylbenzene, etc.); glycidyl (meth) acrylate, etc.}, polymerizable unsaturated Hydrolyzable condensable compound having a bond [for example, a silane coupling agent having a (meth) acryloyl group (such as (meth) acryloyloxyalkyltrialkoxysilane such as 3-trimethoxypropyl (meth) acrylate)], allyl type Examples thereof include compounds (for example, allyl (meth) acrylate, diallyl malate, diallyl fumarate, diallyl itaconate, monoallyl malate, monoallyl fumarate, triallyl (iso) cyanurate, etc.), and these crosslinkable monomers. , Can be used alone or in combination of two or more.
アクリル系ゴムにおいて、アクリル酸エステル(特に、アルキルアクリレート)の割合は、アクリル系ゴム全体に対して、例えば、好ましくは50~100質量%、より好ましくは70~99質量%、更に好ましくは80~98質量%程度である。また、アクリル系ゴムにおいて、架橋性モノマーの割合は、アクリル酸エステル100質量部に対して、例えば、より好ましくは0.1~10質量部、より好ましくは0.2~5質量部、更に好ましくは0.3~5質量部程度である。
In the acrylic rubber, the ratio of acrylic acid ester (particularly, alkyl acrylate) is, for example, preferably 50 to 100% by mass, more preferably 70 to 99% by mass, and further preferably 80 to 100% by mass based on the whole acrylic rubber. It is about 98% by mass. Further, in the acrylic rubber, the ratio of the crosslinkable monomer is, for example, more preferably 0.1 to 10 parts by mass, further preferably 0.2 to 5 parts by mass, and further preferably 100 parts by mass of the acrylic ester. Is about 0.3 to 5 parts by mass.
なお、コア層は、アクリル系ゴムを主成分とする場合であっても、さらに非ゴム成分(例えば、後述の硬質樹脂成分)を含んでいてもよい。
Note that the core layer may further contain a non-rubber component (for example, a hard resin component described later) even when the core layer mainly contains acrylic rubber.
コア層の構造は、均一な構造であってもよく、不均一な構造(サラミ構造等)であってもよい。
The structure of the core layer may be a uniform structure or a non-uniform structure (salami structure, etc.).
コアシェル型ポリマーにおいて、シェル層は、通常、硬質樹脂成分(またはガラス状樹脂成分)で構成されていることが多い。硬質樹脂成分のガラス転移温度は、例えば、0℃以上(例えば、20℃以上)の範囲から選択でき、例えば、30℃以上(例えば、30~300℃程度)、好ましくは50℃以上(例えば、60~250℃程度)、更に好ましくは70℃以上(例えば、80~200℃程度)である。
In the core-shell type polymer, the shell layer is usually composed of a hard resin component (or glassy resin component) in many cases. The glass transition temperature of the hard resin component can be selected from the range of, for example, 0 ° C. or higher (for example, 20 ° C. or higher), for example, 30 ° C. or higher (for example, about 30 to 300 ° C.), preferably 50 ° C. or higher (for example, 20 ° C. or higher). 60 to 250° C.), and more preferably 70° C. or higher (eg, 80 to 200° C.).
このような硬質樹脂成分は、通常、ビニル系重合体(ビニル系単量体の重合体)で構成されている。ビニル系重合体(樹脂)において、ビニル系単量体(ビニル系モノマー)としては、ビニル系重合体を上記のようなガラス転移温度に調整できる限り特に限定されず、例えば、メタクリル系モノマー[例えば、アルキルメタクリレート(例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート等のC1~C20アルキルメタクリレート、好ましくはC1~C10アルキルメタクリレート、更に好ましくはC1~C6アルキルメタクリレート)、アリールメタクリレート(フェニルメタクリレート等)、シクロアルキルメタクリレート(シクロヘキシルメタクリレート等)等のメタクリル酸エステル等]等の他、前記例示のモノマー[例えば、アクリル系モノマー、芳香族ビニル系モノマー(例えば、スチレン等)、オレフィン系モノマー、シアン化ビニル系モノマー(例えば(メタ)アクリロニトリル等)]等が挙げられる。これらビニル系単量体は、単独又は2種以上組み合わせて使用されてもよい。ビニル系単量体は、メタクリル系モノマー、芳香族ビニル系モノマー、シアン化ビニル系モノマーから選択された少なくとも1種[特に、少なくともメタクリル酸エステル(メチルメタクリレート等のアルキルメタクリレート等)]を重合成分とする重合体である場合が多い。
Such a hard resin component is usually composed of a vinyl-based polymer (a polymer of a vinyl-based monomer). In the vinyl-based polymer (resin), the vinyl-based monomer (vinyl-based monomer) is not particularly limited as long as the vinyl-based polymer can be adjusted to the glass transition temperature as described above, and for example, a methacrylic monomer [for example, , Alkyl methacrylates (eg, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate and the like, C 1 to C 20 alkyl methacrylates, preferably C 1 to C 10 alkyl methacrylates, more preferably C 1 ~ C 6 alkyl methacrylate), aryl methacrylate (phenyl methacrylate, etc.), methacrylic acid ester such as cycloalkyl methacrylate (cyclohexyl methacrylate, etc.)] and the like, as well as the above-exemplified monomers [for example, acrylic monomers, aromatic vinyl monomers, etc.] (For example, styrene and the like), olefin-based monomers, vinyl cyanide-based monomers (for example, (meth)acrylonitrile and the like)], and the like. These vinyl-based monomers may be used alone or in combination of two or more. The vinyl-based monomer contains at least one selected from a methacrylic monomer, an aromatic vinyl-based monomer, and a vinyl cyanide-based monomer [particularly, at least a methacrylic acid ester (alkyl methacrylate such as methyl methacrylate)] as a polymerization component. In many cases, it is a polymer.
シェル層は、コア層の一部又は全部を被覆していれば、単一の層であってもよく、複数の層で形成されていてもよい。
The shell layer may be a single layer or may be formed of a plurality of layers as long as it covers a part or all of the core layer.
