WO2020179259A1 - 基地局、端末、送信方法及び受信方法 - Google Patents

基地局、端末、送信方法及び受信方法 Download PDF

Info

Publication number
WO2020179259A1
WO2020179259A1 PCT/JP2020/002155 JP2020002155W WO2020179259A1 WO 2020179259 A1 WO2020179259 A1 WO 2020179259A1 JP 2020002155 W JP2020002155 W JP 2020002155W WO 2020179259 A1 WO2020179259 A1 WO 2020179259A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
harq
retransmission
unit
data
Prior art date
Application number
PCT/JP2020/002155
Other languages
English (en)
French (fr)
Inventor
潤 美濃谷
岩井 敬
智史 高田
浦部 嘉夫
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2021503454A priority Critical patent/JP7561116B2/ja
Priority to US17/433,554 priority patent/US12040903B2/en
Priority to CN202080016285.1A priority patent/CN113475027A/zh
Publication of WO2020179259A1 publication Critical patent/WO2020179259A1/ja
Priority to US18/732,328 priority patent/US20240322949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a base station, a terminal, a transmission method and a reception method.
  • IEEE 802.11ax As a successor to The Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.11ax (hereinafter referred to as "11ax”), the Highest Throughput (EHT) in the Topic Interest Group (TIG) and Study Group (SG) ) Standardization study is underway.
  • IEEE 802.11ax IEEE 802.11ax
  • WLAN wireless local area network
  • the non-limiting example of the present disclosure contributes to the provision of a base station, a terminal, a transmission method and a reception method capable of improving the efficiency of HARQ retransmission control.
  • a base station includes common information common to the plurality of users, including information related to retransmission control for each of a plurality of users, and individual information for the plurality of users according to the information related to the retransmission control. And a transmission circuit that transmits a control signal including the common information and the user individual information.
  • the efficiency of HARQ retransmission control can be improved.
  • FIG. 3 is a block diagram showing a configuration example of a downlink wireless transmission device according to Embodiment 2 3 is a block diagram showing a configuration example of a downlink radio receiving apparatus according to Embodiment 2.
  • FIG. 3 is a block diagram showing a configuration example of a part of the uplink wireless receiver according to the second embodiment.
  • FIG. 3 is a block diagram showing a configuration example of an uplink radio transmitting apparatus according to Embodiment 2.
  • FIG. 3 is a block diagram showing a configuration example of an uplink radio receiving apparatus according to Embodiment 2.
  • a sequence diagram showing an operation example of a wireless communication system related to uplink wireless communication according to the second embodiment The figure which shows an example of the format of SIG-B which concerns on method 1 of Embodiment 2.
  • FIG. 3 is a block diagram showing a configuration example of a downlink wireless transmission apparatus according to Embodiment 3 Block diagram showing a configuration example of the downlink radio receiver according to the third embodiment
  • MU 11ax supports multi-user (MU) transmission (see Non-Patent Document 1, for example).
  • MU transmission include Downlink MU-Multiple Input Input Multiple Output (DL MU-MIMO) and DL Orthogonal Frequency Division Multiple Access (DL OFDMA).
  • DL MU-MIMO Downlink MU-Multiple Input Input Multiple Output
  • DL OFDMA DL Orthogonal Frequency Division Multiple Access
  • an access point also called an Access Point (AP) or “base station”
  • AP Access Point
  • base station a control signal of a preamble included in a Multiuser Physical layer Protocol Data Unit (MU PPDU) (for example, , SIG-B or SIG-B field) is used to notify each STA (also called “Station (STA)" or "terminal") of control information.
  • MU PPDU Multiuser Physical layer Protocol Data Unit
  • the AP uses the control signal that prompts the transmission of the UL OFDMA signal (hereinafter referred to as “Trigger frame” or trigger signal) Notify control information to multiple STAs that are housed.
  • Trigger frame or trigger signal
  • FIG. 1 shows HE-SIG-B (hereinafter simply referred to as “SIG-B”) of High Efficiency MU PPDU (HEMUMU PPDU) (hereinafter simply referred to as “MUPPDU”) that instructs downlink MU transmission in 11ax. ) Shows an example configuration.
  • SIG-B High Efficiency MU PPDU
  • MUPPDU High Efficiency MU PPDU
  • SIG-B includes a “Common field” including information common to a plurality of users (in other words, STA) (hereinafter referred to as “common information”) and information for each user (hereinafter referred to as “common field”).
  • the Common field for example, in the Resource Unit (RU) Allocation subfield, the RU assigned to each user and the user multiplexed number are notified.
  • the User Specific field is composed of, for example, one or more User Block fields (not shown). Each User Block field is a field obtained by encoding the User field of 1 or 2 users with Block Check Character (BCC). Further, the order of the User fields may correspond to the order of the users to which the RUs are assigned in the RU Allocation subfield included in the Common field, for example.
  • FIG. 2 shows a configuration example of a Trigger frame that instructs uplink MU transmission in 11ax.
  • the Trigger frame includes a "Common Info field" containing common information and a "User Info field” containing user information, similar to SIG-B.
  • SIG-B the RU allocation information for all STAs is notified in the RU Allocation subfield included in the Common field
  • Trigger frame the RU for each STA in the RU Allocation subfield included in the User Info field is notified. Allocation information is notified.
  • HARQ Hybrid Automatic Repeat Request
  • HARQ is a technology that improves the gain by retransmitting a packet (physical data channel) of the physical layer and synthesizing it with the previous packet on the receiving side, unlike the retransmission control of the MAC layer.
  • CC is a method of retransmitting the same packet as an erroneous packet and improving reception quality (for example, Signal-to-Noise Ratio (SNR)) by maximum ratio synthesis.
  • SNR Signal-to-Noise Ratio
  • the IR uses different parity bits for each number of transmissions depending on the transmission start position (eg, "Redundancy version (RV)") of the encoded sequence data stored in the circular buffer on the transmission side.
  • RV Resource version
  • This is a method for improving the coding gain by transmitting a coded sequence containing the data and synthesizing the coded sequence on the receiving side (hereinafter also referred to as HARQ synthesis).
  • the wireless communication system includes at least one AP and a plurality of STAs.
  • an AP transmits a DL signal to a plurality of STAs (also referred to as “downlink wireless reception device”) in a downlink MU.
  • STAs also referred to as “downlink wireless reception device”
  • Each STA receives a DL signal for the STA from the signal transmitted by the downlink MU.
  • a plurality of STAs transmit UL signals in an upstream MU.
  • the AP also called “uplink radio receiver” receives UL signals transmitted by uplink MU from multiple STAs.
  • the user information included in the control signal (in other words, the format of the control signal) notified from the AP to the STA includes information related to retransmission control of the data signal (for example, HARQ information or HARQ control signal). Call) is included.
  • the field to which the user information is notified includes the subfield to which the HARQ information is notified.
  • the HARQ control signal is included in the user information based on the format of the control signal for MU transmission in 11ax (eg, SIG-B for DL transmission, Trigger frame for UL transmission) explain.
  • FIG. 3 shows an example in which HARQ information (HARQ Info subfield) is included in the user information (User Specific field) in the SIG-B for downlink MU transmission.
  • HARQ Info subfield HARQ Info subfield
  • FIG. 4 shows an example in which the HARQ information (HARQ Info subfield) is included in the user information (User Info field) in the Trigger frame for uplink MU transmission.
  • the user information structure shown in FIGS. 3 and 4 may have a variable length according to the presence or absence of HARQ information.
  • the AP notifies the STA of control information indicating the configuration (for example, size or Subfield type) of each user information.
  • STA may also perform blind decoding (in other words, monitor) of user information having a variable configuration according to the presence or absence of HARQ information. In this case, the notification of control information indicating the structure of user information is unnecessary.
  • each STA can appropriately control retransmission control (for example, transmission / reception of a retransmission packet) by using HARQ information included in the user information corresponding to the STA.
  • the amount of signaling is increased by the amount of control information indicating the configuration (for example, size) of user information being notified from the AP to the STA.
  • the control information indicating the configuration (for example, size) of user information being notified from the AP to the STA.
  • the decoding process in the STA becomes complicated.
  • the wireless communication system related to DL communication includes, for example, a downlink wireless transmission device 100 (for example, AP) and a downlink wireless reception device 200 (for example, STA).
  • a downlink wireless transmission device 100 for example, AP
  • a downlink wireless reception device 200 for example, STA
  • the downlink radio transmission device 100 transmits, for example, a Preamble control signal (for example, SIG-B) including common information and user information, and a DL data signal set based on the control signal to the downlink radio reception device 200. To do.
  • the downlink radio receiving device 200 receives the control signal and the DL data signal transmitted from the downlink radio transmitting device 100.
  • the preamble may be included in a physical data channel for MU transmission (for example, MU PPDU), for example.
  • FIG. 5 is a block diagram showing a configuration example of a part of the downlink wireless transmission device 100 according to an embodiment of the present disclosure.
  • the control unit has common information common to a plurality of users (for example, information in the Common field), including information regarding retransmission control for each of the plurality of users (for example, HARQ information). And individual user-specific information (for example, User-Specific field information) that is unique to a plurality of users according to the information related to retransmission control.
  • the wireless transmission unit transmits a control signal (for example, SIG-B) including common information and individual user information.
  • FIG. 6 is a block diagram showing a partial configuration example of the downlink wireless reception device 200 according to an embodiment of the present disclosure.
  • the wireless reception unit includes common information common to a plurality of users (for example, Common field information) and individual user individual information for a plurality of users (for example, User field specific field). Information) and a control signal (eg, SIG-B) containing.
  • the control unit controls the retransmission of the data signal based on the information related to the retransmission control for each of a plurality of users (for example, HARQ information) shown in the common information and the individual user information corresponding to the information related to the retransmission control. To do.
  • FIG. 7 is a block diagram showing a configuration example of the downlink radio transmission device 100 (for example, AP).
  • the downlink wireless transmission device 100 shown in FIG. 7 includes, for example, a wireless reception unit 101, a Preamble demodulation unit 102, a data demodulation unit 103, a data decoding unit 104, a scheduling unit 105, a HARQ information generation unit 106, and data. It includes a generation unit 107, a data coding unit 108, a data modulation unit 109, a Preamble generation unit 110, and a wireless transmission unit 111.
  • control unit shown in FIG. 5 may correspond to a processing unit (for example, scheduling unit 105, HARQ information generation unit 106, or Preamble generation unit 110, etc.) related to control signal generation in FIG.
  • wireless transmission unit shown in FIG. 5 may correspond to, for example, the wireless transmission unit 111 shown in FIG. 7.
  • the wireless reception unit 101 receives a signal transmitted from the downlink wireless reception device 200 (for example, STA) via an antenna, and performs wireless reception processing such as down conversion and A/D conversion on the received signal.
  • the signal transmitted from downlink radio receiving apparatus 200 may include, for example, a preamble section (also called a preamble signal) and a data section (also called a data signal).
  • the data section may include, for example, an Acknowledgment (ACK)/Negative Acknowledgment (NACK) signal which is a response signal to the DL data.
  • the wireless reception unit 101 extracts the preamble unit from the received signal after the wireless reception process, and outputs it to the preamble demodulation unit 102. Further, the wireless reception unit 101 extracts the data part from the received signal after the wireless reception process and outputs it to the data demodulation unit 103.
  • the preamble demodulation unit 102 performs demodulation processing such as Fourier transform (Fast Fourier Transform (FFT)) on the preamble unit input from the wireless reception unit 101, and controls information used for demodulation and decoding of data included in the preamble unit. To extract.
  • the control information may include, for example, radio allocation resource information, or a modulation and coding scheme (Modulation and Coding Scheme (MCS)), etc.
  • MCS Modulation and Coding Scheme
  • the preamble demodulation unit 102 stores the extracted control information in the data demodulation unit 103 and the data.
  • the preamble demodulation unit 102 may output the channel estimation result to the data demodulation unit 103 when performing channel estimation using the preamble, for example.
  • the data demodulation unit 103 performs processing such as FFT on the data unit input from the wireless reception unit 101, demodulates the data unit using the control information and the channel estimation result input from the preamble demodulation unit 102.
  • the demodulated data signal is output to the data decoding unit 104.
  • the data decoding unit 104 decodes the data signal input from the data demodulation unit 103 using the control information input from the preamble demodulation unit 102, and outputs an ACK/NACK signal (for example, ACK and (Signal indicating any of NACK) is acquired.
  • the data decoding unit 104 outputs an ACK / NACK signal to the scheduling unit 105.
  • the scheduling unit 105 determines the HARQ type (hereinafter, also referred to as HARQ Type) for each downlink wireless reception device 200 based on, for example, the ACK/NACK signal input from the data decoding unit 104 for each downlink wireless reception device 200. To do.
  • the HARQ type indicates, for example, whether to transmit a new packet or a retransmission packet in the next transmission to the downlink wireless reception device 200. In other words, the HARQ type indicates whether the transmission of the data signal is a new transmission or a retransmission. Further, the HARQ type may indicate a HARQ combining method (for example, CC or IR) at the time of transmitting a retransmission packet.
  • the scheduling unit 105 for example, the number of transmitting terminals (in other words, the number of user multiplexing or the number of downlink wireless receiving devices 200) that multiplex-transmits DL data, the PHY Service Data Unit (PSDU) length of DL data, and the code.
  • Control information to be included in SIG-B such as a coding method, frequency bandwidth, MCS, or resource (eg, RU) allocation to each downlink radio receiving apparatus 200.
  • the scheduling unit 105 outputs scheduling information indicating the scheduling result to the HARQ information generation unit 106, the data generation unit 107, the data coding unit 108, the data modulation unit 109, and the Preamble generation unit 110.
  • the HARQ information generation unit 106 generates HARQ information based on, for example, the HARQ type of the packet for each downlink radio receiving device 200, the RU allocation information, or the number of retransmissions among the scheduling information input from the scheduling unit 105. ..
  • the HARQ information may include at least one of New Data Indicator (NDI) and RV.
  • NDI New Data Indicator
  • HARQ information generation section 106 outputs the generated HARQ information to data encoding section 108 and preamble generation section 110.
  • the setting of the HARQ combining method is based on, for example, information indicating the capability of the downlink wireless receiving device 200 (hereinafter referred to as capability information). May be decided.
  • the capability information of the downlink wireless receiving device 200 may be transmitted to the downlink wireless transmitting device 100 (for example, AP) when the downlink wireless receiving device 200 makes an initial connection, for example.
  • the capability information includes, for example, information indicating a HARQ combining method supported by the downlink wireless receiving device 200 (for example, both CC and IR are supported, or CC is supported but IR is not supported). May be included.
  • the data generation unit 107 generates a data series (in other words, DL data) addressed to the corresponding downlink radio receiving device 200 based on the scheduling information (for example, information indicating the packet length and the like) input from the scheduling unit 105. , And outputs the generated data sequence to the data encoding unit 108.
  • DL data data series addressed to the corresponding downlink radio receiving device 200 based on the scheduling information (for example, information indicating the packet length and the like) input from the scheduling unit 105.
  • the scheduling information for example, information indicating the packet length and the like
  • the data coding unit 108 encodes the data series input from the data generation unit 107 by using the scheduling information (for example, the coding method or MCS) input from the scheduling unit 105, and holds the coded data. For example, when IR is used, the data coding unit 108 extracts, for example, the coded data corresponding to the HARQ information (for example, RV) input from the HARQ information generation unit 106 from the held coded data, and extracts the coded data. The encoded data is output to the data modulation unit 109.
  • the scheduling information for example, the coding method or MCS
  • the data modulation unit 109 modulates the coded data input from the data coding unit 108 using the scheduling information (for example, MCS) input from the scheduling unit 105, and the modulated signal is transmitted to the wireless transmission unit. Output to 111.
  • a modulation method such as Quadrature Amplitude Modulation (QAM) may be used to modulate the encoded data.
  • the data modulation unit 109 allocates the modulated signal to the radio resource based on the scheduling information (for example, RU allocation information), performs the inverse Fourier transform (Inverse Fast Fourier Transform (IFFT) process, and the OFDM signal. May be generated and output to the wireless transmission unit 111.
  • the Preamble generation unit 110 generates a Preamble signal based on the scheduling information (for example, the number of transmission terminals or the transmission band information) input from the scheduling unit 105 and the HARQ information input from the HARQ information generation unit 106. Generate and output to the wireless transmitter 111.
  • the Preamble signal may be composed of, for example, control information including RU allocation information, reference information, and the like.
  • the wireless transmission unit 111 time-multiplexes the data unit (for example, an OFDM signal) input from the data modulation unit 109 and the Preamble unit input from the Preamble generation unit 110.
  • the wireless transmission unit 111 performs wireless transmission processing such as D/A conversion and up-conversion to carrier frequency on the time-multiplexed signal, and transmits the signal after the wireless transmission processing to the downlink wireless reception device 200 via an antenna. To do.
  • FIG. 8 is a block diagram showing a configuration example of the downlink radio receiver 200 (for example, STA).
  • the downlink wireless reception device 200 shown in FIG. 8 includes, for example, a wireless reception unit 201, a Preamble detection unit 202, a Preamble demodulation unit 203, a HARQ information decoding unit 204, a data demodulation unit 205, a data holding unit 206, and the like.
  • the HARQ synthesis unit 207, the data decoding unit 208, the error determination unit 209, the ACK / NACK signal generation unit 210, the ACK / NACK signal modulation unit 211, the Preamble generation unit 212, and the wireless transmission unit 213 are included.
  • the wireless receiving unit shown in FIG. 6 may correspond to the wireless receiving unit 201 shown in FIG.
  • the control unit shown in FIG. 6 is the same as the processing unit (for example, the preamble detection unit 202, the preamble demodulation unit 203, or the HARQ information decoding unit 204, etc.) related to the reception of the control signal (for example, SIG-B) in FIG. You may respond.
  • the processing unit for example, the preamble detection unit 202, the preamble demodulation unit 203, or the HARQ information decoding unit 204, etc.
  • the wireless reception unit 201 performs wireless reception processing such as down-conversion and A / D conversion of the signal received via the antenna, and outputs the signal after the wireless reception processing to the Preamble detection unit 202.
  • the Preamble detection unit 202 performs, for example, correlation detection or power detection on the reception signal input from the wireless reception unit 201, and detects the Preamble signal (in other words, reception determination). For example, when the Preamble detection unit 202 detects a Preamble signal, it outputs the Preamble unit included in the received signal to the Preamble demodulation unit 203 and outputs the data unit included in the received signal to the data demodulation unit 205. On the other hand, if the Preamble detection unit 202 does not detect the Preamble signal, the subsequent reception processing may be stopped.
  • Preamble demodulation section 203 performs demodulation processing such as FFT on the preamble section of the received signal input from preamble detection section 202, and outputs the demodulated preamble signal to HARQ information decoding section 204.
  • HARQ information decoding section 204 decodes HARQ information using the preamble signal input from preamble demodulation section 203.
  • the HARQ information decoding process may be performed according to, for example, the set Preamble format.
  • the HARQ information decoding unit 204 outputs the decoded HARQ information to the data demodulation unit 205, the HARQ synthesis unit 207, and the data decoding unit 208.
  • the data demodulation unit 205 performs FFT processing on the data signal (for example, data portion) input from the preamble detection unit 202, and outputs the HARQ information (for example, RU allocation information) input from the HARQ information decoding unit 204.
  • the data (DL data) addressed to the downlink radio receiver 200 is extracted using the data. Further, the data demodulation unit 205 performs channel equalization and demodulation (for example, QAM demodulation) on the extracted data, and outputs the demodulated data signal to the data holding unit 206.
  • the data holding unit 206 saves the data signal input from the data demodulation unit 205 in a buffer and outputs the data signal to the HARQ synthesis unit 207.
  • the error determination unit 209 determines that the decoded data has no error
  • the data holding unit 206 deletes the stored data signal from the buffer.
  • the data holding unit 206 keeps the data until the number of retransmissions of the data exceeds a specified number (in other words, the maximum number of retransmissions). Hold.
  • the HARQ combining unit 207 performs HARQ combining on the received data input from the data holding unit 206 based on the HARQ information (for example, HARQ Type, RV or NDI) input from the HARQ information decoding unit 204.
  • the HARQ information for example, HARQ Type, RV or NDI
  • the HARQ synthesizing unit 207 searches for and extracts the stored data before resending from the buffer, and, for example, performs HARQ synthesizing of the stored data and the received data according to the notified RV.
  • the combined data is output to the data decoding unit 208.
  • the data decoding unit 208 decodes the data input from the HARQ synthesis unit 207 using the HARQ information (for example, a coding method or MCS) input from the HARQ information decoding unit 204, and determines an error in the decoded data. It is output to the unit 209.
  • HARQ information for example, a coding method or MCS
  • the error determination unit 209 performs error detection on the data (in other words, the data decoding result) input from the data decoding unit 208 by using Cyclic Redundancy Check (CRC) or the like. If there is no error, the error determination unit 209 outputs information indicating no error to the data holding unit 206, and outputs information indicating an ACK request to the ACK / NACK signal generation unit 210. If there is an error, the error determination unit 209 outputs information indicating that there is an error to the data holding unit 206, and outputs information indicating the NACK request to the ACK / NACK signal generation unit 210.
  • CRC Cyclic Redundancy Check
  • the ACK/NACK signal generation unit 210 generates an ACK/NACK signal (a signal indicating either ACK or NACK) based on information (for example, an ACK request or a NACK request) input from the error determination unit 209, Output to the ACK / NACK signal modulation unit 211.
  • the ACK / NACK signal generation unit 210 may include a signal requesting transmission of a retransmission packet (for example, a HARQ retransmission signal) in the ACK / NACK signal.
  • the ACK/NACK signal modulation unit 211 performs processing such as IFFT processing or modulation (for example, QAM modulation) on the ACK/NACK signal input from the ACK/NACK signal generation unit 210, and the modulated signal (for example, A data signal) is output to the wireless transmission unit 213.
  • processing such as IFFT processing or modulation (for example, QAM modulation) on the ACK/NACK signal input from the ACK/NACK signal generation unit 210, and the modulated signal (for example, A data signal) is output to the wireless transmission unit 213.
  • the preamble generation unit 212 generates a preamble signal used for a packet including an ACK/NACK signal and outputs it to the wireless transmission unit 213.
  • Radio transmitting section 213 compares the preamble signal (or a preamble section) input from preamble generation section 212 and the data signal (or a data section) input from ACK/NACK signal modulating section 211 with time. To multiplex.
  • the wireless transmission unit 213 performs wireless transmission processing such as D/A conversion and up-conversion to carrier frequency on the time-multiplexed signal, and the signal after the wireless transmission processing is transmitted to the downlink wireless transmission device 100 via an antenna. Send to.
  • a wireless communication system for UL wireless communication includes, for example, an uplink radio transmitter 300 (eg, STA) and an uplink radio receiver 400 (eg, AP).
  • the uplink wireless transmission device 300 transmits a UL data signal to the uplink wireless reception device 400 based on, for example, a preamble control signal (for example, Trigger frame) including common information and user information transmitted by the uplink wireless reception device 400. To do.
  • the uplink radio receiver 400 receives the UL data signal transmitted from the uplink radio transmitter 300.
  • the UL data may be included in, for example, a physical channel for multi-user transmission (for example, Trigger-based (TB) PPDU).
  • FIG. 9 is a block diagram showing a partial configuration example of the uplink wireless transmission device 300 according to an embodiment of the present disclosure.
  • the wireless reception unit uses common information common to a plurality of users (for example, Common Info field information) and individual user individual information for a plurality of users (for example, User Info field). Information) and a control signal including (for example, Trigger frame) are received.
  • the control unit controls retransmission of the data signal based on information (for example, HARQ information) regarding retransmission control for each of a plurality of users and user-specific information according to information regarding retransmission control, which is indicated in the common information. To do.
  • FIG. 10 is a block diagram showing a configuration example of a part of the uplink wireless reception device 400 according to an embodiment of the present disclosure.
  • the control unit includes common information common to a plurality of users (for example, information of Common Info field) including information about retransmission control for each of a plurality of users (for example, HARQ information). ) And individual user-specific information (for example, User Info field information) that is unique to a plurality of users according to information related to retransmission control.
  • the wireless transmission unit transmits a control signal (for example, Trigger frame) including common information and user individual information.
  • a control signal for example, Trigger frame
  • FIG. 11 is a block diagram showing a configuration example of the uplink wireless transmission device 300 (for example, STA).
  • the data generation unit 307, the data encoding unit 308, the data modulation unit 309, the preamble generation unit 310, and the wireless transmission unit 311 are included.
  • the wireless reception unit shown in FIG. 9 may correspond to the wireless reception unit 301 shown in FIG. 11, for example.
  • the control unit illustrated in FIG. 9 is, for example, a processing unit (for example, HARQ information holding unit 306, data generation unit 307, data encoding unit 308, data modulation unit 309, and It may correspond to the Preamble generation unit 310 etc.).
  • the wireless reception unit 301 receives the signal transmitted from the uplink wireless reception device 400 (for example, AP) via the antenna, performs wireless reception processing such as down-conversion and A / D conversion on the received signal, and performs wireless reception processing.
  • the latter signal is output to the Preamble detection unit 302.
  • the Preamble detection unit 302 performs, for example, correlation detection or power detection on the reception signal input from the wireless reception unit 301, and detects the Preamble signal (in other words, reception determination). For example, when the preamble detection unit 302 detects the preamble signal, the preamble detection unit 302 outputs the preamble unit included in the received signal to the preamble demodulation unit 303, and the data unit included in the received signal (for example, Trigger frame) is included in the data demodulation unit. Output to 304. On the other hand, if the Preamble detection unit 302 does not detect the Preamble signal, the subsequent reception processing may be stopped.
  • Preamble demodulation section 303 performs demodulation processing such as FFT on the preamble section of the received signal input from preamble detection section 302, and outputs the demodulated preamble signal to data demodulation section 304 and data decoding section 305. Also, for example, when performing channel estimation using a preamble signal, preamble demodulation section 303 may output the channel estimation result to data demodulation section 304.
  • demodulation processing such as FFT
  • the data demodulation unit 304 demodulates the data signal (for example, the data unit) input from the preamble detection unit 302 using the control information and the channel estimation result included in the preamble signal output from the preamble demodulation unit 303, For example, the received data including the Trigger frame is extracted and output to the data decoding unit 305.
  • the data signal for example, the data unit
  • the data demodulation unit 304 demodulates the data signal (for example, the data unit) input from the preamble detection unit 302 using the control information and the channel estimation result included in the preamble signal output from the preamble demodulation unit 303, For example, the received data including the Trigger frame is extracted and output to the data decoding unit 305.
  • Data decoding section 305 decodes the received data input from data demodulation section 304 using the control information included in the preamble signal input from preamble demodulation section 303, and outputs the decoded signal to the HARQ information holding section. Output to 306.
  • the HARQ information holding unit 306 includes control information relating to UL data transmission included in common information and user information in the Trigger frame included in the signal input from the data decoding unit 305, the data generation unit 307, the data encoding unit 308, It is output to the data modulation unit 309 and the Preamble generation unit 310.
  • the control information related to UL data transmission may be, for example, information related to HE TB PDCU (hereinafter referred to as TB PPDU) transmission, which is an 11ax uplink multi-user transmission format.
