WO2015052920A1 - Structured illumination device and structured illumination microscope device - Google Patents

Structured illumination device and structured illumination microscope device Download PDF

Info

Publication number
WO2015052920A1
WO2015052920A1 PCT/JP2014/005106 JP2014005106W WO2015052920A1 WO 2015052920 A1 WO2015052920 A1 WO 2015052920A1 JP 2014005106 W JP2014005106 W JP 2014005106W WO 2015052920 A1 WO2015052920 A1 WO 2015052920A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light beam
delay amount
structured
phase delay
Prior art date
Application number
PCT/JP2014/005106
Other languages
French (fr)
Japanese (ja)
Inventor
妙子 渡士
文宏 嶽
大内 由美子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2015541438A priority Critical patent/JPWO2015052920A1/en
Publication of WO2015052920A1 publication Critical patent/WO2015052920A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison

Definitions

  • the present invention relates to a structured illumination apparatus and a structured illumination microscope apparatus.
  • a structured illumination microscope that modulates the spatial frequency of the structure of a specimen with illumination light is known as a technique for super-resolution observation of an object (specimen) such as a biological specimen.
  • This structured illumination microscope illuminates a specimen with a spatially modulated illumination pattern, and contributes high spatial frequency information exceeding the resolution limit included in the specimen structure to the imaging of the microscope optical system.
  • the structured illumination microscope operates on a plurality of modulated image data (hereinafter referred to as “modulated images”) obtained under different illumination patterns to perform demodulation image data (hereinafter referred to as “demodulated image”).
  • Image or“ super-resolution image ”).
  • a two-dimensional spatial light modulator (SLM) is used as a phase diffraction grating for generating a striped illumination pattern.
  • SLM spatial light modulator
  • liquid crystal pixels are closely arranged, and the phase delay amount of light in each liquid crystal pixel can be controlled by controlling the voltage applied to each liquid crystal pixel. If the phase delay amount of this SLM is set to a periodic distribution in one direction, a phase diffraction grating appears in the SLM. To switch the orientation and phase of this phase diffraction grating, the voltage distribution applied to the SLM may be switched. Therefore, the structured illumination microscope apparatus described in Non-Patent Document 1 can switch the azimuth and phase of the illumination pattern without mechanical driving.
  • the performance of the structured illumination microscope may be deteriorated.
  • An example of the structured illuminating device of the present invention forms an interference fringe with a spatial light modulator that branches light from a light source into a plurality of light beams, and all or part of the plurality of light beams, and illuminates the sample with the interference fringes.
  • An optical system and a control unit that controls the spatial light modulator are provided.
  • the control unit outputs a drive signal to the spatial light modulator, so that the intensity ratio of the plurality of light beams contributing to the interference fringes becomes a predetermined value, so that the first region of the spatial light modulator is A first phase delay amount is set for the second region, and a second phase delay amount is set for the second region.
  • An example of the structured illumination microscope apparatus of the present invention includes the example of the structured illumination apparatus of the present invention and an imaging unit that acquires a modulated image that is an image of a sample spatially modulated by interference fringes.
  • FIG. 1 is a configuration diagram of a structured illumination microscope apparatus 1.
  • FIG. It is a figure explaining SLM13. It is a figure explaining the relationship between the direction of a phase diffraction grating, and the direction of an interference fringe. It is a figure explaining the 0th-order light shutter 200 and the high-order light cut member 18.
  • FIG. FIG. 6 is a diagram for explaining the function of a half-wave plate 17. It is a figure explaining the phase shift of an interference fringe. It is a figure which shows the relationship between phase difference (PHI) of a phase diffraction grating, and diffraction intensity.
  • 4 is an operation flowchart of the control device 39. It is a modification of the arrangement
  • FIG. 1 is a configuration diagram of the structured illumination microscope apparatus 1.
  • the structured illumination microscope apparatus 1 includes a laser unit 100, an optical fiber 11, an illumination optical system 10, an imaging optical system 30, an image sensor 35, a control device 39, an image storage / An arithmetic device 40 and an image display device 45 are provided.
  • the illumination optical system 10 and the imaging optical system 30 share the objective lens 6 and the dichroic mirror 7.
  • the laser unit 100 includes a first laser light source 101, a second laser light source 102, shutters 1031, 1032, a mirror 105, a dichroic mirror 106, and a lens 107.
  • Each of the first laser light source 101 and the second laser light source 102 is a coherent light source, and the emission wavelengths thereof are different from each other.
  • the wavelength ⁇ 1 of the first laser light source 101 is longer than the wavelength ⁇ 2 of the second laser light source 102 ( ⁇ 1 > ⁇ 2 ).
  • the first laser light source 101, the second laser light source 102, and the shutters 1031 and 1032 are driven and controlled by the control device 39, respectively.
  • the optical fiber 11 is composed of, for example, a polarization-preserving single mode fiber in order to guide the laser light emitted from the laser unit 100.
  • the position of the emission end of the optical fiber 11 in the optical axis AZ direction can be adjusted by the position adjusting mechanism 11A.
  • the position adjusting mechanism 11A is driven and controlled by the control device 39.
  • a piezo element or the like is used as the position adjustment mechanism 11A.
  • the illumination optical system 10 includes, in order from the emission end side of the optical fiber 11, a collector lens 12, a polarizing plate 23, a light beam branching unit 15, a condensing lens 16, a light beam selecting unit 24, a lens 25, and a field of view.
  • a diaphragm 26, a field lens 27, an excitation filter 28, a dichroic mirror 7, and an objective lens 6 are disposed.
  • the light beam splitting unit 15 includes a two-dimensional liquid crystal spatial light modulator (SLM) 13 that functions as a phase diffraction grating and a liquid crystal drive circuit 15A.
  • the liquid crystal drive circuit 15 ⁇ / b> A is driven and controlled by the control device 39.
  • the SLM refers to a member having a function of giving a predetermined distribution spatially (within the space of the light beam) to the incident light beam.
  • the light beam selector 24 includes a zero-order light shutter 200, a half-wave plate 17, a high-order light cut member 18, a rotation mechanism 200A, and a wave plate driving circuit 17A. Among these, the rotation mechanism 200A and the wave plate driving circuit 17A are driven and controlled by the control device 39, respectively.
  • an objective lens 6, a dichroic mirror 7, a barrier filter 31, and a second objective lens 32 are arranged in this order from the sample 5 side.
  • the specimen 5 is, for example, fluorescent cells (cells stained with a fluorescent dye) arranged on a parallel flat glass surface, or fluorescent living cells (moving cells stained with a fluorescent dye) present in a petri dish. ) And so on.
  • fluorescent cells cells stained with a fluorescent dye
  • fluorescent living cells moving cells stained with a fluorescent dye
  • the image sensor 35 is a two-dimensional image sensor composed of a CCD, a CMOS, or the like.
  • the image pickup device 35 picks up an image formed on the image pickup surface 36 of the image pickup device 35 and generates an image.
  • the image generated by the image sensor 35 is taken into the image storage / arithmetic device 40 via the control device 39.
  • the imaging element 35 can repeat image generation (imaging) at a predetermined frame period.
  • the frame period (imaging repetition period) of the image sensor 35 is set to 30 msec, 60 msec, or the like, for example.
  • the frame period (imaging repetition period) of the image sensor 35 is determined by the rate-determining among the imaging time of the image sensor (that is, the time required for charge accumulation and charge readout), the time required for switching the direction of interference fringes, and other required times. It is done.
  • the control device 39 drives and controls the first laser light source 101, the second laser light source 102, the shutters 1031, 1032, the position adjustment mechanism 11A, the liquid crystal drive circuit 15A, the rotation mechanism 200A, the wave plate drive circuit 17A, and the image sensor 35. To do.
  • the image storage / arithmetic unit 40 When the image storage / arithmetic unit 40 performs a demodulation operation on the image generated by the image sensor 35 to generate a super-resolution image, the image storage / arithmetic unit 40 stores the super-resolution image in an internal memory (not shown) and an image display unit. 45.
  • the laser beam (first laser beam) having the wavelength ⁇ 1 emitted from the first laser light source 101 enters the mirror 105 through the shutter 1031, the laser beam is reflected by the mirror 105 and enters the dichroic mirror 106.
  • laser light (second laser light) having a wavelength ⁇ 2 emitted from the second laser light source 102 enters the beam splitter 106 via the shutter 1032 and is integrated with the first laser light.
  • the first laser beam and the second laser beam emitted from the dichroic mirror 106 enter the incident end of the optical fiber 11 through the lens 107.
  • the control device 39 controls the first laser light source 101, the second laser light source 102, and the shutters 1031 and 1032 to increase the emission wavelength of the laser unit 100, that is, the light source wavelength ⁇ of the structured illumination microscope device 1. It is possible to switch between wavelength ⁇ 1 and short wavelength ⁇ 2 .
  • the laser light incident on the incident end of the optical fiber 11 propagates inside the optical fiber 11 to generate a point light source at the output end of the optical fiber 11.
  • the laser light emitted from the point light source is converted into a parallel light beam by the collector lens 12 and is incident on the SLM 13 via the polarizing plate 23, and branches into a diffracted light beam of each order (hereinafter referred to as “diffracted light beam group”). (Details will be described later).
  • the diffracted light beams of the respective orders included in the diffracted light beam group enter the condenser lens 16, the diffracted light beams are condensed at each position of the pupil conjugate plane 6 ⁇ / b> A ′ by receiving the condensing action of the condenser lens 16.
  • the pupil conjugate plane 6A ′ is a position conjugate with the pupil plane 6A of the objective lens 6 with respect to the field lens 27 and the lens 25 (a position where the diffracted light beams of respective orders are individually collected).
  • the condenser lens 16 is arranged so that the focal position (rear focal position) of the condenser lens 16 coincides with the pupil conjugate plane 6A ′.
  • the concept of “conjugate position” here includes a position determined by a person skilled in the art in consideration of design necessary matters such as aberration and vignetting of the objective lens 6, the field lens 27, and the lens 25. Shall.
  • the polarizing plate 23 can be omitted, but it is effective for reliably cutting off an excess polarization component. Further, in order to increase the utilization efficiency of the laser light, it is desirable that the axis of the polarizing plate 23 coincides with the polarization direction of the laser light emitted from the optical fiber 11. Incidentally, when a multimode fiber is used as the optical fiber 11, the polarizing plate 23 is essential. When the SLM 13 is used as a diffraction grating, it is necessary to set the polarization direction of the light beam incident on the SLM 13 to an appropriate direction.
  • the diffracted light beam group directed toward the pupil conjugate surface 6A ' enters the light beam selector 24 disposed in the vicinity of the pupil conjugate surface 6A'.
  • the light beam selection unit 24 selects only three diffracted light beams (only the 0th-order diffracted light beam and the ⁇ 1st-order diffracted light beams) from the incident diffracted light beam group. Let it pass.
  • the 0th-order light shutter 200 of the light beam selection unit 24 has a function of turning on / off the 0th-order diffracted light beam as necessary.
  • the high-order light cut member 18 of the light beam selection unit 24 has a second or higher order higher next time. There is a function of always blocking the folded light beam (details will be described later).
  • the 0th-order diffracted light beam and the ⁇ 1st-order diffracted light beam that have passed through the light beam selection unit 24 form a conjugate plane with the SLM 13 near the field stop 26 by the lens 25. Thereafter, each of the 0th-order diffracted light beam and the ⁇ 1st-order diffracted light beam is converted into convergent light by the field lens 27, further passes through the excitation filter 28, is reflected by the dichroic mirror 7, and is mutually reflected on the pupil plane 6 ⁇ / b> A of the objective lens 6. Concentrate at different positions.
  • Each of the 0th-order diffracted light beam and the ⁇ 1st-order diffracted light beam collected on the pupil plane 6A becomes a parallel light beam when exiting from the tip of the objective lens 6, interferes with each other on the surface of the sample 5, and forms interference fringes. Form. This interference fringe is used as structured illumination light.
  • the specimen 5 When the specimen 5 is illuminated with such an interference fringe, the specimen 5 is spatially modulated, and a moire fringe corresponding to the difference between the periodic structure of the interference fringe and the periodic structure of the fluorescent region in the specimen 5 appears. Since the high frequency structure in the fluorescent region is shifted to the lower frequency side than the original frequency, the fluorescence indicating this structure is directed to the objective lens 6 at an angle smaller than the original angle. Therefore, when the specimen 5 is illuminated by the interference fringes, even the high-frequency structural information of the fluorescent region is transmitted by the objective lens 6.
  • the fluorescence generated in the sample 5 When the fluorescence generated in the sample 5 is incident on the objective lens 6, it is converted into parallel light by the objective lens 6, then passes through the dichroic mirror 7 and the barrier filter 31, and passes through the second objective lens 32 and passes through the second imaging lens 35.
  • a modulated image of the fluorescent region is formed on the imaging surface 36.
  • the modulated image is imaged by the image sensor 35 to generate a modulated image.
  • the modulated image is taken into the image storage / arithmetic device 40 via the control device 39. Further, the modulation image is demodulated by the image storage / calculation device 40, and a demodulated image (super-resolution image) of the fluorescent region is generated.
  • the super-resolution image is stored in an internal memory (not shown) of the image storage / arithmetic device 40 and is sent to the image display device 45.
  • the demodulation operation for example, a method disclosed in US Pat. No. 8,115,806 is used.
  • FIG. 2A is a schematic diagram in which a part of the SLM 13 is enlarged.
  • the SLM 13 is a reflection-type spatial light modulator, and includes a circuit layer 13c such as CMOS in which pixel circuits are two-dimensionally arranged, a liquid crystal layer 13a made of nematic liquid crystal, and the like, wavelengths ⁇ 1 and ⁇ 2.
  • a protective layer 13b transparent to the light. That is, the SLM 13 includes a two-dimensional liquid crystal member in which pixels made of liquid crystal elements are densely arranged in each of two directions orthogonal to each other. The SLM 13 is directed toward the protective layer 13b with respect to the incident light beam, and the normal of the surface (incident surface) of the protective layer 13b forms an angle of, for example, 45 ° with respect to the principal ray of the incident light beam.
  • the configuration of the SLM may be a configuration used for regular reflection. In that case, it is desirable to spatially separate the incident light on the SLM and the reflected light from the SLM by a combination of a half mirror, a polarizing beam splitter, and a wave plate.
  • the phase distribution of the incident light beam with respect to the SLM 13 can be controlled. Note that the amplitude distribution and polarization direction distribution of the incident light beam with respect to the SLM 13 do not change at all.
  • a reflective spatial light modulator for example, X10468 of Hamamatsu Photonics, LC-R720 of HOLOEYE, or the like can be applied.
  • a reflective spatial light modulator is used as the SLM 13 here, a transmissive spatial light modulator may be used.
  • the liquid crystal method is used here as the light modulation method, another method in which the refractive index of the optical path is variable may be used.
  • the liquid crystal drive circuit 15A sets the refractive index distribution of the liquid crystal phase 13a to a periodic distribution in one direction under the control of the control device 39 (see FIG. 1).
  • a one-way phase diffraction grating as shown in FIG. 2B is displayed on the SLM 13. It is the function of this phase diffraction grating that splits the incident light beam into the diffracted light beam group.
  • phase diffraction grating displayed on the SLM 13 cannot actually be visually observed.
  • the grating pattern of the phase diffraction grating is visualized below.
  • the fact that the phase delay amount distribution of at least an effective light incident region of the SLM 13 is set to be a periodic distribution is expressed as “a phase diffraction grating is displayed on the SLM 13”.
  • FIG. 2B is a schematic view of the phase diffraction grating displayed on the SLM 13 as viewed from the sample side.
  • a pixel region 13A having a relatively low refractive index (a pixel region having a relatively small phase delay amount) is represented in white, and a pixel region 13B having a relatively high refractive index (a relative phase delay amount).
  • a large pixel area) is shown in gray.
  • the grating period (structure period) P of the phase diffraction grating is drawn larger than the actual one.
  • the phase delay amount imparted to the pixel region 13A having a relatively low refractive index is a constant value within the region
  • the phase delay amount imparted to the pixel region 13B having a relatively high refractive index is a constant value within the region. It is.
  • the SLM is the same as a rectangular uneven diffraction grating.
  • the pattern of the SLM phase delay amount distribution may be a pattern in which anti-aliasing is applied only to the boundary region of each pixel region of the SLM.
  • the SLM is included in the rectangular concept.
  • the present invention is not limited to this, and the distribution of the phase delay amount in the SLM may be a sinusoidal distribution.
  • the phase delay amount of the pixel region 13A having a relatively low refractive index is a value distributed in a sine wave shape and may be set to include a minimum value, and has a relatively high refractive index.
  • the phase delay amount of the pixel region 13B is a value distributed in a sine wave shape, and may be set to include the maximum value.
  • the sinusoidal distribution when connecting the values of a plurality of pixels in order to form the phase delay amount distribution of the image regions 13A and 13B, when viewed locally, the sinusoidal distribution is discontinuous, but as a whole SLM, What is necessary is just to consider that it is distributed in the shape of a sine wave.
  • phase delay amount of the pixel region 13A and the phase delay amount of the pixel region 13B are constant values and are different from each other (hereinafter, rectangular wave mode)
  • the phase delay amount of the pixel region 13A is sine.
  • the difference from the case where the value is distributed in a wave shape and includes the maximum value and the phase delay amount of the pixel region 13B is distributed in a sine wave shape and includes the minimum value (hereinafter referred to as sine wave mode) is as follows. It is as follows.
  • the first phase delay amount and the second phase delay amount so that the ratio of the intensity of the 0th order diffracted light beam, the intensity of the + 1st order diffracted light beam, and the intensity of the ⁇ 1st order diffracted light beam is, for example, 0.7: 1: 1.
  • the difference between the first phase delay amount and the second phase delay amount due to the distribution shape of the phase delay amount is smaller in the rectangular wave mode than in the sine wave mode.
  • the phase delay amount of the pixel region 13A having a relatively low refractive index is a value distributed in an inverted trapezoidal shape (the upper side is long and the lower side is short), and the lower side is set to a minimum value.
  • the phase delay amount of the pixel region 13B having a high refractive index is a value distributed in a trapezoidal shape (the upper side is short and the lower side is long), and the upper side may be set to a maximum value.
  • the line connecting the upper side and the lower side is usually a straight line.
  • the light beam incident on the SLM 13 is converted into a diffracted light beam group branched in the direction V of the periodic structure of the phase diffraction grating.
  • This diffracted light beam group includes a 0th-order diffracted light beam and a ⁇ 1st-order diffracted light beam, and of these, the ⁇ 1st-order diffracted light beam having the same order travels in a symmetric direction with respect to the optical axis AZ.
  • the folded light beam travels along the optical axis AZ.
  • These 0th-order diffracted light beam and ⁇ 1st-order diffracted light beam are condensed at different positions on the pupil conjugate plane 6A ′. As shown in FIG.
  • the condensing point 14a of the 0th-order diffracted light beam is located on the optical axis AZ, and the condensing points 14b and 14c of the ⁇ 1st-order diffracted light beams are symmetric with respect to the optical axis AZ.
  • the arrangement direction of the condensing points 14c, 14a, 14b is the same as the branching direction V of the diffracted light beam group.
  • the “focusing point” mentioned here is the position of the center of gravity of an area having 80% or more of the maximum intensity. Therefore, the illumination optical system 10 of the present embodiment does not need to collect the light beam until a complete condensing point is formed.
  • the structural period P of the phase diffraction grating is set to an appropriate value P 0 such that the respective condensing points 14b and 14c of the ⁇ first-order diffracted light beams are located on the outermost circumference of the pupil conjugate plane 6A ′.
  • the appropriate value P 0 the fringe period of the interference fringes (FIG. 2D) is appropriately reduced (in FIG. 2D, the structural period P is drawn larger than the actual period).
  • the refractive index difference ⁇ n of the phase diffraction grating that is, the difference between the refractive index of the pixel region 13A and the refractive index of the pixel region 13B is calculated from the phase diffraction grating based on the equation (1) described later.
  • the ratio of the intensity of the emitted 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the ⁇ 1st-order diffracted light beam is set to an appropriate value ⁇ n 0 such as 0.7: 1: 1. According to this appropriate value ⁇ n 0 , the contrast of the demodulated image (super-resolution image) becomes optimal (details will be described later).
  • the intensity ratio of the 0th-order diffracted light and the 1st-order diffracted light is 1: 1
  • the magnitude of the Fourier spectrum of the second-order OTF in the 3D-SIM mode using structured illumination by three-beam interference is two beams. This is because it is lower than the Fourier spectrum of the second-order OTF in the 2D-SIM mode using structured illumination due to interference.
  • the first-order OTF is generated due to the interference fringes of the 0th-order diffracted light and the + 1st-order diffracted light, and the interference fringes of the 0th-order diffracted light and the + 1st-order diffracted light.
  • the second-order OTF means OTF caused by interference fringes of + 1st order diffracted light and ⁇ 1st order diffracted light.
  • the liquid crystal driving circuit 15A described above changes the display direction of the phase diffraction grating, for example, from FIG. 3A1 to FIG. 3 by switching the refractive index distribution of the liquid crystal layer 13a under the control of the control device 39 (see FIG. 1).
  • 3 (A2) ⁇ As shown in FIG. 3 (A3), switching is performed in three ways with an angular period of 60 °.
  • the distance D from the optical axis AZ to the condensing points 14b and 14c is expressed by the following equation: It is represented by
  • the arrangement direction of the condensing points 14c, 14a, and 14b on the pupil conjugate plane 6A ′ is as shown in FIG. is the same as the direction V 3.
  • the distance of the focal point 14c, from 14b to the optical axis AZ is the same as the distance when the direction of the periodic structure is V 1 (see FIG. 3 (B1)).
  • the liquid crystal driving circuit 15A of the present embodiment changes the direction of the interference fringes formed on the specimen 5 to an angular period of 60 ° as shown in FIG. 3 (C1) ⁇ FIG. 3 (C2) ⁇ FIG. 3 (C3). You can switch between three ways. Moreover, in this embodiment, since the SLM 13 is used as the phase diffraction grating, the direction of the interference fringes is switched at high speed.
  • FIG. 4A is a diagram for explaining the zero-order light shutter 200.
  • the 0th-order optical shutter 200 is a spatial filter formed by forming a circular light shielding part 200C on a part of a circular transparent substrate.
  • the light-shielding part 200C of the 0th-order optical shutter 200 covers the optical path (condensing point 14a) of the 0th-order diffracted light beam, and the non-light-shielding part (transmission part 200B) of the 0th-order light shutter 200 is the optical path of ⁇ first-order diffracted light flux.
  • the entire region that can be formed that is, the region where the condensing points 14b and 14c can be formed) is covered.
  • the zero-order light shutter 200 is rotated around a straight line (axis AR) parallel to and away from the optical axis AZ of the illumination optical system 10 by the rotation mechanism 200A (see FIG. 1) described above. Is possible.
  • a rotation shaft (not shown) that holds the zero-order light shutter 200 and can rotate around the axis AR
  • a motor (not shown) that applies a rotational force to the rotation shaft are included in the rod rotation mechanism 200A. (Rotary motor). When this motor is driven, the rotation shaft rotates, and the zero-order light shutter 200 rotates about the axis AR.
  • the rotation angle of the 0th-order light shutter 200 When the rotation angle of the 0th-order light shutter 200 is set to the reference angle (0 °) shown in FIG. 4, the light-shielding portion 200C is inserted into the optical path (condensing point 14a) of the 0th-order diffracted light beam, and the 0th-order light
  • the rotation angle of the shutter 200 is set to a predetermined angle (for example, 30 °) that deviates from the reference angle, the light shielding part 200C is deviated from the optical path (condensing point 14a) of the 0th-order diffracted light beam.
  • the 0th-order diffracted light beam is turned on / off while the ⁇ 1st-order diffracted light beam remains on.
  • 4A shows a state in which the 0th-order diffracted light beam is turned off
  • FIG. 1 shows a state in which the 0th-order diffracted light beam is turned on.
  • the structured illumination microscope apparatus 1 is set to the 2D-SIM mode
  • the structured illumination microscope apparatus 1 is set to the 3D-SIM mode.
  • the light shielding portion 200C of the 0th-order light shutter 200 has a ⁇ 1st-order diffracted light beam regardless of whether the rotation angle of the 0th-order light shutter 200 is a reference angle (0 °) or a predetermined angle (30 °). It is assumed that a region that can be an optical path (that is, a region where the condensing points 14b and 14c can be formed) is not blocked.
  • the zero-order light shutter 200 is a rotatable spatial filter here, the zero-order light shutter 200 may be configured by a slidable spatial filter, a liquid crystal element that is fixedly arranged, or the like. If the orientation of the liquid crystal element is electrically controlled, the refractive index anisotropy of the liquid crystal element can be controlled, so that the liquid crystal element can function as the zero-order light shutter 200.
  • FIG. 4B is a diagram illustrating the high-order light cut member 18.
  • the high-order light cut member 18 is a spatial filter formed by forming a circular opening 18a and a ring-shaped opening 18b on a circular opaque substrate (mask substrate).
  • the circular opening 18 a covers the optical path of the 0th-order diffracted light beam (condensing point 14 a), and the ring-shaped opening 18 b is an area that can be an optical path of the ⁇ 1st-order diffracted light beam (that is, The region where the condensing points 14b and 14c can be formed).
  • a region that can be an optical path of a second-order or higher-order diffracted light beam is a light shielding portion (non-opening portion).
  • the high-order light cut member 18 may be omitted when the intensity of the second-order and higher-order diffracted light beams generated by the SLM 13 is sufficiently weak.