コアシェル型ポリマーにおいて、コア層とシェル層の合計に対するコア層の成分の割合は、80質量%超100質量%未満が好ましく、より好ましくは85質量%以上95質量%以下(例えば約90質量%)、更に好ましくは90質量%以上92質量%以下である。コア層の割合が80質量%超であると、耐ヒートショック性の改善効果が十分得られやすい。コア層の割合が95質量%以下であれば、コアシェル型ポリマーの製造における難易度の点で有利となるため、入手性や品質安定性の面で好ましい。なお、コア層とシェル層の各成分の割合は、1H-NMRのチャートにおける各構成成分由来のピーク部の積分値から算出するという分析により確認することが可能だが、通常、コアシェル型ポリマーを製造する際の各モノマーの配合比率にほぼ一致するため、これを元に算定することも可能である。
In the core-shell type polymer, the ratio of the components of the core layer to the total of the core layer and the shell layer is preferably more than 80% by mass and less than 100% by mass, more preferably 85% by mass or more and 95% by mass or less (for example, about 90% by mass). , And more preferably 90% by mass or more and 92% by mass or less. When the proportion of the core layer is more than 80% by mass, a sufficient effect of improving heat shock resistance can be easily obtained. When the ratio of the core layer is 95% by mass or less, it is advantageous in terms of difficulty in producing the core-shell type polymer, and is therefore preferable in terms of availability and quality stability. The ratio of each component of the core layer and the shell layer can be confirmed by the analysis of calculating from the integrated value of the peak part derived from each component in the 1 H-NMR chart, but usually, the core-shell type polymer is used. Since the compounding ratio of each monomer in the production is almost the same, it is possible to calculate based on this.
本発明の実施形態において、(B)コアシェル型ポリマーが、シェル層の成分に反応性官能基を有しているため、樹脂組成物の耐ヒートショック性が特に優れている。
In the embodiment of the present invention, the (B) core-shell type polymer has a reactive functional group as a component of the shell layer, and therefore the heat shock resistance of the resin composition is particularly excellent.
前記反応性官能基の種類としては、エポキシ基、ヒドロキシ基、カルボキシ基、アルコキシ基、酸無水物基、酸塩化物基等が挙げられ、中でもエポキシ基が好ましい。前記反応性官能基の量は、コアシェル型ポリマー100gに対し1mmol以上40mmol以下であることが好ましく、さらに好ましくは2mmol以上20mmol以下であり、またさらに好ましくは3mmol以上15mmol以下である。1mmol以上の官能基を有することで、耐ヒートショク性はさらに優れる傾向にある。一方、40mmol以下であるとき、樹脂組成物の流動性が低下しにくい傾向にあるため好ましい。
Examples of the reactive functional group include an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group, and an acid chloride group, and an epoxy group is preferable. The amount of the reactive functional group is preferably 1 mmol or more and 40 mmol or less, more preferably 2 mmol or more and 20 mmol or less, and further preferably 3 mmol or more and 15 mmol or less with respect to 100 g of the core-shell type polymer. By having a functional group of 1 mmol or more, heat shock resistance tends to be further excellent. On the other hand, when it is 40 mmol or less, the fluidity of the resin composition tends not to be lowered, which is preferable.
本発明の実施形態において、(B)コアシェル型ポリマーの平均粒子径は、0.3μm以下である。平均粒子径が0.3μmを超えている場合、組立性(係合部の割れ耐性)に劣ることがある。平均粒子径が0.3μm以下である場合、そのようなコアシェル型ポリマーを製造することが比較的容易であり、製造コストの面でも好ましい。また、平均粒子径が0.3μm以下であれば、得られるポリアルキレンテレフタレート樹脂組成物が組立性(係合部の割れ耐性)に優れたものとなる。(B)コアシェル型ポリマーの平均粒子径の下限値は特に限定されないが、0.01μm未満の場合、製造時の粒子径制御が難しくなるため、製造コストの面では、平均粒子径が0.01μm以上であることが好ましい。なお、本発明において「平均粒子径」はラテックスの状態のコアシェル型ポリマーを、日機装株式会社製MICROTRAC UPA150を用いて測定した体積平均粒子径(μm)を指す。
In the embodiment of the present invention, the average particle diameter of the (B) core-shell type polymer is 0.3 μm or less. If the average particle diameter exceeds 0.3 μm, the assembling property (crack resistance of the engaging portion) may be poor. When the average particle size is 0.3 μm or less, it is relatively easy to produce such a core-shell type polymer, which is also preferable in terms of production cost. Further, when the average particle diameter is 0.3 μm or less, the resulting polyalkylene terephthalate resin composition has excellent assemblability (crack resistance of the engaging portion). (B) The lower limit of the average particle size of the core-shell type polymer is not particularly limited, but if it is less than 0.01 μm, it becomes difficult to control the particle size at the time of manufacturing, so that the average particle size is 0.01 μm in terms of manufacturing cost. The above is preferable. In the present invention, the "average particle size" refers to the volume average particle size (μm) of the core-shell polymer in the latex state measured using MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd.
このようなコアシェル型ポリマーは、特に、シェル層が硬質成分で構成される場合、硬質成分であるシェルにより粒子径が安定化されるため、押出時や成形時の溶融混練条件によるポリアルキレンテレフタレート樹脂組成物中における分散状態(平均粒子径)のバラつきが抑えられる点で、他のエラストマーに対し有利である。
Such a core-shell type polymer is a polyalkylene terephthalate resin under melt-kneading conditions at the time of extrusion or molding because the particle size is stabilized by the shell which is a hard component, especially when the shell layer is composed of a hard component. This is advantageous over other elastomers in that dispersion of the dispersed state (average particle size) in the composition can be suppressed.
[(C)ガラス繊維]
ガラス繊維は、ガラスを融解、牽引して繊維状にしたものである。繊維状にして使われる場合、一般のアルカリガラスでは表面の劣化による強度の低下が著しいため、原料として使用されるガラスには、石英ガラスなどの無アルカリガラスが使われることが好ましい。またガラス繊維は、入手性や強度及び剛性の面から、好適に使用できる。 [(C) Glass fiber]
The glass fiber is a glass fiber that is made by melting and drawing glass. When used in the form of fibers, the strength of ordinary alkaline glass is significantly reduced due to surface deterioration. Therefore, it is preferable to use non-alkali glass such as quartz glass as the glass used as a raw material. Further, the glass fiber can be suitably used from the viewpoint of availability, strength and rigidity.
ガラス繊維は、ガラスを融解、牽引して繊維状にしたものである。繊維状にして使われる場合、一般のアルカリガラスでは表面の劣化による強度の低下が著しいため、原料として使用されるガラスには、石英ガラスなどの無アルカリガラスが使われることが好ましい。またガラス繊維は、入手性や強度及び剛性の面から、好適に使用できる。 [(C) Glass fiber]
The glass fiber is a glass fiber that is made by melting and drawing glass. When used in the form of fibers, the strength of ordinary alkaline glass is significantly reduced due to surface deterioration. Therefore, it is preferable to use non-alkali glass such as quartz glass as the glass used as a raw material. Further, the glass fiber can be suitably used from the viewpoint of availability, strength and rigidity.