  • the HARQ information holding unit 306 saves the control information included in the Trigger frame in the buffer. For example, when the HARQ information holding unit 306 is instructed to retransmit HARQ using the HARQ information included in the Trigger frame, the HARQ information holding unit 306 stores the control information at the time of the previous transmission stored in the buffer, in the data generation unit 307 and the data encoding unit. It may be output to 308, the data modulation unit 309, and the Preamble generation unit 310.
  • the data generation unit 307 generates a data series (in other words, UL data) based on the control information (for example, information indicating the packet length or the like) input from the HARQ information holding unit 306, and generates the generated data series as data. It outputs to the encoding unit 308.
  • the data encoding unit 308 encodes the data sequence input from the data generation unit 307 using the control information (for example, the encoding method or MCS) input from the HARQ information holding unit 306, and outputs the encoded data. Hold.
  • the data encoding unit 308 extracts the encoded data corresponding to the control information (for example, RV) input from the HARQ information retaining unit 306 from the retained encoded data, and extracts the encoded data.
  • the encoded data is output to the data modulation unit 309.
  • the encoded data corresponding to is extracted, and the extracted encoded data is output to the data modulator 309.
  • the data modulation unit 309 modulates the coded data input from the data coding unit 308, using the control information (for example, MCS) input from the HARQ information holding unit 306, and wirelessly outputs the modulated signal. Output to the transmission unit 311. Further, for example, the data modulation unit 309 allocates the modulated signal to the radio resource based on the control information (for example, RU allocation information) input from the HARQ information holding unit 306, performs the IFFT process, and outputs the OFDM signal. It may be generated and output to the wireless transmission unit 311.
  • the control information for example, MCS
  • the Preamble generation unit 310 generates a Preamble signal based on the control information input from the HARQ information holding unit 306 and outputs it to the wireless transmission unit 311.
  • the wireless transmission unit 311 time-multiplexes the signal (for example, the data unit) input from the data modulation unit 309 and the preamble signal (for example, the Preamble unit) input from the preamble generation unit 310.
  • the wireless transmission unit 311 performs wireless transmission processing such as D/A conversion and up-conversion to carrier frequency on the time-multiplexed signal, and the signal after the wireless transmission processing is transmitted to the uplink wireless reception device 400 via the antenna. Send to.
  • FIG. 12 is a block diagram showing a configuration example of the uplink wireless reception device 400 (for example, AP).
  • control unit illustrated in FIG. 10 includes a processing unit (for example, a scheduling unit 409, a HARQ information generation unit 410, a HARQ information holding unit 411, a data generation unit 412) related to generation of a control signal (for example, Trigger frame) in FIG. It may correspond to the data coding unit 413, the data modulation unit 414, etc.). Further, the wireless transmission unit shown in FIG. 10 may correspond to the wireless transmission unit 416 shown in FIG.
  • the wireless reception unit 401 receives the signal transmitted from the uplink wireless transmission device 300 via the antenna, performs wireless reception processing such as down-conversion and A / D conversion on the received signal, and receives the signal after the wireless reception processing. Output to the Preamble demodulation unit 402 and the data demodulator unit 404.
  • the preamble demodulation section 402 performs demodulation processing such as FFT on the preamble section of the received signal input from the wireless reception section 401, and extracts control information used for demodulation and decoding of data included in the preamble section.
  • the preamble demodulation unit 402 outputs the extracted control information to the data demodulation unit 404, the data decoding unit 407, and the reception presence/absence detection unit 403. Also, for example, when performing channel estimation using Preamble, preamble demodulation section 402 may output the channel estimation result to data demodulation section 404.
  • the reception presence/absence detection unit 403 determines which uplink wireless transmission device 300 the signal received by the wireless reception unit 401 is within a certain time after the uplink wireless reception device 400 transmits the control signal (for example, Trigger frame). It is determined whether the signal is transmitted from. In other words, the reception presence / absence detection unit 403 detects the presence / absence of reception of the signal transmitted from the uplink radio transmission device 300 within a certain period of time after transmitting the control signal to the uplink radio transmission device 300. For example, the reception presence/absence detection unit 403 is transmitted from each uplink wireless transmission device 300 that is the transmission destination of the Trigger frame based on the identification information (for example, the terminal ID) included in the control information input from the preamble demodulation unit 402. It determines whether or not the TB PPDU signal has been received, and outputs the determination result to the scheduling unit 409.
  • the control signal for example, Trigger frame
  • the data demodulation unit 404 uses the control information and the channel estimation result input from the preamble demodulation unit 402 to convert the received signal input from the wireless reception unit 401 to the data signal of each uplink wireless transmission device 300 (for example, UL data). ) Is extracted and output to the data holding unit 405.
  • the data holding unit 405 saves the data signal input from the data demodulation unit 404 in a buffer and outputs the data signal to the HARQ synthesis unit 406.
  • the error determination unit 408 determines that the decrypted data has no error
  • the data holding unit 405 deletes the stored data signal from the buffer.
  • the error determination unit 408 determines that the decoded data has an error
  • the data holding unit 405 repeats the data until the number of retransmissions of the data exceeds a specified number (in other words, the maximum number of retransmissions). Hold.
  • the HARQ combining unit 406 performs HARQ combining on the received data input from the data holding unit 405 based on the HARQ information (for example, HARQ Type, RV or NDI) input from the HARQ information holding unit 411. To judge. For example, when the received data is a new packet, HARQ combining section 406 outputs the received data as it is to data decoding section 407 without performing HARQ combining.
  • HARQ information for example, HARQ Type, RV or NDI
  • the HARQ synthesizing unit 406 searches for and retrieves the stored data at the time of the previous transmission from the buffer, and, for example, a synthesizing method (for example, HARQ Type) instructed by HARQ information (for example, HARQ Type) , CC or IR) based on the HARQ combination of the stored data and the retransmitted data.
  • the HARQ synthesis unit 406 outputs the combined data to the data decoding unit 407.
  • the data decoding unit 407 decodes the data input from the HARQ combining unit 406 using the control information input from the preamble demodulation unit 402, and outputs the decoded data to the error determination unit 408.
  • the error determination unit 408 performs error detection on the data (in other words, the data decoding result) input from the data decoding unit 407 using CRC or the like. When there is no error, the error determination unit 408 outputs information indicating that there is no error to the data holding unit 405, and when there is an error, outputs information indicating that there is an error to the data holding unit 405. Further, the error determination unit 408 outputs the error determination result to the scheduling unit 409.
  • the scheduling unit 409 based on the error determination result of the reception data input from the error determination unit 408, and the information regarding the presence/absence of the transmission signal from each uplink wireless transmission device 300, which is input from the reception presence/absence detection unit 403,
  • the HARQ type (for example, information indicating whether it is a new packet transmission or a retransmission packet transmission) in the next MU transmission to each uplink wireless transmission device 300 is determined.
  • the scheduling unit 409 has, for example, the number of transmitting terminals for multiple transmission of UL data (in other words, the number of user multiplex or the number of uplink wireless transmission devices 300), the PSDU length of UL data, the coding method, and the frequency bandwidth. , MCS, or control information to be included in the Trigger frame such as RU allocation is determined.
  • the scheduling unit 409 outputs the determined control information (or referred to as scheduling information) to the HARQ information generation unit 410, the data generation unit 412, the data coding unit 413, the data modulation unit 414, and the preamble generation unit 415. ..
  • the HARQ information generation unit 410 generates HARQ information based on, for example, the HARQ type of the packet of each uplink radio transmission device 300, the RU allocation information, or the number of retransmissions, of the scheduling information input from the scheduling unit 409. .. HARQ information may include, for example, at least one of NDI and RV.
  • the HARQ information generation unit 410 outputs the generated HARQ information to the data generation unit 412 and the HARQ information holding unit 411.
  • the setting of the HARQ combining method may be determined based on the capability information of the uplink wireless transmission device 300, for example.
  • the capability information of the uplink wireless transmission device 300 may be transmitted to the uplink wireless reception device 400 (for example, AP) when the uplink wireless transmission device 300 makes an initial connection, for example.
  • the capability information includes, for example, information indicating a HARQ combining method supported by the uplink wireless transmission device 300 (for example, both CC and IR are supported, or CC is supported but IR is not supported). May be included.
  • the HARQ information storage unit 411 stores the HARQ information input from the HARQ information generation unit 410 in a buffer. For example, when HARQ retransmission is instructed using HARQ information included in the Trigger frame, the HARQ information holding unit 411 outputs the control information stored in the buffer to the HARQ combining unit 406.
  • the data generation unit 412 uses the HARQ information input from the HARQ information generation unit 410 or the scheduling information input from the scheduling unit 409 to generate a data sequence (including a Trigger frame), and the data encoding unit 413. Output to.
  • the data encoding unit 413 encodes the data sequence input from the data generation unit 412 based on the scheduling information (for example, the encoding method or MCS) input from the scheduling unit 409, and the encoded data is the data modulation unit. Output to 414.
  • the scheduling information for example, the encoding method or MCS
  • the data modulation unit 414 modulates the coded data input from the data coding unit 413 using the scheduling information (for example, MCS) input from the scheduling unit 409, and sends the modulated signal to the wireless transmission unit 416. Output. Further, for example, the data modulator 414 allocates the modulated signal to the radio resource based on the scheduling information (for example, the frequency bandwidth or the RU allocation information), performs the IFFT process, generates the OFDM signal, and transmits the radio signal. It may be output to the unit 416.
  • the scheduling information for example, MCS
  • the preamble generation unit 415 generates a preamble signal based on the scheduling information input from the scheduling unit 409 and outputs it to the wireless transmission unit 416.
  • the wireless transmission unit 416 synthesizes the data unit (including, for example, Trigger frame) input from the data modulation unit 414 and the preamble unit input from the preamble generation unit 415.
  • the wireless transmission unit 416 performs wireless transmission processing such as D/A conversion and up-conversion to carrier frequency on the combined signal, and transmits the signal after the wireless transmission processing to the upstream wireless transmission device 300 via the antenna. Send.
  • AP for example, downlink radio transmitting device 100 or uplink radio receiving device 400
  • STA for example, downlink radio receiving device 200 or uplink radio transmitting device 300
  • the control signal (for example, SIG-B or Trigger frame) instructing MU transmission includes, for example, common information that is common to each user (in other words, STA) and user information that is information for each user (STA). including.
  • At least common information includes HARQ information that is information relating to retransmission control of data signals.
  • the HARQ information included in the common information is, for example, HARQ Type indicating the type of the transmission packet (for example, whether the transmission of the data signal is a new transmission or a retransmission for each of a plurality of users).
  • the HARQ Type may include information indicating the type of retransmission control or the HARQ synthesis method (for example, either CC or IR).
  • FIG. 13 is a sequence diagram showing an operation example of a wireless communication system regarding DL communication.
  • MU transmission in the AP downlink wireless transmission device 100
  • STA1 and STA2 downstream wireless reception device 200
  • the number of users in other words, the number of STAs
  • MU transmission is not limited to two and may be three or more.
  • the AP transmits a DL signal (including, for example, a Preamble unit and a Data unit) to STA1 and STA2 by DLMU transmission (for example, MU-MIMO transmission or OFDMA transmission) (ST101).
  • DLMU transmission for example, MU-MIMO transmission or OFDMA transmission
  • the type (for example, HARQ Type) of the transmission packet (for example, data part) transmitted to STA1 and STA2 is a new packet.
  • the control signal for example, SIG-B
  • the HARQ Type is included in the common information (for example, Common field). In this way, the AP controls the transmission of the DL signal based on the control signal (for example, SIG-B) instructing the DLMU transmission.
  • STA1 and STA2 perform DL signal reception processing (ST102-1 and ST102-2). For example, STA1 and STA2 are instructed in the user information corresponding to each STA based on the HARQ information (for example, HARQ Type) included in the common information in the control signal for instructing DLMU transmission included in the DL signal. It is determined whether the packet is a new packet or a retransmission packet (in other words, HARQ Type). STA1 and STA2 perform DL data reception processing (for example, demodulation, decoding, error detection processing, etc.) based on the parameters included in the user information of the configuration (in other words, the format) corresponding to the determined HARQ Type. In this way, each STA controls the reception of the DL signal based on the control signal (eg, SIG-B) instructing the DL MU transmission.
  • the control signal eg, SIG-B
  • STA1 transmits an ACK/NACK signal including ACK to the AP because there is no DL data error (ST103-1). Since STA2 has an error in DL data, STA2 transmits an ACK/NACK signal including NACK to the AP (ST103-2). In addition, STA2 saves DL data (packet data) before decoding in a buffer.
  • each STA may not transmit the signal to the AP if the preamble part of the DL signal (DLMU signal) cannot be correctly decoded due to, for example, packet collision or deterioration of the channel state.
  • DLMU signal preamble part of the DL signal
  • the AP receives the ACK / NACK signal transmitted from each STA (ST104).
  • the AP transmits a DL signal including, for example, a new packet for STA1 that transmitted ACK and a retransmission packet for STA2 that transmitted NACK (ST105).
  • a DL signal including, for example, a new packet for STA1 that transmitted ACK and a retransmission packet for STA2 that transmitted NACK (ST105).
  • the AP may transmit the DL signal using the HARQ information in the same format as the previous transmission (for example, ST101).
  • STA1 and STA2 perform DL signal reception processing (ST106, ST107-1, and ST107-2) as in the previous transmission (for example, ST101).
  • STA1 and STA2 are instructed in user information corresponding to each STA based on HARQ information (eg, HARQ Type) included in common information in a control signal instructing DLMU transmission included in a DL signal.
  • HARQ information eg, HARQ Type
  • HARQ Type included in common information in a control signal instructing DLMU transmission included in a DL signal. Determines whether the packet is a new packet or a retransmission packet (in other words, HARQ Type).
  • the STA1 since the STA1 is instructed to transmit a new packet in the common information, the STA1 performs the DL data reception process based on the parameters included in the user information having the configuration corresponding to the new transmission (ST107-1). ..
  • FIG. 14 is a sequence diagram showing an operation example of the wireless communication system related to UL communication.
  • MU transmission in the AP uplink wireless reception device 400
  • STA1 and STA2 uplink wireless transmission device 300
  • the number of users in other words, the number of STAs
  • MU transmission is not limited to two and may be three or more.
  • the AP transmits a trigger signal (for example, Trigger frame) instructing UL signal UL MU transmission to STA1 and STA2 (ST201).
  • a trigger signal for example, Trigger frame
  • the type for example, HARQ Type
  • the transmission packet instructed to STA1 and STA2 is a new packet.
  • HARQType is included in the common information (for example, CommonInfofield).
  • STA1 and STA2 perform trigger signal reception processing (decoding processing, etc.) (ST202-1 and ST202-2).
  • STA1 normally decodes the trigger signal (in other words, successful decoding).
  • the STA2 cannot normally decode the trigger signal (in other words, decoding failure) due to, for example, packet collision or trigger signal decoding failure.
  • STA1 Since STA1 successfully decoded the trigger signal, whether the packet instructed to be transmitted in the user information corresponding to STA1 is a new packet based on the HARQ information (for example, HARQType) included in the common information of the trigger signal. Determine if it is a retransmission packet (in other words, HARQ type). STA1 generates a UL signal based on the parameter included in the user information of the configuration corresponding to the determined HARQ type (here, a new packet) and transmits it to the AP (ST203).
  • the HARQ information for example, HARQType
  • STA2 could not decode the trigger signal normally, so the UL signal to AP is not transmitted.
  • the AP detects whether or not it has received the UL signal transmitted from each STA within a fixed time after transmitting the trigger signal (ST204). By this detection, the AP determines whether or not each STA correctly receives the trigger signal and transmits the UL signal. In FIG. 14, the AP determines that there is a UL signal for STA1 while determining that there is no UL signal for STA2.
  • the AP performs a reception process (eg, demodulation, decoding, error detection process, etc.) of the UL signal transmitted from each STA (STA1 in FIG. 14) based on the HARQ information instructed using the trigger signal ( ST205).
  • the AP has an error in the UL signal transmitted from STA1 (in other words, decoding failure).
  • the AP stores the UL signal (in other words, packet data) transmitted from STA1 before decoding in the buffer.
  • the AP schedules a new packet or a retransmission packet based on the UL signal error detection result.
  • the AP is a trigger signal (including, for example, HARQ Type) instructing the transmission of a retransmission packet to STA1 that has failed to decode the UL signal and the transmission of a new packet to STA2 that has not received the UL signal. Is generated and transmitted to STA1 and STS2 (ST206).
  • STA1 and STA2 perform trigger signal reception processing (decoding processing, etc.) (ST207-1 and ST207-2).
  • STA1 and STA2 normally decode the trigger signal (in other words, successful decoding).
  • STA1 has normally decoded the trigger signal, and therefore determines based on the HARQ information included in the common information of the trigger signal that it is a retransmission packet transmission instruction.
  • STA1 determines a retransmission packet based on the HARQ information included in the user information and the transmission signal previously stored in the buffer, and transmits it to the AP (ST208). Since the STA2 has normally decoded the trigger signal, the STA2 determines that it is a new packet transmission instruction based on the HARQ information included in the common information of the trigger signal. STA2 determines a new packet and sends it to the AP (ST208).
  • UL signals from STA1 and STA2 are ULMU transmitted (for example, MU-MIMO transmission or OFDMA transmission).
  • each STA controls the transmission of the UL signal based on the control signal (for example, Trigger frame) instructing the UL MU transmission.
  • the AP determines whether or not each STA correctly receives the trigger signal and transmits the UL signal (ST209). In FIG. 14, the AP determines that there is a UL signal for STA1 and STA2.
  • reception processing for example, demodulation, decoding, error detection processing, etc.
  • the AP controls the reception of the UL signal based on the control signal (for example, Trigger frame) instructing the UL MU transmission.
  • the control signal for example, Trigger frame
  • the AP uses the trigger signal (for example, Trigger frame) to issue the retransmission instruction.
  • the AP may transmit immediate ACK or Block ACK to the STA immediately after receiving the packet transmitted from the STA.
  • NACK may be defined in addition to immediate ACK and Block ACK.
  • the AP may issue a retransmission instruction by transmitting the immediate ACK and the Block ACK and the Trigger frame in the same packet.
  • Multi-STA BlockAck / Nack a format corresponding to the ACK / NACK signal in one frame may be used, and Aggregate MAC Protocol Data Unit (A-MPDU) in which Multi-STA BlockAck and Multi-STA BlockNack are concatenated.
  • A-MPDU Aggregate MAC Protocol Data Unit
  • ACK or NACK addressed to each STA may be multiplexed by OFDMA or MU-MIMO.
  • the STA can recognize that the preamble for the first transmission has been sent (reached) to the AP when the BlockAck is received by the STA. Therefore, the STA may be defined as NACK when the BlockAck bitmap (eg, BlockAck bitmap) is all 0.
  • BlockAck bitmap eg, BlockAck bitmap
  • the STA may notify the AP by capability information (for example, capability) at the time of association or the like, whether or not the STA can be retransmitted immediately after receiving the trigger signal.
  • capability information for example, capability
  • the AP may perform RU allocation for HARQ retransmission in the Trigger frame subsequent to the Trigger frame, without RU allocation in the Trigger frame instructing retransmission to the STA.
  • the STA may notify the AP of NACK or BlockNack.
  • the UL MU transmission instruction is not limited to the Trigger frame, but may be performed in a frame including a Triggered response scheduling (TRS) Control subfield, for example.
  • TRS Triggered response scheduling
  • the following relates to a method for generating HARQ information (eg, size or field type determination) in a control signal for multi-user transmission including common information and user information (eg, SIG-B or Trigger frame included in MU PPDU) Method 1 to Method 4 will be described respectively.
  • HARQ information eg, size or field type determination
  • common information e.g, SIG-B or Trigger frame included in MU PPDU
  • the HARQ information (for example, HARQ Type) included in the common information includes a value for each user (in other words, STA).
  • FIG. 15 shows an example of a format of a control signal (for example, SIG-B) instructing DLMU transmission in method 1.
  • a control signal for example, SIG-B
  • the common information (for example, Common field) includes the HARQ Type (for example, HARQ Type subfield) set for each STA (STA1 and STA2 in FIG. 15 as an example).
  • HARQ Type for STA1 is IR retransmission (hereinafter referred to as IR retransmission)
  • HARQ Type for STA2 is new transmission.
  • the number of HARQ Types included in the common information may be, for example, the number of users that can be transmitted in DLMU transmission (for example, the maximum number of users that can be transmitted). Further, for example, when the common information includes the HARQ Type of the number of transmitting users, the AP may notify the number of transmitting users in DL MU transmission in SIG-A (or HE-SIG-A).
  • a new field different from SIG-A and SIG-B and notifying HARQ information (for example, called SIG-HARQ field) may be added.
  • the STA can grasp the number of transmission users in DL MU transmission by RU Allocation of SIG-B. Therefore, the AP may set HARQ Type for the number of transmitting users in SIG-HARQ.
  • FIG. 16 shows an example of a format of a control signal (for example, Trigger frame) instructing the UL MU transmission in the method 1.
  • a control signal for example, Trigger frame
  • the common information (for example, Common Info field) includes the HARQ Type (for example, HARQ Type subfield) set for each STA (STA1 in FIG. 16 as an example).
  • HARQ Type for STA1 is IR retransmission.
  • the format of the user information (for example, the number or type of parameters included in the user information) is set according to the HARQ information included in the common information.
  • the STA determines the format (in other words, the configuration) of the user information based on the HARQ information included in the common information, for example.
  • FIG. 17A shows a setting example of HARQ information included in the user information.
  • RV corresponding to each transmission count (in other words, retransmission count) is notified from AP to STA. Therefore, as shown in FIG. 17A, when HARQ Type is IR retransmission, RV is included in the user information. In other words, when HARQType is IR retransmission, a subfield notifying RV is added to the user information field (UserSpecific field or UserInfofield).
  • HARQ Type is not limited to three types: new transmission, CC retransmission, and IR retransmission.
  • HARQ Type may be two types, new transmission and retransmission.
  • a subfield used for RV notification is added regardless of CC and IR.
  • IR the value of RV according to the number of packet transmissions is indicated, thereby distinguishing the HARQ combining methods.
  • the format (configuration) of user information differs depending on the HARQ Type set for each user.
  • the HARQ Type set in STA1 indicates IR retransmission
  • the HARQ Type set in STA2 indicates new transmission.
  • the AP sets HARQ information (for example, RV) in the user information (User Specific Field) for STA1 and does not set HARQ information (for example, RV) in the user information for STA2.
  • HARQ Type set in STA1 in the common information indicates IR retransmission in FIG.
  • the AP sets HARQ information (for example, RV) in the user information (UserInfofield) for STA1.
  • the AP when the HARQ Type set in the STA in the common information indicates a new transmission (or in the case of CC retransmission in FIG. 17A), the AP does not set the HARQ information in the user information for the STA (FIG. 16). (Not shown).
  • each STA specifies the format of user information (for example, size or presence of RV information) set for each of the plurality of STAs, for example, based on the HARQ Type of each of the plurality of STAs included in the common information. it can. Therefore, each STA can specify the storage location of the user information for the STA even when the format of the user information is variably set as described above.
  • format of user information for example, size or presence of RV information
  • the format configuration of user information (in other words, the presence or absence of HARQ information) is determined according to the HARQ Type set for each STA in the common information.
  • the format of user information for each STA is variably set according to the HARQ Type of each STA.
  • the STA using the HARQ information for example, RV
  • uses the HARQ information included in the user information to perform retransmission control for example, reception and synthesis of the retransmission packet.
  • the retransmission packet can be transmitted).
  • the signaling amount can be reduced as compared with the case where HARQ information is fixedly set as shown in FIGS. 3 and 4.
  • the target value of the packet error rate may be operated at about 10%. Therefore, the occurrence rate of retransmission packets is lower than that of new packets. Therefore, in the operation of this packet error rate, as compared with the case where HARQ information is fixedly set as shown in FIGS. 3 and 4, when the transmission of a new packet is instructed as in method 1, user information is instructed. The effect of reducing the amount of signaling is large because RV is not included in.
  • the field of the HARQ information for each user included in the common information is set separately for each user (for example, STA), but the present invention is not limited to this. ..
  • HARQ information for example, HARQ Type
  • the HARQ Type of each user may be represented in a bitmap format.
  • the HARQ information (for example, HARQ Type) included in the common information includes a value common to a plurality of users (in other words, STA).
  • the HARQ Type included in the common information is common to, for example, a plurality of users who are the targets of MU transmission. Therefore, in the common information, since a common format is used for the HARQ information, it is possible to reduce the amount of HARQ Type signaling included in the common information.
  • the AP schedules a transmission packet for the user who is the target of MU transmission, based on the HARQ Type set in the common information.
  • 18A and 18B show an example of a format of control information (for example, SIG-B) instructing DLMU transmission in method 2.
  • SIG-B control information
  • FIGS. 19A and 19B show an example of the format of the control information (for example, Trigger frame) instructing ULMU transmission in the method 2.
  • the common information (for example, Common field or Common Info field) includes HARQ Type common to a plurality of STAs.
  • HARQ Type common to a plurality of STAs.
  • FIG. 18A, FIG. 18B, FIG. 19A, and FIG. 19B one field of HARQ information is provided in the common information regardless of the number of users (for example, the number of STAs).
  • HARQ Type is IR retransmission
  • FIGS. 18B and 19B HARQ Type is new transmission.
  • the format of the user information (for example, the number or type of parameters included in the user information) is set according to the HARQ information included in the common information.
  • the STA determines the format (in other words, the configuration) of the user information based on the HARQ information included in the common information, for example.
  • the format of the user information may be set based on the relationship between the HARQ Type shown in FIG. 17A or FIG. 17B and the additional subfield.
  • the format (configuration) of user information differs depending on the HARQ Type set in the common information.
  • the format of user information is also the same among a plurality of STAs.
  • the AP when HARQ Type set in the common information indicates IR retransmission, the AP includes HARQ information (eg, User Specific field or User Info field) for each STA in HARQ information (for example, , RV).
  • HARQ information for example, , RV
  • the AP when the HARQ Type set in the common information indicates new transmission, the AP includes HARQ information (eg, User Specific field or User Info field) in each user information for each STA. , RV) is not set.
  • the format of user information may be determined as in Method 1.
  • each STA can specify the format (for example, the size or the presence or absence of RV information) of user information commonly set for each STA based on the HARQ Type common to a plurality of STAs included in the common information. .. Therefore, each STA can specify the storage location of the user information for the STA even when the format of the user information is variably set as described above.
  • the AP may set the HARQ Type common to each STA in the common information even if the HARQ Types (eg, initial transmission or retransmission) of multiple STAs subject to MU transmission are different.
  • the HARQ Type included in the common information may be determined according to the priority order of the HARQ Type of each STA.
  • the AP may set, for example, HARQ Type having a higher priority among a plurality of STAs in the common information.
  • the priority of HARQ Type may be set in descending order of the amount of HARQ information (for example, RV and NDI) to be added to the user information.
