WO2020179039A1 - Microscope and observation method - Google Patents

Microscope and observation method Download PDF

Info

Publication number
WO2020179039A1
WO2020179039A1 PCT/JP2019/008975 JP2019008975W WO2020179039A1 WO 2020179039 A1 WO2020179039 A1 WO 2020179039A1 JP 2019008975 W JP2019008975 W JP 2019008975W WO 2020179039 A1 WO2020179039 A1 WO 2020179039A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
image
sample
image processing
processing unit
Prior art date
Application number
PCT/JP2019/008975
Other languages
French (fr)
Japanese (ja)
Inventor
陽輔 藤掛
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/008975 priority Critical patent/WO2020179039A1/en
Publication of WO2020179039A1 publication Critical patent/WO2020179039A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present invention relates to a microscope and an observation method.
  • Non-Patent Document 1 A scanning microscope that detects fluorescence from a sample has been proposed (for example, see Non-Patent Document 1 below).
  • the microscope according to the first aspect is an illumination including a scanning unit that scans a striped illumination, which is a striped illumination generated by light for multiphoton excitation of a fluorescent substance contained in the sample, in a plurality of directions of the sample.
  • An optical system a detection optical system in which fluorescence from the sample generated by multiphoton excitation is incident, a detection device having a plurality of detection units for detecting fluorescence from the sample via the detection optical system, and the plurality of It is provided with an image processing unit that generates an image by using the detection results of at least two of the detection units.
  • the observation method comprises scanning stripe illumination, which is stripe illumination generated by light for multiphoton exciting a fluorescent substance contained in the sample, in a plurality of directions of the sample, and Detecting fluorescence from the sample generated by photon excitation using a plurality of detection units, and generating an image using detection results of at least two detection units of the plurality of detection units. Including.
  • FIG. 1 is a diagram showing a microscope and an optical path of excitation light according to the first embodiment.
  • the microscope 1 will be described as being a scanning multiphoton excitation fluorescence microscope, but the microscope according to the embodiment is not limited to a scanning microscope or a fluorescence microscope.
  • the microscope 1 includes a stage 2, a light source 3, an illumination optical system 4, a detection optical system 5, a detection device 6, an image processing unit 7, and a control unit 8.
  • the microscope 1 operates as follows.
  • Stage 2 holds the sample S to be observed.
  • the sample S is a cell or the like that has been fluorescently stained in advance.
  • the sample S contains a fluorescent substance such as a fluorescent dye.
  • the light source 3 emits excitation light L1 that multiphoton excites the fluorescent substance contained in the sample S.
  • multiphoton excitation may be simply referred to as excitation.
  • the illumination optical system 4 scans the sample S with the interference fringes L2 of the excitation light L1 in a plurality of directions (for example, the X direction and the Y direction).
  • the illumination optical system 4 scans the sample S two-dimensionally with the interference fringe L2.
  • the detection optical system 5 is arranged at a position where the fluorescence L3 (shown later in FIG.
  • the detection device 6 includes a plurality of detection units 6a (later shown in FIG. 4) that detect the fluorescence L3 from the sample S via the detection optical system 5.
  • the image processing unit 7 uses the detection results of the two or more detection units 6a of the detection device 6 to generate an image (for example, a super-resolution image).
  • the control unit 8 controls the light source 3, the drive unit 22, the image processing unit 7, and the like.
  • a control device 8C is configured to include the image processing unit 7 and the control unit 8.
  • the light source 3 includes a light source such as a laser element.
  • the light source 3 generates coherent light in a predetermined wavelength band.
  • the predetermined wavelength band is set to a wavelength band in which the sample S containing a fluorescent substance can be excited by multiple photons. For example, when the excitation wavelength of the sample S is near ⁇ ex and the sample S is excited by n (n is an integer of 2 or more) photon excitation, the predetermined wavelength band is set to a wavelength band near n ⁇ ex. It is desirable to be done.
  • the excitation light L1 is emitted from the light source 3 as, for example, pulsed light.
  • the excitation light L1 emitted from the light source 3 is, for example, linearly polarized light.
  • a light guide member such as an optical fiber 11 is connected to the emission port of the light source 3.
  • the microscope 1 does not have to include the light source 3, and the light source 3 may be provided separately from the microscope 1.
  • the light source 3 may be replaceably (attachable or detachable) provided to the microscope 1.
  • the light source 3 may be externally attached to the microscope 1 during observation with the microscope 1.
  • the illumination optical system 4 is arranged at a position where the excitation light L1 from the light source 3 is incident. Excitation light L1 is incident on the illumination optical system 4 from the light source 3 through the optical fiber 11.
  • the optical fiber 11 may be a part of the illumination optical system 4 or a part of a light source device including the light source 3.
  • the illumination optical system 4 includes a collimator lens 12, a ⁇ /4 wave plate 13, a polarizer 14, a mask 15 (aperture member), a dichroic mirror 16, a relay optical system 17, and a scan in order from the light source 3 side to the sample S side.
  • the unit 18, the lens 19, the lens 20, and the objective lens 21 are provided.
  • the XYZ Cartesian coordinate system shown in FIG. In this XYZ orthogonal coordinate system, the X direction and the Y direction are directions perpendicular to the optical axis 21a of the objective lens 21, respectively. Further, the Z direction is a direction parallel to the optical axis 21a of the objective lens 21. The optical axis 21a of the objective lens 21 coincides with the optical axis 4a of the illumination optical system 4.
  • the same side as the arrow is referred to as a + side (eg, +X side), and the opposite side is referred to as a ⁇ side (eg, ⁇ X side).
  • the directions corresponding to the X direction, the Y direction, and the Z direction are indicated with subscripts.
  • the Xa direction, the Ya direction, and the Za direction in FIG. 1 are directions corresponding to the X direction, the Y direction, and the Z direction in the optical path from the collimator lens 12 to the dichroic mirror 16, respectively.
  • the collimator lens 12 converts the excitation light L1 emitted from the optical fiber 11 into parallel light.
  • the collimator lens 12 is arranged, for example, so that the focal point on the same side as the light source 3 coincides with the light emission port of the optical fiber 11.
  • the lens included in the illumination optical system 4 the focus on the same side as the light source 3 is referred to as the rear focus, and the focus on the same side as the sample S is referred to as the front focus.
  • the ⁇ / 4 wave plate 13 changes the polarization state of the excitation light L1 to circularly polarized light.
  • the polarizer 14 is, for example, a polarizing plate, and has a characteristic of transmitting linearly polarized light having a predetermined polarization direction.
  • the polarizer 14 is arranged such that the light incident on the sample S is S-polarized (linearly polarized in the Y direction).
  • the polarizer 14 is rotatable around the optical axis 12a of the collimator lens 12.
  • the optical axis 12a of the collimator lens 12 coincides with the optical axis 4a of the illumination optical system 4.
  • the mask 15 is a light beam splitting unit that splits the excitation light that excites the fluorescent substance into a plurality of light beams.
  • the illumination optical system 4 scans the sample S with the interference fringe L2 formed by the interference of two or more light beams among the plurality of light beams divided by the mask 15.
  • the mask 15 is arranged at or near the position of the pupil conjugate surface P1 optically conjugate with the pupil surface P0 of the objective lens 21.
  • the vicinity of the pupil conjugate surface optically conjugate with the pupil surface P0 of the objective lens 21 is a range in which the excitation light L1 can be regarded as a parallel ray in the region including the pupil conjugate surface.
  • the excitation light L1 when the excitation light L1 is a Gaussian beam, it can be sufficiently regarded as a parallel light ray within a range within 1/10 of the Rayleigh length from the beam waist position.
  • Rayleigh length of the wavelength of the excitation light L1 lambda when the beam waist radius was w 0, is given by ⁇ w 0 2 / ⁇ .
  • the Rayleigh length is about 3 m
  • the mask 15 is within 300 mm near the pupil conjugate plane P1 optically conjugate with the pupil plane P0 of the objective lens 21. It may be arranged.
  • the mask 15 may be arranged at or near the pupil plane P0.
  • the mask 15 has an opening 15a and an opening 15b through which the excitation light L1 passes. Interference between the excitation light L1a passing through the opening 15a and the excitation light L1b passing through the opening 15b forms an interference fringe L2.
  • the mask 15 is rotatable around the optical axis 12a of the collimator lens 12.
  • the mask 15 is fixed, for example, relative to the polarizer 14 and rotates integrally with the polarizer 14.
  • the mask 15 and the polarizer 14 are rotated by the torque supplied from the drive unit 22.
  • FIG. 2A is a diagram showing a mask according to the first embodiment.
  • the openings 15a and 15b of the mask 15 are arranged symmetrically with respect to the optical axis 12a of the collimator lens 12 (see FIG. 1).
  • the openings 15a and 15b are arranged in the Xa direction.
  • FIG. 2B is a diagram showing the polarizer according to the first embodiment.
  • the transmission axis 14a of the polarizer 14 is parallel to a direction (Ya direction in FIG. 2B) perpendicular to the direction (Xa direction in FIG. 2A) in which the openings 15a and 15b are aligned in the mask 15. Is set.
  • FIG. 2B is a diagram showing a mask according to the first embodiment.
  • the openings 15a and 15b of the mask 15 are arranged symmetrically with respect to the optical axis 12a of the collimator lens 12 (see FIG. 1).
  • the openings 15a and 15b are arranged in the Xa direction
  • FIG. 2C is a diagram showing the pupil plane P0 of the objective lens 21.
  • Reference numerals P0a and P0b are regions where the excitation light L1 is incident, respectively.
  • the parameters shown in FIG. 2C will be referred to later in the description of the image processing unit 7.
  • the dichroic mirror 16 has a property that the excitation light L1 is reflected and the fluorescence L3 (later shown in FIG. 4) from the sample S is transmitted.
  • the excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is reflected by the dichroic mirror 16, the optical path is bent, and enters the relay optical system 17.
  • the relay optical system 17 guides the excitation light L1 from the dichroic mirror 16 to the scanning unit 18.
  • the relay optical system 17 is represented by one lens in the figure, the number of lenses included in the relay optical system 17 is not limited to one. Further, the relay optical system 17 may not be necessary depending on the distance of the optical system and the like. In addition, in each drawing, two or more lenses may be represented by one lens even in a portion other than the relay optical system 17.
  • the scanning unit 18 scans the sample S with the interference fringes L2 formed by the excitation light L1 in the two directions of the X direction and the Y direction.
  • the scanning unit 18 changes the position where the interference fringe L2 is formed by the excitation light L1 in two directions that intersect the optical axis 21a of the objective lens 21.
  • the scanning unit 18 includes a deflection mirror 18a and a deflection mirror 18b.
  • the tilts of the deflection mirror 18a and the deflection mirror 18b with respect to the optical path of the excitation light L1 are variable.
  • the deflection mirror 18a and the deflection mirror 18b are a galvano mirror, a MEMS mirror, a resonant mirror (resonance type mirror), etc., respectively.
  • the deflection mirror 18a and the deflection mirror 18b may be scanners.
  • the scanning unit 18 is controlled by, for example, the control unit 8.
  • the deflection mirror 18a changes the position where the excitation light L1 is incident on the sample S in the X direction.
  • the deflection mirror 18b changes the position on the sample S where the excitation light L1 is incident in the Y direction.
  • the scanning unit 18 is arranged so that, for example, the position conjugate with the pupil plane P0 of the objective lens 21 is the position of the deflection mirror 18a, the position of the deflection mirror 18b, or the position between the deflection mirror 18a and the deflection mirror 18b. To be done.
  • the scanning unit 18 may be configured such that the deflection mirror 18a changes the position where the excitation light L1 is incident on the sample S in the Y direction and the deflection mirror 18b changes in the X direction.
  • the excitation light L1 from the scanning unit 18 is incident on the lens 19.
  • the lens 19 concentrates the excitation light L1 on the sample conjugate surface Sb optically conjugate with the sample surface Sa of the objective lens 21.
  • the sample surface Sa is a surface that is arranged at a position near the front focal point or the front focal point of the objective lens 21 and is perpendicular to the optical axis 21a of the objective lens 21.
  • An interference fringe is formed on the sample conjugate surface Sb due to the interference between the excitation light L1a passing through the opening 15a of the mask 15 and the excitation light L1b passing through the opening 15b.
  • the excitation light L1 that has passed through the sample conjugate surface Sb is incident on the lens 20.
  • the lens 20 converts the excitation light L1 into parallel light.
  • the excitation light L1 that has passed through the lens 20 passes through the pupil surface P0 of the objective lens 21.
  • the objective lens 21 focuses the excitation light L1 on the sample surface Sa.
  • the lens 20 and the objective lens 21 project the interference fringes formed on the sample conjugate surface Sb onto the sample surface Sa. Local interference fringes L2 are formed on the sample surface Sa.
  • the interference fringe L2 includes a bright portion having a relatively high light intensity and a dark portion having a relatively low light intensity.
  • the direction in which the bright part and the dark part are lined up (X direction in FIG. 1) is appropriately referred to as the periodic direction D1 of the interference fringes L2.
  • the periodic direction D1 of the interference fringe L2 corresponds to the direction in which the openings 15a and 15b of the mask 15 are arranged (Xa direction in FIG. 1).
  • the driving unit 22 is included in the fringe direction changing unit that changes the direction of the interference fringe L2.
  • the drive unit 22 (stripe direction changing unit) is a direction in which two or more light beams are arranged in a plane perpendicular to the optical axis 4a of the illumination optical system 4 (for example, the surface on the light emission side of the mask 15) (hereinafter referred to as a light beam division direction). ) Is changed.
  • the above-described light beam splitting direction is, for example, a direction in which the opening 15a and the opening 15b are arranged, and the drive unit 22 changes the light beam splitting direction by rotating the mask 15.
  • the drive unit 22 rotates the polarizer 14 in conjunction with the mask 15 to change the direction of the transmission axis of the polarizer 14 and adjusts the excitation light L1 to be S-polarized and incident on the sample S. That is, the polarizer 14 and the driving unit 22 are included in the polarization adjusting unit that adjusts the polarization state of the excitation light L1 based on the direction of the interference fringes.
  • FIG. 3 is a diagram showing the mask, the polarizer, the interference fringes, and the polarization state of the excitation light according to the first embodiment.
  • the direction in which the openings 15a and 15b of the mask 15 are arranged is the Xa direction.
  • the transmission axis 14a of the polarizer 14 is in the Ya direction perpendicular to the Xa direction.
  • the excitation light L1 in the excitation light L1 (see FIG. 1), the light flux passing through the opening 15a and the light flux passing through the opening 15b are incident on the sample S to generate the interference fringes L2 in the periodic direction D1.
  • the excitation light L1 incident plane is parallel to the XZ plane.
  • the excitation light L1 when incident on the sample S is in the Y direction whose polarization direction D2 is perpendicular to the incident surface, that is, the excitation light L1 is incident on the sample S with S polarization.
  • the direction in which the openings 15a and 15b of the mask 15 are aligned is the direction obtained by rotating the Xa direction counterclockwise by 120°.
  • the transmission axis 14a of the polarizer 14 is a direction in which the Ya direction is rotated counterclockwise by 120 °.
  • the periodic direction of the interference fringes L2 is a direction forming 120 ° with respect to the X direction.
  • the incident surface of the excitation light L1 is a surface obtained by rotating the XZ plane by 120 ° around the Z direction.
  • the excitation light L1 when entering the sample S has a polarization direction D2 perpendicular to the incident surface, that is, the excitation light L1 enters the sample S as S-polarized light.
  • the direction in which the openings 15a and 15b of the mask 15 are aligned is the direction obtained by rotating the Xa direction counterclockwise by 240°.
  • the transmission axis 14a of the polarizer 14 is a direction in which the Ya direction is rotated counterclockwise by 240 °.
  • the periodic direction D1 of the interference fringe L2 is a direction forming 240 ° with respect to the X direction.
  • the incident surface of the excitation light L1 is a surface obtained by rotating the XZ plane by 240 ° around the Z direction.
  • the excitation light L1 when entering the sample S has a polarization direction D2 perpendicular to the incident surface, that is, the excitation light L1 enters the sample S as S-polarized light.
  • the periodic direction of the interference fringe L2 is changed in three ways in increments of 120 °, but the periodic direction of the interference fringe L2 is not limited to this example.
  • the periodic direction of the interference fringes L2 corresponds to a direction in which the resolution can be improved (a direction in which the super-resolution effect can be obtained) in the image generated by the image processing unit 7 described later.
  • the periodic direction of the interference fringe L2 is appropriately set so that a desired super-resolution effect can be obtained.
  • the periodic directions of the interference fringes L2 may be two or one at an angle of 90 ° to each other.
  • the mask 15 may be replaceable according to the magnification and NA (numerical aperture) of the objective lens 21 and the shape of the illumination pupil.
  • FIG. 4 is a diagram showing the microscope and the optical path of fluorescence according to the first embodiment.
  • the detection optical system 5 forms an image of the fluorescence L3 generated in the sample S.
  • the detection optical system 5 includes an objective lens 21, a lens 20, a lens 19, a scanning unit 18, a relay optical system 17, a dichroic mirror 16, an excitation light cut filter 23, and a lens 24 in order from the sample S toward the detection device 6. ..
  • the fluorescence L3 generated in the sample S passes through the objective lens 21, the lens 20, and the lens 19 in this order and enters the scanning unit 18.
  • the fluorescence L3 is descanned by the scanning unit 18 and enters the dichroic mirror 16 through the relay optical system 17.
  • the dichroic mirror 16 has the property of transmitting the fluorescence L3.
  • the fluorescence L3 transmitted through the dichroic mirror 16 is incident on the excitation light cut filter 23.
  • the excitation light cut filter 23 has a property of blocking the excitation light L1 and transmitting the fluorescence L3.
  • the fluorescence L3 that has passed through the excitation light cut filter 23 enters the lens 24.
  • the lens 24 focuses the fluorescence L3 on the detection device 6.
  • the detection device 6 is an image sensor and includes a plurality of detection units 6a arranged two-dimensionally.
  • the plurality of detection units 6a are arranged in two directions in the detection device 6.
  • the plurality of detection units 6a are arranged in two directions, the Xb direction and the Yb direction.
  • Each of the plurality of detection units 6a is a sensor cell including a photoelectric conversion element such as a photodiode, a pixel, or a photodetector.
  • Each of the plurality of detection units 6a can detect the fluorescence L3.
  • the detection unit 6a corresponds to, for example, one pixel, but a detection region (light receiving region) including a plurality of pixels may be used as one detection unit 6a.
  • the microscope 1 scans the interference fringes L2 on the sample surface Sa by the scanning unit 18, and the detection device 6 detects the fluorescence L3. For example, the microscope 1 illuminates the illumination region selected from the sample surface Sa with the interference fringes L2, and the detection device 6 detects the fluorescence L3 from the illumination region. The microscope changes the illumination area by the scanning unit 18 after the detection by the detection device 6 is completed. The microscope 1 acquires a fluorescence intensity distribution (measured value of the detection device 6) in a desired region by repeating a process of detecting fluorescence and a process of changing the illumination region.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the wavelength band of the excitation light L1 can be extended to the wavelength band of the infrared light, so that the transmittance of the excitation light L1 to the sample S becomes high.
  • the fluorescence L3 to be detected is generated only in the vicinity of the focal plane of the objective lens 21, it is possible to accurately obtain image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S. it can.
  • the image processing unit 7 generates an image based on the detection result of the detection device 6 obtained as described above.
  • the processing executed by the image processing unit 7 will be described.
  • the coordinate system is described as a vector as appropriate.
  • scanning coordinates coordinates of the scanning destination of the scanning unit 18
  • r s (x s , y s )
  • wave number coordinates coordinates after Fourier transform at r s
  • k s (k xs , k ys )
  • the wave number may be referred to as spatial frequency or frequency.
  • the magnification of the optical system is assumed to be 1 for convenience of explanation, but any magnification may be used.
  • the numerical aperture of the optical system including the objective lens 21 is NA
  • the illumination light wavelength is ⁇ ex
  • the wavelength of the fluorescence L3 is ⁇ em
  • the pupil radius k NA em of the objective lens 21 is expressed by the following formula (1A) and formula (1B).
  • the coordinates of the pupil position may be represented by wave number coordinates.
  • Each of k NA ex and k NA em indicates the value of the pupil radius when the pupil is expressed in wave number coordinates.
  • the pupil plane P0 is represented by a wave number coordinate space (frequency space).
  • the area inside the circle drawn by the dotted line shown in FIG. 2C is the pupil of the objective lens 21, and k NA ex is the pupil radius of the objective lens 21.
  • the region P0a and the region P0b on which the excitation light L1 is incident are assumed to be circular, but are not limited to circular.
  • the radius of each of the region P0a and the region P0b is ⁇ k NA ex .
  • is the ratio of the radius of the region P0a or the region P0b to the pupil radius of the objective lens 21.
  • the distance from the optical axis 21a of the objective lens 21 to the center of the region P0a is (1- ⁇ ) k NA ex .
  • the distance between the center of the region P0a and the center of the region P0b is, for example, 2(1- ⁇ )k NA ex , but is not limited to this value.
  • the electric field intensity ill(r) of the excitation light on the sample surface Sa is expressed by the following equation (2).
  • k 0 2(1- ⁇ )k NA ex
  • PSF ill (r) is a point spread function when the numerical aperture of the optical system is ⁇ NA.
  • the interval of the interference fringes will be appropriately referred to as the fringe interval or the period of the interference fringes.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1, and the excited fluorescent substance emits the fluorescence L3.
  • the detection device 6 receives the fluorescence L3 and captures an image of the fluorescent substance formed by the detection optical system 5.
  • the detection device 6 captures an image of a fluorescent substance and acquires image data.
  • the size of the detection unit 6a of the detection device 6 is smaller than the size corresponding to the cycle of the interference fringes L2 in the detection device 6 (the length on the detection device 6 corresponding to one cycle). Is small enough.
  • the size of the detection unit 6a is set to about ⁇ em /4NA.
  • the distribution of the fluorescent substance in the sample S is represented by Obj(r)
  • the image data obtained by the detection device 6 when detecting the fluorescence generated by n-photon excitation is represented by I(r,r s ).
  • I(r,r s ) is represented by the following equation (3).
  • R in equation (3) is a convolution for r.
  • the PSF det (r) is a detection PSF determined by the detection optical system 5 including the objective lens 21 and the fluorescence wavelength ⁇ em .
  • the term of the excitation light intensity ill (r) to the nth power appears in the equation (3), reflecting that the fluorescence intensity generated by the n photon excitation is proportional to the nth power of the excitation light intensity.
  • FIG. 5 is a diagram showing effective PSF in each detection unit of the detection device according to the first embodiment.
  • the horizontal axis is the Xb direction of the detection device 6.
  • the effective PSF (solid line) of each detection unit 6a is shown in one graph for the three detection units 6a whose coordinates in the Xb direction are different from each other.
  • the graph in the center of FIG. 5A shows the distribution Q1a (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1a.
  • the graph on the left side of FIG. 5A shows the distribution Q1b (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1b.
  • the graph on the right side of FIG. 5A shows the distribution Q1c (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1c.
  • Reference numeral Q2 corresponding to the dotted line in FIG. 5 is a distribution corresponding to the square of the intensity distribution of the interference fringe L2 shown in FIG.
  • the distribution Q2 corresponds to the electric field intensity ill 2 (r) of the excitation light on the sample surface Sa (the square of the above equation (3)).
  • the case of two-photon excitation is shown as an example, but in the case of n-photon excitation, Q2 has a distribution corresponding to the n-th power of the electric field intensity ill (r) of the interference fringe L2.
  • the position where the intensity of the interference fringe L2 is maximum, that is, the peak positions X2a, X2b, and X2c of the distribution Q2 can be obtained in advance by numerical simulation or the like.
  • Distribution Q2 includes partial distributions Q2a, Q2b, and Q2c.
  • the distribution Q2a is a distribution in the range from the minimum position before the peak position X2a to the next minimum position.
  • the distribution Q2b is a distribution in the range from the minimum position before the peak position X2b to the next minimum position.
  • the distribution Q2c is a distribution in the range from the minimum position before the peak position X2c to the next minimum position.
  • Reference numerals Q3a, Q3b, and Q3c corresponding to the chain double-dashed line in FIG. 5 are distributions corresponding to the detection optical system 5 including the objective lens 21 and the detection PSF determined by the fluorescence wavelength ⁇ em .
  • the detected PSF corresponds to PSF det (r) such as in equation (3).
  • the distribution Q3a shown in the center graph of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1a among the plurality of detection units 6a.
  • the distribution Q3a has a maximum (peak) at the position X1a where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a).
  • the position X1a is almost the same as the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringe L2.
  • the distribution Q1a corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringes L2 and the distribution Q3a corresponding to the detected PSF of the detection unit 6a arranged at the position X1a.
  • the position X1a of the detection unit 6a that is, the peak position of the detection PSF (the peak position of the distribution Q3a) is deviated from the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringes L2.
  • the amount is smaller than the predetermined value (for example, the shift amount is almost 0).
  • the effective PSF distribution Q1a has a single maximum (peak).
  • the peak position of the distribution Q1a is almost the same as the position X1a of the detection unit 6a or the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringes L2.
  • the distribution Q3b shown in the graph on the left side of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1b among the plurality of detection units 6a.
  • the distribution Q3b reaches a maximum (peak) at the position X1b where the detection unit 6a is arranged (for example, the center position of the light receiving region of the detection unit 6a).
  • the position X1b is displaced from the peak position X2b of the partial distribution Q2b including the position X1b in the distribution Q2 corresponding to the intensity distribution of the interference fringe L2.
  • the distribution Q1b corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringe L2 and the distribution Q3b corresponding to the detected PSF of the detection unit 6a arranged at the position X1b.
  • the position X1b of the detection unit 6a that is, the peak position of the detected PSF (peak position of the distribution Q3b) is deviated from the peak position X2b of the distribution Q2b corresponding to the intensity distribution of the interference fringe L2.
  • the amount is larger than the predetermined value.
  • the distribution Q1b of the effective PSF has two maxima (peaks).
  • the peak of the effective PSF may be divided into two depending on the position of the detector 6a, and such a change in the shape of the effective PSF is called collapse of the shape of the effective PSF.
  • the strongest peak of the effective PSF is called the main lobe, and the other peaks are called the side lobes.
  • the peak position of the main lobe of the effective PSF distribution Q1b deviates from the center position (X2a) of the detection device 6.
  • the position of the main lobe of the effective PSF also shifts due to the relationship between the position (r) of the detection unit 6a of the detection device 6 and the position of the intensity distribution of the interference fringe L2.
  • the displacement of the main lobe of the effective PSF is appropriately referred to as the displacement of the effective PSF.
  • the distribution Q3c shown in the graph on the right side of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1c among the plurality of detection units 6a.
  • the distribution Q3c has a maximum (peak) at the position X1c where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a).
  • the position X1c deviates from the peak position X2c of the partial distribution Q2c including the position X1c in the distribution Q2 corresponding to the intensity distribution of the interference fringes L2.
  • the distribution Q1c corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringes L2 and the distribution Q3c corresponding to the detected PSF of the detection unit 6a arranged at the position X1c.
  • the position X1c of the detection unit 6a that is, the peak position of the detection PSF (the peak position of the distribution Q3c) is deviated from the peak position X2c of the distribution Q2c corresponding to the intensity distribution of the interference fringes L2.
  • the amount is larger than the predetermined value.
  • the distribution Q1b of the effective PSF has two maximums (peaks), the shape of the effective PSF is deformed, and the position of the effective PSF is displaced.
  • the distribution Q3d shown in the graph on the left side of FIG. 5B is a distribution corresponding to the detection unit 6a arranged at the position X1d among the plurality of detection units 6a.
  • the distribution Q3d has a maximum (peak) at the position X1d where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a).
  • the position X1d is substantially the same as the peak position X2b of the partial distribution Q2b including the position X1d in the distribution Q2 corresponding to the intensity distribution of the interference fringe L2.
  • the distribution Q1d of the effective PSF has a single maximum (peak), and the peak position of the distribution Q1d is the peak position of the distribution Q2b corresponding to the position X1d of the detection unit 6a or the intensity distribution of the interference fringe L2. It becomes almost the same as X2b. That is, the shape of the effective PSF has not collapsed.
  • the distribution Q3e shown in the graph on the right side of FIG. 5B is a distribution corresponding to the detection unit 6a arranged at the position X1e among the plurality of detection units 6a.
  • the distribution Q3e has a maximum (peak) at the position X1e (for example, the center position of the light receiving region of the detection unit 6a) where the detection unit 6a is arranged.
  • the position X1e is substantially the same as the peak position X2c of the partial distribution Q2c including the position X1e in the distribution Q2 corresponding to the intensity distribution of the interference fringes L2.
  • the distribution Q1e of the effective PSF has a single maximum (peak), and the peak position of the distribution Q1e is the peak position of the distribution Q2c corresponding to the position X1e of the detection unit 6a or the intensity distribution of the interference fringe L2. It becomes almost the same as X2c. That is, the shape of the effective PSF has not collapsed.
  • the image processing unit 7 uses the detection result of the detection unit 6a selected from the plurality of detection units 6a based on the magnification of the detection optical system 5 and the period (strip interval) of the interference fringes L2.
  • the image processing unit 7 selects the detection unit 6a from the plurality of detection units 6a based on the peak position of the interference fringe L2 (eg, peak positions X2a, X2b, X2c in FIG. 5), and the detection result of the selected detection unit 6a.
  • the peak position of the interference fringe L2 corresponds to, for example, the position where the intensity is maximum in the intensity distribution of the interference fringe L2 (eg, the central position of the bright portion).
  • the image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1a corresponding to the peak position X2a as the detection result corresponding to the peak position X2a in the center graph of FIG.
  • the peak positions X2a, X2b, and X2c are obtained in advance by numerical simulation or the like, and are stored in the storage unit in advance.
  • the image processing unit 7 selects the detection unit 6a arranged closest to the peak position X2a among the plurality of detection units 6a based on the stored information on the peak position, and displays the detection result of the selected detection unit 6a. To use.
  • the image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1a as the detection result regarding the partial distribution Q2a including one peak in the intensity distribution of the interference fringe L2.
  • the detection result of the detection unit 6a arranged at the position X1a and at least one detection unit 6a around the detection unit 6a may be used.
  • the image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1d corresponding to the peak position X2b as the detection result corresponding to the peak position X2b in the graph on the left side of FIG. 5B. .. Based on the magnification of the detection optical system 5 and the cycle of the interference fringes L2, the image processing unit 7 includes a plurality of detectors 6a whose positions match the partial distribution Q2b including one peak in the intensity distribution of the interference fringes L2. Select from the detection unit 6a.
  • the image processing unit 7 may detect the detection unit 6a arranged closest to the peak position X2b (for example, the detection unit arranged at the position X1d) among the plurality of detection units 6a based on the stored information about the peak position. 6a) is selected. The image processing unit 7 uses the detection result of the selected detection unit 6a as the detection result regarding the distribution Q2b.
  • the image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1d as the detection result regarding the partial distribution Q2b including one peak in the intensity distribution of the interference fringe L2.
  • the detection results of the detection unit 6a arranged at the position X1d and at least one detection unit 6a around the detection unit 6a may be used.
  • the effective PSF (PSF eff ) corresponding to the distribution Q1d the collapse of the shape of the effective PSF is reduced by matching the peak position X2b of the distribution Q2b with the position X1d of the detection unit 6a.
  • the image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1e corresponding to the peak position X2c as the detection result corresponding to the peak position X2c in the graph on the right side of FIG. 5B. .. Based on the magnification of the detection optical system 5 and the period of the interference fringes L2, the image processing unit 7 includes a plurality of detectors 6a whose positions match the partial distribution Q2c including one peak in the intensity distribution of the interference fringes L2. Select from the detection unit 6a.
  • the image processing unit 7 may detect the detection unit 6a (eg, the detection unit arranged at the position X1e) closest to the peak position X2c among the plurality of detection units 6a based on the stored peak position information. 6a) is selected. The image processing unit 7 uses the detection result of the selected detection unit 6a as the detection result regarding the distribution Q2c.
  • the detection unit 6a eg, the detection unit arranged at the position X1e
  • the image processing unit 7 uses the detection result of the selected detection unit 6a as the detection result regarding the distribution Q2c.
  • the image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1e as the detection result regarding the partial distribution Q2c including one peak in the intensity distribution of the interference fringe L2, You may use the detection result of the detection part 6a arrange
  • the peak position X2c of the distribution Q2c and the position X1e of the detection unit 6a are matched with each other, whereby the collapse of the shape of the effective PSF is reduced.
  • the image processing unit 7 corrects the image position deviation (effective PSF eff peak position or main lobe position deviation) for each detection unit with respect to the detection result of the detection unit 6a selected as described above.
  • the positional deviation of the image for each detection unit can be acquired by theoretical calculation using various design values or from a captured image obtained by photographing a small object such as fluorescent beads with the detection device 6. By correcting such misalignment, the effective PSF of the images obtained by each of the selected detection units 6a can be made substantially the same.
  • the PSF eff of the image obtained in this way can be approximately regarded as equivalent to the PSF eff of the detection unit (detection unit located on the optical axis) at the center position of the detection device 6.
  • the number of fringes (bright part) included in the periodic direction of the interference fringe L2 in the embodiment is larger, the full width at half maximum of PSF eff is narrower and the resolution is better.
  • the number of fringes (bright areas) included in the periodic direction of the interference fringes L2 is preferably 3 or more, for example.
  • the image processing unit 7 generates an image by adding the images having the same PSF eff .
  • the image processing unit 7 can generate the image I SR (r s ) having good resolution and S/N ratio because the PSF eff of the images to be added are almost the same.
  • a wide range of the detection unit 6a for use in the generation of the image I SR (r s) it is possible to increase the signal amount.
  • narrowing the range of the detection unit 6a for use in the generation of the image I SR (r s) it is possible to increase the sectioning capabilities.
  • the effective OTF can be obtained by Fourier-transforming the above equation (6).
  • the microscope according to the embodiment has a cutoff frequency of up to 2k cut conv with the OTF magnified in the direction of the interference fringes L2.
  • the fluorescence wavelength is ⁇
  • the excitation wavelength is n ⁇ ⁇ in the case of n photon excitation.
  • the OTF according to the embodiment is a combination of the OTF of the ordinary fluorescence microscope and the component of the OTF of the ordinary fluorescence microscope shifted in the periodic direction of the interference fringes L2.
  • the microscope 1 improves the resolution of the interference fringes L2 in the periodic direction (X direction in FIG. 1).
  • the microscope 1 can also improve the resolution two-dimensionally by detecting the fluorescence from the sample S by changing the periodic direction of the interference fringes L2.
  • the cycle direction of the interference fringe L2 is changed by 90°.
  • the mask 15 and the polarizer 14 in the state of FIG. 2 are rotated by 90° around the Za direction.
  • the super-resolution image when the periodic direction of the interference fringes L2 is the X direction and I SRx (r s)
  • the super-resolution image when the periodic direction of the interference fringes L2 is the Y direction I SRy (r s)
  • the image processing unit 7 by summing the I SRx (r s) and I SRy (r s), may generate a super-resolution image two-dimensionally resolution is improved.
  • the image processing unit 7 may also generate a super-resolution image by the following processing.
  • the image processing section 7 performs Fourier transform super-resolution image I SRx (r s) and a super-resolution image I SRy the (r s), respectively.
  • the Fourier-transformed super-resolution image I SRx (r s ) is represented by I to SRx (k s ).
  • " ⁇ " In the specification is a tilder in the mathematical formula.
  • the Fourier-transformed super-resolution image I SRy (r s ) is represented by I 1 to SRy (k s ).
  • I ⁇ SRx (k s) as compared to conventional fluorescence microscope, the cutoff frequency is increased with respect to the periodic direction of the interference fringes (X direction).
  • the cutoff frequency is increased with respect to the periodic direction of the interference fringes (Y-direction).
  • the image processing section 7 adds up the I ⁇ SRx (k s) and I ⁇ SRy (k s). This increases the cutoff frequency in the two directions (X direction and Y direction).
  • the added effective OTF shape may be distorted depending on the combination of the directions that change the periodic direction of the interference fringes L2.
  • the image processing unit 7 may apply a frequency filter for correcting the shape of the effective OTF.
  • the illumination optical system 4 changes the periodic direction of the interference fringe L2 into three types of 0°, 120°, and 240°, and the detection device 6 has three periodic directions. May detect the fluorescence L3.
  • the image processing unit 7 may generate a super-resolution image by using three detection results (for example, three images) detected by the detection device 6 in three different cycle directions.
  • the illumination optical system 4 changes the periodic direction of the interference fringe L2 in four or more ways
  • the detection device 6 detects the fluorescence L3 in each of the four or more periodic directions
  • the image processing unit 7 has four ways.
  • a super-resolution image may be generated by using four or more detection results detected by the detection device 6 in the above periodic directions.
  • the method of generating a super-resolution image using a plurality of detection results obtained by changing the cycle direction of the interference fringes a plurality of times described above can also be used in the following embodiments.
  • FIG. 6 is a flowchart showing the observation method according to the embodiment.
  • the control unit 8 of the microscope 1 sets the angles of the scanning mirrors (deflection mirrors 18a and 18b).
  • the illumination optical system 4 of FIG. 1 irradiates the position on the sample determined by the angle of the scanning mirror set in step S1 with the excitation light as interference fringes.
  • the fluorescent substance of the sample is excited by the interference fringes of the excitation light.
  • the detection device 6 of FIG. 4 detects the fluorescence L3 from the sample S via the detection optical system 5.
  • step S4 the control unit 8 determines whether or not to change the angle of the scanning mirror.
  • the control unit 8 determines to execute the angle change of the scanning mirror in step S4 (step S4; Yes). ).
  • step S4; Yes the process returns to step S1 and the control unit 8 sets the angle of the scanning mirror to the next scheduled angle. Then, the processes of steps S2 to S4 are repeated. In this way, the illumination optical system 4 scans the sample S two-dimensionally with the interference fringes of the excitation light L1.
  • step S4 determines not to change the angle of the scanning mirror (step S4; No). ..
  • the image processing unit 7 corrects the positional deviation of the image for each detection unit in step S5.
  • the image processing unit 7 corrects the data obtained from at least one detection unit of the plurality of detection units based on the position of the detection unit. For example, the image processing unit 7 corrects the data obtained from the detection unit selected from the plurality of detection units based on the position of the detection unit.
  • the image processing unit 7 uses the data obtained from the first detection unit (for example, the detection unit arranged at the position X1d in FIG. 5B) of the plurality of detection units as the first detection unit. Correction is performed based on the position (eg, X1d).
  • the image processing unit 7 also generates an image using the detection results of two or more detection units. For example, in step S6, the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images corrected in step S5.
  • the positions of the plurality of detection units 6a of the detection device 6 may be set based on the cycle of the interference fringe L2 so as to match the peak (or maximum or bright point) position of the interference fringe L2.
  • the detection device 6 may be preset so that the spacing between the detection units 6a and the fringe spacing of the interference fringes L2 match.
  • the distance between the detection units 6a is the distance between the center of one detection unit 6a and the center of the detection unit 6a adjacent to the center.
  • the fringe spacing of the interference fringe L2 is the spacing between the centerline of one bright portion and the centerline of the adjacent bright portion in the interference fringe L2.
  • the wave number of the interference fringe L2 is k 0
  • the fringe interval of the interference fringe L2 is 1 / k 0 .
  • the spacing of the detection unit 6a of the detection device 6 is set to be substantially the same as P shown in the following formula (7).
  • the magnification of the detection optical system 5 including the objective lens 21 is set to 1. If the magnification of the detection optical system 5 is M det is changing the spacing between the detectors 6a by a factor fraction, the spacing of the detectors 6a may be set to M det / k 0. Alternatively, by using a part of the detection optical system 5 as a zoom lens, the distance between the detectors 6a can be matched with the period of the interference fringes L2. In this case, it is desirable that the lens 24 capable of changing only the magnification of the detection optical system 5 is a zoom lens. Further, the period of the interference fringes L2 may be adjusted so as to match the intervals of the plurality of detectors 6a of the detection device 6. For example, the period of the interference fringes L2 can be changed by changing the intervals between the openings 15a and 15b of the mask 15.
  • the effective PSFs of the images obtained for each detection unit 6a are aligned by setting the intervals of the detection units 6a and the fringe intervals of the interference fringes L2 to match. Therefore, the image processing unit 7 generates images with high resolution (eg, super-resolution images) while ensuring S/N by adding images based on the detection results of two or more detection units.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the wavelength band of the excitation light L1 can be extended to the wavelength band of the infrared light, so that the transmittance of the excitation light L1 to the sample S becomes high.
  • the fluorescence L3 to be detected is generated only in the vicinity of the focal plane of the objective lens 21, it is possible to accurately obtain image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S. it can.
  • the microscope 1 scans the interference fringes L2 two-dimensionally by scanning the interference fringes L2 in two directions parallel to the sample surface Sa.
  • the microscope 1 according to the embodiment may scan the interference fringes L2 three-dimensionally by scanning the interference fringes L2 in two directions parallel to the sample surface Sa and one direction perpendicular to the sample surface Sa.
  • the process of scanning the interference fringes L2 in two directions parallel to the sample surface Sa (hereinafter referred to as the two-dimensional process) is the same as the process described in the above embodiment. is there.
  • the microscope 1 can generate, for example, a three-dimensional super-resolution image by changing the position in the Z direction and repeating the two-dimensional processing. Similarly for the embodiments described later, the microscope 1 may scan the interference fringes L2 three-dimensionally.
  • the image processing unit 7 filters the data in the frequency space to generate an image.
  • the image processing unit 7 performs deconvolution on the data obtained from the detection device 6 to generate an image.
  • the image processing unit 7 performs deconvolution and apodization for each detection unit 6a of the detection device 6 as the above-described filtering to generate an image. That is, the image processing unit 7 performs filtering including deconvolution on the data in the frequency space.
  • a series of processes of deconvolution and apodization may be collectively (generally) referred to as deconvolution.
  • FIG. 7 is a diagram showing processing of the image processing unit of the microscope according to the second embodiment.
  • FIG. 7 (A) is the PSF before deconvolution, which is the same as FIG. 5 (A).
  • the distance between the detection units 6a of the detection device 6 does not match the distance between the interference fringes L2.
  • the shape of the effective PSF (solid line) of the image obtained for each detection unit 6a is deformed depending on the position of the detector 6a, as described in the above equation (5).
  • the effective PSF for each detector 6a can be obtained (estimated) by theoretical calculation from the design value or by photographing a small object such as fluorescent beads.
  • the image processing unit 7 uses the thus obtained effective PSF to perform deconvolution so as to correct the shape collapse and the positional deviation of the effective PSF of the image obtained for each detection unit 6a.
  • Figure 7 (B) shows the PSF after deconvolution.
  • reference sign Q4a is an effect obtained by deconvoluting the effective PSF of the detection unit 6a arranged at the distribution Q1a shown in the graph in the center of FIG. 7A, that is, the position X1a.
  • the amount of deviation between the position X1a of the detection unit 6a and the peak position X2a of the distribution Q2a is smaller than a predetermined value, and the distribution Q4a corresponding to the effective PSF after deconvolution corresponds to the effective PSF before deconvolution. It is almost the same as the distribution Q1a.
  • reference sign Q4b is obtained by deconvoluting the distribution Q1b shown in the graph on the left side of FIG. 7A, that is, the effective PSF of the detection unit 6a arranged at the position X1b.
  • reference sign Q4c indicates the distribution Q1c shown in the graph on the right side of FIG. 7(A), that is, the effective PSF of the detection unit 6a arranged at the position X1c is obtained by deconvolution.
  • PSF corresponds to PSF.
  • the effective PSFs of the detectors 6a become substantially the same, as shown in the three graphs of FIG. 7B.
  • the image processing unit 7 uses the result of deconvolution to generate an image.
  • the processing of the image processing unit 7 will be described in more detail.
  • the image processing unit 7 converts at least a part of the detection results of the plurality of detection units 6a into data on the frequency space, and uses the conversion results to generate an image (eg, a super-resolution image).
  • data representing at least a part of the detection results of the plurality of detection units 6a in the frequency space is appropriately referred to as a component of the frequency space.
  • the image processing unit 7 Fourier transforms at least a part of the detection results of the plurality of detection units 6a, and generates an image using the components of the frequency space obtained by the Fourier transform.
  • I 1 to (r, k s ) on the left side of the equation (8) is the Fourier transform of I (r, r s ) with respect to r s .
  • Right side of the OTF eff (r, k s) is, PSF eff (r, r s ) the is obtained by Fourier transform for r s, represents the effective OTF of each detector 6a of the detector 6.
  • the right-hand side of Obj ⁇ (k s) are those Obj a (r s) obtained by Fourier transform on r s.
  • deconvolution methods such as the Wiener filter and Richardson-Lucy method.
  • the process using the Wiener filter will be described as an example, but the image processing unit 7 may execute deconvolution by other processes.
  • the deconvolution of each detection unit by the Wiener filter is represented by the following formula (9).
  • Obj to (r, k s ) are distributions of the fluorescent substance estimated for each detection unit 6a of the detection device 6 (hereinafter, referred to as estimated fluorescent substance distributions).
  • w is a Wiener parameter for suppressing noise.
  • the image processing unit 7 the process shown in the following equation (10), the apodization Obj ⁇ (r, k s), adding the spectrum in the detection section 6a of the detection device 6, the super-resolution image I SR ( to generate a r s).
  • A(k s ) is an apodization function for suppressing the negative value of the image, and multiplying Obj ⁇ (r, k s ) by A(k s ) is called apodization.
  • the functional form of A(k s ) is designed to suppress the negative value of the image by theoretical calculation or simulation.
  • F ks -1 is the inverse Fourier transform relates k s.
  • the image processing unit 7 performs the inverse Fourier transform after adding the spectra of the detection units 6a, but may add the images after performing the inverse Fourier transform. In the processing of Expressions (9) and (10), the image processing unit 7 independently deconvolves each detection unit 6a and then adds the images to each detection unit 6a.
  • the image processing section 7 may collectively deconvolute two or more detection sections 6a as in the following Expression (11).
  • FIG. 8 is a flowchart showing an observation method according to the second embodiment.
  • the processing from step S11 to step S14 is the same as the processing from step S1 to step S4 in FIG. 6, and therefore description thereof will be omitted.
  • the image processing unit 7 Fourier transforms the detection result of each detection unit.
  • the image processing unit 7 executes deconvolution.
  • the image processing unit 7 executes apodization. Apodization may be part of the deconvolution process.
  • the image processing unit 7 adds the images of the detection units 6a using the result of the deconvolution.
  • the image processing unit 7 performs an inverse Fourier transform on the first image (eg, Fourier image) obtained in step S18 to generate a second image (eg, super-resolution image).
  • the image processing unit 7 performs Fourier transform on the detection result of each detection unit and executes deconvolution, thereby aligning the effective PSFs of the images obtained for each detection unit 6a. Therefore, the image processing unit 7 adds the images of the respective detection units 6a using the result of the deconvolution to generate an image with high resolution (eg, super-resolution image) while ensuring S/N. be able to. Further, the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first embodiment, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the image processing unit 7 may change the range of the detection unit 6a to be added, as described in the first embodiment. Further, the image processing unit 7 may improve the resolution one-dimensionally or two-dimensionally as described in the first embodiment.
  • FIG. 9 is a diagram showing processing of the image processing unit of the microscope according to the third embodiment. For each part of the microscope, refer to FIG. 1 or FIG. 4 as appropriate.
  • the image processing unit 7 corrects the collapse of the shape of the effective PSF for each detection unit 6a by image processing different from that in the second embodiment.
  • FIG. 9A is a PSF before image processing according to the present embodiment, which is the same as FIG. 5A.
  • the distance between the detection units 6a of the detection device 6 does not match the distance between the interference fringes L2.
  • the shape of the effective PSF (solid line) of the image obtained for each detection unit 6a is deformed depending on the position of the detector 6a, as described in the above equation (5).
  • the image processing unit 7 sets the interference fringes so that the peak position of the partial distribution of intensity distribution of the interference fringes L2 (eg, Q2b shown in the graph on the left side of FIG. 9A) matches the position of the detection unit 6a.
  • the phase of the intensity distribution of L2 is effectively shifted by image processing. This process is appropriately referred to as image processing phase shift processing. Further, the phase shift by the image processing phase shift processing is appropriately referred to as an image processing phase shift.
  • the amount of phase shift by image processing phase shift processing is appropriately referred to as image processing phase shift amount.
  • FIG. 9B shows an effective PSF for each detection unit 6a after the image processing phase shift processing.
  • the distribution Q2f is image processing phase-shifted so that the peak position X2b of the distribution Q2b of FIG. 9A coincides with the position X1b of the detection unit 6a.
  • the peak position X2f of the distribution Q2f substantially coincides with the position X1b of the detection unit 6a.
  • Reference numeral Q1f is a distribution corresponding to the effective PSF obtained from the distribution Q2f in which the phase is subjected to the image processing phase shift and the detected PSF (distribution Q3b) of the detection unit 6a arranged at the position X1b. In the distribution Q1f, the collapse of the shape of the effective PSF is reduced.
  • the distribution Q2g has the phase of the distribution Q2 set to the image processing phase so that the peak position X2c of the distribution Q2c of FIG. 9A matches the position X1c of the detection unit 6a.
  • the peak position X2g of the distribution Q2g substantially coincides with the position X1c of the detection unit 6a.
  • Reference numeral Q1g is a distribution corresponding to the effective PSF obtained from the distribution Q2g in which the phase is subjected to the image processing phase shift and the detected PSF (distribution Q3c) of the detection unit 6a arranged at the position X1c. In the distribution Q1g, the collapse of the shape of the effective PSF is reduced.
  • the shape of the effective PSF (solid line) for each detection unit 6a is corrected so as to be substantially the same.
  • the image processing unit 7 generates an image by using an image for each detection unit 6a having an effective PSF corrected to have substantially the same shape.
  • indicates the initial phase of the interference fringe L2.
  • the term of cos(2 ⁇ k 0 ⁇ r s + ⁇ ) in Expression (12) has the same period as the period of the interference fringes formed by the excitation light.
  • the term of cos(4 ⁇ k 0 ⁇ r s +2 ⁇ ) in the equation (12) has a half cycle of the interference fringe cycle. In the case of two-photon excitation, up to the second harmonic component of the period of the interference fringes formed by the excitation light is generated. In the case of n-photon excitation, up to the nth harmonic component of the period of the interference fringes formed by the excitation light is generated.
  • the image processing unit 7 changes the phase of the interference fringe L2 by image processing according to the detector coordinates, and aligns the shapes of the effective PSFs.
  • the microscope 1 acquires the four-dimensional image data I(r,r s ) as described in Expression (3).
  • the image processing unit 7 performs a four-dimensional Fourier transform on I(r,r s ).
  • the four-dimensional data of the frequency space obtained by the Fourier transform is represented by I ⁇ (k, k s ).
  • I 0 to (k, k s ) of the first term on the right side of the equation (13) are referred to as a zero-order component.
  • I 0 to (k, k s ) are defined as the following equation (14).
  • I +1 to (k, k s ) of the second term on the right side of the equation (13) are called +1 order components.
  • I + 1 to (k, k s ) are defined by the following equation (15).
  • I -1 to (k, k s ) of the third term on the right side of the equation (13) are called -1st order components.
  • I -1 to (k, k s ) are defined as the following equation (16).
  • I +2 ⁇ the fourth term on the right-hand side of equation (13) to (k, k s) is called a +2 order component.
  • I +2 to (k, k s ) are defined by the following equation (17).
  • I -2 ⁇ the right side fifth term of formula (13) to (k, k s) is referred to as a minus second-order component.
  • I -2 ⁇ (k, k s ) is defined as the following equation (18).
  • the OTF det (k) is a Fourier transform of the PSF det (r) and represents the OTF of the detection optical system 5. Further, OTF 'ill (k) is obtained by Fourier transform of the PSF 2 ill (r). Obj ⁇ (k s) are those that Obj a (r s) obtained by Fourier transformation.
  • the cutoff frequency of OTF det (k) is given by 2k NA em . Further, the cut-off frequency of OTF 'ill (k) is given by the 4 ⁇ k NA ex. Therefore, I 0 to (k, k s ) have values only within the region satisfying the condition of the following equation (19). A region that satisfies the condition of the following Expression (19) is appropriately referred to as a zero-order component region AR1a.
  • I +1 to (k, k s ) have values only within the region satisfying the condition of the following equation (20).
  • a region that satisfies the condition of the following Expression (20) is appropriately referred to as a +1st order component region AR1b.
  • I -1 to (k, k s ) have values only within the region satisfying the condition of the following equation (21).
  • a region that satisfies the condition of the following expression (21) is appropriately called a -1st order component region AR1c.
  • I +2 ⁇ (k, k s ) has a value only in satisfying the region of Formula (22) below.
  • a region that satisfies the condition of the following Expression (22) is appropriately referred to as a +second-order component region AR1d.
  • I -2 to (k, k s ) have values only within the region satisfying the condition of the following equation (23).
  • a region that satisfies the condition of the following Expression (23) is appropriately referred to as a ⁇ second-order component region AR1e.
  • a process of separating appropriately referred to as a component separation.
  • FIG. 10 is a diagram showing a region of the frequency space used for component separation in the third embodiment.
  • the opening of the mask 15 may have a shape other than a circular shape.
  • the range of the area AR1a of the 0th order component, the area AR1b of the +first order component, the area AR1c of the ⁇ 1st order component, the area AR1d of the +second order component, and the area AR1e of the ⁇ second order component is when the opening of mask 15 is circular.
  • the opening of the mask 15 has a shape other than a circular shape, it can be obtained by numerical simulation, theoretical calculation, or the like.
  • FIG. 10A shows each region on the k xs -kys plane.
  • the 0th-order component area AR1a, the +1st-order component area AR1b, the ⁇ 1st-order component area AR1c, the +second-order component area AR1d, and the ⁇ second-order component area AR1e are circular areas.
  • the 0th-order component area AR1a, the +1st-order component area AR1b, the ⁇ 1st-order component area AR1c, the +second-order component area AR1d, and the ⁇ second-order component area AR1e have the same diameter.
  • the diameter of the 0th-order component region AR1a is 8 ⁇ k NA ex .
  • the region AR1a of the 0th-order component is a region centered on the origin.
  • the area AR1b of the +1st order component, the area AR1c of the ⁇ 1st order component, the area AR1d of the +second order component, and the area AR1e of the ⁇ second order component are areas on the axis of which the center is k xs .
  • the distance A between the center and the origin of the region AR1c of the -1st order component is 2 (1- ⁇ ) k NA ex .
  • the +1st-order component region AR1b is a region symmetric with respect to the -1st-order component region AR1c with respect to the 0th-order component region AR1a.
  • the distance B between the center of the area AR1e of the ⁇ second-order component and the origin is twice the distance A, which is 4(1 ⁇ )k NA ex .
  • the + secondary component region AR1d is a region symmetric with respect to the second-order component region AR1e with respect to the zero-order component region AR1a.
  • FIG. 10B shows each region on the k xs ⁇ k x plane.
  • the 0th-order component area AR1a, the +1st-order component area AR1b, the ⁇ 1st-order component area AR1c, the +second-order component area AR1d, and the ⁇ second-order component area AR1e are parallelogram areas, respectively.
  • the image processing unit 7 sets the region of the frequency space in the component separation based on the light intensity distribution of the excitation light in the sample S. For example, the image processing unit 7 sets a plurality of regions that do not overlap each other based on the square of the electric field intensity ill(r) of the excitation light on the sample surface Sa as the light intensity distribution of the excitation light on the sample S.
  • the plurality of regions described above include five or more regions that do not overlap with each other.
  • the plurality of areas include the area AR1a of FIG. 10 as the first area, the area AR1b of FIG. 10 as the second area, the area AR1c of FIG. 10 as the third area, the area AR1d of FIG. 10 as the fourth area, and the area AR1d of FIG.
  • the region AR1e of FIG. 10 is included as the five regions.
  • the image processing unit 7 selects, from the data in the frequency space, data belonging to the first area (area AR1a), data belonging to the second area (area AR1b), data belonging to the third area (area AR1c), and the fourth area ( The components are separated by extracting the data belonging to the area AR1d) and the data belonging to the fifth area (area AR1e).
  • the image processing unit 7 determines the electric field intensity ill(r) of the excitation light on the sample surface Sa as the light intensity distribution of the excitation light on the sample S. It is possible to set a plurality of regions that do not overlap each other based on the nth power and perform component separation.
  • the image processing unit 7 uses I 0 to (k, k s ), I +1 to (k, k s ), I ⁇ 1 to (k, k s ), I +2 to (k, k s ), I ⁇ 2.
  • image data obtained by performing an inverse Fourier transform on I 0 to (k, k s ) will be represented by I 0 (r, r s ).
  • Image data obtained by inverse Fourier transforming I +1 to (k, k s ) is represented by I +1 (r, r s ).
  • Image data obtained by inverse Fourier transforming I ⁇ 1 to (k, k s ) is represented by I ⁇ 1 (r, r s ).
  • Image data obtained by inverse Fourier transforming I +2 to (k, k s ) is represented by I +2 (r, r s ).
  • Image data obtained by inverse Fourier transforming I ⁇ 2 to (k,k s ) is represented by I ⁇ 2 (r,r s ).
  • the image processing unit 7 uses I 0 (r,r s ), I +1 (r,r s ), I ⁇ 1 (r,r s ), I +2 (r,r s ), and I ⁇ 2 (r,r ). s ) is subjected to the calculations shown in the following formulas (24A) to (24E).
  • ⁇ (r) represents the position of the detection unit 6a of the detection device 6, that is, the image processing phase shift amount for each detector coordinate r.
  • the image processing phase shift amount ⁇ (r) is determined, for example, as follows.
  • the image processing unit 7 calculates the positional deviation amount of the signal detected at the detector coordinate r.
  • the image processing unit 7, for example, by simulation in advance, by obtaining the peak position of the obtained function PSF det and (r + r s) by the product of PSF 2 ill (r s), calculates the position deviation amount of the ..
  • the misalignment of the effective PSF may be considered to be proportional to the detector coordinates r, and if the parameter representing the degree of misalignment is ⁇ , the amount of misalignment of the effective PSF can be represented by r / ⁇ .
  • the value of ⁇ may be calculated from the peak position of the function obtained by the product of the PSF det (r + r s) and PSF ill (r s), may be calculated by other numerical simulations.
  • the image processing phase shift amount ⁇ (r) according to the detector coordinates r is determined.
  • Image processing the phase shift of the interference fringe L2 [psi (r) is the peak position of the function obtained by the product of the PSF det (r + r s) and PSF ill (r s), and the peak position of the interference fringes L2 is Determined to match.
  • the value of the initial phase ⁇ may be a value measured in advance using fluorescent beads or a value estimated from an observed image.
  • the image processing unit 7 determines the amount of phase conversion (image processing phase shift amount) based on the light intensity distribution of the excitation light in the sample S.
  • the image processing unit 7 calculates the sum of the calculation results of the above formulas (24A) to (24E) as shown in the following formula (25).
  • PH(r) is a pinhole function defined by the following Expression (27).
  • the signal amount and the sectioning effect can be adjusted.
  • Increasing the value of r PH increases the amount of signal.
  • a smaller value of r PH improves the sectioning ability.
  • the scan interval and the interval of the detection unit 6a of the detection device 6 may be set based on the cutoff frequency and the Nyquist theorem.
  • the scan interval may be set to ⁇ ex /(8nNA) or less in the periodic direction of the interference fringes.
  • the scan interval may be set to ⁇ ex /(4nNA) or less in the direction perpendicular to the periodic direction of the interference fringes.
  • the interval between the detection units 6a of the detection device 6 may be set to ⁇ em /4NA or less.
  • FIG. 11 is a flowchart showing an observation method according to the third embodiment. Since the processing of steps S21 to S24 is the same as the processing of steps S1 to S4 of FIG. 6, the description thereof will be omitted.
  • the image processing unit 7 Fourier transforms at least a part of the detection results of the plurality of detection units 6a.
  • the image processing section 7 performs Fourier transformation of 4-dimensional relative I (r, r s).
  • the image processing unit 7 separates the components in the frequency space.
  • the image processing unit 7 separates the components of the frequency space obtained by the Fourier transform into each region of the frequency space.
  • the image processing unit 7 performs an inverse Fourier transform on the separated components.
  • step S28 the image processing unit 7 executes the image processing phase shift processing.
  • the image processing unit 7 corrects the positional deviation of the effective PSF in step S29.
  • step S30 the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images obtained by correcting the positional deviation in step S29.
  • the image processing unit 7 converts the phase of at least a part of the data obtained by the component separation to generate an image.
  • the image processing unit 7 executes the phase shift process on the data in the real space. That is, the image processing unit 7 uses, as the data obtained by the component separation, the data (the data on the real space) obtained by converting the data on the component separation (the data on the frequency space) into the data on the real space by the inverse Fourier transform. ..
  • the image processing unit 7 may perform the phase shift process in the frequency space on the data in the frequency space in which the components have been separated.
  • the image processing unit 7 executes the phase shift process to align the effective PSFs of the images obtained by the detection units 6a. Therefore, the image processing unit 7 adds the images of the respective detection units 6a obtained by executing the phase shift process to obtain an image with high resolution (eg, super-resolution image) while ensuring S/N. Can be generated.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • a fourth embodiment will be described.