  • the half-wave plate 17 (see FIG. 1) is used to maintain the polarization state of the diffracted light beam group contributing to the interference fringes as S-polarized light. This is because the contrast of the interference fringes becomes maximum when the polarization state of the diffracted light beam group is S-polarized light.
  • the polarization direction of the diffracted light beam group should be the direction V 1 ′ shown by the dotted arrow in FIG. .
  • This direction V 1 ′ is a direction obtained by rotating the direction V 1 by 90 ° around the optical axis AZ.
  • the polarization direction of the diffracted light beam group should be the direction V 2 ′ shown by the dotted arrow in FIG. 5B.
  • This direction V 2 ′ is a direction obtained by rotating the direction V 2 by 90 ° around the optical axis AZ.
  • the polarization direction of the diffracted light beam group should be the direction V 3 ′ indicated by the dotted arrow in FIG. .
  • This direction V 3 ′ is a direction obtained by rotating the direction V 3 by 90 ° around the optical axis AZ.
  • the axial direction of the polarizing plate 23 disposed on the upstream side of the SLM 13 is matched with the direction V 2 ′ in advance, and the progression of the half-wave plate 17 disposed on the downstream side of the SLM 13 is achieved.
  • the direction of the phase axis is appropriately rotated around the optical axis AZ by the wave plate driving circuit 17A (see FIG. 1).
  • the fast axis of the half-wave plate 17 is a direction in which the amount of phase delay when light polarized in the direction of the axis passes through the half-wave plate 17 is minimized.
  • the half-wave plate 17 is also composed of a liquid crystal element so that the effect of the acceleration is not impaired. If the orientation of the liquid crystal element is electrically controlled by the wave plate driving circuit 17A (see FIG. 1), the direction of the fast axis of the half-wave plate 17 is switched at high speed.
  • the direction of the fast axis of the half-wave plate 17 is set to the direction indicated by the solid line double arrow in FIG. 5 (A). Is done. This direction is 1/2 the polarization direction V 2 'of the diffracted light flux group incident has the wavelength plate 17, 1/2 polarization direction V 1 to the diffracted light flux group emitted from the wavelength plate 17 has It is the direction that bisects'.
  • the direction of the fast axis of the half-wave plate 17 is set to the direction indicated by the solid double-pointed arrow in FIG. Is done.
  • This direction includes the polarization direction V 2 ′ that the diffracted light beam group incident on the half-wave plate 17 has, and the polarization direction V 3 that the diffracted light beam group emitted from the half-wave plate 17 should have. It is the direction that bisects'.
  • the half-wave plate 17 made of a liquid crystal element is used to keep the diffracted light beam group contributing to the interference fringe as S-polarized light.
  • the diffracted light beam group contributing to the interference fringe As S-polarized light. There are other methods (described later).
  • the above-described demodulation operation requires, for example, a plurality of modulation images (for example, five modulation images) that are the same sample 5 and the modulation images related to the interference fringes in the same direction and have different phases of the interference fringes.
  • the modulated image generated by the structured illumination microscope apparatus 1 includes a 0th order modulation component, a + 1st order modulation component, ⁇ This is because the primary modulation component, the + secondary modulation component, and the -2nd modulation component are included, and it is necessary to make these five unknown parameters known by the demodulation operation.
  • the liquid crystal drive circuit 15A shifts the display destination of the phase diffraction grating in the SLM 13 in order to shift the phase of the interference fringes.
  • the shift direction is, for example, a direction (x direction) non-perpendicular to the direction V of the periodic structure of the phase diffraction grating (here, any one of V 1 , V 2 , V 3 ) as shown in FIG.
  • the shift amount L in the x direction of the phase diffraction grating necessary for shifting the phase of the interference fringes by ⁇ is determined by the structural period P of the phase diffraction grating and the angle ⁇ shown in FIG.
  • This angle ⁇ is an angle formed by the shift direction (x direction) of the phase diffraction grating and the direction V of the periodic structure (in this case, any one of V 1 , V 2 , and V 3 ).
  • the phase shift period ⁇ is set to 2 ⁇ / N, for example.
  • the intensity ratio between the 0th-order diffracted light beam and the ⁇ 1st-order diffracted light beam that contributes to the interference fringes basically depends on the phase difference ⁇ of the phase diffraction grating displayed on the SLM 13.
  • the phase difference ⁇ of the phase diffraction grating is a difference between the phase delay amount given by the pixel region 13A and the phase delay amount given by the pixel region 13B with respect to the incident light beam of the SLM 13.
  • the relationship between the phase difference ⁇ of the phase diffraction grating and the diffraction intensity of each order generated in the phase diffraction grating is as shown in FIG.
  • the “diffraction intensity” here refers to the intensity of the diffracted light beam generated when the intensity of the incident light beam with respect to the phase diffraction grating is “1”.
  • the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the ⁇ 1st-order diffracted light beam is 1: 1: 1. It turns out that it becomes.
  • the phase difference ⁇ such that the ratio of the intensity of the 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the ⁇ 1st-order diffracted light beam is 0.7: 1: 1 is It can be seen that ⁇ 2.2.
  • the curve in FIG. 7 shows a case where the phase distribution is a sine wave mode.
  • the phase difference ⁇ for setting the ratio of the intensity of the 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the ⁇ 1st-order diffracted light beam to 0.7: 1: 1, for example. Since the phase distribution is smaller than that in the sine wave mode, it is necessary to change the phase value set in the SLM.
  • the phase difference ⁇ of the phase diffraction grating is determined by the refractive index difference ⁇ n of the phase diffraction grating.
  • the refractive index difference ⁇ n of the phase diffraction grating is a difference between the refractive index of the pixel region 13A and the refractive index of the pixel region 13B in the SLM 13.
  • phase difference ⁇ of the phase diffraction grating depends not only on the refractive index difference ⁇ n of the phase diffraction grating but also on the wavelength ⁇ of the incident light beam. This is expressed by the following formula (1).
  • d is the thickness (constant) of the liquid crystal layer 13a of the SLM 13 in the optical axis AZ direction.
  • the appropriate value ⁇ n 0 of the refractive index difference ⁇ n of the phase diffraction grating is slightly different when the light source wavelength ⁇ is the long wavelength ⁇ 1 and when it is the short wavelength ⁇ 2 .
  • control device 39 can obtain the appropriate value ⁇ n 0 of the refractive index difference ⁇ n by referring to this function table according to the required intensity ratio and the used wavelength ⁇ . As a result, the appropriate value of the drive signal (voltage value) to be given to the SLM 13 by the liquid crystal drive circuit 15A is determined.
  • “Function table for obtaining refractive index difference ⁇ n from intensity ratio and wavelength ⁇ used” is used, but other tables may be used.
  • two functions “a function table for obtaining the phase difference ⁇ from the intensity ratio” and “a function table for obtaining the refractive index difference ⁇ n from the used wavelength ⁇ and the phase difference ⁇ ”, may be used.
  • the information to be stored in the storage unit is a function table, but part or all of the information to be stored in the storage unit may be the function itself.
  • equation (1) may be used instead of “a function table for obtaining the refractive index difference ⁇ n from the used wavelength ⁇ and the phase difference ⁇ ”.
  • the liquid crystal drive circuit 15A (see FIG. 1) of the present embodiment combines the voltage value applied to the pixel region 13A and the voltage value applied to the pixel region 13B of the SLM 13 under the control of the control device 39 (see FIG. 1). By controlling the above, the refractive index difference ⁇ n of the phase diffraction grating is appropriately adjusted.
  • the liquid crystal drive circuit 15A a phase diffraction grating when when the light source wavelength lambda is longer wavelengths lambda 1 is a refractive index difference [Delta] n of the phase grating in [Delta] n 01, the light source wavelength lambda is short wavelength lambda 2 Is set to ⁇ n 02 .
  • n 01 when the zero-order diffracted light flux intensity and + 1st-order diffracted light flux intensity and -1 the ratio of the intensity of the diffracted light flux for example 0.7 light source wavelength lambda is ⁇ 1: 1: 1 and It is an appropriate value. According to this appropriate value ⁇ n 01 , the contrast of the demodulated image (super-resolution image) having the wavelength ⁇ 1 is optimal.
  • [Delta] n 02 when the zero-order diffracted light flux intensity and + 1st-order diffracted light flux intensity and -1 the ratio of the intensity of the diffracted light flux for example 0.7 light source wavelength lambda is ⁇ 2: 1: 1 and It is an appropriate value. According to this appropriate value ⁇ n 02 , the contrast of the demodulated image (super-resolution image) having the wavelength ⁇ 2 is optimal.
  • the contrast of the demodulated image (super-resolution image) is maintained high regardless of the light source wavelength ⁇ .
  • ⁇ n 01 / ⁇ 1 ⁇ n 02 / ⁇ 2 (2) Because it is as described above ⁇ 1> ⁇ 2, a ⁇ n 01> ⁇ n 02.
  • FIG. 8 is an operation flowchart of the control device 39. Hereafter, each step of FIG. 8 is demonstrated in order.
  • Step S1 The control device 39 sets the structured illumination microscope apparatus 1 to the 3D-SIM mode by setting the rotation angle of the zero-order light shutter 200 to the reference angle via the rotation mechanism 200A. Further, the control device 39 sets the light source wavelength ⁇ of the structured illumination microscope apparatus 1 to the long wavelength ⁇ 1 via the laser unit 100.
  • Step S2 The control device 39 displays the phase diffraction grating on the SLM 13 by driving the SLM 13 via the liquid crystal drive circuit 15A.
  • the refractive index difference ⁇ n of this phase diffraction grating is ⁇ n 01
  • the direction V of the periodic structure of the phase diffraction grating is V 1
  • the structural period P of the phase diffraction grating is P 0 .
  • the control device 39 drives the half-wave plate 17 via the wave plate drive circuit 17A, so that the fast axis of the half-wave plate 17 is in the direction of the solid double arrow in FIG. Set.
  • Step S4 The control device 39 drives the SLM 13 via the liquid crystal drive circuit 15A, thereby switching the direction V of the periodic structure of the phase diffraction grating to V 2 and a half wavelength via the wave plate drive circuit 17A.
  • step S3 is executed.
  • the refractive index difference ⁇ n and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S4 and the phase diffraction grating displayed on the SLM 13 in step S2.
  • Step S5 the control device 39, by driving the SLM13 through the liquid crystal drive circuit 15A, switches the direction V of the periodic structure of the phase grating to V 3, 1/2 wavelength through a wavelength plate drive circuit 17A
  • step S3 is executed.
  • the refractive index difference ⁇ n and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S5 and the phase diffraction grating displayed on the SLM 13 in step S2.
  • Step S6 the control device 39 switches the light source wavelength lambda of the structured illumination microscope apparatus 1 from a long wavelength lambda 1 through the laser unit 100 to the shorter wavelength lambda 2.
  • Step S7 The control device 39 displays the phase diffraction grating on the SLM 13 by driving the SLM 13 via the liquid crystal drive circuit 15A.
  • the refractive index difference ⁇ n of this phase diffraction grating is ⁇ n 02
  • the direction V of the periodic structure of the phase diffraction grating is V 1
  • the structural period P of the phase diffraction grating is P 0 .
  • the control device 39 drives the half-wave plate 17 via the wave plate drive circuit 17A, so that the fast axis of the half-wave plate 17 is in the direction of the solid double arrow in FIG. Switch.
  • Step S9 The control device 39 switches the direction V of the periodic structure of the phase diffraction grating to V 2 by driving the SLM 13 via the liquid crystal drive circuit 15A, and at half wavelength via the wave plate drive circuit 17A.
  • step S8 is executed.
  • the refractive index difference ⁇ n and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S9 and the phase diffraction grating displayed on the SLM 13 in step S7.
  • Step S10 the control device 39, by driving the SLM13 through the liquid crystal drive circuit 15A, it switches the direction V of the periodic structure of the phase grating to V 3, 1/2 wavelength through a wavelength plate drive circuit 17A If the fast axis of the half-wave plate 17 is switched in the direction of the solid arrow in FIG. 5C by driving the plate 17, step S8 is executed.
  • the refractive index difference ⁇ n and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S10 and the phase diffraction grating displayed on the SLM 13 in step S7 (step S10).
  • the control device 39 of the present embodiment sets the refractive index difference ⁇ n of the phase diffraction grating displayed on the SLM 13 to be larger as the light source wavelength ⁇ is longer. Specifically, the control device 39 of the present embodiment sets the refractive index difference ⁇ n to a large value ⁇ n 01 when the light source wavelength ⁇ is the long wavelength ⁇ 1 and sets the refractive index when the light source wavelength ⁇ is the short wavelength ⁇ 2. setting the difference [Delta] n to a small value [Delta] n 02 (see equation (2).).
  • control device 39 of the present embodiment can maintain the contrast of the demodulated image (super-resolution image) regardless of the switching of the light source wavelength ⁇ .
  • the image storage and computing unit 40 of this embodiment by performing the demodulation operation of the 3D-SIM mode the modulated image acquired in step S3 ⁇ S5 (modulated image obtained at the wavelength lambda 1) the generated super-resolution image of the first fluorescent region, applying demodulation operation 3D-SIM mode with respect to the steps S8 ⁇ S10 obtained at the modulation image (modulated image obtained at the wavelength lambda 2) Thus, a super-resolution image of the second fluorescent region is generated.
  • control device 39 of the present embodiment maintains the contrast of the demodulated image (super-resolution image) high before and after the switching of the light source wavelength ⁇ , so that the modulated image acquired at the wavelength ⁇ 1 and the wavelength ⁇ 2 are used.
  • the image quality of both the acquired modulated image is improved.
  • the image storage arithmetic device 40 can acquire both the super-resolution image of the first fluorescent region and the super-resolution image of the second fluorescent region with high accuracy.
  • the user of this embodiment can accurately compare and evaluate different fluorescent regions (first fluorescent region and second fluorescent region) on the specimen 5.
  • the control device 39 adjusts the refractive index difference ⁇ n of the phase diffraction grating according to the light source wavelength ⁇ . However, it may be performed according to the type of the sample 5 or the type of the sample 5. And the light source wavelength ⁇ .
  • the structured illumination microscope apparatus 1 of the present embodiment may be equipped with the following automatic adjustment mode.
  • the control device 39 in the automatic adjustment mode repeats a series of processes including acquisition of a modulated image and generation of a demodulated image (super-resolution image) while adjusting the refractive index difference ⁇ n, and also includes a demodulated image (super-resolution image).
  • the contrast becomes optimal, the adjustment of the refractive index difference ⁇ n is finished.
  • this automatic adjustment mode appears at least when the sample 5 is replaced.
  • this automatic adjustment mode may be developed continuously or periodically in order to cope with changes in the environment of the apparatus.
  • the following manual adjustment mode may be mounted on the structured illumination microscope apparatus 1 of the present embodiment.
  • the control device 39 and the image display device 45 in the manual adjustment mode adjust the refractive index difference ⁇ n in accordance with an adjustment instruction from the user, and generate / demodulate a modulated image acquisition / demodulated image (super-resolution image).
  • a series of processing consisting of display of a super-resolution image) is repeated.
  • the user inputs an adjustment instruction while viewing the displayed reduced image (super-resolution image), and finishes inputting the adjustment instruction when the contrast of the demodulated image (super-resolution image) becomes optimal. .
  • the structured illumination microscope apparatus 1 When the structured illumination microscope apparatus 1 is equipped with the manual adjustment mode, the structured illumination microscope apparatus 1 needs to be provided with a user interface (not shown) that accepts an adjustment instruction from the user.
  • control device 39 of the above-described embodiment makes the structural period P of the phase diffraction grating unchanged before and after the switching of the light source wavelength ⁇ , but adjusts the structural period P of the phase diffraction grating before and after the switching of the light source wavelength ⁇ . Also good.
  • the structural period P may be adjusted so that the super-resolution effect of the structured illumination microscope apparatus 1 remains unchanged before and after the switching of the light source wavelength ⁇ .
  • the structural period P may be adjusted so that the distance from the condensing points 14b and 14c to the optical axis AZ is unchanged before and after the switching of the light source wavelength ⁇ .
  • the attitude of the reflective spatial light modulator (SLM 13) is set such that the normal of the surface (incident surface) of the protective layer 13b is 45 with respect to the principal ray of the incident light beam.
  • the angle is set so as to form an angle of 0 °
  • the normal line and the chief ray may be set so as to form an angle of 0 °, as indicated by reference numeral A in FIG.
  • the beam splitter 101 may be disposed at an angle of 45 ° between the lens 16 and the SLM 13. This beam splitter 101 reflects the light beam from the laser unit 100 side and makes it incident on the SLM 13 from the front, and transmits the light beam (diffracted light beam) reflected by the SLM 13 and makes it incident on the lens 16 from the front.
  • the structured illumination microscope apparatus 1 is used in the 3D-SIM mode (that is, the interference fringes projected on the specimen 5 with the 0th-order diffracted light beam turned on are set as the three-beam interference fringes).
  • the structured illumination microscope apparatus 1 may be used in the 2D-SIM mode (that is, the interference fringes projected on the specimen 5 by turning off the 0th-order light diffraction light beam may be used as the two-beam interference fringes).
  • the structured illumination microscope apparatus 1 may be used as a TIRFM (total reflection fluorescence microscope) which is a kind of 2D-SIM mode.
  • TIRFM total reflection fluorescence microscope
  • the objective lens 6 is configured as an immersion type (oil immersion type) objective lens. That is, the gap between the objective lens 6 and the glass of the specimen 5 is filled with an immersion liquid (oil) (not shown).
  • the incident angle of the ⁇ first-order diffracted light beam incident on the surface of the sample 5 needs to satisfy the total reflection condition (TIRF condition) that is the condition for generating the evanescent field. is there.
  • TIRF condition total reflection condition
  • the condensing point of the ⁇ 1st-order diffracted light beam on the pupil plane 6A only needs to be located in a predetermined annular zone (TIRF area) on the outermost periphery of the pupil plane 6A. In this case, an evanescent field due to interference fringes is generated near the surface of the specimen 5.
  • the intensity ratio of the diffracted light beam group contributing to the interference fringes does not basically change even when the light source wavelength ⁇ is switched, but the 2D-SIM mode and the 3D- When the mode is switched between the SIM mode and the intensity ratio necessary for optimizing the contrast of the demodulated image (super-resolution image) changes, it is desirable to adjust the refractive index difference ⁇ n. .
  • control device 39 in the 3D-SIM mode sets the refractive index difference ⁇ n so that the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the ⁇ 1st-order diffracted light beam is, for example, 0.7: 1: 1.
  • the control device 39 in the 2D-SIM mode may set the refractive index difference ⁇ n so that the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the ⁇ 1st-order diffracted light beam is, for example, 0: 1: 1. .
  • the modulated image generated in the 3D-SIM mode has five components to be separated from each other, whereas the modulated image generated in the 2D-SIM mode has three components to be separated from each other.
  • the number of phases N necessary for the phase shift of the interference fringes is, for example, “5”, whereas in the 2D-SIM mode, it is necessary for the phase shift of the interference fringes.
  • the phase number N is, for example, “3”.
  • the contents of the demodulation operation to be executed by the image storage / arithmetic apparatus 40 are different.
  • the number of light source wavelengths is 2, but it may be 1 or may be extended to 2 or more.
  • the 1 ⁇ 2 wavelength plate 17 capable of switching the direction of the fast axis is used in order to keep the diffracted light beam incident on the sample 5 as S-polarized light.
  • two quarter-wave plates may be used and the direction of the fast axis of one quarter-wave plate may be switched.
  • a demodulated image may be acquired by optical demodulation described in 80881378.
  • the dichroic mirror 7 is replaced with a mirror, and the fluorescence (wavelengths ⁇ 1 ′, ⁇ 2 ′) generated according to the excitation light (wavelengths ⁇ 1 , ⁇ 2 ) in the optical path between the SLM 13 and the collector lens 12. ) Is separated from the excitation light, and an image sensor that receives the separated fluorescence may be disposed.
  • the illumination optical system 10 of the above-described embodiment is configured by the epi-illumination optical system by the objective lens 6, it is not limited to this.
  • the transmission illumination optical system by the condenser lens or the reflection by the condenser lens is used. You may comprise an illumination optical system.
  • the condensing point is formed on the pupil plane of the condenser lens.
  • a combination of ⁇ first-order diffracted light and zero-order diffracted light is used as the diffracted light for forming the 2D-SIM mode two-beam interference fringe or the 3D-SIM mode three-beam interference fringe.
  • Other combinations may be used.
  • three-beam interference fringe three-beam interference is generated by three diffracted lights having equal intervals of diffraction orders.
  • a combination of zero-order diffracted light, first-order diffracted light, and second-order diffracted light can be used.
  • Combinations of ⁇ 2nd order diffracted light and 0th order diffracted light, combinations of ⁇ 3rd order diffracted light and 0th order diffracted light, and the like can be used.
  • control device 39 adjusts (controls) the intensity ratio of the diffracted light beam group contributing to the interference fringes so that the contrast of the demodulated image (super-resolution image) is optimized.
  • the structured illumination device (illumination optical system 10) is an optical device that forms in the sample (5) the branch portion that branches the light beam emitted from the light source into a plurality of light beams and the interference fringes due to the plurality of light beams.
  • a spatial light including a system (lenses 16, 25, 27, 6) and a control unit (liquid crystal drive circuit 15A, control device 39) for controlling the branching unit, the branching unit including a member made up of a unit element group.
  • the controller includes a modulator (SLM 13), and the control unit (the liquid crystal driving circuit 15A and the control device 39) includes a first region for applying a first phase delay amount to the emitted light beam and a second phase delay amount. Is set in the spatial light modulator so that the intensity ratio of the plurality of light beams contributing to the interference fringes becomes a predetermined value. The first phase delay amount and the second position. A drive signal to impart a difference between the delay amount, and outputs the predetermined unit element of the unit element group.
  • the first phase delay amount and the second phase delay amount are constant values, and the first phase delay amount and the second phase delay amount are different from each other (for example, rectangular). Wave mode).
  • the first phase delay amount is a value distributed in a predetermined shape and includes a maximum value
  • the second phase delay amount is a value distributed in a predetermined shape and has a minimum value. Including (for example, sine wave mode).
  • control unit (the liquid crystal drive circuit 15A, the control device 39) may add the difference between the first region and the second region in order to give a phase delay amount difference between the first region and the second region.
  • a drive signal that gives a difference in refractive index between the second region and the second region is output to the predetermined unit element.
  • control unit switches the drive signal output to the predetermined unit element according to the wavelength of the emitted light beam.
  • control unit determines the difference in the phase delay amount between the first region and the second region when the wavelength ( ⁇ ) of the emitted light beam is long. Make it bigger.
  • control unit (the liquid crystal drive circuit 15A, the control device 39) is necessary for determining an appropriate drive signal to be output to the predetermined unit element according to the required intensity ratio and the wavelength. At least a part of the information is stored in advance as a table.
  • the structured illumination device (illumination optical system 10) of the present embodiment has a phase shift unit (shifting the phase of the interference fringes by shifting the formation destination of the periodic region in the spatial light modulator (SLM 13) ( A liquid crystal driving circuit 15A and a control device 39) are further provided.
  • the structured illumination device (illumination optical system 10) of the present embodiment includes a direction switching unit (liquid crystal driving circuit 15A, 15A A control device 39) is further provided.
  • the spatial light modulator (SLM 13) is a spatial light modulator that changes the phase distribution of the emitted light beam while maintaining the polarization direction distribution and amplitude distribution of the emitted light beam.
  • the structured illumination microscope apparatus (1) of the present embodiment is a modulation that is an image of the structured illumination apparatus (illumination optical system 10) of the present embodiment and the specimen (5) spatially modulated by the interference fringes.
  • An imaging unit image sensor 35, control device 39 for acquiring an image.
  • the structured illumination microscope apparatus (1) of the present embodiment further includes a calculation unit (image storage / calculation apparatus 40) that generates a demodulated image of the specimen (5) based on the modulated image.
  • a calculation unit image storage / calculation apparatus 40
  • control unit (the liquid crystal drive circuit 15A, the control device 39) performs the setting so that the contrast of the demodulated image is optimized.
  • the performance of the structured illumination microscope apparatus (1) of the present embodiment is maintained regardless of the use state of the structured illumination microscope apparatus (1), for example, the wavelength of the emitted light beam, the thickness of the sample, and the like.
  • SYMBOLS 1 Structured illumination microscope apparatus, 100 ... Laser unit, 11 ... Optical fiber, 10 ... Illumination optical system, 30 ... Imaging optical system, 35 ... Imaging element, 39 ... Control apparatus, 40 ... Image storage and calculation apparatus, 45 DESCRIPTION OF SYMBOLS ... Image display apparatus, 12 ... Collector lens, 23 ... Polarizing plate, 15 ... Light beam branching part, 16 ... Condensing lens, 24 ... Light beam selection part, 25 ... Lens, 26 ... Field stop, 27 ... Field lens, 28 ... Excitation Filter, 7 ... Dichroic mirror, 6 ... Objective lens, 5 ... Sample, 17 ... Half-wave plate, 18 ... High-order light cut member, 17A ... Wave plate drive circuit, 200 ... Zero-order light shutter, 200A ... Turning mechanism, 15A ... Liquid crystal drive circuit, 13 ... SLM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An example of this structured illumination device comprises: a spatial light modulator that splits light from a light source into a plurality of light beams; an optical system that forms an interference pattern with all or some of the plurality of light beams, and that irradiates a sample with the interference pattern; and a control unit that controls the spatial light modulator. The control unit outputs a drive signal to the spatial light modulator, and thereby sets a first phase delay amount to a first region of the spatial light modulator and sets a second phase delay amount to a second region such that the intensity ratio between the plurality of light beams contributing to the interference pattern has a predetermined value.