  • the priority of HARQ Type may be “IR”>“CC and new transmission”.
  • the priority of HARQType may be retransmission> new transmission.
  • the priority of HARQ Type may be IR>CC>new transmission.
  • the user information when HARQ Type set in the common information is IR, the user information includes RV and NDI.
  • the STA may refer to the RV and NDI included in the user information corresponding to the STA to determine the HARQ Type actually set for the STA.
  • the STA can specify that the HARQ Type set in the common information is IR retransmission, but the HARQ Type set in the STA is CC retransmission.
  • the STA can specify that the HARQ Type set in the common information is IR retransmission, and the HARQ Type set in the STA is IR retransmission.
  • the STA can specify that the HARQ Type set in the common information is IR retransmission, but the HARQ Type set in the STA is new transmission.
  • the signaling amount of common information increases (for example, 1-2 bits) compared to the case of FIG.
  • HARQ information for example, RV
  • the amount of signaling is reduced by the amount (for example, about 2 bits x number of users).
  • the target value of the packet error rate may be operated at about 10%.
  • the probability of occurrence of the format for example, FIG. 18B
  • the probability of occurrence of the format for example, FIG. 18A
  • the probability of occurrence of the format is about the remaining 10%.
  • the HARQ information is included in the common information, the effect of reducing the signaling amount of the HARQ information included in the user information is large, and the overhead of the entire system can be reduced.
  • the example of the Trigger frame shown in FIGS. 19A and 19B shows a case where the field of HARQ information is set in the common information, but the present invention is not limited to this.
  • TriggerType subfield indicates the type of Trigger frame (for example, the signal type that the AP sends to the STA).
  • Trigger Dependent Common Info subfield can include terminal common information according to Trigger type.
  • the AP may include HARQ information in the TriggerDependentCommonInfosubfield of the common information and the TriggerDependentUserInfosubfield of the user individual information.
  • a Trigger type that can include HARQ information may be set.
  • the AP may include HARQ information when the Trigger type is Basic (trigger type instructing a response through a normal uplink data channel (eg, Scheduled access channel and Random access channel)).
  • the Trigger type is Basic
  • the AP may include the HARQ type in the Trigger Dependent Common Info subfield of the common information and the RV information in the Trigger Dependent User Info subfield of the individual user information.
  • a new Trigger type that can include HARQ information may be added (for example, "HARQ" trigger).
  • the AP may include HARQ information when the Trigger type is HARQ (Trigger type that indicates a response by the uplink data channel including a retransmission packet).
  • the AP may include the HARQ type in the Trigger Dependent Common Info subfield of the common information and the RV information in the Trigger Dependent User Info subfield of the individual user information.
  • the AP may include HARQ information in the common information and individual user information when the Trigger type is Basic or HARQ.
  • the AP deletes the information that has already been transmitted by the user information included in the control signal instructing the transmission of the new packet and whose value does not change between the time of new transmission and the time of retransmission. ..
  • STA when receiving the control signal instructing retransmission, acquires HARQ information based on the user information attached to the previous packet stored in the buffer by the time of the previous transmission.
  • the information that can be deleted at the time of retransmission is HARQ Type (for example, CC and IR) and the type of control signal that instructs MU transmission (for example, for DL MU transmission, SIG-B, for UL MU transmission. Depends on the Trigger frame).
  • HARQ Type for example, CC and IR
  • type of control signal that instructs MU transmission for example, for DL MU transmission, SIG-B, for UL MU transmission.
  • 22 to 25 show an example of information that can be deleted according to the HARQ Type and the type of control signal instructing MU transmission.
  • FIG. 22 shows an example of user information (for example, User Specific field) in SIG-B when HARQ Type is CC.
  • the AP may delete at least one of MCS subfield, Coding subfield, and Reserved sub-field.
  • the STA applies the information saved at the time of the previous transmission with respect to the information deleted at the time of resending.
  • NDI information is added as HARQ information in user information.
  • FIG. 23 shows an example of user information (for example, User Info field) in the Trigger frame when HARQ Type is CC.
  • AP deletes at least one of UL forward error correction (FEC) Coding Type subfield, UL MCS subfield, UL dual subcarrier modulation (DCM) subfield, Reserved subfield. You can do it.
  • FEC forward error correction
  • UL MCS subfield UL MCS subfield
  • DCM dual subcarrier modulation
  • Reserved subfield You can do it.
  • the STA applies the information saved at the previous transmission with respect to the information deleted at the time of retransmission.
  • NDI information is added as HARQ information in the user information.
  • FIG. 24 shows an example of user information (for example, User Specific field) in SIG-B when HARQ Type is IR.
  • the AP may delete at least one of the Coding subfield and the Reserved subfield.
  • the STA applies the information saved at the time of the previous transmission with respect to the information deleted at the time of resending.
  • NDI and RV information are added as HARQ information in the user information.
  • FIG. 25 shows an example of user information (for example, User Info field) in the Trigger frame when HARQ Type is IR.
  • the AP may delete at least one of UL FEC Coding Type subfield, UL DCM DCM subfield, and Reserved sub-field.
  • the STA applies the information saved at the time of the previous transmission with respect to the information deleted at the time of resending.
  • NDI and RV information are added as HARQ information in the user information.
  • the STA can grasp the configuration (for example, size) of the user information based on the HARQ Type of the common information included in the control signal, for example.
  • the AP does not set at least one of the parameters set in the user information when the HARQ information indicates new transmission, in the user information when the HARQ information indicates retransmission.
  • the number of other parameters that are different from the parameters related to retransmission control (for example, RV or NDI) is higher when HARQ Type indicates retransmission and new HARQ Type is newly transmitted. Will be less than if. Therefore, according to method 3, signaling overhead can be reduced at the time of retransmission based on HARQ Type.
  • Method 4 describes a case where the content of the subfield of the parameter (for example, the parameter defined in 11ax) different from the HARQ information of the user information is read as the HARQ information.
  • FIG. 26 shows an example of a case where a retransmission (CC or IR) is instructed in a control signal (eg, SIG-B) instructing DLMU transmission.
  • a control signal eg, SIG-B
  • the Reserved subfield is replaced with the NDI subfield
  • the Coding subfield is replaced with the RV subfield.
  • FIG. 27 shows an example of a case where a retransmission (for example, IR) is instructed in a control signal (for example, Trigger frame) that instructs UL MU transmission.
  • a retransmission for example, IR
  • a control signal for example, Trigger frame
  • UL FEC Coding Type subfield is read as NDI subfield and UL DCM subfield is read as RV subfield in the user information of Trigger frame.
  • the AP switches the information to be included in a part of the subfield of the user information, for example, based on whether the HARQ Type set in the common information is a new transmission or a retransmission. Further, the STA identifies the information to be notified in a part of the subfield of the user information, for example, based on whether the HARQ Type set in the common information is a new transmission or a retransmission.
  • the AP sets the coding method in the Coding subfield of the user information and does not set anything in the Reserved subfield. Also, in the case of a new transmission instruction, the STA acquires the coding method in the Coding subfield.
  • the AP sets the NDI in the Reserved subfield of the user information and sets the RV in the Coding subfield.
  • the STA acquires NDI in the Reserved subfield of user information and RV in the Coding subfield.
  • the AP sets different types of parameters in the user information depending on whether the HARQ information indicates retransmission or new transmission.
  • the types of parameters included in the same field (for example, a specific subfield) of the user information are different depending on whether the HARQ Type indicates that the retransmission is performed or the HARQ Type indicates that the transmission is new.
  • the HARQ information can be obtained from the AP without adding a subfield for the HARQ information as shown in FIG. 3 or 4, for example. Since the STA can be notified, signaling of user information can be reduced.
  • the parameter (in other words, subfield) that can be read as HARQ information in Method 4 is not limited to the examples shown in FIGS. 26 and 27.
  • Reserved subfield may be read as RV subfield and Coding subfield may be read as NDI subfield.
  • the subfield to be read as the subfield of HARQ information is not limited to the Reserved, Coding, ULFECCodingType, and ULDCM subfields, and may be other subfields.
  • the common information included in the control signal instructing the MU transmission includes a parameter related to retransmission control (for example, HARQ information such as HARQ Type). Further, according to the present embodiment, STA determines the configuration of user information included in the control signal instructing MU transmission, based on HARQ included in the common information.
  • HARQ information such as HARQ Type
  • the parameters included in the control signal for instructing MU transmission can be variably set according to the content of HARQ control in MU transmission (for example, HARQ Type).
  • the AP in MU transmission, can include HARQ information in the user information for the STA instructed to newly transmit, and HARQ information in the user information for the STA instructed to resend. This control can reduce the amount of user information signaling. Therefore, according to the present embodiment, it is possible to improve the efficiency of HARQ retransmission control in MU transmission.
  • FIG. 28 is a block diagram showing a configuration example of the downlink radio transmission device 500 (for example, AP) according to the present embodiment.
  • the same components as those in the second embodiment (FIG. 7) are designated by the same reference numerals, and the description thereof will be omitted.
  • the RU allocation setting unit 501 is added to the downlink radio transmission device 100 according to the second embodiment, and the scheduling unit 502 and the HARQ information generation unit 503. The behavior is different.
  • the RU allocation setting unit 501 sets an RU allocation information pattern for each STA (in other words, a user) in the system band, for example.
  • the "RU allocation information pattern” is, for example, "RU allocation information” (for example, a bit sequence such as RU Allocation) included in a control signal for instructing MU transmission, and "RU allocation information indicating an allocation pattern of RUs in the system band.
  • the correspondence with the "pattern” is shown.
  • the RU allocation information pattern may be defined in advance by a specification or the like, for example. An example of the RU allocation information pattern will be described later.
  • the RU allocation pattern may include information on the HARQ Type (in other words, new transmission or retransmission) in addition to the RU (in other words, allocated resource) to be allocated.
  • the HARQ information for example, HARQ Type
  • the resource allocation information for example, RU Allocation
  • the RU allocation pattern may include information on whether or not MU-MIMO is applied (for example, either Single-User-MIMO (SU-MIMO) or MU-MIMO).
  • SU-MIMO Single-User-MIMO
  • MU-MIMO MU-MIMO
  • the RU allocation setting unit 501 outputs information indicating the set RU allocation information pattern to the scheduling unit 502 and HARQ information generating unit 503.
  • the scheduling unit 502 performs scheduling according to the RU allocation pattern that can be notified to each STA (for example, the downlink wireless receiving device 600 described later) based on the RU allocation information pattern input from the RU allocation setting unit 501.
  • Scheduling section 502 outputs the determined scheduling information to HARQ information generating section 503, data generating section 107, data encoding section 108, data modulating section 109, and preamble generating section 110.
  • the HARQ information generation unit 503 includes, based on the RU allocation information pattern input from the RU allocation setting unit 501, the scheduling information input from the scheduling unit 502 in the RU allocation information (bit sequence. For example, RU Allocation ), And output to the data encoding unit 108 and the Preamble generation unit 110.
  • FIG. 29 is a block diagram showing a configuration example of the downlink radio receiving device 600 (for example, STA) according to the present embodiment.
  • the same components as those in the second embodiment (FIG. 8) are designated by the same reference numerals, and the description thereof will be omitted.
  • the downlink radio receiving device 600 differs from the downlink radio receiving device 200 according to the second embodiment in that the RU allocation setting unit 601 is added and the operation of the HARQ information decoding unit 602 is different.
  • the RU allocation setting unit 601 performs the same processing as the RU allocation setting unit 501 of the downlink wireless transmission device 500 shown in FIG.
  • the RU allocation setting unit 601 determines the RU allocation information pattern of the downlink wireless reception device 600 in the system band (for example, the correspondence relationship between the RU allocation information (bit sequence) included in the control signal instructing MU transmission and the RU allocation pattern).
  • the information shown is output to the HARQ information decoding unit 602.
  • the HARQ information decoding unit 602 decodes the HARQ information for the preamble signal input from the preamble demodulation unit 203 according to the set preamble format. Further, the HARQ information decoding unit 602 decodes (in other words, specifies) the RU allocation resource and the HARQ Type based on the RU allocation information (bit series) according to the RU allocation information pattern input from the RU allocation setting unit 601. ) Do.
  • the HARQ information obtained based on the RU allocation information pattern may include, for example, information indicating whether or not MU-MIMO is applied.
  • the HARQ information decoding unit 602 outputs the decoded HARQ information to the data demodulation unit 205, the HARQ synthesis unit 207, and the data decoding unit 208.
  • a control signal (eg, SIG-B) instructing MU transmission includes, for example, common information and user information.
  • HARQ information is included in the RU allocation information (eg, RU Allocation) of each STA included in the common information.
  • the HARQ information included in the RU allocation information is, for example, information indicating the HARQ Type.
  • HARQ Type may include the type of HARQ retransmission control (CC, IR, etc.).
  • the RU allocation information (RU Allocation sub-field) included in the common information (for example, Common field) of SIG-B is configured with 8 bits.
  • a part of the bit sequence of 8 bits of RU Allocation (for example, 76 patterns) is a Reserved pattern in which the RU allocation pattern is not set.
  • these Reserved patterns are associated with RU allocation patterns including HARQ Type.
  • the HARQ information can be notified from the AP to the STA without increasing the overhead of signaling the HARQ information.
  • FIG. 30 shows an example of the RU allocation information pattern in Method 1.
  • some patterns (Reserved pattern, etc. in FIG. 30) have HARQ Type (for example, presence / absence of HARQ retransmission). included.
  • HARQ Type for example, presence / absence of HARQ retransmission
  • the bit sequence of RU Allocation is 11100001
  • 5 users for example, user 1 to user 5
  • user 1 is assigned a new packet of RU#1 to RU#2 (52tone) (in other words, no HARQ retransmission)
  • user 2 is assigned a new packet of RU#3 to RU#4 (52tone).
  • Packets are assigned (in other words, no HARQ retransmission)
  • user 3 is assigned a new packet of RU # 5 (26tone) (in other words, no HARQ retransmission)
  • user 4 is assigned RU # 6 to RU # 7.
  • a new packet of (52tone) (in other words, without HARQ retransmission) is assigned, and user 5 is assigned a retransmission packet of RU # 8 to RU # 9 (52tone) (in other words, with HARQ retransmission).
  • HARQ Type is included in addition to the RU allocation pattern.
  • the AP can notify the STA of the HARQ information (for example, HARQ Type (instruction of new transmission or retransmission)) in the common information without increasing the overhead of signaling the HARQ information.
  • the HARQ information for example, HARQ Type (instruction of new transmission or retransmission)
  • FIG. 31 shows an example of the RU allocation information pattern in Method 2.
  • some patterns include HARQ Type (for example, presence / absence of HARQ retransmission). ..
  • no retransmission packet is assigned to the RU to which MU-MIMO is applied.
  • the RU allocation information is transmitted to the retransmission packet (RU) that is different from the RU used for MU multiplexing (for example, MU-MIMO) and the RU allocation information (for example, resources used for SU multiplexing). In other words, it indicates that a data signal retransmission opportunity) is allocated.
  • the RU allocation pattern includes the MU multiply number (in other words, the STA number). For example, in FIG. 31, when the bit sequence of RU Allocation is 00010001 to 00101111 (partially not shown), MU-MIMO in which 2 to 8 users are multiplexed on the frequency resources of RU # 6 to RU # 9 (106 tone). New packets are allocated.
  • FIG. 31 for example, when the bit sequence of RUAllocation is 00010000, SU-MIMO is applied to the frequency resources of RU # 6 to RU # 9 (106tone), and a new packet is assigned. Further, in FIG. 31, for example, when the bit sequence of RU Allocation is 11100001 (Reserved pattern), SU-MIMO is applied to the frequency resources of RU # 6 to RU # 9 (106 tone), and the retransmission packet is assigned. ..
  • MU-multiplexed packets have more interference than non-MU-multiplexed packets (including, for example, SU-multiplexed packets), and there is a high possibility that performance will deteriorate. Therefore, as in method 2, do not allocate retransmission packets to RUs of 106-tone or more to which MU-MIMO can be applied (in other words, RUs that can multiplex MU) (in other words, MU for retransmission packets). -The effect of performance degradation due to (not applying MIMO) is small. In other words, compared to the case where MU is not multiplexed, the performance of packets to which MU-MIMO is applied is likely to deteriorate.
  • the number of tones when MU-MIMO is applied to 4 RUs is 106 tones, but when MU-MIMO is applied, each of the 4 RUs is set to 106 tones. This is because unused 2tones, which are different from the constituent 26tones, are also used. Note that the number of tones used when MU-MIMO is applied is not limited to 106 tones and may have different values.
  • FIG. 32 shows an example of the RU allocation information pattern in Method 3.
  • some patterns include HARQ Type (for example, presence / absence of HARQ retransmission). ..
  • the retransmission packet is not allocated to the RU centering the system band (also called Center 26-tone RU).
  • the RU allocation information includes the RU (including the center of the system band). For example, it indicates that the retransmission packet (in other words, the retransmission opportunity of the data signal) is assigned to the RU different from the Center 26-tone RU).
  • a new packet is assigned to RU # 5, which is Center 26-tone RU, and a retransmission packet is not assigned. Further, in FIG. 32, either a new packet or a retransmission packet is assigned to another RU different from RU#5 (for example, RU#1 to #4 and RU#6 to #9).
  • the packet assigned to the Center 26-tone RU is affected by the interference due to the DC offset of the receiver, so the performance is likely to deteriorate compared to the packets assigned to other RUs. Therefore, as in Method 3, the effect of performance degradation due to not assigning retransmission packets to Center 26-tone RU is small. In other words, compared to a RU different from the Center 26-tone RU, the performance of the packet assigned to the Center 26-tone RU is likely to deteriorate, so even if HARQ retransmission is applied, the performance will be improved by the retransmission. It's hard to do. On the other hand, HARQ retransmission is applied to the packet assigned to the RU different from the Center 26-tone RU, so that the performance is likely to be improved by the retransmission.
  • the signaling of the RU allocation pattern including the HARQ information can be reduced.
  • the signaling of HARQ information can be reduced by 1 bit as compared with the signaling of the RU allocation pattern (for example, 8 bits).
  • the RU to which the retransmission packet is not assigned is not limited to the Center 26-tone RU.
  • retransmitted packets are not assigned to a specific RU that is expected to have poor quality (in other words, a high possibility of performance degradation) compared to other RUs, such as Center26-toneRU.
  • Specific RUs that are expected to have poor quality include, for example, RUs that are expected to interfere with other systems.
  • the RU allocation information pattern or the specific RU is added to a signal such as a beacon that the AP periodically transmits to all connected users (STA).
  • STA connected users
  • the methods 1 to 3 have been described above. In addition, at least two of methods 1 to 3 may be combined.
  • the AP is a resource that includes information related to retransmission control (for example, HARQ information such as HARQ type) in the common information included in the control signal instructing the MU transmission, in the common information.
  • HARQ information such as HARQ type
  • the allocation information for example, RU Allocation
  • the HARQ information included in the user information may be set according to the HARQ information included in the common information, as in the second embodiment.
  • the HARQ Type is assigned to the Reserved pattern of the RU allocation information (eg, RU Allocation), but it is not limited to this.
  • the size of the RU allocation information (for example, the number of bits or the number of patterns) may be increased, and HARQ Type may be allocated in the increased bit sequence.
  • 11SIG SIG-B (in other words, operation related to downlink communication) has been described as an example.
  • the present embodiment is not limited to this, and may be applied to operations related to uplink communication.
  • the format of the control signal instructing MU transmission is not limited to the format specified in 11ax (for example, SIG-B or Trigger frame), and as shown in FIG. 33, the HARQ dedicated SIG format (hereinafter, HARQ-). (Called SIG) may be added.
  • HARQ-SIG may include common information and user information, and the common information may include at least HARQ information (for example, HARQ Type).
  • the order of the user information (User Info field) of the Trigger frame may be set such that a new packet and a retransmitted packet are distinguished.
  • the user information of the new packet may be arranged prior to the user information of the retransmitted packet.
  • the STA whose HARQ Type notified in the common information is a new packet decodes the User Info field in order from the beginning of the user information (in the order of the solid arrow).
  • the STA whose HARQ Type notified in the common information is a retransmission packet decodes the User Info field in order from the end of the user information (in the order of the dashed arrow).
  • the STA that retransmits can reduce the amount of user information decryption processing.
  • the order of the new packet and the retransmitted packet may be the reverse of that in FIG. 34.
  • the unit of HARQ retransmission is, for example, MPDU which is a unit of MAC protocol data. Further, for example, Aggregate MPDU (A-MPDU) is constructed by concatenating MPDUs.
  • A-MPDU Aggregate MPDU
  • signaling that specifies a Low Density Parity Check (LDPC) block may be included in common information or user information.
  • LDPC Low Density Parity Check
  • the AP or STA can identify the MPDU in the A-MPDU at the PHY (physical layer).
  • the LDPC codeword number including the head of each MPDU or each A-MPDU subframe may be signaled.
  • the LDPC codeword numbers including the beginning of each MPDU are 1, 3 and 4, so that "1", "3" and "4" are used. It may be signaled by the common information of the preamble or the user information.
  • the LDPC codeword from the beginning of the LDPC codeword of the MPDU requested to be resent to the beginning of the next LDPC codeword (or from the last part immediately before the MPDU requested to be resent to the last part of the MPDU) is resent.
  • MPDU can be retransmitted.
  • the MPDU length may be adjusted by, for example, adding padding so that the boundary between the LDPC block and the MPDU is aligned.
  • the HARQ Type for each of a plurality of MPDUs included in one packet for each STA may be included in the common information.
  • the AP or STA sets the format for retransmission in the user information format for the packet. You can.
  • the AP or the STA retransmits the MPDU included in one packet to the format of user information for the packet based on the ratio of the MPDU instructed to be retransmitted and the MPDU instructed to be newly transmitted. Format or format for new transmission may be set.
  • the HARQ retransmission unit may be concatenated in PPDU units or PSDU units instead of MPDU units, and HARQ retransmission may be performed in PPDU units or PSDU units.
  • the HARQ retransmission unit may be an LDPC codeword unit.
  • the HARQ Type of each block may be included in the common information or the user information in order to perform the above-mentioned retransmission for each block.
  • HARQ Type for example, either new or retransmission (CC or IR)
  • RV has been described as an example of HARQ information.
  • HARQ information is not limited to these.
  • the HARQ information includes the HARQ Process ID. Good.
  • the HARQ Process ID may be included in the user information, for example.
  • the downlink radio transmission device 100 and the uplink radio reception device 400 are APs and the downlink radio reception device 200 and the uplink radio transmission device 300 are STAs has been described.
  • the present invention is not limited to this, and for example, the downlink radio transmission device 100 and the uplink radio reception device 400 may be STA.
  • At least two of the first embodiment, the second embodiment, and the third embodiment may be combined and applied.
  • the present disclosure can be realized by software, hardware, or software linked with hardware.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include some or all of the functional blocks.
  • the LSI may include data input and output.
  • the LSI may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor.
  • a programmable FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present disclosure may be realized as digital processing or analog processing.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. The application of biotechnology is possible.
  • the present disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) that have a communication function.
  • the communication device may include a wireless transceiver and a processing / control circuit.
  • the wireless transmitter / receiver may include a receiver and a transmitter, or those as functions.
  • the wireless transceiver (transmitting unit, receiving unit) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator / demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PC) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.).
  • telehealth telemedicines examples include a combination of a care/medicine prescription device, a vehicle or a mobile transportation device (a car, an airplane, a ship, etc.) with a communication function, and various devices described above.
  • the communication device is not limited to portable or mobile, and any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meter or It also includes measuring devices, control panels, etc., vending machines, and any other “Things” that may exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meter or It also includes measuring devices, control panels, etc., vending machines, and any other “Things” that may exist on the IoT (Internet of Things) network.
  • IoT Internet of Things
  • -Communication includes data communication by a cellular system, wireless LAN system, communication satellite system, etc., as well as data communication by a combination of these.
  • the communication device also includes a device such as a controller or a sensor that is connected or coupled to a communication device that executes the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that executes the communication function of the communication device is included.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • a base station includes common information common to the plurality of users, including information related to retransmission control for each of a plurality of users, and individual information for the plurality of users according to the information related to the retransmission control. And a transmission circuit that transmits a control signal including the common information and the user individual information.
  • the information regarding the retransmission control indicates whether the transmission of the data signal is a new transmission or a retransmission for each of the plurality of users.
  • the information regarding the retransmission control includes the values for each of the plurality of users.
  • the information regarding the retransmission control includes a value common to the plurality of users.
  • control circuit determines the configuration of the user individual information based on the information regarding the retransmission control.
  • the control circuit when the information regarding the retransmission control indicates retransmission, sets a parameter regarding the retransmission control in the user individual information, and the information regarding the retransmission control indicates a new transmission. , The parameter is not set in the user individual information.
  • control circuit sets at least one of the parameters set in the user individual information when the information related to the retransmission control indicates new transmission, and the information related to the retransmission control indicates retransmission. Is not set in the user individual information.
  • control circuit sets the information regarding the retransmission control in the resource allocation information included in the common information.
  • the resource allocation information indicates that a resource signal retransmission opportunity is allocated to a resource different from a resource used for multi-user multiplexing.
  • control circuit indicates that the resource allocation information allocates a data signal retransmission opportunity to a resource different from the resource including the center of the system bandwidth.
  • control circuit sets different types of parameters in the user individual information depending on whether the information related to the retransmission control indicates retransmission or new transmission.
  • a terminal is indicated by a reception circuit that receives a control signal including common information common to a plurality of users and user individual information individual to the plurality of users, and the common information.
  • a control circuit that controls retransmission of a data signal based on information on retransmission control for each of the plurality of users, individual user information according to the information on retransmission control, and the like.
  • a base station indicates common information common to the plurality of users, which indicates information related to retransmission control for each of a plurality of users, and the plurality of base stations according to the information related to the retransmission control. And individual user-specific information for each user, and a control signal including the common information and the user-specific information is transmitted.
  • a terminal includes a receiving circuit that receives a control signal including common information common to a plurality of users and user individual information individual to the plurality of users; The data signal retransmission is controlled based on the information regarding the retransmission control for each of the plurality of users and the user individual information corresponding to the information regarding the retransmission control, which are shown in the information.
  • One embodiment of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