  • the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the image processing unit 7 (see FIG. 4) performs the component separation described in the third embodiment, and then performs deconvolution on the separated components to generate an image.
  • OTF 0 (k, k s ), OTF +1 (k, k s ), OTF ⁇ 1 (k, k s ), OTF +2 (k, k s ), OTF ⁇ 2 (k, k s ) s ) is represented by the following formulas (29A) to (29E).
  • the image processing unit 7 includes OTF 0 (k, k s ), OTF +1 (k, k s ), OTF ⁇ 1 (k, k s ), OTF +2 (k, k s ), OTF ⁇ 2 (k, k s ).
  • Deconvolution is performed using each measured value or estimated value of s 2 ).
  • processing using a Wiener filter will be described as an example of deconvolution, but deconvolution using another method may be used.
  • deconvolution by the Wiener filter is expressed by the following equation (30A) and equation (30B).
  • w is a Wiener parameter for suppressing noise.
  • a (k s ) is the apodization function for suppressing the negative value of the image.
  • F ks -1 is the inverse Fourier transform relates k s.
  • the image processing section 7 generates the super-resolved image I SR (r s) by using a de-convolution results described above.
  • FIG. 12 is a flowchart showing an observation method according to the fourth embodiment.
  • the processing from step S31 to step S34 is similar to the processing from step S1 to step S4 in FIG. 6, and therefore description thereof will be omitted.
  • step S35 the image processing unit 7 Fourier transforms the detection result.
  • step S36 the image processing unit 7 separates the components in the frequency space.
  • step S37 the image processing unit 7 performs deconvolution using the components separated by the process of step S36.
  • the image processing unit 7 performs apodization.
  • the image processing unit 7 performs an inverse Fourier transform on the data obtained by the deconvolution and the apodization.
  • the image processing unit 7 uses the data obtained by the inverse Fourier transform to generate an image (for example, a super-resolution image).
  • the image processing unit 7 executes component separation, deconvolution, and apodization in the frequency space, converts the data obtained by these processes into the data in the real space, and forms the image. To generate.
  • the image processing unit 7 may generate an image without performing the process of correcting the positional deviation by making the effective PSFs of the detection units 6a of the detection devices 6 substantially match.
  • the image processing unit 7 executes the component separation, deconvolution, and apodization in the frequency space to align the effective PSFs of the images obtained by the detection units 6a. Then, the image processing unit 7 converts the data obtained by these processes into data in the real space to generate an image, thereby ensuring an S/N and an image with high resolution (eg, super-resolution). Image) can be generated.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the scan interval and the interval of the detection unit 6a of the detection device 6 may be set based on the cutoff frequency and the Nyquist theorem.
  • the scan interval may be set to ⁇ ex / (8 nNA) or less in the periodic direction of the interference fringes.
  • the scan interval may be set to ⁇ ex /(4nNA) or less in the direction perpendicular to the periodic direction of the interference fringes.
  • the interval between the detection units 6a of the detection device 6 may be set to ⁇ em /4NA or less.
  • the image processing unit 7 may set the range to be integrated with respect to the above k to the range of the entire space or to a part of the range of the entire space. Further, the image processing unit 7 uses I 0 to (k, k s ), I +1 to (k, k s ), I ⁇ 1 to (k, k s ), and I +2 to (k, k s ) by Fourier transform. ), I -2 to (k, k s ) may be limited in the range of r.
  • the image processing unit 7 also includes OTF 0 (k, k s ), OTF +1 (k, k s ), OTF ⁇ 1 (k, k s ), OTF +2 (k, k s ), and OTF ⁇ 2 ( k, k s ) may be data obtained in advance by measurement using fluorescent beads or numerical simulation using design values, or obtained from the result of detection of fluorescence from the sample S by the detection device 6. Data (eg, estimates) may be used.
  • FIG. 13 is a diagram showing a microscope 101 according to the fifth embodiment.
  • the detection device 106 includes a line sensor (line detector) in which a plurality of detection units 6a are arranged one-dimensionally. The plurality of detection units 6a are arranged in one direction in the detection device 106. The detection device 106 is arranged at a position optically conjugate with the sample surface Sa.
  • the direction in which the plurality of detection units 6a are arranged (hereinafter referred to as the arrangement direction) is set to the direction corresponding to the periodic direction of the interference fringes L2.
  • the periodic direction of the interference fringes is the X direction
  • the array direction of the plurality of detection units 6a is set to the Xb direction corresponding to the X direction.
  • the microscope 101 includes a ⁇ /2 wavelength plate 30 and an optical path rotating unit 31 that rotates the optical path around the optical axis.
  • the ⁇ /2 wave plate 30 rotates the polarized light passing through the optical path rotating unit 31 based on the rotation angle of the optical path by the optical path rotating unit 31.
  • the optical path rotating unit 31 is arranged in the optical path between the mask 15 and the sample S in the illumination optical system 4.
  • the optical path rotating unit 31 is arranged, for example, at a position where the excitation light L1 becomes substantially parallel light in the optical path of the illumination optical system 4.
  • the optical path rotating unit 31 is arranged, for example, at a position where the excitation light L1 passes through in the illumination optical system 4 and the fluorescence L3 passes through in the detection optical system 5.
  • the optical path rotating unit 31 is arranged in the optical path between the dichroic mirror 16 and the sample S, for example.
  • the ⁇ /2 wave plate 30 may be arranged on the same side as the sample S with respect to the optical path rotating unit 31, or on the side opposite to the sample S with respect to the optical path rotating unit 31 (eg, on the same side as the excitation light source). ).
  • the optical path rotating unit 31 is, for example, an image rotator such as a Dove prism.
  • the optical path rotating unit 31 is provided rotatably around the optical axis of the illumination optical system 4.
  • the optical path rotating unit 31 is driven by the driving unit 32 and rotates.
  • a Dove prism is used as the optical path rotating unit 31
  • the optical path on the light emission side (the sample S side) from the Dove prism is directed to the Dove prism.
  • the optical path on the light incident side (light source 3 side) is rotated by 2 ⁇ ° around the optical axis of the illumination optical system 4.
  • the incident surface of the excitation light L1 on the sample S rotates 2 ⁇ ° around the Z direction
  • the periodic direction of the interference fringes L2 rotates 2 ⁇ ° around the Z direction.
  • the driving unit 32 rotates the optical path rotating unit 31 by 45 ° around the optical axis of the illumination optical system 4.
  • the optical path rotating portion 31 is included in the fringe direction changing portion that changes the direction of the interference fringes with respect to the sample.
  • the ⁇ /2 wave plate 30 is provided so as to be rotatable around the optical axis of the illumination optical system 4.
  • the ⁇ / 2 wave plate 30 rotates in conjunction with the optical path rotating portion 31.
  • the ⁇ / 2 wave plate 30 rotates by an angle determined based on the rotation angle of the optical path rotating portion 31.
  • the ⁇ /2 wavelength plate 30 is fixed (eg, integrated) with the optical path rotating unit 31 and rotates together with the optical path rotating unit 31. In this case, the ⁇ /2 wave plate 30 rotates by the same angle as the rotation angle of the optical path rotating unit 31.
  • the polarization direction of the excitation light L1 is different from the polarization direction on the light incident side (the light source 3 side). Rotate 2 ⁇ ⁇ ° around the optical axis of. As a result, the polarization state of the excitation light L1 when entering the sample S becomes S-polarized.
  • the optical path rotating unit 31 of FIG. 13 is also included in the image rotating unit.
  • the image rotation unit rotates an image of the sample S (eg, an image of fluorescence from the sample S) with respect to the plurality of detection units 6a around the optical axis of the detection optical system 5. That is, the fringe direction changing portion and the image rotating portion include the optical path rotating portion 31 as the same member (optical member).
  • the optical path rotating unit 31 is arranged at a position on the optical path of the illumination optical system 4 where fluorescence enters.
  • the image rotating unit rotates the fluorescence image by the optical path rotating unit 31.
  • the optical path rotation unit 31 adjusts the cycle direction of the interference fringes L2 with respect to the arrangement direction of the plurality of detection units 6a in the detection device 6.
  • the Dove prism When the Dove prism is used as the optical path rotating unit 31, when the Dove prism is rotated by ⁇ ° around the optical axis of the illumination optical system 4, the cycle direction of the interference fringes L2 is rotated by 2 ⁇ ° around the Z direction. Then, the optical path of the fluorescence L3 from the sample S rotates ⁇ 2 ⁇ ° on the light emitting side (detector 106 side) with respect to the light incident side (sample S side) on the Dove prism.
  • the detection device 106 can detect the fluorescence L3 similarly before and after the change of the periodic direction of the interference fringe L2.
  • the detection device 6 since the detection device 6 includes the plurality of detection units 6a arranged two-dimensionally, the detector coordinates have a two-dimensional coordinate system.
  • the detection device 106 since the detection device 106 includes the plurality of detection units 6a arranged one-dimensionally, the detector coordinates have a one-dimensional coordinate system.
  • the processing relating to detector coordinates is image processing corresponding to a one-dimensional coordinate system (eg, Fourier transform for detector coordinates in the third embodiment is one-dimensional Fourier transform).
  • the image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
  • the driving unit 22 rotates the mask 15 to change the cycle direction of the interference fringes L2.
  • the interference fringes L2 are changed by the optical path rotating unit 31 (for example, the Dove prism).
  • the periodic direction of may be changed.
  • the fringe direction changing unit that changes the cycle direction of the interference fringes L2 may be different from both the drive unit 22 and the optical path rotating unit 31.
  • the stage 2 may be rotatably provided around the Z direction, and the rotation may change the direction of the interference fringes L2 with respect to the sample S.
  • the stage 2 is included in the fringe direction changing portion that changes the direction of the interference fringe L2 with respect to the sample S.
  • the microscope 101' shown in FIG. 14 is a modification of the microscope 101 according to the fifth embodiment, and the position at which the optical path rotating unit 31 is provided is different from that of the microscope 101 shown in FIG.
  • the stripe direction changing unit is the same as in the first embodiment and includes the mask 15 and the driving unit 22.
  • the optical path rotating unit 31 serves as both the stripe direction changing unit and the image rotating unit, but in the microscope 101′ shown in FIG. 14, the optical path rotating unit 31 is provided separately from the stripe direction changing unit. ..
  • the optical path rotating unit 31 is arranged at a position that does not overlap the optical path of the illumination optical system 4 in the optical path of the detection optical system 5.
  • the optical path rotating unit 31 is arranged at a position where the excitation light L1 does not enter and the fluorescence L3 enters.
  • the optical path rotating unit 31 is arranged in the optical path between the dichroic mirror 16 and the detection device 106.
  • the driving unit 22 rotates the mask 15 and the polarizer 14 to change the period direction of the interference fringe L2.
  • the drive unit 32 rotates the optical path rotation unit 31 by an angle determined based on the rotation angle of at least one of the mask 15 and the polarizer 14.
  • the drive unit 32 rotates the optical path rotation unit 31 to match the direction of the image projected on the detection device 106 with the direction in which the plurality of detection units 6 a are arranged.
  • the fifth embodiment it is possible to align the effective PSFs of the images obtained for each detection unit 6a by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • FIG. 15 is a diagram showing a microscope 201 according to the sixth embodiment.
  • the microscope 201 according to the sixth embodiment includes a light-shielding member 33.
  • the light shielding member 33 is arranged at a position optically conjugate with the sample surface Sa or in the vicinity thereof.
  • the detection device 106 includes a line sensor in which a plurality of detection units 6a are arranged one-dimensionally, as in the fifth embodiment.
  • the detection device 106 is arranged at a position optically conjugate with the sample surface Sa, and the light shielding member 33 is arranged in the vicinity of the detection device 106.
  • the light blocking member 33 may be arranged at a position conjugate with the sample surface Sa or in the vicinity thereof.
  • the light shielding member 33 has an opening 33a through which the fluorescence L3 passes, and shields the fluorescence L3 around the opening 33a.
  • the opening 33a extends in the arrangement direction (Xb direction) of the plurality of detection units 6a in the detection device 106.
  • the opening 33a is, for example, a rectangular slit.
  • the light shielding member 33 is arranged such that the long side of the opening 33a is substantially parallel to the arrangement direction of the plurality of detection units 6a.
  • One or both of the size and the shape of the opening 33a may be variable in the light blocking member 33.
  • the light blocking member 33 may be a mechanical diaphragm having a variable light blocking region or a spatial light modulator (SLM). ..
  • SLM spatial light modulator
  • One or both of the size and the shape of the opening 33a may be fixed.
  • the detection device 106 detects the fluorescence L3 that has passed through the opening 33a of the light-shielding member 33.
  • the processing regarding the detector coordinates can be the image processing corresponding to the one-dimensional coordinate system. Therefore, the image processing described in the first to fourth embodiments can be applied to the sixth embodiment as well as the fifth embodiment.
  • the image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
  • the sixth embodiment it is possible to align the effective PSFs of the images obtained by the detection units 6a by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • FIG. 16 is a diagram showing a microscope 301 according to a seventh embodiment.
  • the microscope 301 according to the seventh embodiment includes a drive unit 22 and a drive unit 34.
  • the drive unit 22 is similar to that of the first embodiment.
  • the drive unit 22 rotates the mask 15 to change the cycle direction of the interference fringe L2.
  • the driving unit 22 is included in the fringe direction changing unit that changes the direction of the interference fringe L2 with respect to the sample S.
  • the detection device 106 includes a line sensor in which a plurality of detection units 6a are arranged one-dimensionally, as in the sixth embodiment.
  • the detection device 106 is arranged at a position optically conjugate with the sample surface Sa, and the light shielding member 33 is arranged near the detection device 106.
  • the detector 106 is rotatable around the Zb direction.
  • the drive unit 34 rotates the detection device 106 around the Zb direction.
  • the drive unit 34 rotates the detection device 106 so that the arrangement direction of the detection units 6a in the detection device 106 corresponds to the cycle direction of the interference fringes L2. For example, when the drive unit 22 rotates the mask 15 by 90 °, the periodic direction of the interference fringe L2 changes by 90 °, so that the drive unit 34 rotates the detection device 106 by 90 °.
  • the drive unit 34 rotates the light blocking member 33 so that the relative position between the detection device 106 and the light blocking member 33 is maintained.
  • the light blocking member 33 and the detection device 106 are integrated, and the drive unit 34 integrally rotates the light blocking member 33 and the detection device 106.
  • the detection device 106 detects the fluorescence L3 that has passed through the opening 33a of the light shielding member 33.
  • the processing regarding the detector coordinates can be the image processing corresponding to the one-dimensional coordinate system. Therefore, the image processing described in the first to fourth embodiments can be applied to the case of the seventh embodiment as well as the fifth embodiment.
  • the image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
  • the effective PSFs of the images obtained for each detection unit 6a can be aligned by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the microscope may include the optical path rotating unit 31 shown in FIG. 14 instead of the drive unit 34 that rotates the detection device 106.
  • the microscope need not include the light shielding member 33 as shown in FIG.
  • FIG. 17 is a diagram showing a microscope 401 according to the eighth embodiment.
  • the example in which the illuminated pupil is divided into two poles (two regions) on the pupil surface P0 (see FIG. 2C) has been described, but the illuminated pupil may be in another form.
  • a form in which the illumination pupil is divided into four poles (four regions) on the pupil plane will be described.
  • the illumination optical system 404 according to the eighth embodiment includes a collimator lens 12, a ⁇ /2 wavelength plate 35, a polarization separation element 36, a mirror 37, a mask 38 (aperture member), a mirror 39, on the light emission side of the optical fiber 11. It includes a mask 40 (opening member) and a polarization separating element 41. Further, the illumination optical system 404 according to the eighth embodiment includes the dichroic mirror 16, the relay optical system 17, the scanning unit 18, the lens 19, the lens 20, and the objective lens 21 as in the first embodiment. The optical axis 21a of the objective lens 21 coincides with the optical axis 404a of the illumination optical system 404.
  • the excitation light L1 emitted from the optical fiber 11 is converted into substantially parallel light by the collimator lens 12 and enters the ⁇ /2 wavelength plate 35.
  • the excitation light L1 that has passed through the ⁇ / 2 wave plate 35 includes the excitation light L1c that is linearly polarized light in the first direction and the excitation light L1d that is linearly polarized light in the second direction.
  • the ⁇ /2 wave plate 35 has its optical axis (fast axis, slow axis) direction set such that the light quantity of the pump light L1c and the light quantity of the pump light L1d have a predetermined ratio.
  • the excitation light L1 (excitation light L1c and excitation light L1d) that has passed through the ⁇ / 2 wave plate 35 is incident on the polarization separation element 36.
  • the polarization separation element 36 has a polarization separation film 36a tilted with respect to the optical axis 12a of the collimator lens 12.
  • the polarization separation film 36a has a characteristic that linearly polarized light in the first direction is reflected and linearly polarized light in the second direction is transmitted.
  • the polarization separating element 36 is, for example, a polarization beam splitter prism (PBS prism).
  • the linearly polarized light in the first direction is S polarized light with respect to the polarization separation film 36a.
  • the linearly polarized light in the second direction is P-polarized light with respect to the polarization separation film 36a.
  • the excitation light L1c which is S-polarized light with respect to the polarization separation membrane 36a, is reflected by the polarization separation membrane 36a and is incident on the mask 38 via the mirror 37.
  • the P-polarized excitation light L1d for the polarization separation film 36a passes through the polarization separation film 36a and enters the mask 40 via the mirror 39.
  • the mask 38 and the mask 40 are luminous flux dividing portions that divide the excitation light that excites the fluorescent substance into a plurality of luminous fluxes. The mask 38 and the mask 40 will be described later with reference to FIG.
  • the excitation light L1c that has passed through the mask 38 and the excitation light L1d that has passed through the mask 40 respectively enter the polarization separation element 41.
  • the polarization separation element 41 has a polarization separation membrane 41a inclined with respect to the optical path of the excitation light L1c and the optical path of the excitation light L1d.
  • the polarization separation film 41a has a characteristic that linearly polarized light in the first direction is reflected and linearly polarized light in the second direction is transmitted.
  • the polarization separating element 41 is, for example, a polarization beam splitter prism (PBS prism).
  • the linearly polarized light in the first direction is S polarized light with respect to the polarization separation film 41a.
  • the linearly polarized light in the second direction is P polarized light with respect to the polarization separation film 41a.
  • the excitation light L1c is S-polarized with respect to the polarization separation film 41a, is reflected by the polarization separation film 41a, and enters the dichroic mirror 16.
  • the excitation light L1d is P-polarized with respect to the polarization separation film 41a, passes through the polarization separation film 41a, and enters the dichroic mirror 16.
  • one or both of the polarization separation element 36 and the polarization separation element 41 may not be the PBS prism.
  • One or both of the polarization separating element 36 and the polarization separating element 41 may be a photonic crystal having different reflection and transmission between TE polarized light and TM polarized light.
  • FIG. 18 is a diagram showing the mask and the polarization state of the excitation light according to the eighth embodiment.
  • the Xc direction, the Yc direction, and the Zc direction are the directions corresponding to the X direction, the Y direction, and the Z direction on the sample surface Sa (see FIG. 17), respectively.
  • the mask 38 has an opening 38a and an opening 38b.
  • the openings 38a and 38b are arranged in the Xc direction.
  • the openings 38a and 38b are, for example, circular, but may have shapes other than circular.
  • the mask 38 is arranged at or near the position of a pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
  • the Xd direction, the Yd direction, and the Zd direction are the directions corresponding to the X direction, the Y direction, and the Z direction on the sample surface Sa (see FIG. 17), respectively.
  • the mask 40 has an opening 40a and an opening 40b.
  • the openings 40a and 40b are arranged in the Yd direction.
  • the openings 40a and 40b are, for example, circular, but may have shapes other than circular.
  • the mask 40 is arranged at or near the position of the pupil conjugate surface that is optically conjugate with the pupil surface P0 of the objective lens 21.
  • the vicinity of the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21 is a range in which the excitation light L1 can be regarded as a parallel light ray in a region including the pupil conjugate plane.
  • the excitation light L1 is a Gaussian beam
  • it can be sufficiently regarded as a parallel light ray within a range within 1/10 of the Rayleigh length from the beam waist position.
  • Rayleigh length of the wavelength of the excitation light L1 lambda when the beam waist radius was w 0, is given by ⁇ w 0 2 / ⁇ .
  • the wavelength of the excitation light L1 is 1 ⁇ m and the beam waist radius is 1 mm
  • the Rayleigh length is about 3 m
  • the mask 38 or the mask 40 is near the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21. It may be arranged within 300 mm.
  • the mask 38 or the mask 40 may be arranged at or near the pupil plane P0.
  • the reference numeral AR2a is a region where the excitation light L1c passing through the opening 38a of the mask 38 is incident on the pupil surface P0 of the objective lens 21.
  • Reference numeral AR2b is a region on the pupil surface P0 where the excitation light L1c passing through the opening 38b of the mask 38 is incident.
  • the arrows in the regions AR2a and AR2b indicate the polarization directions of the incident excitation light L1c.
  • the area AR2a and the area AR2b are arranged in the X direction.
  • the excitation light L1c incident on the region AR2a and the excitation light L1c incident on the region AR2b are linearly polarized light in the Y direction, respectively.
  • the excitation light L1c incident on the region AR2a and the excitation light L1c incident on the region AR2b have the same polarization direction and interfere with each other on the sample surface Sa (see FIG. 17). Due to this interference, interference fringes whose periodic direction is the X direction are formed on the sample surface Sa.
  • the incident surface of the excitation light L1c with respect to the sample surface Sa is the XZ surface, and the excitation light L1c is incident on the sample S with S polarization.
  • reference numeral AR2c is a region on the pupil plane P0 on which the excitation light L1d passing through the opening 40a of the mask 40 is incident.
  • Reference numeral AR2d is a region on the pupil plane P0 on which the excitation light L1d passing through the opening 40b of the mask 40 is incident.
  • the arrows in the regions AR2c and AR2d indicate the polarization direction of the incident excitation light L1d.
  • the area AR2c and the area AR2d are arranged in the Y direction.
  • the excitation light L1d incident on the area AR2c and the excitation light L1d incident on the area AR2d are each linearly polarized in the X direction.
  • the excitation light L1d entering the area AR2c and the excitation light L1d entering the area AR2d have the same polarization direction and interfere with each other on the sample surface Sa (see FIG. 18). Due to this interference, interference fringes whose periodic direction is the Y direction are formed on the sample surface Sa.
  • the incident surface of the excitation light L1d on the sample surface Sa is the YZ plane, and the excitation light L1c is incident on the sample S as S-polarized light.
  • an interference fringe L2 is formed by synthesizing an interference fringe due to the interference of the excitation light L1c and an interference fringe due to the interference of the excitation light L1d. Since the polarization directions of the excitation light L1c and the excitation light L1d are substantially orthogonal to each other, interference between the excitation light L1c and the excitation light L1d is suppressed.
  • the detection device 6 detects the fluorescence L3 from the sample S via the detection optical system 5.
  • the detection device 6 is an image sensor in which a plurality of detection units 6a are arranged in two directions, an Xb direction and a Yb direction.
  • the image processing unit 7 generates an image (for example, a super-resolution image) by any of the processes described in the first to fourth embodiments based on the detection result of the detection device 6.
  • the eighth embodiment reflecting the fact that the illumination pupil is divided into four poles (four regions) on the pupil plane, interference fringes in the X direction and interference fringes in the Y direction simultaneously occur on the sample surface Sa. ..
  • the five components of the 0th-order component, the ⁇ 1st-order component, and the ⁇ 2nd-order component are used in the above equation (13) and the like.
  • Nine components of the second component, the +secondary component in the Y direction, and the ⁇ secondary component in the Y direction may be used.
  • the above equation (28) and the like use five components of the 0th-order component, the ⁇ 1st-order component, and the ⁇ 2nd-order component.
  • the high-order components in the XY directions may be used not only in the case of two-photon excitation but also in the case of multiphoton excitation.
  • the effective PSFs of the images obtained by the detection units 6a can be aligned by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • FIG. 19 is a diagram showing a microscope 501 according to the ninth embodiment.
  • the microscope 501 according to the ninth embodiment has the same configuration as the microscope 401 according to the eighth embodiment.
  • the microscope 501 according to the ninth embodiment includes the ⁇ /2 wave plate 30 and the optical path rotating unit 31 described in FIG. 13.
  • the optical path rotating unit 31 is driven by the driving unit 32 and rotates around the optical axis of the illumination optical system 404.
  • the optical path rotating unit 31 rotates, the optical path of the excitation light L1c and the optical path of the excitation light L1d respectively rotate around the optical axis of the illumination optical system 404.
  • the periodic direction of the interference fringe L2 formed on the sample surface Sa rotates around the Z direction.
  • FIG. 20 is a diagram showing the polarization state of the excitation light according to the ninth embodiment.
  • the regions AR4a on which the excitation light L1c is incident on the pupil surface P0 are aligned in the X direction.
  • the area AR4b and the area AR4b on which the excitation light L1d is incident on the pupil plane P0 are arranged in the Y direction.
  • FIG. 20(B) corresponds to a state in which the Dove prism (optical path rotating unit 31 in FIG. 19) and the ⁇ /2 wave plate 30 are rotated by 22.5° from the state in FIG. 20(A).
  • the regions AR4a on which the excitation light L1c is incident on the pupil surface P0 are arranged in a direction rotated by 45 ° from the X direction.
  • the periodic direction of the interference fringes of the excitation light L1c on the sample surface Sa is a direction rotated by 45° from the X direction.
  • the regions AR4b on the pupil plane P0 on which the excitation light L1d is incident are arranged in the direction rotated by 45° from the Y direction.
  • the periodic direction of the interference fringes of the excitation light L1d on the sample surface Sa is a direction rotated by 45° from the Y direction.
  • the detection device 6 detects the fluorescence L3 from the sample S before and after the cycle direction of the interference fringe L2 is changed.
  • the image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringes L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringes L2.
  • An image eg, super-resolution image
  • the optical path rotating unit 31 may be arranged in the optical path between the dichroic mirror 16 and the detection device 6 as described with reference to FIG.
  • the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the tenth embodiment will be described.
  • the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the microscope 501 according to the ninth embodiment changes the periodic direction of the interference fringes L2 by the optical path rotating unit 31, but the fringe direction changing unit that changes the periodic direction of the interference fringes L2 is also different from the optical path rotating unit 31. Good.
  • FIG. 21 is a diagram showing a microscope 601 according to the tenth embodiment.
  • FIG. 22 is a diagram showing a mask according to the tenth embodiment.
  • the microscope 601 according to the tenth embodiment has the same configuration as the microscope 401 according to the eighth embodiment.
  • the microscope 601 according to the tenth embodiment includes a drive unit 45 and a drive unit 46.
  • the mask 38 is rotatable around the optical axis of the illumination optical system 404.
  • the mask 38 is driven by the drive unit 45 to rotate (see FIG. 22A). In FIG. 22(A), the mask 38 is rotated clockwise by 45°.
  • the mask 40 is rotatable around the optical axis of the illumination optical system 404.
  • the mask 40 is driven by the drive unit 46 to rotate (see FIG. 22B).
  • the drive unit 46 rotates the mask 40 by the same angle as the drive unit 45 rotates the mask 38.
  • the mask 40 is rotated clockwise by 45°.
  • the periodic direction of the interference fringes L2 on the sample surface Sa rotates 45° around the Z direction.
  • a ⁇ /2 wavelength plate 48 is provided in the optical path between the polarization separation element 41 and the dichroic mirror 16.
  • the ⁇ /2 wave plate 48 is driven by the drive unit 49 and rotates around the optical axis of the illumination optical system 404.
  • the ⁇ /2 wave plate 48 and the drive unit 49 adjust the excitation light L1c and the excitation light L1d so that they are incident on the sample S as S-polarized light.
  • the detection device 6 detects the fluorescence L3 from the sample S before and after the period direction of the interference fringes L2 is changed, as in the ninth embodiment.
  • the image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringe L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringe L2.
  • An image eg, super-resolution image is generated by any of the processes described in the fourth embodiment.
  • the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • FIG. 23 is a diagram showing a microscope 701 according to the eleventh embodiment.
  • the microscope 701 according to the eleventh embodiment has the same configuration as the microscope 1 according to the first embodiment.
  • the microscope 701 according to the eleventh embodiment includes a relay optical system 47.
  • the relay optical system 47 is a part of the illumination optical system 4 and a part of the detection optical system 5.
  • the relay optical system 47 is arranged in the scanning unit 18 in the optical path between the deflection mirror 18a and the deflection mirror 18b.
  • the deflection mirror 18b is arranged at substantially the same position as the first pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
  • the relay optical system 47 is provided so that a second pupil conjugate surface that is optically conjugate with the first pupil conjugate surface is formed between the relay optical system 47 and the relay optical system 17.
  • the deflection mirror 18a is arranged at substantially the same position as the second pupil conjugate plane described above.
  • the detection device 6 detects the fluorescence L3 from the sample S before and after the period direction of the interference fringe L2 is changed, as in the first embodiment.
  • the image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringes L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringes L2.
  • An image eg, super-resolution image
  • the configuration in which the relay optical system 47 is provided in the microscope 1 according to the first embodiment is illustrated, but the present invention is not limited to this, and the relay optical system 47 is provided in the microscopes according to the second to tenth embodiments. May be provided.
  • the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the scanning unit 18 is not limited to the above-described form.
  • the stage 2 may include a Y stage that moves in the Y direction with respect to the objective lens 21, and the scanning unit 18 may include a Y stage instead of the deflection mirror 18b.
  • the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by the deflection mirror 18a, and may scan the sample S with the excitation light L1 in the Y direction by moving the Y stage.
  • the deflection mirror 18a may be arranged at substantially the same position as the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
  • the stage 2 may include an X stage that moves in the X direction with respect to the objective lens 21, and the scanning unit 18 may include an X stage instead of the deflection mirror 18a.
  • the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by moving the X stage, and may scan the sample S with the excitation light L1 in the Y direction by the deflection mirror 18b.
  • the deflection mirror 18b may be arranged at substantially the same position as the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
  • the stage 2 includes an X stage that moves in the X direction with respect to the objective lens 21 and a Y stage that moves in the Y direction with respect to the objective lens 21, and the scanning unit 18 includes the X stage and the Y stage described above. May be included.
  • the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by moving the X stage, and may scan the sample S with the excitation light L1 in the Y direction by moving the Y stage. ..
  • the scanning direction for scanning the sample S with the interference fringes is two directions, the X direction and the Y direction, and the illumination optical system scans the sample S two-dimensionally with the interference fringes.
  • the scanning direction in which the sample S is scanned with the interference fringes may be the X direction, the Y direction, and the Z direction.
  • the microscope according to each embodiment performs a 2D process of scanning the sample S with interference fringes in the X and Y directions to acquire a 2D image, for example, moving at least one of the objective lens 21 and the stage 2.
  • the sample S may be three-dimensionally scanned with the interference fringes by changing the Z-direction position where the interference fringes are generated and repeating the 2D processing.
  • the microscope according to each embodiment acquires a plurality of 2D images having different positions in the Z direction by three-dimensionally scanning the sample S with interference fringes, and generates a 3D image (eg, Z-stack). Good.
  • the illumination optical system 4 may scan in the X direction and the Y direction, and may scan in the Z direction by moving at least one of the objective lens 21 and the stage 2.
  • the illumination optical system 4 may scan the sample S three-dimensionally with interference fringes.
  • the image processing unit 7 includes, for example, a computer system.
  • the image processing unit 7 reads out the image processing program stored in the storage unit and executes various processes according to the image processing program.
  • This image processing program causes a computer to generate an image based on the detection results of the detection devices 6 and 106.
  • the detection results of the detection devices 6 and 106 are obtained by dividing the light from the light source into a plurality of light beams, and scanning the sample in a plurality of directions by the interference fringes generated by the interference of at least a part of the light beams. Then, the light from the sample is detected by the detection device including the plurality of detection units via the detection optical system on which the light from the sample is incident.
  • the illumination pupil has two poles in FIG. 2, four poles in FIG. 18, but three poles in FIG. 24 (A).
  • Reference numerals AR5a to AR5c are regions on the pupil plane P0 on which the excitation light enters.
  • the first interference fringe between the excitation light incident on the region AR5a and the excitation light incident on the region AR5b the second interference fringe between the excitation light incident on the region AR5b and the excitation light incident on the region AR5c, and the region.
  • Third interference fringes of the excitation light incident on the AR5c and the excitation light incident on the area AR5a are formed.
  • interference fringes that are a combination of the first interference fringes, the second interference fringes, and the third interference fringes are formed.
  • the periodic direction of the first interference fringes, the periodic direction of the second interference fringes, and the periodic direction of the third interference fringes are the respective periodic directions, and the periodic directions are three directions.
  • a super-resolution effect can be obtained.
  • the illumination pupil may have 5 or more poles.
  • the illumination pupil is circular in FIG. 2 and the like, but may have other shapes.
  • symbol AR6 is an area
  • the area AR6 in FIG. 24B is an area surrounded by a circle AR6a which is a part of a circle centered on the optical axis 21a of the objective lens 21 and a straight line AR6b connecting both ends of the arc AR6a.
  • the area AR6 in FIG. 24C is an area surrounded by an arc that is a part of a circle centered on the optical axis 21a of the objective lens 21 and a curved line AR6c that is symmetrical to the arc AR6a.
  • the resolution in the direction in which the interference fringes are not formed is better and the sectioning is better than that in the case of the circular illumination pupil.
  • the resolution in the direction in which the interference fringes are not formed is better and the sectioning is also better than that in the case of the illumination pupil of the shape of FIG. 24(C). ..
  • the resolution in the direction in which the interference fringes are formed is better than that in the case of the illumination pupil having the shape of FIG.
  • the illuminated pupil has a shape in which the illuminated pupil having the shape shown in FIG. 24 (B) has four poles.
  • the illuminated pupil has a shape in which the illuminated pupil having the shape shown in FIG. 24 (C) has four poles.
  • the number of the plurality of regions (the number of poles) on which the excitation light enters is set to an arbitrary number of 2 or more.
  • the shape of one of the plurality of areas on the pupil plane P0 on which the excitation light is incident may be different from the shape of the other areas.
  • the size of one region may be different from the size of the other regions.
  • the plurality of regions in which the excitation light is incident on the pupil surface P0 may be arranged asymmetrically with respect to the optical axis 21a of the objective lens 21.
  • each pole of the illumination pupil can be realized, for example, by designing the shape, dimensions, and arrangement of the opening of the mask 15 shown in FIG.
  • the mask 15 may be a mechanical diaphragm having a variable light blocking area, a spatial light modulator (SLM), or the like.
  • FIG. 26 is a diagram showing a microscope 711 according to the first modification.
  • the illumination optical system 4 includes a collimator lens 50, a ⁇ /2 wavelength plate 51, a lens 52, a diffraction grating 53, a lens 54, and a mask 15 in the order from the optical fiber 11 to the dichroic mirror 16.
  • the collimator lens 50 converts the excitation light L1 from the optical fiber 11 into substantially parallel light.
  • the ⁇ /2 wave plate 51 adjusts the polarization state of the excitation light L1 when entering the sample S.
  • the lens 52 concentrates the excitation light L1 on the diffraction grating 53.
  • the diffraction grating 53 splits the excitation light L1 into a plurality of light beams by diffraction.
  • the diffraction grating 53 is a light beam splitting unit that splits the excitation light that multi-photon excites the fluorescent material into a plurality of light beams.
  • the diffraction grating 53 is arranged at the focal point or a position near the focal point of the lens 52. That is, the diffraction grating 53 is arranged on the surface conjugate with the sample surface Sa or in the vicinity thereof. The vicinity of the focus is within the range of the depth of focus of the light condensed by the lens 52.
  • the diffraction grating 53 may be arranged within 1 mm near the focus of the lens 52.
  • the plurality of light fluxes include 0th-order diffracted light, +1st-order diffracted light, and ⁇ 1st-order diffracted light.
  • the lens 54 converts the 0th-order diffracted light, the +1st-order diffracted light, and the -1st-order diffracted light into substantially parallel lights, respectively.
  • the mask 15 is provided so as to block the 0th-order diffracted light and pass at least a part of the +1st-order diffracted light and at least a part of the ⁇ 1st-order diffracted light.
  • the diffraction grating 53 may be designed so that the 0th-order diffracted light is not generated. Further, a configuration may be adopted in which the mask 15 is not provided. Further, the diffraction grating 53 may be designed so that diffracted light is generated in a plurality of directions. In that case, the mask 15 may be rotationally driven to use only the diffracted light in a specific direction.
  • FIGS. 27 and 28 are diagrams showing a polarization adjusting unit according to a modification, respectively.
  • the optical path of the illumination optical system 4 is bent by the reflecting member such as the dichroic mirror 16 shown in FIG. 1, in FIGS. 27 and 28, the illumination optical system 4 is expanded so that the optical axis 4a becomes a straight line. Indicated.
  • the Z direction is a direction parallel to the optical axis 4a, and the X direction and the Y direction are directions perpendicular to the optical axis 4a, respectively.
  • the illumination optical system 4 includes a ⁇ /4 wavelength plate 61, a mask 15, and a ⁇ /4 wavelength plate 62.
  • the excitation light L1 emitted from the optical fiber 11 is linearly polarized in the X direction and is incident on the ⁇ /4 wavelength plate 61.
  • a polarizer eg, a polarizing plate having a transmission axis in the X direction may be provided in the optical path between the optical fiber 11 and the ⁇ /4 wavelength plate 61.
  • the phase-advancing axis of the ⁇ / 4 wave plate 61 is set in the direction in which the X direction is rotated counterclockwise by 45 ° when viewed from the + Z side.
  • the excitation light L1 that has passed through the ⁇ /4 wavelength plate 61 becomes circularly polarized light and enters the mask 15.
  • the excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is circularly polarized light and is incident on the ⁇ /4 wavelength plate 62.
  • the fast axis of the ⁇ /4 wave plate 62 is set in a direction obtained by rotating the X direction clockwise by 45° when viewed from the +Z side.
  • the excitation light L1 that has passed through the ⁇ /4 wavelength plate 62 becomes linearly polarized light in the X direction and is applied to the sample surface Sa.
  • the mask 15 is rotatably provided around the optical axis 4a as described in the first embodiment.
  • the periodic direction of the interference fringes changes.
  • the openings 15a and 15b of the mask 15 are aligned in the Y direction, and the periodic direction of the interference fringes is the Y direction.
  • the periodic direction of the interference fringes is rotated 90° and becomes the X direction.
  • the ⁇ /4 wave plate 62 is rotatable around the optical axis 4a.
  • the ⁇ /4 wave plate 62 is provided so as to rotate by the same angle as the mask 15.
  • the ⁇ /4 wave plate 62 is integrated with the mask 15 and rotates integrally with the mask 15.
  • the ⁇ / 4 wave plate 62 is rotated by 90 ° and its phase advance axis becomes parallel to the phase advance axis of the ⁇ / 4 wave plate 61.
  • the excitation light L1 that has passed through the ⁇ /4 wavelength plate 62 becomes linearly polarized light in the Y direction.
  • the incident surface of the excitation light L1 with respect to the sample surface Sa is parallel to the periodic direction of the interference fringes, and the excitation light L1 when incident on the sample surface Sa is linearly polarized light perpendicular to the periodic direction of the interference fringes.
  • the sample surface Sa is irradiated with L1 in the S-polarized state.
  • the ⁇ / 4 wave plate 62 is included in the polarization adjusting unit that adjusts the polarization state of the excitation light L1 when it is incident on the sample S.
  • Such a polarization adjusting unit can reduce the loss of the light amount of the excitation light L1 as compared with the aspect described in FIG.
  • the illumination optical system 4 includes a polarizer 65, a mask 15, and a ⁇ /2 wave plate 66.
  • the excitation light L1 emitted from the optical fiber 11 is linearly polarized light in the X direction and is incident on the polarizer 65.
  • the transmission axis of the polarizer 65 is set in the X direction.
  • the excitation light L1 that has passed through the polarizer 65 is linearly polarized in the X direction and is incident on the mask 15.
  • the excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is linearly polarized light in the X direction and is incident on the ⁇ /2 wave plate 66.
  • the fast axis of the ⁇ /2 wave plate 66 is set in a direction obtained by rotating the X direction clockwise by 45° when viewed from the +Z side.
  • the excitation light L1 that has passed through the ⁇ /2 wavelength plate 66 becomes linearly polarized light in the Y direction and is applied to the sample surface Sa.
  • the mask 15 is rotatably provided around the optical axis 4a as described in the first embodiment.
  • the periodic direction of the interference fringes changes.
  • the openings 15a and 15b of the mask 15 are aligned in the X direction, and the periodic direction of the interference fringes is the X direction.
  • the periodic direction of the interference fringes is rotated by 90° and becomes the Y direction.
  • the ⁇ /2 wave plate 66 is rotatable around the optical axis 4a.
  • the ⁇ /2 wave plate 66 is provided so as to rotate by an angle half the rotation angle of the mask 15. For example, when the mask 15 rotates 90°, the ⁇ /2 wave plate 66 rotates 45°.
  • the excitation light L1 that has passed through the ⁇ /2 wave plate 66 becomes linearly polarized light in the X direction.
  • the incident surface of the excitation light L1 with respect to the sample surface Sa is parallel to the periodic direction of the interference fringes, and the excitation light L1 when incident on the sample surface Sa is linearly polarized light perpendicular to the periodic direction of the interference fringes.
  • the sample surface Sa is irradiated with L1 in the S-polarized state.
  • the ⁇ /2 wave plate 66 is included in the polarization adjusting unit that adjusts the polarization state of the excitation light when entering the sample S.
  • a polarization adjusting unit can reduce the loss of the light amount of the excitation light L1 as compared with the aspect described in FIG.
  • the polarization adjusting unit described in the above-described embodiment and modification is configured such that the illumination light becomes linearly polarized light immediately after passing through the polarization adjusting unit, it may not be perfect linearly polarized light.
  • an additional polarizing element such as a ⁇ /2 wavelength plate or a ⁇ /4 wavelength plate may be added to the polarization adjusting unit to correct the change in the polarization state generated in the optical system on the way.
  • the microscope may include an image rotation unit that rotates the image of the sample S around the optical axis of the detection optical system 5.
  • the periodic direction of the interference fringes is rotated, the periodic direction of the interference fringes and the arrangement direction of the detection unit 6a can be matched by rotating the image of the sample S.
  • the microscope according to each embodiment may include a phase modulation unit that can shift the phase of the interference fringe L2 formed by the excitation light L1 to set the interference fringe L2 in a plurality of phase states. ..
  • shifting the phase of the interference fringe L2 formed by the excitation light L1 may be referred to as changing the phase.
  • FIG. 29 is a diagram showing a microscope 721 according to the second modification.
  • the microscope 721 according to the second modification has the same configuration as the microscope 711 according to the first modification.
  • the microscope 721 according to the second modified example includes a phase modulator 55.
  • the phase modulation unit 55 includes a drive unit capable of moving the diffraction grating 53 in a direction perpendicular to the optical axis 4a of the illumination optical system 4.
  • the phase modulation unit 55 shifts the phase of the fringes of the interference fringes L2 by moving the diffraction grating 53 in parallel in the direction perpendicular to the optical axis 4a of the illumination optical system 4 (the direction corresponding to the periodic direction of the interference fringes L2). Can be made.
  • FIG. 30 is a diagram showing a microscope 731 according to the third modification.
  • FIG. 30 shows a modification applied to the microscope 1 according to the first embodiment as a modification of the microscope, it can also be applied to microscopes of other embodiments.
  • the microscope 731 according to the third modification has the same configuration as the microscope 1 according to the first embodiment.
  • a microscope 731 according to the third modified example includes a phase modulator 70.
  • the phase modulator 70 includes a phase modulator 71 and a driver 78.
  • the phase modulation element 71 is arranged between the mask 15 and the dichroic mirror 16.
  • the phase modulation element 71 is formed into a circular plate shape by performing removal processing such as cutting on a predetermined glass plate.
  • the phase modulation element 71 is arranged so that the central axis of the phase modulation element 71 coincides with the optical axis 4 a of the illumination optical system 4.
  • the drive unit 78 rotates the phase modulation element 71 around the optical axis of the illumination optical system 4.
  • the phase modulation element 71 may be arranged in a portion of the optical path of the parallel light flux in the illumination optical system 4 that does not overlap with the optical path of the detection optical system 5.
  • FIG. 31 is a diagram showing details of the phase modulation element 71.
  • the phase modulation element 71 has a first plate part 72, a second plate part 73, a third plate part 74, a fourth plate part 75, and a fifth plate part 76 having different thicknesses.
  • the first plate portion 72 has the thickest first thickness TH1 among the first to fifth plate portions 72 to 76.
  • the first plate portion 72 has, for example, a fan shape with a central angle of 216° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
  • the second plate portion 73 has the second thickest second thickness TH2 of the first to fifth plate portions 72 to 76.
  • the second plate portion 73 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
  • the second plate portion 73 is in the circumferential direction of the first plate portion 72 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
  • the third plate portion 74 has a third thickness TH3, which is the third largest among the first to fifth plate portions 72 to 76.
  • the third plate portion 74 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
  • the third plate portion 74 is in the circumferential direction of the second plate portion 73 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
  • the fourth plate portion 75 has the fourth thickest fourth thickness TH4 of the first to fifth plate portions 72 to 76.
  • the fourth plate portion 75 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
  • the fourth plate portion 75 is in the circumferential direction of the third plate portion 74 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
  • the fifth plate portion 76 has a fifth thickness TH5 that is the fifth largest among the first to fifth plate portions 72 to 76.
  • the fifth plate portion 76 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
  • the fifth plate portion 76 is arranged in the circumferential direction of the fourth plate portion 75 (counterclockwise when viewed from the paper surface side of FIG. 31) when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). Placed next to each other.
  • One of the optical surfaces of the phase modulation element 71 is formed into a flat surface having a step due to the first to fifth plate portions 72 to 76.
  • the other optical surface of the phase modulation element 71 is formed in a flat plane shape as a whole.
  • an optical surface having steps formed by the first to fifth plate portions 72 to 76 is arranged so as to face the mask 15.
  • the phase modulation element 71 may be arranged such that the optical surface having the steps formed by the first to fifth plate portions 72 to 76 faces the dichroic mirror 16.
  • 32(A) to 32(E) are diagrams showing the positional relationship between the phase modulation element 71 and the excitation light L1.
  • the first plate portion 72 has a fan-shaped shape with a central angle of 216° which is larger than 180° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). .. Therefore, as shown in FIG. 32(A), when the phase modulation element 71 is rotationally moved to the predetermined first rotational position by the rotational driving force of the driving unit 78, the excitation light L1a and the mask 15 that have passed through the opening 15a of the mask 15. Both of the excitation lights L1b that have passed through the opening 15b are transmitted through the first plate portion 72. At this time, there is no difference between the optical path length of the pumping light L1a and the optical path length of the pumping light L1b.
  • the excitation light L1a passing through the opening 15a of the mask 15 becomes the first plate portion.
  • the excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the second plate portion 73.
  • the second rotation position is, for example, when the phase modulation element 71 is rotated by 36° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position.
  • the optical path length of the excitation light L1a since the first plate portion 72 has the first thickness TH1 and the second plate portion 73 has the second thickness TH2 thinner than the first thickness TH1, the optical path length of the excitation light L1a. And the optical path length of the excitation light L1b is different. Therefore, the phase of the fringes of the interference fringes obtained when the phase modulation element 71 is rotationally moved to the second rotation position changes with respect to the interference fringes obtained when the phase modulation element 71 is rotationally moved to the first rotation position. To do.
  • the excitation light L1a that has passed through the opening 15a of the mask 15 is the first plate portion.
  • the excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the third plate portion 74.
  • the third rotation position is, for example, when the phase modulation element 71 is rotated by 72° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position.
  • the optical path length of the excitation light L1a is increased.
  • the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the third rotation position changes. To do.
  • the excitation light L1a passing through the opening 15a of the mask 15 is converted into the first plate portion.
  • the excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the fourth plate portion 75.
  • the fourth rotation position is, for example, when the phase modulation element 71 is rotated by 108° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position.
  • the optical path length of the excitation light L1a is reduced.
  • the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the fourth rotation position changes. To do.
  • the phase modulation element 71 when the phase modulation element 71 is rotationally moved to the predetermined fifth rotational position by the rotational driving force of the driving section 78, the excitation light L1a passing through the opening 15a of the mask 15 is converted into the first plate section.
  • the excitation light L1b that has passed through 72 and passed through the opening 15b of the mask 15 passes through the fifth plate portion 76.
  • the fifth rotation position is, for example, when the phase modulation element 71 is rotated by 144° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position.
  • the optical path length of the excitation light L1a is increased.
  • the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the fifth rotation position changes. To do.
  • the phase of the fringe of the interference fringe L2 can be changed by the phase modulation element 71.
  • Changing the phase of the stripe is equivalent to changing 2 ⁇ k 0 r, which is the argument of the cosine function, to 2 ⁇ k 0 r+ ⁇ without changing PSF ill (r) on the right side of Expression (2). ..
  • is the phase difference between the excitation light L1a and the excitation light L2b.
  • PSF ill (r) does not change means that the envelope (envelope) of the intensity distribution of the interference fringe L2 does not change. Therefore, the phase modulation element 71 changes the bright and dark phases of the intensity distribution of the interference fringe L2 without changing the envelope (envelope) of the intensity distribution of the interference fringe L2.
  • the phase of the fringe of the interference fringe L2 can be changed in five steps by rotating and moving the phase modulation element 71 to the first to fifth rotation positions, respectively.
  • the thicknesses of the first to fifth plate portions 72 to 76 are set so that a necessary phase difference of the interference fringes L2 can be obtained.
  • the thickness of the first to fifth plate portions 72 to 76 (first to fifth thicknesses TH1 to TH5) can be set by numerical simulation or the like.
  • the phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the second rotation position is 2 ⁇ /5.
  • the thickness of the second plate portion 73 (second thickness TH2) can be set.
  • the phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the third rotation position is 4 ⁇ /5. It is possible to set the thickness of the third plate portion 74 (third thickness TH3).
  • the phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the fourth rotation position is 6 ⁇ /5. It is possible to set the thickness of the four plate portion 75 (fourth thickness TH4).
  • the phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the fifth rotation position is 8 ⁇ /5. It is possible to set the thickness (fifth thickness TH5) of the five plate portion 76.
  • phase modulation element 71 rotates and moves not only when changing the phase of the fringes of the interference fringe L2 but also when changing the cycle direction of the interference fringe L2.
  • the relative positional relationship between the openings 15a and 15b of the mask 15 and the portions of the phase modulation element 71 (first to fifth plate portions 72 to 76) facing the openings 15a and 15b of the mask 15 becomes constant.
  • the phase modulation element 71 rotationally moves according to the rotation of the mask 15.
  • the central angle of the fan shape in the first plate portion 72 is not limited to the illustrated angle (216°), but the excitation light L1a passing through the opening 15a of the mask 15 and the excitation light L1b passing through the opening 15b of the mask 15. It suffices that both are set to an angle that allows the first plate portion 72 to pass therethrough.
  • the central angle of the fan shape in the second to fifth plate portions 73 to 76 is not limited to the exemplified angle (36°), and the excitation light L1a or the excitation light L1b is not included in the second to fifth plate portions 73 to 76. It suffices if the angle is set so that can be transmitted.
  • the phase modulation element 71 is not limited to the removal processing, and may be formed into a circular plate shape by, for example, molding processing, processing of laminating thin plate materials using a transparent resin material, or the like. Further, as the phase modulation element, a plurality of plate-shaped phase modulation elements having different thicknesses may be used.
  • the drive unit of the phase modulation unit selects any one of the plurality of phase modulation elements and arranges it between the mask 15 and the dichroic mirror 16.
  • a drive unit for example, a slider or a turret that can move a plurality of phase modulation elements in a direction perpendicular to the optical axis of the illumination optical system 4 may be used.
  • the phase modulation unit described above it is possible to perform component separation in a mode different from the component separation of the image processing described in the third embodiment.
  • the image I(r,r s ) obtained by the detection device 6 is represented by the above formula (12).
  • indicates the initial phase of the interference fringe L2.
  • the value of the initial phase ⁇ in equation (12) changes, but the changed value of ⁇ can also be called the phase difference. That is, even if the image data is acquired with a predetermined phase difference ⁇ given, the obtained image data is given by the equation (12).
  • the value of the predetermined phase difference ⁇ includes 0.
  • the +second-order component I′ +2 to (r, k s ) of the equation (31) is defined by the following equation (35).
  • Minus second-order component I '-2 ⁇ of formula (31) (r, k s) is defined as the following equation (36).
  • the microscopes 721 and 731 according to the second and third modifications change the phase of the interference fringe L2 from a predetermined phase by changing the phase of the interference fringe L2 using the phase modulation unit, and change the phase of the interference fringe L2 from a predetermined phase.
  • the phase difference with respect to the phase is the first phase difference ⁇ 1 , the second phase difference ⁇ 2 , the third phase difference ⁇ 3 , the fourth phase difference ⁇ 4 , and the fifth phase difference ⁇ 5.
  • I 1 to (r, k s ; ⁇ 1 ) corresponding to the first phase difference ⁇ 1 , I 1 to (r, k s ; ⁇ 2 ) corresponding to the second phase difference ⁇ 2 , and the third phase difference ⁇ corresponding to 3 I ⁇ (r, k s ; ⁇ 3), fourth I ⁇ corresponding to the phase difference ⁇ 4 (r, k s; ⁇ 4), and a fifth I corresponding to the phase difference phi 5 ⁇ (R, k s ; ⁇ 5 ) are represented by the following expressions (37A) to (37E).
  • the equations (37A) to (37E) represent five unknowns I′ 0 to (r, k s ), I′ +1 to (r, k s ), I′ ⁇ 1 to (r, k s ), I′ +2.
  • ⁇ (R, k s ) and I'- 2 ⁇ (r, k s ) are simultaneous equations.
  • the image processing unit 7 solves the simultaneous equations to obtain the acquired data I 1 to (r, k s ; ⁇ 1 ), I to (r, k s ; ⁇ 2 ), I to (r, k s ; ⁇ 3 ).
  • the image processing unit 7 has I′ 0 to (r, k s ), I′ +1 to (r, k s ), I′ ⁇ 1 to (r, k s ), I′ +2 to (r, k s ).
  • I′ ⁇ 2 to (r, k s ) are inverse Fourier transformed to obtain I 0 (r, r s ), I +1 (r, r s ), I ⁇ 1 (r, r s ), I +2 (R,r s ) and I ⁇ 2 (r,r s ) can be obtained.
  • the image processing unit 7 performs the same processing as that in the third embodiment after the processing for calculating the image data in the real space in the third embodiment.
  • the process corresponding to the component separation can be performed by solving the simultaneous equations of the equations (37A) to (37E), and the position of the detection unit 6a can be performed. It is possible to correct the collapse of the shape of the effective PSF for each (detector coordinate r).
  • FIG. 33 is a flowchart showing an observation method using the microscope 731 according to the third modification.
  • the control unit 8 of the microscope 731 sets the periodic direction of the interference fringes L2.
  • the control unit 8 sets the cycle direction of the interference fringes L2 by rotating the mask 15 by the drive unit 22 and rotating the phase modulation element 71 by the drive unit 78 according to the rotation of the mask 15.
  • the control unit 8 sets the phase of the fringe of the interference fringe L2.
  • the control unit 8 sets the phase of the fringe of the interference fringe L2 by rotating the phase modulation element 71 by the drive unit 78.
  • the control unit 8 sets the angles of the scanning mirrors (deflection mirrors 18a and 18b).
  • the illumination optical system 4 irradiates the excitation light as interference fringes L2 at a position on the sample determined by the angle of the scanning mirror set in step S43.
  • the fluorescent substance of the sample S is excited by the interference fringe L2 of the excitation light.
  • the detection device 6 detects the fluorescence from the sample S via the detection optical system 5 for each of the plurality of detection units 6a.
  • step S46 the control unit 8 determines whether to change the angle of the scanning mirror. When it is determined that the processes of steps S43 to S45 have not been completed for a part of the scheduled observation region, the control unit 8 determines to execute the angle change of the scanning mirror in step S46 (step S46; Yes). ). When the control unit 8 determines to change the angle of the scanning mirror (step S46; Yes), the control unit 8 returns to the process of step S43, and the control unit 8 sets the angle of the scanning mirror to the next scheduled angle. Then, the processing from step S44 to step S46 is repeated.
  • step S46 determines not to change the angle of the scanning mirror (step S46; No). ..
  • step S46; No the control unit 8 determines whether to change the phase of the fringe of the interference fringe L2 in step S47. ..
  • step S47 determines that the processing of steps S42 to S46 has not been completed for a part of the phases of the five interference fringes planned
  • the control unit 8 changes the fringe phase of the interference fringe L2 in step S47. Is determined to be executed (step S47; Yes).
  • step S47; Yes determines to change the phase of the fringe of the interference fringe L2
  • step S47; Yes the control unit 8 returns to the process of step S42, and the control unit 8 schedules the phase of the fringe of the interference fringe L2. Set to the next phase. Then, the processing from step S43 to step S47 is repeated. In this way, the illumination optical system 4 two-dimensionally scans the sample S with the interference fringes L2 of the excitation light for the five interference fringes whose fringe phase is changed.
  • step S47 When it is determined in step S47 that the processes of steps S42 to S46 have been completed for all the phases of the five fringes of the planned interference fringes, the control unit 8 executes the phase change of the fringes of the interference fringes L2. It is determined not to do so (step S47; No). When the control unit 8 determines that the phase of the fringes of the interference fringes L2 is not changed (step S47; No), in step S48, the image processing unit 7 performs image processing to perform an image (eg, super-resolution image). ) Is generated.
  • an image eg, super-resolution image
  • step S49 the control unit 8 determines whether to change the cycle direction of the interference fringe L2.
  • the controller 8 changes the cycle of the interference fringes L2 in step S49.
  • the determination is made (step S49; Yes).
  • step S49; Yes the control unit 8 determines to execute the change of the periodic direction of the interference fringe L2
  • step S49; Yes the control unit 8 returns to the process of step S41, and the control unit 8 determines the next periodic direction of the interference fringe L2. Set in the periodic direction. Then, the processing from step S42 to step S49 is repeated.
  • step S49 determines in step S49 that the processes in steps S41 to S48 have been completed for all the scheduled periodic directions of the interference fringes L2.
  • Step S49; No determines not to change the periodic direction of the interference fringes L2.
  • FIG. 34 is a flowchart showing a sub-flow of image processing by the image processing unit 7.
  • the image processing unit 7 selects at least a part of the plurality of detection units 6a of the detection device 6.
  • the image processing unit 7 Fourier transforms the detection results of at least a part of the plurality of detection units 6a selected in step S51.
  • the image processing unit 7 performs a two-dimensional Fourier transform on I(r, r s ; ⁇ ) given a predetermined phase difference ⁇ .
  • the image processing unit 7 performs a process corresponding to the component separation in the third embodiment by solving the simultaneous equations represented by the above equations (37A) to (37E).
  • step S54 the image processing unit 7 performs an inverse Fourier transform on the separated components.
  • step S55 the image processing unit 7 executes the image processing phase shift processing.
  • the image processing unit 7 corrects the positional deviation of the effective PSF in step S56.
  • step S57 the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images obtained by correcting the positional deviation in step S56.
  • step S58 the control unit 8 determines whether to change the selection of the detection unit 6a.
  • the control unit 8 determines to execute the selection change of the detection unit 6a in step S58 ( Step S58; Yes).
  • step S58; Yes the control unit 8 determines to change the selection of the detection unit 6a
  • step S58; Yes the control unit 8 returns to the process of step S51, and the control unit 8 selects at least another part of the plurality of detection units 6a. .. Then, the processing from step S52 to step S58 is repeated.
  • control unit 8 determines in step S58 that the processing of steps S51 to S57 has been completed for all the scheduled combinations of the detection units 6a, it determines that the selection change of the detection unit 6a is not executed (step). S58; No).
  • the control unit 8 determines that the selection change of the detection unit 6a is not executed (step S58; No)
  • the process returns to the flow of FIG. 33 (step S49). Accordingly, it is possible to generate an image in which the detecting unit 6a to be selected is changed.
  • the microscope 721 according to the second modification may be used instead of the microscope 731 according to the third modification.
  • the image processing unit 7 adds the images of the respective detection units 6a obtained by executing the phase shift process to obtain an image with high resolution (eg, super-resolution image) while ensuring S/N. Can be generated.
  • the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1.
  • the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
  • the interference fringes formed by interference have been described as an example of striped illumination (stripe illumination), but the striped illumination (stripe illumination) formed by interference is not.
  • striped illumination (stripe illumination) formed by a method other than interference may be used.
  • the “stripes” and “stripes” have a bright portion and a dark portion, and have a predetermined interval (predetermined period) between the bright portion and the bright portion or the dark portion and the dark portion.
  • “Striped illumination (stripe illumination)” and “interference fringes” are formed on the sample surface.