[カルボジイミド化合物]
カルボジイミド化合物は、化学式-N=C=N-で表される官能基を含む化学物質の総称である。有機合成化学において、カルボジイミド化合物は脱水縮合剤として主に用いられる。よく使われる例としてはカルボン酸に対するアミド結合、もしくはエステル結合形成の促進である。カルボジイミド化合物をポリアルキレンテレフタレート樹脂組成物中に添加する場合、耐加水分解性や耐ヒートショック性の向上効果が得られるが、当該樹脂組成物の成形時等に、カルボジイミド化合物に由来する有毒なイソシアネートガスが発生するといった不都合が生じる。本実施形態においては、カルボジイミド化合物を用いないことにより、係合部を有する成形品の製造時において、イソシアネートガスなどの有害ガスを発生しないという効果を得ることが可能である。 [Carbodiimide compound]
The carbodiimide compound is a general term for chemical substances containing a functional group represented by the chemical formula -N=C=N-. In synthetic organic chemistry, carbodiimide compounds are mainly used as dehydration condensing agents. A commonly used example is the promotion of amide bonds or ester bond formation to carboxylic acids. When the carbodiimide compound is added to the polyalkylene terephthalate resin composition, the effect of improving the hydrolysis resistance and the heat shock resistance can be obtained, but the toxic isocyanate derived from the carbodiimide compound is obtained at the time of molding the resin composition or the like. Inconvenience such as generation of gas occurs. In the present embodiment, by not using the carbodiimide compound, it is possible to obtain the effect of not generating harmful gas such as isocyanate gas at the time of manufacturing the molded product having the engaging portion.
カルボジイミド化合物は、化学式-N=C=N-で表される官能基を含む化学物質の総称である。有機合成化学において、カルボジイミド化合物は脱水縮合剤として主に用いられる。よく使われる例としてはカルボン酸に対するアミド結合、もしくはエステル結合形成の促進である。カルボジイミド化合物をポリアルキレンテレフタレート樹脂組成物中に添加する場合、耐加水分解性や耐ヒートショック性の向上効果が得られるが、当該樹脂組成物の成形時等に、カルボジイミド化合物に由来する有毒なイソシアネートガスが発生するといった不都合が生じる。本実施形態においては、カルボジイミド化合物を用いないことにより、係合部を有する成形品の製造時において、イソシアネートガスなどの有害ガスを発生しないという効果を得ることが可能である。 [Carbodiimide compound]
The carbodiimide compound is a general term for chemical substances containing a functional group represented by the chemical formula -N=C=N-. In synthetic organic chemistry, carbodiimide compounds are mainly used as dehydration condensing agents. A commonly used example is the promotion of amide bonds or ester bond formation to carboxylic acids. When the carbodiimide compound is added to the polyalkylene terephthalate resin composition, the effect of improving the hydrolysis resistance and the heat shock resistance can be obtained, but the toxic isocyanate derived from the carbodiimide compound is obtained at the time of molding the resin composition or the like. Inconvenience such as generation of gas occurs. In the present embodiment, by not using the carbodiimide compound, it is possible to obtain the effect of not generating harmful gas such as isocyanate gas at the time of manufacturing the molded product having the engaging portion.
[その他の成分]
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物には、本発明の効果を阻害しない範囲で、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の物質、例えば、酸化防止剤や紫外線吸収剤等の安定剤、耐加水分解性改善剤(例えば、エポキシ樹脂等)、帯電防止剤、難燃剤、難燃助剤、滴下防止剤、染料や顔料等の着色剤、離型剤、潤滑剤、結晶化促進剤、結晶核剤等を配合することが可能である。 [Other ingredients]
The polyalkylene terephthalate resin composition of the embodiment of the present invention is generally added to a thermoplastic resin and a thermosetting resin in order to impart desired properties according to the purpose thereof without impairing the effect of the present invention. Known substances such as stabilizers such as antioxidants and ultraviolet absorbers, hydrolysis resistance improvers (eg epoxy resins, etc.), antistatic agents, flame retardants, flame retardant aids, dripping inhibitors, etc. Colorants such as dyes and pigments, mold release agents, lubricants, crystallization accelerators, crystal nucleating agents and the like can be added.
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物には、本発明の効果を阻害しない範囲で、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の物質、例えば、酸化防止剤や紫外線吸収剤等の安定剤、耐加水分解性改善剤(例えば、エポキシ樹脂等)、帯電防止剤、難燃剤、難燃助剤、滴下防止剤、染料や顔料等の着色剤、離型剤、潤滑剤、結晶化促進剤、結晶核剤等を配合することが可能である。 [Other ingredients]
The polyalkylene terephthalate resin composition of the embodiment of the present invention is generally added to a thermoplastic resin and a thermosetting resin in order to impart desired properties according to the purpose thereof without impairing the effect of the present invention. Known substances such as stabilizers such as antioxidants and ultraviolet absorbers, hydrolysis resistance improvers (eg epoxy resins, etc.), antistatic agents, flame retardants, flame retardant aids, dripping inhibitors, etc. Colorants such as dyes and pigments, mold release agents, lubricants, crystallization accelerators, crystal nucleating agents and the like can be added.
[調製方法]
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物は、従来、樹脂組成物を調製するために一般に用いられる設備及び方法を用いて容易に調製できる。例えば、各成分を混合した後、1軸又は2軸の押出機により練り混み、押し出してペレットを調製した後、成形する方法、一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し、成形後に目的組成の成形品を得る方法、成形機に各成分の1種又は2種以上を直接投入する方法等、いずれも使用することが可能である。 [Preparation method]
The polyalkylene terephthalate resin composition of the embodiment of the present invention can be easily prepared by using the equipment and methods generally used for preparing the resin composition. For example, after mixing each component, kneading with a single-screw or twin-screw extruder and extruding to prepare pellets, then molding method, once preparing pellets with different compositions, and mixing the pellets in a predetermined amount. It is possible to use any of a method of obtaining a molded product having a target composition after molding and a method of directly charging one or more of each component into a molding machine.
本発明の実施形態のポリアルキレンテレフタレート樹脂組成物は、従来、樹脂組成物を調製するために一般に用いられる設備及び方法を用いて容易に調製できる。例えば、各成分を混合した後、1軸又は2軸の押出機により練り混み、押し出してペレットを調製した後、成形する方法、一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し、成形後に目的組成の成形品を得る方法、成形機に各成分の1種又は2種以上を直接投入する方法等、いずれも使用することが可能である。 [Preparation method]
The polyalkylene terephthalate resin composition of the embodiment of the present invention can be easily prepared by using the equipment and methods generally used for preparing the resin composition. For example, after mixing each component, kneading with a single-screw or twin-screw extruder and extruding to prepare pellets, then molding method, once preparing pellets with different compositions, and mixing the pellets in a predetermined amount. It is possible to use any of a method of obtaining a molded product having a target composition after molding and a method of directly charging one or more of each component into a molding machine.