下り無線送信装置は、複数のユーザそれぞれについての再送制御に関する情報を含む、複数のユーザに共通の共通情報と、再送制御に関する情報に応じた複数のユーザに個別のユーザ個別情報と、を生成する制御回路と、共通情報とユーザ個別情報とを含む制御信号を送信する送信回路と、を具備する。

Description

基地局、端末、送信方法及び受信方法
 本開示は、基地局、端末、送信方法及び受信方法に関する。
 The Institute of Electrical and Electronics Engineers(IEEE)802.11の規格であるIEEE 802.11ax(以下、「11ax」と呼ぶ)の後継規格として、Topic Interest Group(TIG)及びStudy Group(SG)においてExtream High Throughput(EHT)の規格化検討が進められている。
 EHTにおいて、リンク効率の改善を目的として、Hybrid Automatic Repeat Request(HARQ)の導入が議論されている(例えば、非特許文献2を参照)。
IEEE P802.11ax D3.0, June 2018 IEEE 802.11-18/2029r1, HARQ in EHT, Jan. 14, 2019
 しかしながら、無線ローカルエリアネットワーク(Wireless Local Area Network:WLAN)等の無線通信におけるHARQ再送制御の方法については十分に検討されていない。
 本開示の非限定的な実施例は、HARQ再送制御の効率化を図ることができる基地局、端末、送信方法及び受信方法の提供に資する。
 本開示の一実施例に係る基地局は、複数のユーザそれぞれについての再送制御に関する情報を含む、前記複数のユーザに共通の共通情報と、前記再送制御に関する情報に応じた前記複数のユーザに個別のユーザ個別情報と、を生成する制御回路と、前記共通情報と前記ユーザ個別情報とを含む制御信号を送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、HARQ再送制御の効率化を図ることができる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
SIG-Bのフォーマットの一例を示す図 Trigger frameのフォーマットの一例を示す図 実施の形態1に係るSIG-Bのフォーマットの一例を示す図 実施の形態1に係るTrigger frameのフォーマットの一例を示す図 実施の形態2に係る下り無線送信装置の一部の構成例を示すブロック図 実施の形態2に係る下り無線受信装置の一部の構成例を示すブロック図 実施の形態2に係る下り無線送信装置の構成例を示すブロック図 実施の形態2に係る下り無線受信装置の構成例を示すブロック図 実施の形態2に係る上り無線送信装置の一部の構成例を示すブロック図 実施の形態2に係る上り無線受信装置の一部の構成例を示すブロック図 実施の形態2に係る上り無線送信装置の構成例を示すブロック図 実施の形態2に係る上り無線受信装置の構成例を示すブロック図 実施の形態2に係る下り無線通信に関する無線通信システムの動作例を示すシーケンス図 実施の形態2に係る上り無線通信に関する無線通信システムの動作例を示すシーケンス図 実施の形態2の方法1に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法1に係るTrigger frameのフォーマットの一例を示す図 実施の形態2の方法1に係るHARQ Typeと追加subfieldとの関係の一例を示す図 実施の形態2の方法1に係るHARQ Typeと追加subfieldとの関係の一例を示す図 実施の形態2の方法2に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法2に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法2に係るTrigger frameのフォーマットの一例を示す図 実施の形態2の方法2に係るTrigger frameのフォーマットの一例を示す図 実施の形態2の方法2に係るHARQ Typeと追加subfieldとの関係の一例を示す図 実施の形態2の方法2に係るTrigger frameのフォーマットの他の例を示す図 実施の形態2の方法3に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法3に係るTrigger frameのフォーマットの一例を示す図 実施の形態2の方法3に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法3に係るTrigger frameのフォーマットの一例を示す図 実施の形態2の方法4に係るSIG-Bのフォーマットの一例を示す図 実施の形態2の方法4に係るTrigger frameのフォーマットの一例を示す図 実施の形態3に係る下り無線送信装置の構成例を示すブロック図 実施の形態3に係る下り無線受信装置の構成例を示すブロック図 実施の形態3の方法1に係るRU割当情報パターンの一例を示す図 実施の形態3の方法2に係るRU割当情報パターンの一例を示す図 実施の形態3の方法3に係るRU割当情報パターンの一例を示す図 他の実施の形態に係る制御信号のフォーマットの一例を示す図 他の実施の形態に係るTrigger frameのフォーマットの一例を示す図 他の実施の形態に係るPPDUのフォーマットの一例を示す図
 以下、本開示の各実施の形態について図面を参照して詳細に説明する。
 例えば、11axは、マルチユーザ(Multi-User(MU))伝送をサポートしている(例えば、非特許文献1を参照)。MU伝送には、例えば、Downlink MU-Multiple Input Multiple Output(DL MU-MIMO)及びDL Orthogonal Frequency Division Multiple Access(DL OFDMA)等がある。
 DL MU-MIMO又はDL OFDMAの場合、アクセスポイント(Access Point(AP)、又は「基地局」とも呼ばれる)は、例えば、Multiuser Physical layer Protocol Data Unit(MU PPDU)に含まれるPreambleの制御信号(例えば、SIG-B又はSIG-Bフィールドと呼ぶ)を用いて、各STA(「Station(STA)」又は「端末」とも呼ばれる)に制御情報を通知する。
 また、Uplink MU-MIMO(UL MU-MIMO)又はUL OFDMAの場合、APは、UL OFDMA信号の送信を促す制御信号 (以下、「Trigger frame」又はトリガ信号と呼ぶ)を用いて、当該APが収容している複数のSTAに対して制御情報を通知する。
 図1は、11axにおける下りMU伝送を指示する、High Efficiency MU PPDU(HE MU PPDU)(以下、単に「MU PPDU」と呼ぶ)のHE-SIG-B(以下、単に「SIG-B」と呼ぶ)の構成例を示す。
 図1に示すように、SIG-Bは、複数のユーザ(換言すると、STA)に共通の情報(以下、「共通情報」と呼ぶ)を含む「Common field」、及び、ユーザ毎の情報(以下、「ユーザ情報」又は「ユーザ個別情報」と呼ぶ)を含む「User Specific field」を含む。Common fieldでは、例えば、Resource Unit (RU) Allocation subfieldにおいて、各ユーザに割り当てられるRU及びユーザ多重数が通知される。また、User Specific fieldは、例えば、1つ以上のUser Block field(図示せず)によって構成される。各User Block fieldは、1又は2ユーザのUser fieldをBlock Check Character(BCC)で符号化したfieldである。また、User fieldの並び順は、例えば、Common fieldに含まれるRU Allocation subfieldにおいてRUが割り当てられたユーザの並び順に対応してよい。
 図2は、11axにおける上りMU伝送を指示するTrigger frameの構成例を示す。
 図2に示すように、Trigger frameは、SIG-Bと同様、共通情報を含む「Common Info field」、及び、ユーザ情報を含む「User Info field」を含む。例えば、SIG-Bでは、Common fieldに含まれるRU Allocation subfieldにおいて全てのSTAに対するRUの割り当て情報が通知されるのに対し、Trigger frameでは、User Info fieldに含まれるRU Allocation subfieldにおいてSTA毎のRUの割り当て情報が通知される。
 EHTにおいて、セルエッジ又はチャネル変動の大きい環境における通信品質の改善を目的として、パケットの再送制御(例えば、Hybrid Automatic Repeat Request(HARQ))の導入が議論されている(例えば、非特許文献2を参照)。HARQは、MACレイヤのでの再送制御と異なり、物理レイヤのパケット(物理データチャネル)を再送し、受信側で前回のパケットと合成することにより利得を向上させる技術である。
 EHTにおいてHARQでは、Chase Combine(CC)及びIncremental Redundancy(IR)の2つの再送方式が検討されている。CCは、誤ったパケットと同一のパケットを再送し、最大比合成により受信品質(例えば、Signal-to-Noise Ratio(SNR))を向上する方法である。また、IRは、送信側で循環的バッファ(circular buffer)に保存した符号化系列データの送信開始位置(例えば、「Redundancy version(RV)」と呼ぶ)に応じて送信回数毎に異なるパリティビットを含む符号化系列を送信し、受信側で合成(以下、HARQ合成と呼ぶこともある)することにより、符号化利得を向上する方法である。
 しかしながら、EHT等のWLANにおいて、MU伝送(例えば、MU-MIMO及びOFDMA)でのHARQ再送制御方法は十分に検討されていない。
 そこで、本開示の一実施例では、MU伝送においてHARQ再送制御の効率化を図る方法について説明する。
 [無線通信システムの構成]
 本開示の一実施例に係る無線通信システムは、少なくとも1つのAP、及び、複数のSTAを含む。
 例えば、DL通信(例えば、DLデータの送受信)では、AP(「下り無線送信装置」とも呼ぶ)は、複数のSTA(「下り無線受信装置」とも呼ぶ)に対するDL信号を、下りMU送信する。各STAは、下りMU送信された信号から、当該STA向けのDL信号を受信する。
 また、例えば、UL通信(例えば、ULデータの送受信)では、複数のSTA(上り無線送信装置」とも呼ぶ)は、UL信号を上りMU送信する。AP(「上り無線受信装置」とも呼ぶ)は、複数のSTAから上りMU送信されるUL信号を受信する。
 (実施の形態1)
 実施の形態1では、例えば、APからSTAへ通知される制御信号(換言すると、制御信号のフォーマット)に含まれるユーザ情報に、データ信号の再送制御に関する情報(例えば、HARQ情報又はHARQ制御信号と呼ぶ)が含まれる。
 換言すると、ユーザ情報が通知されるフィールドには、HARQ情報が通知されるsubfieldが含まれる。
 以下、一例として、11axにおけるMU伝送用の制御信号(例えば、DL伝送の場合はSIG-B、UL伝送の場合はTrigger frame)のフォーマットをベースにして、ユーザ情報にHARQ制御信号を含める場合について説明する。
 図3は、下りMU伝送用のSIG-Bにおいて、ユーザ情報(User Specific field)に、HARQ情報(HARQ Info subfield)を含めた例を示す。
 また、図4は、上りMU伝送用のTrigger frameにおいて、ユーザ情報(User Info field)に、HARQ情報(HARQ Info subfield)を含めた例を示す。
 例えば、図3及び図4に示すように、各STAに対する再送の有無(換言すると、新規パケット及び再送パケットの何れか)に依らず、各ユーザ情報には、固定サイズのHARQ情報が追加されてよい。換言すると、図3及び図4では、802.11axと同様、ユーザ情報(例えば、User specific field)の構成(例えば、サイズ及びSub field種別等)は固定となる。
 なお、図3及び図4に示すユーザ情報の構成は、HARQ情報の有無に応じた可変長でもよい。この場合、APは、各ユーザ情報の構成(例えば、サイズ又はSub field種別)を示す制御情報をSTAへ通知する。
 また、STAは、HARQ情報の有無に応じた可変構成を有するユーザ情報をブラインド復号(換言すると、モニタ)してもよい。この場合、ユーザ情報の構成を示す制御情報の通知は不要となる。
 実施の形態1によれば、各STAは、当該STAに対応するユーザ情報に含まれるHARQ情報を用いて、再送制御(例えば、再送パケットの送受信)を適切に制御できる。
 (実施の形態2)
 実施の形態1において、図3及び図4に示すように、HARQ情報を含むユーザ情報(User Specific field又はUser Info field)の構成が固定の場合、MU伝送におけるユーザ多重数に比例して、ユーザ情報のシグナリング量(換言すると、オーバーヘッド)が増加する。
 また、実施の形態1において、ユーザ情報の構成がHARQ情報の有無に応じて可変の場合、ユーザ情報の構成(例えば、サイズ)を示す制御情報がAPからSTAへ通知される分、シグナリング量が増加する。また、ユーザ情報の構成を示す制御情報を通知せずに、受信側であるSTAにおいてユーザ情報をブラインド復号する場合、STAにおける復号処理が複雑化する。
 そこで、本実施の形態では、HARQ情報のオーバーヘッドを低減し、システム効率を向上する再送制御方法について説明する。
 [DL通信に関する無線通信システムの構成例]
 まず、DL通信に関する無線通信システムの構成例について説明する。DL通信に関する無線通信システムは、例えば、下り無線送信装置100(例えば、AP)と、下り無線受信装置200(例えば、STA)とを含む。
 下り無線送信装置100は、例えば、共通情報及びユーザ情報を含むPreambleの制御信号(例えば、SIG-B)、及び、制御信号に基づいて設定されるDLデータ信号を、下り無線受信装置200へ送信する。下り無線受信装置200は、下り無線送信装置100から送信された制御信号及びDLデータ信号を受信する。なお、Preambleは、例えば、MU伝送用の物理データチャネル(例えば、MU PPDU)に含まれてよい。
 図5は、本開示の一実施例に係る下り無線送信装置100の一部の構成例を示すブロック図である。図5に示す下り無線送信装置100において、制御部は、複数のユーザそれぞれについての再送制御に関する情報(例えば、HARQ情報)を含む、複数のユーザに共通の共通情報(例えば、Common fieldの情報)と、再送制御に関する情報に応じた複数のユーザに個別のユーザ個別情報(例えば、User Specific fieldの情報)と、を生成する。無線送信部は、共通情報とユーザ個別情報とを含む制御信号(例えば、SIG-B)を送信する。
 図6は、本開示の一実施例に係る下り無線受信装置200の一部の構成例を示すブロック図である。図6に示す下り無線受信装置200において、無線受信部は、複数のユーザに共通の共通情報(例えば、Common fieldの情報)と、複数のユーザに個別のユーザ個別情報(例えば、User Specific fieldの情報)と、を含む制御信号(例えば、SIG-B)を受信する。制御部は、共通情報において示される、複数のユーザそれぞれについての再送制御に関する情報(例えば、HARQ情報)と、再送制御に関する情報に応じたユーザ個別情報と、に基づいて、データ信号の再送を制御する。
 <下り無線送信装置100の構成例>
 図7は、下り無線送信装置100(例えば、AP)の構成例を示すブロック図である。図7に示す下り無線送信装置100は、例えば、無線受信部101と、Preamble復調部102と、データ復調部103と、データ復号部104と、スケジューリング部105と、HARQ情報生成部106と、データ生成部107と、データ符号化部108と、データ変調部109と、Preamble生成部110と、無線送信部111とを含む。
 例えば、図5に示す制御部は、図7において制御信号の生成に関する処理部(例えば、スケジューリング部105、HARQ情報生成部106、又は、及び、Preamble生成部110等)に対応してよい。また、図5に示す無線送信部は、例えば、図7に示す無線送信部111に対応してよい。
 無線受信部101は、アンテナを介して下り無線受信装置200(例えば、STA)から送信された信号を受信し、受信信号にダウンコンバート、A/D変換等の無線受信処理を行う。下り無線受信装置200から送信された信号には、例えば、Preamble部(Preamble信号とも呼ぶ)及びデータ部(データ信号とも呼ぶ)が含まれてよい。また、データ部には、例えば、DLデータに対する応答信号であるAcknowledgement(ACK)/Negative Acknowledgement(NACK)信号が含まれてよい。
 無線受信部101は、無線受信処理後の受信信号から、Preamble部を抽出し、Preamble復調部102へ出力する。また、無線受信部101は、無線受信処理後の受信信号から、データ部を抽出し、データ復調部103へに出力する。
 Preamble復調部102は、無線受信部101から入力されるPreamble部に対してフーリエ変換(Fast Fourier Transform(FFT))等の復調処理を行い、Preamble部に含まれるデータの復調及び復号に用いる制御情報を抽出する。制御情報には、例えば、無線割当リソース情報、又は、変調符号化方式(Modulation and Coding Scheme(MCS)等が含まれてよい。Preamble復調部102は、抽出した制御情報をデータ復調部103及びデータ復号部104に出力する。また、Preamble復調部102は、例えば、Preambleを用いてチャネル推定を行う場合、チャネル推定結果をデータ復調部103に出力してよい。
 データ復調部103は、無線受信部101から入力されるデータ部に対してFFT等の処理を行い、Preamble復調部102から入力される制御情報及びチャネル推定結果を用いて、データ部を復調し、復調後のデータ信号をデータ復号部104へ出力する。
 データ復号部104は、Preamble復調部102から入力される制御情報を用いて、データ復調部103から入力されるデータ信号を復号し、下り無線受信装置200毎のACK/NACK信号(例えば、ACK及びNACKの何れかを示す信号)を取得する。データ復号部104は、ACK/NACK信号をスケジューリング部105へ出力する。
 スケジューリング部105は、例えば、データ復号部104から入力される、下り無線受信装置200毎のACK/NACK信号に基づいて、各下り無線受信装置200に対するHARQ種別(以下、HARQ Typeとも呼ぶ)を決定する。HARQ種別は、例えば、下り無線受信装置200に対する次回送信において、新規パケット及び再送パケットの何れを送信するかを示す。換言すると、HARQ種別は、データ信号の送信が新規送信であるか、再送であるかを示す。また、HARQ種別は、再送パケットの送信の際のHARQの合成方法(例えば、CC又はIR)を示してよい。
 また、スケジューリング部105は、例えば、DLデータを多重送信する送信端末数(換言すると、ユーザ多重数、又は、下り無線受信装置200の数)、DLデータのPHY Service Data Unit(PSDU)長、符号化方法、周波数帯域幅、MCS、又は、各下り無線受信装置200に対するリソース(例えば、RU)の割り当て等のSIG-Bに含める制御情報を決定する。スケジューリング部105は、スケジューリング結果を示すスケジューリング情報を、HARQ情報生成部106、データ生成部107、データ符号化部108、データ変調部109、及び、Preamble生成部110へ出力する。
 HARQ情報生成部106は、スケジューリング部105から入力されるスケジューリング情報のうち、例えば、下り無線受信装置200毎のパケットのHARQ種別、RU割当情報、又は、再送回数に基づいて、HARQ情報を生成する。HARQ情報には、例えば、New Data Indicator(NDI)及びRVの少なくとも一つが含まれてよい。HARQ情報生成部106は、生成したHARQ情報をデータ符号化部108及びPreamble生成部110へ出力する。
 なお、HARQ情報にHARQ合成方法(CC及びIRの何れか)が含まれる場合、HARQ合成方法の設定は、例えば、下り無線受信装置200の能力を示す情報(以下、能力情報と呼ぶ)に基づいて決定されてよい。下り無線受信装置200の能力情報は、例えば、下り無線受信装置200が初期接続時に下り無線送信装置100(例えば、AP)へ送信してよい。また、能力情報には、例えば、当該下り無線受信装置200がサポートするHARQの合成方法(例えば、CC及びIRの双方をサポート、又は、CCをサポートし、IRをサポートしない等)を示す情報が含まれてよい。
 データ生成部107は、スケジューリング部105から入力されるスケジューリング情報(例えば、パケット長等を示す情報)に基づいて、該当する下り無線受信装置200宛てのデータ系列(換言すると、DLデータ)を生成し、生成したデータ系列をデータ符号化部108へ出力する。
 データ符号化部108は、スケジューリング部105から入力されるスケジューリング情報(例えば、符号化方法又はMCS)を用いて、データ生成部107から入力されるデータ系列を符号化し、符号化データを保持する。例えば、IRを用いる場合、データ符号化部108は、保持した符号化データから、例えば、HARQ情報生成部106から入力されるHARQ情報(例えば、RV)に対応する符号化データを抽出し、抽出した符号化データをデータ変調部109へ出力する。また、例えば、CCを用いる場合、データ符号化部108は、保持した符号化データから、HARQ情報生成部106から入力されるHARQ情報(例えば、設定された値のRV(例えば、RV=0))に対応する符号化データを抽出し、抽出した符号化データをデータ変調部109へ出力する。
 データ変調部109は、例えば、スケジューリング部105から入力されるスケジューリング情報(例えば、MCS)を用いて、データ符号化部108から入力される符号化データを変調し、変調後の信号を無線送信部111へ出力する。符号化データの変調には、例えば、Quadrature Amplitude Modulation(QAM)等の変調方式が使用されてよい。また、例えば、データ変調部109は、スケジューリング情報(例えば、RU割当情報)に基づいて、変調後の信号を無線リソースに割り当て、逆フーリエ変換(Inverse Fast Fourier Transform(IFFT)処理を行い、OFDM信号を生成し、無線送信部111へ出力してよい。
 Preamble生成部110は、スケジューリング部105から入力されるスケジューリング情報(例えば、送信端末数、又は、送信帯域情報等)、及び、HARQ情報生成部106から入力されるHARQ情報に基づいて、Preamble信号を生成し、無線送信部111へ出力する。Preamble信号は、例えば、RU割当情報を含む制御情報、及び、参照情報等により構成されてよい。
 無線送信部111は、データ変調部109から入力されるデータ部(例えば、OFDM信号)と、Preamble生成部110から入力されるPreamble部とを時間多重する。無線送信部111は、時間多重した信号に対して、D/A変換、キャリア周波数にアップコンバート等の無線送信処理を行い、無線送信処理後の信号をアンテナを介して下り無線受信装置200へ送信する。
 <下り無線受信装置200の構成例>
 図8は、下り無線受信装置200(例えば、STA)の構成例を示すブロック図である。図8に示す下り無線受信装置200は、例えば、無線受信部201と、Preamble検出部202と、Preamble復調部203と、HARQ情報復号部204と、データ復調部205と、データ保持部206と、HARQ合成部207と、データ復号部208と、誤り判定部209と、ACK/NACK信号生成部210と、ACK/NACK信号変調部211と、Preamble生成部212と、無線送信部213とを含む。
 例えば、図6に示す無線受信部は、図8に示す無線受信部201に対応してよい。また、図6に示す制御部は、図8において制御信号(例えば、SIG-B)の受信に関する処理部(例えば、Preamble検出部202、Preamble復調部203、又は、HARQ情報復号部204等)に対応してよい。
 無線受信部201は、アンテナを介して受信した信号をダウンコンバート、A/D変換等の無線受信処理を行い、無線受信処理後の信号をPreamble検出部202へ出力する。
 Preamble検出部202は、無線受信部201から入力される受信信号に対して、例えば、相関検出又は電力検出等を行い、Preamble信号を検出(換言すると、受信判定)する。例えば、Preamble検出部202は、Preamble信号を検出した場合、受信信号に含まれるPreamble部をPreamble復調部203へ出力し、受信信号に含まれるデータ部をデータ復調部205へ出力する。一方、Preamble検出部202は、Preamble信号を検出しない場合、以降の受信処理を中止してよい。
 Preamble復調部203は、Preamble検出部202から入力される受信信号のPreamble部に対してFFT等の復調処理を行い、復調後のPreamble信号をHARQ情報復号部204へ出力する。
 HARQ情報復号部204は、Preamble復調部203から入力されるPreamble信号を用いて、HARQ情報を復号する。なお、HARQ情報の復号処理は、例えば、設定されたPreambleのフォーマットに従って行われてよい。HARQ情報復号部204は、復号したHARQ情報を、データ復調部205、HARQ合成部207、及び、データ復号部208へ出力する。
 データ復調部205は、Preamble検出部202から入力されるデータ信号(例えば、データ部)に対してFFT処理を行い、HARQ情報復号部204から入力されるHARQ情報(例えば、RU割り当て情報等)を用いて、下り無線受信装置200宛てのデータ(DLデータ)を抽出する。また、データ復調部205は、抽出したデータに対して、チャネル等化、復調(例えば、QAM復調)を行い、復調後のデータ信号をデータ保持部206へ出力する。
 データ保持部206は、データ復調部205から入力されるデータ信号をバッファに保存するとともに、HARQ合成部207へ出力する。データ保持部206は、誤り判定部209において復号後のデータに誤り無しと判定された場合、保存されたデータ信号をバッファから削除する。また、データ保持部206は、誤り判定部209において復号後のデータに誤り有りと判定された場合、当該データの再送回数が規定された回数(換言すると、最大再送回数)を超えるまで、当該データを保持する。
 HARQ合成部207は、HARQ情報復号部204から入力されるHARQ情報(例えば、HARQ Type、RV又はNDI)に基づいて、データ保持部206から入力される受信データに対してHARQ合成を行うか否かを判断する。例えば、受信データが新規パケットの場合、HARQ合成部207は、HARQ合成を行わずに、受信データをそのままデータ復号部208へ出力する。また、例えば、受信データが再送パケットの場合、HARQ合成部207は、バッファから再送前の保存データを探索して取り出し、例えば、通知されたRVに従って、保存データと受信データとのHARQ合成を行い、合成後のデータをデータ復号部208へ出力する。