Abstract

This microscope (1) is provided with: an illumination optical system (4) which has a scanning unit (18) that scans a sample (S), in a plurality of directions of the sample, with fringe illumination that is a fringe-like illumination generated by light which is for multiple photon excitation of a fluorescent material contained in the sample; a detection optical system (5) on which fluorescent light (L3) generated from the sample by the multiple photon excitation (S) is incident; a detection device (6) having a plurality of detection units (6a) that detect the fluorescent light (L3) from the sample (S) via the detection optical system (5); and an image processing unit (7) that generates an image using the detection results from at least two detection units among the plurality of detection units (6a).

Description

顕微鏡および観察方法Microscope and observation method
 本発明は、顕微鏡および観察方法に関する。 The present invention relates to a microscope and an observation method.
 試料からの蛍光を検出する走査型顕微鏡が提案されている(例えば、下記の非特許文献1参照)。 A scanning microscope that detects fluorescence from a sample has been proposed (for example, see Non-Patent Document 1 below).
 第1の態様に係る顕微鏡は、試料に含まれる蛍光物質を多光子励起するための光により生成される縞状の照明である縞照明を前記試料の複数の方向において走査する走査部を有する照明光学系と、多光子励起によって生じた前記試料からの蛍光が入射する検出光学系と、前記検出光学系を介して前記試料からの蛍光を検出する複数の検出部を有する検出装置と、前記複数の検出部のうち少なくとも2つの検出部での検出結果を用いて画像を生成する画像処理部とを備える。 The microscope according to the first aspect is an illumination including a scanning unit that scans a striped illumination, which is a striped illumination generated by light for multiphoton excitation of a fluorescent substance contained in the sample, in a plurality of directions of the sample. An optical system, a detection optical system in which fluorescence from the sample generated by multiphoton excitation is incident, a detection device having a plurality of detection units for detecting fluorescence from the sample via the detection optical system, and the plurality of It is provided with an image processing unit that generates an image by using the detection results of at least two of the detection units.
 第2の態様に係る観察方法は、試料に含まれる蛍光物質を多光子励起するための光により生成される縞状の照明である縞照明を前記試料の複数の方向において走査することと、多光子励起によって生じた前記試料からの蛍光を、複数の検出部を用いて検出することと、前記複数の検出部のうち少なくとも2つの検出部での検出結果を用いて画像を生成することとを含む。 The observation method according to the second aspect comprises scanning stripe illumination, which is stripe illumination generated by light for multiphoton exciting a fluorescent substance contained in the sample, in a plurality of directions of the sample, and Detecting fluorescence from the sample generated by photon excitation using a plurality of detection units, and generating an image using detection results of at least two detection units of the plurality of detection units. Including.
第1実施形態に係る顕微鏡および励起光の光路を示す図である。It is a figure which shows the microscope which concerns on 1st Embodiment, and the optical path of excitation light. 第1実施形態に係るマスクおよび偏光子を示す図である。It is a figure which shows the mask and polarizer concerning 1st Embodiment. 第1実施形態に係るマスク、偏光子、干渉縞、及び励起光の偏光状態を示す図である。It is a figure which shows the polarization state of the mask, the polarizer, the interference fringe, and the excitation light which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡および蛍光の光路を示す図である。It is a figure which shows the microscope and the optical path of fluorescence which concern on 1st Embodiment. 第1実施形態に係る検出装置の各位置における実効PSFを示す図である。It is a figure which shows the effective PSF at each position of the detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る観察方法を示すフローチャートである。It is a flowchart which shows the observation method which concerns on 1st Embodiment. 第2実施形態に係る顕微鏡の画像処理部の処理を示す図である。It is a figure which shows the process of the image processing part of the microscope which concerns on 2nd Embodiment. 第2実施形態に係る観察方法を示すフローチャートである。It is a flowchart which shows the observation method which concerns on 2nd Embodiment. 第3実施形態に係る顕微鏡の画像処理部の処理を示す図である。It is a figure which shows the process of the image processing part of the microscope which concerns on 3rd Embodiment. 第3実施形態において、成分分離に用いる周波数空間の領域を示す図である。In 3rd Embodiment, it is a figure which shows the area|region of the frequency space used for component separation. 第3実施形態に係る観察方法を示すフローチャートである。It is a flowchart which shows the observation method which concerns on 3rd Embodiment. 第4実施形態に係る観察方法を示すフローチャートである。It is a flowchart which shows the observation method which concerns on 4th Embodiment. 第5実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 5th Embodiment. 第5実施形態に係る顕微鏡の変形例を示す図である。It is a figure which shows the modification of the microscope which concerns on 5th Embodiment. 第6実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 6th Embodiment. 第7実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 7th Embodiment. 第8実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 8th Embodiment. 第8実施形態に係るマスクおよび励起光の偏光状態を示す図である。It is a figure which shows the mask and polarization state of excitation light which concern on 8th Embodiment. 第9実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 9th Embodiment. 第9実施形態に係る励起光の偏光状態を示す図である。It is a figure which shows the polarization state of the excitation light which concerns on 9th Embodiment. 第10実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 10th Embodiment. 第10実施形態に係るマスクを示す図である。It is a figure which shows the mask which concerns on 10th Embodiment. 第11実施形態に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on 11th Embodiment. 変形例に係る照明瞳を示す図である。It is a figure which shows the illumination pupil which concerns on a modification. 変形例に係る照明瞳を示す図である。It is a figure which shows the illumination pupil which concerns on a modification. 変形例に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on the modification. 変形例に係る偏光調整部を示す図である。It is a figure which shows the polarization adjustment part which concerns on the modification. 変形例に係る偏光調整部を示す図である。It is a figure which shows the polarization adjustment part which concerns on the modification. 変形例に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on the modification. 変形例に係る顕微鏡を示す図である。It is a figure which shows the microscope which concerns on the modification. 変形例に係る位相変調素子を示す図である。It is a figure which shows the phase modulation element which concerns on a modification. 変形例に係る位相変調素子と励起光との位置関係を示す図である。It is a figure which shows the positional relationship between the phase modulation element and the excitation light which concerns on a modification. 変形例に係る観察方法を示すフローチャートである。It is a flowchart which shows the observation method which concerns on a modification. 変形例に係る観察方法のサブフローを示すフローチャートである。It is a flowchart which shows the subflow of the observation method which concerns on a modification.
[第1実施形態]
 第1実施形態について説明する。図1は、第1実施形態に係る顕微鏡および励起光の光路を示す図である。以下の実施形態において、顕微鏡1は走査型の多光子励起蛍光顕微鏡であるものとして説明するが、実施形態に係る顕微鏡は、走査型の顕微鏡あるいは蛍光顕微鏡に限定されない。顕微鏡1は、ステージ2と、光源3と、照明光学系4と、検出光学系5と、検出装置6と、画像処理部7と、制御部8とを備える。顕微鏡1は、概略すると以下のように動作する。
[First Embodiment]
The first embodiment will be described. FIG. 1 is a diagram showing a microscope and an optical path of excitation light according to the first embodiment. In the following embodiments, the microscope 1 will be described as being a scanning multiphoton excitation fluorescence microscope, but the microscope according to the embodiment is not limited to a scanning microscope or a fluorescence microscope. The microscope 1 includes a stage 2, a light source 3, an illumination optical system 4, a detection optical system 5, a detection device 6, an image processing unit 7, and a control unit 8. The microscope 1 operates as follows.
 ステージ2は、観察対象の試料Sを保持する。試料Sは、予め蛍光染色された細胞などである。試料Sは、蛍光色素などの蛍光物質を含む。光源3は、試料Sに含まれる蛍光物質を多光子励起する励起光L1を発する。以下、多光子励起を単に励起と省略して記載する場合がある。照明光学系4は、試料Sを励起光L1の干渉縞L2で複数の方向(例、X方向、Y方向)において走査する。照明光学系4は、干渉縞L2で試料Sを2次元的に走査する。検出光学系5は、試料Sからの多光子励起によって生じた蛍光L3(後に図4に示す)が入射する位置に配置される。検出装置6は、検出光学系5を介して試料Sからの蛍光L3を検出する複数の検出部6a(後に図4に示す)を含む。画像処理部7は、検出装置6の2以上の検出部6aの検出結果を用いて、画像(例、超解像画像)を生成する。制御部8は、光源3、駆動部22、画像処理部7等を制御する。画像処理部7および制御部8を有して制御装置8Cが構成される。以下、顕微鏡1の各部について説明する。 Stage 2 holds the sample S to be observed. The sample S is a cell or the like that has been fluorescently stained in advance. The sample S contains a fluorescent substance such as a fluorescent dye. The light source 3 emits excitation light L1 that multiphoton excites the fluorescent substance contained in the sample S. Hereinafter, multiphoton excitation may be simply referred to as excitation. The illumination optical system 4 scans the sample S with the interference fringes L2 of the excitation light L1 in a plurality of directions (for example, the X direction and the Y direction). The illumination optical system 4 scans the sample S two-dimensionally with the interference fringe L2. The detection optical system 5 is arranged at a position where the fluorescence L3 (shown later in FIG. 4) generated by the multiphoton excitation from the sample S enters. The detection device 6 includes a plurality of detection units 6a (later shown in FIG. 4) that detect the fluorescence L3 from the sample S via the detection optical system 5. The image processing unit 7 uses the detection results of the two or more detection units 6a of the detection device 6 to generate an image (for example, a super-resolution image). The control unit 8 controls the light source 3, the drive unit 22, the image processing unit 7, and the like. A control device 8C is configured to include the image processing unit 7 and the control unit 8. Hereinafter, each part of the microscope 1 will be described.
 光源3は、例えばレーザー素子などの光源を含む。光源3は、所定の波長帯の可干渉光を発生する。所定の波長帯は、蛍光物質を含む試料Sを多光子励起させることが可能な波長帯に設定される。例えば、試料Sの励起波長がλex付近であって、n(nは2以上の整数)光子励起により試料Sを励起させる場合、所定の波長帯は、n×λex付近の波長帯に設定されることが望ましい。励起光L1は、例えばパルス光として光源3から出射する。光源3から出射する励起光L1は、例えば直線偏光である。光源3の出射口には、光ファイバー11などの導光部材が接続される。なお、顕微鏡1は、光源3を備えなくてもよく、光源3は、顕微鏡1と別に提供されてもよい。例えば、光源3は、顕微鏡1に交換可能(取り付け可能、取り外し可能)に設けられてもよい。光源3は、顕微鏡1による観察時などに、顕微鏡1に外付けされてもよい。 The light source 3 includes a light source such as a laser element. The light source 3 generates coherent light in a predetermined wavelength band. The predetermined wavelength band is set to a wavelength band in which the sample S containing a fluorescent substance can be excited by multiple photons. For example, when the excitation wavelength of the sample S is near λ ex and the sample S is excited by n (n is an integer of 2 or more) photon excitation, the predetermined wavelength band is set to a wavelength band near n×λ ex. It is desirable to be done. The excitation light L1 is emitted from the light source 3 as, for example, pulsed light. The excitation light L1 emitted from the light source 3 is, for example, linearly polarized light. A light guide member such as an optical fiber 11 is connected to the emission port of the light source 3. The microscope 1 does not have to include the light source 3, and the light source 3 may be provided separately from the microscope 1. For example, the light source 3 may be replaceably (attachable or detachable) provided to the microscope 1. The light source 3 may be externally attached to the microscope 1 during observation with the microscope 1.
 照明光学系4は、光源3からの励起光L1が入射する位置に配置される。照明光学系4には、光源3から光ファイバー11を介して励起光L1が入射する。光ファイバー11は、照明光学系4の一部でもよいし、光源3を含む光源装置の一部でもよい。照明光学系4は、光源3側から試料S側へ向かう順に、コリメーターレンズ12、λ/4波長板13、偏光子14、マスク15(開口部材)、ダイクロイックミラー16、リレー光学系17、走査部18、レンズ19、レンズ20、及び対物レンズ21を備える。 The illumination optical system 4 is arranged at a position where the excitation light L1 from the light source 3 is incident. Excitation light L1 is incident on the illumination optical system 4 from the light source 3 through the optical fiber 11. The optical fiber 11 may be a part of the illumination optical system 4 or a part of a light source device including the light source 3. The illumination optical system 4 includes a collimator lens 12, a λ/4 wave plate 13, a polarizer 14, a mask 15 (aperture member), a dichroic mirror 16, a relay optical system 17, and a scan in order from the light source 3 side to the sample S side. The unit 18, the lens 19, the lens 20, and the objective lens 21 are provided.
 以下の説明において、適宜、図1などに示すXYZ直交座標系を参照する。このXYZ直交座標系において、X方向およびY方向は、それぞれ、対物レンズ21の光軸21aに垂直な方向である。また、Z方向は、対物レンズ21の光軸21aに平行な方向である。なお、対物レンズ21の光軸21aは、照明光学系4の光軸4aと一致している。また、X方向、Y方向、及びZ方向のそれぞれについて、適宜、矢印と同じ側を+側(例、+X側)と称し、矢印と反対側を-側(例、-X側)と称する。また、反射によって光路が折れ曲がる場合、X方向、Y方向、及びZ方向のそれぞれに対応する方向を、添え字を付けて表す。例えば、図1のXa方向、Ya方向、Za方向は、それぞれ、コリメーターレンズ12からダイクロイックミラー16までの光路において、X方向、Y方向、Z方向に対応する方向である。 In the following explanation, the XYZ Cartesian coordinate system shown in FIG. In this XYZ orthogonal coordinate system, the X direction and the Y direction are directions perpendicular to the optical axis 21a of the objective lens 21, respectively. Further, the Z direction is a direction parallel to the optical axis 21a of the objective lens 21. The optical axis 21a of the objective lens 21 coincides with the optical axis 4a of the illumination optical system 4. In each of the X direction, the Y direction, and the Z direction, the same side as the arrow is referred to as a + side (eg, +X side), and the opposite side is referred to as a − side (eg, −X side). In addition, when the optical path is bent by reflection, the directions corresponding to the X direction, the Y direction, and the Z direction are indicated with subscripts. For example, the Xa direction, the Ya direction, and the Za direction in FIG. 1 are directions corresponding to the X direction, the Y direction, and the Z direction in the optical path from the collimator lens 12 to the dichroic mirror 16, respectively.
 コリメーターレンズ12は、光ファイバー11から出射する励起光L1を平行光に変換する。コリメーターレンズ12は、例えば、その光源3と同じ側の焦点が光ファイバー11の光出射口と一致するように配置される。以下の説明において、照明光学系4に含まれるレンズについて、適宜、光源3と同じ側の焦点を後側焦点と称し、試料Sと同じ側の焦点を前側焦点と称する。 The collimator lens 12 converts the excitation light L1 emitted from the optical fiber 11 into parallel light. The collimator lens 12 is arranged, for example, so that the focal point on the same side as the light source 3 coincides with the light emission port of the optical fiber 11. In the following description, regarding the lens included in the illumination optical system 4, the focus on the same side as the light source 3 is referred to as the rear focus, and the focus on the same side as the sample S is referred to as the front focus.
 λ/4波長板13は、励起光L1の偏光状態を円偏光にする。偏光子14は、例えば偏光板であり、所定の偏光方向の直線偏光が透過する特性を有する。偏光子14は、試料Sに入射する光がS偏光(Y方向の直線偏光)となるように、配置されている。偏光子14は、コリメーターレンズ12の光軸12aの周りで回転可能である。コリメーターレンズ12の光軸12aは、照明光学系4の光軸4aと一致している。 The λ / 4 wave plate 13 changes the polarization state of the excitation light L1 to circularly polarized light. The polarizer 14 is, for example, a polarizing plate, and has a characteristic of transmitting linearly polarized light having a predetermined polarization direction. The polarizer 14 is arranged such that the light incident on the sample S is S-polarized (linearly polarized in the Y direction). The polarizer 14 is rotatable around the optical axis 12a of the collimator lens 12. The optical axis 12a of the collimator lens 12 coincides with the optical axis 4a of the illumination optical system 4.
 マスク15は、蛍光物質を励起する励起光を複数の光束に分割する光束分割部である。照明光学系4は、マスク15が分割した複数の光束のうち2以上の光束の干渉によって形成される干渉縞L2によって、試料Sを走査する。マスク15は、対物レンズ21の瞳面P0と光学的に共役な瞳共役面P1の位置またはその近傍に配置される。対物レンズ21の瞳面P0と光学的に共役な瞳共役面の近傍とは、瞳共役面を含む領域のうち励起光L1が平行光線と見なせる範囲である。例えば、励起光L1がガウスビームの場合は、ビームウェストの位置からレイリー長の1/10以内の範囲であれば十分に平行光線と見なすことが出来る。レイリー長は励起光L1の波長をλ、ビームウェスト半径をwとしたとき、πw /λで与えられる。例えば、励起光L1の波長が1μm、ビームウェスト半径が1mmの時、レイリー長はおよそ3mとなり、マスク15は対物レンズ21の瞳面P0と光学的に共役な瞳共役面P1の近傍300mm以内に配置されてもよい。マスク15は、瞳面P0またはその近傍に配置されてもよい。 The mask 15 is a light beam splitting unit that splits the excitation light that excites the fluorescent substance into a plurality of light beams. The illumination optical system 4 scans the sample S with the interference fringe L2 formed by the interference of two or more light beams among the plurality of light beams divided by the mask 15. The mask 15 is arranged at or near the position of the pupil conjugate surface P1 optically conjugate with the pupil surface P0 of the objective lens 21. The vicinity of the pupil conjugate surface optically conjugate with the pupil surface P0 of the objective lens 21 is a range in which the excitation light L1 can be regarded as a parallel ray in the region including the pupil conjugate surface. For example, when the excitation light L1 is a Gaussian beam, it can be sufficiently regarded as a parallel light ray within a range within 1/10 of the Rayleigh length from the beam waist position. Rayleigh length of the wavelength of the excitation light L1 lambda, when the beam waist radius was w 0, is given by πw 0 2 / λ. For example, when the wavelength of the excitation light L1 is 1 μm and the beam waist radius is 1 mm, the Rayleigh length is about 3 m, and the mask 15 is within 300 mm near the pupil conjugate plane P1 optically conjugate with the pupil plane P0 of the objective lens 21. It may be arranged. The mask 15 may be arranged at or near the pupil plane P0.
 マスク15は、励起光L1が通る開口15aおよび開口15bを有する。開口15aを通った励起光L1aと開口15bを通った励起光L1bとの干渉によって、干渉縞L2が形成される。マスク15は、コリメーターレンズ12の光軸12aの周りで回転可能である。マスク15は、例えば偏光子14と相対的に固定され、偏光子14と一体的に回転する。マスク15および偏光子14は、駆動部22から供給されるトルクによって回転する。 The mask 15 has an opening 15a and an opening 15b through which the excitation light L1 passes. Interference between the excitation light L1a passing through the opening 15a and the excitation light L1b passing through the opening 15b forms an interference fringe L2. The mask 15 is rotatable around the optical axis 12a of the collimator lens 12. The mask 15 is fixed, for example, relative to the polarizer 14 and rotates integrally with the polarizer 14. The mask 15 and the polarizer 14 are rotated by the torque supplied from the drive unit 22.
 図2(A)は、第1実施形態に係るマスクを示す図である。マスク15の開口15a、開口15bは、コリメーターレンズ12(図1参照)の光軸12aに関して、対称的に配置されている。図2(A)の状態において、開口15a、開口15bは、Xa方向に並んでいる。図2(B)は、第1実施形態に係る偏光子を示す図である。偏光子14の透過軸14aは、マスク15において開口15a、開口15bが並ぶ方向(図2(A)ではXa方向)に対して、垂直な方向(図2(B)ではYa方向)と平行に設定される。図2(C)は、対物レンズ21の瞳面P0を示す図である。符号P0a、P0bは、それぞれ、励起光L1が入射する領域である。図2(C)に示すパラメーターについては、後に画像処理部7の説明において参照する。 FIG. 2A is a diagram showing a mask according to the first embodiment. The openings 15a and 15b of the mask 15 are arranged symmetrically with respect to the optical axis 12a of the collimator lens 12 (see FIG. 1). In the state of FIG. 2A, the openings 15a and 15b are arranged in the Xa direction. FIG. 2B is a diagram showing the polarizer according to the first embodiment. The transmission axis 14a of the polarizer 14 is parallel to a direction (Ya direction in FIG. 2B) perpendicular to the direction (Xa direction in FIG. 2A) in which the openings 15a and 15b are aligned in the mask 15. Is set. FIG. 2C is a diagram showing the pupil plane P0 of the objective lens 21. Reference numerals P0a and P0b are regions where the excitation light L1 is incident, respectively. The parameters shown in FIG. 2C will be referred to later in the description of the image processing unit 7.
 図1の説明に戻り、ダイクロイックミラー16は、励起光L1が反射し、かつ試料Sからの蛍光L3(後に図4に示す)が透過する特性を有する。マスク15の開口15a、開口15bを通った励起光L1は、ダイクロイックミラー16で反射して光路が折れ曲がり、リレー光学系17に入射する。リレー光学系17は、ダイクロイックミラー16からの励起光L1を走査部18へ導く。リレー光学系17は、図中1枚のレンズで表されているが、リレー光学系17に含まれるレンズの数は1枚とは限らない。また、リレー光学系17は、光学系の距離等によっては不要な場合もある。なお、各図において、リレー光学系17以外の部分についても2枚以上のレンズを1枚のレンズで表す場合がある。 Returning to the description of FIG. 1, the dichroic mirror 16 has a property that the excitation light L1 is reflected and the fluorescence L3 (later shown in FIG. 4) from the sample S is transmitted. The excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is reflected by the dichroic mirror 16, the optical path is bent, and enters the relay optical system 17. The relay optical system 17 guides the excitation light L1 from the dichroic mirror 16 to the scanning unit 18. Although the relay optical system 17 is represented by one lens in the figure, the number of lenses included in the relay optical system 17 is not limited to one. Further, the relay optical system 17 may not be necessary depending on the distance of the optical system and the like. In addition, in each drawing, two or more lenses may be represented by one lens even in a portion other than the relay optical system 17.
 走査部18は、X方向とY方向との2方向において、試料Sを励起光L1によって形成される干渉縞L2で走査する。走査部18は、励起光L1によって干渉縞L2が形成される位置を、対物レンズ21の光軸21aに交差する2方向において変更する。走査部18は、偏向ミラー18aおよび偏向ミラー18bを含む。偏向ミラー18aおよび偏向ミラー18bは、励起光L1の光路に対する傾きが可変である。偏向ミラー18aおよび偏向ミラー18bは、それぞれ、ガルバノミラー、MEMSミラー、レゾナントミラー(共振型ミラー)等である。偏向ミラー18aおよび偏向ミラー18bは、スキャナであってもよい。走査部18は、例えば制御部8により制御される。 The scanning unit 18 scans the sample S with the interference fringes L2 formed by the excitation light L1 in the two directions of the X direction and the Y direction. The scanning unit 18 changes the position where the interference fringe L2 is formed by the excitation light L1 in two directions that intersect the optical axis 21a of the objective lens 21. The scanning unit 18 includes a deflection mirror 18a and a deflection mirror 18b. The tilts of the deflection mirror 18a and the deflection mirror 18b with respect to the optical path of the excitation light L1 are variable. The deflection mirror 18a and the deflection mirror 18b are a galvano mirror, a MEMS mirror, a resonant mirror (resonance type mirror), etc., respectively. The deflection mirror 18a and the deflection mirror 18b may be scanners. The scanning unit 18 is controlled by, for example, the control unit 8.
 偏向ミラー18aは、試料Sにおいて励起光L1が入射する位置をX方向に変化させる。偏向ミラー18bは、試料Sにおいて励起光L1が入射する位置をY方向に変化させる。走査部18は、例えば、対物レンズ21の瞳面P0と共役な位置が、偏向ミラー18aの位置、偏向ミラー18bの位置、または偏向ミラー18aと偏向ミラー18bとの間の位置になるように配置される。なお、走査部18は、試料Sにおいて励起光L1が入射する位置を、偏向ミラー18aがY方向に変化させ、偏向ミラー18bがX方向に変化させる構成でもよい。 The deflection mirror 18a changes the position where the excitation light L1 is incident on the sample S in the X direction. The deflection mirror 18b changes the position on the sample S where the excitation light L1 is incident in the Y direction. The scanning unit 18 is arranged so that, for example, the position conjugate with the pupil plane P0 of the objective lens 21 is the position of the deflection mirror 18a, the position of the deflection mirror 18b, or the position between the deflection mirror 18a and the deflection mirror 18b. To be done. The scanning unit 18 may be configured such that the deflection mirror 18a changes the position where the excitation light L1 is incident on the sample S in the Y direction and the deflection mirror 18b changes in the X direction.
 走査部18からの励起光L1は、レンズ19に入射する。レンズ19は、励起光L1を対物レンズ21の試料面Saと光学的に共役な試料共役面Sbに集光する。試料面Saは、対物レンズ21の前側焦点または前側焦点近傍の位置に配置され、対物レンズ21の光軸21aに垂直な面である。試料共役面Sbには、マスク15の開口15aを通った励起光L1aと開口15bを通った励起光L1bとの干渉によって、干渉縞が形成される。 The excitation light L1 from the scanning unit 18 is incident on the lens 19. The lens 19 concentrates the excitation light L1 on the sample conjugate surface Sb optically conjugate with the sample surface Sa of the objective lens 21. The sample surface Sa is a surface that is arranged at a position near the front focal point or the front focal point of the objective lens 21 and is perpendicular to the optical axis 21a of the objective lens 21. An interference fringe is formed on the sample conjugate surface Sb due to the interference between the excitation light L1a passing through the opening 15a of the mask 15 and the excitation light L1b passing through the opening 15b.
 試料共役面Sbを通った励起光L1は、レンズ20に入射する。レンズ20は、励起光L1を平行光に変換する。レンズ20を通った励起光L1は、対物レンズ21の瞳面P0を通る。対物レンズ21は、励起光L1を試料面Sa上に集光する。レンズ20および対物レンズ21は、試料共役面Sbに形成される干渉縞を試料面Saに投影する。試料面Saには、局所的な干渉縞L2が形成される。 The excitation light L1 that has passed through the sample conjugate surface Sb is incident on the lens 20. The lens 20 converts the excitation light L1 into parallel light. The excitation light L1 that has passed through the lens 20 passes through the pupil surface P0 of the objective lens 21. The objective lens 21 focuses the excitation light L1 on the sample surface Sa. The lens 20 and the objective lens 21 project the interference fringes formed on the sample conjugate surface Sb onto the sample surface Sa. Local interference fringes L2 are formed on the sample surface Sa.
 干渉縞L2は、光強度が相対的に高い明部と、光強度が相対的に低い暗部とを含む。明部と暗部とが並ぶ方向(図1ではX方向)を、適宜、干渉縞L2の周期方向D1と称す。干渉縞L2の周期方向D1は、マスク15の開口15aと開口15bとが並ぶ方向(図1ではXa方向)に対応する。駆動部22がマスク15をZa方向の周りで回転させると、開口15aと開口15bとが並ぶ方向が回転し、干渉縞L2の周期方向D1がZ方向の周りで回転する。すなわち、駆動部22は、干渉縞L2の方向を変更する縞方向変更部に含まれる。駆動部22(縞方向変更部)は、照明光学系4の光軸4aに垂直な面(例、マスク15の光出射側の面)において2以上の光束が並ぶ方向(以下、光束分割方向という)を変更する。上記の光束分割方向は、例えば、開口15aと開口15bとが並ぶ方向であり、駆動部22は、マスク15を回転させることによって、光束分割方向を変更する。 The interference fringe L2 includes a bright portion having a relatively high light intensity and a dark portion having a relatively low light intensity. The direction in which the bright part and the dark part are lined up (X direction in FIG. 1) is appropriately referred to as the periodic direction D1 of the interference fringes L2. The periodic direction D1 of the interference fringe L2 corresponds to the direction in which the openings 15a and 15b of the mask 15 are arranged (Xa direction in FIG. 1). When the drive unit 22 rotates the mask 15 around the Za direction, the direction in which the openings 15a and 15b are aligned rotates, and the periodic direction D1 of the interference fringe L2 rotates around the Z direction. That is, the driving unit 22 is included in the fringe direction changing unit that changes the direction of the interference fringe L2. The drive unit 22 (stripe direction changing unit) is a direction in which two or more light beams are arranged in a plane perpendicular to the optical axis 4a of the illumination optical system 4 (for example, the surface on the light emission side of the mask 15) (hereinafter referred to as a light beam division direction). ) Is changed. The above-described light beam splitting direction is, for example, a direction in which the opening 15a and the opening 15b are arranged, and the drive unit 22 changes the light beam splitting direction by rotating the mask 15.
 また、マスク15がZa方向の周りで回転すると、試料Sに対して励起光L1が入射する方向が変化する。駆動部22は、偏光子14をマスク15と連動して回転させることによって、偏光子14の透過軸の向きを変化させ、励起光L1が、S偏光で試料Sに入射するように調整する。すなわち、偏光子14および駆動部22は、干渉縞の方向に基づいて、励起光L1の偏光状態を調整する偏光調整部に含まれる。 Further, when the mask 15 rotates around the Za direction, the direction in which the excitation light L1 enters the sample S changes. The drive unit 22 rotates the polarizer 14 in conjunction with the mask 15 to change the direction of the transmission axis of the polarizer 14 and adjusts the excitation light L1 to be S-polarized and incident on the sample S. That is, the polarizer 14 and the driving unit 22 are included in the polarization adjusting unit that adjusts the polarization state of the excitation light L1 based on the direction of the interference fringes.
 図3は、第1実施形態に係るマスク、偏光子、干渉縞、及び励起光の偏光状態を示す図である。図3(A)において、マスク15の開口15aおよび開口15bが並ぶ方向は、Xa方向である。偏光子14の透過軸14aは、Xa方向に垂直なYa方向である。この場合、励起光L1(図1参照)は、開口15aを通った光束と、開口15bを通った光束が試料Sに入射して、周期方向D1の干渉縞L2が生成される。励起光L1入射面は、XZ平面に平行である。試料Sに入射する際の励起光L1は、その偏光方向D2が入射面に垂直なY方向であり、つまり、励起光L1は、S偏光で試料Sに入射する。 FIG. 3 is a diagram showing the mask, the polarizer, the interference fringes, and the polarization state of the excitation light according to the first embodiment. In FIG. 3A, the direction in which the openings 15a and 15b of the mask 15 are arranged is the Xa direction. The transmission axis 14a of the polarizer 14 is in the Ya direction perpendicular to the Xa direction. In this case, in the excitation light L1 (see FIG. 1), the light flux passing through the opening 15a and the light flux passing through the opening 15b are incident on the sample S to generate the interference fringes L2 in the periodic direction D1. The excitation light L1 incident plane is parallel to the XZ plane. The excitation light L1 when incident on the sample S is in the Y direction whose polarization direction D2 is perpendicular to the incident surface, that is, the excitation light L1 is incident on the sample S with S polarization.
 図3(B)において、マスク15の開口15aおよび開口15bが並ぶ方向は、Xa方向を反時計回りに120°回転させた方向である。偏光子14の透過軸14aは、Ya方向を反時計回りに120°回転させた方向である。干渉縞L2の周期方向は、X方向に対して120°をなす方向である。励起光L1の入射面は、XZ平面をZ方向の周りで120°回転させた面である。試料Sに入射する際の励起光L1は、その偏光方向D2が入射面に垂直な方向であり、つまり、励起光L1は、S偏光で試料Sに入射する。 In FIG. 3B, the direction in which the openings 15a and 15b of the mask 15 are aligned is the direction obtained by rotating the Xa direction counterclockwise by 120°. The transmission axis 14a of the polarizer 14 is a direction in which the Ya direction is rotated counterclockwise by 120 °. The periodic direction of the interference fringes L2 is a direction forming 120 ° with respect to the X direction. The incident surface of the excitation light L1 is a surface obtained by rotating the XZ plane by 120 ° around the Z direction. The excitation light L1 when entering the sample S has a polarization direction D2 perpendicular to the incident surface, that is, the excitation light L1 enters the sample S as S-polarized light.
 図3(C)において、マスク15の開口15aおよび開口15bが並ぶ方向は、Xa方向を反時計回りに240°回転させた方向である。偏光子14の透過軸14aは、Ya方向を反時計回りに240°回転させた方向である。干渉縞L2の周期方向D1は、X方向に対して240°をなす方向である。励起光L1の入射面は、XZ平面をZ方向の周りで240°回転させた面である。試料Sに入射する際の励起光L1は、その偏光方向D2が入射面に垂直な方向であり、つまり、励起光L1は、S偏光で試料Sに入射する。 In FIG. 3C, the direction in which the openings 15a and 15b of the mask 15 are aligned is the direction obtained by rotating the Xa direction counterclockwise by 240°. The transmission axis 14a of the polarizer 14 is a direction in which the Ya direction is rotated counterclockwise by 240 °. The periodic direction D1 of the interference fringe L2 is a direction forming 240 ° with respect to the X direction. The incident surface of the excitation light L1 is a surface obtained by rotating the XZ plane by 240 ° around the Z direction. The excitation light L1 when entering the sample S has a polarization direction D2 perpendicular to the incident surface, that is, the excitation light L1 enters the sample S as S-polarized light.
 上述のように励起光L1が試料SにS偏光で入射する場合、P偏光で入射する場合に比べて、干渉縞L2のコントラストが高くなる。なお、図3では、干渉縞L2の周期方向を120°の角度刻みで3通りに変化させているが、干渉縞L2の周期方向は、この例に限定されない。干渉縞L2の周期方向は、後述する画像処理部7が生成する画像において、分解能を向上させることが可能な方向(超解像効果が得られる方向)に相当する。干渉縞L2の周期方向は、所望の超解像効果が得られるように、適宜設定される。例えば、干渉縞L2の周期方向は、互いに90°の角度をなす2通りでもよいし、1通りでもよい。また、マスク15は、対物レンズ21の倍率およびNA(開口数)、照明瞳形状に合わせて交換可能でもよい。 As described above, when the excitation light L1 is incident on the sample S with S-polarized light, the contrast of the interference fringes L2 is higher than when it is incident with P-polarized light. In FIG. 3, the periodic direction of the interference fringe L2 is changed in three ways in increments of 120 °, but the periodic direction of the interference fringe L2 is not limited to this example. The periodic direction of the interference fringes L2 corresponds to a direction in which the resolution can be improved (a direction in which the super-resolution effect can be obtained) in the image generated by the image processing unit 7 described later. The periodic direction of the interference fringe L2 is appropriately set so that a desired super-resolution effect can be obtained. For example, the periodic directions of the interference fringes L2 may be two or one at an angle of 90 ° to each other. Further, the mask 15 may be replaceable according to the magnification and NA (numerical aperture) of the objective lens 21 and the shape of the illumination pupil.
 図4は、第1実施形態に係る顕微鏡および蛍光の光路を示す図である。検出光学系5は、試料Sで発生した蛍光L3の像を形成する。検出光学系5は、試料Sから検出装置6に向かう順に、対物レンズ21、レンズ20、レンズ19、走査部18、リレー光学系17、ダイクロイックミラー16、励起光カットフィルター23、及びレンズ24を含む。試料Sで発生した蛍光L3は、対物レンズ21、レンズ20、及びレンズ19をこの順に通って、走査部18に入射する。蛍光L3は、走査部18によってデスキャンされ、リレー光学系17を通ってダイクロイックミラー16に入射する。ダイクロイックミラー16は、蛍光L3が透過する特性を有する。ダイクロイックミラー16を透過した蛍光L3は、励起光カットフィルター23に入射する。励起光カットフィルター23は、励起光L1を遮光し、蛍光L3を透過する特性を有する。励起光カットフィルター23を透過した蛍光L3は、レンズ24に入射する。レンズ24は、蛍光L3を検出装置6に集光する。 FIG. 4 is a diagram showing the microscope and the optical path of fluorescence according to the first embodiment. The detection optical system 5 forms an image of the fluorescence L3 generated in the sample S. The detection optical system 5 includes an objective lens 21, a lens 20, a lens 19, a scanning unit 18, a relay optical system 17, a dichroic mirror 16, an excitation light cut filter 23, and a lens 24 in order from the sample S toward the detection device 6. .. The fluorescence L3 generated in the sample S passes through the objective lens 21, the lens 20, and the lens 19 in this order and enters the scanning unit 18. The fluorescence L3 is descanned by the scanning unit 18 and enters the dichroic mirror 16 through the relay optical system 17. The dichroic mirror 16 has the property of transmitting the fluorescence L3. The fluorescence L3 transmitted through the dichroic mirror 16 is incident on the excitation light cut filter 23. The excitation light cut filter 23 has a property of blocking the excitation light L1 and transmitting the fluorescence L3. The fluorescence L3 that has passed through the excitation light cut filter 23 enters the lens 24. The lens 24 focuses the fluorescence L3 on the detection device 6.
 検出装置6は、イメージセンサであり、2次元的に配列された複数の検出部6aを含む。複数の検出部6aは、検出装置6において2方向に配列されている。複数の検出部6aは、Xb方向とYb方向との2方向に配列されている。複数の検出部6aは、それぞれ、フォトダイオードなどの光電変換素子を含むセンサセル、ピクセル、あるいは光検出器等である。複数の検出部6aは、それぞれ、蛍光L3を検出可能である。検出部6aは例えば1画素に相当するが、複数の画素を含む検出領域(受光領域)を1つの検出部6aとして用いてもよい。 The detection device 6 is an image sensor and includes a plurality of detection units 6a arranged two-dimensionally. The plurality of detection units 6a are arranged in two directions in the detection device 6. The plurality of detection units 6a are arranged in two directions, the Xb direction and the Yb direction. Each of the plurality of detection units 6a is a sensor cell including a photoelectric conversion element such as a photodiode, a pixel, or a photodetector. Each of the plurality of detection units 6a can detect the fluorescence L3. The detection unit 6a corresponds to, for example, one pixel, but a detection region (light receiving region) including a plurality of pixels may be used as one detection unit 6a.
 顕微鏡1は、走査部18により干渉縞L2を試料面Sa上で走査し、検出装置6は、蛍光L3を検出する。例えば、顕微鏡1は、試料面Saから選択される照明領域を干渉縞L2で照明し、検出装置6は、上記照明領域からの蛍光L3を検出する。顕微鏡は、検出装置6による検出が終了した後に、走査部18により上記照明領域を変更する。顕微鏡1は、蛍光を検出する処理と、照明領域を変更する処理とを繰り返すことで、所望の領域における蛍光強度分布(検出装置6の測定値)を取得する。 The microscope 1 scans the interference fringes L2 on the sample surface Sa by the scanning unit 18, and the detection device 6 detects the fluorescence L3. For example, the microscope 1 illuminates the illumination region selected from the sample surface Sa with the interference fringes L2, and the detection device 6 detects the fluorescence L3 from the illumination region. The microscope changes the illumination area by the scanning unit 18 after the detection by the detection device 6 is completed. The microscope 1 acquires a fluorescence intensity distribution (measured value of the detection device 6) in a desired region by repeating a process of detecting fluorescence and a process of changing the illumination region.
 実施形態において、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。多光子励起の場合、励起光L1の波長帯を赤外光の波長帯まで長くすることができるため、試料Sに対する励起光L1の透過性が高くなる。また、検出対象となる蛍光L3が対物レンズ21の焦点面近傍のみにおいて発生することから、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 In the embodiment, the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. In the case of multiphoton excitation, the wavelength band of the excitation light L1 can be extended to the wavelength band of the infrared light, so that the transmittance of the excitation light L1 to the sample S becomes high. Further, since the fluorescence L3 to be detected is generated only in the vicinity of the focal plane of the objective lens 21, it is possible to accurately obtain image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S. it can.
 画像処理部7は、上述のようにして得られた検出装置6の検出結果に基づいて、画像を生成する。以下、画像処理部7が実行する処理について説明する。以下の説明に用いる数式において、適宜、座標系をベクトルで記述する。試料面Saにおける座標および検出装置6における座標(以下、ディテクター座標という)をベクトルr=(x,y)で表し、対応する波数座標(rでのフーリエ変換後の座標)をベクトルk=(k,k)で表す。また、走査部18による走査先の座標(以下、スキャン座標という)をベクトルr=(x,y)で表し、その対応する波数座標(rでのフーリエ変換後の座標)をベクトルk=(kxs,kys)で表す。以下の説明において、波数を空間周波数もしくは周波数と称す場合がある。光学系の倍率は、説明の便宜上1倍であるとするが、任意の倍率で構わない。 The image processing unit 7 generates an image based on the detection result of the detection device 6 obtained as described above. Hereinafter, the processing executed by the image processing unit 7 will be described. In the mathematical formulas used in the following description, the coordinate system is described as a vector as appropriate. The coordinates on the sample surface Sa and the coordinates on the detection device 6 (hereinafter referred to as detector coordinates) are represented by a vector r=(x, y), and the corresponding wave number coordinates (coordinates after Fourier transform at r) are represented by a vector k=(k). x, represented by k y). Further, coordinates of the scanning destination of the scanning unit 18 (hereinafter, referred to as scanning coordinates) are represented by a vector r s =(x s , y s ) and corresponding wave number coordinates (coordinates after Fourier transform at r s ) are vectors. It is represented by k s =(k xs , k ys ). In the following description, the wave number may be referred to as spatial frequency or frequency. The magnification of the optical system is assumed to be 1 for convenience of explanation, but any magnification may be used.
 対物レンズ21を含む光学系の開口数をNA、照明光波長をλex、蛍光L3の波長をλemとすると、励起光が入射する場合の対物レンズ21の瞳半径kNA exおよび蛍光が入射する場合の対物レンズ21の瞳半径kNA emは、下記の式(1A)および式(1B)で表される。よく知られているように瞳面と像面の各々の電場振幅はフーリエ変換の関係で結ばれているため、瞳位置の座標を波数座標で表現することがある。kNA exおよびkNA emは各々、瞳を波数座標で表現した場合の瞳半径の値を示している。 When the numerical aperture of the optical system including the objective lens 21 is NA, the illumination light wavelength is λ ex , and the wavelength of the fluorescence L3 is λ em , the pupil radius k NA ex of the objective lens 21 when the excitation light is incident and the fluorescence is incident. In such a case, the pupil radius k NA em of the objective lens 21 is expressed by the following formula (1A) and formula (1B). As is well known, since the electric field amplitudes of the pupil plane and the image plane are connected by the Fourier transform relationship, the coordinates of the pupil position may be represented by wave number coordinates. Each of k NA ex and k NA em indicates the value of the pupil radius when the pupil is expressed in wave number coordinates.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、図2(C)を参照しつつ、各種パラメーターについて説明する。図2(C)では、瞳面P0を波数座標空間(周波数空間)で表している。図2(C)に示す点線で書かれた円の内部の領域は、対物レンズ21の瞳であり、kNA exは、対物レンズ21の瞳半径である。励起光L1が入射する領域P0a、領域P0bは、ここではそれぞれ円形であるとするが、円形に限られない。領域P0a、領域P0bのそれぞれの半径は、σkNA exである。σは対物レンズ21の瞳半径に対する領域P0a,もしくは領域P0bの半径の比である。対物レンズ21の光軸21aから領域P0aの中心までの距離は、(1-σ)kNA exである。領域P0aの中心と領域P0bの中心との距離は、例えば2(1-σ)kNA exであるが、この値に限らない。試料面Saでの励起光の電場強度ill(r)は、下記の式(2)で表される。 Here, various parameters will be described with reference to FIG. 2C. In FIG. 2C, the pupil plane P0 is represented by a wave number coordinate space (frequency space). The area inside the circle drawn by the dotted line shown in FIG. 2C is the pupil of the objective lens 21, and k NA ex is the pupil radius of the objective lens 21. The region P0a and the region P0b on which the excitation light L1 is incident are assumed to be circular, but are not limited to circular. The radius of each of the region P0a and the region P0b is σk NA ex . σ is the ratio of the radius of the region P0a or the region P0b to the pupil radius of the objective lens 21. The distance from the optical axis 21a of the objective lens 21 to the center of the region P0a is (1-σ) k NA ex . The distance between the center of the region P0a and the center of the region P0b is, for example, 2(1-σ)k NA ex , but is not limited to this value. The electric field intensity ill(r) of the excitation light on the sample surface Sa is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、ベクトルk=(k,0)は照明縞の波数ベクトルを示し、k=2(1-σ)kNA exである。PSFill(r)は光学系の開口数がσNAである場合の点像強度分布関数(Point Spread Function)である。ill(r)の干渉縞の間隔(明部から次の明部までの距離)は、1/k=1/(2(1-σ)kNA ex)である。以下の説明において、干渉縞の間隔を、適宜、縞間隔または干渉縞の周期と称する。 Here, the vector k 0 =(k 0 , 0) represents the wave number vector of the illumination fringe, and k 0 =2(1-σ)k NA ex . PSF ill (r) is a point spread function when the numerical aperture of the optical system is σNA. The distance between the interference fringes of ill (r) (distance from one bright part to the next bright part) is 1 / k 0 = 1 / (2 (1-σ) k NA ex ). In the following description, the interval of the interference fringes will be appropriately referred to as the fringe interval or the period of the interference fringes.
 実施形態において、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起され、励起した蛍光物質から蛍光L3が放射される。検出装置6は、蛍光L3を受光し、検出光学系5により形成された蛍光物質の像を撮像する。検出装置6は、蛍光物質の像を撮像して画像データを取得する。以下の説明では、検出装置6の検出部6aのサイズ(検出部サイズ)は、検出装置6における干渉縞L2の周期に相当する寸法(1周期に相当する検出装置6上の長さ)に比べて十分に小さいとする。例えば、検出部6aのサイズは、λem/4NA程度に設定される。 In the embodiment, the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1, and the excited fluorescent substance emits the fluorescence L3. The detection device 6 receives the fluorescence L3 and captures an image of the fluorescent substance formed by the detection optical system 5. The detection device 6 captures an image of a fluorescent substance and acquires image data. In the following description, the size of the detection unit 6a of the detection device 6 (detection unit size) is smaller than the size corresponding to the cycle of the interference fringes L2 in the detection device 6 (the length on the detection device 6 corresponding to one cycle). Is small enough. For example, the size of the detection unit 6a is set to about λ em /4NA.
 ここで、試料Sにおける蛍光物質の分布をObj(r)で表し、n光子励起によって生じた蛍光を検出する場合に、検出装置6で得られる画像データをI(r,r)で表す。I(r,r)は、下記の式(3)で表される。 Here, the distribution of the fluorescent substance in the sample S is represented by Obj(r), and the image data obtained by the detection device 6 when detecting the fluorescence generated by n-photon excitation is represented by I(r,r s ). I(r,r s ) is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)における*は、rについてのコンボリューションである。ここで、PSFdet(r)は、対物レンズ21を含む検出光学系5および蛍光波長λemによって定まる検出PSFである。また、n光子励起によって生じる蛍光の強度は励起光強度のn乗に比例することを反映して、式(3)において励起光強度ill(r)のn乗の項が現れる。画像データI(r,r)は、ディテクター座標r=(x,y)及びスキャン座標r=(x,y)を独立変数に持つ4次元のデータである。I(r,r)を変形すると、下記の式(4)が得られる。 * R in equation (3) is a convolution for r. Here, the PSF det (r) is a detection PSF determined by the detection optical system 5 including the objective lens 21 and the fluorescence wavelength λ em . Further, the term of the excitation light intensity ill (r) to the nth power appears in the equation (3), reflecting that the fluorescence intensity generated by the n photon excitation is proportional to the nth power of the excitation light intensity. Image data I (r, r s) is a detector coordinate r = (x, y) and the scan coordinates r s = (x s, y s) 4 -dimensional data with the independent variables. When I(r,r s ) is transformed, the following equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)における*rsはrについてのコンボリューションである。また、PSFeff(r,r)は、下記の式(5)で定義される実効PSFである。 * Rs in the equation (4) is a convolution of r s. Further, PSF eff (r, r s) is the effective PSF which is defined by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記の式(4)より、検出装置6の検出部6aごとに、相互に異なるObj(r)の画像データが得られることが分かる。また、上記の式(5)より、検出装置6の検出部6aの位置(r)ごとに、実効PSFの形状が異なることが分かる。 From the above formula (4), it can be seen that different image data of Obj(r s ) can be obtained for each detection unit 6a of the detection device 6. Further, from the above formula (5), it can be seen that the shape of the effective PSF is different for each position (r) of the detection unit 6a of the detection device 6.
 図5は、第1実施形態に係る検出装置の各検出部における実効PSFを示す図である。図5の各グラフにおいて、横軸は検出装置6のXb方向である。試料面Saは検出装置6と光学的に共役であり、試料面Saの座標Xと検出装置の座標Xbは適当な座標変換によって対応づけられる。例えば、光学系の倍率が1である場合、X=Xbとなる。 FIG. 5 is a diagram showing effective PSF in each detection unit of the detection device according to the first embodiment. In each graph of FIG. 5, the horizontal axis is the Xb direction of the detection device 6. The sample surface Sa is optically conjugate with the detection device 6, and the coordinates X of the sample surface Sa and the coordinates Xb of the detection device are associated with each other by an appropriate coordinate conversion. For example, when the magnification of the optical system is 1, X=Xb.
 図5(A)には、Xb方向の座標が互いに異なる3つの検出部6aについて、各検出部6aの実効PSF(実線)を1つのグラフに表した。例えば、図5(A)の中央のグラフには、位置X1aに配置される検出部6aの実効PSFに対応する分布Q1a(実線)を示した。また、図5(A)の左側のグラフには、位置X1bに配置される検出部6aの実効PSFに対応する分布Q1b(実線)を示した。また、図5(A)の右側のグラフには、位置X1cに配置される検出部6aの実効PSFに対応する分布Q1c(実線)を示した。 In FIG. 5A, the effective PSF (solid line) of each detection unit 6a is shown in one graph for the three detection units 6a whose coordinates in the Xb direction are different from each other. For example, the graph in the center of FIG. 5A shows the distribution Q1a (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1a. The graph on the left side of FIG. 5A shows the distribution Q1b (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1b. The graph on the right side of FIG. 5A shows the distribution Q1c (solid line) corresponding to the effective PSF of the detection unit 6a arranged at the position X1c.
 また、図5の点線に対応する符号Q2は、図2等に示した干渉縞L2の強度分布の2乗に対応する分布である。分布Q2は、試料面Saでの励起光の電場強度ill(r)(上記の式(3)の2乗)に対応する。図5では例として2光子励起の場合を示しているが、n光子励起の場合、Q2は干渉縞L2の電場強度ill(r)のn乗に対応する分布となる。干渉縞L2の強度が極大となる位置、すなわち分布Q2のピーク位置X2a、X2b、及びX2cは、数値シミュレーション等によって予め求めることができる。 Reference numeral Q2 corresponding to the dotted line in FIG. 5 is a distribution corresponding to the square of the intensity distribution of the interference fringe L2 shown in FIG. The distribution Q2 corresponds to the electric field intensity ill 2 (r) of the excitation light on the sample surface Sa (the square of the above equation (3)). In FIG. 5, the case of two-photon excitation is shown as an example, but in the case of n-photon excitation, Q2 has a distribution corresponding to the n-th power of the electric field intensity ill (r) of the interference fringe L2. The position where the intensity of the interference fringe L2 is maximum, that is, the peak positions X2a, X2b, and X2c of the distribution Q2 can be obtained in advance by numerical simulation or the like.
 分布Q2は、部分的な分布であるQ2a、Q2b、及びQ2cを含む。分布Q2aは、ピーク位置X2aの前の極小位置から次の極小位置までの範囲における分布である。分布Q2bは、ピーク位置X2bの前の極小位置から次の極小位置までの範囲における分布である。分布Q2cは、ピーク位置X2cの前の極小位置から次の極小位置までの範囲における分布である。 Distribution Q2 includes partial distributions Q2a, Q2b, and Q2c. The distribution Q2a is a distribution in the range from the minimum position before the peak position X2a to the next minimum position. The distribution Q2b is a distribution in the range from the minimum position before the peak position X2b to the next minimum position. The distribution Q2c is a distribution in the range from the minimum position before the peak position X2c to the next minimum position.
 また、図5の2点鎖線に対応する符号Q3a、符号Q3b、及びQ3cは、対物レンズ21を含む検出光学系5および蛍光波長λemによって定まる検出PSFに対応する分布である。検出PSFは、式(3)などのPSFdet(r)に対応する。 Reference numerals Q3a, Q3b, and Q3c corresponding to the chain double-dashed line in FIG. 5 are distributions corresponding to the detection optical system 5 including the objective lens 21 and the detection PSF determined by the fluorescence wavelength λ em . The detected PSF corresponds to PSF det (r) such as in equation (3).
 図5(A)の中央のグラフに示す分布Q3aは、複数の検出部6aのうち位置X1aに配置される検出部6aの検出PSFに対応する分布である。分布Q3aは、検出部6aが配置される位置X1a(例、検出部6aの受光領域の中心位置)において極大(ピーク)になる。位置X1aは、干渉縞L2の強度分布に対応する分布Q2aのピーク位置X2aとほぼ同じである。実効PSFに対応する分布Q1aは、干渉縞L2の強度分布に対応する分布Q2と、位置X1aに配置される検出部6aの検出PSFに対応する分布Q3aとを掛け合わせた分布である。 The distribution Q3a shown in the center graph of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1a among the plurality of detection units 6a. The distribution Q3a has a maximum (peak) at the position X1a where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a). The position X1a is almost the same as the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringe L2. The distribution Q1a corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringes L2 and the distribution Q3a corresponding to the detected PSF of the detection unit 6a arranged at the position X1a.
 図5(A)の中央のグラフにおいて、検出部6aの位置X1aすなわち検出PSFのピーク位置(分布Q3aのピーク位置)は、干渉縞L2の強度分布に対応する分布Q2aのピーク位置X2aとのずれ量が所定値よりも小さい(例えば、ずれ量はほぼ0)。このような場合、実効PSFの分布Q1aは、単一の極大(ピーク)をとる。この場合、分布Q1aのピーク位置は、検出部6aの位置X1aあるいは干渉縞L2の強度分布に対応する分布Q2aのピーク位置X2aとほぼ同じになる。 In the graph in the center of FIG. 5A, the position X1a of the detection unit 6a, that is, the peak position of the detection PSF (the peak position of the distribution Q3a) is deviated from the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringes L2. The amount is smaller than the predetermined value (for example, the shift amount is almost 0). In such a case, the effective PSF distribution Q1a has a single maximum (peak). In this case, the peak position of the distribution Q1a is almost the same as the position X1a of the detection unit 6a or the peak position X2a of the distribution Q2a corresponding to the intensity distribution of the interference fringes L2.