Description

構造化照明装置及び構造化照明顕微鏡装置Structured illumination device and structured illumination microscope device
 本発明は、構造化照明装置及び構造化照明顕微鏡装置に関する。 The present invention relates to a structured illumination apparatus and a structured illumination microscope apparatus.
 生体標本などの被観察物(標本)を超解像観察するための手法に、標本の構造の空間周波数を照明光で変調する構造化照明顕微鏡が知られている。 A structured illumination microscope that modulates the spatial frequency of the structure of a specimen with illumination light is known as a technique for super-resolution observation of an object (specimen) such as a biological specimen.
 この構造化照明顕微鏡は、空間変調された照明パターンで標本を照明し、標本の構造に含まれる解像限界を超える高い空間周波数の情報を、顕微鏡光学系の結像に寄与させる。また、構造化照明顕微鏡は、互いに異なる照明パターンの下で得られた複数の変調像のデータ(以下、「変調画像」と称す。)へ演算を施すことにより復調像のデータ(以下、「復調画像」又は「超解像画像」と称す。)を取得する。 This structured illumination microscope illuminates a specimen with a spatially modulated illumination pattern, and contributes high spatial frequency information exceeding the resolution limit included in the specimen structure to the imaging of the microscope optical system. The structured illumination microscope operates on a plurality of modulated image data (hereinafter referred to as “modulated images”) obtained under different illumination patterns to perform demodulation image data (hereinafter referred to as “demodulated image”). Image ”or“ super-resolution image ”).
 特に、非特許文献1に記載の構造化照明顕微鏡では、縞状の照明パターンを生起させるための位相回折格子として二次元の空間光変調器(SLM:Spatial Light Modulator)を用いている。SLMは液晶画素を密に配列しており、個々の液晶画素に与える電圧を制御することで個々の液晶画素における光の位相遅延量を制御することができる。このSLMの位相遅延量を一方向に亘って周期的な分布に設定すればSLMに位相回折格子が現れる。この位相回折格子の方位及び位相を切り換えるには、SLMに与える電圧分布を切り換えればよい。よって、非特許文献1に記載の構造化照明顕微鏡装置は、機械的な駆動を伴わずに照明パターンの方位及び位相を切り換えることができる。 In particular, in the structured illumination microscope described in Non-Patent Document 1, a two-dimensional spatial light modulator (SLM) is used as a phase diffraction grating for generating a striped illumination pattern. In the SLM, liquid crystal pixels are closely arranged, and the phase delay amount of light in each liquid crystal pixel can be controlled by controlling the voltage applied to each liquid crystal pixel. If the phase delay amount of this SLM is set to a periodic distribution in one direction, a phase diffraction grating appears in the SLM. To switch the orientation and phase of this phase diffraction grating, the voltage distribution applied to the SLM may be switched. Therefore, the structured illumination microscope apparatus described in Non-Patent Document 1 can switch the azimuth and phase of the illumination pattern without mechanical driving.
 しかしながら、位相回折格子として機能させるSLMを適切に制御しないと、却って構造化照明顕微鏡の性能を低下させてしまう虞がある。 However, if the SLM that functions as the phase diffraction grating is not properly controlled, the performance of the structured illumination microscope may be deteriorated.
 本発明の構造化照明装置の一例は、光源からの光を複数の光束に分岐する空間光変調器と、複数の光束の全部又は一部により干渉縞を形成し、干渉縞で標本を照明する光学系と、空間光変調器を制御する制御部とを備える。制御部は、空間光変調器に対して駆動信号を出力することにより、干渉縞に寄与する複数の光束の強度比が予め決められた値になるように、空間光変調器の第1の領域に対して第1の位相遅延量を設定し、第2の領域に対して第2の位相遅延量を設定する。 An example of the structured illuminating device of the present invention forms an interference fringe with a spatial light modulator that branches light from a light source into a plurality of light beams, and all or part of the plurality of light beams, and illuminates the sample with the interference fringes. An optical system and a control unit that controls the spatial light modulator are provided. The control unit outputs a drive signal to the spatial light modulator, so that the intensity ratio of the plurality of light beams contributing to the interference fringes becomes a predetermined value, so that the first region of the spatial light modulator is A first phase delay amount is set for the second region, and a second phase delay amount is set for the second region.
 本発明の構造化照明顕微鏡装置の一例は、本発明の構造化照明装置の一例と、干渉縞で空間変調された標本の画像である変調画像を取得する撮像部とを備える。 An example of the structured illumination microscope apparatus of the present invention includes the example of the structured illumination apparatus of the present invention and an imaging unit that acquires a modulated image that is an image of a sample spatially modulated by interference fringes.
構造化照明顕微鏡装置1の構成図である。1 is a configuration diagram of a structured illumination microscope apparatus 1. FIG. SLM13を説明する図である。It is a figure explaining SLM13. 位相回折格子の方向と干渉縞の方向との関係を説明する図である。It is a figure explaining the relationship between the direction of a phase diffraction grating, and the direction of an interference fringe. 0次光シャッタ200、高次光カット部材18を説明する図である。It is a figure explaining the 0th-order light shutter 200 and the high-order light cut member 18. FIG. 1/2波長板17の機能を説明する図である。FIG. 6 is a diagram for explaining the function of a half-wave plate 17. 干渉縞の位相シフトを説明する図である。It is a figure explaining the phase shift of an interference fringe. 位相回折格子の位相差Φと回折強度との関係を示す図である。It is a figure which shows the relationship between phase difference (PHI) of a phase diffraction grating, and diffraction intensity. 制御装置39の動作フローチャートである。4 is an operation flowchart of the control device 39. SLM13の配置姿勢の変形例である。It is a modification of the arrangement | positioning attitude | position of SLM13.
 [第1実施形態]
 以下、本発明の第1実施形態として構造化照明顕微鏡装置(SIM:Structured Illumination Microscopy)を説明する。
[First Embodiment]
Hereinafter, a structured illumination microscope (SIM) will be described as a first embodiment of the present invention.
 図1は、構造化照明顕微鏡装置1の構成図である。以下では構造化照明顕微鏡装置1を3D-SIMモードで使用する場合を主として説明する。図1に示すとおり構造化照明顕微鏡装置1には、レーザユニット100と、光ファイバ11と、照明光学系10と、結像光学系30と、撮像素子35と、制御装置39と、画像記憶・演算装置40と、画像表示装置45とが備えられる。このうち、照明光学系10と結像光学系30とは、対物レンズ6及びダイクロイックミラー7を共用している。 FIG. 1 is a configuration diagram of the structured illumination microscope apparatus 1. Hereinafter, a case where the structured illumination microscope apparatus 1 is used in the 3D-SIM mode will be mainly described. As shown in FIG. 1, the structured illumination microscope apparatus 1 includes a laser unit 100, an optical fiber 11, an illumination optical system 10, an imaging optical system 30, an image sensor 35, a control device 39, an image storage / An arithmetic device 40 and an image display device 45 are provided. Among these, the illumination optical system 10 and the imaging optical system 30 share the objective lens 6 and the dichroic mirror 7.
 レーザユニット100には、第1レーザ光源101、第2レーザ光源102、シャッタ1031、1032、ミラー105、ダイクロイックミラー106、レンズ107が備えられる。第1レーザ光源101及び第2レーザ光源102の各々は可干渉光源であって、互いの出射波長は異なる。ここでは、第1レーザ光源101の波長λは、第2レーザ光源102の波長λよりも長いと仮定する(λ>λ)。これらの第1レーザ光源101、第2レーザ光源102、シャッタ1031、1032は、それぞれ制御装置39によって駆動・制御される。 The laser unit 100 includes a first laser light source 101, a second laser light source 102, shutters 1031, 1032, a mirror 105, a dichroic mirror 106, and a lens 107. Each of the first laser light source 101 and the second laser light source 102 is a coherent light source, and the emission wavelengths thereof are different from each other. Here, it is assumed that the wavelength λ 1 of the first laser light source 101 is longer than the wavelength λ 2 of the second laser light source 102 (λ 1 > λ 2 ). The first laser light source 101, the second laser light source 102, and the shutters 1031 and 1032 are driven and controlled by the control device 39, respectively.
 光ファイバ11は、レーザユニット100から射出したレーザ光を導光するために、例えば、偏波面保存型のシングルモードファイバによって構成される。光ファイバ11の出射端の光軸AZ方向における位置は、位置調整機構11Aによって調節可能である。この位置調整機構11Aは、制御装置39によって駆動・制御される。なお、位置調整機構11Aとしては、例えば、ピエゾ素子等が用いられる。 The optical fiber 11 is composed of, for example, a polarization-preserving single mode fiber in order to guide the laser light emitted from the laser unit 100. The position of the emission end of the optical fiber 11 in the optical axis AZ direction can be adjusted by the position adjusting mechanism 11A. The position adjusting mechanism 11A is driven and controlled by the control device 39. For example, a piezo element or the like is used as the position adjustment mechanism 11A.
 照明光学系10には、光ファイバ11の出射端側から順に、コレクタレンズ12と、偏光板23と、光束分岐部15と、集光レンズ16と、光束選択部24と、レンズ25と、視野絞り26と、フィールドレンズ27と、励起フィルタ28と、ダイクロイックミラー7と、対物レンズ6とが配置される。 The illumination optical system 10 includes, in order from the emission end side of the optical fiber 11, a collector lens 12, a polarizing plate 23, a light beam branching unit 15, a condensing lens 16, a light beam selecting unit 24, a lens 25, and a field of view. A diaphragm 26, a field lens 27, an excitation filter 28, a dichroic mirror 7, and an objective lens 6 are disposed.
 光束分岐部15には、位相回折格子として機能する2次元の液晶空間光変調器(SLM:Spatial Light Modulator)13と、液晶駆動回路15Aとが備えられる。このうち液晶駆動回路15Aは、制御装置39によって駆動・制御される。ここで、SLMとは、入射光束に対して空間的に(その光束の空間内で)所定の分布を付与する機能を有した部材のことをいう。 The light beam splitting unit 15 includes a two-dimensional liquid crystal spatial light modulator (SLM) 13 that functions as a phase diffraction grating and a liquid crystal drive circuit 15A. Among these, the liquid crystal drive circuit 15 </ b> A is driven and controlled by the control device 39. Here, the SLM refers to a member having a function of giving a predetermined distribution spatially (within the space of the light beam) to the incident light beam.
 光束選択部24には、0次光シャッタ200と、1/2波長板17と、高次光カット部材18と、回動機構200Aと、波長板駆動回路17Aとが備えられる。このうち回動機構200A、波長板駆動回路17Aは、それぞれ制御装置39によって駆動・制御される。 The light beam selector 24 includes a zero-order light shutter 200, a half-wave plate 17, a high-order light cut member 18, a rotation mechanism 200A, and a wave plate driving circuit 17A. Among these, the rotation mechanism 200A and the wave plate driving circuit 17A are driven and controlled by the control device 39, respectively.
 結像光学系30には、標本5の側から順に、対物レンズ6と、ダイクロイックミラー7と、バリアフィルタ31と、第2対物レンズ32とが配置される。 In the imaging optical system 30, an objective lens 6, a dichroic mirror 7, a barrier filter 31, and a second objective lens 32 are arranged in this order from the sample 5 side.
 標本5は、例えば、平行平板状のガラス表面に配置された蛍光性の細胞(蛍光色素で染色された細胞)や、シャーレ内に存在する蛍光性の生体細胞(蛍光色素で染色された動く細胞)などの細胞である。この細胞には、波長λの光によって励起される第1蛍光領域と、波長λの光によって励起される第2蛍光領域との双方が発現している。第1蛍光領域は、波長λの光に応じて中心波長λ’の第1蛍光を発生させ、第2蛍光領域は、波長λの光に応じて中心波長λ’の第2蛍光を発生させる。 The specimen 5 is, for example, fluorescent cells (cells stained with a fluorescent dye) arranged on a parallel flat glass surface, or fluorescent living cells (moving cells stained with a fluorescent dye) present in a petri dish. ) And so on. In this cell, both the first fluorescent region excited by the light of wavelength λ 1 and the second fluorescent region excited by the light of wavelength λ 2 are expressed. First fluorescent region, 'to generate a first fluorescence and the second fluorescence region, the central wavelength lambda 2 in accordance with the wavelength lambda 2 of the light' center wavelength lambda 1 in accordance with the wavelength lambda 1 of the optical second fluorescence Is generated.
 撮像素子35は、CCDやCMOS等からなる二次元撮像素子である。撮像素子35は、制御装置39によって駆動されると、撮像素子35の撮像面36に形成された像を撮像し、画像を生成する。この撮像素子35が生成した画像は、制御装置39を介して画像記憶・演算装置40へ取り込まれる。なお、撮像素子35は、所定のフレーム周期で画像生成(撮像)を繰り返すことが可能である。撮像素子35のフレーム周期(撮像の繰り返し周期)は、例えば、30msec、60msecなどに設定される。撮像素子35のフレーム周期(撮像の繰り返し周期)は、撮像素子の撮像時間(すなわち電荷蓄積及び電荷読出に要する時間)、干渉縞の方向切り換えに要する時間、その他の所要時間のうち、律速によって定められる。 The image sensor 35 is a two-dimensional image sensor composed of a CCD, a CMOS, or the like. When the image pickup device 35 is driven by the control device 39, the image pickup device 35 picks up an image formed on the image pickup surface 36 of the image pickup device 35 and generates an image. The image generated by the image sensor 35 is taken into the image storage / arithmetic device 40 via the control device 39. The imaging element 35 can repeat image generation (imaging) at a predetermined frame period. The frame period (imaging repetition period) of the image sensor 35 is set to 30 msec, 60 msec, or the like, for example. The frame period (imaging repetition period) of the image sensor 35 is determined by the rate-determining among the imaging time of the image sensor (that is, the time required for charge accumulation and charge readout), the time required for switching the direction of interference fringes, and other required times. It is done.
 制御装置39は、第1レーザ光源101、第2レーザ光源102、シャッタ1031、1032、位置調整機構11A、液晶駆動回路15A、回動機構200A、波長板駆動回路17A、撮像素子35を駆動・制御する。 The control device 39 drives and controls the first laser light source 101, the second laser light source 102, the shutters 1031, 1032, the position adjustment mechanism 11A, the liquid crystal drive circuit 15A, the rotation mechanism 200A, the wave plate drive circuit 17A, and the image sensor 35. To do.
 画像記憶・演算装置40は、撮像素子35が生成した画像に対して復調演算を施して超解像画像を生成すると、その超解像画像を不図示の内部メモリに格納すると共に、画像表示装置45へ送出する。 When the image storage / arithmetic unit 40 performs a demodulation operation on the image generated by the image sensor 35 to generate a super-resolution image, the image storage / arithmetic unit 40 stores the super-resolution image in an internal memory (not shown) and an image display unit. 45.
 次に、構造化照明顕微鏡装置1におけるレーザ光の振る舞いを説明する。 Next, the behavior of laser light in the structured illumination microscope apparatus 1 will be described.
 第1レーザ光源101から射出した波長λのレーザ光(第1レーザ光)は、シャッタ1031を介してミラー105へ入射すると、ミラー105を反射し、ダイクロイックミラー106へ入射する。一方、第2レーザ光源102から射出した波長λのレーザ光(第2レーザ光)は、シャッタ1032を介してビームスプリッタ106へ入射し、第1レーザ光と統合される。ダイクロイックミラー106から射出した第1レーザ光及び第2レーザ光は、レンズ107を介して光ファイバ11の入射端に入射する。 When the laser beam (first laser beam) having the wavelength λ 1 emitted from the first laser light source 101 enters the mirror 105 through the shutter 1031, the laser beam is reflected by the mirror 105 and enters the dichroic mirror 106. On the other hand, laser light (second laser light) having a wavelength λ 2 emitted from the second laser light source 102 enters the beam splitter 106 via the shutter 1032 and is integrated with the first laser light. The first laser beam and the second laser beam emitted from the dichroic mirror 106 enter the incident end of the optical fiber 11 through the lens 107.
 なお、制御装置39は、第1レーザ光源101、第2レーザ光源102、シャッタ1031、1032を制御することにより、レーザユニット100の出射波長、すなわち構造化照明顕微鏡装置1の光源波長λを、長い波長λと短い波長λとの間で切り換えることができる。 The control device 39 controls the first laser light source 101, the second laser light source 102, and the shutters 1031 and 1032 to increase the emission wavelength of the laser unit 100, that is, the light source wavelength λ of the structured illumination microscope device 1. It is possible to switch between wavelength λ 1 and short wavelength λ 2 .
 光ファイバ11の入射端に入射したレーザ光は、光ファイバ11の内部を伝搬して光ファイバ11の出射端に点光源を生成する。その点光源から射出したレーザ光は、コレクタレンズ12によって平行光束に変換され、偏光板23を介してSLM13へ入射すると、各次数の回折光束(以下、「回折光束群」と称す。)に分岐される(詳細は後述)。この回折光束群に含まれる各次数の回折光束は、集光レンズ16に入射すると、集光レンズ16の集光作用を受けて瞳共役面6A’の各位置に集光する。 The laser light incident on the incident end of the optical fiber 11 propagates inside the optical fiber 11 to generate a point light source at the output end of the optical fiber 11. The laser light emitted from the point light source is converted into a parallel light beam by the collector lens 12 and is incident on the SLM 13 via the polarizing plate 23, and branches into a diffracted light beam of each order (hereinafter referred to as “diffracted light beam group”). (Details will be described later). When the diffracted light beams of the respective orders included in the diffracted light beam group enter the condenser lens 16, the diffracted light beams are condensed at each position of the pupil conjugate plane 6 </ b> A ′ by receiving the condensing action of the condenser lens 16.
 ここで、瞳共役面6A’は、フィールドレンズ27及びレンズ25に関して対物レンズ6の瞳面6A(各次数の回折光束が個別に集光する位置)と共役な位置のことである。集光レンズ16は、集光レンズ16の焦点位置(後ろ側焦点位置)が瞳共役面6A’と一致するように配置されている。但し、ここでいう「共役な位置」の概念には、当業者が対物レンズ6、フィールドレンズ27、レンズ25の収差、ビネッティング等の設計上必要な事項を考慮して決定した位置も含まれるものとする。 Here, the pupil conjugate plane 6A ′ is a position conjugate with the pupil plane 6A of the objective lens 6 with respect to the field lens 27 and the lens 25 (a position where the diffracted light beams of respective orders are individually collected). The condenser lens 16 is arranged so that the focal position (rear focal position) of the condenser lens 16 coincides with the pupil conjugate plane 6A ′. However, the concept of “conjugate position” here includes a position determined by a person skilled in the art in consideration of design necessary matters such as aberration and vignetting of the objective lens 6, the field lens 27, and the lens 25. Shall.
 なお、光ファイバ11として偏波面保存型のシングルモードファイバを使用した場合、偏光板23は省略することも可能であるが、余分な偏光成分を確実にカットするために有効である。また、レーザ光の利用効率を高めるため、偏光板23の軸は、光ファイバ11から射出したレーザ光の偏光方向に一致していることが望ましい。因みに、光ファイバ11としてマルチモードファイバを使用した場合、偏光板23は必須である。また、SLM13を回折格子として利用する場合は、SLM13に入射する光束の偏光方向を、適切な方向に設定しておく必要がある。 When a polarization plane preserving single mode fiber is used as the optical fiber 11, the polarizing plate 23 can be omitted, but it is effective for reliably cutting off an excess polarization component. Further, in order to increase the utilization efficiency of the laser light, it is desirable that the axis of the polarizing plate 23 coincides with the polarization direction of the laser light emitted from the optical fiber 11. Incidentally, when a multimode fiber is used as the optical fiber 11, the polarizing plate 23 is essential. When the SLM 13 is used as a diffraction grating, it is necessary to set the polarization direction of the light beam incident on the SLM 13 to an appropriate direction.
 さて、瞳共役面6A’に向かった回折光束群は、瞳共役面6A’の近傍に配置された光束選択部24へ入射する。 Now, the diffracted light beam group directed toward the pupil conjugate surface 6A 'enters the light beam selector 24 disposed in the vicinity of the pupil conjugate surface 6A'.
 構造化照明顕微鏡装置1が3D-SIMモードで使用される場合、光束選択部24は、入射した回折光束群のうち3つの回折光束のみ(0次回折光束及び±1次回折光束のみ)を選択的に通過させる。なお、光束選択部24の0次光シャッタ200には、0次回折光束を必要に応じてオン/オフする機能があり、光束選択部24の高次光カット部材18には、2次以上の高次回折光束を常時遮光する機能がある(詳細は後述)。 When the structured illumination microscope apparatus 1 is used in the 3D-SIM mode, the light beam selection unit 24 selects only three diffracted light beams (only the 0th-order diffracted light beam and the ± 1st-order diffracted light beams) from the incident diffracted light beam group. Let it pass. The 0th-order light shutter 200 of the light beam selection unit 24 has a function of turning on / off the 0th-order diffracted light beam as necessary. The high-order light cut member 18 of the light beam selection unit 24 has a second or higher order higher next time. There is a function of always blocking the folded light beam (details will be described later).
 光束選択部24を通過した0次回折光束及び±1次回折光束は、レンズ25によって視野絞り26付近でSLM13と共役な面を形成する。その後、0次回折光束及び±1次回折光束の各々は、フィールドレンズ27により収束光に変換され、さらに励起フィルタ28を経てからダイクロイックミラー7で反射し、対物レンズ6の瞳面6A上の互いに異なる位置に集光する。 The 0th-order diffracted light beam and the ± 1st-order diffracted light beam that have passed through the light beam selection unit 24 form a conjugate plane with the SLM 13 near the field stop 26 by the lens 25. Thereafter, each of the 0th-order diffracted light beam and the ± 1st-order diffracted light beam is converted into convergent light by the field lens 27, further passes through the excitation filter 28, is reflected by the dichroic mirror 7, and is mutually reflected on the pupil plane 6 </ b> A of the objective lens 6. Concentrate at different positions.
 瞳面6A上に集光した0次回折光束及び±1次回折光束の各々は、対物レンズ6の先端から射出される際には平行光束となり、標本5の表面で互いに干渉し、干渉縞を形成する。この干渉縞が、構造化照明光として使用される。 Each of the 0th-order diffracted light beam and the ± 1st-order diffracted light beam collected on the pupil plane 6A becomes a parallel light beam when exiting from the tip of the objective lens 6, interferes with each other on the surface of the sample 5, and forms interference fringes. Form. This interference fringe is used as structured illumination light.
 このような干渉縞により標本5を照明すると、標本5が空間変調され、干渉縞の周期構造と標本5における蛍光領域の周期構造との差に相当するモアレ縞が現れるが、このモアレ縞においては、蛍光領域における高周波数の構造が元の周波数より低周波数側にシフトしているため、この構造を示す蛍光は、元の角度よりも小さい角度で対物レンズ6へ向かうことになる。よって、干渉縞により標本5を照明すると、蛍光領域の高周波数の構造情報までもが対物レンズ6によって伝達される。 When the specimen 5 is illuminated with such an interference fringe, the specimen 5 is spatially modulated, and a moire fringe corresponding to the difference between the periodic structure of the interference fringe and the periodic structure of the fluorescent region in the specimen 5 appears. Since the high frequency structure in the fluorescent region is shifted to the lower frequency side than the original frequency, the fluorescence indicating this structure is directed to the objective lens 6 at an angle smaller than the original angle. Therefore, when the specimen 5 is illuminated by the interference fringes, even the high-frequency structural information of the fluorescent region is transmitted by the objective lens 6.
 標本5で発生した蛍光は、対物レンズ6に入射すると、対物レンズ6で平行光に変換された後、ダイクロイックミラー7及びバリアフィルタ31を透過し、第2対物レンズ32を介して撮像素子35の撮像面36上に蛍光領域の変調像を形成する。その変調像は、撮像素子35によって画像化され、変調画像が生成される。その変調画像は、制御装置39を介して画像記憶・演算装置40へと取り込まれる。さらに、その変調画像には、画像記憶・演算装置40において復調演算が施され、蛍光領域の復調画像(超解像画像)が生成される。そして、この超解像画像は、画像記憶・演算装置40の内部メモリ(図示せず)に記憶されるとともに、画像表示装置45へと送出される。なお、復調演算としては、例えば、米国特許8115806号明細書に開示された方法が用いられる。 When the fluorescence generated in the sample 5 is incident on the objective lens 6, it is converted into parallel light by the objective lens 6, then passes through the dichroic mirror 7 and the barrier filter 31, and passes through the second objective lens 32 and passes through the second imaging lens 35. A modulated image of the fluorescent region is formed on the imaging surface 36. The modulated image is imaged by the image sensor 35 to generate a modulated image. The modulated image is taken into the image storage / arithmetic device 40 via the control device 39. Further, the modulation image is demodulated by the image storage / calculation device 40, and a demodulated image (super-resolution image) of the fluorescent region is generated. The super-resolution image is stored in an internal memory (not shown) of the image storage / arithmetic device 40 and is sent to the image display device 45. As the demodulation operation, for example, a method disclosed in US Pat. No. 8,115,806 is used.
 次に、SLM13を詳しく説明する。 Next, the SLM 13 will be described in detail.
 図2(A)は、SLM13の一部を拡大した模式図である。図2(A)に示すとおりSLM13は反射型空間光変調器であり、画素回路を二次元配置したCMOSなどの回路層13cと、ネマティック液晶などからなる液晶層13aと、波長λ、λの光に対して透明な保護層13bとを順に積層してなる。つまり、SLM13は、互いに直交する2方向の各々に亘って液晶素子からなる画素を密に配列した二次元液晶部材を含んでいる。このSLM13は、入射光束に対して保護層13bの側を向けており、その保護層13bの表面(入射面)の法線は、入射光束の主光線に対して例えば45°の角度を成す。 FIG. 2A is a schematic diagram in which a part of the SLM 13 is enlarged. As shown in FIG. 2A, the SLM 13 is a reflection-type spatial light modulator, and includes a circuit layer 13c such as CMOS in which pixel circuits are two-dimensionally arranged, a liquid crystal layer 13a made of nematic liquid crystal, and the like, wavelengths λ 1 and λ 2. And a protective layer 13b transparent to the light. That is, the SLM 13 includes a two-dimensional liquid crystal member in which pixels made of liquid crystal elements are densely arranged in each of two directions orthogonal to each other. The SLM 13 is directed toward the protective layer 13b with respect to the incident light beam, and the normal of the surface (incident surface) of the protective layer 13b forms an angle of, for example, 45 ° with respect to the principal ray of the incident light beam.
 なお、SLMの構成は、正反射で使用される構成であっても良い。その場合は、ハーフミラーや偏光ビームスプリッタ、さらには波長板の組み合わせにより、SLMに対する入射光とSLMからの反射光とを空間的に分離することが望ましい。 Note that the configuration of the SLM may be a configuration used for regular reflection. In that case, it is desirable to spatially separate the incident light on the SLM and the reflected light from the SLM by a combination of a half mirror, a polarizing beam splitter, and a wave plate.