 データ復号部208は、HARQ情報復号部204から入力されるHARQ情報(例えば、符号化方法又はMCS等)を用いてHARQ合成部207から入力されるデータを復号し、復号後のデータを誤り判定部209へ出力する。
 誤り判定部209は、データ復号部208から入力されるデータ(換言すると、データ復号結果)に対して、Cyclic Redundancy Check(CRC)等を用いて誤り検出を行う。誤り判定部209は、誤り無しの場合、誤り無しを示す情報をデータ保持部206へ出力し、ACK要求を示す情報をACK/NACK信号生成部210へ出力する。また、誤り判定部209は、誤り有りの場合、誤り有りを示す情報をデータ保持部206へ出力し、NACK要求を示す情報をACK/NACK信号生成部210へ出力する。
 ACK/NACK信号生成部210は、誤り判定部209から入力される情報(例えば、ACK要求又はNACK要求)に基づいて、ACK/NACK信号(ACK又はNACKの何れかを示す信号)を生成し、ACK/NACK信号変調部211へ出力する。なお、ACK/NACK信号生成部210は、NACKを生成する場合、ACK/NACK信号に、再送パケットの送信を要求する信号(例えば、HARQ再送信号)を含めてもよい。
 ACK/NACK信号変調部211は、ACK/NACK信号生成部210から入力されるACK/NACK信号に対してIFFT処理又は変調(例えば、QAM変調)等の処理を行い、変調後の信号(例えば、データ信号と呼ぶ)を無線送信部213へ出力する。
 Preamble生成部212は、ACK/NACK信号を含むパケットに用いるPreamble信号を生成し、無線送信部213へ出力する。
 無線送信部213は、Preamble生成部212から入力されるPreamble信号(又は、Preamble部と呼ぶ)と、ACK/NACK信号変調部211から入力されるデータ信号(又は、データ部と呼ぶ)とを時間多重する。無線送信部213は、時間多重された信号に対して、D/A変換、キャリア周波数へのアップコンバート等の無線送信処理を行い、無線送信処理後の信号をアンテナを介して下り無線送信装置100へ送信する。
 [UL通信に関する無線通信システムの構成例]
 次に、UL通信に関する無線通信システムの構成例について説明する。UL無線通信に関する無線通信システムは、例えば、上り無線送信装置300(例えば、STA)と、上り無線受信装置400(例えば、AP)とを含む。
 上り無線送信装置300は、例えば、上り無線受信装置400が送信した、共通情報及びユーザ情報を含むPreambleの制御信号(例えば、Trigger frame)に基づいて、ULデータ信号を上り無線受信装置400へ送信する。上り無線受信装置400は、上り無線送信装置300から送信されたULデータ信号を受信する。なお、ULデータは、例えば、マルチユーザ伝送用の物理チャネル(例えば、Trigger-based(TB)PPDU)に含まれてよい。
 図9は、本開示の一実施例に係る上り無線送信装置300の一部の構成例を示すブロック図である。図9に示す上り無線送信装置300において、無線受信部は、複数のユーザに共通の共通情報(例えば、Common Info fieldの情報)と、複数のユーザに個別のユーザ個別情報(例えば、User Info fieldの情報)と、を含む制御信号(例えば、Trigger frame)を受信する。制御部は、共通情報において示される、複数のユーザそれぞれについての再送制御に関する情報(例えば、HARQ情報)と、再送制御に関する情報に応じたユーザ個別情報と、に基づいて、データ信号の再送を制御する。
 図10は、本開示の一実施例に係る上り無線受信装置400の一部の構成例を示すブロック図である。図10に示す上り無線受信装置400において、制御部は、複数のユーザそれぞれについての再送制御に関する情報(例えば、HARQ情報)を含む、複数のユーザに共通の共通情報(例えば、Common Info fieldの情報)と、再送制御に関する情報に応じた複数のユーザに個別のユーザ個別情報(例えば、User Info fieldの情報)と、を生成する。無線送信部は、共通情報とユーザ個別情報とを含む制御信号(例えば、Trigger frame)を送信する。
 <上り無線送信装置300の構成例>
 図11は、上り無線送信装置300(例えば、STA)の構成例を示すブロック図である。図11に示す上り無線送信装置300は、例えば、無線受信部301と、Preamble検出部302と、Preamble復調部303と、データ復調部304と、データ復号部305と、HARQ情報保持部306と、データ生成部307と、データ符号化部308と、データ変調部309と、Preamble生成部310と、無線送信部311とを含む。
 例えば、図9に示す無線受信部は、例えば、図11に示す無線受信部301に対応してよい。また、図9に示す制御部は、例えば、図11においてデータ信号の再送制御に関する処理部(例えば、HARQ情報保持部306、データ生成部307、データ符号化部308、データ変調部309、及び、Preamble生成部310等)に対応してよい。
 無線受信部301は、アンテナを介して上り無線受信装置400(例えば、AP)から送信された信号を受信し、受信信号にダウンコンバート、A/D変換等の無線受信処理を行い、無線受信処理後の信号をPreamble検出部302へ出力する。
 Preamble検出部302は、無線受信部301から入力される受信信号に対して、例えば、相関検出又は電力検出等を行い、Preamble信号を検出(換言すると、受信判定)する。例えば、Preamble検出部302は、Preamble信号を検出した場合、受信信号に含まれるPreamble部をPreamble復調部303へ出力し、受信信号に含まれるデータ部(例えば、Trigger frameを含む)をデータ復調部304へ出力する。一方、Preamble検出部302は、Preamble信号を検出しない場合、以降の受信処理を中止してよい。
 Preamble復調部303は、Preamble検出部302から入力される受信信号のPreamble部に対してFFT等の復調処理を行い、復調後のPreamble信号をデータ復調部304及びデータ復号部305へ出力する。また、Preamble復調部303は、例えば、Preamble信号を用いてチャネル推定を行う場合、チャネル推定結果をデータ復調部304へ出力してよい。
 データ復調部304は、Preamble復調部303から出力されるPreamble信号に含まれる制御情報及びチャネル推定結果を用いて、Preamble検出部302から入力されるデータ信号(例えば、データ部)を復調して、例えば、Trigger frameを含む受信データを抽出し、データ復号部305へ出力する。
 データ復号部305は、Preamble復調部303から入力されるPreamble信号に含まれる制御情報を用いて、データ復調部304から入力される受信データを復号して、復号後の信号を、HARQ情報保持部306へ出力する。
 HARQ情報保持部306は、データ復号部305から入力される信号に含まれるTrigger frameにおける共通情報及びユーザ情報に含まれる、ULデータの送信に関する制御情報をデータ生成部307、データ符号化部308、データ変調部309及びPreamble生成部310へ出力する。なお、ULデータの送信に関する制御情報は、例えば、11axの上りマルチユーザ伝送フォーマットであるHE TB PDCU(以下、TB PPDUと呼ぶ)送信に関する情報でもよい。
 また、HARQ情報保持部306は、Trigger frameに含まれる制御情報をバッファに保存する。例えば、HARQ情報保持部306は、Trigger frameに含まれるHARQ情報を用いてHARQ再送を指示された場合、バッファに保存している前回送信時の制御情報を、データ生成部307、データ符号化部308、データ変調部309及びPreamble生成部310へ出力してよい。
 データ生成部307は、HARQ情報保持部306から入力される制御情報(例えば、パケット長等を示す情報)に基づいて、データ系列(換言すると、ULデータ)を生成し、生成したデータ系列をデータ符号化部308へ出力する。
 データ符号化部308は、HARQ情報保持部306から入力される制御情報(例えば、符号化方法又はMCS等)を用いて、データ生成部307から入力されるデータ系列を符号化し、符号化データを保持する。例えば、IRを用いる場合、データ符号化部308は、保持した符号化データから、例えば、HARQ情報保持部306から入力される制御情報(例えば、RV)に対応する符号化データを抽出し、抽出した符号化データをデータ変調部309へ出力する。また、例えば、CCを用いる場合、データ符号化部308は、保持した符号化データから、HARQ情報保持部306から入力される制御情報(例えば、設定された値のRV(例えばRV=0))に対応する符号化データを抽出し、抽出した符号化データをデータ変調部309へ出力する。
 データ変調部309は、例えば、HARQ情報保持部306から入力される制御情報(例えば、MCS)を用いて、データ符号化部308から入力される符号化データを変調し、変調後の信号を無線送信部311へ出力する。また、例えば、データ変調部309は、HARQ情報保持部306から入力される制御情報(例えば、RU割当情報)に基づいて、変調後の信号を無線リソースに割り当て、IFFT処理を行い、OFDM信号を生成し、無線送信部311へ出力してよい。
 Preamble生成部310は、HARQ情報保持部306から入力される制御情報に基づいて、Preamble信号を生成し、無線送信部311へ出力する。
 無線送信部311は、データ変調部309から入力される信号(例えば、データ部)と、Preamble生成部310から入力されるPreamble信号(例えば、Preamble部)とを時間多重する。無線送信部311は、時間多重された信号に対して、D/A変換、キャリア周波数へのアップコンバート等の無線送信処理を行い、無線送信処理後の信号をアンテナを介して上り無線受信装置400へ送信する。
 <上り無線受信装置400の構成例>
 図12は、上り無線受信装置400(例えば、AP)の構成例を示すブロック図である。図12に示す上り無線受信装置400は、例えば、無線受信部401と、Preamble復調部402と、受信有無検出部403と、データ復調部404と、データ保持部405と、HARQ合成部406と、データ復号部407と、誤り判定部408と、スケジューリング部409と、HARQ情報生成部410と、HARQ情報保持部411と、データ生成部412と、データ符号化部413と、データ変調部414と、Preamble生成部415と、無線送信部416とを含む。
 例えば、図10に示す制御部は、図12において制御信号(例えば、Trigger frame)の生成に関する処理部(例えば、スケジューリング部409、HARQ情報生成部410、HARQ情報保持部411、データ生成部412、データ符号化部413、又は、データ変調部414等)に対応してよい。また、図10に示す無線送信部は、図12に示す無線送信部416に対応してよい。
 無線受信部401は、アンテナを介して上り無線送信装置300から送信された信号を受信し、受信信号にダウンコンバート、A/D変換等の無線受信処理を行い、無線受信処理後の信号を、Preamble復調部402及びデータ復調部404へ出力する。
 Preamble復調部402は、無線受信部401から入力される受信信号のPreamble部に対してFFT等の復調処理を行い、Preamble部に含まれるデータの復調及び復号に用いる制御情報を抽出する。Preamble復調部402は、抽出した制御情報をデータ復調部404、データ復号部407、及び、受信有無検出部403へ出力する。また、Preamble復調部402は、例えば、Preambleを用いてチャネル推定を行う場合、チャネル推定結果をデータ復調部404へ出力してよい。
 受信有無検出部403は、例えば、上り無線受信装置400が制御信号(例えば、Trigger frame)を送信してから一定時間の間に、無線受信部401において受信された信号がどの上り無線送信装置300から送信された信号であるかを判別する。換言すると、受信有無検出部403は、制御信号を上り無線送信装置300へ送信してから一定時間の間に当該上り無線送信装置300から送信された信号の受信の有無を検出する。例えば、受信有無検出部403は、Preamble復調部402から入力される制御情報に含まれる識別情報(例えば、端末ID)に基づいて、Trigger frameの送信先である各上り無線送信装置300から送信されたTB PPDU信号の受信の有無を判別し、判別結果をスケジューリング部409へ出力する。
 データ復調部404は、Preamble復調部402から入力される制御情報及びチャネル推定結果を用いて、無線受信部401から入力される受信信号から、各上り無線送信装置300のデータ信号(例えば、ULデータ)を抽出し、データ保持部405へ出力する。
 データ保持部405は、データ復調部404から入力されるデータ信号をバッファに保存するとともに、HARQ合成部406へ出力する。データ保持部405は、誤り判定部408において復号後のデータに誤り無しと判定された場合、保存されたデータ信号をバッファから削除する。また、データ保持部405は、誤り判定部408において復号後のデータに誤り有りと判定された場合、当該データの再送回数が規定された回数(換言すると、最大再送回数)を超えるまで、当該データを保持する。
 HARQ合成部406は、HARQ情報保持部411から入力されるHARQ情報(例えば、HARQ Type、RV又はNDI)に基づいて、データ保持部405から入力される受信データに対してHARQ合成を行か否かを判断する。例えば、受信データが新規パケットの場合、HARQ合成部406は、HARQ合成を行わずに、受信データをそのままデータ復号部407へ出力する。また、例えば、受信データが再送パケットの場合、HARQ合成部406は、バッファから前回送信時の保存データを探索して取り出し、例えば、HARQ情報(例えば、HARQ Type)によって指示される合成方法(例えば、CC又はIR)に基づいて、保存データと再送データとのHARQ合成を行う。HARQ合成部406は、合成後のデータをデータ復号部407へ出力する。
 データ復号部407は、Preamble復調部402から入力される制御情報を用いて、HARQ合成部406から入力されるデータを復号し、復号後のデータを誤り判定部408へ出力する。
 誤り判定部408は、データ復号部407から入力されるデータ(換言すると、データ復号結果)に対して、CRC等を用いて誤り検出を行う。誤り判定部408は、誤り無しの場合、誤り無しを示す情報をデータ保持部405へ出力し、誤り有りの場合、誤り有りを示す情報をデータ保持部405へ出力する。また、誤り判定部408は、誤り判定結果をスケジューリング部409へ出力する。
 スケジューリング部409は、誤り判定部408から入力される受信データの誤り判定結果、及び、受信有無検出部403から入力される、各上り無線送信装置300からの送信信号の有無に関する情報に基づいて、各上り無線送信装置300に対する次回のMU伝送におけるHARQ種別(例えば、新規パケット送信であるか、再送パケット送信であるかを示す情報)を決定する。
 また、スケジューリング部409は、例えば、ULデータを多重送信する送信端末数(換言すると、ユーザ多重数、又は、上り無線送信装置300の数)、ULデータのPSDU長、符号化方法、周波数帯域幅、MCS、又は、RU割り当て等のTrigger frameに含める制御情報を決定する。スケジューリング部409は、決定した制御情報(又は、スケジューリング情報と呼ぶ)を、HARQ情報生成部410、データ生成部412、データ符号化部413、データ変調部414、及び、Preamble生成部415へ出力する。
 HARQ情報生成部410は、スケジューリング部409から入力されるスケジューリング情報のうち、例えば、上り無線送信装置300毎のパケットのHARQ種別、RU割当情報、又は、再送回数に基づいて、HARQ情報を生成する。HARQ情報には、例えば、NDI及びRVの少なくとも一つが含まれてよい。HARQ情報生成部410は、生成したHARQ情報をデータ生成部412及びHARQ情報保持部411へ出力する。
 なお、HARQ情報にHARQ合成方法(CC及びIRの何れか)が含まれる場合、HARQ合成方法の設定は、例えば、上り無線送信装置300の能力情報に基づいて決定されてよい。上り無線送信装置300の能力情報は、例えば、上り無線送信装置300が初期接続時に上り無線受信装置400(例えば、AP)へ送信してよい。また、能力情報には、例えば、当該上り無線送信装置300がサポートするHARQの合成方法(例えば、CC及びIRの双方をサポート、又は、CCをサポートし、IRをサポートしない等)を示す情報が含まれてよい。
 HARQ情報保持部411は、HARQ情報生成部410から入力されるHARQ情報をバッファに保存する。HARQ情報保持部411は、例えば、Trigger frameに含まれるHARQ情報を用いてHARQ再送が指示される場合、バッファに保存している制御情報をHARQ合成部406へ出力する。
 データ生成部412は、HARQ情報生成部410から入力されるHARQ情報又はスケジューリング部409から入力されるスケジューリング情報を用いて、データ系列(例えば、Trigger frameを含む)を生成し、データ符号化部413へ出力する。
 データ符号化部413は、スケジューリング部409から入力されるスケジューリング情報(例えば、符号化方法又はMCS)に基づいて、データ生成部412から入力されるデータ系列を符号化し、符号化データをデータ変調部414へ出力する。
 データ変調部414は、スケジューリング部409から入力されるスケジューリング情報(例えば、MCS)を用いて、データ符号化部413から入力される符号化データを変調し、変調後の信号を無線送信部416へ出力する。また、例えば、データ変調部414は、スケジューリング情報(例えば、周波数帯域幅又はRU割当情報)に基づいて、変調後の信号を無線リソースに割り当て、IFFT処理を行い、OFDM信号を生成し、無線送信部416へ出力してよい。
 Preamble生成部415は、スケジューリング部409から入力されるスケジューリング情報に基づいてPreamble信号を生成し、無線送信部416へ出力する。
 無線送信部416は、データ変調部414から入力されるデータ部(例えば、Trigger frameを含む)と、Preamble生成部415から入力されるPreamble部とを合成する。無線送信部416は、合成後の信号に対して、D/A変換、キャリア周波数へのアップコンバート等の無線送信処理を行い、無線送信処理後の信号をアンテナを介して上り無線送信装置300へ送信する。
 [AP及びSTAの動作例]
 次に、本実施の形態のAP(例えば、下り無線送信装置100又は上り無線受信装置400)及びSTA(例えば、下り無線受信装置200又は上り無線送信装置300)の動作例について説明する。
 MU伝送を指示する制御信号(例えば、SIG-B又はTrigger frame)は、例えば、各ユーザ(換言するとSTA)に共通の情報である共通情報と、ユーザ(STA)毎の情報であるユーザ情報とを含む。
 本実施の形態では、例えば、MU伝送を指示する制御情報において、少なくとも共通情報は、データ信号の再送制御に関する情報であるHARQ情報を含む。共通情報に含まれるHARQ情報は、例えば、送信パケットの種別(例えば、複数のユーザそれぞれについてデータ信号の送信が新規送信であるか、再送であるか)を示すHARQ Typeである。なお、HARQ Typeには、再送制御の種別又はHARQ合成方法を示す情報(例えば、CC及びIRの何れか)が含まれてよい。
 図13は、DL通信に関する無線通信システムの動作例を示すシーケンス図である。図13では、一例として、AP(下り無線送信装置100)及び2つのSTA1及びSTA2(下り無線受信装置200)におけるMU伝送の動作例について説明する。なお、MU伝送において多重されるユーザ数(換言すると、STA数)は2個に限らず、3個以上でもよい。
 図13において、APは、STA1及びSTA2に対して、DL信号(例えば、Preamble部及びData部を含む)をDL MU送信(例えば、MU-MIMO送信又はOFDMA送信)する(ST101)。図13では、STA1及びSTA2に対して送信される送信パケット(例えば、データ部)の種別(例えば、HARQ Type)は、新規パケットである。また、Preamble部のDL MU送信を指示する制御信号(例えば、SIG-B)において、HARQ Typeは、共通情報(例えば、Common field)に含まれる。このように、APは、DL MU伝送を指示する制御信号(例えば、SIG-B)に基づいて、DL信号の送信を制御する。
 STA1及びSTA2は、DL信号の受信処理を行う(ST102-1及びST102-2)。例えば、STA1及びSTA2は、DL信号に含まれるDL MU送信を指示する制御信号において、共通情報に含まれるHARQ情報(例えば、HARQ Type)に基づいて、各STAに対応するユーザ情報において指示されるパケットが新規パケットであるか再送パケットであるか(換言すると、HARQ Type)を判別する。STA1及びSTA2は、判別したHARQ Typeに対応する構成(換言すると、フォーマット)のユーザ情報に含まれるパラメータに基づいて、DLデータの受信処理(例えば、復調、復号及び誤り検出処理等)を行う。このように、各STAは、DL MU伝送を指示する制御信号(例えば、SIG-B)に基づいて、DL信号の受信を制御する。
 なお、図13では、誤り検出の結果、STA1においてDLデータに誤りが無く(換言すると、復号成功)、STA2においてDLデータに誤りが有る(換言すると、復号失敗)。
 STA1は、DLデータの誤りが無いので、ACKを含むACK/NACK信号をAPへ送信する(ST103-1)。また、STA2は、DLデータの誤りが有るので、NACKを含むACK/NACK信号をAPへ送信する(ST103-2)。また、STA2は、復号前のDLデータ(パケットデータ)をバッファに保存する。
 なお、各STAは、例えば、パケット衝突又はチャネル状態の劣化等によってDL信号(DL MU信号)のPreamble部を正しく復号できない場合、APに対して信号を未送信としてよい。
 APは、各STAから送信されるACK/NACK信号を受信する(ST104)。
 APは、例えば、ACKを送信したSTA1に対する新規パケット、及び、NACKを送信したSTA2に対する再送パケットを含むDL信号をDL MU送信する(ST105)。例えば、APは、前回送信時(例えば、ST101)と同様のフォーマットのHARQ情報を用いてDL信号を送信してよい。
 STA1及びSTA2は、前回送信時(例えば、ST101)と同様に、DL信号の受信処理を行う(ST106、ST107-1及びST107-2)。例えば、STA1及びSTA2は、DL信号に含まれるDL MU送信を指示する制御信号において、共通情報に含まれるHARQ情報(例えば、HARQ Type)に基づいて、各STAに対応するユーザ情報において指示されるパケットが新規パケットであるか再送パケットであるか(換言すると、HARQ Type)を判別する。
 図13では、STA1は、共通情報において新規パケットの送信が指示されているので、新規送信に対応する構成のユーザ情報に含まれるパラメータに基づいて、DLデータの受信処理を行う(ST107-1)。
 一方、図13では、STA2は、共通情報において再送パケットの送信が指示されているので、受信した再送パケットと、保存しているパケットとをHARQ合成する(ST106)。そして、STA2は、再送に対応する構成のユーザ情報に含まれるパラメータに基づいて、合成したDLデータの受信処理を行う(ST107-2)。
 次に、図14は、UL通信に関する無線通信システムの動作例を示すシーケンス図である。図14では、一例として、AP(上り無線受信装置400)及び2つのSTA1及びSTA2(上り無線送信装置300)におけるMU伝送の動作例について説明する。なお、MU伝送において多重されるユーザ数(換言すると、STA数)は2個に限らず、3個以上でもよい。
 図14において、APは、STA1及びSTA2に対して、UL信号のUL MU送信を指示するトリガ信号(例えば、Trigger frame)を送信する(ST201)。図14では、STA1及びSTA2に対して指示される送信パケットの種別(例えば、HARQ Type)は、新規パケットである。また、UL MU送信を指示するトリガ信号(例えば、Trigger frame)において、HARQ Typeは、共通情報(例えば、Common Info field)に含まれる。
 STA1及びSTA2は、トリガ信号の受信処理(復号処理等)を行う(ST202-1及びST202-2)。ここでは、STA1は、トリガ信号を正常に復号する(換言すると、復号成功)。一方、STA2は、例えば、パケットの衝突又はトリガ信号の復号失敗等により、トリガ信号を正常に復号できない(換言すると、復号失敗)。
 STA1は、トリガ信号を正常に復号したので、トリガ信号の共通情報に含まれるHARQ情報(例えば、HARQ Type)に基づいて、STA1に対応するユーザ情報において送信指示されるパケットが新規パケットであるか再送パケットであるか(換言すると、HARQ type)を判別する。STA1は、判別したHARQ type(ここでは、新規パケット)に対応する構成のユーザ情報に含まれるパラメータに基づいてUL信号を生成し、APへ送信する(ST203)。
 一方、STA2は、トリガ信号を正常に復号できなかったので、APへのUL信号を未送信とする。
 なお、APに対してSTAからの応答が無いケースには、例えば、STAにおいてトリガ信号の受信に成功したがキャリアセンスにおいてbusyのために応答を送信できないケース、STAにおいてUplink OFDMA based random access(UORA)のTriggerを受信したが、pendingデータが無いか、又は、Contention Window(CW)カウンタがゼロにならないため応答しないケース、又は、トリガ信号の受信に成功しUL応答を送信したが、APがUL応答のPreambleの受信に失敗したケース等がある。
 APは、トリガ信号の送信後から一定時間において各STAから送信されたUL信号を受信したか否かを検出する(ST204)。この検出により、APは、各STAがトリガ信号を正しく受信し、UL信号を送信したか否かを判別する。図14では、APは、STA1についてUL信号が有ると判断する一方、STA2についてUL信号が無いと判断する。
 また、APは、トリガ信号を用いて指示したHARQ情報に基づいて、各STA(図14ではSTA1)から送信されたUL信号の受信処理(例えば、復調、復号及び誤り検出処理等)を行う(ST205)。図14では、APにおいて、STA1から送信されたUL信号に誤りが有る(換言すると、復号失敗)。APは、復号前のSTA1から送信されたUL信号(換言すると、パケットデータ)をバッファに保存する。
 APは、例えば、UL信号の誤り検出結果に基づいて、新規パケット又は再送パケットのスケジューリングを行う。図14では、例えば、APは、UL信号の復号に失敗したSTA1に対する再送パケットの送信、及び、UL信号が未受信のSTA2に対する新規パケットの送信を指示するトリガ信号(例えば、HARQ Typeを含む)を生成し、STA1及びSTS2へ送信する(ST206)。
 STA1及びSTA2は、トリガ信号の受信処理(復号処理等)を行う(ST207-1及びST207-2)。ここでは、STA1及びSTA2は、トリガ信号を正常に復号する(換言すると、復号成功)。