 図5(A)の左側のグラフに示す分布Q3bは、複数の検出部6aのうち位置X1bに配置される検出部6aの検出PSFに対応する分布である。分布Q3bは、検出部6aが配置される位置X1b(例えば、検出部6aの受光領域の中心位置)において極大(ピーク)になる。位置X1bは、干渉縞L2の強度分布に対応する分布Q2のうちで位置X1bを含む部分的な分布Q2bのピーク位置X2bとずれている。実効PSFに対応する分布Q1bは、干渉縞L2の強度分布に対応する分布Q2と、位置X1bに配置される検出部6aの検出PSFに対応する分布Q3bとを掛け合わせた分布である。 The distribution Q3b shown in the graph on the left side of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1b among the plurality of detection units 6a. The distribution Q3b reaches a maximum (peak) at the position X1b where the detection unit 6a is arranged (for example, the center position of the light receiving region of the detection unit 6a). The position X1b is displaced from the peak position X2b of the partial distribution Q2b including the position X1b in the distribution Q2 corresponding to the intensity distribution of the interference fringe L2. The distribution Q1b corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringe L2 and the distribution Q3b corresponding to the detected PSF of the detection unit 6a arranged at the position X1b.
 図5(A)の左側のグラフにおいて、検出部6aの位置X1bすなわち検出PSFのピーク位置(分布Q3bのピーク位置)は、干渉縞L2の強度分布に対応する分布Q2bのピーク位置X2bとのずれ量が所定値よりも大きい。この場合、実効PSFの分布Q1bが2つの極大(ピーク)をとる。このように、検出器6aの位置によって実効PSFのピークが2つに分かれる事があり、このような実効PSFの形状変化を実効PSFの形状の崩れと呼ぶ。実効PSFの最も強いピークをメインローブ、それ以外のピークをサイドローブと呼ぶ。 In the graph on the left side of FIG. 5A, the position X1b of the detection unit 6a, that is, the peak position of the detected PSF (peak position of the distribution Q3b) is deviated from the peak position X2b of the distribution Q2b corresponding to the intensity distribution of the interference fringe L2. The amount is larger than the predetermined value. In this case, the distribution Q1b of the effective PSF has two maxima (peaks). As described above, the peak of the effective PSF may be divided into two depending on the position of the detector 6a, and such a change in the shape of the effective PSF is called collapse of the shape of the effective PSF. The strongest peak of the effective PSF is called the main lobe, and the other peaks are called the side lobes.
 実効PSFの分布Q1bのメインローブのピーク位置は、検出装置6の中心位置(X2a)からずれている。このように、検出装置6の検出部6aの位置(r)と干渉縞L2の強度分布の位置との関係によって、実効PSFのメインローブの位置もずれることが分かる。以下の説明において、適宜、実効PSFのメインローブの位置のずれを実効PSFの位置ずれと呼ぶ。 The peak position of the main lobe of the effective PSF distribution Q1b deviates from the center position (X2a) of the detection device 6. As described above, it can be seen that the position of the main lobe of the effective PSF also shifts due to the relationship between the position (r) of the detection unit 6a of the detection device 6 and the position of the intensity distribution of the interference fringe L2. In the following description, the displacement of the main lobe of the effective PSF is appropriately referred to as the displacement of the effective PSF.
 図5(A)の右側のグラフに示す分布Q3cは、複数の検出部6aのうち位置X1cに配置される検出部6aの検出PSFに対応する分布である。分布Q3cは、検出部6aが配置される位置X1c(例、検出部6aの受光領域の中心位置)において極大(ピーク)になる。位置X1cは、干渉縞L2の強度分布に対応する分布Q2のうちで位置X1cを含む部分的な分布Q2cのピーク位置X2cとずれている。実効PSFに対応する分布Q1cは、干渉縞L2の強度分布に対応する分布Q2と、位置X1cに配置される検出部6aの検出PSFに対応する分布Q3cとを掛け合わせた分布である。 The distribution Q3c shown in the graph on the right side of FIG. 5A is a distribution corresponding to the detection PSF of the detection unit 6a arranged at the position X1c among the plurality of detection units 6a. The distribution Q3c has a maximum (peak) at the position X1c where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a). The position X1c deviates from the peak position X2c of the partial distribution Q2c including the position X1c in the distribution Q2 corresponding to the intensity distribution of the interference fringes L2. The distribution Q1c corresponding to the effective PSF is a distribution obtained by multiplying the distribution Q2 corresponding to the intensity distribution of the interference fringes L2 and the distribution Q3c corresponding to the detected PSF of the detection unit 6a arranged at the position X1c.
 図5(A)の右側のグラフにおいて、検出部6aの位置X1cすなわち検出PSFのピーク位置(分布Q3cのピーク位置)は、干渉縞L2の強度分布に対応する分布Q2cのピーク位置X2cとのずれ量が所定値よりも大きい。この場合、実効PSFの分布Q1bが2つの極大(ピーク)をとり、実効PSFの形状の崩れ、実効PSFの位置ずれが発生している。 In the graph on the right side of FIG. 5A, the position X1c of the detection unit 6a, that is, the peak position of the detection PSF (the peak position of the distribution Q3c) is deviated from the peak position X2c of the distribution Q2c corresponding to the intensity distribution of the interference fringes L2. The amount is larger than the predetermined value. In this case, the distribution Q1b of the effective PSF has two maximums (peaks), the shape of the effective PSF is deformed, and the position of the effective PSF is displaced.
 図5(B)は、検出部6aの位置が図5(A)と異なる。図5(B)の左側のグラフに示す分布Q3dは、複数の検出部6aのうち位置X1dに配置される検出部6aに対応する分布である。分布Q3dは、検出部6aが配置される位置X1d(例、検出部6aの受光領域の中心位置)において極大(ピーク)になる。位置X1dは、干渉縞L2の強度分布に対応する分布Q2のうちで位置X1dを含む部分的な分布Q2bのピーク位置X2bとほぼ同じである。このような場合、実効PSFの分布Q1dは、単一の極大(ピーク)をとり、分布Q1dのピーク位置は、検出部6aの位置X1dあるいは干渉縞L2の強度分布に対応する分布Q2bのピーク位置X2bとほぼ同じになる。すなわち、実効PSFの形状の崩れは発生していない。 In FIG. 5(B), the position of the detection unit 6a is different from that in FIG. 5(A). The distribution Q3d shown in the graph on the left side of FIG. 5B is a distribution corresponding to the detection unit 6a arranged at the position X1d among the plurality of detection units 6a. The distribution Q3d has a maximum (peak) at the position X1d where the detector 6a is arranged (eg, the center position of the light receiving region of the detector 6a). The position X1d is substantially the same as the peak position X2b of the partial distribution Q2b including the position X1d in the distribution Q2 corresponding to the intensity distribution of the interference fringe L2. In such a case, the distribution Q1d of the effective PSF has a single maximum (peak), and the peak position of the distribution Q1d is the peak position of the distribution Q2b corresponding to the position X1d of the detection unit 6a or the intensity distribution of the interference fringe L2. It becomes almost the same as X2b. That is, the shape of the effective PSF has not collapsed.
 また、図5(B)の右側のグラフに示す分布Q3eは、複数の検出部6aのうち位置X1eに配置される検出部6aに対応する分布である。分布Q3eは、検出部6aが配置される位置X1e(例、検出部6aの受光領域の中心位置)において極大(ピーク)になる。位置X1eは、干渉縞L2の強度分布に対応する分布Q2のうちで位置X1eを含む部分的な分布Q2cのピーク位置X2cとほぼ同じである。このような場合、実効PSFの分布Q1eは、単一の極大(ピーク)をとり、分布Q1eのピーク位置は、検出部6aの位置X1eあるいは干渉縞L2の強度分布に対応する分布Q2cのピーク位置X2cとほぼ同じになる。すなわち、実効PSFの形状の崩れは発生していない。 Further, the distribution Q3e shown in the graph on the right side of FIG. 5B is a distribution corresponding to the detection unit 6a arranged at the position X1e among the plurality of detection units 6a. The distribution Q3e has a maximum (peak) at the position X1e (for example, the center position of the light receiving region of the detection unit 6a) where the detection unit 6a is arranged. The position X1e is substantially the same as the peak position X2c of the partial distribution Q2c including the position X1e in the distribution Q2 corresponding to the intensity distribution of the interference fringes L2. In such a case, the distribution Q1e of the effective PSF has a single maximum (peak), and the peak position of the distribution Q1e is the peak position of the distribution Q2c corresponding to the position X1e of the detection unit 6a or the intensity distribution of the interference fringe L2. It becomes almost the same as X2c. That is, the shape of the effective PSF has not collapsed.
 本実施形態において、画像処理部7は、検出光学系5の倍率および干渉縞L2の周期(縞間隔)に基づいて、複数の検出部6aから選択される検出部6aの検出結果を用いる。画像処理部7は、干渉縞L2のピーク位置(例、図5のピーク位置X2a、X2b、X2c)に基づいて検出部6aを複数の検出部6aから選択し、選択した検出部6aの検出結果を用いる。干渉縞L2のピーク位置は、例えば、干渉縞L2の強度分布において強度が極大の位置(例、明部の中心位置)に相当する。 In the present embodiment, the image processing unit 7 uses the detection result of the detection unit 6a selected from the plurality of detection units 6a based on the magnification of the detection optical system 5 and the period (strip interval) of the interference fringes L2. The image processing unit 7 selects the detection unit 6a from the plurality of detection units 6a based on the peak position of the interference fringe L2 (eg, peak positions X2a, X2b, X2c in FIG. 5), and the detection result of the selected detection unit 6a. To use. The peak position of the interference fringe L2 corresponds to, for example, the position where the intensity is maximum in the intensity distribution of the interference fringe L2 (eg, the central position of the bright portion).
 画像処理部7は、例えば、図5(B)の中央のグラフにおけるピーク位置X2aに対応する検出結果として、ピーク位置X2aと対応する位置X1aに配置される検出部6aの検出結果を用いる。例えば、ピーク位置X2a、X2b、及びX2cは、数値シミュレーション等によって予め求められ、記憶部に予め記憶される。画像処理部7は、記憶されたピーク位置の情報に基づいて、複数の検出部6aのうちピーク位置X2aの最も近くに配置される検出部6aを選択し、選択した検出部6aの検出結果を用いる。 The image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1a corresponding to the peak position X2a as the detection result corresponding to the peak position X2a in the center graph of FIG. For example, the peak positions X2a, X2b, and X2c are obtained in advance by numerical simulation or the like, and are stored in the storage unit in advance. The image processing unit 7 selects the detection unit 6a arranged closest to the peak position X2a among the plurality of detection units 6a based on the stored information on the peak position, and displays the detection result of the selected detection unit 6a. To use.
 画像処理部7は、干渉縞L2の強度分布において1つのピークを含む部分的な分布Q2aに関する検出結果として、位置X1aに配置される1つの検出部6aの検出結果のみを用いてもよいし、位置X1aに配置される検出部6aおよびこの検出部6aの周囲の少なくとも1つの検出部6aの検出結果を用いてもよい。 The image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1a as the detection result regarding the partial distribution Q2a including one peak in the intensity distribution of the interference fringe L2. The detection result of the detection unit 6a arranged at the position X1a and at least one detection unit 6a around the detection unit 6a may be used.
 また、画像処理部7は、例えば、図5(B)の左側のグラフにおけるピーク位置X2bに対応する検出結果として、ピーク位置X2bと対応する位置X1dに配置される検出部6aの検出結果を用いる。画像処理部7は、検出光学系5の倍率および干渉縞L2の周期に基づいて、干渉縞L2の強度分布において1つのピークを含む部分的な分布Q2bと位置が整合する検出部6aを複数の検出部6aから選択する。例えば、画像処理部7は、記憶されたピーク位置の情報に基づいて、複数の検出部6aのうちピーク位置X2bの最も近くに配置される検出部6a(例、位置X1dに配置される検出部6a)を選択する。画像処理部7は、分布Q2bに関する検出結果として、選択した検出部6aの検出結果を用いる。 The image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1d corresponding to the peak position X2b as the detection result corresponding to the peak position X2b in the graph on the left side of FIG. 5B. .. Based on the magnification of the detection optical system 5 and the cycle of the interference fringes L2, the image processing unit 7 includes a plurality of detectors 6a whose positions match the partial distribution Q2b including one peak in the intensity distribution of the interference fringes L2. Select from the detection unit 6a. For example, the image processing unit 7 may detect the detection unit 6a arranged closest to the peak position X2b (for example, the detection unit arranged at the position X1d) among the plurality of detection units 6a based on the stored information about the peak position. 6a) is selected. The image processing unit 7 uses the detection result of the selected detection unit 6a as the detection result regarding the distribution Q2b.
 画像処理部7は、干渉縞L2の強度分布において1つのピークを含む部分的な分布Q2bに関する検出結果として、位置X1dに配置される1つの検出部6aの検出結果のみを用いてもよいし、位置X1dに配置される検出部6aおよびこの検出部6aの周囲の少なくとも1つの検出部6aの検出結果を用いてもよい。分布Q1dに対応する実効PSF(PSFeff)は、分布Q2bのピーク位置X2bと検出部6aとの位置X1dとが整合することで、実効PSFの形状の崩れが低減される。 The image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1d as the detection result regarding the partial distribution Q2b including one peak in the intensity distribution of the interference fringe L2. The detection results of the detection unit 6a arranged at the position X1d and at least one detection unit 6a around the detection unit 6a may be used. In the effective PSF (PSF eff ) corresponding to the distribution Q1d, the collapse of the shape of the effective PSF is reduced by matching the peak position X2b of the distribution Q2b with the position X1d of the detection unit 6a.
 また、画像処理部7は、例えば、図5(B)の右側のグラフにおけるピーク位置X2cに対応する検出結果として、ピーク位置X2cと対応する位置X1eに配置される検出部6aの検出結果を用いる。画像処理部7は、検出光学系5の倍率および干渉縞L2の周期に基づいて、干渉縞L2の強度分布において1つのピークを含む部分的な分布Q2cと位置が整合する検出部6aを複数の検出部6aから選択する。例えば、画像処理部7は、記憶されたピーク位置の情報に基づいて、複数の検出部6aのうちピーク位置X2cの最も近くに配置される検出部6a(例、位置X1eに配置される検出部6a)を選択する。画像処理部7は、分布Q2cに関する検出結果として、選択した検出部6aの検出結果を用いる。 Further, the image processing unit 7 uses, for example, the detection result of the detection unit 6a arranged at the position X1e corresponding to the peak position X2c as the detection result corresponding to the peak position X2c in the graph on the right side of FIG. 5B. .. Based on the magnification of the detection optical system 5 and the period of the interference fringes L2, the image processing unit 7 includes a plurality of detectors 6a whose positions match the partial distribution Q2c including one peak in the intensity distribution of the interference fringes L2. Select from the detection unit 6a. For example, the image processing unit 7 may detect the detection unit 6a (eg, the detection unit arranged at the position X1e) closest to the peak position X2c among the plurality of detection units 6a based on the stored peak position information. 6a) is selected. The image processing unit 7 uses the detection result of the selected detection unit 6a as the detection result regarding the distribution Q2c.
 画像処理部7は、干渉縞L2の強度分布において1つのピークを含む部分的な分布Q2cに関する検出結果として、位置X1eに配置される1つの検出部6aの検出結果のみを用いてもよいし、位置X1eに配置される検出部6aおよびこの検出部6aの周囲の少なくとも1つの検出部6aの検出結果を用いてもよい。分布Q1e(PSFeff)は、分布Q2cのピーク位置X2cと検出部6aとの位置X1eとが整合することで、実効PSFの形状の崩れが低減される。 The image processing unit 7 may use only the detection result of the one detection unit 6a arranged at the position X1e as the detection result regarding the partial distribution Q2c including one peak in the intensity distribution of the interference fringe L2, You may use the detection result of the detection part 6a arrange|positioned at the position X1e, and at least one detection part 6a around this detection part 6a. In the distribution Q1e(PSF eff ), the peak position X2c of the distribution Q2c and the position X1e of the detection unit 6a are matched with each other, whereby the collapse of the shape of the effective PSF is reduced.
 画像処理部7は、上述のように選択した検出部6aの検出結果について、検出部ごとの画像の位置ずれ(実効PSFeffのピーク位置、もしくはメインローブの位置ずれ)を補正する。検出部ごとの画像の位置ずれは、各種設計値を用いた理論計算、あるいは蛍光ビーズなどの小物体を検出装置6によって撮影した撮像画像から取得可能である。このような位置ずれの補正を行うと、選択された検出部6aのそれぞれで得られる画像の実効PSFをほぼ同一にすることができる。このようにして得られた画像のPSFeffは、近似的に検出装置6の中心位置の検出部(光軸上に位置する検出部)のPSFeffと同等と見なせる。検出装置6の中心位置(r=(0,0))の検出部のPSFeffは、式(5)を参照して、下記の式(6)で表される。 The image processing unit 7 corrects the image position deviation (effective PSF eff peak position or main lobe position deviation) for each detection unit with respect to the detection result of the detection unit 6a selected as described above. The positional deviation of the image for each detection unit can be acquired by theoretical calculation using various design values or from a captured image obtained by photographing a small object such as fluorescent beads with the detection device 6. By correcting such misalignment, the effective PSF of the images obtained by each of the selected detection units 6a can be made substantially the same. The PSF eff of the image obtained in this way can be approximately regarded as equivalent to the PSF eff of the detection unit (detection unit located on the optical axis) at the center position of the detection device 6. The PSF eff of the detection unit at the central position (r=(0,0)) of the detection device 6 is represented by the following equation (6) with reference to the equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 干渉縞L2の周期方向、つまりk方向に着目すると、式(6)より干渉縞L2の周期が小さいほどPSFeffの半値全幅は狭く、分解能が良くなることが分かる。つまり実施形態における干渉縞L2の周期方向に含まれる縞の数(明部)が多いほどPSFeffの半値全幅は狭くなり、分解能が良い。分解能の観点から、干渉縞L2の周期方向に含まれる縞の数(明部)は、例えば、3以上が望ましい。 Focusing on the period direction of the interference fringes L2, that is, the k 0 direction, it can be seen from Equation (6) that the smaller the period of the interference fringes L2, the narrower the full width at half maximum of PSF eff and the better the resolution. That is, as the number of fringes (bright part) included in the periodic direction of the interference fringe L2 in the embodiment is larger, the full width at half maximum of PSF eff is narrower and the resolution is better. From the viewpoint of resolution, the number of fringes (bright areas) included in the periodic direction of the interference fringes L2 is preferably 3 or more, for example.
 画像処理部7は、PSFeffがほぼ同一となった画像を足し合わせることで、画像を生成する。画像処理部7は、足し合わされる画像のPSFeffがほぼ同一になっていることで、分解能およびS/N比が良好な画像ISR(r)を生成可能である。なお、画像ISR(r)の生成に用いる検出部6aの範囲を広くすると、信号量を増加することができる。また、画像ISR(r)の生成に用いる検出部6aの範囲を狭くすると、セクショニング能力を高くすることができる。 The image processing unit 7 generates an image by adding the images having the same PSF eff . The image processing unit 7 can generate the image I SR (r s ) having good resolution and S/N ratio because the PSF eff of the images to be added are almost the same. Incidentally, when a wide range of the detection unit 6a for use in the generation of the image I SR (r s), it is possible to increase the signal amount. Moreover, when narrowing the range of the detection unit 6a for use in the generation of the image I SR (r s), it is possible to increase the sectioning capabilities.
 上記の式(6)をフーリエ変換することで、実効OTFを求めることができる。通常の蛍光顕微鏡での遮断周波数であるkcut convは、kcut conv=2NA/λで与えられる。実施形態に係る顕微鏡は、干渉縞L2の方向にOTFが拡大し、2kcut convまでの遮断周波数を持つ。ここでは簡単のため、n光子励起の場合について、蛍光波長をλ、励起波長をn×λであるとした。実施形態に係るOTFは、通常の蛍光顕微鏡のOTFと、通常の蛍光顕微鏡のOTFが干渉縞L2の周期方向にシフトした成分とが合わさったものになる。 The effective OTF can be obtained by Fourier-transforming the above equation (6). The cut- off frequency k cut conv in an ordinary fluorescence microscope is given by k cut conv =2NA/λ. The microscope according to the embodiment has a cutoff frequency of up to 2k cut conv with the OTF magnified in the direction of the interference fringes L2. Here, for the sake of simplicity, it is assumed that the fluorescence wavelength is λ and the excitation wavelength is n × λ in the case of n photon excitation. The OTF according to the embodiment is a combination of the OTF of the ordinary fluorescence microscope and the component of the OTF of the ordinary fluorescence microscope shifted in the periodic direction of the interference fringes L2.
 上記の式(6)で説明したように、実施形態に係る顕微鏡1は、干渉縞L2の周期方向(図1ではX方向)の分解能が向上する。顕微鏡1は、干渉縞L2の周期方向を変更して試料Sからの蛍光を検出することで、2次元的に分解能を向上させることも可能である。ここで、干渉縞L2の周期方向を90°変更する例を説明する。干渉縞L2の周期方向を90°変更するには、図2の状態のマスク15及び偏光子14をZa方向の周りで90°回転させる。 As described in the above equation (6), the microscope 1 according to the embodiment improves the resolution of the interference fringes L2 in the periodic direction (X direction in FIG. 1). The microscope 1 can also improve the resolution two-dimensionally by detecting the fluorescence from the sample S by changing the periodic direction of the interference fringes L2. Here, an example in which the cycle direction of the interference fringe L2 is changed by 90° will be described. To change the period direction of the interference fringe L2 by 90°, the mask 15 and the polarizer 14 in the state of FIG. 2 are rotated by 90° around the Za direction.
 干渉縞L2の周期方向がX方向である場合の超解像画像をISRx(r)とし、干渉縞L2の周期方向がY方向である場合の超解像画像をISRy(r)とする。画像処理部7は、ISRx(r)とISRy(r)とを足し合わせることで、2次元的に分解能が向上した超解像画像を生成してもよい。また、画像処理部7は、下記の処理によって超解像画像を生成してもよい。 The super-resolution image when the periodic direction of the interference fringes L2 is the X direction and I SRx (r s), the super-resolution image when the periodic direction of the interference fringes L2 is the Y direction I SRy (r s) And The image processing unit 7, by summing the I SRx (r s) and I SRy (r s), may generate a super-resolution image two-dimensionally resolution is improved. The image processing unit 7 may also generate a super-resolution image by the following processing.
 画像処理部7は、超解像画像ISRx(r)および超解像画像ISRy(r)をそれぞれフーリエ変換する。ここで、フーリエ変換された超解像画像ISRx(r)をI SRx(k)で表わす。明細書中の「」は数式中のチルダーである。また、フーリエ変換された超解像画像ISRy(r)をI SRy(k)で表す。I SRx(k)は、通常の蛍光顕微鏡に比べて、干渉縞の周期方向(X方向)に関して遮断周波数が増加する。また、I SRy(k)は、通常の蛍光顕微鏡に比べて、干渉縞の周期方向(Y方向)に関して遮断周波数が増加する。画像処理部7は、I~SRx(k)とI~SRy(k)とを足し合わせる。これにより、2方向(X方向およびY方向)において、遮断周波数が増加する。 The image processing section 7 performs Fourier transform super-resolution image I SRx (r s) and a super-resolution image I SRy the (r s), respectively. Here, the Fourier-transformed super-resolution image I SRx (r s ) is represented by I to SRx (k s ). " ~ " In the specification is a tilder in the mathematical formula. In addition, the Fourier-transformed super-resolution image I SRy (r s ) is represented by I 1 to SRy (k s ). I ~ SRx (k s), as compared to conventional fluorescence microscope, the cutoff frequency is increased with respect to the periodic direction of the interference fringes (X direction). Also, I ~ SRy (k s), as compared to conventional fluorescence microscope, the cutoff frequency is increased with respect to the periodic direction of the interference fringes (Y-direction). The image processing section 7 adds up the I ~ SRx (k s) and I ~ SRy (k s). This increases the cutoff frequency in the two directions (X direction and Y direction).
 なお、足し合わされた実効OTFの形状は、干渉縞L2の周期方向を変更する方向の組み合わせによって、いびつである場合がある。この場合、画像処理部7は、実効OTFの形状を補正する周波数フィルターをかけてもよい。これにより、ISRx(r)とISRy(r)とを足し合わせる場合よりも効果的に分解能を向上させることができる。また、図3で説明したように、照明光学系4は、干渉縞L2の周期方向を0°、120°、240°の3通りに変更し、検出装置6は、3通りの周期方向のそれぞれについて蛍光L3を検出してもよい。画像処理部7は、3通りの周期方向について検出装置6が検出した3つの検出結果(例、3枚の画像)を用いて、超解像画像を生成してもよい。また、照明光学系4は、干渉縞L2の周期方向を4通り以上変更し、検出装置6は、4通り以上の周期方向のそれぞれについて蛍光L3を検出して、画像処理部7は、4通り以上の周期方向について検出装置6が検出した4以上の検出結果を用いて、超解像画像を生成してもよい。ここで説明した、干渉縞の周期方向を複数回変更して取得した複数の検出結果を用いて超解像画像を生成する方法は、以降の実施形態においても利用することが出来る。 The added effective OTF shape may be distorted depending on the combination of the directions that change the periodic direction of the interference fringes L2. In this case, the image processing unit 7 may apply a frequency filter for correcting the shape of the effective OTF. Thus, it is possible to improve the effective resolution than when summing the I SRx (r s) and I SRy (r s). Further, as described with reference to FIG. 3, the illumination optical system 4 changes the periodic direction of the interference fringe L2 into three types of 0°, 120°, and 240°, and the detection device 6 has three periodic directions. May detect the fluorescence L3. The image processing unit 7 may generate a super-resolution image by using three detection results (for example, three images) detected by the detection device 6 in three different cycle directions. Further, the illumination optical system 4 changes the periodic direction of the interference fringe L2 in four or more ways, the detection device 6 detects the fluorescence L3 in each of the four or more periodic directions, and the image processing unit 7 has four ways. A super-resolution image may be generated by using four or more detection results detected by the detection device 6 in the above periodic directions. The method of generating a super-resolution image using a plurality of detection results obtained by changing the cycle direction of the interference fringes a plurality of times described above can also be used in the following embodiments.
 次に、上述の顕微鏡1の構成に基づき、実施形態に係る観察方法について説明する。図6は、実施形態に係る観察方法を示すフローチャートである。顕微鏡1の各部については、適宜、図1あるいは図4を参照する。ステップS1において、顕微鏡1の制御部8は、走査ミラー(偏向ミラー18a,18b)の角度を設定する。図1の照明光学系4は、ステップS1で設定された走査ミラーの角度によって定まる試料上の位置に、励起光を干渉縞として照射する。ステップS2において、試料の蛍光物質は、励起光の干渉縞で励起される。ステップS3において、図4の検出装置6は、試料Sからの蛍光L3を、検出光学系5を介して検出する。 Next, the observation method according to the embodiment will be described based on the configuration of the microscope 1 described above. FIG. 6 is a flowchart showing the observation method according to the embodiment. For each part of the microscope 1, refer to FIG. 1 or FIG. 4 as appropriate. In step S1, the control unit 8 of the microscope 1 sets the angles of the scanning mirrors (deflection mirrors 18a and 18b). The illumination optical system 4 of FIG. 1 irradiates the position on the sample determined by the angle of the scanning mirror set in step S1 with the excitation light as interference fringes. In step S2, the fluorescent substance of the sample is excited by the interference fringes of the excitation light. In step S3, the detection device 6 of FIG. 4 detects the fluorescence L3 from the sample S via the detection optical system 5.
 ステップS4において、制御部8は、走査ミラーの角度変更を実行するか否かを判定する。制御部8は、予定された観察領域の一部についてステップS1からステップS3の処理が終了していないと判定した場合に、ステップS4において走査ミラーの角度変更を実行すると判定する(ステップS4;Yes)。制御部8は、走査ミラーの角度変更を実行すると判定した場合(ステップS4;Yes)、ステップS1の処理に戻り、制御部8は、走査ミラーの角度を予定された次の角度に設定する。そして、ステップS2からステップS4の処理が繰り返される。このようにして、照明光学系4は、試料Sを励起光L1の干渉縞で2次元的に走査する。 In step S4, the control unit 8 determines whether or not to change the angle of the scanning mirror. When it is determined that the processing of steps S1 to S3 has not been completed for a part of the scheduled observation region, the control unit 8 determines to execute the angle change of the scanning mirror in step S4 (step S4; Yes). ). When the control unit 8 determines to change the angle of the scanning mirror (step S4; Yes), the process returns to step S1 and the control unit 8 sets the angle of the scanning mirror to the next scheduled angle. Then, the processes of steps S2 to S4 are repeated. In this way, the illumination optical system 4 scans the sample S two-dimensionally with the interference fringes of the excitation light L1.
 制御部8は、ステップS4において、予定された観察領域の全てについてステップS1からステップS3の処理が終了したと判定した場合に、走査ミラーの角度変更を実行しないと判定する(ステップS4;No)。走査ミラーの角度変更を実行しないと制御部8が判定した場合(ステップS4;No)、ステップS5において、画像処理部7は、検出部ごとの画像の位置ずれを補正する。画像処理部7は、複数の検出部の少なくとも1つの検出部から得られるデータを、その検出部の位置に基づいて補正する。例えば、画像処理部7は、複数の検出部から選択される検出部から得られるデータを、当該検出部の位置に基づいて補正する。例えば、画像処理部7は、複数の検出部のうちの第1の検出部(例、図5(B)において位置X1dに配置される検出部)から得られるデータを、第1の検出部の位置(例、X1d)に基づいて補正する。また、画像処理部7は、2以上の検出部の検出結果を用いて画像を生成する。例えば、ステップS6において、画像処理部7は、ステップS5の補正後の画像を足し合わせることで、画像(例、超解像画像)を生成する。 When it is determined in step S4 that the processing of steps S1 to S3 has been completed for all of the scheduled observation regions, the control unit 8 determines not to change the angle of the scanning mirror (step S4; No). .. When the control unit 8 determines not to change the angle of the scanning mirror (step S4; No), the image processing unit 7 corrects the positional deviation of the image for each detection unit in step S5. The image processing unit 7 corrects the data obtained from at least one detection unit of the plurality of detection units based on the position of the detection unit. For example, the image processing unit 7 corrects the data obtained from the detection unit selected from the plurality of detection units based on the position of the detection unit. For example, the image processing unit 7 uses the data obtained from the first detection unit (for example, the detection unit arranged at the position X1d in FIG. 5B) of the plurality of detection units as the first detection unit. Correction is performed based on the position (eg, X1d). The image processing unit 7 also generates an image using the detection results of two or more detection units. For example, in step S6, the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images corrected in step S5.
 なお、検出装置6の複数の検出部6aの位置は、干渉縞L2のピーク(もしくは極大、明点)位置と整合するように、干渉縞L2の周期に基づいて設定されてもよい。検出装置6は、検出部6aの間隔と干渉縞L2の縞間隔とが整合するように、予め設定されてもよい。上記の検出部6aの間隔は、1つの検出部6aの中心と、その隣の検出部6aの中心との間隔である。また、上記の干渉縞L2の縞間隔は、干渉縞L2において、1つの明部の中心線と、その隣の明部の中心線との間隔である。ここで、干渉縞L2の波数をkとすると、干渉縞L2の縞間隔は1/kとなる。干渉縞の縞間隔が1/kである場合、検出装置6の検出部6aの間隔は、下記の式(7)に示すPと概ね同じになるように設定される。 The positions of the plurality of detection units 6a of the detection device 6 may be set based on the cycle of the interference fringe L2 so as to match the peak (or maximum or bright point) position of the interference fringe L2. The detection device 6 may be preset so that the spacing between the detection units 6a and the fringe spacing of the interference fringes L2 match. The distance between the detection units 6a is the distance between the center of one detection unit 6a and the center of the detection unit 6a adjacent to the center. The fringe spacing of the interference fringe L2 is the spacing between the centerline of one bright portion and the centerline of the adjacent bright portion in the interference fringe L2. Here, assuming that the wave number of the interference fringe L2 is k 0 , the fringe interval of the interference fringe L2 is 1 / k 0 . When the fringe spacing of the interference fringes is 1/k 0 , the spacing of the detection unit 6a of the detection device 6 is set to be substantially the same as P shown in the following formula (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記の式(7)において、対物レンズ21を含む検出光学系5の倍率は1倍とした。検出光学系5の倍率がMdetである場合は、倍率分だけ検出器6aの間隔を変え、検出器6aの間隔をMdet/kとすればよい。もしくは、検出光学系5の一部をズームレンズにすることで検出器6aの間隔を干渉縞L2の周期に整合させることが出来る。この場合、検出光学系5の倍率のみを変更可能なレンズ24をズームレンズとすることが望ましい。また、干渉縞L2の周期は、検出装置6の複数の検出器6aの間隔と整合するように、調整されてもよい。例えば、マスク15の開口部15a、15bの間隔を変更することで干渉縞L2の周期を変更することができる。 In the above formula (7), the magnification of the detection optical system 5 including the objective lens 21 is set to 1. If the magnification of the detection optical system 5 is M det is changing the spacing between the detectors 6a by a factor fraction, the spacing of the detectors 6a may be set to M det / k 0. Alternatively, by using a part of the detection optical system 5 as a zoom lens, the distance between the detectors 6a can be matched with the period of the interference fringes L2. In this case, it is desirable that the lens 24 capable of changing only the magnification of the detection optical system 5 is a zoom lens. Further, the period of the interference fringes L2 may be adjusted so as to match the intervals of the plurality of detectors 6a of the detection device 6. For example, the period of the interference fringes L2 can be changed by changing the intervals between the openings 15a and 15b of the mask 15.
 第1実施形態によれば、検出部6aの間隔と干渉縞L2の縞間隔とが整合するように設定することで、検出部6aごとに得られる画像の実効PSFを揃える。そのため、画像処理部7により、2以上の検出部での検出結果に基づく画像を足し合わせることで、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。多光子励起の場合、励起光L1の波長帯を赤外光の波長帯まで長くすることができるため、試料Sに対する励起光L1の透過性が高くなる。また、検出対象となる蛍光L3が対物レンズ21の焦点面近傍のみにおいて発生することから、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the first embodiment, the effective PSFs of the images obtained for each detection unit 6a are aligned by setting the intervals of the detection units 6a and the fringe intervals of the interference fringes L2 to match. Therefore, the image processing unit 7 generates images with high resolution (eg, super-resolution images) while ensuring S/N by adding images based on the detection results of two or more detection units. You can Further, the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. In the case of multiphoton excitation, the wavelength band of the excitation light L1 can be extended to the wavelength band of the infrared light, so that the transmittance of the excitation light L1 to the sample S becomes high. Further, since the fluorescence L3 to be detected is generated only in the vicinity of the focal plane of the objective lens 21, it is possible to accurately obtain image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S. it can.
 なお、本実施形態において、顕微鏡1は、試料面Saと平行な2方向に干渉縞L2を走査することで、干渉縞L2を2次元的に走査する。実施形態に係る顕微鏡1は、試料面Saと平行な2方向、及び試料面Saに垂直な1方向に干渉縞L2を走査することで、干渉縞L2を三次元的に走査してもよい。干渉縞L2を三次元的に走査する場合、試料面Saと平行な2方向に干渉縞L2を走査する処理(以下、2次元処理という)については、上述の実施形態で説明した処理と同様である。顕微鏡1は、2次元処理をZ方向の位置を変更して繰り返すことにより、例えば、三次元的な超解像画像を生成可能である。後述の実施形態について同様に、顕微鏡1は、干渉縞L2を三次元的に走査してもよい。 In the present embodiment, the microscope 1 scans the interference fringes L2 two-dimensionally by scanning the interference fringes L2 in two directions parallel to the sample surface Sa. The microscope 1 according to the embodiment may scan the interference fringes L2 three-dimensionally by scanning the interference fringes L2 in two directions parallel to the sample surface Sa and one direction perpendicular to the sample surface Sa. When the interference fringes L2 are three-dimensionally scanned, the process of scanning the interference fringes L2 in two directions parallel to the sample surface Sa (hereinafter referred to as the two-dimensional process) is the same as the process described in the above embodiment. is there. The microscope 1 can generate, for example, a three-dimensional super-resolution image by changing the position in the Z direction and repeating the two-dimensional processing. Similarly for the embodiments described later, the microscope 1 may scan the interference fringes L2 three-dimensionally.
[第2実施形態]
 第2実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。本実施形態において、画像処理部7(図4参照)は、周波数空間上のデータに対してフィルタリングを行って、画像を生成する。画像処理部7は、検出装置6から得られるデータに対してデコンボリューションを実行して、画像を生成する。画像処理部7は、上記のフィルタリングとして、検出装置6の検出部6aごとにデコンボリューションおよびアポダイゼーションを行って、画像を生成する。すなわち、画像処理部7は、周波数空間上のデータに対して、デコンボリューションを含むフィルタリングを行う。以下の説明において、適宜、デコンボリューションとアポダイゼーションの一連の処理を合わせて(総称して)、デコンボリューションと称することがある。
[Second Embodiment]
The second embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. In the present embodiment, the image processing unit 7 (see FIG. 4) filters the data in the frequency space to generate an image. The image processing unit 7 performs deconvolution on the data obtained from the detection device 6 to generate an image. The image processing unit 7 performs deconvolution and apodization for each detection unit 6a of the detection device 6 as the above-described filtering to generate an image. That is, the image processing unit 7 performs filtering including deconvolution on the data in the frequency space. In the following description, a series of processes of deconvolution and apodization may be collectively (generally) referred to as deconvolution.
 図7は、第2実施形態に係る顕微鏡の画像処理部の処理を示す図である。顕微鏡の各部については、適宜、図1あるいは図4を参照する。図7(A)は、デコンボリューション前のPSFであり、図5(A)と同様である。図7(A)において、検出装置6(図4参照)の検出部6aの間隔が干渉縞L2の間隔に合っていない。この場合、上記の式(5)で説明したように、検出部6aごとに得られる画像の実効PSF(実線)は検出器6aの位置によっては形状が崩れる。検出器6aごとの実効PSFは、設計値から理論計算すること、あるいは蛍光ビーズのような小物体を撮影することにより取得可能(推定可能)である。画像処理部7は、このようにして取得した実効PSFを用いて、検出部6aごとに得られる画像の実効PSFの形状の崩れ、および位置ずれを補正するようにデコンボリューションを実行する。 FIG. 7 is a diagram showing processing of the image processing unit of the microscope according to the second embodiment. For each part of the microscope, refer to FIG. 1 or FIG. 4 as appropriate. FIG. 7 (A) is the PSF before deconvolution, which is the same as FIG. 5 (A). In FIG. 7A, the distance between the detection units 6a of the detection device 6 (see FIG. 4) does not match the distance between the interference fringes L2. In this case, the shape of the effective PSF (solid line) of the image obtained for each detection unit 6a is deformed depending on the position of the detector 6a, as described in the above equation (5). The effective PSF for each detector 6a can be obtained (estimated) by theoretical calculation from the design value or by photographing a small object such as fluorescent beads. The image processing unit 7 uses the thus obtained effective PSF to perform deconvolution so as to correct the shape collapse and the positional deviation of the effective PSF of the image obtained for each detection unit 6a.
 図7(B)はデコンボリューション後のPSFである。図7(B)の中央のグラフにおいて、符号Q4aは、図7(A)の中央のグラフに示す分布Q1aすなわち位置X1aに配置された検出部6aの実効PSFを、デコンボリューションして得られる実効PSFに対応する。ここでは、検出部6aの位置X1aと、分布Q2aのピーク位置X2aとのずれ量が所定値よりも小さく、デコンボリューション後の実効PSFに対応する分布Q4aは、デコンボリューション前の実効PSFに対応する分布Q1aとほぼ同じである。 Figure 7 (B) shows the PSF after deconvolution. In the graph in the center of FIG. 7B, reference sign Q4a is an effect obtained by deconvoluting the effective PSF of the detection unit 6a arranged at the distribution Q1a shown in the graph in the center of FIG. 7A, that is, the position X1a. Corresponds to PSF. Here, the amount of deviation between the position X1a of the detection unit 6a and the peak position X2a of the distribution Q2a is smaller than a predetermined value, and the distribution Q4a corresponding to the effective PSF after deconvolution corresponds to the effective PSF before deconvolution. It is almost the same as the distribution Q1a.
 また、図7(B)の左側のグラフにおいて、符号Q4bは、図7(A)の左側のグラフに示す分布Q1bすなわち位置X1bに配置された検出部6aの実効PSFを、デコンボリューションして得られる実効PSFに対応する。図7(B)の右側のグラフにおいて、符号Q4cは、図7(A)の右側のグラフに示す分布Q1cすなわち位置X1cに配置された検出部6aの実効PSFを、デコンボリューションして得られる実効PSFに対応する。このような一連の処理(デコンボリューション)によって、図7(B)の3つのグラフに示すように、検出器6aごとの実効PSFがほぼ同一となる。画像処理部7は、デコンボリューションの結果を用いて、画像を生成する。以下、画像処理部7の処理について、より詳しく説明する。 Further, in the graph on the left side of FIG. 7B, reference sign Q4b is obtained by deconvoluting the distribution Q1b shown in the graph on the left side of FIG. 7A, that is, the effective PSF of the detection unit 6a arranged at the position X1b. Corresponds to the effective PSF that is In the graph on the right side of FIG. 7(B), reference sign Q4c indicates the distribution Q1c shown in the graph on the right side of FIG. 7(A), that is, the effective PSF of the detection unit 6a arranged at the position X1c is obtained by deconvolution. Corresponds to PSF. By such a series of processes (deconvolution), the effective PSFs of the detectors 6a become substantially the same, as shown in the three graphs of FIG. 7B. The image processing unit 7 uses the result of deconvolution to generate an image. Hereinafter, the processing of the image processing unit 7 will be described in more detail.
 画像処理部7は、複数の検出部6aの少なくとも一部の検出結果を周波数空間上のデータへ変換し、その変換結果を用いて画像(例、超解像画像)を生成する。以下の説明において、複数の検出部6aの少なくとも一部の検出結果を周波数空間で表したデータを、適宜、周波数空間の成分という。画像処理部7は、複数の検出部6aの少なくとも一部の検出結果をフーリエ変換し、フーリエ変換により得られる周波数空間の成分を用いて画像を生成する。上記の式(5)をrについてフーリエ変換すると、下記の式(8)が得られる。 The image processing unit 7 converts at least a part of the detection results of the plurality of detection units 6a into data on the frequency space, and uses the conversion results to generate an image (eg, a super-resolution image). In the following description, data representing at least a part of the detection results of the plurality of detection units 6a in the frequency space is appropriately referred to as a component of the frequency space. The image processing unit 7 Fourier transforms at least a part of the detection results of the plurality of detection units 6a, and generates an image using the components of the frequency space obtained by the Fourier transform. When the above equation (5) to Fourier transform for r s, the following equation (8) is obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)の左辺のI(r,k)は、I(r,r)をrについてフーリエ変換したものである。右辺のOTFeff(r,k)は、PSFeff(r,r)をrについてフーリエ変換したものであり、検出装置6の検出部6aごとの実効OTFを表す。また、右辺のObj(k)はObj(r)をrについてフーリエ変換したものである。 I 1 to (r, k s ) on the left side of the equation (8) is the Fourier transform of I (r, r s ) with respect to r s . Right side of the OTF eff (r, k s) is, PSF eff (r, r s ) the is obtained by Fourier transform for r s, represents the effective OTF of each detector 6a of the detector 6. In addition, the right-hand side of Obj ~ (k s) are those Obj a (r s) obtained by Fourier transform on r s.
 デコンボリューションには、ウィーナーフィルタやリチャードソン・ルーシー法など様々な方法が存在する。ここでは一例としてウィーナーフィルタを用いた処理を説明するが、画像処理部7は、その他の処理によってデコンボリューションを実行してもよい。ウィーナーフィルタによる、各検出部のデコンボリューションは、下記の式(9)で表される。 There are various deconvolution methods such as the Wiener filter and Richardson-Lucy method. Here, the process using the Wiener filter will be described as an example, but the image processing unit 7 may execute deconvolution by other processes. The deconvolution of each detection unit by the Wiener filter is represented by the following formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)において、Obj(r,k)は検出装置6の検出部6aごとに推定した蛍光物質の分布(以下、推定蛍光物質分布という)である。wはノイズを抑制するためのウィーナーパラメータである。この処理により、検出装置6の2以上の検出部6aにおいて、推定蛍光物質分布Obj(r,k)がほぼ共通になる。すなわち、上記の処理により検出器6aごとの実効PSFの形状の崩れがおよび位置ずれが補正され、検出器6aごとの実効PSFがほぼ同一となる。画像処理部7は、下記の式(10)に示す処理によって、Obj(r,k)にアポダイゼーションを行い、検出装置6の検出部6aにおけるスペクトルを足し合わせ、超解像画像ISR(r)を生成する。 In Expression (9), Obj to (r, k s ) are distributions of the fluorescent substance estimated for each detection unit 6a of the detection device 6 (hereinafter, referred to as estimated fluorescent substance distributions). w is a Wiener parameter for suppressing noise. By this processing, the estimated fluorescent substance distributions Obj 1 to (r, k s ) are substantially the same in the two or more detection units 6a of the detection device 6. That is, the above processing corrects the shape collapse and the positional deviation of the effective PSF for each detector 6a, and the effective PSF for each detector 6a becomes substantially the same. The image processing unit 7, the process shown in the following equation (10), the apodization Obj ~ (r, k s), adding the spectrum in the detection section 6a of the detection device 6, the super-resolution image I SR ( to generate a r s).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)において、A(k)は画像の負値を抑制するためのアポダイゼーション関数であり、Obj(r,k)にA(k)を掛けることをアポダイゼーションと呼ぶ。A(k)の関数形は理論計算もしくはシミュレーション等により画像の負値を抑制するよう設計する。また、Fks -1は、kに関する逆フーリエ変換である。画像処理部7は、検出部6aごとのスペクトルを足し合わせた後に逆フーリエ変換を行うが、逆フーリエ変換を行ってから画像を足し合わせてもよい。画像処理部7は、式(9)および式(10)の処理において、検出部6aごとに独立してデコンボリューションした後に、検出部6aごとに画像を足し合わせる。画像処理部7は、下記の式(11)のように、2以上の検出部6aをまとめて、デコンボリューションしてもよい。 In Expression (10), A(k s ) is an apodization function for suppressing the negative value of the image, and multiplying Obj ˜ (r, k s ) by A(k s ) is called apodization. The functional form of A(k s ) is designed to suppress the negative value of the image by theoretical calculation or simulation. Further, F ks -1 is the inverse Fourier transform relates k s. The image processing unit 7 performs the inverse Fourier transform after adding the spectra of the detection units 6a, but may add the images after performing the inverse Fourier transform. In the processing of Expressions (9) and (10), the image processing unit 7 independently deconvolves each detection unit 6a and then adds the images to each detection unit 6a. The image processing section 7 may collectively deconvolute two or more detection sections 6a as in the following Expression (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 図8は、第2実施形態に係る観察方法を示すフローチャートである。ステップS11からステップS14の処理は、図6のステップS1からステップS4の処理と同様であるので、その説明を省略する。ステップS15において、画像処理部7は、各検出部の検出結果をフーリエ変換する。ステップS16において、画像処理部7は、デコンボリューションを実行する。ステップS17において、画像処理部7は、アポダイゼーションを実行する。アポダイゼーションは、デコンボリューションの一部の処理でもよい。画像処理部7は、ステップS18において、デコンボリューションの結果を用いて検出部6aごとの画像を足し合わせる。画像処理部7は、ステップS19において、ステップS18で得られた第1の画像(例、フーリエ画像)を逆フーリエ変換することで、第2の画像(例、超解像画像)を生成する。 FIG. 8 is a flowchart showing an observation method according to the second embodiment. The processing from step S11 to step S14 is the same as the processing from step S1 to step S4 in FIG. 6, and therefore description thereof will be omitted. In step S15, the image processing unit 7 Fourier transforms the detection result of each detection unit. In step S16, the image processing unit 7 executes deconvolution. In step S17, the image processing unit 7 executes apodization. Apodization may be part of the deconvolution process. In step S18, the image processing unit 7 adds the images of the detection units 6a using the result of the deconvolution. In step S19, the image processing unit 7 performs an inverse Fourier transform on the first image (eg, Fourier image) obtained in step S18 to generate a second image (eg, super-resolution image).
 第2実施形態によれば、画像処理部7により、各検出部の検出結果をフーリエ変換して、デコンボリューションを実行することで、検出部6aごとに得られる画像の実効PSFを揃える。そのため、画像処理部7により、デコンボリューションの結果を用いて検出部6aごとの画像を足し合わせることで、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the second embodiment, the image processing unit 7 performs Fourier transform on the detection result of each detection unit and executes deconvolution, thereby aligning the effective PSFs of the images obtained for each detection unit 6a. Therefore, the image processing unit 7 adds the images of the respective detection units 6a using the result of the deconvolution to generate an image with high resolution (eg, super-resolution image) while ensuring S/N. be able to. Further, the fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first embodiment, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
 なお、画像処理部7は、第1実施形態で説明したように、足し合わせる検出部6aの範囲を変化させてもよい。また、画像処理部7は、第1実施形態で説明したように、1次元的にまたは2次元的に分解能を向上させてもよい。 Note that the image processing unit 7 may change the range of the detection unit 6a to be added, as described in the first embodiment. Further, the image processing unit 7 may improve the resolution one-dimensionally or two-dimensionally as described in the first embodiment.
[第3実施形態]
 第3実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図9は、第3実施形態に係る顕微鏡の画像処理部の処理を示す図である。顕微鏡の各部については、適宜、図1あるいは図4を参照する。
[Third Embodiment]
A third embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 9 is a diagram showing processing of the image processing unit of the microscope according to the third embodiment. For each part of the microscope, refer to FIG. 1 or FIG. 4 as appropriate.
 本実施形態において、画像処理部7(図4参照)は、第2実施形態と異なる画像処理によって、検出部6aごとの実効PSFの形状の崩れを補正する。図9(A)は、本実施形態に係る画像処理前のPSFであり、図5(A)と同様である。図9(A)において、検出装置6(図4参照)の検出部6aの間隔が干渉縞L2の間隔に合っていない。この場合、上記の式(5)で説明したように、検出部6aごとに得られる画像の実効PSF(実線)は検出器6aの位置によっては形状が崩れる。画像処理部7は、干渉縞L2の強度分布の部分的な分布(例、図9(A)左側のグラフに示すQ2b)のピーク位置が、検出部6aの位置と整合するように、干渉縞L2の強度分布の位相を画像処理によって実効的にシフトさせる。この処理を適宜、画像処理位相シフト処理と呼ぶ。また、画像処理位相シフト処理による位相のシフトを適宜、画像処理位相シフトと呼ぶ。画像処理位相シフト処理による位相のシフト量を適宜、画像処理位相シフト量と呼ぶ。 In the present embodiment, the image processing unit 7 (see FIG. 4) corrects the collapse of the shape of the effective PSF for each detection unit 6a by image processing different from that in the second embodiment. FIG. 9A is a PSF before image processing according to the present embodiment, which is the same as FIG. 5A. In FIG. 9A, the distance between the detection units 6a of the detection device 6 (see FIG. 4) does not match the distance between the interference fringes L2. In this case, the shape of the effective PSF (solid line) of the image obtained for each detection unit 6a is deformed depending on the position of the detector 6a, as described in the above equation (5). The image processing unit 7 sets the interference fringes so that the peak position of the partial distribution of intensity distribution of the interference fringes L2 (eg, Q2b shown in the graph on the left side of FIG. 9A) matches the position of the detection unit 6a. The phase of the intensity distribution of L2 is effectively shifted by image processing. This process is appropriately referred to as image processing phase shift processing. Further, the phase shift by the image processing phase shift processing is appropriately referred to as an image processing phase shift. The amount of phase shift by image processing phase shift processing is appropriately referred to as image processing phase shift amount.
 図9(B)は、画像処理位相シフト処理後の検出部6aごとの実効PSFである。図9(B)の左側のグラフにおいて、分布Q2fは、図9(A)の分布Q2bのピーク位置X2bが検出部6aの位置X1bと一致するように、分布Q2の位相を画像処理位相シフトさせた分布である。分布Q2fのピーク位置X2fは、検出部6aの位置X1bとほぼ一致する。符号Q1fは、位相を画像処理位相シフトさせた分布Q2fと、位置X1bに配置された検出部6aの検出PSF(分布Q3b)とから得られる実効PSFに対応する分布である。分布Q1fは、実効PSFの形状の崩れが低減されている。 FIG. 9B shows an effective PSF for each detection unit 6a after the image processing phase shift processing. In the graph on the left side of FIG. 9B, the distribution Q2f is image processing phase-shifted so that the peak position X2b of the distribution Q2b of FIG. 9A coincides with the position X1b of the detection unit 6a. Distribution. The peak position X2f of the distribution Q2f substantially coincides with the position X1b of the detection unit 6a. Reference numeral Q1f is a distribution corresponding to the effective PSF obtained from the distribution Q2f in which the phase is subjected to the image processing phase shift and the detected PSF (distribution Q3b) of the detection unit 6a arranged at the position X1b. In the distribution Q1f, the collapse of the shape of the effective PSF is reduced.
 また、図9(B)の右側のグラフにおいて、分布Q2gは、図9(A)の分布Q2cのピーク位置X2cが検出部6aの位置X1cと一致するように、分布Q2の位相を画像処理位相シフトさせた分布である。分布Q2gのピーク位置X2gは、検出部6aの位置X1cとほぼ一致する。符号Q1gは、位相を画像処理位相シフトさせた分布Q2gと、位置X1cに配置された検出部6aの検出PSF(分布Q3c)とから得られる実効PSFに対応する分布である。分布Q1gは、実効PSFの形状の崩れが低減されている。 Further, in the graph on the right side of FIG. 9B, the distribution Q2g has the phase of the distribution Q2 set to the image processing phase so that the peak position X2c of the distribution Q2c of FIG. 9A matches the position X1c of the detection unit 6a. This is the shifted distribution. The peak position X2g of the distribution Q2g substantially coincides with the position X1c of the detection unit 6a. Reference numeral Q1g is a distribution corresponding to the effective PSF obtained from the distribution Q2g in which the phase is subjected to the image processing phase shift and the detected PSF (distribution Q3c) of the detection unit 6a arranged at the position X1c. In the distribution Q1g, the collapse of the shape of the effective PSF is reduced.