 回路層13cの各画素回路に電圧が印加されると、液晶層13aの各画素(Pixel)の配向が変化し、各画素の屈折率が変化する。液晶層13aの各画素の屈折率が変化すると、液晶層13aの各画素で反射する光の位相遅延量が変化する。 When a voltage is applied to each pixel circuit in the circuit layer 13c, the orientation of each pixel (Pixel) in the liquid crystal layer 13a changes, and the refractive index of each pixel changes. When the refractive index of each pixel of the liquid crystal layer 13a changes, the phase delay amount of light reflected by each pixel of the liquid crystal layer 13a changes.
 よって、回路層13cの各画素回路へ印加される電圧値を制御すれば、SLM13に対する入射光束の位相分布を制御することができる。なお、SLM13に対する入射光束の振幅分布及び偏光方向分布は何ら変化しない。 Therefore, if the voltage value applied to each pixel circuit of the circuit layer 13c is controlled, the phase distribution of the incident light beam with respect to the SLM 13 can be controlled. Note that the amplitude distribution and polarization direction distribution of the incident light beam with respect to the SLM 13 do not change at all.
 このような反射型空間光変調器としては、例えば、浜松ホトニクス社のX10468、HOLOEYE社のLC-R720などを適用することができる。また、ここではSLM13として反射型空間光変調器を使用したが、透過型空間光変調器を使用してもよい。また、ここでは光の変調方式として液晶方式を利用したが、光路の屈折率が可変の他の方式を利用してもよい。 As such a reflective spatial light modulator, for example, X10468 of Hamamatsu Photonics, LC-R720 of HOLOEYE, or the like can be applied. In addition, although a reflective spatial light modulator is used as the SLM 13 here, a transmissive spatial light modulator may be used. Further, although the liquid crystal method is used here as the light modulation method, another method in which the refractive index of the optical path is variable may be used.
 さて、前述した液晶駆動回路15A(図1参照)は、制御装置39(図1参照)の制御下で、液晶相13aの屈折率分布を一方向に亘って周期的な分布に設定する。これによって、例えば図2(B)に示すような1方向位相回折格子がSLM13に表示される。入射光束を回折光束群に分岐するのは、この位相回折格子の働きである。 Now, the liquid crystal drive circuit 15A (see FIG. 1) described above sets the refractive index distribution of the liquid crystal phase 13a to a periodic distribution in one direction under the control of the control device 39 (see FIG. 1). Thereby, for example, a one-way phase diffraction grating as shown in FIG. 2B is displayed on the SLM 13. It is the function of this phase diffraction grating that splits the incident light beam into the diffracted light beam group.
 なお、SLM13に表示された位相回折格子の格子パターンは、実際には目視することはできない。但し、以下では説明の都合上、位相回折格子の格子パターンを可視化する。また、SLM13のうち少なくとも有効な光束の入射する領域の位相遅延量分布が周期的な分布に設定されることを「SLM13に位相回折格子が表示される」などと表現する。 Note that the grating pattern of the phase diffraction grating displayed on the SLM 13 cannot actually be visually observed. However, for the sake of explanation, the grating pattern of the phase diffraction grating is visualized below. In addition, the fact that the phase delay amount distribution of at least an effective light incident region of the SLM 13 is set to be a periodic distribution is expressed as “a phase diffraction grating is displayed on the SLM 13”.
 図2(B)は、SLM13に表示された位相回折格子を標本側から見た模式図である。図2(B)では、相対的に屈折率の低い画素領域13A(位相遅延量の相対的に小さな画素領域)を白色で表し、相対的に屈折率の高い画素領域13B(位相遅延量の相対的に大きい画素領域)をグレーで表した。また、図2(B)では、位相回折格子の格子周期(構造周期)Pを実際よりも大きく描いた。 FIG. 2B is a schematic view of the phase diffraction grating displayed on the SLM 13 as viewed from the sample side. In FIG. 2B, a pixel region 13A having a relatively low refractive index (a pixel region having a relatively small phase delay amount) is represented in white, and a pixel region 13B having a relatively high refractive index (a relative phase delay amount). A large pixel area) is shown in gray. In FIG. 2B, the grating period (structure period) P of the phase diffraction grating is drawn larger than the actual one.
 ここでは、相対的に屈折率の低い画素領域13Aに付与する位相遅延量は領域内で一定値であり、相対的に屈折率の高い画素領域13Bに付与する位相遅延量は領域内で一定値である。この場合、SLMは、矩形型の凹凸の回折格子と同じになる。 Here, the phase delay amount imparted to the pixel region 13A having a relatively low refractive index is a constant value within the region, and the phase delay amount imparted to the pixel region 13B having a relatively high refractive index is a constant value within the region. It is. In this case, the SLM is the same as a rectangular uneven diffraction grating.
 なお、SLMの位相遅延量分布のパターンは、SLMの各画素領域の境界領域のみにアンチエイリアスを施したようなパターンであっても良い。この場合も、SLMは上記矩形型の概念に含まれる。 Note that the pattern of the SLM phase delay amount distribution may be a pattern in which anti-aliasing is applied only to the boundary region of each pixel region of the SLM. Again, the SLM is included in the rectangular concept.
 但し、これに限定されず、SLMにおける位相遅延量の分布を、正弦波状の分布としてもよい。 However, the present invention is not limited to this, and the distribution of the phase delay amount in the SLM may be a sinusoidal distribution.
 具体的には、相対的に屈折率の低い画素領域13Aの位相遅延量は、正弦波状に分布する値であって、最小値を含むように設定されてもよく、相対的に屈折率の高い画素領域13Bの位相遅延量は、正弦波状に分布する値であって、最大値を含むように設定されてもよい。 Specifically, the phase delay amount of the pixel region 13A having a relatively low refractive index is a value distributed in a sine wave shape and may be set to include a minimum value, and has a relatively high refractive index. The phase delay amount of the pixel region 13B is a value distributed in a sine wave shape, and may be set to include the maximum value.
 なお、画像領域13A、13Bの位相遅延量分布を形成するために、複数の画素の値をつなげる場合は、局所的にみると、正弦波状の分布は不連続であるが、SLMの全体として、正弦波状に分布しているとみなせればよい。 In addition, when connecting the values of a plurality of pixels in order to form the phase delay amount distribution of the image regions 13A and 13B, when viewed locally, the sinusoidal distribution is discontinuous, but as a whole SLM, What is necessary is just to consider that it is distributed in the shape of a sine wave.
 ここで、画素領域13Aの位相遅延量、及び画素領域13Bの位相遅延量が、それぞれ一定値であり、互いに値が異なる場合(以下、矩形波モード)と、画素領域13Aの位相遅延量が正弦波状に分布する値であって、最大値を含み、画素領域13Bの位相遅延量が正弦波状に分布する値であって、最小値を含む場合(以下、正弦波モード)との違いは、以下のとおりである。 Here, when the phase delay amount of the pixel region 13A and the phase delay amount of the pixel region 13B are constant values and are different from each other (hereinafter, rectangular wave mode), the phase delay amount of the pixel region 13A is sine. The difference from the case where the value is distributed in a wave shape and includes the maximum value and the phase delay amount of the pixel region 13B is distributed in a sine wave shape and includes the minimum value (hereinafter referred to as sine wave mode) is as follows. It is as follows.
 0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比が例えば0.7:1:1になるように第1の位相遅延量と第2の位相遅延量とを設定する場合、位相遅延量の分布形状に起因して第1の位相遅延量と第2の位相遅延量との差は、正弦波モードに比べて矩形波モードの方が小さくなる。 The first phase delay amount and the second phase delay amount so that the ratio of the intensity of the 0th order diffracted light beam, the intensity of the + 1st order diffracted light beam, and the intensity of the −1st order diffracted light beam is, for example, 0.7: 1: 1. Is set, the difference between the first phase delay amount and the second phase delay amount due to the distribution shape of the phase delay amount is smaller in the rectangular wave mode than in the sine wave mode.
 また、相対的に屈折率の低い画素領域13Aの位相遅延量は、逆台形状(上辺が長く、下辺が短い)に分布する値であって、下辺が最小値になるように設定し、相対的に屈折率の高い画素領域13Bの位相遅延量は、台形状(上辺が短く、下辺が長い)に分布する値であって、上辺が最大値になるように設定すればよい。さらに、台形(逆台形)の場合は、上辺と下辺を結ぶ線は通常直線であるが、直線を曲線に変更しても台形(逆台形)とみなす。 Further, the phase delay amount of the pixel region 13A having a relatively low refractive index is a value distributed in an inverted trapezoidal shape (the upper side is long and the lower side is short), and the lower side is set to a minimum value. In particular, the phase delay amount of the pixel region 13B having a high refractive index is a value distributed in a trapezoidal shape (the upper side is short and the lower side is long), and the upper side may be set to a maximum value. Furthermore, in the case of a trapezoid (inverted trapezoid), the line connecting the upper side and the lower side is usually a straight line.
 このSLM13へ入射した光束は、位相回折格子の周期構造の方向Vにかけて分岐した回折光束群に変換される。この回折光束群には、0次回折光束及び±1次回折光束が含まれ、このうち互いの次数が共通である±1次回折光束は、光軸AZに関して対称な方向に進行し、0次回折光束は、光軸AZに沿って進行する。これらの0次回折光束及び±1次回折光束は、瞳共役面6A’の互いに異なる位置に集光する。図2(C)に示すとおり、0次回折光束の集光点14aは、光軸AZ上に位置し、±1次回折光束の集光点14b、14cは、光軸AZに関して対称となり、これら集光点14c、14a、14bの配列方向は、回折光束群の分岐方向Vと同じになる。 The light beam incident on the SLM 13 is converted into a diffracted light beam group branched in the direction V of the periodic structure of the phase diffraction grating. This diffracted light beam group includes a 0th-order diffracted light beam and a ± 1st-order diffracted light beam, and of these, the ± 1st-order diffracted light beam having the same order travels in a symmetric direction with respect to the optical axis AZ. The folded light beam travels along the optical axis AZ. These 0th-order diffracted light beam and ± 1st-order diffracted light beam are condensed at different positions on the pupil conjugate plane 6A ′. As shown in FIG. 2C, the condensing point 14a of the 0th-order diffracted light beam is located on the optical axis AZ, and the condensing points 14b and 14c of the ± 1st-order diffracted light beams are symmetric with respect to the optical axis AZ. The arrangement direction of the condensing points 14c, 14a, 14b is the same as the branching direction V of the diffracted light beam group.
 なお、ここでいう「集光点」とは、最高強度の8割以上の強度を有する領域の重心位置のことである。そのため、本実施形態の照明光学系10は、完全な集光点が形成されるまで光束を集光する必要はない。 Note that the “focusing point” mentioned here is the position of the center of gravity of an area having 80% or more of the maximum intensity. Therefore, the illumination optical system 10 of the present embodiment does not need to collect the light beam until a complete condensing point is formed.
 また、位相回折格子の構造周期Pは、±1次回折光束の各々の集光点14b、14cが瞳共役面6A’の概ね最外周に位置するような適正値Pに設定されている。この適正値Pによると、干渉縞(図2(D))の縞周期が適度に小さくなる(なお、図2(D)では、構造周期Pを実際よりも大きく描いた。)。 Further, the structural period P of the phase diffraction grating is set to an appropriate value P 0 such that the respective condensing points 14b and 14c of the ± first-order diffracted light beams are located on the outermost circumference of the pupil conjugate plane 6A ′. According to the appropriate value P 0 , the fringe period of the interference fringes (FIG. 2D) is appropriately reduced (in FIG. 2D, the structural period P is drawn larger than the actual period).
 また、本実施形態では、後述する式(1)に基づいて、位相回折格子の屈折率差Δn、すなわち、画素領域13Aの屈折率と画素領域13Bの屈折率との差は、位相回折格子から射出する0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比が、例えば0.7:1:1となるような適正値Δnに設定されている。この適正値Δnによると、復調画像(超解像画像)のコントラストが最適となる(詳細は、後述する。)。 Further, in the present embodiment, the refractive index difference Δn of the phase diffraction grating, that is, the difference between the refractive index of the pixel region 13A and the refractive index of the pixel region 13B is calculated from the phase diffraction grating based on the equation (1) described later. The ratio of the intensity of the emitted 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the −1st-order diffracted light beam is set to an appropriate value Δn 0 such as 0.7: 1: 1. According to this appropriate value Δn 0 , the contrast of the demodulated image (super-resolution image) becomes optimal (details will be described later).
 この理由は以下の通りである。 The reason for this is as follows.
 すなわち、0次回折光と1次回折光との強度比を1:1とした場合、3光束干渉による構造化照明を利用した3D-SIMモードにおける2次のOTFのフーリエスペクトルの大きさが、2光束干渉による構造化照明を利用した2D-SIMモードにおける2次のOTFのフーリエスペクトルよりも低下してしまうためである。その理由は、3D-SIMモードにおいては、0次回折光及び+1次回折光の干渉縞、0次回折光及び+1次回折光の干渉縞に起因する1次のOTFが生成され、そのために2次のOTFの大きさが低下してしまうことにある。ここで、2次のOTFとは、+1次回折光及び-1次回折光の干渉縞に起因するOTFを意味する。 That is, when the intensity ratio of the 0th-order diffracted light and the 1st-order diffracted light is 1: 1, the magnitude of the Fourier spectrum of the second-order OTF in the 3D-SIM mode using structured illumination by three-beam interference is two beams. This is because it is lower than the Fourier spectrum of the second-order OTF in the 2D-SIM mode using structured illumination due to interference. The reason is that, in the 3D-SIM mode, the first-order OTF is generated due to the interference fringes of the 0th-order diffracted light and the + 1st-order diffracted light, and the interference fringes of the 0th-order diffracted light and the + 1st-order diffracted light. The size is reduced. Here, the second-order OTF means OTF caused by interference fringes of + 1st order diffracted light and −1st order diffracted light.
 したがって、復調画像(超解像画像)の高周波成分のコントラストを向上させるには、0次回折光束の強度を、±1次回折光束の強度より低くする必要がある。 Therefore, in order to improve the contrast of the high frequency component of the demodulated image (super-resolution image), it is necessary to make the intensity of the 0th-order diffracted light beam lower than the intensity of the ± 1st-order diffracted light beam.
 さらに、前述した液晶駆動回路15Aは、制御装置39(図1参照)の制御下で、液晶層13aの屈折率分布を切り換えることにより、位相回折格子の表示方向を例えば図3(A1)→図3(A2)→図3(A3)に示すとおり60°の角度周期で3通りに切り換える。 Further, the liquid crystal driving circuit 15A described above changes the display direction of the phase diffraction grating, for example, from FIG. 3A1 to FIG. 3 by switching the refractive index distribution of the liquid crystal layer 13a under the control of the control device 39 (see FIG. 1). 3 (A2) → As shown in FIG. 3 (A3), switching is performed in three ways with an angular period of 60 °.
 図3(A1)に示すとおり位相回折格子の周期構造の方向がVであるとき、図3(B1)に示すとおり瞳共役面6A’における集光点14c、14a、14bの配列方向は、方向Vと同じになる。 When the direction of the periodic structure of the phase diffraction grating is V 1 as shown in FIG. 3 (A1), the arrangement direction of the condensing points 14c, 14a, and 14b on the pupil conjugate plane 6A ′ as shown in FIG. is the same as the direction V 1.
 因みに、光ファイバ11から射出するレーザ光の波長をλ、SLM13の格子周期をP、レンズ16の焦点距離をfcとすると、光軸AZから集光点14b、14cまでの距離Dは下記の式で表される。 Incidentally, assuming that the wavelength of the laser light emitted from the optical fiber 11 is λ, the grating period of the SLM 13 is P, and the focal length of the lens 16 is fc, the distance D from the optical axis AZ to the condensing points 14b and 14c is expressed by the following equation: It is represented by
 D∝2fcλ/P
 図3(A2)に示すとおり位相回折格子の周期構造の方向がVであるとき、図3(B2)に示すとおり瞳共役面6A’における集光点14c、14a、14bの配列方向は、方向Vと同じになる。なお、集光点14c、14bから光軸AZまでの距離は、周期構造の方向がVであるときの距離(図3(B1)参照)と同じである。
D∝2fcλ / P
When the direction of the periodic structure of the phase diffraction grating is V 2 as shown in FIG. 3 (A2), the arrangement direction of the condensing points 14c, 14a, and 14b on the pupil conjugate plane 6A ′ as shown in FIG. is the same as the direction V 2. The distance of the focal point 14c, from 14b to the optical axis AZ is the same as the distance when the direction of the periodic structure is V 1 (see FIG. 3 (B1)).
 図3(A3)に示すとおり位相回折格子の周期構造の方向がVであるとき、図3(C3)に示すとおり瞳共役面6A’における集光点14c、14a、14bの配列方向は、方向Vと同じになる。なお、集光点14c、14bから光軸AZまでの距離は、周期構造の方向がVであるときの距離(図3(B1)参照)と同じである。 When the direction of the periodic structure of the phase diffraction grating is V 3 as shown in FIG. 3 (A3), the arrangement direction of the condensing points 14c, 14a, and 14b on the pupil conjugate plane 6A ′ is as shown in FIG. is the same as the direction V 3. The distance of the focal point 14c, from 14b to the optical axis AZ is the same as the distance when the direction of the periodic structure is V 1 (see FIG. 3 (B1)).
 したがって、本実施形態の液晶駆動回路15Aは、標本5に形成される干渉縞の方向を、図3(C1)→図3(C2)→図3(C3)に示すとおり、60°の角度周期で3通りに切り換えることができる。しかも、本実施形態では、位相回折格子としてSLM13を使用したので、干渉縞の方向切り換えは高速に行われる。 Therefore, the liquid crystal driving circuit 15A of the present embodiment changes the direction of the interference fringes formed on the specimen 5 to an angular period of 60 ° as shown in FIG. 3 (C1) → FIG. 3 (C2) → FIG. 3 (C3). You can switch between three ways. Moreover, in this embodiment, since the SLM 13 is used as the phase diffraction grating, the direction of the interference fringes is switched at high speed.
 次に、0次光シャッタ200を詳しく説明する。 Next, the 0th-order optical shutter 200 will be described in detail.
 図4(A)は、0次光シャッタ200を説明する図である。図4(A)に示すとおり0次光シャッタ200は、円形の透明基板の一部に円形の遮光部200Cを形成してなる空間フィルタである。 FIG. 4A is a diagram for explaining the zero-order light shutter 200. As shown in FIG. 4A, the 0th-order optical shutter 200 is a spatial filter formed by forming a circular light shielding part 200C on a part of a circular transparent substrate.
 0次光シャッタ200の遮光部200Cは、0次回折光束の光路(集光点14a)をカバーし、0次光シャッッタ200の非遮光部(透過部200B)は、±1次回折光束の光路となりうる領域(すなわち集光点14b、14cの形成されうる領域)の全体をカバーする。 The light-shielding part 200C of the 0th-order optical shutter 200 covers the optical path (condensing point 14a) of the 0th-order diffracted light beam, and the non-light-shielding part (transmission part 200B) of the 0th-order light shutter 200 is the optical path of ± first-order diffracted light flux. The entire region that can be formed (that is, the region where the condensing points 14b and 14c can be formed) is covered.
 この0次光シャッタ200は、前述した回動機構200A(図1参照)により、照明光学系10の光軸AZと平行、かつその光軸AZから離れた直線(軸AR)の周りに回動可能である。 The zero-order light shutter 200 is rotated around a straight line (axis AR) parallel to and away from the optical axis AZ of the illumination optical system 10 by the rotation mechanism 200A (see FIG. 1) described above. Is possible.
 なお、 回動機構200Aには、例えば、0次光シャッタ200を保持し、かつ軸ARの周りに回転可能な不図示の回動軸と、その回動軸へ回転力を与える不図示のモータ(回転モータ)とが備えられる。このモータが駆動されると、回転軸が回転し、0次光シャッタ200が軸ARの周りに回転する。 Note that, for example, a rotation shaft (not shown) that holds the zero-order light shutter 200 and can rotate around the axis AR, and a motor (not shown) that applies a rotational force to the rotation shaft are included in the rod rotation mechanism 200A. (Rotary motor). When this motor is driven, the rotation shaft rotates, and the zero-order light shutter 200 rotates about the axis AR.
 0次光シャッタ200の回動角が図4に示した基準角度(0°)に設定されると、遮光部200Cが0次回折光束の光路(集光点14a)に挿入され、0次光シャッタ200の回動角が基準角度から外れた所定角度(例えば30°)に設定されると、遮光部200Cが0次回折光束の光路(集光点14a)から外れる。 When the rotation angle of the 0th-order light shutter 200 is set to the reference angle (0 °) shown in FIG. 4, the light-shielding portion 200C is inserted into the optical path (condensing point 14a) of the 0th-order diffracted light beam, and the 0th-order light When the rotation angle of the shutter 200 is set to a predetermined angle (for example, 30 °) that deviates from the reference angle, the light shielding part 200C is deviated from the optical path (condensing point 14a) of the 0th-order diffracted light beam.
 したがって、0次光シャッタ200の回動角を基準角度(0°)と所定角度(30°)との間で切り換えれば、±1次回折光束をオンしたまま0次回折光束をオン/オフすることができる。なお、図4(A)は0次回折光束がオフされた状態を示しており、図1は、0次回折光束がオンされた状態を示している。因みに、0次回折光束がオフされると構造化照明顕微鏡装置1が2D-SIMモードに設定され、0次回折光束がオンされると構造化照明顕微鏡装置1が3D-SIMモードに設定される。 Therefore, if the rotation angle of the 0th-order light shutter 200 is switched between the reference angle (0 °) and the predetermined angle (30 °), the 0th-order diffracted light beam is turned on / off while the ± 1st-order diffracted light beam remains on. can do. 4A shows a state in which the 0th-order diffracted light beam is turned off, and FIG. 1 shows a state in which the 0th-order diffracted light beam is turned on. Incidentally, when the 0th-order diffracted light beam is turned off, the structured illumination microscope apparatus 1 is set to the 2D-SIM mode, and when the 0th-order diffracted light beam is turned on, the structured illumination microscope apparatus 1 is set to the 3D-SIM mode. .
 なお、0次光シャッタ200の回動角が基準角度(0°)、所定角度(30°)の何れである場合にも、0次光シャッタ200の遮光部200Cは、±1次回折光束の光路となりうる領域(すなわち集光点14b、14cの形成されうる領域)を遮ることは無いものとする。 It should be noted that the light shielding portion 200C of the 0th-order light shutter 200 has a ± 1st-order diffracted light beam regardless of whether the rotation angle of the 0th-order light shutter 200 is a reference angle (0 °) or a predetermined angle (30 °). It is assumed that a region that can be an optical path (that is, a region where the condensing points 14b and 14c can be formed) is not blocked.
 また、ここでは0次光シャッタ200を回動可能な空間フィルタとしたが、スライド可能な空間フィルタや、固定配置された液晶素子などで0次光シャッタ200を構成してもよい。液晶素子の配向を電気的に制御すれば、液晶素子の屈折率異方性を制御することができるので、液晶素子を0次光シャッタ200として機能させることができる。 Further, although the zero-order light shutter 200 is a rotatable spatial filter here, the zero-order light shutter 200 may be configured by a slidable spatial filter, a liquid crystal element that is fixedly arranged, or the like. If the orientation of the liquid crystal element is electrically controlled, the refractive index anisotropy of the liquid crystal element can be controlled, so that the liquid crystal element can function as the zero-order light shutter 200.
 次に、高次光カット部材18を詳しく説明する。 Next, the high-order light cut member 18 will be described in detail.
 図4(B)は、高次光カット部材18を説明する図である。図4(B)に示すとおり高次光カット部材18は、円形の不透明基板(マスク用基板)に、円形の開口部18aと輪帯状の開口部18bとを形成してなる空間フィルタである。 FIG. 4B is a diagram illustrating the high-order light cut member 18. As shown in FIG. 4B, the high-order light cut member 18 is a spatial filter formed by forming a circular opening 18a and a ring-shaped opening 18b on a circular opaque substrate (mask substrate).
 高次光カット部材18において円形の開口部18aは、0次回折光束の光路(集光点14a)をカバーしており、輪帯状の開口部18bは、±1次回折光束の光路となりうる領域(すなわち集光点14b、14cの形成されうる領域)をカバーしている。また、高次光カット部材18において2次以降の高次回折光束の光路となりうる領域は、遮光部(非開口部)となっている。 In the high-order light cut member 18, the circular opening 18 a covers the optical path of the 0th-order diffracted light beam (condensing point 14 a), and the ring-shaped opening 18 b is an area that can be an optical path of the ± 1st-order diffracted light beam (that is, The region where the condensing points 14b and 14c can be formed). In the high-order light cut member 18, a region that can be an optical path of a second-order or higher-order diffracted light beam is a light shielding portion (non-opening portion).
 なお、SLM13で発生する2次以降の高次回折光束の強度が十分に弱い場合には、高次光カット部材18を省略してもよい。 It should be noted that the high-order light cut member 18 may be omitted when the intensity of the second-order and higher-order diffracted light beams generated by the SLM 13 is sufficiently weak.
 次に、1/2波長板17(図1参照)の機能を詳しく説明する。 Next, the function of the half-wave plate 17 (see FIG. 1) will be described in detail.
 1/2波長板17(図1参照)は、干渉縞に寄与する回折光束群の偏光状態をS偏光に維持するために使用される。その回折光束群の偏光状態がS偏光であるときに干渉縞のコントラストが最大となるからである。 The half-wave plate 17 (see FIG. 1) is used to maintain the polarization state of the diffracted light beam group contributing to the interference fringes as S-polarized light. This is because the contrast of the interference fringes becomes maximum when the polarization state of the diffracted light beam group is S-polarized light.
 図5(A)に示すとおり回折光束群の分岐方向がVであるときには、回折光束群の偏光方向は、図5(A)に点線矢印で示した方向V’とされるべきである。この方向V’は、方向Vを光軸AZの周りに90°だけ回転させた方向である。 When the branching direction of the diffracted light beam group is V 1 as shown in FIG. 5A, the polarization direction of the diffracted light beam group should be the direction V 1 ′ shown by the dotted arrow in FIG. . This direction V 1 ′ is a direction obtained by rotating the direction V 1 by 90 ° around the optical axis AZ.
 図5(B)に示すとおり回折光束群の分岐方向がVであるときには、回折光束群の偏光方向は、図5(B)に点線矢印で示した方向V’とされるべきである。この方向V’は、方向Vを光軸AZの周りに90°だけ回転させた方向である。 When the branching direction of the diffracted light beam group is V 2 as shown in FIG. 5B, the polarization direction of the diffracted light beam group should be the direction V 2 ′ shown by the dotted arrow in FIG. 5B. . This direction V 2 ′ is a direction obtained by rotating the direction V 2 by 90 ° around the optical axis AZ.
 図5(C)に示すとおり回折光束群の分岐方向がVであるときには、回折光束群の偏光方向は、図5(C)に点線矢印で示した方向V’とされるべきである。この方向V’は、方向Vを光軸AZの周りに90°だけ回転させた方向である。 As shown in FIG. 5C, when the branching direction of the diffracted light beam group is V 3 , the polarization direction of the diffracted light beam group should be the direction V 3 ′ indicated by the dotted arrow in FIG. . This direction V 3 ′ is a direction obtained by rotating the direction V 3 by 90 ° around the optical axis AZ.