 STA1は、トリガ信号を正常に復号したので、トリガ信号の共通情報に含まれるHARQ情報に基づいて、再送パケットの送信指示であることを判別する。STA1は、ユーザ情報に含まれるHARQ情報、及び、前回バッファに保存した送信信号に基づいて、再送パケットを決定し、APへ送信する(ST208)。STA2は、トリガ信号を正常に復号したので、トリガ信号の共通情報に含まれるHARQ情報に基づいて、新規パケットの送信指示であることを判別する。STA2は、新規パケットを決定し、APへ送信する(ST208)。
 これにより、ST208において、STA1及びSTA2からのUL信号がUL MU送信(例えば、MU-MIMO送信又はOFDMA送信)される。このように、各STAは、UL MU伝送を指示する制御信号(例えば、Trigger frame)に基づいて、UL信号の送信を制御する。
 APは、ST204の処理と同様、各STAがトリガ信号を正しく受信し、UL信号を送信したか否かを判別する(ST209)。図14では、APは、STA1及びSTA2についてUL信号が有ると判断する。
 APは、STA1から送信された再送パケットと、バッファに保存しているSTA1から前回送信されたパケットとをHARQ合成する(ST210)。そして、APは、STA1の合成パケット、及び、STA2の新規パケットに対して受信処理(例えば、復調、復号及び誤り検出処理等)を行う(ST211)。
 このように、APは、UL MU伝送を指示する制御信号(例えば、Trigger frame)に基づいて、UL信号の受信を制御する。
 なお、図14では、APがトリガ信号(例えば、Trigger frame)を用いて再送指示を行う場合について説明した。しかし、APは、STAから送信されたパケットを受信した直後にimmediate ACK又はBlock ACKをSTAへ送信してよい。この場合、immediate ACK及びBlock ACKに加えて、NACKが定義されてよい。また、APは、immediate ACK及びBlock ACKと、Trigger frameとを同一のパケットにおいて送信することにより、再送指示を行ってもよい。
 また、APがUL MU伝送においてUL信号を受信した場合、複数のSTAに対して、「Multi-STA BlockAck」を送信する場合、再送の際にNACK情報を含む「Multi-STA BlockAck/Nack」として送信してもよい。Multi-STA BlockAck/Nackの定義として、例えば、1つのframeにおけるACK/NACK信号に対応するフォーマットでもよく、Multi-STA BlockAckとMulti-STA BlockNackとを連結したAggregate MAC Protocol Data Unit(A-MPDU)でもよく、各STA宛のACK又はNACKをOFDMA又はMU-MIMOで多重してもよい。
 また、APがSTAにBlockAckを送信する場合、BlockAckをSTAが受信した時点で、STAは、初回送信のPreambleがAPに送信された(到達した)ことを認識できる。このため、STAは、BlockAckのビットマップ(例えば、BlockAck bitmap)が全て0の場合にNACKと定義してもよい。
 また、STAの処理能力によっては、APからのトリガ信号に対応するHARQ再送の準備が間に合わない可能性がある。このため、STAは、トリガ信号を受信した後に直ちに再送可能か否かをassociation時等に、能力情報(例えば、capability)によってAPに通知してもよい。STAが直ちに再送できない場合、APは、当該STAに対して、再送を指示するTrigger frameではRU割当せずに、当該Trigger frame以降のTrigger frameにおいてHARQ再送用のRU割当を行ってもよい。ただし、STAは、この場合、NACK又はBlockNackをAPへ通知してもよい。
 また、UL MU伝送の指示は、Trigger frameに限らず、例えば、Triggered response scheduling (TRS) Control subfieldを含むframeで行われてよい。
 [HARQ情報の生成方法]
 次に、AP(例えば、下り無線送信装置100又は上り無線受信装置400)からSTA(例えば、下り無線受信装置200又は上り無線送信装置300)へ通知されるHARQ情報の生成方法の一例について説明する。
 以下、共通情報及びユーザ情報を含むマルチユーザ伝送用の制御信号(例えば、MU PPDUに含まれるSIG-B又はTrigger frame)における、HARQ情報の生成方法(例えば、サイズ又はフィールド種別の決定など)に関する方法1~方法4についてそれぞれ説明する。
 <方法1>
 方法1では、共通情報に含まれるHARQ情報(例えば、HARQ Type)は、ユーザ(換言すると、STA)毎の値を含む。
 図15は、方法1におけるDL MU伝送を指示する制御信号(例えば、SIG-B)のフォーマットの一例を示す。
 図15に示すように、共通情報(例えば、Common field)には、各STA(図15では一例としてSTA1及びSTA2)に対して設定されたHARQ Type(例えば、HARQ Type subfield)が含まれる。例えば、図15では、STA1に対するHARQ TypeはIRによる再送(以下、IR再送と呼ぶ)であり、STA2に対するHARQ Typeは新規送信である。
 なお、共通情報に含まれるHARQ Typeの数は、例えば、DL MU送信において送信可能なユーザ数(例えば、最大送信可能ユーザ数)でもよい。また、例えば、共通情報に送信ユーザ数のHARQ Typeが含まれる場合、APは、SIG-A(又はHE-SIG-A)においてDL MU送信における送信ユーザ数を通知してもよい。
 また、例えば、EHT向けに、SIG-A及びSIG-Bとは異なる、HARQ情報を通知する新たなフィールド(例えば、SIG-HARQフィールドと呼ぶ)が追加されてよい。この場合、STAは、SIG-BのRU AllocationによってDL MU送信における送信ユーザ数を把握できる。このため、APは、SIG-HARQには送信ユーザ数分のHARQ Typeを設定すればよい。
 次に、図16は、方法1におけるUL MU伝送を指示する制御信号(例えば、Trigger frame)のフォーマットの一例を示す。
 図16に示すように、共通情報(例えば、Common Info field)には、各STA(図16では、一例としてSTA1)に対して設定されたHARQ Type(例えば、HARQ Type subfield)が含まれる。例えば、図16では、STA1に対するHARQ TypeはIR再送である。
 また、図15及び図16において、ユーザ情報のフォーマット(例えば、ユーザ情報に含まれるパラメータの数又は種別)は、共通情報に含まれるHARQ情報に応じて設定される。STAは、例えば、共通情報に含まれるHARQ情報に基づいて、ユーザ情報のフォーマット(換言すると、構成)を決定する。
 図17Aは、ユーザ情報に含まれるHARQ情報の設定例を示す。
 例えば、HARQ TypeがIR再送の場合、各送信回数(換言すると、再送回数)に応じたRVがAPからSTAへ通知される。よって、図17Aに示すように、HARQ TypeがIR再送の場合、ユーザ情報にはRVが含まれる。換言すると、HARQ TypeがIR再送の場合、ユーザ情報のフィールド(User Specific field又はUser Info field)には、RVを通知するsubfieldが追加される。
 一方、例えば、HARQ Typeが新規送信の場合又はCCによる再送(以下、CC再送と呼ぶ)の場合、RVには、例えば、固定値(例えば、仕様において定義された値。例えば、RV=0)が設定されてよい。よって、図17Aに示すように、HARQ Typeが新規送信又はCC再送の場合、RVの通知(換言すると、追加subfield)は不要である。換言すると、HARQ TypeがCC再送の場合、ユーザ情報のフィールド(User Specific field又はUser Info field)には、RVを通知するsubfieldが追加されない。
 なお、HARQ Typeは、図17Aに示すように新規送信、CC再送及びIR再送の3種類に限定されない。例えば、図17Bに示すように、HARQ Typeは、新規送信及び再送の2種類でもよい。図17Bでは、例えば、再送の場合、CC及びIRに依らず、RVの通知に用いるsubfieldが追加される。例えば、CCの場合にはパケットの送信回数に依らず、RV=0が指示され、IRの場合にはパケットの送信回数に応じたRVの値が指示されることにより、HARQ合成方法が区別されてよい。
 このように、ユーザ毎に設定されるHARQ Typeに応じて、ユーザ情報のフォーマット(構成)が異なる。
 例えば、図15では、共通情報において、STA1に設定されたHARQ TypeがIR再送を示し、STA2に設定されたHARQ Typeが新規送信を示す。この場合、APは、STA1に対するユーザ情報(User Specific field)に、HARQ情報(例えば、RV)を設定し、STA2に対するユーザ情報に、HARQ情報(例えば、RV)を設定しない。同様に、例えば、図16では、共通情報において、STA1に設定されるHARQ TypeがIR再送を示す。この場合、APは、STA1に対するユーザ情報(User Info field)に、HARQ情報(例えば、RV)を設定する。なお、図16において、共通情報においてSTAに設定されるHARQ Typeが新規送信を示す場合(又は、図17AではCC再送の場合)、APは、当該STAに対するユーザ情報にHARQ情報を設定しない(図示せず)。
 なお、各STAは、例えば、共通情報に含まれる複数のSTAの各々のHARQ Typeに基づいて、複数のSTAの各々に設定されるユーザ情報のフォーマット(例えば、サイズ又はRV情報の有無)を特定できる。よって、各STAは、上述したようにユーザ情報のフォーマットが可変に設定される場合でも、当該STAに対するユーザ情報の格納場所を特定できる。
 以上より、方法1では、ユーザ情報のフォーマット構成(換言すると、HARQ情報の有無)は、共通情報においてSTA毎に設定されるHARQ Typeに応じて決定される。これにより、各STAに対するユーザ情報のフォーマットは、STA毎のHARQ Typeに応じて可変に設定される。これにより、例えば、HARQ情報(例えば、RV)を用いるSTA(換言すると、IR再送が指示されたSTA)は、ユーザ情報に含まれるHARQ情報を用いて再送制御(例えば、再送パケットの受信及び合成、又は、再送パケットの送信)を行うことができる。
 一方、例えば、HARQ情報を用いないSTA(換言すると、新規送信又はCC再送が指示されたSTA)には、ユーザ情報においてHARQ情報は通知されない。よって、方法1によれば、例えば、図3及び図4に示すようにHARQ情報が固定的に設定される場合と比較してシグナリング量を低減できる。
 ここで、一般的にパケット誤り率の目標値は10%程度で運用されることがある。このため、新規パケットと比較して、再送パケットの発生率は低い。よって、このパケット誤り率の運用では、図3及び図4に示すようにHARQ情報が固定的に設定される場合と比較して、方法1のように新規パケットの送信を指示する場合にユーザ情報にRVが含まれないことによる、シグナリング量の低減の効果は大きい。
 なお、図15及び図16に示す例では、共通情報に含まれるユーザ毎のHARQ情報のfieldが、ユーザ(例えば、STA)毎に分けて設定される場合を示しているが、これに限定されない。例えば、ユーザ毎のHARQ情報(例えばHARQ Type)は、共通情報における1つのフィールドに格納されてよい。例えば、共通情報におけるHARQ情報の1つのフィールドにおいて、各ユーザのHARQ Typeがビットマップ形式で表されてよい。
 <方法2>
 方法2では、共通情報に含まれるHARQ情報(例えば、HARQ Type)は、複数のユーザ(換言すると、STA)に共通の値を含む。
 方法2において、共通情報に含まれるHARQ Typeは、例えば、MU伝送の対象である複数のユーザに共通である。よって、共通情報では、HARQ情報に共通のフォーマットが用いられるので、共通情報に含まれるHARQ Typeのシグナリング量を低減できる。
 例えば、APは、共通情報に設定されるHARQ Typeに基づいて、MU伝送の対象であるユーザ向けの送信パケットをスケジューリングする。
 図18A及び図18Bは、方法2におけるDL MU伝送を指示する制御情報(例えば、SIG-B)のフォーマットの一例を示す。
 また、図19A及び図19Bは、方法2におけるUL MU伝送を指示する制御情報(例えば、Trigger frame)のフォーマットの一例を示す。
 図18A、図18B、図19A及び図19Bに示すように、共通情報(例えば、Common field又はCommon Info field)には、複数のSTAに共通のHARQ Typeが含まれる。例えば、図18A、図18B、図19A及び図19Bでは、共通情報には、ユーザ数(例えば、STA数)に依らず、1つのHARQ情報のfieldが設けられている。また、例えば、図18A及び図19Aでは、HARQ TypeはIR再送であり、図18B及び図19Bでは、HARQ Typeは新規送信である。
 また、図18A、図18B、図19A及び図19Bにおいて、ユーザ情報のフォーマット(例えば、ユーザ情報に含まれるパラメータの数又は種別)は、共通情報に含まれるHARQ情報に応じて設定される。STAは、例えば、共通情報に含まれるHARQ情報に基づいて、ユーザ情報のフォーマット(換言すると、構成)を決定する。例えば、方法2では、方法1と同様、図17A又は図17Bに示すHARQ Typeと追加subfieldとの関係に基づいて、ユーザ情報のフォーマットが設定されてよい。
 例えば、図18A、図18B、図19A及び図19Bに示すように、共通情報に設定されるHARQ Typeに応じて、ユーザ情報のフォーマット(構成)が異なる。なお、方法2では、共通情報に含まれるHARQ Typeは複数のSTAに共通であるので、ユーザ情報のフォーマットも複数のSTA間において同一になる。
 例えば、図18A及び図19Aに示すように、共通情報に設定されたHARQ TypeがIR再送を示す場合、APは、各STAに対するユーザ情報(User Specific field又はUser Info field)に、HARQ情報(例えば、RV)を設定する。一方、図18B及び図19Bに示すように、共通情報に設定されたHARQ Typeが新規送信を示す場合、APは、各STAに対するユーザ情報(User Specific field又はUser Info field)に、HARQ情報(例えば、RV)を設定しない。なお、CC再送の場合についても、方法1と同様に、ユーザ情報のフォーマットが決定されてよい。
 なお、各STAは、例えば、共通情報に含まれる複数のSTAに共通のHARQ Typeに基づいて、各STAに共通に設定されるユーザ情報のフォーマット(例えば、サイズ又はRV情報の有無)を特定できる。よって、各STAは、上述したようにユーザ情報のフォーマットが可変に設定される場合でも、当該STAに対するユーザ情報の格納場所を特定できる。
 また、例えば、APは、MU伝送の対象である複数のSTAのHARQ Type(例えば、初回送信又は再送)が異なる場合でも、共通情報には各STAに共通のHARQ Typeを設定してよい。例えば、共通情報に含まれるHARQ Typeは、各STAのHARQ Typeの優先順位に従って決定されてよい。APは、例えば、複数のSTA間において優先順位がより高いHARQ Typeを共通情報に設定すればよい。
 HARQ Typeの優先順位は、例えば、ユーザ情報に追加するHARQ情報(例えば、RV及びNDI等)が多い順に設定されてよい。例えば、図17Aの場合、HARQ Typeの優先順位は、「IR」>「CC及び新規送信」でもよい。また、例えば、図17Bの場合、HARQ Typeの優先順位は、再送>新規送信でもよい。
 また、図17A及び図17Bに示す例に限らず、例えば、図20に示す例の場合、HARQ Typeの優先順位は、IR>CC>新規送信でもよい。
 図20の場合、共通情報に設定されるHARQ TypeがIRの場合、ユーザ情報にはRV及びNDIが含まれる。例えば、STAは、当該STAに対応するユーザ情報に含まれるRV及びNDIを参照して、当該STAに対して実際に設定されたHARQ Typeを判別してよい。
 例えば、APは、CC再送を指示するSTAに対して、共通情報においてHARQ Type=IRを通知し、ユーザ情報において、NDI=1かつRV=0を通知してよい。この場合、STAは、共通情報に設定されるHARQ TypeがIR再送であるものの、当該STAに設定されるHARQ TypeがCC再送であることを特定できる。
 また、例えば、APは、IR再送を指示するSTAに対して、共通情報においてHARQ Type=IRを通知し、ユーザ情報において、NDI=1かつ再送回数に応じた値のRVを通知してよい。この場合、STAは、共通情報に設定されるHARQ TypeがIR再送であり、当該STAに設定されるHARQ TypeもIR再送であることを特定できる。
 また、例えば、APは、新規送信を指示するSTAに対して、共通情報においてHARQ Type=IRを通知し、ユーザ情報において、NDI=0かつRV=0を通知してよい。この場合、STAは、共通情報に設定されるHARQ TypeがIR再送であるものの、当該STAに設定されるHARQ Typeが新規送信であることを特定できる。
 ここで、図18Aに示す構成では、例えば、図3の場合と比較して、共通情報のシグナリング量が増加(例えば、1-2bits)する。また、図18Bに示す構成では、例えば、図3の場合と比較して、共通情報のシグナリング量が増加(例えば、1-2bits)するものの、ユーザ情報においてHARQ情報(例えば、RV)が含まれない分、シグナリング量が減少(例えば、2bits程度×ユーザ多重数)する。
 一般的にパケット誤り率の目標値は10%程度で運用されることがある。この運用では、MU伝送用の制御信号のフォーマットのうち、HARQ Typeが新規送信の場合のフォーマット(例えば、図18B)の発生確率は90%程度となり、HARQ Typeが再送(例えば、IR)の場合のフォーマット(例えば、図18A)の発生確率は残りの10%程度となる。
 よって、方法2によれば、共通情報にHARQ情報が含まれることに対して、ユーザ情報に含まれるHARQ情報のシグナリング量の低減効果が大きく、システム全体のオーバーヘッドを低下できる。
 なお、図19A及び図19Bに示すTrigger frameの例では、共通情報にHARQ情報のfieldを設定する場合を示しているが、これに限定されない。
 ここで、Trigger frameの共通情報には、例えば、図21に示すように、Trigger Type subfieldとTrigger Dependent Common Info subfieldが設定されている。Trigger Type subfieldは、Trigger frameの種類(例えば、APがSTAに送信させる信号種別)を指示する。Trigger Dependent Common Info subfieldには、Trigger typeに応じた端末共通情報を含めることができる。
 よって、例えば、APは、共通情報のTrigger Dependent Common Info subfield、及び、ユーザ個別情報のTrigger Dependent User Info subfieldにHARQ情報を含めてもよい。この際、HARQ情報を含めることが可能なTrigger typeが設定されてよい。例えば、APは、Trigger typeがBasic(通常の上りデータチャネル(例えば、Scheduled access channel及びRandom access channel)による応答を指示するTrigger種別)の場合にHARQ情報を含めてもよい。例えば、APは、Trigger typeがBasicの場合に、共通情報のTrigger Dependent Common Info subfieldにHARQ typeを含め、ユーザ個別情報のTrigger Dependent User Info subfieldにRV情報を含めてもよい。
 また、HARQ情報を含めることが可能な新たなTrigger typeが追加されてよい(例えば、“HARQ”triggerとする)。例えば、APは、Trigger typeがHARQ(再送パケットを含む上りデータチャネルによる応答を指示するTrigger種別)の場合にHARQ情報を含めてもよい。例えば、APは、Trigger typeがHARQの場合に、共通情報のTrigger Dependent Common Info subfieldにHARQ typeを含め、ユーザ個別情報のTrigger Dependent User Info subfieldにRV情報を含めてもよい。
 または、APは、Trigger typeがBasic又はHARQの場合に共通情報及びユーザ個別情報にHARQ情報を含めてもよい。
 <方法3>
 方法3では、HARQ Typeが再送の場合、APは、新規パケットの送信を指示する制御信号に含まれるユーザ情報によって送信済みであり、新規送信時と再送時とで値が変化しない情報を削除する。
 また、STAは、再送を指示する制御信号を受信した場合、前回送信時までにバッファに保存していた前回パケットに付随したユーザ情報に基づいて、HARQ情報を取得する。
 方法3によれば、APは、STAに対して既に通知した信号を再送時にも通知しなくてよいので、再送を指示するシグナリングを削減できる。
 ユーザ情報において再送時に削除可能な情報は、HARQ Type(例えば、CC及びIR)及びMU伝送を指示する制御信号の種類(例えば、DL MU伝送の場合にはSIG-B、UL MU伝送の場合にはTrigger frame)によって異なる。
 図22~図25は、HARQ Type及びMU伝送を指示する制御信号の種類に応じて削除可能な情報の一例を示す。
 <SIG-BにおいてCC再送の場合>
 図22は、HARQ TypeがCCの場合のSIG-Bにおけるユーザ情報(例えば、User Specific field)の一例を示す。
 図22に示すように、HARQ TypeがCCの場合、APは、少なくとも、MCS subfield、Coding subfield、及び、Reserved sub-fieldの何れかを削除してよい。STAは、再送時に削除された情報に関して、前回送信時に保存した情報を適用する。なお、図22では、CCの場合、例えば、ユーザ情報においてHARQ情報としてNDI情報が追加されている。
 <Trigger frameにおいてCC再送の場合>
 図23は、HARQ TypeがCCの場合のTrigger frameにおけるユーザ情報(例えば、User Info field)の一例を示す。
 図23に示すように、HARQ Type がCCの場合、APは、少なくとも、UL forward error correction (FEC) Coding Type subfield、UL MCS subfield、UL dual subcarrier modulation (DCM) subfield、Reserved subfieldの何れかを削除してよい。STAは、再送時に削除された情報に関して、前回送信時に保存した情報を適用する。なお、図23では、CCの場合、例えば、ユーザ情報においてHARQ情報としてNDI情報が追加されている。
 <SIG-BにおいてIR再送の場合>
 図24は、HARQ TypeがIRの場合のSIG-Bにおけるユーザ情報(例えば、User Specific field)の一例を示す。
 図24に示すように、HARQ TypeがIRの場合、APは、少なくとも、Coding subfield、及び、Reserved subfieldの何れかを削除してよい。STAは、再送時に削除された情報に関して、前回送信時に保存した情報を適用する。なお、図24では、IRの場合、例えば、ユーザ情報においてHARQ情報としてNDI、及び、RV情報が追加されている。
 <Trigger frameにおいてIR再送の場合>
 図25は、HARQ TypeがIRの場合のTrigger frameにおけるユーザ情報(例えば、User Info field)の一例を示す。
 図25に示すように、HARQ Type がIRの場合、APは、少なくとも、UL FEC Coding Type subfield、UL DCM subfield、及び、Reserved sub-fieldの何れかを削除してよい。STAは、再送時に削除された情報に関して、前回送信時に保存した情報を適用する。なお、図25では、IRの場合、例えば、ユーザ情報においてHARQ情報としてNDI、及び、RV情報が追加されている。
 以上、HARQ Type及びマルチユーザ伝送を指示する制御信号の種類に応じて削除可能な情報の一例について説明した。
 なお、STAは、例えば、制御信号に含まれる共通情報のHARQ Typeに基づいて、ユーザ情報の構成(例えば、サイズ)を把握できる。
 図22~図25に示すように、APは、HARQ情報が新規送信を示す場合にユーザ情報に設定したパラメータのうち少なくとも一つを、HARQ情報が再送を示す場合にユーザ情報に設定しない。換言すると、ユーザ情報に含まれる複数のパラメータのうち、再送制御に関するパラメータ(例えば、RV又はNDI)と異なる他のパラメータの数は、HARQ Typeが再送を示す場合の方が、HARQ Typeが新規送信を示す場合よりも少なくなる。よって、方法3によれば、HARQ Typeに基づいて、再送時にはシグナリングのオーバーヘッドを低減できる。
 なお、図22~図25では、方法1に基づくフォーマット構成について説明したが、方法2に基づくフォーマット構成についても同様に適用できる。
 <方法4>
 方法1~方法3では、ユーザ情報にHARQ情報のsubfieldを新たに追加する場合について説明した。方法4では、ユーザ情報のHARQ情報と異なるパラメータ(例えば、11axにおいて定義されているパラメータ)のsubfieldの内容を、HARQ情報に読み替える場合について説明する。
 図26は、DL MU伝送を指示する制御信号(例えば、SIG-B)において、再送(CC又はIR)を指示する場合の一例を示す。
 図26に示すように、STAに対してCC再送が指示される場合、SIG-Bのユーザ情報のうち、Reserved subfieldは、NDIのsubfieldに読み替えられる。
 また、図26に示すように、STAに対してIR再送が指示される場合、SIG-Bのユーザ情報のうち、Reserved subfieldは、NDIのsubfieldに読み替えられ、Coding subfieldは、RVのsubfieldに読み替えられる。
 図27は、UL MU伝送を指示する制御信号(例えば、Trigger frame)において、再送(例えば、IR)を指示する場合の一例を示す。
 図27に示すように、STAに対して再送が指示される場合、Trigger frameのユーザ情報のうち、UL FEC Coding Type subfieldは、NDIのsubfieldに読み替えら、UL DCM subfieldは、RVのsubfieldに読み替えられる。
 APは、例えば、共通情報において設定するHARQ Typeが新規送信であるか再送であるかに基づいて、ユーザ情報の一部のsubfieldに含める情報を切り替える。また、STAは、例えば、共通情報において設定されたHARQ Typeが新規送信であるか再送であるかに基づいて、ユーザ情報の一部のsubfieldにおいて通知される情報を特定する。