<成形品>
本発明の実施形態の成形品は、本発明のポリアルキレンテレフタレート樹脂組成物を成形してなるものである。成形方法は特に限定されず、公知の成形方法を採用することができる。本発明の実施形態に係る成形品は、好ましくは、本発明のポリアルキレンテレフタレート樹脂組成物と金属又は無機固体からなるインサート部材とをインサート成形してなるインサート成形品である。金属及び無機固体は特に限定されず、金属としては、アルミニウム、マグネシウム、ステンレス鋼、銅等が例示され、樹脂基板上に形成された電子回路などの金属導体部もこれに含まれる。無機固体としては、セラミック等が例示される。インサート成形は、従来公知の方法で行うことができる。 <Molded product>
The molded article of the embodiment of the present invention is obtained by molding the polyalkylene terephthalate resin composition of the present invention. The molding method is not particularly limited, and a known molding method can be adopted. The molded product according to the embodiment of the present invention is preferably an insert molded product obtained by insert molding the polyalkylene terephthalate resin composition of the present invention and an insert member made of a metal or an inorganic solid. The metal and the inorganic solid are not particularly limited, and examples of the metal include aluminum, magnesium, stainless steel, copper, and the like, and a metal conductor portion such as an electronic circuit formed on a resin substrate is also included in this example. Examples of the inorganic solid include ceramics and the like. Insert molding can be performed by a conventionally known method.
本発明の実施形態の成形品は、本発明のポリアルキレンテレフタレート樹脂組成物を成形してなるものである。成形方法は特に限定されず、公知の成形方法を採用することができる。本発明の実施形態に係る成形品は、好ましくは、本発明のポリアルキレンテレフタレート樹脂組成物と金属又は無機固体からなるインサート部材とをインサート成形してなるインサート成形品である。金属及び無機固体は特に限定されず、金属としては、アルミニウム、マグネシウム、ステンレス鋼、銅等が例示され、樹脂基板上に形成された電子回路などの金属導体部もこれに含まれる。無機固体としては、セラミック等が例示される。インサート成形は、従来公知の方法で行うことができる。 <Molded product>
The molded article of the embodiment of the present invention is obtained by molding the polyalkylene terephthalate resin composition of the present invention. The molding method is not particularly limited, and a known molding method can be adopted. The molded product according to the embodiment of the present invention is preferably an insert molded product obtained by insert molding the polyalkylene terephthalate resin composition of the present invention and an insert member made of a metal or an inorganic solid. The metal and the inorganic solid are not particularly limited, and examples of the metal include aluminum, magnesium, stainless steel, copper, and the like, and a metal conductor portion such as an electronic circuit formed on a resin substrate is also included in this example. Examples of the inorganic solid include ceramics and the like. Insert molding can be performed by a conventionally known method.
[スナップフィット部]
本発明のスナップフィット部の取り付けられる対象物は特に限定されない。係合部及び被係合部が板状物、管状物、筺状物に取り付けられていてもよく、あるいはこれらを組み合わせて使用することもできる。係合部及び被係合部は嵌着、脱着が可能であっても、脱着できなくてもよい。これらの物体に取り付けられるスナップフィット部の数には特に制限はなく1以上必要な個数である。スナップフィット部を複数設ける場合には、力のバランス、使用時に外れにくいことなどを考慮して、対称の位置やパイプでは180度ずらした位置に等に設けることができる。 [Snap fit part]
The object to which the snap fit portion of the present invention is attached is not particularly limited. The engaging portion and the engaged portion may be attached to a plate-shaped object, a tubular object, or a housing-shaped object, or a combination thereof may be used. The engaging portion and the engaged portion may be fitted and detached, or may not be detached. The number of snap-fit portions attached to these objects is not particularly limited, and is one or more. When a plurality of snap-fit portions are provided, they can be provided at symmetrical positions or 180-degree offset positions in the pipe in consideration of force balance and resistance to disengagement during use.
本発明のスナップフィット部の取り付けられる対象物は特に限定されない。係合部及び被係合部が板状物、管状物、筺状物に取り付けられていてもよく、あるいはこれらを組み合わせて使用することもできる。係合部及び被係合部は嵌着、脱着が可能であっても、脱着できなくてもよい。これらの物体に取り付けられるスナップフィット部の数には特に制限はなく1以上必要な個数である。スナップフィット部を複数設ける場合には、力のバランス、使用時に外れにくいことなどを考慮して、対称の位置やパイプでは180度ずらした位置に等に設けることができる。 [Snap fit part]
The object to which the snap fit portion of the present invention is attached is not particularly limited. The engaging portion and the engaged portion may be attached to a plate-shaped object, a tubular object, or a housing-shaped object, or a combination thereof may be used. The engaging portion and the engaged portion may be fitted and detached, or may not be detached. The number of snap-fit portions attached to these objects is not particularly limited, and is one or more. When a plurality of snap-fit portions are provided, they can be provided at symmetrical positions or 180-degree offset positions in the pipe in consideration of force balance and resistance to disengagement during use.
本発明のスナップフィット部は、具体的には、車輌のハーネス(配線)のコネクター、スパイラルハンガー用クイックジョイント、配管のフィッティング、平面部に対する筐体状カバー、テレビ等とアンテナとの配線のジョイント、アース線の延長等に使用される。なお、スナップフィット部は、成形品の一部に設けられるが、成形時に一体として設けられてもよいし、後から融着、接着、ねじ込み、ネジ止め等の固定手段によって設けてもよい。また、スナップフィット部を管の端部等に設ける場合、管の内面が細くならないように、スナップフィット部の一部が管の外側に出っ張るようにすることもできるし、管の外面に出っ張りがあっては困る場合には、管の内側に出っ張るようにすることができる。
Specifically, the snap-fit portion of the present invention includes a vehicle harness (wiring) connector, a quick joint for a spiral hanger, a piping fitting, a housing cover for a flat portion, a wiring joint between a television or the like and an antenna, and the like. Used for extending the ground wire. The snap-fit portion is provided on a part of the molded product, but may be integrally provided at the time of molding, or may be provided later by a fixing means such as fusion bonding, adhesion, screwing, and screwing. Further, when the snap-fit portion is provided at the end of the pipe or the like, a part of the snap-fit portion can be made to protrude to the outside of the pipe so that the inner surface of the pipe does not become thin, or the protrusion is formed on the outer surface of the pipe. If you don't like it, you can make it stick out inside the tube.