 そこで、本実施形態では、SLM13の上流側に配置された偏光板23の軸方向を、方向V’に予め一致させておき、SLM13の下流側に配置された1/2波長板17の進相軸の方向を、波長板駆動回路17A(図1参照)によって適宜に光軸AZの周りに回動させる。なお、1/2波長板17の進相軸とは、その軸の方向に偏光した光が1/2波長板17を通過するときの位相遅延量が最小となるような方向のことである。 Therefore, in the present embodiment, the axial direction of the polarizing plate 23 disposed on the upstream side of the SLM 13 is matched with the direction V 2 ′ in advance, and the progression of the half-wave plate 17 disposed on the downstream side of the SLM 13 is achieved. The direction of the phase axis is appropriately rotated around the optical axis AZ by the wave plate driving circuit 17A (see FIG. 1). The fast axis of the half-wave plate 17 is a direction in which the amount of phase delay when light polarized in the direction of the axis passes through the half-wave plate 17 is minimized.
 また、本実施形態では、回折光束群の分岐方向の切り換えがSLM13によって高速化されたので、その高速化の効果が損なれないよう、1/2波長板17も液晶素子で構成されたと仮定する。この液晶素子の配向を波長板駆動回路17A(図1参照)が電気的に制御すれば、1/2波長板17の進相軸の方向が高速に切り換わる。 Further, in this embodiment, since the switching of the branch direction of the diffracted light beam group is accelerated by the SLM 13, it is assumed that the half-wave plate 17 is also composed of a liquid crystal element so that the effect of the acceleration is not impaired. . If the orientation of the liquid crystal element is electrically controlled by the wave plate driving circuit 17A (see FIG. 1), the direction of the fast axis of the half-wave plate 17 is switched at high speed.
 図5(A)に示すとおり回折光束群の分岐方向がVであるとき、1/2波長板17の進相軸の方向は、図5(A)に実線の両矢印で示す方向に設定される。この方向は、1/2波長板17へ入射する回折光束群が有している偏光方向V’と、1/2波長板17から射出する回折光束群が有しているべき偏光方向V’とを二等分する方向である。 When the branching direction of the diffracted light beam group is V 1 as shown in FIG. 5 (A), the direction of the fast axis of the half-wave plate 17 is set to the direction indicated by the solid line double arrow in FIG. 5 (A). Is done. This direction is 1/2 the polarization direction V 2 'of the diffracted light flux group incident has the wavelength plate 17, 1/2 polarization direction V 1 to the diffracted light flux group emitted from the wavelength plate 17 has It is the direction that bisects'.
 図5(B)に示すとおり回折光束群の分岐方向がVであるとき、1/2波長板17の進相軸の方向は、図5(B)に実線の両矢印で示す方向に設定される。この方向は、1/2波長板17へ入射する回折光束群が有している偏光方向V’と、1/2波長板17から射出する回折光束群が有しているべき偏光方向V’とを二等分する方向(=V’)である。 5 when the branch direction of the diffracted light beam group as shown in (B) is V 2, the direction of the fast axis of the 1/2-wavelength plate 17, set in the direction indicated by the solid line double arrow in FIG. 5 (B) Is done. This direction is 1/2 the polarization direction V 2 'of the diffracted light flux group incident has the wavelength plate 17, 1/2 polarization direction V 2 should diffracted light flux group emitted from the wavelength plate 17 has Is a direction (= V 2 ′).
 図5(C)に示すとおり回折光束群の分岐方向がVであるとき、1/2波長板17の進相軸の方向は、図5(C)に実線の両矢印で示す方向に設定される。この方向は、1/2波長板17へ入射する回折光束群が有している偏光方向V’と、1/2波長板17から射出する回折光束群が有しているべき偏光方向V’とを二等分する方向である。 When the branching direction of the diffracted light beam group is V 3 as shown in FIG. 5C, the direction of the fast axis of the half-wave plate 17 is set to the direction indicated by the solid double-pointed arrow in FIG. Is done. This direction includes the polarization direction V 2 ′ that the diffracted light beam group incident on the half-wave plate 17 has, and the polarization direction V 3 that the diffracted light beam group emitted from the half-wave plate 17 should have. It is the direction that bisects'.
 なお、ここでは、干渉縞に寄与する回折光束群をS偏光に保つために液晶素子からなる1/2波長板17を使用したが、干渉縞に寄与する回折光束群をS偏光に保つための方法は他にもある(後述)。 Here, the half-wave plate 17 made of a liquid crystal element is used to keep the diffracted light beam group contributing to the interference fringe as S-polarized light. However, in order to keep the diffracted light beam group contributing to the interference fringe as S-polarized light. There are other methods (described later).
 次に、干渉縞の位相シフトに関する液晶駆動回路15A(図1参照)の動作を詳しく説明する。 Next, the operation of the liquid crystal drive circuit 15A (see FIG. 1) regarding the phase shift of interference fringes will be described in detail.
 上述した復調演算には、例えば、同一の標本5かつ同一方向の干渉縞に関する変調画像であって、干渉縞の位相の異なる複数枚の変調画像(例えば5枚の変調画像)が必要である。なぜなら、構造化照明顕微鏡装置1が生成する変調画像には、標本5の蛍光領域の構造のうち、干渉縞により空間周波数の変調された構造情報である0次変調成分、+1次変調成分、-1次変調成分、+2次変調成分、-2次変調成分が含まれており、それら5つの未知パラメータを復調演算で既知とする必要があるからである。 The above-described demodulation operation requires, for example, a plurality of modulation images (for example, five modulation images) that are the same sample 5 and the modulation images related to the interference fringes in the same direction and have different phases of the interference fringes. This is because the modulated image generated by the structured illumination microscope apparatus 1 includes a 0th order modulation component, a + 1st order modulation component, − This is because the primary modulation component, the + secondary modulation component, and the -2nd modulation component are included, and it is necessary to make these five unknown parameters known by the demodulation operation.
 そこで、液晶駆動回路15Aは、干渉縞の位相をシフトするために、SLM13における位相回折格子の表示先をシフトさせる。そのシフト方向は、例えば図6に示すとおり位相回折格子の周期構造の方向V(ここではV、V、Vの何れか)に対して非垂直な方向(x方向)である。 Therefore, the liquid crystal drive circuit 15A shifts the display destination of the phase diffraction grating in the SLM 13 in order to shift the phase of the interference fringes. The shift direction is, for example, a direction (x direction) non-perpendicular to the direction V of the periodic structure of the phase diffraction grating (here, any one of V 1 , V 2 , V 3 ) as shown in FIG.
 因みに、干渉縞の位相をφだけシフトさせるために必要な位相回折格子のx方向のシフト量Lは、位相回折格子の構造周期Pと、図6に示した角度θとによって定まる。この角度θは、位相回折格子のシフト方向(x方向)と周期構造の方向V(ここではV、V、Vの何れか)とが成す角度である。また、復調演算に必要な干渉縞の位相数がNである場合、位相シフト周期φは例えば2π/Nに設定される。 Incidentally, the shift amount L in the x direction of the phase diffraction grating necessary for shifting the phase of the interference fringes by φ is determined by the structural period P of the phase diffraction grating and the angle θ shown in FIG. This angle θ is an angle formed by the shift direction (x direction) of the phase diffraction grating and the direction V of the periodic structure (in this case, any one of V 1 , V 2 , and V 3 ). Further, when the number of phases of interference fringes necessary for the demodulation operation is N, the phase shift period φ is set to 2π / N, for example.
 次に、光源波長λの切り換えに関する液晶駆動回路15A(図1参照)の動作を詳しく説明する。 Next, the operation of the liquid crystal drive circuit 15A (see FIG. 1) regarding the switching of the light source wavelength λ will be described in detail.
 干渉縞に寄与する0次回折光束と±1次回折光束との強度比は、基本的に、SLM13に表示された位相回折格子の位相差Φに依存する。位相回折格子の位相差Φとは、SLM13の入射光束に対して画素領域13Aが与える位相遅延量と画素領域13Bが与える位相遅延量との差のことである。 The intensity ratio between the 0th-order diffracted light beam and the ± 1st-order diffracted light beam that contributes to the interference fringes basically depends on the phase difference Φ of the phase diffraction grating displayed on the SLM 13. The phase difference Φ of the phase diffraction grating is a difference between the phase delay amount given by the pixel region 13A and the phase delay amount given by the pixel region 13B with respect to the incident light beam of the SLM 13.
 ここで、位相回折格子の位相差Φと位相回折格子で発生する各次数の回折強度との関係は、図7に示すとおりである。なお、ここでいう「回折強度」は、位相回折格子に対する入射光束の強度が「1」であるときに発生する回折光束の強度のことを指す。 Here, the relationship between the phase difference Φ of the phase diffraction grating and the diffraction intensity of each order generated in the phase diffraction grating is as shown in FIG. The “diffraction intensity” here refers to the intensity of the diffracted light beam generated when the intensity of the incident light beam with respect to the phase diffraction grating is “1”.
 図7によると、位相差Φ=0においては0次回折光束のみが発生し、他の次数の回折光束は発生しないことがわかる。 7 that only the 0th-order diffracted light beam is generated and no other-order diffracted light beam is generated at the phase difference Φ = 0.
 また、図7によると、位相差Φ=2[rad](曲線が交わっている箇所)においては0次回折光束、+1次回折光束、-1次回折光束の強度比は、1:1:1になることがわかる。 Further, according to FIG. 7, at the phase difference Φ = 2 [rad] (where the curves intersect), the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the −1st-order diffracted light beam is 1: 1: 1. It turns out that it becomes.
 また、図7によると、位相差Φ=π≒3[rad]においては0次回折光束が発生せず、±1次回折光束と高次の回折光束とが発生することがわかる。 Further, according to FIG. 7, it can be seen that in the phase difference Φ = π≈3 [rad], the 0th-order diffracted light beam is not generated, but the ± 1st-order diffracted light beam and the higher-order diffracted light beam are generated.
 したがって、図7によると、0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比が例えば0.7:1:1になるような位相差Φは、Φ≒2.2であることがわかる。 Therefore, according to FIG. 7, the phase difference Φ such that the ratio of the intensity of the 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the −1st-order diffracted light beam is 0.7: 1: 1 is It can be seen that ≈2.2.
 なお、図7の曲線は、位相分布が正弦波モードである場合を示している。位相分布が矩形波モードの場合は、0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比を例えば0.7:1:1とするための位相差Φは、位相分布が正弦波モードである場合のそれと比べて小さくなるので、SLMに設定する位相値を変化させる必要がある。 The curve in FIG. 7 shows a case where the phase distribution is a sine wave mode. When the phase distribution is a rectangular wave mode, the phase difference Φ for setting the ratio of the intensity of the 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam, and the intensity of the −1st-order diffracted light beam to 0.7: 1: 1, for example. Since the phase distribution is smaller than that in the sine wave mode, it is necessary to change the phase value set in the SLM.
 そして、位相回折格子の位相差Φは、位相回折格子の屈折率差Δnによって定まる。位相回折格子の屈折率差Δnとは、SLM13における画素領域13Aの屈折率と画素領域13Bの屈折率と差のことである。 The phase difference Φ of the phase diffraction grating is determined by the refractive index difference Δn of the phase diffraction grating. The refractive index difference Δn of the phase diffraction grating is a difference between the refractive index of the pixel region 13A and the refractive index of the pixel region 13B in the SLM 13.
 但し、位相回折格子の位相差Φは、位相回折格子の屈折率差Δnだけでなく、入射光束の波長λにも依存する。これを式で表すと、以下の式(1)とおりである。 However, the phase difference Φ of the phase diffraction grating depends not only on the refractive index difference Δn of the phase diffraction grating but also on the wavelength λ of the incident light beam. This is expressed by the following formula (1).
 Φ=2π・Δn・d/λ …(1)
 なお、式(1)におけるdは、SLM13の液晶層13aの光軸AZ方向の厚さ(定数)である。
Φ = 2π · Δn · d / λ (1)
In the formula (1), d is the thickness (constant) of the liquid crystal layer 13a of the SLM 13 in the optical axis AZ direction.
 したがって、位相回折格子の屈折率差Δnの適正値Δnは、光源波長λが長い波長λであるときと短い波長λであるときとで若干異なる。 Therefore, the appropriate value Δn 0 of the refractive index difference Δn of the phase diffraction grating is slightly different when the light source wavelength λ is the long wavelength λ 1 and when it is the short wavelength λ 2 .
 そこで、本実施形態では、0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比(強度比)と屈折率差Δnとの関係を波長λごとに示す関数テーブルが制御装置39内の記憶部(不図示)に予め記憶されているものと仮定する。 Therefore, in the present embodiment, a function indicating the relationship between the ratio of the intensity of the 0th-order diffracted light beam, the intensity of the + 1st-order diffracted light beam and the intensity of the −1st-order diffracted light beam (intensity ratio) and the refractive index difference Δn for each wavelength λ. It is assumed that the table is stored in advance in a storage unit (not shown) in the control device 39.
 この場合、制御装置39は、必要な強度比及び使用波長λに応じてこの関数テーブルを参照することにより、屈折率差Δnの適正値Δnを求めることができる。これによって、液晶駆動回路15AがSLM13へ与えるべき駆動信号(電圧値)の適正値が確定する。 In this case, the control device 39 can obtain the appropriate value Δn 0 of the refractive index difference Δn by referring to this function table according to the required intensity ratio and the used wavelength λ. As a result, the appropriate value of the drive signal (voltage value) to be given to the SLM 13 by the liquid crystal drive circuit 15A is determined.
 なお、ここでは、必要な強度比及び使用波長λに応じて屈折率差Δnの適正値Δnを確定するために(つまりSLM13へ与えるべき駆動信号(電圧値)の適正値を確定するために)、「強度比及び使用波長λから屈折率差Δnを求めるための関数テーブル」を使用したが、他のテーブルを使用してもよい。例えば、「強度比から位相差Φを求めるための関数テーブル」と「使用波長λ及び位相差Φから屈折率差Δnを求めるための関数テーブル」との2つを使用してもよい。 Here, in order to determine the appropriate value Δn 0 of the refractive index difference Δn according to the required intensity ratio and the wavelength used λ (that is, to determine the appropriate value of the drive signal (voltage value) to be applied to the SLM 13. ), “Function table for obtaining refractive index difference Δn from intensity ratio and wavelength λ used” is used, but other tables may be used. For example, two functions, “a function table for obtaining the phase difference Φ from the intensity ratio” and “a function table for obtaining the refractive index difference Δn from the used wavelength λ and the phase difference Φ”, may be used.
 また、ここでは、記憶部に格納されるべき情報を関数テーブルとしたが、記憶部に格納されるべき情報の一部又は全部は、関数それ自体であってもよい。例えば、「使用波長λ及び位相差Φから屈折率差Δnを求めるための関数テーブル」の代わりに式(1)を使用してもよい。 Further, here, the information to be stored in the storage unit is a function table, but part or all of the information to be stored in the storage unit may be the function itself. For example, equation (1) may be used instead of “a function table for obtaining the refractive index difference Δn from the used wavelength λ and the phase difference Φ”.
 但し、関数テーブルを使用した方が、屈折率差Δnの適正値Δn(ひいてはSLM13へ与えるべき電圧値の適正値)を高速に導出できるので好ましい。 However, it is preferable to use a function table because an appropriate value Δn 0 of the refractive index difference Δn (and thus an appropriate value of the voltage value to be applied to the SLM 13) can be derived at high speed.
 そして、本実施形態の液晶駆動回路15A(図1参照)は、制御装置39(図1参照)の制御下で、SLM13の画素領域13Aに与える電圧値と画素領域13Bに与える電圧値との組み合わせを制御することにより、位相回折格子の屈折率差Δnを適宜に調整する。 The liquid crystal drive circuit 15A (see FIG. 1) of the present embodiment combines the voltage value applied to the pixel region 13A and the voltage value applied to the pixel region 13B of the SLM 13 under the control of the control device 39 (see FIG. 1). By controlling the above, the refractive index difference Δn of the phase diffraction grating is appropriately adjusted.
 具体的に、液晶駆動回路15Aは、光源波長λが長い波長λであるときには位相回折格子の屈折率差ΔnをΔn01に設定し、光源波長λが短い波長λであるときには位相回折格子の屈折率差ΔnをΔn02に設定する。 Specifically, the liquid crystal drive circuit 15A, a phase diffraction grating when when the light source wavelength lambda is longer wavelengths lambda 1 is a refractive index difference [Delta] n of the phase grating in [Delta] n 01, the light source wavelength lambda is short wavelength lambda 2 Is set to Δn 02 .
 但し、Δn01は、光源波長λがλであるときに0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比が例えば0.7:1:1となるような適正値である。この適正値Δn01によると、波長λの復調画像(超解像画像)のコントラストが最適となる。 However, [Delta] n 01, when the zero-order diffracted light flux intensity and + 1st-order diffracted light flux intensity and -1 the ratio of the intensity of the diffracted light flux for example 0.7 light source wavelength lambda is λ 1: 1: 1 and It is an appropriate value. According to this appropriate value Δn 01 , the contrast of the demodulated image (super-resolution image) having the wavelength λ 1 is optimal.
 一方、Δn02は、光源波長λがλであるときに0次回折光束の強度と+1次回折光束の強度と-1次回折光束の強度との比が例えば0.7:1:1となるような適正値である。この適正値Δn02によると、波長λの復調画像(超解像画像)のコントラストが最適となる。 On the other hand, [Delta] n 02, when the zero-order diffracted light flux intensity and + 1st-order diffracted light flux intensity and -1 the ratio of the intensity of the diffracted light flux for example 0.7 light source wavelength lambda is λ 2: 1: 1 and It is an appropriate value. According to this appropriate value Δn 02 , the contrast of the demodulated image (super-resolution image) having the wavelength λ 2 is optimal.
 したがって、本実施形態では、復調画像(超解像画像)のコントラストは光源波長λに依らず高く維持される。 Therefore, in this embodiment, the contrast of the demodulated image (super-resolution image) is maintained high regardless of the light source wavelength λ.
 因みに、Δn01、Δn02の関係は、以下の式(2)で表される。 Incidentally, the relationship between Δn 01 and Δn 02 is expressed by the following equation (2).
 Δn01/λ=Δn02/λ …(2)
 上述したとおりλ>λであるので、Δn01>Δn02である。
Δn 01 / λ 1 = Δn 02 / λ 2 (2)
Because it is as described above λ 1> λ 2, a Δn 01> Δn 02.
 次に、波長の異なる2種類の超解像画像に必要なデータの取得手順を説明する。 Next, the procedure for acquiring data necessary for two types of super-resolution images with different wavelengths will be described.
 図8は、制御装置39の動作フローチャートである。以下、図8の各ステップを順に説明する。 FIG. 8 is an operation flowchart of the control device 39. Hereafter, each step of FIG. 8 is demonstrated in order.
 ステップS1:制御装置39は、回動機構200Aを介して0次光シャッタ200の回動角を基準角度に設定することにより、構造化照明顕微鏡装置1を3D-SIMモードに設定する。また、制御装置39は、レーザユニット100を介して構造化照明顕微鏡装置1の光源波長λを長い波長λに設定する。 Step S1: The control device 39 sets the structured illumination microscope apparatus 1 to the 3D-SIM mode by setting the rotation angle of the zero-order light shutter 200 to the reference angle via the rotation mechanism 200A. Further, the control device 39 sets the light source wavelength λ of the structured illumination microscope apparatus 1 to the long wavelength λ 1 via the laser unit 100.
 ステップS2:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することによりSLM13へ位相回折格子を表示する。この位相回折格子の屈折率差ΔnはΔn01であり、位相回折格子の周期構造の方向VはVであり、位相回折格子の構造周期PはPである。また、制御装置39は、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(A)における実線両矢印の方向に設定する。 Step S2: The control device 39 displays the phase diffraction grating on the SLM 13 by driving the SLM 13 via the liquid crystal drive circuit 15A. The refractive index difference Δn of this phase diffraction grating is Δn 01 , the direction V of the periodic structure of the phase diffraction grating is V 1 , and the structural period P of the phase diffraction grating is P 0 . Further, the control device 39 drives the half-wave plate 17 via the wave plate drive circuit 17A, so that the fast axis of the half-wave plate 17 is in the direction of the solid double arrow in FIG. Set.
 ステップS3:制御装置39は、液晶駆動回路15Aを介してSLM13における位相回折格子の表示先を所定シフト周期でN通りにシフトさせることにより、干渉縞の位相をシフト周期φ=2π/NでN通りにシフトさせ、それらN通りの位相の下でレーザユニット100及び撮像素子35を駆動することにより、N枚の変調画像を取得する。 Step S3: The control device 39 shifts the display destination of the phase diffraction grating in the SLM 13 in N ways with a predetermined shift cycle via the liquid crystal drive circuit 15A, so that the phase of the interference fringes is N with the shift cycle φ = 2π / N. And N modulated images are acquired by driving the laser unit 100 and the image sensor 35 under these N phases.
 ステップS4:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することにより、位相回折格子の周期構造の方向VをVに切り換えると共に、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(B)における実線両矢印の方向に切り換えると、ステップS3を実行する。 Step S4: The control device 39 drives the SLM 13 via the liquid crystal drive circuit 15A, thereby switching the direction V of the periodic structure of the phase diffraction grating to V 2 and a half wavelength via the wave plate drive circuit 17A. When the fast axis of the half-wave plate 17 is switched in the direction of the solid double arrow in FIG. 5B by driving the plate 17, step S3 is executed.
 なお、ステップS4においてSLM13に表示される位相回折格子とステップS2においてSLM13に表示される位相回折格子との間では、屈折率差Δn及び構造周期Pが共通である。 Note that the refractive index difference Δn and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S4 and the phase diffraction grating displayed on the SLM 13 in step S2.
 ステップS5:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することにより、位相回折格子の周期構造の方向VをVに切り換えると共に、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(C)における実線両矢印の方向に切り換えると、ステップS3を実行する。 Step S5: the control device 39, by driving the SLM13 through the liquid crystal drive circuit 15A, switches the direction V of the periodic structure of the phase grating to V 3, 1/2 wavelength through a wavelength plate drive circuit 17A When the fast axis of the half-wave plate 17 is switched in the direction of the solid double arrow in FIG. 5C by driving the plate 17, step S3 is executed.
 なお、ステップS5においてSLM13に表示される位相回折格子とステップS2においてSLM13に表示される位相回折格子との間では、屈折率差Δn及び構造周期Pが共通である。 Note that the refractive index difference Δn and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S5 and the phase diffraction grating displayed on the SLM 13 in step S2.
 ステップS6:制御装置39は、レーザユニット100を介して構造化照明顕微鏡装置1の光源波長λを長い波長λから短い波長λへと切り換える。 Step S6: the control device 39 switches the light source wavelength lambda of the structured illumination microscope apparatus 1 from a long wavelength lambda 1 through the laser unit 100 to the shorter wavelength lambda 2.
 ステップS7:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することによりSLM13へ位相回折格子を表示する。この位相回折格子の屈折率差ΔnはΔn02であり、位相回折格子の周期構造の方向VはVであり、位相回折格子の構造周期PはPである。また、制御装置39は、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(A)における実線両矢印の方向に切り換える。 Step S7: The control device 39 displays the phase diffraction grating on the SLM 13 by driving the SLM 13 via the liquid crystal drive circuit 15A. The refractive index difference Δn of this phase diffraction grating is Δn 02 , the direction V of the periodic structure of the phase diffraction grating is V 1 , and the structural period P of the phase diffraction grating is P 0 . Further, the control device 39 drives the half-wave plate 17 via the wave plate drive circuit 17A, so that the fast axis of the half-wave plate 17 is in the direction of the solid double arrow in FIG. Switch.
 ステップS8:制御装置39は、液晶駆動回路15Aを介してSLM13における位相回折格子の表示先を所定シフト周期でN通りにシフトさせることにより、干渉縞の位相をシフト周期φ=2π/NでN通りにシフトさせ、それらN通りの位相の下でレーザユニット100及び撮像素子35を駆動することにより、N枚の変調画像を取得する。 Step S8: The control device 39 shifts the display destination of the phase diffraction grating in the SLM 13 in N ways with a predetermined shift cycle via the liquid crystal drive circuit 15A, so that the phase of the interference fringes is N with the shift cycle φ = 2π / N. And N modulated images are acquired by driving the laser unit 100 and the image sensor 35 under these N phases.
 ステップS9:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することにより、位相回折格子の周期構造の方向VをVに切り換えると共に、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(B)における実線両矢印の方向に切り換えると、ステップS8を実行する。 Step S9: The control device 39 switches the direction V of the periodic structure of the phase diffraction grating to V 2 by driving the SLM 13 via the liquid crystal drive circuit 15A, and at half wavelength via the wave plate drive circuit 17A. When the fast axis of the half-wave plate 17 is switched in the direction of the solid double arrow in FIG. 5B by driving the plate 17, step S8 is executed.
 なお、ステップS9においてSLM13に表示される位相回折格子とステップS7においてSLM13に表示される位相回折格子との間では、屈折率差Δn及び構造周期Pが共通である。 Note that the refractive index difference Δn and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S9 and the phase diffraction grating displayed on the SLM 13 in step S7.
 ステップS10:制御装置39は、液晶駆動回路15Aを介してSLM13を駆動することにより、位相回折格子の周期構造の方向VをVに切り換えると共に、波長板駆動回路17Aを介して1/2波長板17を駆動することにより、1/2波長板17の進相軸を図5(C)における実線矢印の方向に切り換えると、ステップS8を実行する。 Step S10: the control device 39, by driving the SLM13 through the liquid crystal drive circuit 15A, it switches the direction V of the periodic structure of the phase grating to V 3, 1/2 wavelength through a wavelength plate drive circuit 17A If the fast axis of the half-wave plate 17 is switched in the direction of the solid arrow in FIG. 5C by driving the plate 17, step S8 is executed.
 なお、ステップS10においてSLM13に表示される位相回折格子とステップS7においてSLM13に表示される位相回折格子との間では、屈折率差Δn及び構造周期Pが共通である(以上、ステップS10)。 The refractive index difference Δn and the structural period P are common between the phase diffraction grating displayed on the SLM 13 in step S10 and the phase diffraction grating displayed on the SLM 13 in step S7 (step S10).
 以上、本実施形態の制御装置39は、SLM13へ表示する位相回折格子の屈折率差Δnを、光源波長λが長いときほど大きく設定する。具体的に、本実施形態の制御装置39は、光源波長λが長い波長λであるときには屈折率差Δnを大きな値Δn01に設定し、光源波長λが短い波長λであるときには屈折率差Δnを小さな値Δn02に設定する(式(2)を参照。)。 As described above, the control device 39 of the present embodiment sets the refractive index difference Δn of the phase diffraction grating displayed on the SLM 13 to be larger as the light source wavelength λ is longer. Specifically, the control device 39 of the present embodiment sets the refractive index difference Δn to a large value Δn 01 when the light source wavelength λ is the long wavelength λ 1 and sets the refractive index when the light source wavelength λ is the short wavelength λ 2. setting the difference [Delta] n to a small value [Delta] n 02 (see equation (2).).