 例えば、図26に示すSIG-Bのユーザ情報において、新規送信の指示の場合、APは、ユーザ情報のCoding subfieldにおいて符号化方法を設定し、Reserved subfieldには何も設定しない。また、STAは、新規送信の指示の場合、Coding subfieldにおいて符号化方法を取得する。
 一方、図26に示すSIG-Bのユーザ情報において、IR再送指示の場合、APは、ユーザ情報のReserved subfieldにおいてNDIを設定し、Coding subfieldにおいてRVを設定する。また、STAは、IR再送の指示の場合、ユーザ情報のReserved subfieldにおいてNDIを取得し、Coding subfieldにおいてRVを取得する。
 図26に示すCC再送時又は図27に示すUL MU伝送時についても同様である。
 図26及び図27に示すように、方法4では、APは、HARQ情報が、再送を示す場合と、新規送信を示す場合とで、ユーザ情報に異なる種別のパラメータを設定する。換言すると、HARQ Typeが再送であることを示す場合と、HARQ Typeが新規送信であることを示す場合とでは、ユーザ情報の同一フィールド(例えば、特定のsubfield)に含まれるパラメータの種別が異なる。
 このように、共通情報のHARQ Typeに基づいて、ユーザ情報内のフィールドを読み替えることにより、例えば、図3又は図4のようにHARQ情報のためのsubfieldを追加せずに、HARQ情報をAPからSTAへ通知できるので、ユーザ情報のシグナリングを低減できる。
 なお、方法4において、HARQ情報に読み替えられるパラメータ(換言するとsubfield)は、図26及び図27に示す例に限らない。例えば、図26に示すIR再送の場合において、Reserved subfieldがRV subfieldに読み替えられ、Coding subfieldがNDI subfieldに読み替えられてよい。また、HARQ情報のsubfieldに読み替えられるsubfieldは、Reserved、Coding、UL FEC Coding Type及びUL DCMのsubfieldに限らず、他のsubfieldでもよい。
 以上、方法1~方法4について説明した。
 以上のように、本実施の形態によれば、MU伝送を指示する制御信号に含まれる共通情報は、再送制御に関するパラメータ(例えば、HARQ Type等のHARQ情報)を含む。また、本実施の形態によれば、STAは、共通情報に含まれるHARQに基づいて、MU送信を指示する制御信号に含まれるユーザ情報の構成を決定する。
 これにより、MU伝送におけるHARQの制御内容(例えば、HARQ Type)に応じて、MU伝送を指示する制御信号に含まれるパラメータを可変に設定できる。例えば、APは、MU伝送において、新規送信を指示されるSTAに対するユーザ情報にはHARQ情報を含めずに、再送を指示されるSTAに対するユーザ情報にはHARQ情報を含めることができる。この制御により、ユーザ情報のシグナリング量を低減できる。よって、本実施の形態によれば、MU伝送においてHARQ再送制御の効率化を図ることができる。
 (実施の形態3)
 [下り無線送信装置の構成例]
 図28は、本実施の形態に係る下り無線送信装置500(例えば、AP)の構成例を示すブロック図である。なお、図28において、実施の形態2(図7)と同一構成には同一符号を付し、その説明を省略する。具体的には、下り無線送信装置500は、実施の形態2に係る下り無線送信装置100に対して、RU割当設定部501が追加される点、及び、スケジューリング部502及びHARQ情報生成部503の動作が異なる。
 図28において、RU割当設定部501は、例えば、システム帯域における各STA(換言すると、ユーザ)に対するRUの割当情報パターンを設定する。
 「RU割当情報パターン」は、例えば、MU伝送を指示する制御信号に含まれる「RU割当情報」(例えば、RU Allocation等のビット系列)と、システム帯域内のRUの割当パターンを示す「RU割当パターン」との対応関係を示す。RU割当情報パターンは、例えば、仕様書等によって予め規定されてよい。RU割当情報パターンの一例については後述する。
 また、RU割当パターンには、割り当てられるRU(換言すると、割当リソース)に加えて、HARQ Type(換言すると、新規送信又は再送の何れか)の情報が含まれてよい。換言すると、共通情報において通知されるHARQ情報(例えば、HARQ Type)は、共通情報に含まれるリソース割当情報(例えば、RU Allocation)に含まれる。
 また、RU割当パターンには、MU-MIMOの適用の有無(例えば、Single User-MIMO(SU-MIMO)及びMU-MIMOの何れか)の情報が含まれてよい。
 RU割当設定部501は、設定したRU割当情報パターンを示す情報をスケジューリング部502及びHARQ情報生成部503へ出力する。
 スケジューリング部502は、RU割当設定部501から入力されるRU割当情報パターンに基づいて、各STA(例えば、後述する下り無線受信装置600)へ通知可能なRU割当パターンに応じたスケジューリングを行う。スケジューリング部502は、決定したスケジューリング情報をHARQ情報生成部503、データ生成部107、データ符号化部108、データ変調部109、及び、Preamble生成部110へ出力する。
 HARQ情報生成部503は、RU割当設定部501から入力されるRU割当情報パターンに基づいて、スケジューリング部502から入力されるスケジューリング情報を、共通情報に含めるRU割当情報(ビット系列。例えば、RU Allocation)に変換し、データ符号化部108及びPreamble生成部110へ出力する。
 [下り無線受信装置の構成例]
 図29は、本実施の形態に係る下り無線受信装置600(例えば、STA)の構成例を示すブロック図である。なお、図29において、実施の形態2(図8)と同一構成には同一符号を付し、その説明を省略する。具体的には、下り無線受信装置600は、実施の形態2に係る下り無線受信装置200に対して、RU割当設定部601が追加される点、及び、HARQ情報復号部602の動作が異なる。
 図29において、RU割当設定部601は、図28に示す下り無線送信装置500のRU割当設定部501と同様の処理を行う。RU割当設定部601は、システム帯域における下り無線受信装置600のRU割当情報パターン(例えば、MU伝送を指示する制御信号に含まれるRU割当情報(ビット系列)とRU割当パターンとの対応関係)を示す情報をHARQ情報復号部602へ出力する。
 HARQ情報復号部602は、Preamble復調部203から入力されるPreamble信号に対して、設定されたPreambleフォーマットに従い、HARQ情報を復号する。また、HARQ情報復号部602は、RU割当設定部601から入力されるRU割当情報パターンに従って、RU割当情報(ビット系列)に基づいて、RU割当リソース、及び、HARQ Typeを復号(換言すると、特定)する。なお、RU割当情報パターンに基づいて得られるHARQ情報には、例えば、MU-MIMOの適用の有無を示す情報が含まれてもよい。HARQ情報復号部602は、復号したHARQ情報をデータ復調部205、HARQ合成部207及びデータ復号部208へ出力する。
 [AP及びSTAの動作例]
 次に、本実施の形態のAP(例えば、下り無線送信装置500)及びSTA(例えば、下り無線受信装置600)の動作例について説明する。
 MU伝送を指示する制御信号(例えば、SIG-B)は、例えば、共通情報とユーザ情報とを含む。本実施の形態では、例えば、共通情報に含まれる各STAのRU割当情報(例えば、RU Allocation)にHARQ情報が含まれる。RU割当情報に含まれるHARQ情報は、例えば、HARQ Typeを示す情報である。なお、HARQ Typeには、HARQ再送制御の種別(CC、IR等)が含まれてよい。
 共通情報に含まれるRU割当情報の生成に関する方法1~3についてそれぞれ説明する。
 以下では、例えば、11axのSIG-Bを例に説明する。ここで、SIG-Bの共通情報(例えば、Common field)に含まれるRU割当情報(RU Allocation sub-field)は8bitsで構成される。また、11axでは、RU Allocationの8bitsのビット系列のうち、一部のビット系列(例えば、76パターン)は、RU割当パターンが未設定であるReserved patternである。
 そこで、本実施の形態では、例えば、これらのReserved patternにHARQ Typeを含むRU割当パターンを対応付ける。これにより、HARQ情報のシグナリングのオーバーヘッドを増加することなく、HARQ情報をAPからSTAへ通知できる。
 <方法1>
 図30は、方法1におけるRU割当情報パターンの一例を示す。
 図30に示すように、RU割当情報(RU Allocation)に対応付けられたRU割当パターンのうち一部のパターン(図30では、Reserved pattern等)に、HARQ Type(例えば、HARQ再送の有無)が含まれる。
 例えば、図30では、RU Allocationのビット系列が11100001の場合、5ユーザ(例えば、ユーザ1からユーザ5とする)が周波数多重される。例えば、ユーザ1には、RU#1~RU#2(52 tone)の新規パケット(換言すると、HARQ再送無し)が割り当てられ、ユーザ2にはRU#3~RU#4(52 tone)の新規パケットが割り当てられ(換言すると、HARQ再送無し)、ユーザ3にはRU#5(26 tone)の新規パケット(換言すると、HARQ再送無し)が割り当てられ、ユーザ4にはRU#6~RU#7(52 tone)の新規パケット(換言すると、HARQ再送無し)が割り当てられ、ユーザ5にはRU#8~RU#9(52 tone)の再送パケット(換言すると、HARQ再送有り)が割り当てられる。
 また、図30に示すRU Allocationの他のビット系列についても同様に、RU割当パターンに加え、HARQ Typeが含まれる。
 方法1によれば、HARQ情報のシグナリングのオーバーヘッドを増加させることなく、APは、共通情報においてHARQ情報(例えば、HARQ Type(新規送信又は再送の指示))をSTAへ通知できる。
 <方法2>
 図31は、方法2におけるRU割当情報パターンの一例を示す。
 図31に示すように、RU割当情報(RU Allocation)に対応付けられたRU割当パターンのうち一部のパターン(例えば、Reserved pattern等)に、HARQ Type(例えば、HARQ再送の有無)が含まれる。
 また、図31では、MU-MIMOが適用されるRUには、再送パケットが割り当てられない。換言すると、図31では、方法2では、RU割当情報は、MU多重(例えば、MU-MIMO)に使用されるRUとは異なるRU(例えば、SU多重に使用されるリソース)に、再送パケット(換言すると、データ信号の再送機会)が割り当てられることを示す。
 例えば、11axでは、106 tone以上のRU(例えば、4個以上のRU)に対してMU-MIMOが適用される。また、11axでは、RU割当パターンには、MU多重数(換言すると、STA数)が含まれる。例えば、図31では、RU Allocationのビット系列が00010001~00010111(一部図示せず)の場合、RU#6~RU#9(106 tone)の周波数リソースに2ユーザ~8ユーザ多重のMU-MIMOの新規パケットが割り当てられる。
 また、図31では、例えば、RU Allocationのビット系列が、00010000の場合、RU#6~RU#9(106 tone)の周波数リソースにSU-MIMOが適用され、新規パケットが割り当てられる。また、図31では、例えば、RU Allocationのビット系列が、11100001(Reserved pattern)の場合、RU#6~RU#9(106 tone)の周波数リソースにSU-MIMOが適用され、再送パケットが割り当てられる。
 ここで、MU多重されるパケットは、MU多重されていないパケット(例えば、SU多重されるパケットを含む)よりも干渉が大きく、性能劣化する可能性が高い。よって、方法2のように、MU-MIMOが適用可能な106-tone以上のRU(換言すると、MU多重可能なRU)に対して再送パケットを割り当てないこと(換言すると、再送パケットに対してMU-MIMOを適用しないこと)による、性能劣化の影響は小さい。換言すると、MU多重されない場合と比較して、MU-MIMOが適用されるパケットは性能劣化する可能性が高いので、仮に、HARQ再送が適用されたとしても再送によって性能は向上しにくい。一方、MU多重されないパケットに対してHARQ再送が適用されることで、再送によって性能が向上しやすい。
 よって、方法2によれば、MU-MIMOが適用されるパケットに対してHARQ再送のパターンが割り当てられないので、HARQ情報を含むRU割当パターンのシグナリングを低減できる。
 なお、図31では、4個のRUに対してMU-MIMOが適用される際のtone数を106 toneとしたが、これは、MU-MIMOが適用される場合、4個のRUのそれぞれを構成する26 toneとは異なる未使用の2 toneも併せて使用されるためである。なお、MU-MIMOが適用される際に使用されるtone数は106 toneに限定されず、異なる値でもよい。
 また、方法2では、MU-MIMOが適用されるRUに対して再送パケットが割り当てられない場合について説明したが、これに限定されず、例えば、MU-MIMOが適用されるRUに対して再送パケットが割り当てられてもよい。
 <方法3>
 図32は、方法3におけるRU割当情報パターンの一例を示す。
 図32に示すように、RU割当情報(RU Allocation)に対応付けられたRU割当パターンのうち一部のパターン(例えば、Reserved pattern等)に、HARQ Type(例えば、HARQ再送の有無)が含まれる。
 また、図32では、システム帯域中心のRU(Center 26-tone RUとも呼ばれる)には、再送パケットが割り当てられない、換言すると、図32では、RU割当情報は、システム帯域の中心を含むRU(例えば、Center 26-tone RU)とは異なるRUに、再送パケット(換言すると、データ信号の再送機会)が割り当てられることを示す。
 例えば、図32では、RU Allocationに対応付けられたRU割当パターンにおいて、Center 26-tone RUであるRU#5には、新規パケットが割り当てられ、再送パケットが割り当てられない。また、図32では、RU#5と異なる他のRU(例えば、RU#1~#4及びRU#6~#9)には、新規パケット及び再送パケットの何れかが割り当てられる。
 ここで、Center 26-tone RUに割り当てられるパケットは、受信機のDCオフセットによる干渉の影響を受けるため、他のRUに割り当てられるパケットと比較して性能が劣化する可能性が高い。よって、方法3のように、Center 26-tone RUに対して再送パケットを割り当てないことによる、性能劣化の影響は小さい。換言すると、Center 26-tone RUと異なるRUと比較して、Center 26-tone RUに割り当てられるパケットは性能劣化する可能性が高いので、仮に、HARQ再送が適用されたとしても再送によって性能は向上しにくい。一方、Center 26-tone RUと異なるRUに割り当てられるパケットに対してHARQ再送が適用されることで、再送によって性能が向上しやすい。
 よって、方法3によれば、Center 26-tone RUに割り当てられるパケットに対してHARQ再送のパターンが割り当てられないので、HARQ情報を含むRU割当パターンのシグナリングを削減できる。例えば、図32では、RU#5は再送パケットの割当の対象ではないので、HARQ情報のシグナリングは、RU割当パターンのシグナリング(例えば、8bits)と比較して、1bit低減できる。
 なお、再送パケットが割り当てられないRUは、Center 26-tone RUに限定されない。例えば、Center 26-tone RUのように、他のRUと比較して品質が悪い(換言すると、性能劣化の可能性が高い)と予想される特定のRUに対して、再送パケットが割り当てられないことにより、方法3と同様の効果が得られる。品質が悪いと予想される特定のRUには、例えば、他システムからの干渉が予想されるRU等がある。
 また、品質が悪いと予想される特定のRUが動的に変わる場合、APが全ての接続するユーザ(STA)に対して定期的に送信するビーコン等の信号に、RU割当情報パターン又は特定RUの情報を含めることにより、特定のRUに対する再送パケットの割り当てを動的に制限できる。
 以上、方法1~方法3について説明した。なお、方法1~方法3の少なくとも2つを組み合わせてもよい。
 このように、本実施の形態によれば、APは、MU伝送を指示する制御信号に含まれる共通情報において、再送制御に関する情報(例えば、HARQ Type等のHARQ情報)を、共通情報に含めるリソース割当情報(例えば、RU Allocation)に設定する。
 これにより、共通情報において、例えば、11axのフォーマットと比較して、HARQ情報を通知するフィールド(例えば、subfield)を追加しなくてよく、共通情報のシグナリング量を低減できる。
 なお、本実施の形態において、ユーザ情報に含めるHARQ情報は、実施の形態2と同様、共通情報に含まれるHARQ情報に応じて設定されればよい。
 また、RU割当情報(例えば、RU Allocation)のReserved patternにHARQ Typeが割り当てられる場合について説明したが、これに限定されない。例えば、RU割当情報のサイズ(例えば、ビット数又はパターン数)を増加し、増加したビット系列においてHARQ Typeが割り当てられてよい。
 また、本実施の形態では、11axのSIG-B(換言すると、下り通信に関する動作)を例に説明した。しかし、本実施の形態は、これに限定されず、上り通信に関する動作に適用してよい。
 以上、本開示の各実施の形態について説明した。
 (他の実施の形態)
 (1)上記実施の形態では、一例として、11axのMU伝送用制御信号のフォーマットをベースにした構成例について説明したが、本開示の一実施例を適用するフォーマットは、11axのフォーマットに限定されない。本開示の一実施例は、例えば、共通情報とユーザ情報とを用いて制御するMU伝送に適用できる。
 例えば、MU伝送を指示する制御信号のフォーマットは11axに規定されたフォーマット(例えば、SIG-B又はTrigger frame)に限定されず、図33に示すように、HARQ専用のSIGフォーマット(以下、HARQ-SIGと呼ぶ)が追加されてもよい。例えば、HARQ-SIGには、共通情報及びユーザ情報が含まれ、共通情報には、少なくともHARQ情報(例えば、HARQ Type)が含まれればよい。
 (2)例えば、Trigger frameのユーザ情報(User Info field)の並び順は、新規パケットと再送パケットとが区別されて設定されてよい。
 例えば、図34に示すように、新規パケットのユーザ情報が、再送パケットのユーザ情報よりも優先して並べられてよい。図34の場合、例えば、共通情報において通知されたHARQ Typeが新規パケットであるSTAは、ユーザ情報のうちの先頭から順に(実線矢印の順に)User Info fieldを復号する。また、例えば、共通情報において通知されたHARQ Typeが再送パケットであるSTAは、ユーザ情報のうちの末尾から順に(破線矢印の順に)User Info fieldを復号する。
 これにより、例えば、再送を行うSTAは、ユーザ情報の復号処理量を低減できる。なお、新規パケットと再送パケットとの並び順は図34の場合と逆でもよい。
 (3)HARQ再送の単位は、例えば、MACプロトコルデータの単位であるMPDUが想定される。また、例えば、MPDUを連結してAggregate MPDU(A-MPDU)が構成される。
 例えば、Low Density Parity Check(LDPC)ブロックを特定するシグナリングが、共通情報又はユーザ情報に含まれてよい。これにより、AP又はSTAは、PHY(物理層)にてA-MPDU内のMPDUを識別できる。
 また、例えば、各MPDUまたは各A-MPDU subframeの先頭を含むLDPC codeword番号(又は、各MPDUの最終部分を含むLDPC codeword番号)がシグナリングされてよい。図35の例では、各MPDU(例えば、A-MPDU subframe 1,2及び3)の先頭を含むLDPC codeword番号は1、3および4であるので、"1"、"3"、"4"がプリアンブルの共通情報又はユーザ情報でシグナリングされてよい。これにより、再送要求されたMPDUのLDPC codeword先頭から次のLDPC codeword先頭まで(又は、再送要求されたMPDUの一つ前の最終部分から当該MPDUの最終部分まで)のLDPC codewordの再送により、対応するMPDU再送が可能となる。また、LDPCブロックとMPDUとの間で境界が揃うように、例えば、padding付加等によりMPDU長が調整されてよい。
 また、例えば、各STAに対する1つのパケットに含まれる複数のMPDU毎のHARQ Typeが共通情報に含まれてよい。この場合、例えば、1つのパケットに含まれるMPDUのうち、再送が指示されたMPDUが少なくとも一つ含まれる場合、AP又はSTAは、当該パケットに対するユーザ情報のフォーマットに、再送用のフォーマットを設定してよい。または、例えば、AP又はSTAは、1つのパケットに含まれるMPDUのうち、再送が指示されたMPDUと新規送信が指示されたMPDUとの比率に基づいて、当該パケットに対するユーザ情報のフォーマットに、再送用のフォーマット又は新規送信用のフォーマットを設定してよい。
 また、HARQ再送の単位は、MPDU単位ではなく、PPDU単位又はPSDU単位で連結し、PPDU単位又はPSDU単位でHARQ再送が行われてよい。また、HARQ再送単位は、LDPC codeword単位でもよい。上述したブロック毎の再送を行うために、各ブロックのHARQ Typeが共通情報又はユーザ情報に含まれてよい。
 (4)上記実施の形態では、HARQ情報の一例に、HARQ Type(例えば、新規及び再送(CC or IR)の何れか)、RV、又は、NDIを挙げて説明した。しかし、HARQ情報は、これらに限定されない。例えば、複数のAP及びSTAが、HARQ用バッファ(例えば、HARQ Processと呼ばれる)を有し、複数のパケットに対するHARQ制御が並列で実施される場合、HARQ情報には、HARQ Process IDが含まれてよい。HARQ Process IDは、例えば、ユーザ情報に含められてよい。
 (5)上記実施の形態では、下り無線送信装置100及び上り無線受信装置400がAPであり、下り無線受信装置200及び上り無線送信装置300がSTAである場合について説明した。しかし、これに限らず、例えば、下り無線送信装置100及び上り無線受信装置400はSTAでもよい。
 (6)実施の形態1、実施の形態2及び実施の形態3のうち少なくとも2つを組み合わせて適用してもよい。
 (7)本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る基地局は、複数のユーザそれぞれについての再送制御に関する情報を含む、前記複数のユーザに共通の共通情報と、前記再送制御に関する情報に応じた前記複数のユーザに個別のユーザ個別情報と、を生成する制御回路と、前記共通情報と前記ユーザ個別情報とを含む制御信号を送信する送信回路と、を具備する。
 本開示の一実施例において、前記再送制御に関する情報は、前記複数のユーザそれぞれについてデータ信号の送信が新規送信であるか再送であるかを示す。
 本開示の一実施例において、前記再送制御に関する情報は、前記複数のユーザ毎の値を含む。
 本開示の一実施例において、前記再送制御に関する情報は、前記複数のユーザに共通の値を含む。
 本開示の一実施例において、前記制御回路は、前記再送制御に関する情報に基づいて、前記ユーザ個別情報の構成を決定する。
 本開示の一実施例において、前記制御回路は、前記再送制御に関する情報が再送を示す場合、前記ユーザ個別情報に、前記再送制御に関するパラメータを設定し、前記再送制御に関する情報が新規送信を示す場合、前記ユーザ個別情報に前記パラメータを設定しない。
 本開示の一実施例において、前記制御回路は、前記再送制御に関する情報が新規送信を示す場合に前記ユーザ個別情報に設定したパラメータのうち少なくとも一つを、前記再送制御に関する情報が再送を示す場合に前記ユーザ個別情報に設定しない。
 本開示の一実施例において、前記制御回路は、前記再送制御に関する情報を、前記共通情報に含めるリソース割当情報に設定する。
 本開示の一実施例において、前記リソース割当情報は、マルチユーザ多重に使用されるリソースとは異なるリソースに、データ信号の再送機会が割り当てられることを示す。
 本開示の一実施例において、前記制御回路は、前記リソース割当情報は、システム帯域の中心を含むリソースとは異なるリソースに、データ信号の再送機会が割り当てられることを示す。
 本開示の一実施例において、前記制御回路は、前記再送制御に関する情報が、再送を示す場合と、新規送信を示す場合とで、前記ユーザ個別情報に異なる種別のパラメータを設定する。
 本開示の一実施例に係る端末は、複数のユーザに共通の共通情報と、前記複数のユーザに個別のユーザ個別情報と、を含む制御信号を受信する受信回路と、前記共通情報において示される、前記複数のユーザそれぞれについての再送制御に関する情報と、前記再送制御に関する情報に応じた前記ユーザ個別情報と、に基づいて、データ信号の再送を制御する制御回路と、を具備する。
 本開示の一実施例に係る送信方法において、基地局は、複数のユーザそれぞれについての再送制御に関する情報を示す、前記複数のユーザに共通の共通情報と、前記再送制御に関する情報に応じた前記複数のユーザに個別のユーザ個別情報と、を生成し、前記共通情報と前記ユーザ個別情報とを含む制御信号を送信する。
 本開示の一実施例に係る受信方法において、端末は、複数のユーザに共通の共通情報と、前記複数のユーザに個別のユーザ個別情報と、を含む制御信号を受信する受信回路と、前記共通情報において示される、前記複数のユーザそれぞれについての再送制御に関する情報と、前記再送制御に関する情報に応じた前記ユーザ個別情報と、に基づいて、データ信号の再送を制御する。
 2019年3月7日出願の特願2019-041687の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100,500 下り無線送信装置
 101,201,301,401 無線受信部
 102,203,303,402 Preamble復調部
 103,205,304,404 データ復調部
 104,208,305,407 データ復号部
 105,409,502 スケジューリング部
 106,410,503 HARQ情報生成部
 107,307,412 データ生成部
 108,308,413 データ符号化部
 109,309,414 データ変調部
 110,212,310,415 Preamble生成部
 111,213,311,416 無線送信部
 200,600 下り無線受信装置
 202,302 Preamble検出部
 204,602 HARQ情報復号部
 206,405 データ保持部
 207,406 HARQ合成部
 209,408 誤り判定部
 210 ACK/NACK信号生成部
 211 ACK/NACK信号変調部
 300 上り無線送信装置
 306,411 HARQ情報保持部
 400 上り無線受信装置
 403 受信有無検出部
 501,601 RU割当設定部

Claims (14)

  1.  複数のユーザそれぞれについての再送制御に関する情報を含む、前記複数のユーザに共通の共通情報と、前記再送制御に関する情報に応じた前記複数のユーザに個別のユーザ個別情報と、を生成する制御回路と、
     前記共通情報と前記ユーザ個別情報とを含む制御信号を送信する送信回路と、
     を具備する基地局。
  2.  前記再送制御に関する情報は、前記複数のユーザそれぞれについてデータ信号の送信が新規送信であるか再送であるかを示す、
     請求項1に記載の基地局。
  3.  前記再送制御に関する情報は、前記複数のユーザ毎の値を含む、
     請求項2に記載の基地局。
  4.  前記再送制御に関する情報は、前記複数のユーザに共通の値を含む、
     請求項2に記載の基地局。
  5.  前記制御回路は、前記再送制御に関する情報に基づいて、前記ユーザ個別情報の構成を決定する、
     請求項1に記載の基地局。
  6.  前記制御回路は、
     前記再送制御に関する情報が再送を示す場合、前記ユーザ個別情報に、前記再送制御に関するパラメータを設定し、
     前記再送制御に関する情報が新規送信を示す場合、前記ユーザ個別情報に前記パラメータを設定しない、
     請求項5に記載の基地局。
  7.  前記制御回路は、
     前記再送制御に関する情報が新規送信を示す場合に前記ユーザ個別情報に設定したパラメータのうち少なくとも一つを、前記再送制御に関する情報が再送を示す場合に前記ユーザ個別情報に設定しない、
     請求項5に記載の基地局。
  8.  前記制御回路は、
     前記再送制御に関する情報を、前記共通情報に含めるリソース割当情報に設定する、
     請求項1に記載の基地局。
  9.  前記リソース割当情報は、マルチユーザ多重に使用されるリソースとは異なるリソースに、データ信号の再送機会が割り当てられることを示す、
     請求項8に記載の基地局。
  10.  前記制御回路は、
     前記リソース割当情報は、システム帯域の中心を含むリソースとは異なるリソースに、データ信号の再送機会が割り当てられることを示す、
     請求項8に記載の基地局。
  11.  前記制御回路は、
     前記再送制御に関する情報が、再送を示す場合と、新規送信を示す場合とで、前記ユーザ個別情報に異なる種別のパラメータを設定する、
     請求項1に記載の基地局。
  12.  複数のユーザに共通の共通情報と、前記複数のユーザに個別のユーザ個別情報と、を含む制御信号を受信する受信回路と、
     前記共通情報において示される、前記複数のユーザそれぞれについての再送制御に関する情報と、前記再送制御に関する情報に応じた前記ユーザ個別情報と、に基づいて、データ信号の再送を制御する制御回路と、
     を具備する端末。
  13.  基地局は、
     複数のユーザそれぞれについての再送制御に関する情報を示す、前記複数のユーザに共通の共通情報と、前記再送制御に関する情報に応じた前記複数のユーザに個別のユーザ個別情報と、を生成し、
     前記共通情報と前記ユーザ個別情報とを含む制御信号を送信する、
     送信方法。
  14.  端末は、
     複数のユーザに共通の共通情報と、前記複数のユーザに個別のユーザ個別情報と、を含む制御信号を受信する受信回路と、
     前記共通情報において示される、前記複数のユーザそれぞれについての再送制御に関する情報と、前記再送制御に関する情報に応じた前記ユーザ個別情報と、に基づいて、データ信号の再送を制御する、
     受信方法。
PCT/JP2020/002155 2019-03-07 2020-01-22 基地局、端末、送信方法及び受信方法 WO2020179259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021503454A JP7561116B2 (ja) 2019-03-07 2020-01-22 基地局、端末、送信方法及び受信方法
US17/433,554 US12040903B2 (en) 2019-03-07 2020-01-22 Base station, terminal, transmission method and reception method
CN202080016285.1A CN113475027A (zh) 2019-03-07 2020-01-22 基站、终端、发送方法及接收方法
US18/732,328 US20240322949A1 (en) 2019-03-07 2024-06-03 Base station, terminal, transmission method and reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041687 2019-03-07
JP2019-041687 2019-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/433,554 A-371-Of-International US12040903B2 (en) 2019-03-07 2020-01-22 Base station, terminal, transmission method and reception method
US18/732,328 Continuation US20240322949A1 (en) 2019-03-07 2024-06-03 Base station, terminal, transmission method and reception method

Publications (1)

Publication Number Publication Date
WO2020179259A1 true WO2020179259A1 (ja) 2020-09-10

Family

ID=72337542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002155 WO2020179259A1 (ja) 2019-03-07 2020-01-22 基地局、端末、送信方法及び受信方法

Country Status (4)

Country Link
US (2) US12040903B2 (ja)
JP (1) JP7561116B2 (ja)
CN (1) CN113475027A (ja)
WO (1) WO2020179259A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748739A (zh) * 2019-05-06 2021-12-03 索尼集团公司 通信装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170013506A1 (en) * 2015-07-07 2017-01-12 Intel IP Corporation High efficiency signal field coding
JP2017092686A (ja) * 2015-11-09 2017-05-25 株式会社東芝 無線通信用集積回路、無線通信端末および無線通信方法
WO2018116564A1 (ja) * 2016-12-19 2018-06-28 ソニー株式会社 通信装置、通信制御方法およびプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124684B (zh) * 2008-10-31 2013-04-24 上海贝尔股份有限公司 用于多通道harq接收反馈的方法、装置和设备
CN102026209B (zh) * 2010-12-21 2014-04-16 大唐移动通信设备有限公司 一种传输信息和配置子帧的方法、系统及设备
CN104185963B (zh) * 2013-01-21 2018-03-13 华为技术有限公司 混合自动重传请求反馈方法、基站及用户设备
CN106464442A (zh) * 2014-06-27 2017-02-22 华为技术有限公司 资源指示的处理方法、处理装置、接入点和站点
US9788317B2 (en) * 2015-03-30 2017-10-10 Intel IP Corporation Access point (AP), user station (STA) and method for channel sounding using sounding trigger frames
WO2016167609A1 (ko) 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
WO2017069534A1 (ko) * 2015-10-20 2017-04-27 엘지전자 주식회사 무선랜 시스템에서 트리거 프레임을 전송하는 방법 및 이를 이용한 단말
AU2016378733A1 (en) * 2015-12-21 2018-06-07 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks
CN111034091B (zh) * 2017-08-31 2023-08-29 索尼公司 通信设备和方法
US11296828B2 (en) * 2017-11-21 2022-04-05 Lg Electronics Inc. Method for transmitting or receiving frame in wireless LAN, and device therefor
US11533133B2 (en) * 2018-04-02 2022-12-20 Lg Electronics Inc. Method for transmitting or receiving frame in wireless LAN system and apparatus therefor
CN110417518B (zh) * 2018-04-26 2022-08-26 华为技术有限公司 基于harq技术的通信方法、设备及系统
JP7534295B2 (ja) * 2018-11-08 2024-08-14 インターデイジタル パテント ホールディングス インコーポレイテッド ワイヤレスネットワークにおけるharqのための方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170013506A1 (en) * 2015-07-07 2017-01-12 Intel IP Corporation High efficiency signal field coding
JP2017092686A (ja) * 2015-11-09 2017-05-25 株式会社東芝 無線通信用集積回路、無線通信端末および無線通信方法
WO2018116564A1 (ja) * 2016-12-19 2018-06-28 ソニー株式会社 通信装置、通信制御方法およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIMI SHILO ET AL., HARQ FOR EHT, IEEE 802.11-18/1587R1, 13 September 2018 (2018-09-13), pages 1 - 15, XP068128915 *
YANGDAN ET AL., DISCUSSION ON HARQ FOR EHT , IEEE 802. 11-18/1963 R1, 28 November 2018 (2018-11-28), pages 1 - 10, XP068133445 *

Also Published As

Publication number Publication date
CN113475027A (zh) 2021-10-01
US20220158768A1 (en) 2022-05-19
JP7561116B2 (ja) 2024-10-03
JPWO2020179259A1 (ja) 2020-09-10
US20240322949A1 (en) 2024-09-26
US12040903B2 (en) 2024-07-16

Similar Documents

Publication Publication Date Title
JP5208272B2 (ja) 通信ネットワークにおける方法および装置
US11894929B2 (en) Hybrid automatic repeat request (HARQ) in a wireless local area network (WLAN)
US10972228B2 (en) Base station device, user equipment, wireless communication system, and communication method
US20090313516A1 (en) Enhanced hybrid automatic repeat request for long term evolution
US11374699B2 (en) Hybrid automatic repeat request (HARQ) with sliding window feedback
US20240322949A1 (en) Base station, terminal, transmission method and reception method
US20100037105A1 (en) Method and Apparatus for Using Physical Layer Error Control to Direct Media Access Layer Error Control
CN113508546A (zh) 无线通信设备和方法
JP2023120277A (ja) 通信装置および方法
JP2023075199A (ja) 端末装置、送信方法及び集積回路
WO2022249633A1 (ja) 端末、基地局、及び、通信方法
JP2020141302A (ja) 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム
KR20080089118A (ko) 중계방식을 사용하는 무선통신시스템에서 데이터 재전송을위한 비동기식 제어 메시지 전송 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20766582

Country of ref document: EP

Kind code of ref document: A1