[実施例]
以下、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 [Example]
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
以下、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 [Example]
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
<材料>
・(A)ポリアルキレンテレフタレート樹脂
ポリプラスチックス(株)製 PBT樹脂、固有粘度0.69dl/g、末端カルボキシル基量24meq/kg
・(B)アクリル系コアシェル型ポリマー
B-1:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径3μm
B-2:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径20μm
B-3:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径30μm
B-4:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.1μm
B-5:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.2μm
B-6:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.5μm
B-7:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径1.4μm
B-8:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径3.3μm
B-9:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径10.5μm
B-10:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート/グリシジルメタクリレート共重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であり、メチルメタクリレートとグリシジルメタクリレートの比率が9質量%:1質量%であるアクリル系コアシェル型ポリマー、平均粒子径3μm
・(C)ガラス繊維
日本電気硝子(株)製、製品名:ECS03T-187
・酸化防止剤
BASFジャパン(株)製、製品名:Irganox1010
・耐加水分解性改善剤
三菱化学(株)製エポキシ樹脂、製品名:エピコートJER1004K <Material>
(A) Polyalkylene terephthalate resin PBT resin manufactured by Polyplastics Co., Ltd., intrinsic viscosity 0.69 dl / g, terminal carboxyl group amount 24 meq / kg
(B) Acrylic core-shell polymer B-1: A butyl acrylate polymer (acrylic rubber) is used for the core layer, and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90. Acrylic core-shell type polymer with mass%, average particle diameter 3 μm
B-2: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. ,Average particle size 20 μm
B-3: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. , Average particle diameter 30 μm
B-4: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 0.1 μm
B-5: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 0.2 μm
B-6: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 0.5 μm
B-7: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 1.4 μm
B-8: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 3.3 μm
B-9: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 10.5 μm
B-10: Butyl acrylate polymer (acrylic rubber) is used for the core layer, methyl methacrylate / glycidyl methacrylate copolymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. Acrylic core-shell polymer in which the ratio of methyl methacrylate to glycidyl methacrylate is 9% by mass: 1% by mass, average particle diameter 3 μm
・(C) Glass fiber manufactured by Nippon Electric Glass Co., Ltd., product name: ECS03T-187
-Antioxidant manufactured by BASF Japan Ltd., product name: Irganox1010
・Hydrolysis resistance improver Epoxy resin manufactured by Mitsubishi Chemical Corporation, product name: Epicoat JER1004K
・(A)ポリアルキレンテレフタレート樹脂
ポリプラスチックス(株)製 PBT樹脂、固有粘度0.69dl/g、末端カルボキシル基量24meq/kg
・(B)アクリル系コアシェル型ポリマー
B-1:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径3μm
B-2:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径20μm
B-3:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であるアクリル系コアシェル型ポリマー、平均粒子径30μm
B-4:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.1μm
B-5:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.2μm
B-6:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径0.5μm
B-7:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径1.4μm
B-8:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径3.3μm
B-9:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート重合体(ビニル系共重合体)を使用し、コア層の比率が80質量%であるアクリル系コアシェル型ポリマー、平均粒子径10.5μm
B-10:コア層にブチルアクリレート重合体(アクリル系ゴム)、シェル層にメチルメタクリレート/グリシジルメタクリレート共重合体(ビニル系共重合体)を使用し、コア層の比率が90質量%であり、メチルメタクリレートとグリシジルメタクリレートの比率が9質量%:1質量%であるアクリル系コアシェル型ポリマー、平均粒子径3μm
・(C)ガラス繊維
日本電気硝子(株)製、製品名:ECS03T-187
・酸化防止剤
BASFジャパン(株)製、製品名:Irganox1010
・耐加水分解性改善剤
三菱化学(株)製エポキシ樹脂、製品名:エピコートJER1004K <Material>
(A) Polyalkylene terephthalate resin PBT resin manufactured by Polyplastics Co., Ltd., intrinsic viscosity 0.69 dl / g, terminal carboxyl group amount 24 meq / kg
(B) Acrylic core-shell polymer B-1: A butyl acrylate polymer (acrylic rubber) is used for the core layer, and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90. Acrylic core-shell type polymer with mass%, average particle diameter 3 μm
B-2: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. ,
B-3: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. , Average particle diameter 30 μm
B-4: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 0.1 μm
B-5: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 0.2 μm
B-6: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 0.5 μm
B-7: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle size 1.4 μm
B-8: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 3.3 μm
B-9: Acrylic core-shell type polymer in which a butyl acrylate polymer (acrylic rubber) is used for the core layer and a methyl methacrylate polymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 80% by mass. , Average particle diameter 10.5 μm
B-10: Butyl acrylate polymer (acrylic rubber) is used for the core layer, methyl methacrylate / glycidyl methacrylate copolymer (vinyl copolymer) is used for the shell layer, and the ratio of the core layer is 90% by mass. Acrylic core-shell polymer in which the ratio of methyl methacrylate to glycidyl methacrylate is 9% by mass: 1% by mass, average particle diameter 3 μm
・(C) Glass fiber manufactured by Nippon Electric Glass Co., Ltd., product name: ECS03T-187
-Antioxidant manufactured by BASF Japan Ltd., product name: Irganox1010
・Hydrolysis resistance improver Epoxy resin manufactured by Mitsubishi Chemical Corporation, product name: Epicoat JER1004K
<実施例1、比較例1~9>
(A)ポリアルキレンテレフタレート樹脂100質量部に対し、各成分を表1に示す割合で混合した後、30mmφの2軸押出機(日本製鋼所製TEX-30)を用いて、シリンダー温度260℃、吐出量15kg/h、スクリュ回転数130rpmで溶融混練して押出し、ポリアルキレンテレフタレート樹脂組成物からなるペレットを得た。次いで、このペレットから射出成形により各種試験片を作製し、下記物性の評価を行った。結果をあわせて表1に示す。 <Example 1, Comparative Examples 1 to 9>
(A) Each component is mixed with 100 parts by mass of the polyalkylene terephthalate resin at the ratio shown in Table 1, and then a cylinder temperature of 260 ° C. is used using a 30 mmφ twin-screw extruder (TEX-30 manufactured by Japan Steel Works). It was melt-kneaded and extruded at a discharge rate of 15 kg / h and a screw rotation speed of 130 rpm to obtain pellets made of a polyalkylene terephthalate resin composition. Next, various test pieces were prepared from these pellets by injection molding, and the following physical properties were evaluated. The results are also shown in Table 1.
(A)ポリアルキレンテレフタレート樹脂100質量部に対し、各成分を表1に示す割合で混合した後、30mmφの2軸押出機(日本製鋼所製TEX-30)を用いて、シリンダー温度260℃、吐出量15kg/h、スクリュ回転数130rpmで溶融混練して押出し、ポリアルキレンテレフタレート樹脂組成物からなるペレットを得た。次いで、このペレットから射出成形により各種試験片を作製し、下記物性の評価を行った。結果をあわせて表1に示す。 <Example 1, Comparative Examples 1 to 9>
(A) Each component is mixed with 100 parts by mass of the polyalkylene terephthalate resin at the ratio shown in Table 1, and then a cylinder temperature of 260 ° C. is used using a 30 mmφ twin-screw extruder (TEX-30 manufactured by Japan Steel Works). It was melt-kneaded and extruded at a discharge rate of 15 kg / h and a screw rotation speed of 130 rpm to obtain pellets made of a polyalkylene terephthalate resin composition. Next, various test pieces were prepared from these pellets by injection molding, and the following physical properties were evaluated. The results are also shown in Table 1.