 したがって、本実施形態の制御装置39は、光源波長λの切り換えに拘わらず復調画像(超解像画像)のコントラストを維持することができる。 Therefore, the control device 39 of the present embodiment can maintain the contrast of the demodulated image (super-resolution image) regardless of the switching of the light source wavelength λ.
 なお、本実施形態の画像記憶・演算装置40は、上記のステップS3~S5で取得された変調画像(波長λで取得された変調画像)に対して3D-SIMモードの復調演算を施すことにより第1蛍光領域の超解像画像を生成し、上記のステップS8~S10で取得された変調画像(波長λで取得された変調画像)に対して3D-SIMモードの復調演算を施すことにより第2蛍光領域の超解像画像を生成する。 Note that the image storage and computing unit 40 of this embodiment, by performing the demodulation operation of the 3D-SIM mode the modulated image acquired in step S3 ~ S5 (modulated image obtained at the wavelength lambda 1) the generated super-resolution image of the first fluorescent region, applying demodulation operation 3D-SIM mode with respect to the steps S8 ~ S10 obtained at the modulation image (modulated image obtained at the wavelength lambda 2) Thus, a super-resolution image of the second fluorescent region is generated.
 上述したとおり本実施形態の制御装置39は、光源波長λの切り換え前後で復調画像(超解像画像)のコントラストを高く維持するので、波長λで取得された変調画像と、波長λで取得された変調画像との双方の画質が高くなる。 As described above, the control device 39 of the present embodiment maintains the contrast of the demodulated image (super-resolution image) high before and after the switching of the light source wavelength λ, so that the modulated image acquired at the wavelength λ 1 and the wavelength λ 2 are used. The image quality of both the acquired modulated image is improved.
 したがって、本実施形態の画像記憶演算装置40は、第1蛍光領域の超解像画像と第2蛍光領域の超解像画像との双方を、高精度に取得することができる。 Therefore, the image storage arithmetic device 40 according to the present embodiment can acquire both the super-resolution image of the first fluorescent region and the super-resolution image of the second fluorescent region with high accuracy.
 その結果、本実施形態のユーザは、標本5上の互いに異なる蛍光領域(第1蛍光領域、第2蛍光領域)を正確に比較・評価することができる。 As a result, the user of this embodiment can accurately compare and evaluate different fluorescent regions (first fluorescent region and second fluorescent region) on the specimen 5.
 [実施形態の補足]
 なお、上述した実施形態の制御装置39は、位相回折格子の屈折率差Δnの調整を光源波長λに応じて行ったが、標本5の種類に応じて行ってもよいし、標本5の種類と光源波長λとの双方に応じて行ってもよい。
[Supplement of embodiment]
In the above-described embodiment, the control device 39 adjusts the refractive index difference Δn of the phase diffraction grating according to the light source wavelength λ. However, it may be performed according to the type of the sample 5 or the type of the sample 5. And the light source wavelength λ.
 なぜなら、復調画像(超解像画像)のコントラストを最適にするために必要な回折光束群の強度比は、標本5の種類(主に標本5の厚さ)によって、上述した強度比(0.7:1:1)から多少外れることもある。 This is because the intensity ratio of the diffracted light beam group necessary for optimizing the contrast of the demodulated image (super-resolution image) depends on the type of specimen 5 (mainly the thickness of specimen 5). 7: 1: 1).
 そこで、本実施形態の構造化照明顕微鏡装置1には、次のような自動調整モードが搭載されてもよい。自動調整モードにおける制御装置39は、屈折率差Δnを調整しながら、変調画像の取得・復調画像(超解像画像)の生成からなる一連の処理を繰り返すと共に、復調画像(超解像画像)のコントラストを監視し、コントラストが最適となった時点で、屈折率差Δnの調整を終了する。 Therefore, the structured illumination microscope apparatus 1 of the present embodiment may be equipped with the following automatic adjustment mode. The control device 39 in the automatic adjustment mode repeats a series of processes including acquisition of a modulated image and generation of a demodulated image (super-resolution image) while adjusting the refractive index difference Δn, and also includes a demodulated image (super-resolution image). When the contrast becomes optimal, the adjustment of the refractive index difference Δn is finished.
 なお、この自動調整モードは、少なくとも標本5が交換されたタイミングで発現することが望ましい。或いは、装置の環境変化に対処するため、この自動調整モードを連続的又は定期的に発現させてもよい。 Note that it is desirable that this automatic adjustment mode appears at least when the sample 5 is replaced. Alternatively, this automatic adjustment mode may be developed continuously or periodically in order to cope with changes in the environment of the apparatus.
 また、本実施形態の構造化照明顕微鏡装置1には、次のような手動調整モードが搭載されてもよい。手動調整モードにおける制御装置39及び画像表示装置45は、ユーザからの調整指示に応じて屈折率差Δnを調整しながら、変調画像の取得・復調画像(超解像画像)の生成・復調画像(超解像画像)の表示からなる一連の処理を繰り返す。ユーザは、表示された調復画像(超解像画像)を目視しながら調整指示を入力し、その復調画像(超解像画像)のコントラストが最適となった時点で調整指示の入力を終了する。 Further, the following manual adjustment mode may be mounted on the structured illumination microscope apparatus 1 of the present embodiment. The control device 39 and the image display device 45 in the manual adjustment mode adjust the refractive index difference Δn in accordance with an adjustment instruction from the user, and generate / demodulate a modulated image acquisition / demodulated image (super-resolution image). A series of processing consisting of display of a super-resolution image) is repeated. The user inputs an adjustment instruction while viewing the displayed reduced image (super-resolution image), and finishes inputting the adjustment instruction when the contrast of the demodulated image (super-resolution image) becomes optimal. .
 なお、構造化照明顕微鏡装置1に手動調整モードを搭載する場合は、ユーザからの調整指示を受け付ける不図示のユーザインタフェースが構造化照明顕微鏡装置1に備えられる必要がある。 When the structured illumination microscope apparatus 1 is equipped with the manual adjustment mode, the structured illumination microscope apparatus 1 needs to be provided with a user interface (not shown) that accepts an adjustment instruction from the user.
 また、上述した実施形態の制御装置39は、光源波長λの切り換え前後で位相回折格子の構造周期Pを不変としたが、光源波長λの切り換え前後で位相回折格子の構造周期Pを調整してもよい。例えば、光源波長λの切り換え前後で構造化照明顕微鏡装置1の超解像効果が不変となるように構造周期Pを調整してもよい。具体的には、光源波長λの切り換え前後で集光点14b、14cから光軸AZまでの距離が不変となるように構造周期Pを調整してもよい。 Further, the control device 39 of the above-described embodiment makes the structural period P of the phase diffraction grating unchanged before and after the switching of the light source wavelength λ, but adjusts the structural period P of the phase diffraction grating before and after the switching of the light source wavelength λ. Also good. For example, the structural period P may be adjusted so that the super-resolution effect of the structured illumination microscope apparatus 1 remains unchanged before and after the switching of the light source wavelength λ. Specifically, the structural period P may be adjusted so that the distance from the condensing points 14b and 14c to the optical axis AZ is unchanged before and after the switching of the light source wavelength λ.
 また、図1に示す構造化照明顕微鏡装置1では、反射型空間光変調器(SLM13)の姿勢を、保護層13bの表面(入射面)の法線が入射光束の主光線に対して例えば45°の角度を成すように設定したが、図9において符号Aで示すように、法線と主光線とが0°の角度を成すように設定してもよい。その場合は、例えば、レンズ16とSLM13との間にビームスプリッタ101を45°の角度で配置すればよい。このビームスプリッタ101は、レーザユニット100側からの光束を反射してSLM13へ正面から入射させると共に、SLM13で反射した光束(回折光束)を透過してレンズ16へ正面から入射させる。 Further, in the structured illumination microscope apparatus 1 shown in FIG. 1, the attitude of the reflective spatial light modulator (SLM 13) is set such that the normal of the surface (incident surface) of the protective layer 13b is 45 with respect to the principal ray of the incident light beam. Although the angle is set so as to form an angle of 0 °, the normal line and the chief ray may be set so as to form an angle of 0 °, as indicated by reference numeral A in FIG. In that case, for example, the beam splitter 101 may be disposed at an angle of 45 ° between the lens 16 and the SLM 13. This beam splitter 101 reflects the light beam from the laser unit 100 side and makes it incident on the SLM 13 from the front, and transmits the light beam (diffracted light beam) reflected by the SLM 13 and makes it incident on the lens 16 from the front.
 また、上述した実施形態では、構造化照明顕微鏡装置1を3D-SIMモードで使用したが(すなわち0次光回折光束をオンして標本5へ投影する干渉縞を3光束干渉縞としたが)、構造化照明顕微鏡装置1を2D-SIMモードで使用してもよい(すなわち0次光回折光束をオフして標本5へ投影する干渉縞を2光束干渉縞としてもよい)。 In the above-described embodiment, the structured illumination microscope apparatus 1 is used in the 3D-SIM mode (that is, the interference fringes projected on the specimen 5 with the 0th-order diffracted light beam turned on are set as the three-beam interference fringes). The structured illumination microscope apparatus 1 may be used in the 2D-SIM mode (that is, the interference fringes projected on the specimen 5 by turning off the 0th-order light diffraction light beam may be used as the two-beam interference fringes).
 また、構造化照明顕微鏡装置1を2D-SIMモードの1種であるTIRFM(全反射蛍光顕微鏡)として使用してもよい。構造化照明顕微鏡装置1をTIRFMとして使用する場合、対物レンズ6は、液浸型(油浸型)の対物レンズとして構成される。つまり、対物レンズ6と標本5のガラスとの間隙は、不図示の浸液(油)で満たされる。 Further, the structured illumination microscope apparatus 1 may be used as a TIRFM (total reflection fluorescence microscope) which is a kind of 2D-SIM mode. When the structured illumination microscope apparatus 1 is used as TIRFM, the objective lens 6 is configured as an immersion type (oil immersion type) objective lens. That is, the gap between the objective lens 6 and the glass of the specimen 5 is filled with an immersion liquid (oil) (not shown).
 また、構造化照明顕微鏡装置1をTIRFMとして使用する場合、標本5の表面に入射する±1次回折光束の入射角度は、エバネッセント場の生成条件である全反射条件(TIRF条件)を満たす必要がある。このTIRF条件を満たすために、瞳面6Aにおける±1次回折光束の集光点は、瞳面6Aの最外周における所定の輪帯状領域(TIRF領域)に位置していればよい。この場合、標本5の表面近傍には、干渉縞によるエバネッセント場が生起する。 Further, when the structured illumination microscope apparatus 1 is used as a TIRFM, the incident angle of the ± first-order diffracted light beam incident on the surface of the sample 5 needs to satisfy the total reflection condition (TIRF condition) that is the condition for generating the evanescent field. is there. In order to satisfy this TIRF condition, the condensing point of the ± 1st-order diffracted light beam on the pupil plane 6A only needs to be located in a predetermined annular zone (TIRF area) on the outermost periphery of the pupil plane 6A. In this case, an evanescent field due to interference fringes is generated near the surface of the specimen 5.
 因みに、2D-SIMモードでは0次回折光束を使用しないので、光源波長λを切り換えたとしても干渉縞に寄与する回折光束群の強度比は基本的に変化しないが、2D-SIMモードと3D-SIMモードとの間でモード切り換えが行われたときには、復調画像(超解像画像)のコントラストを最適にするために必要な強度比が変化するので、屈折率差Δnの調整を行うことが望ましい。 Incidentally, since the 0th-order diffracted light beam is not used in the 2D-SIM mode, the intensity ratio of the diffracted light beam group contributing to the interference fringes does not basically change even when the light source wavelength λ is switched, but the 2D-SIM mode and the 3D- When the mode is switched between the SIM mode and the intensity ratio necessary for optimizing the contrast of the demodulated image (super-resolution image) changes, it is desirable to adjust the refractive index difference Δn. .
 例えば、3D-SIMモードにおける制御装置39は、0次回折光束、+1次回折光束、-1次回折光束の強度比が例えば0.7:1:1となるように屈折率差Δnを設定し、2D-SIMモードにおける制御装置39は、0次回折光束、+1次回折光束、-1次回折光束の強度比が例えば0:1:1となるように屈折率差Δnを設定してもよい。 For example, the control device 39 in the 3D-SIM mode sets the refractive index difference Δn so that the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the −1st-order diffracted light beam is, for example, 0.7: 1: 1. The control device 39 in the 2D-SIM mode may set the refractive index difference Δn so that the intensity ratio of the 0th-order diffracted light beam, the + 1st-order diffracted light beam, and the −1st-order diffracted light beam is, for example, 0: 1: 1. .
 また、3D-SIMモードで生成される変調画像には、互いに分離すべき5成分が重畳されているのに対して、2D-SIMモードで生成される変調画像には、互いに分離すべき3成分が重畳されているので、3D-SIMモードでは、干渉縞の位相シフトにおいて必要な位相数Nは、例えば「5」となるのに対して、2D-SIMモードでは、干渉縞の位相シフトにおいて必要な位相数Nは、例えば「3」となる。また、2D-SIMモードと3D-SIMモードとの間では、変調画像の枚数が異なるので、画像記憶・演算装置40が実行すべき復調演算の内容が異なる。 The modulated image generated in the 3D-SIM mode has five components to be separated from each other, whereas the modulated image generated in the 2D-SIM mode has three components to be separated from each other. In the 3D-SIM mode, the number of phases N necessary for the phase shift of the interference fringes is, for example, “5”, whereas in the 2D-SIM mode, it is necessary for the phase shift of the interference fringes. The phase number N is, for example, “3”. In addition, since the number of modulated images is different between the 2D-SIM mode and the 3D-SIM mode, the contents of the demodulation operation to be executed by the image storage / arithmetic apparatus 40 are different.
 また、上述した実施形態では、光源波長の数を2としたが、1としてもよく、また、2以上に拡張してもよい。 In the above-described embodiment, the number of light source wavelengths is 2, but it may be 1 or may be extended to 2 or more.
 また、上述した実施形態では、標本5に入射する回折光束群をS偏光に保つために、進相軸の方向を切り換え可能な1/2波長板17を使用したが、1/2波長板の代わりに、2枚の1/4波長板を使用すると共に、一方の1/4波長板の進相軸の方向を切り換え可能としてもよい。 In the embodiment described above, the ½ wavelength plate 17 capable of switching the direction of the fast axis is used in order to keep the diffracted light beam incident on the sample 5 as S-polarized light. Instead, two quarter-wave plates may be used and the direction of the fast axis of one quarter-wave plate may be switched.
 また、上述した実施形態では、超解像画像(復調画像)を取得するために、一連の変調画像を用いて公知の演算を行ったが、これに限定されることはなく、例えば、米国特許8081378に記載された光学的復調によって復調画像(超解像画像)を取得してもよい。 In the above-described embodiment, a known calculation is performed using a series of modulated images in order to obtain a super-resolution image (demodulated image). However, the present invention is not limited to this. A demodulated image (super-resolution image) may be acquired by optical demodulation described in 80881378.
 その場合、ダイクロイックミラー7をミラーに置き換え、SLM13とコレクタレンズ12との間の光路に対して、励起光(波長λ、λ)に応じて発生した蛍光(波長λ’、λ’)をその励起光から分離するダイクロイックミラーを配置し、分離された蛍光を受光する撮像素子を配置すればよい。 In that case, the dichroic mirror 7 is replaced with a mirror, and the fluorescence (wavelengths λ 1 ′, λ 2 ′) generated according to the excitation light (wavelengths λ 1 , λ 2 ) in the optical path between the SLM 13 and the collector lens 12. ) Is separated from the excitation light, and an image sensor that receives the separated fluorescence may be disposed.
 また、上述した実施形態の照明光学系10は、対物レンズ6による落射照明光学系で構成されたが、これに限定されることはなく、例えば、コンデサレンズによる透過照明光学系又はコンデンサレンズによる反射照明光学系で構成されてもよい。その場合、集光点が形成されるのは、コンデサレンズの瞳面である。 Moreover, although the illumination optical system 10 of the above-described embodiment is configured by the epi-illumination optical system by the objective lens 6, it is not limited to this. For example, the transmission illumination optical system by the condenser lens or the reflection by the condenser lens is used. You may comprise an illumination optical system. In this case, the condensing point is formed on the pupil plane of the condenser lens.
 また、上述した実施形態では、2D-SIMモードの2光束干渉縞又は3D-SIMモードの3光束干渉縞を形成するための回折光として、±1次回折光及び0次回折光の組み合わせを用いたが、他の組み合わせを用いてもよい。3光束干渉縞を形成するためには、回折次数の間隔が等間隔な3つの回折光による3光束干渉を生起させればよいので、例えば、0次回折光、1次回折光、2次回折光の組み合わせ、±2次回折光及び0次回折光の組み合わせ、±3次回折光及び0次回折光の組み合わせ、などを用いることが可能である。 In the above-described embodiment, a combination of ± first-order diffracted light and zero-order diffracted light is used as the diffracted light for forming the 2D-SIM mode two-beam interference fringe or the 3D-SIM mode three-beam interference fringe. Other combinations may be used. In order to form a three-beam interference fringe, three-beam interference is generated by three diffracted lights having equal intervals of diffraction orders. For example, a combination of zero-order diffracted light, first-order diffracted light, and second-order diffracted light , Combinations of ± 2nd order diffracted light and 0th order diffracted light, combinations of ± 3rd order diffracted light and 0th order diffracted light, and the like can be used.
 何れにせよ、制御装置39は、干渉縞に寄与する回折光束群の強度比を、その復調画像(超解像画像)のコントラストが最適となるような強度比に調整(制御)することが望ましい。 In any case, it is desirable that the control device 39 adjusts (controls) the intensity ratio of the diffracted light beam group contributing to the interference fringes so that the contrast of the demodulated image (super-resolution image) is optimized. .
 [実施形態の作用効果]
 以上、本実施形態の構造化照明装置(照明光学系10)は、光源からの射出光束を複数の光束に分岐する分岐部と、前記複数の光束による干渉縞を標本(5)に形成する光学系(レンズ16、25、27、6)と、前記分岐部を制御する制御部(液晶駆動回路15A、制御装置39)とを備え、前記分岐部は、単位素子群からなる部材を含む空間光変調器(SLM13)を有し、前記制御部(液晶駆動回路15A、制御装置39)は、第1の位相遅延量を前記射出光束に対して付与する第1の領域と第2の位相遅延量を前記射出光束に対して付与する第2の領域との繰り返しからなる周期領域を前記空間光変調器内に設定するとともに、前記干渉縞に寄与する複数の光束の強度比が所定値になるように、前記第1の位相遅延量と前記第2の位相遅延量との間に差を付与する駆動信号を、前記単位素子群のうちの所定の単位素子へ出力する。
[Effects of Embodiment]
As described above, the structured illumination device (illumination optical system 10) according to the present embodiment is an optical device that forms in the sample (5) the branch portion that branches the light beam emitted from the light source into a plurality of light beams and the interference fringes due to the plurality of light beams. A spatial light including a system ( lenses 16, 25, 27, 6) and a control unit (liquid crystal drive circuit 15A, control device 39) for controlling the branching unit, the branching unit including a member made up of a unit element group. The controller (SLM 13) includes a modulator (SLM 13), and the control unit (the liquid crystal driving circuit 15A and the control device 39) includes a first region for applying a first phase delay amount to the emitted light beam and a second phase delay amount. Is set in the spatial light modulator so that the intensity ratio of the plurality of light beams contributing to the interference fringes becomes a predetermined value. The first phase delay amount and the second position. A drive signal to impart a difference between the delay amount, and outputs the predetermined unit element of the unit element group.
 なお、前記第1の位相遅延量、及び前記第2の位相遅延量は、それぞれ一定値であり、前記第1の位相遅延量と前記第2の位相遅延量とは互いに値が異なる(例えば矩形波モード)。 The first phase delay amount and the second phase delay amount are constant values, and the first phase delay amount and the second phase delay amount are different from each other (for example, rectangular). Wave mode).
 或いは、前記第1の位相遅延量は、所定の形状に分布する値であって、最大値を含み、前記第2の位相遅延量は、所定の形状に分布する値であって、最小値を含む(例えば正弦波モード)。 Alternatively, the first phase delay amount is a value distributed in a predetermined shape and includes a maximum value, and the second phase delay amount is a value distributed in a predetermined shape and has a minimum value. Including (for example, sine wave mode).
 また、前記制御部(液晶駆動回路15A、制御装置39)は、前記第1の領域と前記第2の領域との間に位相遅延量の差を付与するために、前記第1の領域と前記第2の領域との間に屈折率の差を付与する駆動信号を前記所定の単位素子へ出力する。 In addition, the control unit (the liquid crystal drive circuit 15A, the control device 39) may add the difference between the first region and the second region in order to give a phase delay amount difference between the first region and the second region. A drive signal that gives a difference in refractive index between the second region and the second region is output to the predetermined unit element.
 また、前記制御部(液晶駆動回路15A、制御装置39)は、前記所定の単位素子へ出力する前記駆動信号を、前記射出光束の波長に応じて切り換える。 Further, the control unit (the liquid crystal drive circuit 15A, the control device 39) switches the drive signal output to the predetermined unit element according to the wavelength of the emitted light beam.
 また、前記制御部(液晶駆動回路15A、制御装置39)は、前記第1の領域と前記第2の領域との間の位相遅延量の差を、前記射出光束の波長(λ)が長いときほど大きくする。 Further, the control unit (the liquid crystal driving circuit 15A, the control device 39) determines the difference in the phase delay amount between the first region and the second region when the wavelength (λ) of the emitted light beam is long. Make it bigger.
 また、前記制御部(液晶駆動回路15A、制御装置39)は、必要な前記強度比と前記波長とに応じて前記所定の単位素子へ出力すべき適正な前記駆動信号を確定するために必要な情報の少なくとも一部を、テーブルとして予め記憶している。 Further, the control unit (the liquid crystal drive circuit 15A, the control device 39) is necessary for determining an appropriate drive signal to be output to the predetermined unit element according to the required intensity ratio and the wavelength. At least a part of the information is stored in advance as a table.
 また、本実施形態の構造化照明装置(照明光学系10)は、前記空間光変調器(SLM13)における前記周期領域の形成先をシフトさせることにより前記干渉縞の位相をシフトさせる位相シフト部(液晶駆動回路15A、制御装置39)を更に備える。 Further, the structured illumination device (illumination optical system 10) of the present embodiment has a phase shift unit (shifting the phase of the interference fringes by shifting the formation destination of the periodic region in the spatial light modulator (SLM 13) ( A liquid crystal driving circuit 15A and a control device 39) are further provided.
 また、本実施形態の構造化照明装置(照明光学系10)は、前記空間光変調器における前記周期領域の形成方向を切り換えることにより前記干渉縞の方向を切り換える方向切換部(液晶駆動回路15A、制御装置39)を更に備える。 In addition, the structured illumination device (illumination optical system 10) of the present embodiment includes a direction switching unit (liquid crystal driving circuit 15A, 15A A control device 39) is further provided.
 また、前記空間光変調器(SLM13)は、前記射出光束の偏光方向分布及び振幅分布を維持しつつ前記射出光束の位相分布を変化させる空間光変調器である。 The spatial light modulator (SLM 13) is a spatial light modulator that changes the phase distribution of the emitted light beam while maintaining the polarization direction distribution and amplitude distribution of the emitted light beam.
 また、本実施形態の構造化照明顕微鏡装置(1)は、本実施形態の構造化照明装置(照明光学系10)と、前記干渉縞で空間変調された前記標本(5)の画像である変調画像を取得する撮像部(撮像素子35、制御装置39)とを備える。 Further, the structured illumination microscope apparatus (1) of the present embodiment is a modulation that is an image of the structured illumination apparatus (illumination optical system 10) of the present embodiment and the specimen (5) spatially modulated by the interference fringes. An imaging unit (image sensor 35, control device 39) for acquiring an image.
 また、本実施形態の構造化照明顕微鏡装置(1)は、前記変調画像に基づき前記標本(5)の復調画像を生成する演算部(画像記憶・演算装置40)を更に備える。 The structured illumination microscope apparatus (1) of the present embodiment further includes a calculation unit (image storage / calculation apparatus 40) that generates a demodulated image of the specimen (5) based on the modulated image.
 また、前記制御部(液晶駆動回路15A、制御装置39)は、前記復調画像のコントラストが最適になるように前記設定を行う。 Further, the control unit (the liquid crystal drive circuit 15A, the control device 39) performs the setting so that the contrast of the demodulated image is optimized.
 したがって、本実施形態の構造化照明顕微鏡装置(1)の性能は、構造化照明顕微鏡装置(1)の使用状況、例えば、前記射出光束の波長、前記標本の厚さなどに依らず、維持される。 Therefore, the performance of the structured illumination microscope apparatus (1) of the present embodiment is maintained regardless of the use state of the structured illumination microscope apparatus (1), for example, the wavelength of the emitted light beam, the thickness of the sample, and the like. The
 [その他]
 なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
[Others]
Note that the requirements of the above-described embodiments can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all publications and US patents relating to the devices cited in the above embodiments and modifications are incorporated herein by reference.
 1…構造化照明顕微鏡装置、100…レーザユニット、11…光ファイバ、10…照明光学系、30…結像光学系、35…撮像素子、39…制御装置、40…画像記憶・演算装置、45…画像表示装置、12…コレクタレンズ、23…偏光板、15…光束分岐部、16…集光レンズ、24…光束選択部、25…レンズ、26…視野絞り、27…フィールドレンズ、28…励起フィルタ、7…ダイクロイックミラー、6…対物レンズ、5…標本、17…1/2波長板、18…高次光カット部材、17A…波長板駆動回路、200…0次光シャッタ、200A…回動機構、15A…液晶駆動回路、13…SLM DESCRIPTION OF SYMBOLS 1 ... Structured illumination microscope apparatus, 100 ... Laser unit, 11 ... Optical fiber, 10 ... Illumination optical system, 30 ... Imaging optical system, 35 ... Imaging element, 39 ... Control apparatus, 40 ... Image storage and calculation apparatus, 45 DESCRIPTION OF SYMBOLS ... Image display apparatus, 12 ... Collector lens, 23 ... Polarizing plate, 15 ... Light beam branching part, 16 ... Condensing lens, 24 ... Light beam selection part, 25 ... Lens, 26 ... Field stop, 27 ... Field lens, 28 ... Excitation Filter, 7 ... Dichroic mirror, 6 ... Objective lens, 5 ... Sample, 17 ... Half-wave plate, 18 ... High-order light cut member, 17A ... Wave plate drive circuit, 200 ... Zero-order light shutter, 200A ... Turning mechanism, 15A ... Liquid crystal drive circuit, 13 ... SLM