 上述のような画像処理により、検出部6aごとの実効PSF(実線)の形状がほぼ同一となるように補正される。画像処理部7は、ほぼ同一の形状に補正された実効PSFを持つ検出部6aごとの画像を用いて、画像を生成する。 By the image processing as described above, the shape of the effective PSF (solid line) for each detection unit 6a is corrected so as to be substantially the same. The image processing unit 7 generates an image by using an image for each detection unit 6a having an effective PSF corrected to have substantially the same shape.
 以下、画像処理部7の処理の流れについて、より詳しく説明する。検出装置6で得られる像I(r,r)は、上記の式(3)で表される。また、ここでは例として2光子励起の場合(式(3)においてn=2の場合)について説明する。式(3)に、上記の式(2)に示したill(r)、および2光子励起の場合を示すn=2を代入すると、下記の式(12)が得られる。 Hereinafter, the processing flow of the image processing unit 7 will be described in more detail. The image I(r,r s ) obtained by the detection device 6 is represented by the above equation (3). Further, here, the case of two-photon excitation (the case of n = 2 in the equation (3)) will be described as an example. Substituting ill (r) shown in the above equation (2) and n = 2 indicating the case of two-photon excitation into the equation (3), the following equation (12) is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)において、φは干渉縞L2の初期位相を示す。式(12)中のcos(2πk・r+φ)の項は、励起光により形成される干渉縞の周期と同じ周期を持つ。一方、式(12)中のcos(4πk・r+2φ)の項は、干渉縞の周期の1/2の周期を持つ。2光子励起の場合、励起光により形成される干渉縞の周期の2次高調波成分までが生じる。n光子励起の場合、励起光により形成される干渉縞の周期のn次高調波成分までが生じる。画像処理部7は、画像処理によって干渉縞L2の位相をディテクター座標に応じて変化させ、実効PSFの形状を揃える。顕微鏡1は、式(3)で説明したように、4次元の画像データI(r,r)を取得する。画像処理部7は、I(r,r)に対して4次元のフーリエ変換を行う。フーリエ変換によって得られる周波数空間の4次元のデータをI(k,k)で表す。 In equation (12), φ indicates the initial phase of the interference fringe L2. The term of cos(2πk 0 ·r s +φ) in Expression (12) has the same period as the period of the interference fringes formed by the excitation light. On the other hand, the term of cos(4πk 0 ·r s +2φ) in the equation (12) has a half cycle of the interference fringe cycle. In the case of two-photon excitation, up to the second harmonic component of the period of the interference fringes formed by the excitation light is generated. In the case of n-photon excitation, up to the nth harmonic component of the period of the interference fringes formed by the excitation light is generated. The image processing unit 7 changes the phase of the interference fringe L2 by image processing according to the detector coordinates, and aligns the shapes of the effective PSFs. The microscope 1 acquires the four-dimensional image data I(r,r s ) as described in Expression (3). The image processing unit 7 performs a four-dimensional Fourier transform on I(r,r s ). The four-dimensional data of the frequency space obtained by the Fourier transform is represented by I ~ (k, k s ).
 上記の式(12)をr、rについてフーリエ変換することで、I(k,k)は下記の式(13)で表されることが分かる。 By performing Fourier transform on the above equation (12) for r and r s , it can be seen that I 1 to (k, k s ) are represented by the following equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、式(13)の右辺第1項のI (k,k)を0次成分と呼ぶ。I (k,k)は、下記の式(14)のように定義される。 Here, I 0 to (k, k s ) of the first term on the right side of the equation (13) are referred to as a zero-order component. I 0 to (k, k s ) are defined as the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 式(13)の右辺第2項のI+1 (k,k)を+1次成分と呼ぶ。I+1 (k,k)は、下記の式(15)のように定義される。 I +1 to (k, k s ) of the second term on the right side of the equation (13) are called +1 order components. I + 1 to (k, k s ) are defined by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式(13)の右辺第3項のI-1 (k,k)を-1次成分と呼ぶ。I-1 (k,k)は、下記の式(16)のように定義される。 I -1 to (k, k s ) of the third term on the right side of the equation (13) are called -1st order components. I -1 to (k, k s ) are defined as the following equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(13)の右辺第4項のI+2 (k,k)を+2次成分と呼ぶ。I+2 (k,k)は、下記の式(17)のように定義される。 I +2 ~ the fourth term on the right-hand side of equation (13) to (k, k s) is called a +2 order component. I +2 to (k, k s ) are defined by the following equation (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 式(13)の右辺第5項のI-2 (k,k)を-2次成分と呼ぶ。I-2 (k,k)は、下記の式(18)のように定義される。 I -2 ~ the right side fifth term of formula (13) to (k, k s) is referred to as a minus second-order component. I -2 ~ (k, k s ) is defined as the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(14)~式(18)において、OTFdet(k)は、PSFdet(r)をフーリエ変換したものであり、検出光学系5のOTFを表す。また、OTF’ill(k)は、PSF2 ill(r)をフーリエ変換したものである。Obj(k)は、Obj(r)をフーリエ変換したものである。 In the formulas (14) to (18), the OTF det (k) is a Fourier transform of the PSF det (r) and represents the OTF of the detection optical system 5. Further, OTF 'ill (k) is obtained by Fourier transform of the PSF 2 ill (r). Obj ~ (k s) are those that Obj a (r s) obtained by Fourier transformation.
 OTFdet(k)の遮断周波数は2kNA emで与えられる。また、OTF’ill(k)の遮断周波数は4σkNA exで与えられる。したがって、I (k,k)は、下記の式(19)の条件を満たす領域内でのみ値を持つ。下記の式(19)の条件を満たす領域を適宜、0次成分の領域AR1aと呼ぶ。 The cutoff frequency of OTF det (k) is given by 2k NA em . Further, the cut-off frequency of OTF 'ill (k) is given by the 4σk NA ex. Therefore, I 0 to (k, k s ) have values only within the region satisfying the condition of the following equation (19). A region that satisfies the condition of the following Expression (19) is appropriately referred to as a zero-order component region AR1a.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 I+1 (k,k)は、下記の式(20)の条件を満たす領域内でのみ値を持つ。下記の式(20)の条件を満たす領域を適宜、+1次成分の領域AR1bと呼ぶ。 I +1 to (k, k s ) have values only within the region satisfying the condition of the following equation (20). A region that satisfies the condition of the following Expression (20) is appropriately referred to as a +1st order component region AR1b.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 I-1 (k,k)は、下記の式(21)の条件を満たす領域内でのみ値を持つ。下記の式(21)の条件を満たす領域を適宜、-1次成分の領域AR1cと呼ぶ。 I -1 to (k, k s ) have values only within the region satisfying the condition of the following equation (21). A region that satisfies the condition of the following expression (21) is appropriately called a -1st order component region AR1c.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 I+2 (k,k)は、下記の式(22)の条件を満たす領域内でのみ値を持つ。下記の式(22)の条件を満たす領域を適宜、+2次成分の領域AR1dと呼ぶ。 I +2 ~ (k, k s ) has a value only in satisfying the region of Formula (22) below. A region that satisfies the condition of the following Expression (22) is appropriately referred to as a +second-order component region AR1d.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 I-2 (k,k)は、下記の式(23)の条件を満たす領域内でのみ値を持つ。下記の式(23)の条件を満たす領域を適宜、-2次成分の領域AR1eと呼ぶ。 I -2 to (k, k s ) have values only within the region satisfying the condition of the following equation (23). A region that satisfies the condition of the following Expression (23) is appropriately referred to as a −second-order component region AR1e.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 画像処理部7は、I(k,k)から、式(19)~式(23)のいずれかの条件を満たす領域の情報を抽出することにより、I (k,k)、I+1 (k,k)、I-1 (k,k)、I+2 (k,k)、及びI-2 (k,k)を得ることができる。I(k,k)からI (k,k)、I+1 (k,k)、I-1 (k,k)、I+2 (k,k)、及びI-2 (k,k)を分離する処理を、適宜、成分分離と呼ぶ。式(19)~式(23)のいずれかの条件を満たす領域を図示すると、例えば図10に示した形となる。 The image processing section 7, I-(k, k s) from, by extracting the information of any of satisfying area of formula (19) to Formula (23), I 0 ~ ( k, k s) , I +1 to (k, k s ), I −1 to (k, k s ), I +2 to (k, k s ), and I −2 to (k, k s ). I 0 to (k, k s ) to I 0 to (k, k s ), I +1 to (k, k s ), I −1 to (k, k s ), I +2 to (k, k s ), and I -2 ~ (k, k s ) a process of separating, appropriately referred to as a component separation. When a region satisfying any of the conditions of the formulas (19) to (23) is illustrated, it has the shape shown in FIG. 10, for example.
 図10は、第3実施形態において、成分分離に用いる周波数空間の領域を示す図である。ここでは、マスク15(図2参照)の開口15a、開口15bが円形である場合について説明する。マスク15の開口は円形以外の形状でもよい。0次成分の領域AR1a、+1次成分の領域AR1b、-1次成分の領域AR1c、+2次成分の領域AR1d、及び-2次成分の領域AR1eの範囲は、マスク15の開口が円形である場合、マスク15の開口が円形以外の形状である場合のいずれについても、数値シミュレーション、理論計算等で求めることができる。 FIG. 10 is a diagram showing a region of the frequency space used for component separation in the third embodiment. Here, the case where the openings 15a and 15b of the mask 15 (see FIG. 2) are circular will be described. The opening of the mask 15 may have a shape other than a circular shape. The range of the area AR1a of the 0th order component, the area AR1b of the +first order component, the area AR1c of the −1st order component, the area AR1d of the +second order component, and the area AR1e of the −second order component is when the opening of mask 15 is circular. In any case where the opening of the mask 15 has a shape other than a circular shape, it can be obtained by numerical simulation, theoretical calculation, or the like.
 図10(A)にはkxs-kys平面における各領域を示した。0次成分の領域AR1a、+1次成分の領域AR1b、-1次成分の領域AR1c、+2次成分の領域AR1d、及び-2次成分の領域AR1eは、それぞれ円形の領域である。0次成分の領域AR1a、+1次成分の領域AR1b、-1次成分の領域AR1c、+2次成分の領域AR1d、及び-2次成分の領域AR1eは、直径がいずれも同じである。0次成分の領域AR1aの直径は、8σkNA exである。0次成分の領域AR1aは、原点を中心とする領域である。+1次成分の領域AR1b、-1次成分の領域AR1c、+2次成分の領域AR1d、及び-2次成分の領域AR1eは、それぞれ、中心がkxsの軸上の領域である。-1次成分の領域AR1cの中心と原点との距離Aは、2(1-σ)kNA exである。+1次成分の領域AR1bは、0次成分の領域AR1aに関して-1次成分の領域AR1cと対称な位置の領域である。-2次成分の領域AR1eの中心と原点との距離Bは、距離Aの2倍であって、4(1-σ)kNA exである。+2次成分の領域AR1dは、0次成分の領域AR1aに関して-2次成分の領域AR1eと対称な位置の領域である。 FIG. 10A shows each region on the k xs -kys plane. The 0th-order component area AR1a, the +1st-order component area AR1b, the −1st-order component area AR1c, the +second-order component area AR1d, and the −second-order component area AR1e are circular areas. The 0th-order component area AR1a, the +1st-order component area AR1b, the −1st-order component area AR1c, the +second-order component area AR1d, and the −second-order component area AR1e have the same diameter. The diameter of the 0th-order component region AR1a is 8σk NA ex . The region AR1a of the 0th-order component is a region centered on the origin. The area AR1b of the +1st order component, the area AR1c of the −1st order component, the area AR1d of the +second order component, and the area AR1e of the −second order component are areas on the axis of which the center is k xs . The distance A between the center and the origin of the region AR1c of the -1st order component is 2 (1-σ) k NA ex . The +1st-order component region AR1b is a region symmetric with respect to the -1st-order component region AR1c with respect to the 0th-order component region AR1a. The distance B between the center of the area AR1e of the −second-order component and the origin is twice the distance A, which is 4(1−σ)k NA ex . The + secondary component region AR1d is a region symmetric with respect to the second-order component region AR1e with respect to the zero-order component region AR1a.
 図10(B)にはkxs-k平面における各領域を示した。0次成分の領域AR1a、+1次成分の領域AR1b、-1次成分の領域AR1c、+2次成分の領域AR1d、及び-2次成分の領域AR1eは、それぞれ平行四辺形の領域である。 FIG. 10B shows each region on the k xs −k x plane. The 0th-order component area AR1a, the +1st-order component area AR1b, the −1st-order component area AR1c, the +second-order component area AR1d, and the −second-order component area AR1e are parallelogram areas, respectively.
 画像処理部7は、試料Sにおける励起光の光強度分布に基づいて、成分分離における周波数空間の領域を設定する。例えば、画像処理部7は、試料Sにおける励起光の光強度分布として試料面Saでの励起光の電場強度ill(r)の2乗に基づいて、互いに重複しない複数の領域を設定する。上記の複数の領域は、互いに重複しない5以上の領域を含む。例えば、上記の複数の領域は、第1領域として図10の領域AR1a、第2領域として図10の領域AR1b、第3領域として図10の領域AR1c、第4領域として図10の領域AR1d、第5領域として図10の領域AR1eを含む。画像処理部7は、周波数空間上のデータから、第1領域(領域AR1a)に属するデータ、第2領域(領域AR1b)に属するデータ、第3領域(領域AR1c)に属するデータ、第4領域(領域AR1d)に属するデータ、及び第5領域(領域AR1e)に属するデータのそれぞれを抽出することで、成分分離を行う。なお、2光子励起の場合に限らず、n光子励起の場合にも、画像処理部7は、試料Sにおける励起光の光強度分布として試料面Saでの励起光の電場強度ill(r)のn乗に基づいて、互いに重複しない複数の領域を設定し、成分分離を行うことが可能である。 The image processing unit 7 sets the region of the frequency space in the component separation based on the light intensity distribution of the excitation light in the sample S. For example, the image processing unit 7 sets a plurality of regions that do not overlap each other based on the square of the electric field intensity ill(r) of the excitation light on the sample surface Sa as the light intensity distribution of the excitation light on the sample S. The plurality of regions described above include five or more regions that do not overlap with each other. For example, the plurality of areas include the area AR1a of FIG. 10 as the first area, the area AR1b of FIG. 10 as the second area, the area AR1c of FIG. 10 as the third area, the area AR1d of FIG. 10 as the fourth area, and the area AR1d of FIG. The region AR1e of FIG. 10 is included as the five regions. The image processing unit 7 selects, from the data in the frequency space, data belonging to the first area (area AR1a), data belonging to the second area (area AR1b), data belonging to the third area (area AR1c), and the fourth area ( The components are separated by extracting the data belonging to the area AR1d) and the data belonging to the fifth area (area AR1e). Not only in the case of two-photon excitation but also in the case of n-photon excitation, the image processing unit 7 determines the electric field intensity ill(r) of the excitation light on the sample surface Sa as the light intensity distribution of the excitation light on the sample S. It is possible to set a plurality of regions that do not overlap each other based on the nth power and perform component separation.
 画像処理部7は、I (k,k)、I+1 (k,k)、I-1 (k,k)、I+2 (k,k)、I―2 (k,k)をそれぞれ、4次元の逆フーリエ変換することによって、実空間の画像データを算出する。以下、I (k,k)を逆フーリエ変換して得られる画像データをI(r,r)で表す。I+1 (k,k)を逆フーリエ変換して得られる画像データをI+1(r,r)で表す。I-1 (k,k)を逆フーリエ変換して得られる画像データをI-1(r,r)で表す。I+2 (k,k)を逆フーリエ変換して得られる画像データをI+2(r,r)で表す。I-2 (k,k)を逆フーリエ変換して得られる画像データをI-2(r,r)で表す。画像処理部7は、I(r,r)、I+1(r,r)、I-1(r,r)、I+2(r,r)、I-2(r,r)に対して、下記の式(24A)~式(24E)に示す演算を行う。 The image processing unit 7 uses I 0 to (k, k s ), I +1 to (k, k s ), I −1 to (k, k s ), I +2 to (k, k s ), I −2. each ~ (k, k s) to, by inverse Fourier transform of the four-dimensional, calculates the image data of real space. Hereinafter, image data obtained by performing an inverse Fourier transform on I 0 to (k, k s ) will be represented by I 0 (r, r s ). Image data obtained by inverse Fourier transforming I +1 to (k, k s ) is represented by I +1 (r, r s ). Image data obtained by inverse Fourier transforming I −1 to (k, k s ) is represented by I −1 (r, r s ). Image data obtained by inverse Fourier transforming I +2 to (k, k s ) is represented by I +2 (r, r s ). Image data obtained by inverse Fourier transforming I −2 to (k,k s ) is represented by I −2 (r,r s ). The image processing unit 7 uses I 0 (r,r s ), I +1 (r,r s ), I −1 (r,r s ), I +2 (r,r s ), and I −2 (r,r ). s ) is subjected to the calculations shown in the following formulas (24A) to (24E).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 式(24A)~式(24E)において、ψ(r)は、検出装置6の検出部6aの位置、すなわちディテクター座標rごとの画像処理位相シフト量を表す。画像処理位相シフト量ψ(r)は、例えば、下記のように決定される。画像処理部7は、ディテクター座標rで検出した信号の位置ずれ量を算出する。画像処理部7は、例えば、予めシミュレーションにより、PSFdet(r+rs)とPSF ill(r)の積によって得られる関数のピーク位置を求めることで、上記の位置ずれ量を算出する。ここで、実効PSFの位置ずれはディテクター座標rに比例すると考えてよく、位置ずれの度合いを表すパラメーターをβとすると、実効PSFの位置ずれ量をr/βで表すことができる。 In the formulas (24A) to (24E), ψ (r) represents the position of the detection unit 6a of the detection device 6, that is, the image processing phase shift amount for each detector coordinate r. The image processing phase shift amount ψ (r) is determined, for example, as follows. The image processing unit 7 calculates the positional deviation amount of the signal detected at the detector coordinate r. The image processing unit 7, for example, by simulation in advance, by obtaining the peak position of the obtained function PSF det and (r + r s) by the product of PSF 2 ill (r s), calculates the position deviation amount of the .. Here, the misalignment of the effective PSF may be considered to be proportional to the detector coordinates r, and if the parameter representing the degree of misalignment is β, the amount of misalignment of the effective PSF can be represented by r / β.
 βの値は、PSFdet(r+rs)とPSFill(r)との積によって得られる関数のピーク位置から算出されてもよいし、他の数値シミュレーションによって算出されてもよい。βが決まると、ディテクター座標rに応じた画像処理位相シフト量ψ(r)が決まる。干渉縞L2の画像処理位相シフト量ψ(r)は、PSFdet(r+rs)とPSFill(r)との積によって得られる関数のピーク位置と、干渉縞L2のピーク位置とが一致するように決定される。このような処理によって、画像処理位相シフト量ψ(r)は、例えば、ψ(r)=-2πk・r/β-φとなる。初期位相φの値は、蛍光ビーズを用いて予め測定された値でもよいし、観察画像から推定される値でもよい。画像処理部7は、試料Sにおける励起光の光強度分布に基づいて、位相を変換する量(画像処理位相シフト量)を決定する。 The value of β may be calculated from the peak position of the function obtained by the product of the PSF det (r + r s) and PSF ill (r s), may be calculated by other numerical simulations. When β is determined, the image processing phase shift amount ψ (r) according to the detector coordinates r is determined. Image processing the phase shift of the interference fringe L2 [psi (r) is the peak position of the function obtained by the product of the PSF det (r + r s) and PSF ill (r s), and the peak position of the interference fringes L2 is Determined to match. By such processing, the image processing phase shift amount ψ(r) becomes, for example, ψ(r)=−2πk 0 ·r/β−φ. The value of the initial phase φ may be a value measured in advance using fluorescent beads or a value estimated from an observed image. The image processing unit 7 determines the amount of phase conversion (image processing phase shift amount) based on the light intensity distribution of the excitation light in the sample S.
 画像処理部7は、画像処理位相シフト量ψ(r)を決定すると、上記の式(24A)~式(24E)の演算結果について、下記の式(25)に示すように和を算出する。 When the image processing phase shift amount ψ(r) is determined, the image processing unit 7 calculates the sum of the calculation results of the above formulas (24A) to (24E) as shown in the following formula (25).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 上記の式(25)の演算から得られるI’(r,r)は、検出部6aの位置(ディテクター座標r)ごとの実効PSFの形状の崩れが補正され、実効PSFの形状がほぼ同一となった画像になる。画像処理部7は、I’(r,r)に対して、検出装置6の検出部6aごとの実効PSFの位置ずれを補正する。これにより、検出装置6の2以上の検出部6aで実効PSFをほぼ同一とすることができる。画像処理部7は、実効PSFがほぼ同一となるように補正された検出部6aごとの画像を足し合わせることによって、超解像画像ISR(r)を生成する。この一連の処理は、式(26)に基づいて行われる。 The above equation (25) I obtained from the calculation of '(r, r s) is broken in the shape of the effective PSF for each position of the detection unit 6a (detector coordinates r) is corrected, substantially the same shape of the effective PSF It becomes an image that became. The image processing section 7, I '(r, r s ) with respect to correct the positional deviation of the effective PSF for each detected portion 6a of the detector 6. Thereby, the effective PSFs can be made substantially the same in the two or more detection units 6a of the detection device 6. The image processing unit 7, by adding the image for each detector 6a the effective PSF is corrected so as to be substantially the same, to produce a super-resolution image I SR (r s). This series of processing is performed based on the equation (26).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 式(26)において、PH(r)は、下記の式(27)で定義されるピンホール関数である。 In Expression (26), PH(r) is a pinhole function defined by the following Expression (27).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 rPHの値を調整することで、信号量およびセクショニング効果を調整することができる。rPHの値を大きくすると、信号量が増加する。rPHの値を小さくすると、セクショニング能力が向上する。なお、2光子励起の場合を例として説明したが、n光子励起の場合も同様の考え方に基づき画像処理を行うことが可能である。 By adjusting the value of r PH , the signal amount and the sectioning effect can be adjusted. Increasing the value of r PH increases the amount of signal. A smaller value of r PH improves the sectioning ability. Although the case of two-photon excitation has been described as an example, it is possible to perform image processing based on the same concept in the case of n-photon excitation.
 本実施形態において、スキャン間隔、検出装置6の検出部6aの間隔は、遮断周波数およびナイキストの定理に基づいて設定されてもよい。スキャン間隔は、n光子励起を用いる場合、干渉縞の周期方向においてλex/(8nNA)以下に設定されてもよい。また、スキャン間隔は、n光子励起を用いる場合、干渉縞の周期方向と垂直な方向においてλex/(4nNA)以下に設定されてもよい。また、検出装置6の検出部6aの間隔は、λem/4NA以下に設定されてもよい。 In the present embodiment, the scan interval and the interval of the detection unit 6a of the detection device 6 may be set based on the cutoff frequency and the Nyquist theorem. When n-photon excitation is used, the scan interval may be set to λ ex /(8nNA) or less in the periodic direction of the interference fringes. When n-photon excitation is used, the scan interval may be set to λ ex /(4nNA) or less in the direction perpendicular to the periodic direction of the interference fringes. Further, the interval between the detection units 6a of the detection device 6 may be set to λ em /4NA or less.
 図11は、第3実施形態に係る観察方法を示すフローチャートである。ステップS21からステップS24の処理は、図6のステップS1からステップS4の処理と同様であるので、その説明を省略する。ステップS25において、画像処理部7は、複数の検出部6aの少なくとも一部の検出結果をフーリエ変換する。ステップS25において、画像処理部7は、I(r,r)に対して4次元のフーリエ変換を行う。ステップS26において、画像処理部7は、周波数空間において成分分離する。画像処理部7は、フーリエ変換により得られる周波数空間の成分を周波数空間の領域ごとに分離する。ステップS27において、画像処理部7は、分離された成分を逆フーリエ変換する。ステップS28において、画像処理部7は、画像処理位相シフト処理を実行する。画像処理部7は、ステップS29において、実効PSFの位置ずれを補正する。ステップS30において、画像処理部7は、ステップS29で位置ずれを補正して得られる画像を足し合わせることで、画像(例、超解像画像)生成する。 FIG. 11 is a flowchart showing an observation method according to the third embodiment. Since the processing of steps S21 to S24 is the same as the processing of steps S1 to S4 of FIG. 6, the description thereof will be omitted. In step S25, the image processing unit 7 Fourier transforms at least a part of the detection results of the plurality of detection units 6a. In step S25, the image processing section 7 performs Fourier transformation of 4-dimensional relative I (r, r s). In step S26, the image processing unit 7 separates the components in the frequency space. The image processing unit 7 separates the components of the frequency space obtained by the Fourier transform into each region of the frequency space. In step S27, the image processing unit 7 performs an inverse Fourier transform on the separated components. In step S28, the image processing unit 7 executes the image processing phase shift processing. The image processing unit 7 corrects the positional deviation of the effective PSF in step S29. In step S30, the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images obtained by correcting the positional deviation in step S29.
 このように、本実施形態に係る画像処理部7は、成分分離によって得られるデータの少なくとも一部の位相を変換して画像を生成する。上述の説明において、画像処理部7は、実空間上のデータに対して位相シフト処理を実行する。すなわち、画像処理部7は、成分分離によって得られるデータとして、成分分離したデータ(周波数空間上のデータ)を逆フーリエ変換によって実空間上のデータに変換したデータ(実空間上のデータ)を用いる。なお、画像処理部7は、成分分離した周波数空間上のデータに対して、周波数空間において位相シフト処理を実行してもよい。 As described above, the image processing unit 7 according to the present embodiment converts the phase of at least a part of the data obtained by the component separation to generate an image. In the above description, the image processing unit 7 executes the phase shift process on the data in the real space. That is, the image processing unit 7 uses, as the data obtained by the component separation, the data (the data on the real space) obtained by converting the data on the component separation (the data on the frequency space) into the data on the real space by the inverse Fourier transform. .. The image processing unit 7 may perform the phase shift process in the frequency space on the data in the frequency space in which the components have been separated.
 第3実施形態によれば、画像処理部7により、位相シフト処理を実行することで、検出部6aごとに得られる画像の実効PSFを揃える。そのため、画像処理部7により、位相シフト処理を実行して得られる検出部6aごとの画像を足し合わせることで、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the third embodiment, the image processing unit 7 executes the phase shift process to align the effective PSFs of the images obtained by the detection units 6a. Therefore, the image processing unit 7 adds the images of the respective detection units 6a obtained by executing the phase shift process to obtain an image with high resolution (eg, super-resolution image) while ensuring S/N. Can be generated. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first embodiment, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第4実施形態]
 第4実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。本実施形態において、画像処理部7(図4参照)は、第3実施形態で説明した成分分離を行った後、分離された成分についてデコンボリューションを行って画像を生成する。
[Fourth Embodiment]
A fourth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. In the present embodiment, the image processing unit 7 (see FIG. 4) performs the component separation described in the third embodiment, and then performs deconvolution on the separated components to generate an image.
 式(13)を書き換え、式(28)が得られる。 Rewriting formula (13), formula (28) is obtained.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 式(28)において、OTF(k,k)、OTF+1(k,k)、OTF-1(k,k)、OTF+2(k,k)、OTF-2(k,k)は、下記の式(29A)~式(29E)で表される。 In Expression (28), OTF 0 (k, k s ), OTF +1 (k, k s ), OTF −1 (k, k s ), OTF +2 (k, k s ), OTF −2 (k, k s ) s ) is represented by the following formulas (29A) to (29E).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 画像処理部7は、OTF(k,k)、OTF+1(k,k)、OTF-1(k,k)、OTF+2(k,k)、OTF-2(k,k)のそれぞれの測定値もしくは推定値を用いて、デコンボリューションを行う。デコンボリューションには、ウィーナーフィルタやリチャードソン・ルーシー法など様々な方法がある。ここでは、デコンボリューションの一例としてウィーナーフィルタを用いた処理を説明するが、他の方法を用いたデコンボリューションでもよい。上記の式(28)について、ウィーナーフィルタによるデコンボリューションは、下記の式(30A)および式(30B)で表される。 The image processing unit 7 includes OTF 0 (k, k s ), OTF +1 (k, k s ), OTF −1 (k, k s ), OTF +2 (k, k s ), OTF −2 (k, k s ). Deconvolution is performed using each measured value or estimated value of s 2 ). There are various methods of deconvolution, such as the Wiener filter and the Richardson-Lucy method. Here, processing using a Wiener filter will be described as an example of deconvolution, but deconvolution using another method may be used. With respect to the above equation (28), deconvolution by the Wiener filter is expressed by the following equation (30A) and equation (30B).
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 式(30A)において、wはノイズを抑制するためのウィーナーパラメータである。式(30B)において、A(k)は画像の負値を抑制するためのアポダイゼーション関数である。また、Fks -1はkに関する逆フーリエ変換である。画像処理部7は、上述のデコンボリューションの結果を用いて超解像画像ISR(r)を生成する。 In Expression (30A), w is a Wiener parameter for suppressing noise. In the formula (30B), A (k s ) is the apodization function for suppressing the negative value of the image. Further, F ks -1 is the inverse Fourier transform relates k s. The image processing section 7 generates the super-resolved image I SR (r s) by using a de-convolution results described above.
 図12は、第4実施形態に係る観察方法を示すフローチャートである。ステップS31からステップS34の処理は、図6のステップS1からステップS4の処理と同様であるので、その説明を省略する。ステップS35において、画像処理部7は、検出結果をフーリエ変換する。また、ステップS36において、画像処理部7は、周波数空間で成分を分離する。ステップS37において、画像処理部7は、ステップS36の処理によって分離された成分を用いて、デコンボリューションを行う。ステップS38において、画像処理部7は、アポダイゼーションを行う。ステップS39において、画像処理部7は、デコンボリューションおよびアポダイゼーションによって得られたデータに対して逆フーリエ変換を行う。画像処理部7は、逆フーリエ変換によって得られたデータを用いて画像(例、超解像画像)を生成する。 FIG. 12 is a flowchart showing an observation method according to the fourth embodiment. The processing from step S31 to step S34 is similar to the processing from step S1 to step S4 in FIG. 6, and therefore description thereof will be omitted. In step S35, the image processing unit 7 Fourier transforms the detection result. Further, in step S36, the image processing unit 7 separates the components in the frequency space. In step S37, the image processing unit 7 performs deconvolution using the components separated by the process of step S36. In step S38, the image processing unit 7 performs apodization. In step S39, the image processing unit 7 performs an inverse Fourier transform on the data obtained by the deconvolution and the apodization. The image processing unit 7 uses the data obtained by the inverse Fourier transform to generate an image (for example, a super-resolution image).
 以上のように、本実施形態に係る画像処理部7は、周波数空間において成分分離、デコンボリューション、及びアポダイゼーションを実行し、これらの処理によって得られたデータを実空間におけるデータに変換して画像を生成する。本実施形態において、画像処理部7は、検出装置6の検出部6aごとの実効PSFをほぼ一致させて位置ずれを補正する処理によらずに、画像を生成してもよい。 As described above, the image processing unit 7 according to the present embodiment executes component separation, deconvolution, and apodization in the frequency space, converts the data obtained by these processes into the data in the real space, and forms the image. To generate. In the present embodiment, the image processing unit 7 may generate an image without performing the process of correcting the positional deviation by making the effective PSFs of the detection units 6a of the detection devices 6 substantially match.
 第4実施形態によれば、画像処理部7により、周波数空間において成分分離、デコンボリューション、及びアポダイゼーションを実行することで、検出部6aごとに得られる画像の実効PSFを揃える。そして、画像処理部7により、これらの処理によって得られたデータを実空間におけるデータに変換して画像を生成することで、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the fourth embodiment, the image processing unit 7 executes the component separation, deconvolution, and apodization in the frequency space to align the effective PSFs of the images obtained by the detection units 6a. Then, the image processing unit 7 converts the data obtained by these processes into data in the real space to generate an image, thereby ensuring an S/N and an image with high resolution (eg, super-resolution). Image) can be generated. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first embodiment, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
 本実施形態において、スキャン間隔、検出装置6の検出部6aの間隔は、遮断周波数およびナイキストの定理に基づいて設定されてもよい。スキャン間隔は、n光子励起の場合、干渉縞の周期方向においてλex/(8nNA)以下に設定されてもよい。また、スキャン間隔は、n光子励起の場合、干渉縞の周期方向と垂直な方向においてλex/(4nNA)以下に設定されてもよい。また、検出装置6の検出部6aの間隔は、λem/4NA以下に設定されてもよい。 In the present embodiment, the scan interval and the interval of the detection unit 6a of the detection device 6 may be set based on the cutoff frequency and the Nyquist theorem. In the case of n photon excitation, the scan interval may be set to λ ex / (8 nNA) or less in the periodic direction of the interference fringes. In the case of n-photon excitation, the scan interval may be set to λ ex /(4nNA) or less in the direction perpendicular to the periodic direction of the interference fringes. Further, the interval between the detection units 6a of the detection device 6 may be set to λ em /4NA or less.
 なお、画像処理部7は、上記のkに関して積算の対象とする範囲を、全空間の範囲に設定してもよいし、全空間の一部の範囲に設定してもよい。また、画像処理部7は、フーリエ変換によってI (k,k)、I+1 (k,k)、I-1 (k,k)、I+2 (k,k)、I-2 (k,k)を演算する際に、rの範囲を限定してもよい。また、画像処理部7は、OTF(k,k)、OTF+1(k,k)、OTF-1(k,k)、OTF+2(k,k)、及びOTF-2(k,k)として、蛍光ビーズを用いた測定あるいは設計値を用いた数値シミュレーション等によって予め得られるデータを用いてもよいし、試料Sからの蛍光を検出装置6が検出した結果から得られるデータ(例、推定値)を用いてもよい。 The image processing unit 7 may set the range to be integrated with respect to the above k to the range of the entire space or to a part of the range of the entire space. Further, the image processing unit 7 uses I 0 to (k, k s ), I +1 to (k, k s ), I −1 to (k, k s ), and I +2 to (k, k s ) by Fourier transform. ), I -2 to (k, k s ) may be limited in the range of r. The image processing unit 7 also includes OTF 0 (k, k s ), OTF +1 (k, k s ), OTF −1 (k, k s ), OTF +2 (k, k s ), and OTF − 2 ( k, k s ) may be data obtained in advance by measurement using fluorescent beads or numerical simulation using design values, or obtained from the result of detection of fluorescence from the sample S by the detection device 6. Data (eg, estimates) may be used.
[第5実施形態]
 第5実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図13は、第5実施形態に係る顕微鏡101を示す図である。第5実施形態において、検出装置106は、複数の検出部6aが1次元的に配列されたラインセンサ(ラインディテクター)を含む。複数の検出部6aは、検出装置106において1方向に配列されている。検出装置106は、試料面Saと光学的に共役な位置に配置される。複数の検出部6aが並ぶ方向(以下、配列方向という)は、干渉縞L2の周期方向と対応する方向に設定される。例えば、図13において、干渉縞の周期方向はX方向であり、複数の検出部6aの配列方向は、X方向に対応するXb方向に設定される。
[Fifth Embodiment]
A fifth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 13 is a diagram showing a microscope 101 according to the fifth embodiment. In the fifth embodiment, the detection device 106 includes a line sensor (line detector) in which a plurality of detection units 6a are arranged one-dimensionally. The plurality of detection units 6a are arranged in one direction in the detection device 106. The detection device 106 is arranged at a position optically conjugate with the sample surface Sa. The direction in which the plurality of detection units 6a are arranged (hereinafter referred to as the arrangement direction) is set to the direction corresponding to the periodic direction of the interference fringes L2. For example, in FIG. 13, the periodic direction of the interference fringes is the X direction, and the array direction of the plurality of detection units 6a is set to the Xb direction corresponding to the X direction.
 第5実施形態に係る顕微鏡101は、λ/2波長板30と、光軸の周りで光路を回転させる光路回転部31とを備える。λ/2波長板30は、光路回転部31による光路の回転角に基づいて、光路回転部31を通る偏光を回転させる。光路回転部31は、照明光学系4においてマスク15から試料Sまでの間の光路に配置される。光路回転部31は、例えば、照明光学系4の光路において励起光L1がほぼ平行光になる位置に配置される。光路回転部31は、例えば、照明光学系4において励起光L1が通り且つ検出光学系5において蛍光L3が通る位置に配置される。光路回転部31は、例えば、ダイクロイックミラー16と試料Sとの間の光路に配置される。λ/2波長板30は、光路回転部31に対して試料Sと同じ側に配置されてもよいし、光路回転部31に対して試料Sと反対側(例、励起光の光源と同じ側)に配置されてもよい。 The microscope 101 according to the fifth embodiment includes a λ/2 wavelength plate 30 and an optical path rotating unit 31 that rotates the optical path around the optical axis. The λ/2 wave plate 30 rotates the polarized light passing through the optical path rotating unit 31 based on the rotation angle of the optical path by the optical path rotating unit 31. The optical path rotating unit 31 is arranged in the optical path between the mask 15 and the sample S in the illumination optical system 4. The optical path rotating unit 31 is arranged, for example, at a position where the excitation light L1 becomes substantially parallel light in the optical path of the illumination optical system 4. The optical path rotating unit 31 is arranged, for example, at a position where the excitation light L1 passes through in the illumination optical system 4 and the fluorescence L3 passes through in the detection optical system 5. The optical path rotating unit 31 is arranged in the optical path between the dichroic mirror 16 and the sample S, for example. The λ/2 wave plate 30 may be arranged on the same side as the sample S with respect to the optical path rotating unit 31, or on the side opposite to the sample S with respect to the optical path rotating unit 31 (eg, on the same side as the excitation light source). ).
 光路回転部31は、例えば、ダブプリズムなどのイメージローテーターである。光路回転部31は、照明光学系4の光軸の周りで回転可能に設けられる。光路回転部31は、駆動部32によって駆動されて回転する。光路回転部31としてダブプリズムを用いる場合、ダブプリズムを照明光学系4の光軸の周りでθ°回転させると、ダブプリズムからの光出射側(試料S側)における光路は、ダブプリズムへの光入射側(光源3側)における光路に対して、照明光学系4の光軸の周りで2×θ°回転する。これにより、試料Sに対する励起光L1の入射面は、Z方向の周りで2×θ°回転し、干渉縞L2の周期方向は、Z方向の周りで2×θ°回転する。例えば、干渉縞L2の周期方向を90°変更する場合、駆動部32は、光路回転部31を照明光学系4の光軸の周りで45°回転させる。このように、光路回転部31は、試料に対する干渉縞の方向を変更する縞方向変更部に含まれる。 The optical path rotating unit 31 is, for example, an image rotator such as a Dove prism. The optical path rotating unit 31 is provided rotatably around the optical axis of the illumination optical system 4. The optical path rotating unit 31 is driven by the driving unit 32 and rotates. When a Dove prism is used as the optical path rotating unit 31, when the Dove prism is rotated by θ° around the optical axis of the illumination optical system 4, the optical path on the light emission side (the sample S side) from the Dove prism is directed to the Dove prism. The optical path on the light incident side (light source 3 side) is rotated by 2×θ° around the optical axis of the illumination optical system 4. As a result, the incident surface of the excitation light L1 on the sample S rotates 2×θ° around the Z direction, and the periodic direction of the interference fringes L2 rotates 2×θ° around the Z direction. For example, when the periodic direction of the interference fringe L2 is changed by 90 °, the driving unit 32 rotates the optical path rotating unit 31 by 45 ° around the optical axis of the illumination optical system 4. As described above, the optical path rotating portion 31 is included in the fringe direction changing portion that changes the direction of the interference fringes with respect to the sample.
 λ/2波長板30は、照明光学系4の光軸の周りで回転可能に設けられる。λ/2波長板30は、光路回転部31と連動して回転する。λ/2波長板30は、光路回転部31の回転角に基づいて定められる角度だけ回転する。例えば、λ/2波長板30は、光路回転部31と固定(例、一体化)され、光路回転部31とともに回転する。この場合、λ/2波長板30は、光路回転部31の回転角と同じ角度だけ回転する。 The λ/2 wave plate 30 is provided so as to be rotatable around the optical axis of the illumination optical system 4. The λ / 2 wave plate 30 rotates in conjunction with the optical path rotating portion 31. The λ / 2 wave plate 30 rotates by an angle determined based on the rotation angle of the optical path rotating portion 31. For example, the λ/2 wavelength plate 30 is fixed (eg, integrated) with the optical path rotating unit 31 and rotates together with the optical path rotating unit 31. In this case, the λ/2 wave plate 30 rotates by the same angle as the rotation angle of the optical path rotating unit 31.
 λ/2波長板30を照明光学系4の光軸の周りでθ°回転させると、励起光L1の偏光方向は、光入射側(光源3側)における偏光方向に対して、照明光学系4の光軸の周りで2×θ°回転する。これにより、試料Sに入射する際の励起光L1の偏光状態は、S偏光になる。 When the λ/2 wave plate 30 is rotated by θ° around the optical axis of the illumination optical system 4, the polarization direction of the excitation light L1 is different from the polarization direction on the light incident side (the light source 3 side). Rotate 2 × θ ° around the optical axis of. As a result, the polarization state of the excitation light L1 when entering the sample S becomes S-polarized.
 また、図13の光路回転部31は、像回転部にも含まれる。像回転部は、試料Sの像(例、試料Sからの蛍光の像)を複数の検出部6aに対して、検出光学系5の光軸の周りで回転させる。すなわち、縞方向変更部と像回転部とは、同一の部材(光学部材)として光路回転部31を含む。光路回転部31は、照明光学系4の光路のうち蛍光が入射する位置に配置される。像回転部は、光路回転部31によって蛍光の像を回転させる。光路回転部31は、検出装置6における複数の検出部6aの配列方向に対する干渉縞L2の周期方向を調整する。光路回転部31としてダブプリズムを用いる場合、ダブプリズムを照明光学系4の光軸の周りでθ°回転させると、干渉縞L2の周期方向がZ方向の周りで2×θ°回転する。そして、試料Sからの蛍光L3の光路は、ダブプリズムへの光入射側(試料S側)に対して、光出射側(検出装置106側)において-2×θ°回転する。 The optical path rotating unit 31 of FIG. 13 is also included in the image rotating unit. The image rotation unit rotates an image of the sample S (eg, an image of fluorescence from the sample S) with respect to the plurality of detection units 6a around the optical axis of the detection optical system 5. That is, the fringe direction changing portion and the image rotating portion include the optical path rotating portion 31 as the same member (optical member). The optical path rotating unit 31 is arranged at a position on the optical path of the illumination optical system 4 where fluorescence enters. The image rotating unit rotates the fluorescence image by the optical path rotating unit 31. The optical path rotation unit 31 adjusts the cycle direction of the interference fringes L2 with respect to the arrangement direction of the plurality of detection units 6a in the detection device 6. When the Dove prism is used as the optical path rotating unit 31, when the Dove prism is rotated by θ° around the optical axis of the illumination optical system 4, the cycle direction of the interference fringes L2 is rotated by 2×θ° around the Z direction. Then, the optical path of the fluorescence L3 from the sample S rotates −2×θ° on the light emitting side (detector 106 side) with respect to the light incident side (sample S side) on the Dove prism.
 ダブプリズムを回転させると、ダブプリズムを介して試料Sへ向かう光の光路が回転し、試料Sに対する干渉縞L2の周期方向が変化する。また、試料Sからダブプリズムを介して検出装置106へ向かう光の光路は、試料Sへ向かう光の光路と反対向きに同じ角度だけ回転する。したがって、検出装置106における複数の検出部6a(例、ラインディテクター)の像を、検出光学系5を介して試料面Saに投影した場合、複数の検出部6aが並ぶ方向と干渉縞の周期方向とは、ダブプリズムによって干渉縞の周期方向を変更した場合でも常に一致する。よって、検出装置106は、干渉縞L2の周期方向の変更前と変更後とで同じように、蛍光L3を検出可能である。 When the dub prism is rotated, the optical path of light toward the sample S through the dub prism is rotated, and the periodic direction of the interference fringe L2 with respect to the sample S changes. The optical path of the light traveling from the sample S to the detection device 106 via the Dove prism rotates in the opposite direction to the optical path of the light traveling to the sample S by the same angle. Therefore, when the images of the plurality of detection units 6a (eg, line detectors) in the detection device 106 are projected onto the sample surface Sa through the detection optical system 5, the direction in which the plurality of detection units 6a are arranged and the periodic direction of the interference fringes. Always matches even when the periodic direction of the interference fringes is changed by the Dove prism. Therefore, the detection device 106 can detect the fluorescence L3 similarly before and after the change of the periodic direction of the interference fringe L2.
 得られる画像データI(x,r)は、ディテクター座標x及びスキャン座標r=(x,y)を独立変数に持つ3次元のデータである。第1実施形態から第4実施形態においては、検出装置6が2次元的に配列された複数の検出部6aを含むため、ディテクター座標が2次元の座標系となる。第5実施形態においては、検出装置106が1次元的に配列された複数の検出部6aを含むため、ディテクター座標が1次元の座標系となる。第1実施形態から第4実施形態で説明した画像処理は、ディテクター座標に関する処理を1次元の座標系に対応した画像処理とする(例:第3実施形態におけるディテクター座標に対するフーリエ変換を1次元フーリエ変換とする)ことが可能である。そのため、第1実施形態から第4実施形態で説明した画像処理は、第5実施形態の場合にも適用することが可能である。画像処理部7は、検出装置106の検出結果に基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。 The resulting image data I (x, r s) is a three-dimensional data with detectors coordinates x and scan coordinate r s = (x s, y s) of the independent variable. In the first to fourth embodiments, since the detection device 6 includes the plurality of detection units 6a arranged two-dimensionally, the detector coordinates have a two-dimensional coordinate system. In the fifth embodiment, since the detection device 106 includes the plurality of detection units 6a arranged one-dimensionally, the detector coordinates have a one-dimensional coordinate system. In the image processing described in the first to fourth embodiments, the processing relating to detector coordinates is image processing corresponding to a one-dimensional coordinate system (eg, Fourier transform for detector coordinates in the third embodiment is one-dimensional Fourier transform). It can be converted). Therefore, the image processing described in the first to fourth embodiments can be applied to the fifth embodiment as well. The image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
 なお、第1実施形態に係る顕微鏡1において、駆動部22がマスク15を回転させることで干渉縞L2の周期方向を変更するが、上記の光路回転部31(例、ダブプリズム)によって干渉縞L2の周期方向を変更してもよい。また、干渉縞L2の周期方向を変更する縞方向変更部は、駆動部22および光路回転部31のいずれとも異なる形態でもよい。例えば、ステージ2は、Z方向の周りで回転可能に設けられ、その回転によって試料Sに対する干渉縞L2の方向を変更してもよい。この場合、ステージ2は、試料Sに対する干渉縞L2の方向を変更する縞方向変更部に含まれる。 In the microscope 1 according to the first embodiment, the driving unit 22 rotates the mask 15 to change the cycle direction of the interference fringes L2. However, the interference fringes L2 are changed by the optical path rotating unit 31 (for example, the Dove prism). The periodic direction of may be changed. The fringe direction changing unit that changes the cycle direction of the interference fringes L2 may be different from both the drive unit 22 and the optical path rotating unit 31. For example, the stage 2 may be rotatably provided around the Z direction, and the rotation may change the direction of the interference fringes L2 with respect to the sample S. In this case, the stage 2 is included in the fringe direction changing portion that changes the direction of the interference fringe L2 with respect to the sample S.
 図14に示す顕微鏡101’は、第5実施形態に係る顕微鏡101の変形例であり、図13に示す顕微鏡101に対して光路回転部31が設けられる位置が異なる。図14に示す顕微鏡101’において、縞方向変更部は、第1実施形態と同様であり、マスク15および駆動部22を含む。図13に示す顕微鏡101において、光路回転部31は縞方向変更部と像回転部とを兼ねているが、図14に示す顕微鏡101’において、光路回転部31は縞方向変更部と別に設けられる。図14に示す顕微鏡101’において、光路回転部31は、検出光学系5の光路のうち照明光学系4の光路と重複しない位置に配置される。言い換えると、光路回転部31は、励起光L1が入射せず、蛍光L3が入射する位置に配置される。光路回転部31は、ダイクロイックミラー16と検出装置106との間の光路に配置される。 The microscope 101' shown in FIG. 14 is a modification of the microscope 101 according to the fifth embodiment, and the position at which the optical path rotating unit 31 is provided is different from that of the microscope 101 shown in FIG. In the microscope 101 ′ shown in FIG. 14, the stripe direction changing unit is the same as in the first embodiment and includes the mask 15 and the driving unit 22. In the microscope 101 shown in FIG. 13, the optical path rotating unit 31 serves as both the stripe direction changing unit and the image rotating unit, but in the microscope 101′ shown in FIG. 14, the optical path rotating unit 31 is provided separately from the stripe direction changing unit. .. In the microscope 101' shown in FIG. 14, the optical path rotating unit 31 is arranged at a position that does not overlap the optical path of the illumination optical system 4 in the optical path of the detection optical system 5. In other words, the optical path rotating unit 31 is arranged at a position where the excitation light L1 does not enter and the fluorescence L3 enters. The optical path rotating unit 31 is arranged in the optical path between the dichroic mirror 16 and the detection device 106.
 図14に示す顕微鏡101’では、駆動部22がマスク15および偏光子14を回転させることで、干渉縞L2の周期方向を変更する。駆動部32は、マスク15および偏光子14の少なくとも一方の回転角に基づいて定まる角度だけ、光路回転部31を回転させる。図14に示す顕微鏡101’では、駆動部32が光路回転部31を回転させることで、検出装置106に投影される像の方向を複数の検出部6aが並ぶ方向に対して整合させる。 In the microscope 101' shown in FIG. 14, the driving unit 22 rotates the mask 15 and the polarizer 14 to change the period direction of the interference fringe L2. The drive unit 32 rotates the optical path rotation unit 31 by an angle determined based on the rotation angle of at least one of the mask 15 and the polarizer 14. In the microscope 101 ′ shown in FIG. 14, the drive unit 32 rotates the optical path rotation unit 31 to match the direction of the image projected on the detection device 106 with the direction in which the plurality of detection units 6 a are arranged.
 第5実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the fifth embodiment, it is possible to align the effective PSFs of the images obtained for each detection unit 6a by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第6実施形態]
 第6実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図15は、第6実施形態に係る顕微鏡201を示す図である。第6実施形態に係る顕微鏡201は、遮光部材33を備える。遮光部材33は、試料面Saと光学的に共役な位置またはその近傍に配置される。第6実施形態において、検出装置106は、第5実施形態と同様に、複数の検出部6aが1次元的に配列されたラインセンサを含む。検出装置106は、試料面Saと光学的に共役な位置に配置され、遮光部材33は、検出装置106の近傍に配置される。遮光部材33は、試料面Saと共役な位置またはその近傍に配置されてもよい。
[Sixth Embodiment]
The sixth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 15 is a diagram showing a microscope 201 according to the sixth embodiment. The microscope 201 according to the sixth embodiment includes a light-shielding member 33. The light shielding member 33 is arranged at a position optically conjugate with the sample surface Sa or in the vicinity thereof. In the sixth embodiment, the detection device 106 includes a line sensor in which a plurality of detection units 6a are arranged one-dimensionally, as in the fifth embodiment. The detection device 106 is arranged at a position optically conjugate with the sample surface Sa, and the light shielding member 33 is arranged in the vicinity of the detection device 106. The light blocking member 33 may be arranged at a position conjugate with the sample surface Sa or in the vicinity thereof.
 遮光部材33は、蛍光L3が通る開口33aを有し、開口33aの周囲において蛍光L3を遮光する。開口33aは、検出装置106における複数の検出部6aの配列方向(Xb方向)に延びている。開口33aは、例えば矩形状のスリットである。遮光部材33は、開口33aの長辺が複数の検出部6aの配列方向とほぼ平行になるように、配置される。遮光部材33は、開口33aの寸法と形状の一方または双方が可変でもよい、例えば、遮光部材33は、光を遮る領域を可変な機械式の絞り、あるいは空間光変調器(SLM)などでもよい。なお、開口33aの寸法と形状の一方または双方が固定でもよい。 The light shielding member 33 has an opening 33a through which the fluorescence L3 passes, and shields the fluorescence L3 around the opening 33a. The opening 33a extends in the arrangement direction (Xb direction) of the plurality of detection units 6a in the detection device 106. The opening 33a is, for example, a rectangular slit. The light shielding member 33 is arranged such that the long side of the opening 33a is substantially parallel to the arrangement direction of the plurality of detection units 6a. One or both of the size and the shape of the opening 33a may be variable in the light blocking member 33. For example, the light blocking member 33 may be a mechanical diaphragm having a variable light blocking region or a spatial light modulator (SLM). .. One or both of the size and the shape of the opening 33a may be fixed.
 検出装置106は、遮光部材33の開口33aを通った蛍光L3を検出する。第5実施形態で説明したように、第1実施形態から第4実施形態で説明した画像処理は、ディテクター座標に関する処理を1次元の座標系に対応した画像処理とすることが可能である。そのため、第1実施形態から第4実施形態で説明した画像処理は、第5実施形態と同様に、第6実施形態の場合にも適用することが可能である。画像処理部7は、検出装置106の検出結果に基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。 The detection device 106 detects the fluorescence L3 that has passed through the opening 33a of the light-shielding member 33. As described in the fifth embodiment, in the image processing described in the first embodiment to the fourth embodiment, the processing regarding the detector coordinates can be the image processing corresponding to the one-dimensional coordinate system. Therefore, the image processing described in the first to fourth embodiments can be applied to the sixth embodiment as well as the fifth embodiment. The image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
 第6実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the sixth embodiment, it is possible to align the effective PSFs of the images obtained by the detection units 6a by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第7実施形態]
 第7実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図16は、第7実施形態に係る顕微鏡301を示す図である。第7実施形態に係る顕微鏡301は、駆動部22および駆動部34を備える。駆動部22は、第1実施形態と同様である。駆動部22は、マスク15を回転させ、干渉縞L2の周期方向を変更する。駆動部22は、試料Sに対する干渉縞L2の方向を変更する縞方向変更部に含まれる。
[Seventh Embodiment]