[溶融粘度]
上記ペレットを140℃で3時間乾燥後、ISO11443に準拠し、キャピログラフ1B(東洋精機製作所社製)を用いて、炉体温度260℃、キャピラリーφ1mm×20mmL、剪断速度1000sec-1にて溶融粘度を測定した。 [Melt viscosity]
After drying the above pellets at 140° C. for 3 hours, according to ISO11443, using Capirograph 1B (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the furnace viscosity was 260° C., the capillary was φ1 mm×20 mmL, and the melt viscosity was 1000 sec −1 . It was measured.
上記ペレットを140℃で3時間乾燥後、ISO11443に準拠し、キャピログラフ1B(東洋精機製作所社製)を用いて、炉体温度260℃、キャピラリーφ1mm×20mmL、剪断速度1000sec-1にて溶融粘度を測定した。 [Melt viscosity]
After drying the above pellets at 140° C. for 3 hours, according to ISO11443, using Capirograph 1B (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the furnace viscosity was 260° C., the capillary was φ1 mm×20 mmL, and the melt viscosity was 1000 sec −1 . It was measured.
[引張強さ]
上記ペレットを140℃で3時間乾燥後、樹脂温度260℃、金型温度80℃、射出時間15秒、冷却時間15秒で、ISO3167引張試験片を射出成形し、ISO527-1,2に準拠して、引張強さを測定した。 [Tensile strength]
After drying the pellets at 140 ° C. for 3 hours, an ISO3167 tensile test piece was injection-molded at a resin temperature of 260 ° C., a mold temperature of 80 ° C., an injection time of 15 seconds, and a cooling time of 15 seconds, in accordance with ISO527-1 and ISO527-1. Then, the tensile strength was measured.
上記ペレットを140℃で3時間乾燥後、樹脂温度260℃、金型温度80℃、射出時間15秒、冷却時間15秒で、ISO3167引張試験片を射出成形し、ISO527-1,2に準拠して、引張強さを測定した。 [Tensile strength]
After drying the pellets at 140 ° C. for 3 hours, an ISO3167 tensile test piece was injection-molded at a resin temperature of 260 ° C., a mold temperature of 80 ° C., an injection time of 15 seconds, and a cooling time of 15 seconds, in accordance with ISO527-1 and ISO527-1. Then, the tensile strength was measured.
[組立性(係合部割れ耐性)]
図1に示すようなスナップフィット評価用成形品を使用し、スナップフィット挿入試験を行った。スナップフィット挿入試験は、図1の成形片を用い、図2に示すように挿入力Faを加えスナップフィットを組み付けた際に、スナップフィット部が折れるかどうかで判断した。試験はn=5で行い、1本も折れがなかったものを○、1本でも折れたものを×とした。 [Assembly (Resistance to cracking of engaging part)]
A snap-fit insertion test was performed using a molded product for snap-fit evaluation as shown in FIG. In the snap-fit insertion test, it was determined whether or not the snap-fit portion would break when the snap-fit was assembled by applying the insertion force Fa as shown in FIG. 2 using the molded piece of FIG. The test was carried out with n=5, and one in which no break was found was marked with ◯ and one in which even one was broken was marked with x.
図1に示すようなスナップフィット評価用成形品を使用し、スナップフィット挿入試験を行った。スナップフィット挿入試験は、図1の成形片を用い、図2に示すように挿入力Faを加えスナップフィットを組み付けた際に、スナップフィット部が折れるかどうかで判断した。試験はn=5で行い、1本も折れがなかったものを○、1本でも折れたものを×とした。 [Assembly (Resistance to cracking of engaging part)]
A snap-fit insertion test was performed using a molded product for snap-fit evaluation as shown in FIG. In the snap-fit insertion test, it was determined whether or not the snap-fit portion would break when the snap-fit was assembled by applying the insertion force Fa as shown in FIG. 2 using the molded piece of FIG. The test was carried out with n=5, and one in which no break was found was marked with ◯ and one in which even one was broken was marked with x.
[耐衝撃性(シャルピー衝撃強度)]
上記ペレットを成形温度260℃、金型温度80℃で射出成形して、シャルピー衝撃試験片を作製し、ISO179/1eAに準拠して、23℃でシャルピー衝撃強度を測定した。 [Impact resistance (Charpy impact strength)]
The pellets were injection molded at a molding temperature of 260 ° C. and a mold temperature of 80 ° C. to prepare a Charpy impact test piece, and the Charpy impact strength was measured at 23 ° C. in accordance with ISO179 / 1eA.
上記ペレットを成形温度260℃、金型温度80℃で射出成形して、シャルピー衝撃試験片を作製し、ISO179/1eAに準拠して、23℃でシャルピー衝撃強度を測定した。 [Impact resistance (Charpy impact strength)]
The pellets were injection molded at a molding temperature of 260 ° C. and a mold temperature of 80 ° C. to prepare a Charpy impact test piece, and the Charpy impact strength was measured at 23 ° C. in accordance with ISO179 / 1eA.
[耐ヒートショック性]
上記ペレットと、L字型板状の金属製インサート部材とを用い、射出成形により図3,4に示す試験片をインサート成形し、耐ヒートショック性を評価した。図3は、インサート成形した試験片20を示す図であり、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。図4は、インサート部材22を示す図である。樹脂部材21は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。上記ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型[幅w1 25mm×L1 70mm×L2 70mm、厚さt1 3.6mmのL字型板状樹脂部の内部に、幅w2 21mm×L3 90mm×L4 90mm、厚さt2 1.6mm(断面の幅w2/厚さt2比が13.1)のL字型鉄板をインサートする金型]に、一部の樹脂部の厚さTが最小肉厚として1mmとなるようにインサート射出成形して試験片20を製造した。図4に示すL字型板状インサート部材の両端部近傍にある2つ穴h1、h2は、金型内のピンに嵌め込んでインサート部材22を固定するためのものである。図3に示す樹脂部材21の穴h3は、金型内のピンでL字型板状インサート部材22を押さえ付けて固定し、その状態で樹脂を充填したとき、樹脂がピンを回り込んで流動したことで形成されたものである。また、図3(A)には、樹脂を充填するサイドゲートS1(幅:4mm、厚さ:3mm)の位置を一点鎖線で示している。当該サイドゲートS1は、樹脂部21の右側面下端部からの距離d1が1mmとなる上方に位置している。
得られた試験片20について、冷熱衝撃試験機を用いて、140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却し、更に、140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定して、5個のサンプルの平均破壊寿命が100サイクル以上のものを〇、100サイクル未満のものを×として評価した。 [Heat shock resistance]
Using the pellet and an L-shaped plate-shaped metal insert member, the test pieces shown in FIGS. 3 and 4 were insert-molded by injection molding, and the heat shock resistance was evaluated. 3A and 3B are views showing the insert-moldedtest piece 20, where FIG. 3A is a top view, FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3, and FIG. FIG. 7 is a cross-sectional view taken along the line CC in FIG. FIG. 4 is a view showing the insert member 22. The resin member 21 is molded using the resin composition pellet obtained as described above. Using the above pellets, the resin temperature is 260 ° C., the mold temperature is 65 ° C., the injection time is 25 seconds, the cooling time is 10 seconds, and the test piece molding mold [width w1 25mm x L1 70mm x L2 70 mm, thickness t1 Inside the L-shaped plate-shaped resin portion of 3.6 mm, width w2 21mm x L3 90mm x L4 90 mm, thickness t2 A mold for inserting an L-shaped iron plate of 1.6 mm (cross-sectional width w2 / thickness t2 ratio 13.1)] so that the thickness T of a part of the resin part is 1 mm as the minimum wall thickness. A test piece 20 was manufactured by insert injection molding. The two holes h1 and h2 near both ends of the L-shaped plate-shaped insert member shown in FIG. 4 are for fitting into pins in the mold to fix the insert member 22. The hole h3 of the resin member 21 shown in FIG. 3 is fixed by pressing the L-shaped plate-shaped insert member 22 with a pin in the mold, and when the resin is filled in that state, the resin flows around the pin. It is formed by doing. Further, FIG. 3 (A) shows the position of the side gate S1 (width: 4 mm, thickness: 3 mm) filled with the resin by a alternate long and short dash line. The side gate S1 is located above where the distance d1 from the lower end of the right side surface of the resin portion 21 is 1 mm.
A process of heating the obtainedtest piece 20 at 140 ° C. for 1 hour and 30 minutes using a thermal shock tester, lowering the temperature to −40 ° C., cooling for 1 hour and 30 minutes, and further raising the temperature to 140 ° C. Perform a heat shock resistance test with 1 cycle, measure the number of cycles until the molded product cracks, and measure the average fracture life of 5 samples of 100 cycles or more, and those with less than 100 cycles. It was evaluated as ×.
上記ペレットと、L字型板状の金属製インサート部材とを用い、射出成形により図3,4に示す試験片をインサート成形し、耐ヒートショック性を評価した。図3は、インサート成形した試験片20を示す図であり、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。図4は、インサート部材22を示す図である。樹脂部材21は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。上記ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型[幅w1 25mm×L1 70mm×L2 70mm、厚さt1 3.6mmのL字型板状樹脂部の内部に、幅w2 21mm×L3 90mm×L4 90mm、厚さt2 1.6mm(断面の幅w2/厚さt2比が13.1)のL字型鉄板をインサートする金型]に、一部の樹脂部の厚さTが最小肉厚として1mmとなるようにインサート射出成形して試験片20を製造した。図4に示すL字型板状インサート部材の両端部近傍にある2つ穴h1、h2は、金型内のピンに嵌め込んでインサート部材22を固定するためのものである。図3に示す樹脂部材21の穴h3は、金型内のピンでL字型板状インサート部材22を押さえ付けて固定し、その状態で樹脂を充填したとき、樹脂がピンを回り込んで流動したことで形成されたものである。また、図3(A)には、樹脂を充填するサイドゲートS1(幅:4mm、厚さ:3mm)の位置を一点鎖線で示している。当該サイドゲートS1は、樹脂部21の右側面下端部からの距離d1が1mmとなる上方に位置している。
得られた試験片20について、冷熱衝撃試験機を用いて、140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却し、更に、140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定して、5個のサンプルの平均破壊寿命が100サイクル以上のものを〇、100サイクル未満のものを×として評価した。 [Heat shock resistance]
Using the pellet and an L-shaped plate-shaped metal insert member, the test pieces shown in FIGS. 3 and 4 were insert-molded by injection molding, and the heat shock resistance was evaluated. 3A and 3B are views showing the insert-molded
A process of heating the obtained
[イソシアネートガス]
射出成形時に吸引ポンプ(0.25L/min)に繋いだジーエルサイエンス社製TENAX-TA管を用いて1Lの臭気を捕集し、ゲステル社製TDS3/CISで加熱脱着後、アジレントテクノロジー社製GC-MS(HP7890/5975C)にてイソシアネートを同定した。イソシアネートが検出されなかったものを〇、イソシアネートが検出されたものを×として評価した。 [Isocyanate gas]
1 L of odor is collected using a GL Sciences TENAX-TA tube connected to a suction pump (0.25 L / min) during injection molding, and after heating and desorption with Gestel's TDS3 / CIS, Agilent Technologies GC -Isocyanate was identified by MS (HP7890/5975C). Those in which isocyanate was not detected were evaluated as ◯, and those in which isocyanate was detected were evaluated as ×.
射出成形時に吸引ポンプ(0.25L/min)に繋いだジーエルサイエンス社製TENAX-TA管を用いて1Lの臭気を捕集し、ゲステル社製TDS3/CISで加熱脱着後、アジレントテクノロジー社製GC-MS(HP7890/5975C)にてイソシアネートを同定した。イソシアネートが検出されなかったものを〇、イソシアネートが検出されたものを×として評価した。 [Isocyanate gas]
1 L of odor is collected using a GL Sciences TENAX-TA tube connected to a suction pump (0.25 L / min) during injection molding, and after heating and desorption with Gestel's TDS3 / CIS, Agilent Technologies GC -Isocyanate was identified by MS (HP7890/5975C). Those in which isocyanate was not detected were evaluated as ◯, and those in which isocyanate was detected were evaluated as ×.
Claims (4)
- (A)ポリアルキレンテレフタレート樹脂と、
(B)コア層のゴムがアクリル系ゴムでありシェル層の成分が反応性官能基を有する、平均粒子径0.3μm以下のアクリル系コアシェル型ポリマーと、
(C)ガラス繊維とを含み、
カルボジイミド化合物を含まないポリアルキレンテレフタレート樹脂組成物からなることを特徴とする、
係合部を有する成形品。 (A) a polyalkylene terephthalate resin,
(B) An acrylic core-shell type polymer having an average particle diameter of 0.3 μm or less, in which the rubber of the core layer is an acrylic rubber and the components of the shell layer have a reactive functional group.
(C) including glass fiber,
It is characterized by comprising a polyalkylene terephthalate resin composition containing no carbodiimide compound.
A molded product having an engaging portion. - アクリル系ゴムが、アクリル酸C1~C12アルキルエステルを主成分とするポリマーである、請求項1に記載の成形品。 The molded article according to claim 1 , wherein the acrylic rubber is a polymer containing a C 1 -C 12 alkyl acrylate as a main component.
- シェル層の成分が、0℃以上のガラス転移温度を有する硬質樹脂成分である、請求項1または2に記載の成形品。 The molded product according to claim 1 or 2, wherein the shell layer component is a hard resin component having a glass transition temperature of 0°C or higher.
- 反応性官能基が、エポキシ基、ヒドロキシ基、カルボキシ基、アルコキシ基、酸無水物基、酸塩化物基からなる群から選択される一種以上の反応性官能基である、請求項1から3のいずれか一項に記載の成形品。
Claims 1 to 3, wherein the reactive functional group is one or more reactive functional groups selected from the group consisting of an epoxy group, a hydroxy group, a carboxy group, an alkoxy group, an acid anhydride group, and a acidified group. The molded article according to any one of items.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019039170A JP7193382B2 (en) | 2019-03-05 | 2019-03-05 | Polyalkylene terephthalate resin molded article having engaging portion |
JP2019-039170 | 2019-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179772A1 true WO2020179772A1 (en) | 2020-09-10 |
Family
ID=72337197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008847 WO2020179772A1 (en) | 2019-03-05 | 2020-03-03 | Polyalkylene terephthalate resin molded article having engagement part |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7193382B2 (en) |
WO (1) | WO2020179772A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188340A (en) * | 2000-01-04 | 2001-07-10 | Toagosei Co Ltd | Curable composition and soldering resist |
JP2007169367A (en) * | 2005-12-20 | 2007-07-05 | Mitsubishi Chemicals Corp | Polyester resin composition and molded item |
JP2009192632A (en) * | 2008-02-12 | 2009-08-27 | Fujifilm Corp | Resin composition for insulating material, photosensitive film, and photosensitive laminate |
WO2016104201A1 (en) * | 2014-12-26 | 2016-06-30 | ウィンテックポリマー株式会社 | Polyalkylene terephthalate resin composition |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4799857B2 (en) | 2004-12-24 | 2011-10-26 | ウィンテックポリマー株式会社 | Insert molded product |
JP5005204B2 (en) | 2005-09-28 | 2012-08-22 | ウィンテックポリマー株式会社 | Case, cover or housing molded product that houses electronic components |
JP5266751B2 (en) | 2007-12-26 | 2013-08-21 | 東レ株式会社 | Thermoplastic resin composition, method for producing the same, and molded article comprising the same |
JP5217425B2 (en) | 2007-12-26 | 2013-06-19 | 東レ株式会社 | Thermoplastic resin composition, method for producing the same, and molded article comprising the same |
JP2011213769A (en) | 2010-03-31 | 2011-10-27 | Toray Ind Inc | Flame-retardant resin composition |
WO2013047708A1 (en) | 2011-09-30 | 2013-04-04 | ウィンテックポリマー株式会社 | Polybutylene terephthalate resin composition and welded body |
JP2013173873A (en) | 2012-02-27 | 2013-09-05 | Toray Ind Inc | Thermoplastic resin composition and molded article comprising the same |
JP6278898B2 (en) | 2012-12-06 | 2018-02-14 | ウィンテックポリマー株式会社 | Resin molded body |
-
2019
- 2019-03-05 JP JP2019039170A patent/JP7193382B2/en active Active
-
2020
- 2020-03-03 WO PCT/JP2020/008847 patent/WO2020179772A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188340A (en) * | 2000-01-04 | 2001-07-10 | Toagosei Co Ltd | Curable composition and soldering resist |
JP2007169367A (en) * | 2005-12-20 | 2007-07-05 | Mitsubishi Chemicals Corp | Polyester resin composition and molded item |
JP2009192632A (en) * | 2008-02-12 | 2009-08-27 | Fujifilm Corp | Resin composition for insulating material, photosensitive film, and photosensitive laminate |
WO2016104201A1 (en) * | 2014-12-26 | 2016-06-30 | ウィンテックポリマー株式会社 | Polyalkylene terephthalate resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP7193382B2 (en) | 2022-12-20 |
JP2020143193A (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI549985B (en) | Polybutylene terephthalate resin composition | |
JP5085927B2 (en) | Flame retardant resin composition | |
KR101522048B1 (en) | Polyester mixture with improved flowability and good mechanical properties | |
KR20180136989A (en) | Engineering thermoplastic compositions having high nano-formed bond strength and laser direct structuring function | |
JP5616532B2 (en) | Polybutylene terephthalate resin composition and welded body | |
US20090208720A1 (en) | Polybutylene terephthalate resin composition | |
JP2009149018A (en) | Composite molded body | |
JP2007254717A (en) | Liquid crystalline resin composition and molded article consisting of the same | |
JP2009155449A (en) | Mobile terminal part | |
JP2010001363A (en) | Thermoplastic elastomer resin composition and molded article | |
JP5005204B2 (en) | Case, cover or housing molded product that houses electronic components | |
KR100846861B1 (en) | Composition Of Polyester resin | |
WO2020179772A1 (en) | Polyalkylene terephthalate resin molded article having engagement part | |
TWI680156B (en) | Polyalkylene terephthalate resin composition | |
JP5360713B2 (en) | Thermoplastic elastomer resin composition and molded article | |
JP2015129073A (en) | Surface-treated glass fiber and glass fiber-reinforced thermoplastic resin composition prepared using the same | |
JP6325457B2 (en) | Polybutylene terephthalate resin composition | |
JP2004204171A (en) | Flame-retardant resin composition for sheathed electric wire | |
JP2006206921A (en) | Automobile part comprising polyester resin composition | |
JP2005240003A (en) | Thermoplastic polyester resin composition and insert-molded article | |
JPWO2018038072A1 (en) | METHOD FOR PRODUCING THERMOPLASTIC AROMATIC POLYESTER RESIN COMPOSITION, METHOD FOR PRODUCING INSERT MOLDED ARTICLE, AND METHOD FOR REDUCING HEAT SHOCK RESISTANCE DOWN | |
JP2018168212A (en) | Thermoplastic elastomer composition | |
JP6085466B2 (en) | Method for producing flame-retardant resin molded product | |
JP2023083810A (en) | Polyalkylene terephthalate resin composition for injection molding, and injection molded article | |
WO2023105955A1 (en) | Polyalkylene terephthalate resin composition, polyalkylene terephthalate resin composition production method, and molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20765505 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20765505 Country of ref document: EP Kind code of ref document: A1 |