Claims (15)

  1.  光源からの光を複数の光束に分岐する空間光変調器と、
     前記複数の光束の全部又は一部により干渉縞を形成し、前記干渉縞で標本を照明する光学系と、
     前記空間光変調器を制御する制御部とを備え、
     前記制御部は、
     前記空間光変調器に対して駆動信号を出力することにより、前記干渉縞に寄与する複数の光束の強度比が予め決められた値になるように、前記空間光変調器の第1の領域に対して第1の位相遅延量を設定し、第2の領域に対して第2の位相遅延量を設定することを特徴とする構造化照明装置。
    A spatial light modulator that branches light from a light source into a plurality of light fluxes;
    An optical system that forms an interference fringe with all or a part of the plurality of light beams, and illuminates the specimen with the interference fringe;
    A controller for controlling the spatial light modulator,
    The controller is
    By outputting a drive signal to the spatial light modulator, the first region of the spatial light modulator is set so that the intensity ratio of a plurality of light beams contributing to the interference fringes becomes a predetermined value. A structured lighting apparatus, wherein a first phase delay amount is set for the second region, and a second phase delay amount is set for the second region.
  2.  請求項1に記載の構造化照明装置において、
     前記空間光変調器は、
     複数の画素電極が設けられた第1基板と、前記第1基板に対向する第2基板と、前記第1基板と前記第2基板とにより挟持された液晶部材とを含み、
     前記制御部は、
     前記画素電極それぞれに駆動信号を出力することにより、前記干渉縞に寄与する複数の光束の強度比が予め決められた値になるように、前記空間光変調器の第1の領域に対して第1の位相遅延量を設定し、第2の領域に対して第2の位相遅延量を設定することを特徴とする構造化照明装置。
    The structured lighting device according to claim 1,
    The spatial light modulator is
    A first substrate provided with a plurality of pixel electrodes, a second substrate facing the first substrate, and a liquid crystal member sandwiched between the first substrate and the second substrate,
    The controller is
    By outputting a drive signal to each of the pixel electrodes, the first region of the spatial light modulator is changed so that the intensity ratio of a plurality of light beams contributing to the interference fringes becomes a predetermined value. 1. A structured lighting apparatus, wherein a phase delay amount of 1 is set and a second phase delay amount is set for a second region.
  3.  請求項1または請求項2に記載の構造化照明装置において、
     前記第1の位相遅延量、及び前記第2の位相遅延量は、それぞれ一定値であり、前記第1の位相遅延量と前記第2の位相遅延量とは互いに値が異なる
     ことを特徴とする構造化照明装置。
    The structured lighting device according to claim 1 or 2,
    The first phase delay amount and the second phase delay amount are constant values, and the first phase delay amount and the second phase delay amount are different from each other. Structured lighting device.
  4.  請求項1または請求項2に記載の構造化照明装置において、
     前記第1の位相遅延量は、前記第1の領域において最大値を有し、
     前記第2の位相遅延量は、前記第2の領域において最小値を有する
     ことを特徴とする構造化照明装置。
    The structured lighting device according to claim 1 or 2,
    The first phase delay amount has a maximum value in the first region,
    The structured lighting device, wherein the second phase delay amount has a minimum value in the second region.
  5.  請求項1~請求項4の何れか一項に記載の構造化照明装置において、
     前記制御部は、
     前記第1の領域と前記第2の領域との間に位相遅延量の差を付与するために、前記第1の領域と前記第2の領域との間に屈折率の差を付与する駆動信号を前記空間光変調器へ出力する
     ことを特徴とする構造化照明装置。
    The structured lighting device according to any one of claims 1 to 4,
    The controller is
    A drive signal for providing a difference in refractive index between the first region and the second region in order to provide a difference in phase delay amount between the first region and the second region. Is output to the spatial light modulator.
  6.  請求項1~請求項5の何れか一項に記載の構造化照明装置において、
     前記制御部は、
     前記空間光変調器へ出力する前記駆動信号を、前記射出光束の波長に応じて切り換える
     ことを特徴とする構造化照明装置。
    The structured lighting device according to any one of claims 1 to 5,
    The controller is
    The structured illumination device, wherein the drive signal output to the spatial light modulator is switched according to the wavelength of the emitted light beam.
  7.  請求項6に記載の構造化照明装置において、
     前記制御部は、
     前記第1の領域と前記第2の領域との間の位相遅延量の差を、前記射出光束の波長が長いときほど大きくする
     ことを特徴とする構造化照明装置。
    The structured lighting device according to claim 6.
    The controller is
    The structured illumination device characterized in that the difference in the phase delay amount between the first region and the second region is increased as the wavelength of the emitted light beam is longer.
  8.  請求項7に記載の構造化照明装置において、
     前記制御部は、
     必要な前記強度比と前記波長とに応じて前記空間光変調器へ出力すべき適正な前記駆動信号を確定するために必要な情報の少なくとも一部を、テーブルとして予め記憶していることを特徴とする構造化照明装置。
    The structured lighting device according to claim 7.
    The controller is
    At least a part of information necessary for determining an appropriate drive signal to be output to the spatial light modulator according to the required intensity ratio and the wavelength is stored in advance as a table. A structured lighting device.
  9.  請求項1~請求項8の何れか一項に記載の構造化照明装置において、
     前記空間光変調器における前記第1の領域および前記第2の領域の分布を変化させることにより前記干渉縞の位相をシフトさせる位相シフト部を更に備えた
     ことを特徴とする構造化照明装置。
    The structured lighting device according to any one of claims 1 to 8,
    The structured illuminating device, further comprising: a phase shift unit that shifts a phase of the interference fringes by changing a distribution of the first region and the second region in the spatial light modulator.
  10.  請求項1~請求項9の何れか一項に記載の構造化照明装置において、
     前記空間光変調器における前記第1の領域および前記第2の領域の分布を変化させることにより前記干渉縞の方向を切り換える方向切換部を更に備えた
     ことを特徴とする構造化照明装置。
    The structured lighting device according to any one of claims 1 to 9,
    The structured illumination device further comprising: a direction switching unit that switches a direction of the interference fringes by changing a distribution of the first region and the second region in the spatial light modulator.
  11.  請求項1~請求項10の何れか一項に記載の構造化照明装置において、
     前記空間光変調器は、
     前記射出光束の偏光方向分布及び振幅分布を維持しつつ前記射出光束の位相分布を変化させる空間光変調器である
     ことを特徴とする構造化照明装置。
    The structured lighting device according to any one of claims 1 to 10,
    The spatial light modulator is
    The structured illumination device, characterized in that the spatial light modulator changes the phase distribution of the emitted light beam while maintaining the polarization direction distribution and amplitude distribution of the emitted light beam.
  12.  請求項1~請求項11の何れか一項に記載の構造化照明装置において、
     前記干渉縞に寄与する複数の光束は、0次回折光束および±1次回折光束であり、
     前記制御部は、0次回折光束の強度を、±1次回折光束の強度より低くすることを特徴とする構造化照明装置
    The structured lighting device according to any one of claims 1 to 11,
    The plurality of light beams that contribute to the interference fringes are a zero-order diffracted light beam and a ± first-order diffracted light beam,
    The control unit makes the intensity of the 0th-order diffracted light beam lower than the intensity of the ± 1st-order diffracted light beam.
  13.  請求項1~請求項12の何れか一項に記載の構造化照明装置と、
     前記干渉縞で空間変調された前記標本の画像である変調画像を取得する撮像部と、
     を備えたことを特徴とする構造化照明顕微鏡装置。
    A structured lighting device according to any one of claims 1 to 12,
    An imaging unit that obtains a modulated image that is an image of the sample spatially modulated by the interference fringes;
    A structured illumination microscope apparatus comprising:
  14.  請求項13に記載の構造化照明顕微鏡装置において、
     前記変調画像に基づき前記標本の復調画像を生成する演算部を更に備える
     ことを特徴とする構造化照明顕微鏡装置。
    The structured illumination microscope apparatus according to claim 13,
    A structured illumination microscope apparatus, further comprising an arithmetic unit that generates a demodulated image of the sample based on the modulated image.
  15.  請求項14に記載の構造化照明顕微鏡装置において、
     前記制御部は、
     前記復調画像のコントラストが最高になるように前記設定を行う
     ことを特徴とする構造化照明顕微鏡装置。
     