The seventh embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 16 is a diagram showing a microscope 301 according to a seventh embodiment. The microscope 301 according to the seventh embodiment includes a drive unit 22 and a drive unit 34. The drive unit 22 is similar to that of the first embodiment. The drive unit 22 rotates the mask 15 to change the cycle direction of the interference fringe L2. The driving unit 22 is included in the fringe direction changing unit that changes the direction of the interference fringe L2 with respect to the sample S.
 第7実施形態において、検出装置106は、第6実施形態と同様に、複数の検出部6aが1次元的に配列されたラインセンサを含む。検出装置106は、試料面Saと光学的に共役な位置に配置され、遮光部材33は、検出装置106の近傍に配置される。第7実施形態において、検出装置106は、Zb方向の周りで回転可能である。駆動部34は、Zb方向の周りで検出装置106を回転させる。駆動部34は、検出装置106における検出部6aの配列方向が干渉縞L2の周期方向と対応するように、検出装置106を回転させる。例えば、駆動部22がマスク15を90°回転させる場合、干渉縞L2の周期方向が90°変化するので、駆動部34は、検出装置106を90°回転させる。 In the seventh embodiment, the detection device 106 includes a line sensor in which a plurality of detection units 6a are arranged one-dimensionally, as in the sixth embodiment. The detection device 106 is arranged at a position optically conjugate with the sample surface Sa, and the light shielding member 33 is arranged near the detection device 106. In a seventh embodiment, the detector 106 is rotatable around the Zb direction. The drive unit 34 rotates the detection device 106 around the Zb direction. The drive unit 34 rotates the detection device 106 so that the arrangement direction of the detection units 6a in the detection device 106 corresponds to the cycle direction of the interference fringes L2. For example, when the drive unit 22 rotates the mask 15 by 90 °, the periodic direction of the interference fringe L2 changes by 90 °, so that the drive unit 34 rotates the detection device 106 by 90 °.
 また、駆動部34は、検出装置106と遮光部材33との相対位置が維持されるように、遮光部材33を回転させる。例えば、遮光部材33と検出装置106とは一体化されており、駆動部34は、遮光部材33と検出装置106とを一体的に回転させる。 Further, the drive unit 34 rotates the light blocking member 33 so that the relative position between the detection device 106 and the light blocking member 33 is maintained. For example, the light blocking member 33 and the detection device 106 are integrated, and the drive unit 34 integrally rotates the light blocking member 33 and the detection device 106.
 検出装置106は、遮光部材33の開口33aを通った蛍光L3を検出する。第5実施形態で説明したように、第1実施形態から第4実施形態で説明した画像処理は、ディテクター座標に関する処理を1次元の座標系に対応した画像処理とすることが可能である。そのため、第1実施形態から第4実施形態で説明した画像処理は、第5実施形態と同様に、第7実施形態の場合にも適用することが可能である。画像処理部7は、検出装置106の検出結果に基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。 The detection device 106 detects the fluorescence L3 that has passed through the opening 33a of the light shielding member 33. As described in the fifth embodiment, in the image processing described in the first embodiment to the fourth embodiment, the processing regarding the detector coordinates can be the image processing corresponding to the one-dimensional coordinate system. Therefore, the image processing described in the first to fourth embodiments can be applied to the case of the seventh embodiment as well as the fifth embodiment. The image processing unit 7 generates an image (for example, a super-resolution image) by one of the processes described in the first to fourth embodiments based on the detection result of the detection device 106.
 第7実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the seventh embodiment, the effective PSFs of the images obtained for each detection unit 6a can be aligned by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
 上述の第7実施形態において、顕微鏡は、検出装置106を回転させる駆動部34の代わりに、図14に示した光路回転部31を備えてもよい。上述の第7実施形態において、顕微鏡は、図14に示したように遮光部材33を備えなくてもよい。 In the above-described seventh embodiment, the microscope may include the optical path rotating unit 31 shown in FIG. 14 instead of the drive unit 34 that rotates the detection device 106. In the above-described seventh embodiment, the microscope need not include the light shielding member 33 as shown in FIG.
[第8実施形態]
 第8実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図17は、第8実施形態に係る顕微鏡401を示す図である。上述の実施形態において、瞳面P0(図2(C)参照)上で照明瞳が2極(2つの領域)に分かれる例を説明したが、照明瞳はその他の形態でもよい。ここでは、照明瞳が瞳面上で4極(4つの領域)に分かれる形態について説明する。
[Eighth Embodiment]
The eighth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 17 is a diagram showing a microscope 401 according to the eighth embodiment. In the above-described embodiment, the example in which the illuminated pupil is divided into two poles (two regions) on the pupil surface P0 (see FIG. 2C) has been described, but the illuminated pupil may be in another form. Here, a form in which the illumination pupil is divided into four poles (four regions) on the pupil plane will be described.
 第8実施形態に係る照明光学系404は、光ファイバー11の光出射側に、コリメーターレンズ12、λ/2波長板35、偏光分離素子36、ミラー37、マスク38(開口部材)、ミラー39、マスク40(開口部材)、及び偏光分離素子41を備える。さらに、第8実施形態に係る照明光学系404は、第1実施形態と同様に、ダイクロイックミラー16、リレー光学系17、走査部18、レンズ19、レンズ20、及び対物レンズ21を備える。なお、対物レンズ21の光軸21aは、照明光学系404の光軸404aと一致している。 The illumination optical system 404 according to the eighth embodiment includes a collimator lens 12, a λ/2 wavelength plate 35, a polarization separation element 36, a mirror 37, a mask 38 (aperture member), a mirror 39, on the light emission side of the optical fiber 11. It includes a mask 40 (opening member) and a polarization separating element 41. Further, the illumination optical system 404 according to the eighth embodiment includes the dichroic mirror 16, the relay optical system 17, the scanning unit 18, the lens 19, the lens 20, and the objective lens 21 as in the first embodiment. The optical axis 21a of the objective lens 21 coincides with the optical axis 404a of the illumination optical system 404.
 光ファイバー11から出射した励起光L1は、コリメーターレンズ12によってほぼ平行光に変換され、λ/2波長板35に入射する。λ/2波長板35を通った励起光L1は、第1方向の直線偏光である励起光L1c、および第2方向の直線偏光である励起光L1dを含む。λ/2波長板35は、励起光L1cの光量と励起光L1dの光量とが所定の比率になるように、その光学軸(進相軸、遅相軸)の方向が設定される。 The excitation light L1 emitted from the optical fiber 11 is converted into substantially parallel light by the collimator lens 12 and enters the λ/2 wavelength plate 35. The excitation light L1 that has passed through the λ / 2 wave plate 35 includes the excitation light L1c that is linearly polarized light in the first direction and the excitation light L1d that is linearly polarized light in the second direction. The λ/2 wave plate 35 has its optical axis (fast axis, slow axis) direction set such that the light quantity of the pump light L1c and the light quantity of the pump light L1d have a predetermined ratio.
 λ/2波長板35を通った励起光L1(励起光L1cおよび励起光L1d)は、偏光分離素子36に入射する。偏光分離素子36は、コリメーターレンズ12の光軸12aに対して傾いた偏光分離膜36aを有する。偏光分離膜36aは、第1方向の直線偏光が反射し、第2方向の直線偏光が透過する特性を有する。偏光分離素子36は、例えば、偏光ビームスプリッタプリズム(PBSプリズム)である。上記の第1方向の直線偏光は、偏光分離膜36aに対するS偏光である。上記の第2方向の直線偏光は、偏光分離膜36aに対するP偏光である。 The excitation light L1 (excitation light L1c and excitation light L1d) that has passed through the λ / 2 wave plate 35 is incident on the polarization separation element 36. The polarization separation element 36 has a polarization separation film 36a tilted with respect to the optical axis 12a of the collimator lens 12. The polarization separation film 36a has a characteristic that linearly polarized light in the first direction is reflected and linearly polarized light in the second direction is transmitted. The polarization separating element 36 is, for example, a polarization beam splitter prism (PBS prism). The linearly polarized light in the first direction is S polarized light with respect to the polarization separation film 36a. The linearly polarized light in the second direction is P-polarized light with respect to the polarization separation film 36a.
 偏光分離膜36aに対するS偏光である励起光L1cは、偏光分離膜36aで反射し、ミラー37を介してマスク38に入射する。偏光分離膜36aに対するP偏光である励起光L1dは、偏光分離膜36aを透過し、ミラー39を介してマスク40に入射する。マスク38およびマスク40は、蛍光物質を励起する励起光を複数の光束に分割する光束分割部である。マスク38およびマスク40については、後に図18を参照して説明する。 The excitation light L1c, which is S-polarized light with respect to the polarization separation membrane 36a, is reflected by the polarization separation membrane 36a and is incident on the mask 38 via the mirror 37. The P-polarized excitation light L1d for the polarization separation film 36a passes through the polarization separation film 36a and enters the mask 40 via the mirror 39. The mask 38 and the mask 40 are luminous flux dividing portions that divide the excitation light that excites the fluorescent substance into a plurality of luminous fluxes. The mask 38 and the mask 40 will be described later with reference to FIG.
 マスク38を通った励起光L1cおよびマスク40を通った励起光L1dは、それぞれ、偏光分離素子41に入射する。偏光分離素子41は、励起光L1cの光路および励起光L1dの光路に対して傾いた偏光分離膜41aを有する。偏光分離膜41aは、第1方向の直線偏光が反射し、第2方向の直線偏光が透過する特性を有する。偏光分離素子41は、例えば、偏光ビームスプリッタプリズム(PBSプリズム)である。上記の第1方向の直線偏光は、偏光分離膜41aに対するS偏光である。上記の第2方向の直線偏光は、偏光分離膜41aに対するP偏光である。 The excitation light L1c that has passed through the mask 38 and the excitation light L1d that has passed through the mask 40 respectively enter the polarization separation element 41. The polarization separation element 41 has a polarization separation membrane 41a inclined with respect to the optical path of the excitation light L1c and the optical path of the excitation light L1d. The polarization separation film 41a has a characteristic that linearly polarized light in the first direction is reflected and linearly polarized light in the second direction is transmitted. The polarization separating element 41 is, for example, a polarization beam splitter prism (PBS prism). The linearly polarized light in the first direction is S polarized light with respect to the polarization separation film 41a. The linearly polarized light in the second direction is P polarized light with respect to the polarization separation film 41a.
 励起光L1cは、偏光分離膜41aに対してS偏光になっており、偏光分離膜41aで反射してダイクロイックミラー16に入射する。励起光L1dは、偏光分離膜41aに対するP偏光になっており、偏光分離膜41aを透過してダイクロイックミラー16に入射する。なお、偏光分離素子36および偏光分離素子41の一方または双方は、PBSプリズムでなくてもよい。偏光分離素子36および偏光分離素子41の一方または双方は、TE偏光とTM偏光とで反射、透過が異なるフォトニック結晶などでもよい。 The excitation light L1c is S-polarized with respect to the polarization separation film 41a, is reflected by the polarization separation film 41a, and enters the dichroic mirror 16. The excitation light L1d is P-polarized with respect to the polarization separation film 41a, passes through the polarization separation film 41a, and enters the dichroic mirror 16. Note that one or both of the polarization separation element 36 and the polarization separation element 41 may not be the PBS prism. One or both of the polarization separating element 36 and the polarization separating element 41 may be a photonic crystal having different reflection and transmission between TE polarized light and TM polarized light.
 図18は、第8実施形態に係るマスクおよび励起光の偏光状態を示す図である。図18(A)において、Xc方向、Yc方向、Zc方向は、それぞれ、試料面Sa(図17参照)におけるX方向、Y方向、Z方向に対応する方向である。マスク38は、開口38aおよび開口38bを有する。開口38aおよび開口38bは、Xc方向に並んでいる。開口38aおよび開口38bは、例えば円形であるが、円形以外の形状でもよい。マスク38は、対物レンズ21の瞳面P0と光学的に共役な瞳共役面の位置またはその近傍に配置される。 FIG. 18 is a diagram showing the mask and the polarization state of the excitation light according to the eighth embodiment. In FIG. 18A, the Xc direction, the Yc direction, and the Zc direction are the directions corresponding to the X direction, the Y direction, and the Z direction on the sample surface Sa (see FIG. 17), respectively. The mask 38 has an opening 38a and an opening 38b. The openings 38a and 38b are arranged in the Xc direction. The openings 38a and 38b are, for example, circular, but may have shapes other than circular. The mask 38 is arranged at or near the position of a pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
 図18(B)において、Xd方向、Yd方向、Zd方向は、それぞれ、試料面Sa(図17参照)におけるX方向、Y方向、Z方向に対応する方向である。マスク40は、開口40aおよび開口40bを有する。開口40aおよび開口40bは、Yd方向に並んでいる。開口40aおよび開口40bは、例えば円形であるが、円形以外の形状でもよい。マスク40は、対物レンズ21の瞳面P0と光学的に共役な瞳共役面の位置またはその近傍に配置される。マスク38およびマスク40において、対物レンズ21の瞳面P0と光学的に共役な瞳共役面の近傍とは、瞳共役面を含む領域のうち励起光L1が平行光線と見なせる範囲である。例えば、励起光L1がガウスビームの場合は、ビームウェストの位置からレイリー長の1/10以内の範囲であれば十分に平行光線と見なすことが出来る。レイリー長は励起光L1の波長をλ、ビームウェスト半径をwとしたとき、πw /λで与えられる。例えば、励起光L1の波長が1μm、ビームウェスト半径が1mmの時、レイリー長はおよそ3mとなり、マスク38またはマスク40は、対物レンズ21の瞳面P0と光学的に共役な瞳共役面の近傍300mm以内に配置されてもよい。マスク38またはマスク40は、瞳面P0またはその近傍に配置されてもよい。 In FIG. 18B, the Xd direction, the Yd direction, and the Zd direction are the directions corresponding to the X direction, the Y direction, and the Z direction on the sample surface Sa (see FIG. 17), respectively. The mask 40 has an opening 40a and an opening 40b. The openings 40a and 40b are arranged in the Yd direction. The openings 40a and 40b are, for example, circular, but may have shapes other than circular. The mask 40 is arranged at or near the position of the pupil conjugate surface that is optically conjugate with the pupil surface P0 of the objective lens 21. In the mask 38 and the mask 40, the vicinity of the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21 is a range in which the excitation light L1 can be regarded as a parallel light ray in a region including the pupil conjugate plane. For example, when the excitation light L1 is a Gaussian beam, it can be sufficiently regarded as a parallel light ray within a range within 1/10 of the Rayleigh length from the beam waist position. Rayleigh length of the wavelength of the excitation light L1 lambda, when the beam waist radius was w 0, is given by πw 0 2 / λ. For example, when the wavelength of the excitation light L1 is 1 μm and the beam waist radius is 1 mm, the Rayleigh length is about 3 m, and the mask 38 or the mask 40 is near the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21. It may be arranged within 300 mm. The mask 38 or the mask 40 may be arranged at or near the pupil plane P0.
 図18(C)において、符号AR2aは、対物レンズ21の瞳面P0において、マスク38の開口38aを通った励起光L1cが入射する領域である。符号AR2bは、瞳面P0において、マスク38の開口38bを通った励起光L1cが入射する領域である。領域AR2a、領域AR2bにおける矢印は、入射する励起光L1cの偏光方向を示す。領域AR2aと領域AR2bとは、X方向に並んでいる。 In FIG. 18C, the reference numeral AR2a is a region where the excitation light L1c passing through the opening 38a of the mask 38 is incident on the pupil surface P0 of the objective lens 21. Reference numeral AR2b is a region on the pupil surface P0 where the excitation light L1c passing through the opening 38b of the mask 38 is incident. The arrows in the regions AR2a and AR2b indicate the polarization directions of the incident excitation light L1c. The area AR2a and the area AR2b are arranged in the X direction.
 領域AR2aに入射する励起光L1cおよび領域AR2bに入射する励起光L1cは、それぞれ、Y方向の直線偏光である。領域AR2aに入射する励起光L1cと領域AR2bに入射する励起光L1cとは、偏光方向が同じであり、試料面Sa(図17参照)において互いに干渉する。この干渉によって、試料面Saには、周期方向がX方向の干渉縞が形成される。試料面Saに対する励起光L1cの入射面は、XZ面であり、励起光L1cは、試料SにS偏光で入射する。 The excitation light L1c incident on the region AR2a and the excitation light L1c incident on the region AR2b are linearly polarized light in the Y direction, respectively. The excitation light L1c incident on the region AR2a and the excitation light L1c incident on the region AR2b have the same polarization direction and interfere with each other on the sample surface Sa (see FIG. 17). Due to this interference, interference fringes whose periodic direction is the X direction are formed on the sample surface Sa. The incident surface of the excitation light L1c with respect to the sample surface Sa is the XZ surface, and the excitation light L1c is incident on the sample S with S polarization.
 また、図18(C)において、符号AR2cは、瞳面P0において、マスク40の開口40aを通った励起光L1dが入射する領域である。符号AR2dは、瞳面P0において、マスク40の開口40bを通った励起光L1dが入射する領域である。領域AR2c、領域AR2dにおける矢印は、入射する励起光L1dの偏光方向を示す。領域AR2cと領域AR2dとは、Y方向に並んでいる。 Further, in FIG. 18C, reference numeral AR2c is a region on the pupil plane P0 on which the excitation light L1d passing through the opening 40a of the mask 40 is incident. Reference numeral AR2d is a region on the pupil plane P0 on which the excitation light L1d passing through the opening 40b of the mask 40 is incident. The arrows in the regions AR2c and AR2d indicate the polarization direction of the incident excitation light L1d. The area AR2c and the area AR2d are arranged in the Y direction.
 領域AR2cに入射する励起光L1dおよび領域AR2dに入射する励起光L1dは、それぞれ、X方向の直線偏光である。領域AR2cに入射する励起光L1dと領域AR2dに入射する励起光L1dとは、偏光方向が同じであり、試料面Sa(図18参照)において互いに干渉する。この干渉によって、試料面Saには、周期方向がY方向の干渉縞が形成される。試料面Saに対する励起光L1dの入射面は、YZ面であり、励起光L1cは、試料SにS偏光で入射する。 The excitation light L1d incident on the area AR2c and the excitation light L1d incident on the area AR2d are each linearly polarized in the X direction. The excitation light L1d entering the area AR2c and the excitation light L1d entering the area AR2d have the same polarization direction and interfere with each other on the sample surface Sa (see FIG. 18). Due to this interference, interference fringes whose periodic direction is the Y direction are formed on the sample surface Sa. The incident surface of the excitation light L1d on the sample surface Sa is the YZ plane, and the excitation light L1c is incident on the sample S as S-polarized light.
 図17の説明に戻り、試料面Saには、励起光L1cの干渉による干渉縞と、励起光L1dの干渉による干渉縞とを合成した干渉縞L2が形成される。なお、励起光L1cと励起光L1dとで偏光方向が互いにほぼ直交するので、励起光L1cと励起光L1dとの干渉が抑制される。 Returning to the explanation of FIG. 17, on the sample surface Sa, an interference fringe L2 is formed by synthesizing an interference fringe due to the interference of the excitation light L1c and an interference fringe due to the interference of the excitation light L1d. Since the polarization directions of the excitation light L1c and the excitation light L1d are substantially orthogonal to each other, interference between the excitation light L1c and the excitation light L1d is suppressed.
 検出装置6は、試料Sからの蛍光L3を、検出光学系5を介して検出する。検出装置6は、第1実施形態で説明したように、Xb方向とYb方向との2方向に複数の検出部6aが配列されたイメージセンサである。画像処理部7は、検出装置6の検出結果に基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。 The detection device 6 detects the fluorescence L3 from the sample S via the detection optical system 5. As described in the first embodiment, the detection device 6 is an image sensor in which a plurality of detection units 6a are arranged in two directions, an Xb direction and a Yb direction. The image processing unit 7 generates an image (for example, a super-resolution image) by any of the processes described in the first to fourth embodiments based on the detection result of the detection device 6.
 第8実施形態では、照明瞳が瞳面上で4極(4つの領域)に分かれる形態であることを反映して、試料面SaにはX方向の干渉縞とY方向の干渉縞が同時に生じる。第3実施形態で説明した画像処理位相シフト処理を適用する場合、上記の式(13)等では、0次成分、±1次成分、及び±2次成分の5成分を用いていたが、本実施形態では、0次成分、X方向の+1次成分、X方向の-1次成分、X方向の+2次成分、X方向の-2次成分、Y方向の+1次成分、Y方向の-1次成分、Y方向の+2次成分、及びY方向の-2次成分の9成分を用いればよい。第4実施形態で説明した周波数空間でのデコンボリューションを適用する場合、上記の式(28)等では、0次成分、±1次成分、及び±2次成分の5成分を用いていたが、本実施形態では、0次成分、X方向の+1次成分、X方向の-1次成分、X方向の+2次成分、X方向の-2次成分、Y方向の+1次成分、Y方向の-1次成分、Y方向の+2次成分、及びY方向の-2次成分の9成分を用いればよい。なお、2光子励起の場合に限らず、多光子励起の場合にもXY方向の高次成分を用いればよい。 In the eighth embodiment, reflecting the fact that the illumination pupil is divided into four poles (four regions) on the pupil plane, interference fringes in the X direction and interference fringes in the Y direction simultaneously occur on the sample surface Sa. .. When the image processing phase shift processing described in the third embodiment is applied, the five components of the 0th-order component, the ± 1st-order component, and the ± 2nd-order component are used in the above equation (13) and the like. In the embodiment, the 0th-order component, the + 1st-order component in the X direction, the -1st-order component in the X direction, the + 2nd-order component in the X direction, the -2nd-order component in the X direction, the + 1st-order component in the Y direction, and -1 in the Y direction. Nine components of the second component, the +secondary component in the Y direction, and the −secondary component in the Y direction may be used. When the deconvolution in the frequency space described in the fourth embodiment is applied, the above equation (28) and the like use five components of the 0th-order component, the ± 1st-order component, and the ± 2nd-order component. In the present embodiment, the 0th-order component, the + 1st-order component in the X direction, the -1st-order component in the X direction, the +2nd-order component in the X direction, the -2nd-order component in the X direction, the + 1st-order component in the Y direction, and-in the Y direction. It is only necessary to use nine components, which are the primary component, the +secondary component in the Y direction, and the −secondary component in the Y direction. The high-order components in the XY directions may be used not only in the case of two-photon excitation but also in the case of multiphoton excitation.
 第8実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the eighth embodiment, the effective PSFs of the images obtained by the detection units 6a can be aligned by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第9実施形態]
 第9実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図19は、第9実施形態に係る顕微鏡501を示す図である。第9実施形態に係る顕微鏡501は、第8実施形態に係る顕微鏡401と同様の構成である。第9実施形態に係る顕微鏡501は、図13で説明したλ/2波長板30および光路回転部31を備える。光路回転部31は、駆動部32によって駆動され、照明光学系404の光軸の周りで回転する。光路回転部31が回転すると、励起光L1cの光路および励起光L1dの光路は、それぞれ、照明光学系404の光軸の周りで回転する。その結果、試料面Saに形成される干渉縞L2の周期方向は、Z方向の周りで回転する。
[Ninth Embodiment]
The ninth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 19 is a diagram showing a microscope 501 according to the ninth embodiment. The microscope 501 according to the ninth embodiment has the same configuration as the microscope 401 according to the eighth embodiment. The microscope 501 according to the ninth embodiment includes the λ/2 wave plate 30 and the optical path rotating unit 31 described in FIG. 13. The optical path rotating unit 31 is driven by the driving unit 32 and rotates around the optical axis of the illumination optical system 404. When the optical path rotating unit 31 rotates, the optical path of the excitation light L1c and the optical path of the excitation light L1d respectively rotate around the optical axis of the illumination optical system 404. As a result, the periodic direction of the interference fringe L2 formed on the sample surface Sa rotates around the Z direction.
 図20は、第9実施形態に係る励起光の偏光状態を示す図である。図20(A)において、瞳面P0上で励起光L1cが入射する領域AR4aは、X方向に並んでいる。また、瞳面P0上で励起光L1dが入射する領域AR4bおよび領域AR4bは、Y方向に並んでいる。 FIG. 20 is a diagram showing the polarization state of the excitation light according to the ninth embodiment. In FIG. 20A, the regions AR4a on which the excitation light L1c is incident on the pupil surface P0 are aligned in the X direction. Further, the area AR4b and the area AR4b on which the excitation light L1d is incident on the pupil plane P0 are arranged in the Y direction.
 図20(B)は、図20(A)の状態から、ダブプリズム(図19の光路回転部31)およびλ/2波長板30が22.5°回転した状態に相当する。図20(B)において、瞳面P0上で励起光L1cが入射する領域AR4aは、X方向から45°回転した方向に並んでいる。この状態において、試料面Saにおける励起光L1cの干渉縞の周期方向は、X方向から45°回転した方向になる。また、瞳面P0上で励起光L1dが入射する領域AR4bは、Y方向から45°回転した方向に並んでいる。この状態において、試料面Saにおける励起光L1dの干渉縞の周期方向は、Y方向から45°回転した方向になる。 FIG. 20(B) corresponds to a state in which the Dove prism (optical path rotating unit 31 in FIG. 19) and the λ/2 wave plate 30 are rotated by 22.5° from the state in FIG. 20(A). In FIG. 20B, the regions AR4a on which the excitation light L1c is incident on the pupil surface P0 are arranged in a direction rotated by 45 ° from the X direction. In this state, the periodic direction of the interference fringes of the excitation light L1c on the sample surface Sa is a direction rotated by 45° from the X direction. Further, the regions AR4b on the pupil plane P0 on which the excitation light L1d is incident are arranged in the direction rotated by 45° from the Y direction. In this state, the periodic direction of the interference fringes of the excitation light L1d on the sample surface Sa is a direction rotated by 45° from the Y direction.
 図19の説明に戻り、本実施形態において、検出装置6は、干渉縞L2の周期方向が変更される前後のそれぞれにおいて、試料Sからの蛍光L3を検出する。画像処理部7は、干渉縞L2の周期方向の変更前における検出装置6の検出結果と、干渉縞L2の周期方向の変更後における検出装置6の検出結果とに基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。なお、光路回転部31は、図14で説明したように、ダイクロイックミラー16と検出装置6との間の光路に配置されてもよい。 Returning to the description of FIG. 19, in the present embodiment, the detection device 6 detects the fluorescence L3 from the sample S before and after the cycle direction of the interference fringe L2 is changed. The image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringes L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringes L2. An image (eg, super-resolution image) is generated by any of the processes described in the fourth embodiment. The optical path rotating unit 31 may be arranged in the optical path between the dichroic mirror 16 and the detection device 6 as described with reference to FIG.
 第9実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the ninth embodiment, the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第10実施形態]
 第10実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。第9実施形態に係る顕微鏡501は、光路回転部31によって干渉縞L2の周期方向を変更するが、干渉縞L2の周期方向を変更する縞方向変更部は、光路回転部31と別の態様でもよい。
[Tenth Embodiment]
The tenth embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. The microscope 501 according to the ninth embodiment changes the periodic direction of the interference fringes L2 by the optical path rotating unit 31, but the fringe direction changing unit that changes the periodic direction of the interference fringes L2 is also different from the optical path rotating unit 31. Good.
 図21は、第10実施形態に係る顕微鏡601を示す図である。図22は、第10実施形態に係るマスクを示す図である。第10実施形態に係る顕微鏡601は、第8実施形態に係る顕微鏡401と同様の構成である。第10実施形態に係る顕微鏡601は、駆動部45および駆動部46を備える。マスク38は、照明光学系404の光軸の周りで回転可能である。マスク38は、駆動部45に駆動されて、回転する(図22(A)参照)。図22(A)において、マスク38は、時計周りに45°回転している。 FIG. 21 is a diagram showing a microscope 601 according to the tenth embodiment. FIG. 22 is a diagram showing a mask according to the tenth embodiment. The microscope 601 according to the tenth embodiment has the same configuration as the microscope 401 according to the eighth embodiment. The microscope 601 according to the tenth embodiment includes a drive unit 45 and a drive unit 46. The mask 38 is rotatable around the optical axis of the illumination optical system 404. The mask 38 is driven by the drive unit 45 to rotate (see FIG. 22A). In FIG. 22(A), the mask 38 is rotated clockwise by 45°.
 また、マスク40は、照明光学系404の光軸の周りで回転可能である。マスク40は、駆動部46に駆動されて、回転する(図22(B)参照)。駆動部46は、駆動部45がマスク38を回転させる角度と同じ角度だけ、マスク40を回転させる。図22(B)において、マスク40は、時計周りに45°回転している。これにより、試料面Saにおける干渉縞L2の周期方向は、Z方向の周りで45°回転する。 Also, the mask 40 is rotatable around the optical axis of the illumination optical system 404. The mask 40 is driven by the drive unit 46 to rotate (see FIG. 22B). The drive unit 46 rotates the mask 40 by the same angle as the drive unit 45 rotates the mask 38. In FIG. 22B, the mask 40 is rotated clockwise by 45°. As a result, the periodic direction of the interference fringes L2 on the sample surface Sa rotates 45° around the Z direction.
 偏光分離素子41とダイクロイックミラー16との間の光路には、λ/2波長板48が設けられる。λ/2波長板48は、駆動部49によって駆動され、照明光学系404の光軸の周りで回転する。λ/2波長板48および駆動部49は、励起光L1cおよび励起光L1dのそれぞれについて、S偏光で試料Sに入射するように調整する。 A λ/2 wavelength plate 48 is provided in the optical path between the polarization separation element 41 and the dichroic mirror 16. The λ/2 wave plate 48 is driven by the drive unit 49 and rotates around the optical axis of the illumination optical system 404. The λ/2 wave plate 48 and the drive unit 49 adjust the excitation light L1c and the excitation light L1d so that they are incident on the sample S as S-polarized light.
 本実施形態において、検出装置6は、第9実施形態と同様、干渉縞L2の周期方向が変更される前後のそれぞれにおいて、試料Sからの蛍光L3を検出する。画像処理部7は、干渉縞L2の周期方向の変更前における検出装置6の検出結果と、干渉縞L2の周期方向の変更後における検出装置6の検出結果とに基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。 In the present embodiment, the detection device 6 detects the fluorescence L3 from the sample S before and after the period direction of the interference fringes L2 is changed, as in the ninth embodiment. The image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringe L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringe L2. An image (eg, super-resolution image) is generated by any of the processes described in the fourth embodiment.
 第10実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the tenth embodiment, the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
[第11実施形態]
 第11実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図23は、第11実施形態に係る顕微鏡701を示す図である。第11実施形態に係る顕微鏡701は、第1実施形態に係る顕微鏡1と同様の構成である。第11実施形態に係る顕微鏡701は、リレー光学系47を備える。リレー光学系47は、照明光学系4の一部であり、かつ検出光学系5の一部である。リレー光学系47は、走査部18において、偏向ミラー18aと偏向ミラー18bとの間の光路に配置される。偏向ミラー18bは、対物レンズ21の瞳面P0と光学的に共役な第1瞳共役面とほぼ同じ位置に配置される。リレー光学系47は、リレー光学系47とリレー光学系17との間に上記の第1瞳共役面と光学的に共役な第2瞳共役面が形成されるように設けられる。偏向ミラー18aは、上記の第2瞳共役面とほぼ同じ位置に配置される。
[11th Embodiment]
The eleventh embodiment will be described. In the present embodiment, the same components as those in the above-described embodiment will be designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 23 is a diagram showing a microscope 701 according to the eleventh embodiment. The microscope 701 according to the eleventh embodiment has the same configuration as the microscope 1 according to the first embodiment. The microscope 701 according to the eleventh embodiment includes a relay optical system 47. The relay optical system 47 is a part of the illumination optical system 4 and a part of the detection optical system 5. The relay optical system 47 is arranged in the scanning unit 18 in the optical path between the deflection mirror 18a and the deflection mirror 18b. The deflection mirror 18b is arranged at substantially the same position as the first pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21. The relay optical system 47 is provided so that a second pupil conjugate surface that is optically conjugate with the first pupil conjugate surface is formed between the relay optical system 47 and the relay optical system 17. The deflection mirror 18a is arranged at substantially the same position as the second pupil conjugate plane described above.
 本実施形態において、検出装置6は、第1実施形態と同様、干渉縞L2の周期方向が変更される前後のそれぞれにおいて、試料Sからの蛍光L3を検出する。画像処理部7は、干渉縞L2の周期方向の変更前における検出装置6の検出結果と、干渉縞L2の周期方向の変更後における検出装置6の検出結果とに基づいて、第1実施形態から第4実施形態で説明したいずれかの処理によって画像(例、超解像画像)を生成する。本実施形態において、第1実施形態に係る顕微鏡1にリレー光学系47が設けられる構成を例示したが、これに限られるものではなく、第2~第10実施形態に係る顕微鏡にリレー光学系47が設けられてもよい。 In the present embodiment, the detection device 6 detects the fluorescence L3 from the sample S before and after the period direction of the interference fringe L2 is changed, as in the first embodiment. The image processing unit 7 starts from the first embodiment based on the detection result of the detection device 6 before the change of the periodic direction of the interference fringes L2 and the detection result of the detection device 6 after the change of the periodic direction of the interference fringes L2. An image (eg, super-resolution image) is generated by any of the processes described in the fourth embodiment. In the present embodiment, the configuration in which the relay optical system 47 is provided in the microscope 1 according to the first embodiment is illustrated, but the present invention is not limited to this, and the relay optical system 47 is provided in the microscopes according to the second to tenth embodiments. May be provided.
 第11実施形態によれば、第1実施形態から第4実施形態で説明したいずれかの処理によって、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態から第4実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 According to the eleventh embodiment, the effective PSF of the image obtained for each detection unit 6a can be made uniform by any of the processes described in the first to fourth embodiments. Therefore, it is possible to generate an image (for example, a super-resolution image) with high resolution while ensuring S/N. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first to fourth embodiments, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
 上述の各実施形態において、走査部18は、上述の形態に限定されない。例えば、ステージ2は、対物レンズ21に対してY方向に移動するYステージを含み、走査部18は、偏向ミラー18bの代わりにYステージを含んでもよい。この場合、走査部18は、偏向ミラー18aによって試料Sを励起光L1でX方向に走査し、Yステージの移動によって試料Sを励起光L1でY方向に走査してもよい。この場合、偏向ミラー18aは、対物レンズ21の瞳面P0と光学的に共役な瞳共役面とほぼ同じ位置に配置されてもよい。 In each of the above-described embodiments, the scanning unit 18 is not limited to the above-described form. For example, the stage 2 may include a Y stage that moves in the Y direction with respect to the objective lens 21, and the scanning unit 18 may include a Y stage instead of the deflection mirror 18b. In this case, the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by the deflection mirror 18a, and may scan the sample S with the excitation light L1 in the Y direction by moving the Y stage. In this case, the deflection mirror 18a may be arranged at substantially the same position as the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
 また、ステージ2は、対物レンズ21に対してX方向に移動するXステージを含み、走査部18は、偏向ミラー18aの代わりにXステージを含んでもよい。この場合、走査部18は、上記のXステージの移動によって試料Sを励起光L1でX方向に走査し、偏向ミラー18bによって試料Sを励起光L1でY方向に走査してもよい。この場合、偏向ミラー18bは、対物レンズ21の瞳面P0と光学的に共役な瞳共役面とほぼ同じ位置に配置されてもよい。 Further, the stage 2 may include an X stage that moves in the X direction with respect to the objective lens 21, and the scanning unit 18 may include an X stage instead of the deflection mirror 18a. In this case, the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by moving the X stage, and may scan the sample S with the excitation light L1 in the Y direction by the deflection mirror 18b. In this case, the deflection mirror 18b may be arranged at substantially the same position as the pupil conjugate plane optically conjugate with the pupil plane P0 of the objective lens 21.
 また、ステージ2は、対物レンズ21に対してX方向に移動するXステージと、対物レンズ21に対してY方向に移動するYステージとを含み、走査部18は、上記のXステージおよびYステージを含んでもよい。この場合、走査部18は、上記のXステージの移動によって試料Sを励起光L1でX方向に走査し、上記のYステージの移動によって試料Sを励起光L1でY方向に走査してもよい。 Further, the stage 2 includes an X stage that moves in the X direction with respect to the objective lens 21 and a Y stage that moves in the Y direction with respect to the objective lens 21, and the scanning unit 18 includes the X stage and the Y stage described above. May be included. In this case, the scanning unit 18 may scan the sample S with the excitation light L1 in the X direction by moving the X stage, and may scan the sample S with the excitation light L1 in the Y direction by moving the Y stage. ..
 上述の各実施形態において、試料Sを干渉縞で走査する走査方向がX方向およびY方向の2方向であり、照明光学系は、試料Sを干渉縞で2次元的に走査する。なお、試料Sを干渉縞で走査する走査方向は、X方向、Y方向、及びZ方向の3方向でもよい。例えば、各実施形態に係る顕微鏡は、試料Sを干渉縞でX方向およびY方向に走査して2D画像を取得する2D処理を実行し、例えば、対物レンズ21およびステージ2の少なくとも一方を移動させて、干渉縞が生成されるZ方向の位置を変更して2D処理を繰り返すことで、試料Sを干渉縞で三次元的に走査してもよい。各実施形態に係る顕微鏡は、試料Sを干渉縞で三次元的に走査することで、Z方向の位置が異なる複数の2D画像を取得し、3D画像(例、Z-stack)を生成してもよい。試料Sを干渉縞で三次元的に走査する場合、照明光学系4がX方向およびY方向に走査し、対物レンズ21およびステージ2の少なくとも一方の移動によってZ方向に走査してもよい。また、照明光学系4が試料Sを干渉縞で三次元的に走査してもよい。 In each of the above-described embodiments, the scanning direction for scanning the sample S with the interference fringes is two directions, the X direction and the Y direction, and the illumination optical system scans the sample S two-dimensionally with the interference fringes. The scanning direction in which the sample S is scanned with the interference fringes may be the X direction, the Y direction, and the Z direction. For example, the microscope according to each embodiment performs a 2D process of scanning the sample S with interference fringes in the X and Y directions to acquire a 2D image, for example, moving at least one of the objective lens 21 and the stage 2. The sample S may be three-dimensionally scanned with the interference fringes by changing the Z-direction position where the interference fringes are generated and repeating the 2D processing. The microscope according to each embodiment acquires a plurality of 2D images having different positions in the Z direction by three-dimensionally scanning the sample S with interference fringes, and generates a 3D image (eg, Z-stack). Good. When the sample S is three-dimensionally scanned with interference fringes, the illumination optical system 4 may scan in the X direction and the Y direction, and may scan in the Z direction by moving at least one of the objective lens 21 and the stage 2. The illumination optical system 4 may scan the sample S three-dimensionally with interference fringes.
 上述の各実施形態において、画像処理部7は、例えばコンピュータシステムを含む。画像処理部7は、記憶部に記憶されている画像処理プログラムを読み出し、この画像処理プログラムに従って各種の処理を実行する。この画像処理プログラムは、コンピュータに、検出装置6,106の検出結果に基づいて画像を生成することを実行させる。上記の検出装置6,106の検出結果は、光源からの光を複数の光束に分割し、複数の光束の少なくとも一部の光束の干渉によって生成される干渉縞によって、試料を複数の方向において走査し、試料からの光が入射する検出光学系を介して、複数の検出部を含む検出装置によって、試料からの光を検出して得られる。 In each of the above embodiments, the image processing unit 7 includes, for example, a computer system. The image processing unit 7 reads out the image processing program stored in the storage unit and executes various processes according to the image processing program. This image processing program causes a computer to generate an image based on the detection results of the detection devices 6 and 106. The detection results of the detection devices 6 and 106 are obtained by dividing the light from the light source into a plurality of light beams, and scanning the sample in a plurality of directions by the interference fringes generated by the interference of at least a part of the light beams. Then, the light from the sample is detected by the detection device including the plurality of detection units via the detection optical system on which the light from the sample is incident.
[変形例]
 以下、変形例について説明する。上述の実施形態と同様の構成については、適宜、同じ符号を付してその説明を省略あるいは簡略化する。図24および図25は、変形例に係る照明瞳を示す図である。
[Modification]
Hereinafter, a modified example will be described. The same reference numerals are given to the same configurations as those of the above-described embodiments, and the description thereof will be omitted or simplified. 24 and 25 are diagrams showing an illumination pupil according to a modified example.
 照明瞳は、図2において2極であり、図18において4極であるが、図24(A)において3極である。符号AR5aから符号AR5cは、それぞれ、瞳面P0において励起光が入射する領域である。この場合、領域AR5aに入射した励起光と領域AR5bに入射した励起光との第1干渉縞と、領域AR5bに入射した励起光と領域AR5cに入射した励起光との第2干渉縞と、領域AR5cに入射した励起光と領域AR5aに入射した励起光との第3干渉縞とが形成される。試料面Saには、上記の第1干渉縞と第2干渉縞と第3干渉縞とを合成した干渉縞が形成される。この干渉縞は、第1干渉縞の周期方向と、第2干渉縞の周期方向と、第3干渉縞の周期方向とがそれぞれ周期方向であり、周期方向が3方向であるので、3方向において超解像効果を得ることができる。なお、照明瞳は、5以上の極を有してもよい。 The illumination pupil has two poles in FIG. 2, four poles in FIG. 18, but three poles in FIG. 24 (A). Reference numerals AR5a to AR5c are regions on the pupil plane P0 on which the excitation light enters. In this case, the first interference fringe between the excitation light incident on the region AR5a and the excitation light incident on the region AR5b, the second interference fringe between the excitation light incident on the region AR5b and the excitation light incident on the region AR5c, and the region. Third interference fringes of the excitation light incident on the AR5c and the excitation light incident on the area AR5a are formed. On the sample surface Sa, interference fringes that are a combination of the first interference fringes, the second interference fringes, and the third interference fringes are formed. In the interference fringes, the periodic direction of the first interference fringes, the periodic direction of the second interference fringes, and the periodic direction of the third interference fringes are the respective periodic directions, and the periodic directions are three directions. A super-resolution effect can be obtained. Note that the illumination pupil may have 5 or more poles.
 また、照明瞳は、図2等において円形であるが、その他の形状でもよい。図24(B)および図24(C)において、符号AR6は、励起光が入射する領域である。図24(B)の領域AR6は、対物レンズ21の光軸21aを中心とする円の一部である円AR6aと、円弧AR6aの両端を結ぶ直線AR6bとに囲まれる領域である。また、図24(C)の領域AR6は、対物レンズ21の光軸21aを中心とする円の一部である円弧と、円弧AR6aと対称な曲線AR6cとに囲まれる領域である。 Also, the illumination pupil is circular in FIG. 2 and the like, but may have other shapes. In FIG. 24(B) and FIG. 24(C), the code|symbol AR6 is an area|region which excitation light injects. The area AR6 in FIG. 24B is an area surrounded by a circle AR6a which is a part of a circle centered on the optical axis 21a of the objective lens 21 and a straight line AR6b connecting both ends of the arc AR6a. The area AR6 in FIG. 24C is an area surrounded by an arc that is a part of a circle centered on the optical axis 21a of the objective lens 21 and a curved line AR6c that is symmetrical to the arc AR6a.
 図24(B)あるいは図24(C)の形状の照明瞳である場合、円形の照明瞳である場合と比較して、干渉縞が形成されない方向の分解能が良くなり、セクショニングも良くなる。また、図24(B)の形状の照明瞳である場合、図24(C)の形状の照明瞳である場合と比較して、干渉縞が形成されない方向の分解能が良くなり、セクショニングも良くなる。また、図24(C)の形状の照明瞳である場合、図24(B)の形状の照明瞳である場合と比較して、干渉縞が形成される方向の分解能がよい。 In the case of the illumination pupil having the shape of FIG. 24(B) or FIG. 24(C), the resolution in the direction in which the interference fringes are not formed is better and the sectioning is better than that in the case of the circular illumination pupil. Further, in the case of the illumination pupil having the shape of FIG. 24(B), the resolution in the direction in which the interference fringes are not formed is better and the sectioning is also better than that in the case of the illumination pupil of the shape of FIG. 24(C). .. Further, in the case of the illumination pupil having the shape of FIG. 24C, the resolution in the direction in which the interference fringes are formed is better than that in the case of the illumination pupil having the shape of FIG.
 図25(A)において、照明瞳は、図24(B)に示した形状の照明瞳を4極にした形態である。図25(B)において、照明瞳は、図24(C)に示した形状の照明瞳を4極にした形態である。なお、円形以外の形状の照明瞳である場合についても、励起光が入射する複数の領域の数(極の数)は、2以上の任意の数に設定される。また、瞳面P0において励起光が入射する複数の領域のうち、1つの領域の形状が他の領域の形状と異なってもよい。また、瞳面P0において励起光が入射する複数の領域のうち、1つの領域の寸法が他の領域の寸法と異なってもよい。また、瞳面P0において励起光が入射する複数の領域は、対物レンズ21の光軸21aに関して非対称に配置されてもよい。 In FIG. 25 (A), the illuminated pupil has a shape in which the illuminated pupil having the shape shown in FIG. 24 (B) has four poles. In FIG. 25 (B), the illuminated pupil has a shape in which the illuminated pupil having the shape shown in FIG. 24 (C) has four poles. Even in the case of the illumination pupil having a shape other than the circular shape, the number of the plurality of regions (the number of poles) on which the excitation light enters is set to an arbitrary number of 2 or more. In addition, the shape of one of the plurality of areas on the pupil plane P0 on which the excitation light is incident may be different from the shape of the other areas. Further, of the plurality of regions on the pupil plane P0 where the excitation light is incident, the size of one region may be different from the size of the other regions. Further, the plurality of regions in which the excitation light is incident on the pupil surface P0 may be arranged asymmetrically with respect to the optical axis 21a of the objective lens 21.
 照明瞳の各極の形状、寸法、及び配置は、例えば、図2に示したマスク15の開口の形状、寸法、及び配置を設計することで実現可能である。また、マスク15は、光を遮る領域が可変な機械式の絞り、あるいは空間光変調器(SLM)などでもよい。 The shape, dimensions, and arrangement of each pole of the illumination pupil can be realized, for example, by designing the shape, dimensions, and arrangement of the opening of the mask 15 shown in FIG. Further, the mask 15 may be a mechanical diaphragm having a variable light blocking area, a spatial light modulator (SLM), or the like.
 図26は、第1の変形例に係る顕微鏡711を示す図である。図26では、顕微鏡の変形例として、第1実施形態に係る顕微鏡1に適用した形態を示しているが、他の実施形態の顕微鏡にも適用可能である。図26において、照明光学系4は、光ファイバー11からダイクロイックミラー16へ向かう順に、コリメーターレンズ50、λ/2波長板51、レンズ52、回折格子53、レンズ54、及びマスク15を備える。コリメーターレンズ50は、光ファイバー11からの励起光L1をほぼ平行光に変換する。λ/2波長板51は、試料Sに入射する際の励起光L1の偏光状態を調整する。レンズ52は、励起光L1を回折格子53に集光する。 FIG. 26 is a diagram showing a microscope 711 according to the first modification. Although FIG. 26 shows a modification applied to the microscope 1 according to the first embodiment as a modification of the microscope, it can also be applied to microscopes of other embodiments. In FIG. 26, the illumination optical system 4 includes a collimator lens 50, a λ/2 wavelength plate 51, a lens 52, a diffraction grating 53, a lens 54, and a mask 15 in the order from the optical fiber 11 to the dichroic mirror 16. The collimator lens 50 converts the excitation light L1 from the optical fiber 11 into substantially parallel light. The λ/2 wave plate 51 adjusts the polarization state of the excitation light L1 when entering the sample S. The lens 52 concentrates the excitation light L1 on the diffraction grating 53.
 回折格子53は、励起光L1を回折によって複数の光束に分岐させる。回折格子53は、蛍光物質を多光子励起する励起光を複数の光束に分割する光束分割部である。回折格子53はレンズ52の焦点もしくは焦点近傍の位置に配置される。つまり、回折格子53は試料面Saと共役な面もしくはその近傍に配置される。焦点近傍とは、レンズ52で集光される光の焦点深度程度の範囲内のことである。例えば、レンズ52によって集光される光の波長が1μm、NAが0.03の場合、焦点深度は1mm程度となるため、回折格子53はレンズ52の焦点近傍1mm以内に配置されればよい。上記の複数の光束は、0次回折光、+1次回折光、及び-1次回折光を含む。レンズ54は、0次回折光、+1次回折光、及び-1次回折光をそれぞれほぼ平行光に変換する。マスク15は、0次回折光を遮光し、かつ、+1次回折光の少なくとも一部と-1次回折光の少なくとも一部とが通るように設けられる。このような形態においては、マスク15を透過する励起光L1の光量を増やすことができる。なお、回折格子53は、0次回折光が発生しないように設計されてもよい。また、マスク15を設けないような構成をとってもよい。また、回折格子53は複数の方向に回折光が生じるように設計されてもよい。その場合、マスク15を回転駆動することで特定方向の回折光のみを利用するように構成されてもよい。 The diffraction grating 53 splits the excitation light L1 into a plurality of light beams by diffraction. The diffraction grating 53 is a light beam splitting unit that splits the excitation light that multi-photon excites the fluorescent material into a plurality of light beams. The diffraction grating 53 is arranged at the focal point or a position near the focal point of the lens 52. That is, the diffraction grating 53 is arranged on the surface conjugate with the sample surface Sa or in the vicinity thereof. The vicinity of the focus is within the range of the depth of focus of the light condensed by the lens 52. For example, when the wavelength of light condensed by the lens 52 is 1 μm and the NA is 0.03, the depth of focus is about 1 mm, so the diffraction grating 53 may be arranged within 1 mm near the focus of the lens 52. The plurality of light fluxes include 0th-order diffracted light, +1st-order diffracted light, and −1st-order diffracted light. The lens 54 converts the 0th-order diffracted light, the +1st-order diffracted light, and the -1st-order diffracted light into substantially parallel lights, respectively. The mask 15 is provided so as to block the 0th-order diffracted light and pass at least a part of the +1st-order diffracted light and at least a part of the −1st-order diffracted light. In such a form, the light amount of the excitation light L1 that passes through the mask 15 can be increased. The diffraction grating 53 may be designed so that the 0th-order diffracted light is not generated. Further, a configuration may be adopted in which the mask 15 is not provided. Further, the diffraction grating 53 may be designed so that diffracted light is generated in a plurality of directions. In that case, the mask 15 may be rotationally driven to use only the diffracted light in a specific direction.
 図27および図28は、それぞれ、変形例に係る偏光調整部を示す図である。照明光学系4は、図1に示したダイクロイックミラー16などの反射部材によって光路が折れ曲がるが、図27、図28においては、照明光学系4を、光軸4aが直線になるように展開して示した。図27、図28において、Z方向は光軸4aと平行な方向であり、X方向およびY方向は、それぞれ、光軸4aと垂直な方向である。 27 and 28 are diagrams showing a polarization adjusting unit according to a modification, respectively. Although the optical path of the illumination optical system 4 is bent by the reflecting member such as the dichroic mirror 16 shown in FIG. 1, in FIGS. 27 and 28, the illumination optical system 4 is expanded so that the optical axis 4a becomes a straight line. Indicated. In FIGS. 27 and 28, the Z direction is a direction parallel to the optical axis 4a, and the X direction and the Y direction are directions perpendicular to the optical axis 4a, respectively.
 図27において、照明光学系4は、λ/4波長板61、マスク15、及びλ/4波長板62を含む。光ファイバー11から出射した励起光L1は、ほぼX方向の直線偏光であり、λ/4波長板61に入射する。なお、光ファイバー11とλ/4波長板61との間の光路に、透過軸がX方向の偏光子(例、偏光板)が設けられてもよい。 In FIG. 27, the illumination optical system 4 includes a λ/4 wavelength plate 61, a mask 15, and a λ/4 wavelength plate 62. The excitation light L1 emitted from the optical fiber 11 is linearly polarized in the X direction and is incident on the λ/4 wavelength plate 61. A polarizer (eg, a polarizing plate) having a transmission axis in the X direction may be provided in the optical path between the optical fiber 11 and the λ/4 wavelength plate 61.
 λ/4波長板61の進相軸は、+Z側から見た場合にX方向を反時計回りに45°回転させた方向に設定される。λ/4波長板61を通った励起光L1は、円偏光となりマスク15に入射する。マスク15の開口15a、開口15bを通った励起光L1は、円偏光であり、λ/4波長板62に入射する。λ/4波長板62の進相軸は、+Z側から見た場合にX方向を時計回りに45°回転させた方向に設定される。λ/4波長板62を通った励起光L1は、X方向の直線偏光となり、試料面Saに照射される。 The phase-advancing axis of the λ / 4 wave plate 61 is set in the direction in which the X direction is rotated counterclockwise by 45 ° when viewed from the + Z side. The excitation light L1 that has passed through the λ/4 wavelength plate 61 becomes circularly polarized light and enters the mask 15. The excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is circularly polarized light and is incident on the λ/4 wavelength plate 62. The fast axis of the λ/4 wave plate 62 is set in a direction obtained by rotating the X direction clockwise by 45° when viewed from the +Z side. The excitation light L1 that has passed through the λ/4 wavelength plate 62 becomes linearly polarized light in the X direction and is applied to the sample surface Sa.
 マスク15は、第1実施形態で説明したように、光軸4aの周りで回転可能に設けられる。マスク15が回転すると、干渉縞の周期方向が変化する。例えば、図27の状態において、マスク15の開口15aと開口15bとはY方向に並んでおり、干渉縞の周期方向はY方向になる。図27の状態からマスク15が90°回転すると、干渉縞の周期方向は90°回転して、X方向になる。 The mask 15 is rotatably provided around the optical axis 4a as described in the first embodiment. When the mask 15 rotates, the periodic direction of the interference fringes changes. For example, in the state of FIG. 27, the openings 15a and 15b of the mask 15 are aligned in the Y direction, and the periodic direction of the interference fringes is the Y direction. When the mask 15 is rotated 90° from the state shown in FIG. 27, the periodic direction of the interference fringes is rotated 90° and becomes the X direction.