    The structured illumination microscope apparatus according to claim 14,
    The controller is
    The structured illumination microscope apparatus, wherein the setting is performed so that the contrast of the demodulated image is maximized.
PCT/JP2014/005106 2013-10-07 2014-10-07 Structured illumination device and structured illumination microscope device WO2015052920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541438A JPWO2015052920A1 (en) 2013-10-07 2014-10-07 Structured illumination device and structured illumination microscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-210056 2013-10-07
JP2013210056 2013-10-07

Publications (1)

Publication Number Publication Date
WO2015052920A1 true WO2015052920A1 (en) 2015-04-16

Family

ID=52812752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005106 WO2015052920A1 (en) 2013-10-07 2014-10-07 Structured illumination device and structured illumination microscope device

Country Status (2)

Country Link
JP (1) JPWO2015052920A1 (en)
WO (1) WO2015052920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199179A1 (en) * 2015-06-08 2016-12-15 株式会社ニコン Structured illumination microscope system, method, and program
WO2019176121A1 (en) * 2018-03-16 2019-09-19 株式会社ニコン Structured illumination device and structured illumination microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262798A (en) * 2002-03-12 2003-09-19 Olympus Optical Co Ltd Microscope
WO2007043314A1 (en) * 2005-10-13 2007-04-19 Nikon Corporation Microscope
WO2012153495A1 (en) * 2011-05-06 2012-11-15 株式会社ニコン Structured illumination microscope and structured illumination viewing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035808A (en) * 2001-07-23 2003-02-07 Minolta Co Ltd Diffraction grating, polarization separating element and liquid crystal projector
JP2006313273A (en) * 2005-05-09 2006-11-16 Osaka Univ Microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262798A (en) * 2002-03-12 2003-09-19 Olympus Optical Co Ltd Microscope
WO2007043314A1 (en) * 2005-10-13 2007-04-19 Nikon Corporation Microscope
WO2012153495A1 (en) * 2011-05-06 2012-11-15 株式会社ニコン Structured illumination microscope and structured illumination viewing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199179A1 (en) * 2015-06-08 2016-12-15 株式会社ニコン Structured illumination microscope system, method, and program
JPWO2016199179A1 (en) * 2015-06-08 2018-02-22 株式会社ニコン Structured illumination microscope system, method and program
US10558030B2 (en) 2015-06-08 2020-02-11 Nikon Corporation Structures illumination microscopy system, method, and non-transitory storage medium storing program
WO2019176121A1 (en) * 2018-03-16 2019-09-19 株式会社ニコン Structured illumination device and structured illumination microscope

Also Published As

Publication number Publication date
JPWO2015052920A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US10739574B2 (en) Structured illumination optical system and structured illumination microscope device
JP6264377B2 (en) Structured illumination device and structured illumination microscope device
JP5452713B2 (en) Structured illumination optical system and structured illumination microscope apparatus
JP6194710B2 (en) Structured illumination device and structured illumination microscope device
US7848017B2 (en) Microscope device
JP5900515B2 (en) Structured illumination device, structured illumination microscope device, structured illumination method
JP6627871B2 (en) Structured illumination microscope system, method and program
WO2014017067A1 (en) Structured lighting device and structured lighting microscope
JP2014514592A (en) Variable orientation lighting pattern rotator
JP6137324B2 (en) Illumination device and structured illumination microscope device
JP6364750B2 (en) Structured illumination device and structured illumination microscope device
WO2015052920A1 (en) Structured illumination device and structured illumination microscope device
JP6413364B2 (en) Illumination optical system and microscope apparatus
JP6127451B2 (en) Structured illumination device and structured illumination microscope device
JP6191140B2 (en) Structured illumination device and structured illumination microscope device
JP6268826B2 (en) Structured illumination device and structured illumination microscope device
JP5939301B2 (en) Structured illumination observation device
JP6409260B2 (en) Structured illumination device and structured illumination microscope device
JP7084184B2 (en) Illumination equipment, structured illumination equipment and structured illumination microscope equipment
JP6286982B2 (en) Structured illumination microscope
WO2019176121A1 (en) Structured illumination device and structured illumination microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852105

Country of ref document: EP

Kind code of ref document: A1