 λ/4波長板62は、光軸4aの周りで回転可能である。λ/4波長板62は、マスク15と同じ角度だけ回転するように、設けられる。例えば、λ/4波長板62は、マスク15と一体化され、マスク15と一体的に回転する。例えばマスク15が90°回転すると、λ/4波長板62は、90°回転して、その進相軸がλ/4波長板61の進相軸と平行になる。この場合、λ/4波長板62を通った励起光L1は、Y方向の直線偏光になる。試料面Saに対する励起光L1の入射面は、干渉縞の周期方向と平行であり、試料面Saに入射する際の励起光L1が干渉縞の周期方向と垂直な直線偏光であるので、励起光L1は、S偏光の状態で試料面Saに照射される。 The λ/4 wave plate 62 is rotatable around the optical axis 4a. The λ/4 wave plate 62 is provided so as to rotate by the same angle as the mask 15. For example, the λ/4 wave plate 62 is integrated with the mask 15 and rotates integrally with the mask 15. For example, when the mask 15 is rotated by 90 °, the λ / 4 wave plate 62 is rotated by 90 ° and its phase advance axis becomes parallel to the phase advance axis of the λ / 4 wave plate 61. In this case, the excitation light L1 that has passed through the λ/4 wavelength plate 62 becomes linearly polarized light in the Y direction. The incident surface of the excitation light L1 with respect to the sample surface Sa is parallel to the periodic direction of the interference fringes, and the excitation light L1 when incident on the sample surface Sa is linearly polarized light perpendicular to the periodic direction of the interference fringes. The sample surface Sa is irradiated with L1 in the S-polarized state.
 このように、λ/4波長板62は、試料Sに入射する際の励起光L1の偏光状態を調整する偏光調整部に含まれる。このような偏光調整部は、図1で説明した態様に比べて、励起光L1の光量のロスを低減することができる。 As described above, the λ / 4 wave plate 62 is included in the polarization adjusting unit that adjusts the polarization state of the excitation light L1 when it is incident on the sample S. Such a polarization adjusting unit can reduce the loss of the light amount of the excitation light L1 as compared with the aspect described in FIG.
 図28において、照明光学系4は、偏光子65、マスク15、及びλ/2波長板66を含む。光ファイバー11か出射した励起光L1は、ほぼX方向の直線偏光であり、偏光子65に入射する。偏光子65は、透過軸がX方向に設定される。偏光子65通った励起光L1は、X方向の直線偏光であり、マスク15に入射する。マスク15の開口15a、開口15bを通った励起光L1は、X方向の直線偏光であり、λ/2波長板66に入射する。λ/2波長板66の進相軸は、+Z側から見た場合にX方向を時計回りに45°回転させた方向に設定される。λ/2波長板66を通った励起光L1は、Y方向の直線偏光となり、試料面Saに照射される。 In FIG. 28, the illumination optical system 4 includes a polarizer 65, a mask 15, and a λ/2 wave plate 66. The excitation light L1 emitted from the optical fiber 11 is linearly polarized light in the X direction and is incident on the polarizer 65. The transmission axis of the polarizer 65 is set in the X direction. The excitation light L1 that has passed through the polarizer 65 is linearly polarized in the X direction and is incident on the mask 15. The excitation light L1 that has passed through the openings 15a and 15b of the mask 15 is linearly polarized light in the X direction and is incident on the λ/2 wave plate 66. The fast axis of the λ/2 wave plate 66 is set in a direction obtained by rotating the X direction clockwise by 45° when viewed from the +Z side. The excitation light L1 that has passed through the λ/2 wavelength plate 66 becomes linearly polarized light in the Y direction and is applied to the sample surface Sa.
 マスク15は、第1実施形態で説明したように、光軸4aの周りで回転可能に設けられる。マスク15が回転すると、干渉縞の周期方向が変化する。例えば、図28の状態において、マスク15の開口15aと開口15bとはX方向に並んでおり、干渉縞の周期方向はX方向になる。図28の状態からマスク15が90°回転すると、干渉縞の周期方向は90°回転して、Y方向になる。 The mask 15 is rotatably provided around the optical axis 4a as described in the first embodiment. When the mask 15 rotates, the periodic direction of the interference fringes changes. For example, in the state of FIG. 28, the openings 15a and 15b of the mask 15 are aligned in the X direction, and the periodic direction of the interference fringes is the X direction. When the mask 15 is rotated by 90° from the state of FIG. 28, the periodic direction of the interference fringes is rotated by 90° and becomes the Y direction.
 λ/2波長板66は、光軸4aの周りで回転可能である。λ/2波長板66は、マスク15の回転角の半分の角度だけ回転するように、設けられる。例えばマスク15が90°回転すると、λ/2波長板66は、45°回転する。この場合、λ/2波長板66を通った励起光L1は、X方向の直線偏光になる。試料面Saに対する励起光L1の入射面は、干渉縞の周期方向と平行であり、試料面Saに入射する際の励起光L1が干渉縞の周期方向と垂直な直線偏光であるので、励起光L1は、S偏光の状態で試料面Saに照射される。このように、λ/2波長板66は、試料Sに入射する際の励起光の偏光状態を調整する偏光調整部に含まれる。このような偏光調整部は、図1で説明した態様に比べて、励起光L1の光量のロスを低減することができる。上記の実施形態および変形例で説明した偏光調整部では、照明光が偏光調整部を通過した直後に直線偏光となるように構成されているが、完全な直線偏光でなくてもよい。また、途中の光学系で発生する偏光状態の変化を補正するための、λ/2波長板、λ/4波長板などの追加の偏光素子が偏光調整部に加えられてもよい。 The λ/2 wave plate 66 is rotatable around the optical axis 4a. The λ/2 wave plate 66 is provided so as to rotate by an angle half the rotation angle of the mask 15. For example, when the mask 15 rotates 90°, the λ/2 wave plate 66 rotates 45°. In this case, the excitation light L1 that has passed through the λ/2 wave plate 66 becomes linearly polarized light in the X direction. The incident surface of the excitation light L1 with respect to the sample surface Sa is parallel to the periodic direction of the interference fringes, and the excitation light L1 when incident on the sample surface Sa is linearly polarized light perpendicular to the periodic direction of the interference fringes. The sample surface Sa is irradiated with L1 in the S-polarized state. In this way, the λ/2 wave plate 66 is included in the polarization adjusting unit that adjusts the polarization state of the excitation light when entering the sample S. Such a polarization adjusting unit can reduce the loss of the light amount of the excitation light L1 as compared with the aspect described in FIG. Although the polarization adjusting unit described in the above-described embodiment and modification is configured such that the illumination light becomes linearly polarized light immediately after passing through the polarization adjusting unit, it may not be perfect linearly polarized light. Further, an additional polarizing element such as a λ/2 wavelength plate or a λ/4 wavelength plate may be added to the polarization adjusting unit to correct the change in the polarization state generated in the optical system on the way.
 各実施形態に係る顕微鏡は、イメージセンサを含む検出装置6を備える場合、検出光学系5の光軸の周りで試料Sの像を回転させる像回転部を備えてもよい。干渉縞の周期方向が回転した場合に、試料Sの像を回転させることによって干渉縞の周期方向と検出部6aの配列方向を整合させることができる。 When the microscope according to each embodiment includes the detection device 6 including an image sensor, the microscope may include an image rotation unit that rotates the image of the sample S around the optical axis of the detection optical system 5. When the periodic direction of the interference fringes is rotated, the periodic direction of the interference fringes and the arrangement direction of the detection unit 6a can be matched by rotating the image of the sample S.
 各実施形態に係る顕微鏡は、励起光L1によって形成される干渉縞L2の縞の位相をシフトさせて、干渉縞L2を複数の位相状態に設定することが可能な位相変調部を備えてもよい。以降、励起光L1によって形成される干渉縞L2の縞の位相をシフトさせることを、位相の変更と呼ぶことがある。図29は、第2の変形例に係る顕微鏡721を示す図である。 The microscope according to each embodiment may include a phase modulation unit that can shift the phase of the interference fringe L2 formed by the excitation light L1 to set the interference fringe L2 in a plurality of phase states. .. Hereinafter, shifting the phase of the interference fringe L2 formed by the excitation light L1 may be referred to as changing the phase. FIG. 29 is a diagram showing a microscope 721 according to the second modification.
 第2の変形例に係る顕微鏡721は、第1の変形例に係る顕微鏡711と同様の構成である。第2の変形例に係る顕微鏡721は、位相変調部55を備える。位相変調部55は、回折格子53を照明光学系4の光軸4aと垂直な方向に移動させることが可能な駆動部を含む。位相変調部55は、回折格子53を照明光学系4の光軸4aと垂直な方向(干渉縞L2の周期方向に対応した方向)に平行移動させることで、干渉縞L2の縞の位相をシフトさせることができる。 The microscope 721 according to the second modification has the same configuration as the microscope 711 according to the first modification. The microscope 721 according to the second modified example includes a phase modulator 55. The phase modulation unit 55 includes a drive unit capable of moving the diffraction grating 53 in a direction perpendicular to the optical axis 4a of the illumination optical system 4. The phase modulation unit 55 shifts the phase of the fringes of the interference fringes L2 by moving the diffraction grating 53 in parallel in the direction perpendicular to the optical axis 4a of the illumination optical system 4 (the direction corresponding to the periodic direction of the interference fringes L2). Can be made.
 位相変調部の他の例では、対物レンズ21の瞳面P0と光学的に共役な瞳共役面の近傍において、光束分割部によって分割された光束ごとに異なる光路長を有する光路を経由させることで、干渉縞L2の位相の変更を行う。図30は、第3の変形例に係る顕微鏡731を示す図である。図30では、顕微鏡の変形例として、第1実施形態に係る顕微鏡1に適用した形態を示しているが、他の実施形態の顕微鏡にも適用可能である。 In another example of the phase modulation unit, in the vicinity of the pupil conjugate surface that is optically conjugated with the pupil surface P0 of the objective lens 21, an optical path having an optical path length different for each light beam divided by the light beam dividing portion is passed through. , The phase of the interference fringe L2 is changed. FIG. 30 is a diagram showing a microscope 731 according to the third modification. Although FIG. 30 shows a modification applied to the microscope 1 according to the first embodiment as a modification of the microscope, it can also be applied to microscopes of other embodiments.
 第3の変形例に係る顕微鏡731は、第1実施形態に係る顕微鏡1と同様の構成である。第3の変形例に係る顕微鏡731は、位相変調部70を備える。位相変調部70は、位相変調素子71と、駆動部78とを含む。位相変調素子71は、マスク15とダイクロイックミラー16の間に配置される。位相変調素子71は、所定のガラス板に対して切削等の除去加工を行うことにより、円形の板状に形成される。位相変調素子71は、位相変調素子71の中心軸が照明光学系4の光軸4aと一致するように配置される。駆動部78は、位相変調素子71を照明光学系4の光軸の周りで回転させる。なお、位相変調素子71は、照明光学系4における平行光束の光路のうち、検出光学系5の光路と重複しない部分に配置されていればよい。 The microscope 731 according to the third modification has the same configuration as the microscope 1 according to the first embodiment. A microscope 731 according to the third modified example includes a phase modulator 70. The phase modulator 70 includes a phase modulator 71 and a driver 78. The phase modulation element 71 is arranged between the mask 15 and the dichroic mirror 16. The phase modulation element 71 is formed into a circular plate shape by performing removal processing such as cutting on a predetermined glass plate. The phase modulation element 71 is arranged so that the central axis of the phase modulation element 71 coincides with the optical axis 4 a of the illumination optical system 4. The drive unit 78 rotates the phase modulation element 71 around the optical axis of the illumination optical system 4. The phase modulation element 71 may be arranged in a portion of the optical path of the parallel light flux in the illumination optical system 4 that does not overlap with the optical path of the detection optical system 5.
 図31は、位相変調素子71の詳細を示す図である。位相変調素子71は、互いに厚さの異なる、第1板部72、第2板部73、第3板部74、第4板部75、および第5板部76を有する。第1板部72は、第1~第5板部72~76のうち最も厚い第1の厚さTH1を有する。第1板部72は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、例えば中心角が216°の扇形の形状を有している。 FIG. 31 is a diagram showing details of the phase modulation element 71. The phase modulation element 71 has a first plate part 72, a second plate part 73, a third plate part 74, a fourth plate part 75, and a fifth plate part 76 having different thicknesses. The first plate portion 72 has the thickest first thickness TH1 among the first to fifth plate portions 72 to 76. The first plate portion 72 has, for example, a fan shape with a central angle of 216° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction).
 第2板部73は、第1~第5板部72~76のうち2番目に厚い第2の厚さTH2を有する。第2板部73は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、例えば中心角が36°の扇形の形状を有している。第2板部73は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、第1板部72の周方向(図31の紙面側から見て反時計回りの方向)に隣接して配置される。 The second plate portion 73 has the second thickest second thickness TH2 of the first to fifth plate portions 72 to 76. The second plate portion 73 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). When the phase modulation element 71 is visually recognized from the thickness direction (optical axis direction), the second plate portion 73 is in the circumferential direction of the first plate portion 72 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
 第3板部74は、第1~第5板部72~76のうち3番目に厚い第3の厚さTH3を有する。第3板部74は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、例えば中心角が36°の扇形の形状を有している。第3板部74は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、第2板部73の周方向(図31の紙面側から見て反時計回りの方向)に隣接して配置される。 The third plate portion 74 has a third thickness TH3, which is the third largest among the first to fifth plate portions 72 to 76. The third plate portion 74 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). When the phase modulation element 71 is visually recognized from the thickness direction (optical axis direction), the third plate portion 74 is in the circumferential direction of the second plate portion 73 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
 第4板部75は、第1~第5板部72~76のうち4番目に厚い第4の厚さTH4を有する。第4板部75は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、例えば中心角が36°の扇形の形状を有している。第4板部75は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、第3板部74の周方向(図31の紙面側から見て反時計回りの方向)に隣接して配置される。 The fourth plate portion 75 has the fourth thickest fourth thickness TH4 of the first to fifth plate portions 72 to 76. The fourth plate portion 75 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). When the phase modulation element 71 is visually recognized from the thickness direction (optical axis direction), the fourth plate portion 75 is in the circumferential direction of the third plate portion 74 (counterclockwise direction when viewed from the paper surface side of FIG. 31). Placed next to each other.
 第5板部76は、第1~第5板部72~76のうち5番目に厚い第5の厚さTH5を有する。第5板部76は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、例えば中心角が36°の扇形の形状を有している。第5板部76は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、第4板部75の周方向(図31の紙面側から見て反時計回りの方向)に隣接して配置される。 The fifth plate portion 76 has a fifth thickness TH5 that is the fifth largest among the first to fifth plate portions 72 to 76. The fifth plate portion 76 has, for example, a fan shape having a central angle of 36° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). The fifth plate portion 76 is arranged in the circumferential direction of the fourth plate portion 75 (counterclockwise when viewed from the paper surface side of FIG. 31) when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). Placed next to each other.
 位相変調素子71の一方の光学面は、第1~第5板部72~76による段差を有する平面状に形成される。位相変調素子71の他方の光学面は、全体的に平坦な平面状に形成される。位相変調素子71は、例えば図30に示すように、第1~第5板部72~76による段差を有する光学面がマスク15の方を向いて配置される。なお、位相変調素子71は、第1~第5板部72~76による段差を有する光学面がダイクロイックミラー16の方を向いて配置されてもよい。 One of the optical surfaces of the phase modulation element 71 is formed into a flat surface having a step due to the first to fifth plate portions 72 to 76. The other optical surface of the phase modulation element 71 is formed in a flat plane shape as a whole. In the phase modulation element 71, for example, as shown in FIG. 30, an optical surface having steps formed by the first to fifth plate portions 72 to 76 is arranged so as to face the mask 15. The phase modulation element 71 may be arranged such that the optical surface having the steps formed by the first to fifth plate portions 72 to 76 faces the dichroic mirror 16.
 図32(A)~図32(E)は、位相変調素子71と励起光L1との位置関係を示す図である。前述したように、第1板部72は、位相変調素子71を厚さ方向(光軸方向)から視認したときに、中心角が180°よりも大きい216°の扇形の形状を有している。そのため、図32(A)に示すように、位相変調素子71が駆動部78の回転駆動力により所定の第1回転位置に回転移動すると、マスク15の開口15aを通った励起光L1aおよびマスク15の開口15bを通った励起光L1bが両方とも第1板部72を透過する。このとき、励起光L1aの光路長と励起光L1bの光路長との間に差は生じない。 32(A) to 32(E) are diagrams showing the positional relationship between the phase modulation element 71 and the excitation light L1. As described above, the first plate portion 72 has a fan-shaped shape with a central angle of 216° which is larger than 180° when the phase modulation element 71 is viewed in the thickness direction (optical axis direction). .. Therefore, as shown in FIG. 32(A), when the phase modulation element 71 is rotationally moved to the predetermined first rotational position by the rotational driving force of the driving unit 78, the excitation light L1a and the mask 15 that have passed through the opening 15a of the mask 15. Both of the excitation lights L1b that have passed through the opening 15b are transmitted through the first plate portion 72. At this time, there is no difference between the optical path length of the pumping light L1a and the optical path length of the pumping light L1b.
 図32(B)に示すように、位相変調素子71が駆動部78の回転駆動力により所定の第2回転位置に回転移動すると、マスク15の開口15aを通った励起光L1aが第1板部72を透過し、マスク15の開口15bを通った励起光L1bが第2板部73を透過する。第2回転位置は、例えば、位相変調素子71が第1回転位置に対して照明光学系4の光軸の周りで(図32の紙面側から見て時計回りに)36°だけ回転したときの回転位置である。このとき、第1板部72が第1の厚さTH1を有し、第2板部73が第1の厚さTH1よりも薄い第2の厚さTH2を有するため、励起光L1aの光路長と励起光L1bの光路長との間に差が生じる。そのため、位相変調素子71が第1回転位置に回転移動した場合に得られる干渉縞に対して、位相変調素子71が第2回転位置に回転移動した場合に得られる干渉縞の縞の位相が変化する。 As shown in FIG. 32(B), when the phase modulation element 71 is rotationally moved to the predetermined second rotational position by the rotational driving force of the driving unit 78, the excitation light L1a passing through the opening 15a of the mask 15 becomes the first plate portion. The excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the second plate portion 73. The second rotation position is, for example, when the phase modulation element 71 is rotated by 36° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position. At this time, since the first plate portion 72 has the first thickness TH1 and the second plate portion 73 has the second thickness TH2 thinner than the first thickness TH1, the optical path length of the excitation light L1a. And the optical path length of the excitation light L1b is different. Therefore, the phase of the fringes of the interference fringes obtained when the phase modulation element 71 is rotationally moved to the second rotation position changes with respect to the interference fringes obtained when the phase modulation element 71 is rotationally moved to the first rotation position. To do.
 図32(C)に示すように、位相変調素子71が駆動部78の回転駆動力により所定の第3回転位置に回転移動すると、マスク15の開口15aを通った励起光L1aが第1板部72を透過し、マスク15の開口15bを通った励起光L1bが第3板部74を透過する。第3回転位置は、例えば、位相変調素子71が第1回転位置に対して照明光学系4の光軸の周りで(図32の紙面側から見て時計回りに)72°だけ回転したときの回転位置である。このとき、第1板部72が第1の厚さTH1を有し、第3板部74が第1の厚さTH1よりも薄い第3の厚さTH3を有するため、励起光L1aの光路長と励起光L1bの光路長との間に差が生じる。そのため、位相変調素子71が第1回転位置に回転移動した場合に得られる干渉縞に対して、位相変調素子71が第3回転位置に回転移動した場合に得られる干渉縞の縞の位相が変化する。 As shown in FIG. 32 (C), when the phase modulation element 71 is rotationally moved to a predetermined third rotation position by the rotational driving force of the drive unit 78, the excitation light L1a that has passed through the opening 15a of the mask 15 is the first plate portion. The excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the third plate portion 74. The third rotation position is, for example, when the phase modulation element 71 is rotated by 72° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position. At this time, since the first plate portion 72 has the first thickness TH1 and the third plate portion 74 has the third thickness TH3 which is thinner than the first thickness TH1, the optical path length of the excitation light L1a is increased. And the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the third rotation position changes. To do.
 図32(D)に示すように、位相変調素子71が駆動部78の回転駆動力により所定の第4回転位置に回転移動すると、マスク15の開口15aを通った励起光L1aが第1板部72を透過し、マスク15の開口15bを通った励起光L1bが第4板部75を透過する。第4回転位置は、例えば、位相変調素子71が第1回転位置に対して照明光学系4の光軸の周りで(図32の紙面側から見て時計回りに)108°だけ回転したときの回転位置である。このとき、第1板部72が第1の厚さTH1を有し、第4板部75が第1の厚さTH1よりも薄い第4の厚さTH4を有するため、励起光L1aの光路長と励起光L1bの光路長との間に差が生じる。そのため、位相変調素子71が第1回転位置に回転移動した場合に得られる干渉縞に対して、位相変調素子71が第4回転位置に回転移動した場合に得られる干渉縞の縞の位相が変化する。 As shown in FIG. 32D, when the phase modulation element 71 is rotationally moved to the predetermined fourth rotational position by the rotational driving force of the drive unit 78, the excitation light L1a passing through the opening 15a of the mask 15 is converted into the first plate portion. The excitation light L1b that passes through 72 and passes through the opening 15b of the mask 15 passes through the fourth plate portion 75. The fourth rotation position is, for example, when the phase modulation element 71 is rotated by 108° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position. At this time, since the first plate portion 72 has the first thickness TH1 and the fourth plate portion 75 has the fourth thickness TH4 smaller than the first thickness TH1, the optical path length of the excitation light L1a is reduced. And the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the fourth rotation position changes. To do.
 図32(E)に示すように、位相変調素子71が駆動部78の回転駆動力により所定の第5回転位置に回転移動すると、マスク15の開口15aを通った励起光L1aが第1板部72を透過し、マスク15の開口15bを通った励起光L1bが第5板部76を透過する。第5回転位置は、例えば、位相変調素子71が第1回転位置に対して照明光学系4の光軸の周りで(図32の紙面側から見て時計回りに)144°だけ回転したときの回転位置である。このとき、第1板部72が第1の厚さTH1を有し、第5板部76が第1の厚さTH1よりも薄い第5の厚さTH5を有するため、励起光L1aの光路長と励起光L1bの光路長との間に差が生じる。そのため、位相変調素子71が第1回転位置に回転移動した場合に得られる干渉縞に対して、位相変調素子71が第5回転位置に回転移動した場合に得られる干渉縞の縞の位相が変化する。 As shown in FIG. 32(E), when the phase modulation element 71 is rotationally moved to the predetermined fifth rotational position by the rotational driving force of the driving section 78, the excitation light L1a passing through the opening 15a of the mask 15 is converted into the first plate section. The excitation light L1b that has passed through 72 and passed through the opening 15b of the mask 15 passes through the fifth plate portion 76. The fifth rotation position is, for example, when the phase modulation element 71 is rotated by 144° around the optical axis of the illumination optical system 4 (clockwise when viewed from the paper surface side of FIG. 32) with respect to the first rotation position. The rotation position. At this time, since the first plate portion 72 has the first thickness TH1 and the fifth plate portion 76 has the fifth thickness TH5 which is thinner than the first thickness TH1, the optical path length of the excitation light L1a is increased. And the optical path length of the excitation light L1b is different. Therefore, with respect to the interference fringes obtained when the phase modulation element 71 rotationally moves to the first rotation position, the phase of the interference fringes obtained when the phase modulation element 71 rotationally moves to the fifth rotation position changes. To do.
 上述のように、位相変調素子71によって干渉縞L2の縞の位相を変化させることが可能である。縞の位相を変化させるということは、式(2)の右辺において、PSFill(r)を変化させることなく、余弦関数の引数である2πkrを2πkr+φへと変化させることに相当する。ここで、φは励起光L1aと励起光L2bの間の位相差である。PSFill(r)が変化しないことは、干渉縞L2の強度分布のエンベロープ(包絡線)が変化しないことを意味する。したがって、位相変調素子71は干渉縞L2の強度分布のエンベロープ(包絡線)を変化させることなく、干渉縞L2の強度分布の明暗の位相を変化させる。 As described above, the phase of the fringe of the interference fringe L2 can be changed by the phase modulation element 71. Changing the phase of the stripe is equivalent to changing 2πk 0 r, which is the argument of the cosine function, to 2πk 0 r+φ without changing PSF ill (r) on the right side of Expression (2). .. Here, φ is the phase difference between the excitation light L1a and the excitation light L2b. The fact that PSF ill (r) does not change means that the envelope (envelope) of the intensity distribution of the interference fringe L2 does not change. Therefore, the phase modulation element 71 changes the bright and dark phases of the intensity distribution of the interference fringe L2 without changing the envelope (envelope) of the intensity distribution of the interference fringe L2.
 このように、位相変調素子71を第1~第5回転位置にそれぞれ回転移動させることで、干渉縞L2の縞の位相を5段階に変化させることが可能になる。なお、第1~第5板部72~76の厚さ(第1~第5の厚さTH1~TH5)は、干渉縞L2において必要な縞の位相差が得られるように設定される。第1~第5板部72~76の厚さ(第1~第5の厚さTH1~TH5)は、数値シミュレーション等によって設定することも可能である。 As described above, the phase of the fringe of the interference fringe L2 can be changed in five steps by rotating and moving the phase modulation element 71 to the first to fifth rotation positions, respectively. The thicknesses of the first to fifth plate portions 72 to 76 (first to fifth thicknesses TH1 to TH5) are set so that a necessary phase difference of the interference fringes L2 can be obtained. The thickness of the first to fifth plate portions 72 to 76 (first to fifth thicknesses TH1 to TH5) can be set by numerical simulation or the like.
 例えば、位相変調素子71が第1回転位置に回転移動した場合の干渉縞と、位相変調素子71が第2回転位置に回転移動した場合の干渉縞との位相差が2π/5となるように、第2板部73の厚さ(第2の厚さTH2)を設定することが可能である。位相変調素子71が第1回転位置に回転移動した場合の干渉縞と、位相変調素子71が第3回転位置に回転移動した場合の干渉縞との位相差が4π/5となるように、第3板部74の厚さ(第3の厚さTH3)を設定することが可能である。位相変調素子71が第1回転位置に回転移動した場合の干渉縞と、位相変調素子71が第4回転位置に回転移動した場合の干渉縞との位相差が6π/5となるように、第4板部75の厚さ(第4の厚さTH4)を設定することが可能である。位相変調素子71が第1回転位置に回転移動した場合の干渉縞と、位相変調素子71が第5回転位置に回転移動した場合の干渉縞との位相差が8π/5となるように、第5板部76の厚さ(第5の厚さTH5)を設定することが可能である。 For example, the phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the second rotation position is 2π/5. The thickness of the second plate portion 73 (second thickness TH2) can be set. The phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the third rotation position is 4π/5. It is possible to set the thickness of the third plate portion 74 (third thickness TH3). The phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the fourth rotation position is 6π/5. It is possible to set the thickness of the four plate portion 75 (fourth thickness TH4). The phase difference between the interference fringes when the phase modulation element 71 is rotationally moved to the first rotation position and the interference fringes when the phase modulation element 71 is rotationally moved to the fifth rotation position is 8π/5. It is possible to set the thickness (fifth thickness TH5) of the five plate portion 76.
 また、位相変調素子71は、干渉縞L2の縞の位相を変化させる場合だけでなく、干渉縞L2の周期方向を変化させる場合にも回転移動する。この場合、マスク15の開口15a,15bと、位相変調素子71(第1~第5板部72~76)においてマスク15の開口15a,15bと対向する部分との相対位置関係が一定となるように、位相変調素子71がマスク15の回転に応じて回転移動する。 Further, the phase modulation element 71 rotates and moves not only when changing the phase of the fringes of the interference fringe L2 but also when changing the cycle direction of the interference fringe L2. In this case, the relative positional relationship between the openings 15a and 15b of the mask 15 and the portions of the phase modulation element 71 (first to fifth plate portions 72 to 76) facing the openings 15a and 15b of the mask 15 becomes constant. In addition, the phase modulation element 71 rotationally moves according to the rotation of the mask 15.
 第1板部72における扇形の中心角は、例示した角度(216°)に限定されるものではなく、マスク15の開口15aを通った励起光L1aおよびマスク15の開口15bを通った励起光L1bが両方とも第1板部72を透過可能な角度に設定されていればよい。第2~第5板部73~76における扇形の中心角は、例示した角度(36°)に限定されるものではなく、励起光L1aまたは励起光L1bが第2~第5板部73~76を透過可能な角度に設定されていればよい。 The central angle of the fan shape in the first plate portion 72 is not limited to the illustrated angle (216°), but the excitation light L1a passing through the opening 15a of the mask 15 and the excitation light L1b passing through the opening 15b of the mask 15. It suffices that both are set to an angle that allows the first plate portion 72 to pass therethrough. The central angle of the fan shape in the second to fifth plate portions 73 to 76 is not limited to the exemplified angle (36°), and the excitation light L1a or the excitation light L1b is not included in the second to fifth plate portions 73 to 76. It suffices if the angle is set so that can be transmitted.
 位相変調素子71は、除去加工に限らず、例えば、成型加工や、透明樹脂材料を用いた薄い板材を積層させる加工等により、円形の板状に形成されてもよい。また、位相変調素子として、互いに厚さの異なる板状の複数の位相変調素子を用いてもよい。この場合、位相変調部の駆動部は、複数の位相変調素子のうちいずれか1つを選択してマスク15とダイクロイックミラー16の間に配置する。このような駆動部として、例えば、複数の位相変調素子を照明光学系4の光軸と垂直な方向に移動させることが可能なスライダーやターレット等を用いてもよい。 The phase modulation element 71 is not limited to the removal processing, and may be formed into a circular plate shape by, for example, molding processing, processing of laminating thin plate materials using a transparent resin material, or the like. Further, as the phase modulation element, a plurality of plate-shaped phase modulation elements having different thicknesses may be used. In this case, the drive unit of the phase modulation unit selects any one of the plurality of phase modulation elements and arranges it between the mask 15 and the dichroic mirror 16. As such a drive unit, for example, a slider or a turret that can move a plurality of phase modulation elements in a direction perpendicular to the optical axis of the illumination optical system 4 may be used.
 上述した位相変調部を利用することで、第3実施形態で説明した画像処理の成分分離とは異なる態様の成分分離を行うことが可能となる。第3実施形態で説明したように、検出装置6で得られる像I(r,r)は、上記の式(12)で表される。式(12)において、φは干渉縞L2の初期位相を示す。位相変調部を利用した干渉縞L2の位相の変更によって、式(12)における初期位相φの値が変化するが、変化したφの値を位相差と呼ぶこともできる。すなわち、所定の位相差φを与えた状態で画像データを取得しても、得られる画像データは式(12)で与えられる。なお、所定の位相差φの値は0を含む。所定の位相差φを与えた状態で画像データを取得した場合に、画像処理部7によるフーリエ変換によって得られる4次元の周波数空間のデータをI(r,k;φ)とすると、I(r,k;φ)は下記の式(31)で表される。 By using the phase modulation unit described above, it is possible to perform component separation in a mode different from the component separation of the image processing described in the third embodiment. As described in the third embodiment, the image I(r,r s ) obtained by the detection device 6 is represented by the above formula (12). In equation (12), φ indicates the initial phase of the interference fringe L2. By changing the phase of the interference fringe L2 using the phase modulator, the value of the initial phase φ in equation (12) changes, but the changed value of φ can also be called the phase difference. That is, even if the image data is acquired with a predetermined phase difference φ given, the obtained image data is given by the equation (12). The value of the predetermined phase difference φ includes 0. When image data is acquired in a state where a predetermined phase difference φ is given, four-dimensional frequency space data obtained by Fourier transform by the image processing unit 7 is given by I 1 to (r, k s ; φ). ~ (R, k s ; φ) is expressed by the following equation (31).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 ここで、式(31)の0次成分I’ (r,k)は、下記の式(32)のように定義される。 Here, the 0th-order components I′ 0 to (r, k s ) of the equation (31) are defined by the following equation (32).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 式(31)の+1次成分I’+1 (r,k)は、下記の式(33)のように定義される。 The +1st order components I′ +1 to (r, k s ) of the equation (31) are defined by the following equation (33).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 式(31)の-1次成分I’-1 (r,k)は、下記の式(34)のように定義される。 -1-order component I '-1 ~ of formula (31) (r, k s) is defined as the following equation (34).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 式(31)の+2次成分I’+2 (r,k)は、下記の式(35)のように定義される。 The +second-order component I′ +2 to (r, k s ) of the equation (31) is defined by the following equation (35).
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 式(31)の-2次成分I’-2 (r,k)は、下記の式(36)のように定義される。 Minus second-order component I '-2 ~ of formula (31) (r, k s) is defined as the following equation (36).
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 式(32)~式(36)において、OTF’det(r,k)は、PSFdet(r+r)をrについてフーリエ変換したものであり、OTF’det(r,k)=ei2πksrOTFdet(k)である。また、OTF’ill(k)は、PSF2 ill(r)をフーリエ変換したものである。Obj(k)は、Obj(r)をフーリエ変換したものである。 In the formula (32) to Formula (36), OTF 'det ( r, k s) is, PSF det a (r + r s) is obtained by Fourier transform for r s, OTF' det (r , k s) = e it is a i2πksr OTF det (k s). Further, OTF' ill (k s ) is the Fourier transform of PSF 2 ill (r s ). Obj to (k s ) are the Fourier transform of Obj(r s ).
 第2および第3の変形例に係る顕微鏡721,731は、位相変調部を利用した干渉縞L2の位相の変更によって、干渉縞L2の位相を所定の位相から変化させ、干渉縞L2の所定の位相に対する位相差を、第1の位相差φ、第2の位相差φ、第3の位相差φ、第4の位相差φ、および第5の位相差φとした場合の画像データをそれぞれ取得する。第1の位相差φに対応するI(r,k;φ)、第2の位相差φに対応するI(r,k;φ)、第3の位相差φに対応するI(r,k;φ)、第4の位相差φに対応するI(r,k;φ)、および第5の位相差φに対応するI(r,k;φ)は、下記の式(37A)~(37E)のように表される。 The microscopes 721 and 731 according to the second and third modifications change the phase of the interference fringe L2 from a predetermined phase by changing the phase of the interference fringe L2 using the phase modulation unit, and change the phase of the interference fringe L2 from a predetermined phase. When the phase difference with respect to the phase is the first phase difference φ 1 , the second phase difference φ 2 , the third phase difference φ 3 , the fourth phase difference φ 4 , and the fifth phase difference φ 5. Acquire each image data. I 1 to (r, k s ; φ 1 ) corresponding to the first phase difference φ 1 , I 1 to (r, k s ; φ 2 ) corresponding to the second phase difference φ 2 , and the third phase difference φ corresponding to 3 I ~ (r, k s ; φ 3), fourth I ~ corresponding to the phase difference φ 4 (r, k s; φ 4), and a fifth I corresponding to the phase difference phi 5 ~ (R, k s ; φ 5 ) are represented by the following expressions (37A) to (37E).
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 式(37A)~(37E)は、5つの未知数I’ (r,k)、I’+1 (r,k)、I’-1 (r,k)、I’+2 (r,k)、I’-2 (r,k)に対する連立方程式となっている。画像処理部7は、この連立方程式を解くことで、取得データI(r,k;φ)、I(r,k;φ)、I(r,k;φ)、I(r,k;φ)、I(r,k;φ)より、I’ (r,k)、I’+1 (r,k)、I’-1 (r,k)、I’+2 (r,k)、I’-2 (r,k)を求める。この処理が第3実施形態で説明した画像処理の成分分離に相当する。画像処理部7は、I’ (r,k)、I’+1 (r,k)、I’-1 (r,k)、I’+2 (r,k)、I’-2 (r,k)を逆フーリエ変換することで、I(r,r)、I+1(r,r)、I-1(r,r)、I+2(r,r)、I-2(r,r)を得ることができる。そして、画像処理部7は、第3実施形態において実空間の画像データを算出する処理以降、第3実施形態の場合と同様の処理を行う。これにより、成分分離における周波数空間の領域を設定しなくても、式(37A)~(37E)の連立方程式を解くことで、成分分離に相当する処理を行うことができ、検出部6aの位置(ディテクター座標r)ごとの実効PSFの形状の崩れを補正することが可能である。 The equations (37A) to (37E) represent five unknowns I′ 0 to (r, k s ), I′ +1 to (r, k s ), I′ −1 to (r, k s ), I′ +2. ~ (R, k s ) and I'- 2 ~ (r, k s ) are simultaneous equations. The image processing unit 7 solves the simultaneous equations to obtain the acquired data I 1 to (r, k s ; φ 1 ), I to (r, k s ; φ 2 ), I to (r, k s ; φ 3 ). ), I to (r, k s ; φ 4 ) and I to (r, k s ; φ 5 ), I′ 0 to (r, k s ), I′ +1 to (r, k s ), I ' -1 to (r, k s ), I' +2 to (r, k s ) and I'- 2 to (r, k s ) are obtained. This processing corresponds to the component separation of the image processing described in the third embodiment. The image processing unit 7 has I′ 0 to (r, k s ), I′ +1 to (r, k s ), I′ −1 to (r, k s ), I′ +2 to (r, k s ). , I′ −2 to (r, k s ) are inverse Fourier transformed to obtain I 0 (r, r s ), I +1 (r, r s ), I −1 (r, r s ), I +2 (R,r s ) and I −2 (r,r s ) can be obtained. Then, the image processing unit 7 performs the same processing as that in the third embodiment after the processing for calculating the image data in the real space in the third embodiment. As a result, even if the frequency space region in the component separation is not set, the process corresponding to the component separation can be performed by solving the simultaneous equations of the equations (37A) to (37E), and the position of the detection unit 6a can be performed. It is possible to correct the collapse of the shape of the effective PSF for each (detector coordinate r).
 図33は、第3の変形例に係る顕微鏡731を用いた観察方法を示すフローチャートである。ステップS41において、顕微鏡731の制御部8は、干渉縞L2の周期方向を設定する。制御部8は、マスク15を駆動部22により回転させ、マスク15の回転に応じて位相変調素子71を駆動部78により回転させることで、干渉縞L2の周期方向を設定する。ステップS42において、制御部8は、干渉縞L2の縞の位相を設定する。制御部8は、位相変調素子71を駆動部78により回転させることで干渉縞L2の縞の位相を設定する。ステップS43において、制御部8は、走査ミラー(偏向ミラー18a,18b)の角度を設定する。照明光学系4は、ステップS43で設定された走査ミラーの角度によって定まる試料上の位置に、励起光を干渉縞L2として照射する。ステップS44において、試料Sの蛍光物質は、励起光の干渉縞L2で励起される。ステップS45において、検出装置6は、複数の検出部6aごとに、試料Sからの蛍光を、検出光学系5を介して検出する。 FIG. 33 is a flowchart showing an observation method using the microscope 731 according to the third modification. In step S41, the control unit 8 of the microscope 731 sets the periodic direction of the interference fringes L2. The control unit 8 sets the cycle direction of the interference fringes L2 by rotating the mask 15 by the drive unit 22 and rotating the phase modulation element 71 by the drive unit 78 according to the rotation of the mask 15. In step S42, the control unit 8 sets the phase of the fringe of the interference fringe L2. The control unit 8 sets the phase of the fringe of the interference fringe L2 by rotating the phase modulation element 71 by the drive unit 78. In step S43, the control unit 8 sets the angles of the scanning mirrors (deflection mirrors 18a and 18b). The illumination optical system 4 irradiates the excitation light as interference fringes L2 at a position on the sample determined by the angle of the scanning mirror set in step S43. In step S44, the fluorescent substance of the sample S is excited by the interference fringe L2 of the excitation light. In step S45, the detection device 6 detects the fluorescence from the sample S via the detection optical system 5 for each of the plurality of detection units 6a.
 ステップS46において、制御部8は、走査ミラーの角度変更を実行するか否かを判定する。制御部8は、予定された観察領域の一部についてステップS43からステップS45の処理が終了していないと判定した場合に、ステップS46において走査ミラーの角度変更を実行すると判定する(ステップS46;Yes)。制御部8は、走査ミラーの角度変更を実行すると判定した場合(ステップS46;Yes)、ステップS43の処理に戻り、制御部8は、走査ミラーの角度を予定された次の角度に設定する。そして、ステップS44からステップS46の処理が繰り返される。 In step S46, the control unit 8 determines whether to change the angle of the scanning mirror. When it is determined that the processes of steps S43 to S45 have not been completed for a part of the scheduled observation region, the control unit 8 determines to execute the angle change of the scanning mirror in step S46 (step S46; Yes). ). When the control unit 8 determines to change the angle of the scanning mirror (step S46; Yes), the control unit 8 returns to the process of step S43, and the control unit 8 sets the angle of the scanning mirror to the next scheduled angle. Then, the processing from step S44 to step S46 is repeated.
 制御部8は、ステップS46において、予定された観察領域の全てについてステップS43からステップS45の処理が終了したと判定した場合に、走査ミラーの角度変更を実行しないと判定する(ステップS46;No)。走査ミラーの角度変更を実行しないと制御部8が判定した場合(ステップS46;No)、ステップS47において、制御部8は、干渉縞L2の縞の位相の変更を実行するか否かを判定する。 When it is determined in step S46 that the processes in steps S43 to S45 have been completed for all the scheduled observation regions, the control unit 8 determines not to change the angle of the scanning mirror (step S46; No). .. When the control unit 8 determines not to change the angle of the scanning mirror (step S46; No), the control unit 8 determines whether to change the phase of the fringe of the interference fringe L2 in step S47. ..
 制御部8は、予定された干渉縞の5つの縞の位相の一部についてステップS42からステップS46の処理が終了していないと判定した場合に、ステップS47において干渉縞L2の縞の位相の変更を実行すると判定する(ステップS47;Yes)。制御部8は、干渉縞L2の縞の位相の変更を実行すると判定した場合(ステップS47;Yes)、ステップS42の処理に戻り、制御部8は、干渉縞L2の縞の位相を予定された次の位相に設定する。そして、ステップS43からステップS47の処理が繰り返される。このようにして、照明光学系4は、縞の位相を変化させた5つの干渉縞について、励起光の干渉縞L2で試料Sを2次元的に走査する。 When the control unit 8 determines that the processing of steps S42 to S46 has not been completed for a part of the phases of the five interference fringes planned, the control unit 8 changes the fringe phase of the interference fringe L2 in step S47. Is determined to be executed (step S47; Yes). When the control unit 8 determines to change the phase of the fringe of the interference fringe L2 (step S47; Yes), the control unit 8 returns to the process of step S42, and the control unit 8 schedules the phase of the fringe of the interference fringe L2. Set to the next phase. Then, the processing from step S43 to step S47 is repeated. In this way, the illumination optical system 4 two-dimensionally scans the sample S with the interference fringes L2 of the excitation light for the five interference fringes whose fringe phase is changed.
 制御部8は、ステップS47において、予定された干渉縞の5つの縞の位相の全てについてステップS42からステップS46の処理が終了したと判定した場合に、干渉縞L2の縞の位相の変更を実行しないと判定する(ステップS47;No)。干渉縞L2の縞の位相の変更を実行しないと制御部8が判定した場合(ステップS47;No)、ステップS48において、画像処理部7は、画像処理を行って画像(例、超解像画像)を生成する。 When it is determined in step S47 that the processes of steps S42 to S46 have been completed for all the phases of the five fringes of the planned interference fringes, the control unit 8 executes the phase change of the fringes of the interference fringes L2. It is determined not to do so (step S47; No). When the control unit 8 determines that the phase of the fringes of the interference fringes L2 is not changed (step S47; No), in step S48, the image processing unit 7 performs image processing to perform an image (eg, super-resolution image). ) Is generated.
 ステップS49において、制御部8は、干渉縞L2の周期方向の変更を実行するか否かを判定する。制御部8は、予定された干渉縞L2の周期方向の一部についてステップS41からステップS48の処理が終了していないと判定した場合に、ステップS49において干渉縞L2の周期方向の変更を実行すると判定する(ステップS49;Yes)。制御部8は、干渉縞L2の周期方向の変更を実行すると判定した場合(ステップS49;Yes)、ステップS41の処理に戻り、制御部8は、干渉縞L2の周期方向を予定された次の周期方向に設定する。そして、ステップS42からステップS49の処理が繰り返される。 In step S49, the control unit 8 determines whether to change the cycle direction of the interference fringe L2. When the control unit 8 determines in step S49 that the processing in steps S41 to S48 has not been completed for a part of the scheduled cycle of the interference fringes L2, the controller 8 changes the cycle of the interference fringes L2 in step S49. The determination is made (step S49; Yes). When the control unit 8 determines to execute the change of the periodic direction of the interference fringe L2 (step S49; Yes), the control unit 8 returns to the process of step S41, and the control unit 8 determines the next periodic direction of the interference fringe L2. Set in the periodic direction. Then, the processing from step S42 to step S49 is repeated.
 制御部8は、ステップS49において、予定された干渉縞L2の周期方向の全てについてステップS41からステップS48の処理が終了したと判定した場合に、干渉縞L2の周期方向の変更を実行しないと判定する(ステップS49;No)。干渉縞L2の周期方向の変更を実行しないと制御部8が判定した場合(ステップS49;No)、処理を終了する。これにより、干渉縞L2の周期方向を変化させた画像を生成することができる。 When the control unit 8 determines in step S49 that the processes in steps S41 to S48 have been completed for all the scheduled periodic directions of the interference fringes L2, the control unit 8 determines not to change the periodic direction of the interference fringes L2. (Step S49; No). When the control unit 8 determines that the change in the periodic direction of the interference fringe L2 is not executed (step S49; No), the process ends. This makes it possible to generate an image in which the cycle direction of the interference fringe L2 is changed.
 図34は、画像処理部7による画像処理のサブフローを示すフローチャートである。ステップS51において、画像処理部7は、検出装置6の複数の検出部6aの少なくとも一部を選択する。ステップS52において、画像処理部7は、ステップS51で選択した、複数の検出部6aの少なくとも一部の検出結果をフーリエ変換する。画像処理部7は、所定の位相差φを与えたI(r,r;φ)に対して2次元のフーリエ変換を行う。ステップS53において、画像処理部7は、上記の式(37A)~(37E)で表される連立方程式を解くことで、第3実施形態における成分分離に相当する処理を行う。ステップS54において、画像処理部7は、分離された成分を逆フーリエ変換する。ステップS55において、画像処理部7は、画像処理位相シフト処理を実行する。画像処理部7は、ステップS56において、実効PSFの位置ずれを補正する。ステップS57において、画像処理部7は、ステップS56で位置ずれを補正して得られる画像を足し合わせることで、画像(例、超解像画像)生成する。 FIG. 34 is a flowchart showing a sub-flow of image processing by the image processing unit 7. In step S51, the image processing unit 7 selects at least a part of the plurality of detection units 6a of the detection device 6. In step S52, the image processing unit 7 Fourier transforms the detection results of at least a part of the plurality of detection units 6a selected in step S51. The image processing unit 7 performs a two-dimensional Fourier transform on I(r, r s ; φ) given a predetermined phase difference φ. In step S53, the image processing unit 7 performs a process corresponding to the component separation in the third embodiment by solving the simultaneous equations represented by the above equations (37A) to (37E). In step S54, the image processing unit 7 performs an inverse Fourier transform on the separated components. In step S55, the image processing unit 7 executes the image processing phase shift processing. The image processing unit 7 corrects the positional deviation of the effective PSF in step S56. In step S57, the image processing unit 7 generates an image (for example, a super-resolution image) by adding the images obtained by correcting the positional deviation in step S56.
 ステップS58において、制御部8は、検出部6aの選択変更を実行するか否かを判定する。制御部8は、予定された検出部6aの組み合わせの一部についてステップS51からステップS57の処理が終了していないと判定した場合に、ステップS58において検出部6aの選択変更を実行すると判定する(ステップS58;Yes)。制御部8は、検出部6aの選択変更を実行すると判定した場合(ステップS58;Yes)、ステップS51の処理に戻り、制御部8は、複数の検出部6aの他の少なくとも一部を選択する。そして、ステップS52からステップS58の処理が繰り返される。 In step S58, the control unit 8 determines whether to change the selection of the detection unit 6a. When it is determined that the processes of steps S51 to S57 have not been completed for a part of the planned combination of the detection units 6a, the control unit 8 determines to execute the selection change of the detection unit 6a in step S58 ( Step S58; Yes). When the control unit 8 determines to change the selection of the detection unit 6a (step S58; Yes), the control unit 8 returns to the process of step S51, and the control unit 8 selects at least another part of the plurality of detection units 6a. .. Then, the processing from step S52 to step S58 is repeated.
 制御部8は、ステップS58において、予定された検出部6aの組み合わせの全てについてステップS51からステップS57の処理が終了したと判定した場合に、検出部6aの選択変更を実行しないと判定する(ステップS58;No)。検出部6aの選択変更を実行しないと制御部8が判定した場合(ステップS58;No)、図33のフロー(ステップS49)に戻る。これにより、選択する検出部6aを変えた画像を生成することができる。 When the control unit 8 determines in step S58 that the processing of steps S51 to S57 has been completed for all the scheduled combinations of the detection units 6a, it determines that the selection change of the detection unit 6a is not executed (step). S58; No). When the control unit 8 determines that the selection change of the detection unit 6a is not executed (step S58; No), the process returns to the flow of FIG. 33 (step S49). Accordingly, it is possible to generate an image in which the detecting unit 6a to be selected is changed.
 上述の観察方法において、第3の変形例に係る顕微鏡731に限らず、第2の変形例に係る顕微鏡721を用いてもよい。第2および第3の変形例に係る顕微鏡721,731および、これを用いた観察方法によれば、第3実施形態の成分分離に相当する処理を行うことが可能であるため、画像処理部7により、位相シフト処理を実行することで、検出部6aごとに得られる画像の実効PSFを揃えることができる。そのため、画像処理部7により、位相シフト処理を実行して得られる検出部6aごとの画像を足し合わせることで、S/Nを確保しつつ、分解能が高い画像(例、超解像画像)を生成することができる。また、試料Sに含まれる蛍光物質は、励起光L1によって多光子励起される。これにより、第1実施形態と同様、試料Sの内部を含む任意の部分に設定した試料面Saでの画像データを高精度に取得することができる。 In the above-mentioned observation method, the microscope 721 according to the second modification may be used instead of the microscope 731 according to the third modification. According to the microscopes 721 and 731 according to the second and third modified examples and the observation method using the microscopes 721 and 731, it is possible to perform the process corresponding to the component separation of the third embodiment. Thus, by executing the phase shift process, the effective PSFs of the images obtained for each detection unit 6a can be aligned. Therefore, the image processing unit 7 adds the images of the respective detection units 6a obtained by executing the phase shift process to obtain an image with high resolution (eg, super-resolution image) while ensuring S/N. Can be generated. The fluorescent substance contained in the sample S is multiphoton excited by the excitation light L1. As a result, similar to the first embodiment, the image data on the sample surface Sa set in an arbitrary portion including the inside of the sample S can be acquired with high accuracy.
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。 The technical scope of the present invention is not limited to the embodiments described in the above-described embodiments. One or more of the requirements described in the above embodiments and the like may be omitted. In addition, the requirements described in the above-described embodiments can be combined as appropriate. In addition, to the extent permitted by law, the disclosure of all documents cited in the above-mentioned embodiments and the like shall be incorporated as part of the description in the main text.
 また、上記種々の実施形態および変形例において、干渉により形成される干渉縞を縞状の照明(縞照明)の一例として説明したが、干渉により形成される縞状の照明(縞照明)であってもよいし、干渉以外の手法により形成される縞状の照明(縞照明)であってもよい。なお、「縞」、「縞状」とは、明部と暗部を有し、明部から明部または暗部から暗部が所定の間隔(所定の周期)を有するものであり、「縞」、「縞状の照明(縞照明)」、「干渉縞」は、試料面で形成される。 Further, in the above-described various embodiments and modified examples, the interference fringes formed by interference have been described as an example of striped illumination (stripe illumination), but the striped illumination (stripe illumination) formed by interference is not. Alternatively, striped illumination (stripe illumination) formed by a method other than interference may be used. Note that the “stripes” and “stripes” have a bright portion and a dark portion, and have a predetermined interval (predetermined period) between the bright portion and the bright portion or the dark portion and the dark portion. "Striped illumination (stripe illumination)" and "interference fringes" are formed on the sample surface.
  1 顕微鏡            3 光源
  4 照明光学系          5 検出光学系
  6 検出装置           6a 複数の検出部
  7 画像処理部
101 顕微鏡(第5実施形態)  106 検出装置
201 顕微鏡(第6実施形態)  301 顕微鏡(第7実施形態)
401 顕微鏡(第8実施形態)  404 照明光学系
501 顕微鏡(第9実施形態)  601 顕微鏡(第10実施形態)
701 顕微鏡(第11実施形態)
711 顕微鏡(第1の変形例)  721 顕微鏡(第2の変形例)
731 顕微鏡(第3の変形例)
 L2 干渉縞
DESCRIPTION OF SYMBOLS 1 microscope 3 light source 4 illumination optical system 5 detection optical system 6 detection device 6a multiple detection parts 7 image processing part 101 microscope (fifth embodiment) 106 detection device 201 microscope (sixth embodiment) 301 microscope (seventh embodiment) )
401 Microscope (Eighth Embodiment) 404 Illumination Optical System 501 Microscope (Ninth Embodiment) 601 Microscope (10th Embodiment)
701 Microscope (11th Embodiment)
711 Microscope (first modification) 721 Microscope (second modification)
731 microscope (third modification)
L2 interference fringe

Claims (28)

  1.  試料に含まれる蛍光物質を多光子励起するための光により生成される縞状の照明である縞照明を前記試料の複数の方向において走査する走査部を有する照明光学系と、
     多光子励起によって生じた前記試料からの蛍光が入射する検出光学系と、
     前記検出光学系を介して前記試料からの蛍光を検出する複数の検出部を有する検出装置と、
     前記複数の検出部のうち少なくとも2つの検出部での検出結果を用いて画像を生成する画像処理部とを備える顕微鏡。
    An illumination optical system having a scanning unit that scans a striped illumination, which is a striped illumination generated by light for exciting a fluorescent substance contained in a sample, in a plurality of directions of the sample.
    A detection optical system on which fluorescence from the sample generated by multiphoton excitation is incident,
    A detection device having a plurality of detection units for detecting fluorescence from the sample via the detection optical system,
    A microscope comprising: an image processing unit that generates an image using detection results of at least two detection units of the plurality of detection units.
  2.  前記縞照明は、前記縞照明の周期方向において3以上の明部を有する請求項1に記載の顕微鏡。 The microscope according to claim 1, wherein the striped illumination has three or more bright portions in a cycle direction of the striped illumination.
  3.  前記照明光学系は、入射した光を複数の光束に分割する光束分割部と対物レンズとを含み、
     前記光束分割部は、複数の開口部を有する開口部材を有し、
     前記開口部材は、前記対物レンズの瞳面、前記瞳面の近傍、瞳共役面、または前記瞳共役面の近傍に配置される請求項1または2に記載の顕微鏡。
    The illumination optical system includes a luminous flux dividing portion that divides incident light into a plurality of luminous fluxes and an objective lens.
    The luminous flux dividing portion has an opening member having a plurality of openings.
    The microscope according to claim 1, wherein the aperture member is arranged in a pupil plane of the objective lens, in the vicinity of the pupil plane, in a pupil conjugate plane, or in the vicinity of the pupil conjugate plane.
  4.  前記照明光学系は、入射した光を複数の光束に分割する光束分割部を有し、
     前記光束分割部は、回折格子を有し、
     前記回折格子は、前記試料と共役な位置、または前記試料と共役な位置の近傍に配置される請求項1または2に記載の顕微鏡。
    The illumination optical system has a light beam splitting unit that splits incident light into a plurality of light beams,
    The luminous flux dividing portion has a diffraction grating and
    The microscope according to claim 1 or 2, wherein the diffraction grating is arranged at a position conjugate with the sample or near a position conjugate with the sample.
  5.  前記検出装置は、前記複数の検出部が1方向に配列されたラインセンサを有する請求項1~4のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 4, wherein the detection device has a line sensor in which the plurality of detection units are arranged in one direction.
  6.  前記検出装置は、前記複数の検出部が2方向に配列されたイメージセンサを有する請求項1~4のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 4, wherein the detection device has an image sensor in which the plurality of detection units are arranged in two directions.
  7.  前記試料に対する前記縞照明の方向を変更する縞方向変更部を備える請求項1~6のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 6, further comprising a striped direction changing portion for changing the direction of the striped illumination with respect to the sample.
  8.  前記試料の像を前記複数の検出部に対して、前記検出光学系の光軸の周りで回転させる像回転部を備える請求項1~7のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 7, further comprising an image rotation unit that rotates an image of the sample with respect to the plurality of detection units around an optical axis of the detection optical system.
  9.  前記像回転部は、前記検出光学系のうち前記照明光学系と重複しない光路に配置される請求項8に記載の顕微鏡。 The microscope according to claim 8, wherein the image rotating unit is arranged in an optical path that does not overlap with the illumination optical system in the detection optical system.
  10.  前記試料に対する前記縞照明の方向を変更する縞方向変更部と、
     前記試料の像を前記複数の検出部に対して、前記検出光学系の光軸の周りで回転させる像回転部とを備え、
     前記縞方向変更部と前記像回転部とが同一の部材により構成される請求項1~6のいずれか一項に記載の顕微鏡。
    A fringe direction changing portion that changes the direction of the fringe illumination with respect to the sample,
    An image rotation unit that rotates the image of the sample with respect to the plurality of detection units around the optical axis of the detection optical system,
    The microscope according to any one of claims 1 to 6, wherein the striped direction changing portion and the image rotating portion are formed of the same member.
  11.  前記試料に入射する際の前記光の偏光状態を調整する偏光調整部を備える請求項1~10のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 10, further comprising a polarization adjusting unit for adjusting the polarization state of the light when it is incident on the sample.
  12.  前記複数の検出部の位置は、前記検出光学系の倍率および前記縞照明の周期に基づいて設定される請求項1~11のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 11, wherein the positions of the plurality of detection units are set based on the magnification of the detection optical system and the period of the fringe illumination.
  13.  前記画像処理部は、前記検出光学系の倍率および前記縞照明の周期に基づいて前記複数の検出部のうちから選択される、前記少なくとも2つの検出部での検出結果を用いて画像を生成する請求項1~12のいずれか一項に記載の顕微鏡。 The image processing unit generates an image using the detection results of the at least two detection units selected from the plurality of detection units based on the magnification of the detection optical system and the cycle of the fringe illumination. The microscope according to any one of claims 1 to 12.
  14.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部から得られるデータを、当該少なくとも2つの検出部の位置に基づいて補正する請求項1~13のいずれか一項に記載の顕微鏡。 The image processing unit according to any one of claims 1 to 13, which corrects data obtained from at least two detection units among the plurality of detection units based on the positions of the at least two detection units. microscope.
  15.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部から得られるデータを、周波数空間上のデータへ変換する請求項1~11のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 11, wherein the image processing unit converts data obtained from at least two detection units of the plurality of detection units into data in a frequency space.
  16.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部から得られるデータを、フーリエ変換によって前記周波数空間上のデータへ変換する請求項15に記載の顕微鏡。 The microscope according to claim 15, wherein the image processing unit converts data obtained from at least two detection units of the plurality of detection units into data on the frequency space by Fourier transform.
  17.  前記画像処理部は、前記周波数空間上のデータに対してフィルタリングを行って、前記画像を生成する請求項15または16に記載の顕微鏡。 The microscope according to claim 15 or 16, wherein the image processing unit filters the data in the frequency space to generate the image.
  18.  前記画像処理部は、前記周波数空間上のデータを前記周波数空間の複数の領域に分離することにより複数の成分に分離して、前記画像を生成する請求項15~17のいずれか一項に記載の顕微鏡。 18. The image processing unit according to claim 15, wherein the image processing unit separates the data on the frequency space into a plurality of regions of the frequency space to generate a plurality of components to generate the image. Microscope.
  19.  前記画像処理部は、前記干渉縞の光強度分布に基づいて、前記周波数空間上のデータを前記周波数空間の複数の領域に分離する請求項18に記載の顕微鏡。 The microscope according to claim 18, wherein the image processing unit separates the data in the frequency space into a plurality of regions in the frequency space based on a light intensity distribution of the interference fringes.
  20.  前記複数の領域は、互いに重複しないように設定される請求項18または19に記載の顕微鏡。 The microscope according to claim 18 or 19, wherein the plurality of areas are set so as not to overlap each other.
  21.  前記照明光学系は、前記縞照明の位相を変更する位相変調素子を含み、
     前記画像処理部は、前記縞照明が複数の位相状態の各状態にあるときに前記検出部により検出された検出結果の前記周波数空間上のデータを複数の成分に分離して、前記画像を生成する請求項15~17のいずれか一項に記載の顕微鏡。
    The illumination optical system includes a phase modulation element that changes the phase of the fringe illumination,
    The image processing unit generates the image by separating the data of the detection result detected by the detection unit in the frequency space into a plurality of components when the fringe illumination is in each of a plurality of phase states. The microscope according to any one of claims 15 to 17.
  22.  前記画像処理部は、前記複数の成分に分離することにより得られるデータの少なくとも一部の位相を変換して、前記画像を生成する請求項18~21のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 18 to 21, wherein the image processing unit converts the phase of at least part of data obtained by separating the plurality of components to generate the image.
  23.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部の位置および前記縞照明の光強度分布に基づいて、前記位相を変換する量を決定する請求項22に記載の顕微鏡。 The microscope according to claim 22, wherein the image processing unit determines the amount of phase conversion based on the positions of at least two detection units of the plurality of detection units and the light intensity distribution of the fringe illumination.
  24.  前記画像処理部は、前記位相を変換したデータを前記検出部の位置に基づいて補正して前記画像を生成する請求項22または23に記載の顕微鏡。 The microscope according to claim 22 or 23, wherein the image processing unit corrects the phase-converted data based on the position of the detection unit to generate the image.
  25.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部から得られるデータに対してデコンボリューションを実行して、前記画像を生成する請求項1~20のいずれか一項に記載の顕微鏡。 21. The image processing unit according to claim 1, wherein the image processing unit performs deconvolution on data obtained from at least two detection units of the plurality of detection units to generate the image. microscope.
  26.  前記画像処理部は、前記複数の検出部のうち少なくとも2つの検出部から得られるデータに対して、当該少なくとも2つの検出部の位置および前記縞照明の光強度分布に基づいて前記デコンボリューションを実行する請求項25に記載の顕微鏡。 The image processing unit performs the deconvolution on the data obtained from at least two detection units of the plurality of detection units based on the positions of the at least two detection units and the light intensity distribution of the fringe illumination. The microscope according to claim 25.
  27.  前記縞照明は、干渉縞である請求項1~26のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 26, wherein the fringe illumination is an interference fringe.
  28.  試料に含まれる蛍光物質を多光子励起するための光により生成される縞状の照明である縞照明を前記試料の複数の方向において走査することと、
     多光子励起によって生じた前記試料からの蛍光を、複数の検出部を用いて検出することと、
     前記複数の検出部のうち少なくとも2つの検出部での検出結果を用いて画像を生成することとを含む観察方法。
    Scanning in a plurality of directions of the sample fringe illumination is a striped illumination generated by light for multiphoton excitation of the fluorescent material contained in the sample,
    Detecting fluorescence from the sample generated by multiphoton excitation using a plurality of detectors,
    Generating an image using the detection results of at least two detectors of the plurality of detectors.
PCT/JP2019/008975 2019-03-06 2019-03-06 Microscope and observation method WO2020179039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008975 WO2020179039A1 (en) 2019-03-06 2019-03-06 Microscope and observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008975 WO2020179039A1 (en) 2019-03-06 2019-03-06 Microscope and observation method

Publications (1)

Publication Number Publication Date
WO2020179039A1 true WO2020179039A1 (en) 2020-09-10

Family

ID=72337732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008975 WO2020179039A1 (en) 2019-03-06 2019-03-06 Microscope and observation method

Country Status (1)

Country Link
WO (1) WO2020179039A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088418A1 (en) * 2009-01-29 2010-08-05 The Regents Of The University Of California High resolution structured illumination microscopy
JP2010271522A (en) * 2009-05-21 2010-12-02 Nikon Corp Nonlinear optical microscope
WO2015052936A1 (en) * 2013-10-09 2015-04-16 株式会社ニコン Structured illumination microscope device
WO2015118634A1 (en) * 2014-02-05 2015-08-13 株式会社ニコン Lighting device, observation device, and observation method
JP2016105126A (en) * 2014-12-01 2016-06-09 横河電機株式会社 Microscope device
WO2017094184A1 (en) * 2015-12-04 2017-06-08 オリンパス株式会社 Scanning microscope and microscope image acquisition method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088418A1 (en) * 2009-01-29 2010-08-05 The Regents Of The University Of California High resolution structured illumination microscopy
JP2010271522A (en) * 2009-05-21 2010-12-02 Nikon Corp Nonlinear optical microscope
WO2015052936A1 (en) * 2013-10-09 2015-04-16 株式会社ニコン Structured illumination microscope device
WO2015118634A1 (en) * 2014-02-05 2015-08-13 株式会社ニコン Lighting device, observation device, and observation method
JP2016105126A (en) * 2014-12-01 2016-06-09 横河電機株式会社 Microscope device
WO2017094184A1 (en) * 2015-12-04 2017-06-08 オリンパス株式会社 Scanning microscope and microscope image acquisition method

Similar Documents

Publication Publication Date Title
US11187883B2 (en) Structured illuminating microscopy apparatus
JP6033798B2 (en) System and method for illumination phase control in fluorescence microscopy
US8019136B2 (en) Optical sectioning microscopy
EP2093601B1 (en) Microscope device and image processing method
JP4835750B2 (en) Microscope equipment
JP5907998B2 (en) Variable orientation lighting pattern rotator
US20160131885A1 (en) Structured illumination device and structured illumination microscope device
EP2565697A1 (en) Structural illumination microscope device
US11287625B2 (en) Microscope and observation method
US20210389577A1 (en) Microscope
JP6194710B2 (en) Structured illumination device and structured illumination microscope device
WO2016199179A1 (en) Structured illumination microscope system, method, and program
US20150124073A1 (en) Illumination optical system and microscope
JP2007279287A (en) Structured illuminating optical system and structured illuminating microscope having the same
TWI414818B (en) Wide-field super-resolution optical sectioning microscopy using a spatial light modulator
US9507137B2 (en) Microscope with structured illumination using displaceable grid structures
JP6413364B2 (en) Illumination optical system and microscope apparatus
WO2020179039A1 (en) Microscope and observation method
JP6269239B2 (en) Structured illumination device and structured illumination microscope device
WO2020179032A1 (en) Microscope and observation method
WO2020179040A1 (en) Microscope and observation method
WO2015052920A1 (en) Structured illumination device and structured illumination microscope device
WO2022050221A1 (en) Microscope
WO2022102584A1 (en) Microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP