TWI414818B - Wide-field super-resolution optical sectioning microscopy using a spatial light modulator - Google Patents

Wide-field super-resolution optical sectioning microscopy using a spatial light modulator Download PDF

Info

Publication number
TWI414818B
TWI414818B TW98110046A TW98110046A TWI414818B TW I414818 B TWI414818 B TW I414818B TW 98110046 A TW98110046 A TW 98110046A TW 98110046 A TW98110046 A TW 98110046A TW I414818 B TWI414818 B TW I414818B
Authority
TW
Taiwan
Prior art keywords
image
sample
images
spectrum
optical image
Prior art date
Application number
TW98110046A
Other languages
Chinese (zh)
Other versions
TW201024792A (en
Inventor
Chau Hwang Lee
Jiunn Yuan Lin
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/341,447 external-priority patent/US8019136B2/en
Application filed by Academia Sinica filed Critical Academia Sinica
Publication of TW201024792A publication Critical patent/TW201024792A/en
Application granted granted Critical
Publication of TWI414818B publication Critical patent/TWI414818B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

Systems and methods for optical sectioning microscopy with structured illumination are provided. A light source generates a light beam with a spatial pattern for successively illuminating a sample at each phase of a plurality of phases. A detector detects a first set of images of the sample at a first axial resolution and a first lateral resolution, each image being associated with a respective phase of the plurality of phases of the illumination. A processor processes the first set of images to generate an enhanced sectioned image of the sample. More specifically, the processor generates data representing a second set of images at a second axial resolution greater than the first axial resolution; and subsequently, performs spectral analysis on the data representing the second set of images to form data representing the enhanced sectioned image of the sample at a second lateral resolution greater than the first lateral resolution.

Description

使用空間光調變器的超解析率廣視野光切片顯微鏡Ultra-resolution wide-field light sectioning microscope using a spatial light modulator

本發明為一種顯微鏡系統與使用方法,特別是一種超解析率廣視野光切片的顯微系統與使用方法。The invention relates to a microscope system and a method of use, in particular to a microscopic system and a method for using super-resolution wide-field light sectioning.

在遠場光學顯微術的發展領域中,「空間解析率」的極限一直是亟欲突破的重要課題。而目前具有空間解析率之超解析率能力的遠場光學顯微技術,例如激發放射耗散(Stimulated Emission Depletion,STED)顯微術、光活化定位顯微術(Photoactivated Localization Microscopy,PALM)以及推定光學重建顯微術(Stochastic Optical Reconstruction Microscopy)等技術,皆都需以掃描式光學系統進行成像。In the field of far field optical microscopy, the limit of "spatial resolution" has always been an important issue for breakthroughs. Far-field optical microscopy techniques with ultra-resolution capability of spatial resolution, such as Stimulated Emission Depletion (STED) microscopy, Photoactivated Localization Microscopy (PALM), and presumptive Techniques such as Stochastic Optical Reconstruction Microscopy require imaging with a scanning optical system.

由於前述技術所形成的系統複雜度與系統成本都相當高,且若需要三度空間影像時,則取像時間會變得相當長。此外,亦可以遞迴演算法將光學影像的繞射效應降低而提高空間解析率,此類技術可在高對比度的影像上成功提高解析率;但由於進行計算時需要花費較長的時間;而若要提高一部動態影片的觀測解析率,則於進行計算時,需要花費更長的時間。Since the system complexity and system cost formed by the foregoing techniques are quite high, and if a three-dimensional image is required, the image capturing time becomes quite long. In addition, the recursive algorithm can reduce the diffraction effect of the optical image and improve the spatial resolution. Such a technique can successfully improve the resolution on high-contrast images; however, it takes a long time to perform calculations; To improve the observation resolution of a dynamic movie, it takes longer to perform calculations.

而結構式照明(Structured Illumination),或稱圖樣式激發(Pattern Excitation)則是另一類型的超解析率光學技術。通常以二維網狀圖樣調變光學顯微鏡的入射光,分別在垂直光軸的x方向和y方向移動該網狀圖樣到不同位置,擷取至少五張影像後,再以方程式求解的方法以解出橫向解析率超過繞射極限的顯微影像。其好處是可以直接以傳統廣視野光學系統取像,不需進行掃描機制;而且計算影像的時間也比遞迴演算法要短得多。此種技術可採用線性方式或是以非線性方式進行激發。此外,也有人提出了以液晶空間光調變器調變的結構式照明超解析率全反射螢光顯微術;但該二維結構式照明顯微技術尚未能提供光學切片(Optical Sectioning)的能力。Structured Illumination, or Pattern Excitation, is another type of super-resolution optical technology. Usually, the incident light of the optical microscope is modulated by a two-dimensional mesh pattern, and the mesh pattern is moved to different positions in the x direction and the y direction of the vertical optical axis, and at least five images are taken, and then solved by an equation. A microscopic image with a lateral resolution exceeding the diffraction limit is solved. The advantage is that it can be taken directly from the traditional wide-field optical system without the need for a scanning mechanism; and the time to calculate the image is much shorter than the recursive algorithm. This technique can be excited in a linear manner or in a nonlinear manner. In addition, structural illumination super-resolution full-reflection fluoroscopy microscopy with liquid crystal spatial light modulator has been proposed; however, the two-dimensional structured illumination microscopy technology has not yet provided optical sectioning (Optical Sectioning). Ability.

而結構式照明也可於廣視野光學系統中達到光學切片的效果。在該技術中,僅需使用一維的週期性柵狀圖樣進行調變。將柵狀圖樣分別在垂直光軸的方向,移動到柵狀週期的0,2p/3,4p/3等空間相位,並在此三個位置取得影像I 1 ,I 2 ,I 3 後,以一簡單代數運算重組該三個影像,就能得到廣視野光學切片影像。Structured illumination can also achieve optical slicing in wide-field optics. In this technique, only one-dimensional periodic grid pattern is used for modulation. Moving the grid pattern in the direction of the vertical optical axis to the spatial phase of 0, 2p/3, 4p/3, etc. of the grating period, and obtaining the images I 1 , I 2 , I 3 at the three positions, a simple algebraic operation By reorganizing the three images, a wide-field optical slice image can be obtained.

另外,以液晶空間光調變器進行一維調變的廣視野光學切片顯微術也已提出;採用差動量測的概念,可更進一步改進廣視野光學切片顯微術的縱向解析率,可達到奈米尺度;亦可利用遞迴演算法提高其橫向解析率。但是一維調變的廣視野光學切片顯微技術並不能達到直接提高橫向解析率的效果。In addition, wide-field optical sectioning microscopy with one-dimensional modulation of liquid crystal spatial light modulator has also been proposed; using the concept of differential measurement, the longitudinal resolution of wide-field optical section microscopy can be further improved. The nanometer scale can be achieved; the horizontal resolution can also be improved by using a recursive algorithm. However, the one-dimensional modulation of wide-field optical section microscopy technology can not achieve the effect of directly improving the lateral resolution.

本發明為一種光學影像處理的方法。該方法包括:在複數個相位的每個相位上,以一個空間圖樣連續照明一個樣本;在第一個縱向解析率和第一個橫向解析率上獲得代表樣本之第一套影像的數據,而每一張影像與照明之複數個相位的個別相位相關;以及,處理獲得的數據以產生強化的切片影像樣本。進一步處理獲得的數據,包括處理獲得的數據,以便在比第一個縱向解析率還大的第二個縱向解析率上,產生代表第二套影像的數據;以及,在代表第二套影像的數據上進行頻譜分析,以在比第一個橫向解析率還大的第二個橫向解析率上,形成強化的切片影像數據樣本。The present invention is a method of optical image processing. The method includes: continuously illuminating a sample in a spatial pattern on each phase of the plurality of phases; obtaining data of the first set of images representing the sample at the first longitudinal resolution and the first lateral resolution; Each image is associated with an individual phase of a plurality of phases of the illumination; and the obtained data is processed to produce an enhanced sliced image sample. Further processing the obtained data, including processing the obtained data to generate data representing the second set of images at a second longitudinal resolution greater than the first longitudinal resolution; and, representing the second set of images Spectral analysis is performed on the data to form enhanced slice image data samples at a second lateral resolution greater than the first lateral resolution.

本發明根據第一套影像的每張影像,其所照明的個別相位,以數學方式組合第一套影像以產生第二套影像。According to the invention, the first set of images is mathematically combined to generate a second set of images according to the individual phases of the first set of images.

對於第二套影像子集的每張影像,進行傅立葉分析,以便在空間頻譜內形成該影像之頻譜。且組合每個影像之頻譜,以形成強化的切片影像樣本之複合頻譜。使用複合頻譜表示反傅立葉轉換,以產生強化切片影像樣本。For each image of the second set of images, a Fourier analysis is performed to form the spectrum of the image in the spatial spectrum. The spectra of each image are combined to form a composite spectrum of enhanced sliced image samples. The inverse spectral Fourier transform is represented using a composite spectrum to produce an enhanced slice image sample.

在某些範例中,組合每個影像頻譜之個別部份,根據空間圖樣的物理特性,將第二套影像之子集的頻譜,轉移至以向量所決定之頻譜的原點。而空間圖樣的物理特性可包括圖樣的週期性。In some examples, combining the individual portions of each image spectrum, the spectrum of the subset of the second set of images is transferred to the origin of the spectrum determined by the vector, based on the physical characteristics of the spatial pattern. The physical characteristics of the spatial pattern may include the periodicity of the pattern.

在某些範例中,該空間圖樣在一維空間內顯示週期性。在其它範例中,該空間圖樣在二維空間或多維空間內顯示週期性。In some examples, the spatial pattern displays periodicity in a one-dimensional space. In other examples, the spatial pattern displays periodicity in a two-dimensional or multi-dimensional space.

在垂直光軸的平面內,根據空間圖樣的週期性,以線性方式將空間圖樣轉移至一系列位置的每個位置。或者,可進行照明樣本,而在垂直光軸的平面內,以一系列角度的每個角度旋轉該空間圖樣。In the plane of the vertical optical axis, the spatial pattern is transferred to each of a series of positions in a linear manner according to the periodicity of the spatial pattern. Alternatively, the illumination sample can be illuminated while the spatial pattern is rotated at each angle of a series of angles in the plane of the vertical optical axis.

在某些範例中,將光聚焦至樣本的第一個深度,以便在第一個深度產生樣本的切片影像。並且,可連續將光聚焦至樣本之一系列的深度,以便在每個個別的深度產生樣本之一系列切片影像。In some examples, the light is focused to the first depth of the sample to produce a slice image of the sample at the first depth. Also, the light can be continuously focused to a depth of one of the series of samples to produce a series of slice images of the sample at each individual depth.

本發明為一種光學影像處理的方法。一個能產生具有空間圖樣的光源,以便在複數個相位的每個相位上,連續照明一個樣本。一個能在第一個縱向的解析率和第一個橫向解析率上,偵測樣本之第一套影像的偵測器。一個處理器接收和處理第一套影像,以產生一張樣本之強化切片影像。特別是,該處理器的組態可處理第一套影像,以便在比第一個縱向解析率還大的第二個縱向解析率上,產生代表第二套影像的數據;以及,在代表第二套影像的數據上,進行頻譜分析,以便在比第一個橫向解析率還大的第二個橫向解析率上,形成代表樣本之強化切片影像的數據。The present invention is a method of optical image processing. A light source capable of producing a spatial pattern to continuously illuminate a sample over each phase of a plurality of phases. A detector that detects the first set of images in the first vertical resolution and the first horizontal resolution. A processor receives and processes the first set of images to produce an enhanced slice image of the sample. In particular, the processor is configured to process the first set of images to produce data representative of the second set of images at a second longitudinal resolution greater than the first longitudinal resolution; and, in the representative On the data of the two sets of images, spectrum analysis is performed to form data representing the enhanced slice image of the sample at a second lateral resolution higher than the first lateral resolution.

本發明包含一個光學組件,以便在樣本的第一個深度將光束聚焦。The present invention includes an optical assembly to focus the beam at a first depth of the sample.

本發明亦可包含一個耦合至光學組件的控制器,且其模組能控制該光學組件,以便在樣本的第二個深度將光束聚焦。該控制器包含一個壓電定位器。The invention can also include a controller coupled to the optical assembly, and the module can control the optical assembly to focus the beam at a second depth of the sample. The controller includes a piezoelectric positioner.

本發明包括:一個在一維空間內具有第一個週期性的遮罩,該遮罩在二維空間內可進一步有第二個週期性。The invention includes a mask having a first periodicity in a one-dimensional space, the mask having a second periodicity in the two-dimensional space.

本發明之光源,更包括一個耦合至遮罩的調變器,且其能以改變該遮罩的模組來調節照明的相位。該遮罩的模組包括一個遮罩的位置和一個遮罩的方向。The light source of the present invention further includes a modulator coupled to the mask, and which is capable of adjusting the phase of the illumination with a module that changes the mask. The module of the mask includes a position of the mask and a direction of the mask.

該處理器之進一步的組態,可根據與第一套影像的每張影像所對應照明的個別相位進行計算,組合第一套影像以產生第二套影像。對於第二套影像之子集的每張影像而言,處理器進行傅立葉分析,以便在一個空間頻譜內形成該影像之一個頻譜。處理器組合頻譜之每個個別的部份,形成樣本的強化切片影像的複合頻譜。然後,處理器以複合頻譜的反傅立葉轉換,以產生強化切片影像。A further configuration of the processor can be calculated based on the individual phases of the illumination corresponding to each image of the first set of images, and the first set of images is combined to produce a second set of images. For each image of a subset of the second set of images, the processor performs a Fourier analysis to form a spectrum of the image in a spatial spectrum. The processor combines each individual portion of the spectrum to form a composite spectrum of the enhanced slice image of the sample. The processor then performs an inverse Fourier transform of the composite spectrum to produce an enhanced slice image.

光源本身的模組可產生該空間圖樣,如該光源可包括一個LED陣列結構,以產生可移動之二維的光學圖樣。The module of the light source itself can produce the spatial pattern, such as the light source can include an LED array structure to produce a movable two-dimensional optical pattern.

使用單一光調變器來調變照明光的空間相位,可在三維空間改進廣視野光學顯微鏡的解析率。當使用快速切換的光電技術時進行光的調變時,則取像速率可能像一張超解析率的影像一樣快(如每秒處理五張圖樣的影像框架)。Using a single optical modulator to modulate the spatial phase of the illumination light improves the resolution of the wide-field optical microscope in three dimensions. When the light is modulated using the fast-switching optoelectronic technology, the image capture rate may be as fast as an image with a super-resolution (eg, an image frame that processes five patterns per second).

本發明所述之系統和方法可以很容易地,以低成本安裝到各種光學設備,包括傳統的螢光顯微鏡。此外,可以很容易地在系統內安裝一個以上的激發光源,如此則在研究細胞功能的應用上會很有用處。且因可以高速取得一張樣本之超解析率的影像,可進行活細胞內結構物的動態分析。The system and method of the present invention can be easily and cost effectively mounted to a variety of optical devices, including conventional fluorescent microscopes. In addition, more than one excitation source can be easily installed in the system, which can be useful in the study of cell function applications. And because the image of the super-resolution of one sample can be obtained at a high speed, the dynamic analysis of the structure inside the living cell can be performed.

本發明只需要快速傅立葉轉換(FFT)和代數計算,可使用一個獨立處理器以處理影像。該獨立處理器可比其它軟體更快地處理影像,且可像網路卡(PCI)一樣,進一步整合入現有的個人電腦內。The present invention requires only fast Fourier transform (FFT) and algebraic calculations, and a separate processor can be used to process the image. The stand-alone processor can process images faster than other software and can be integrated into existing PCs like a network card (PCI).

故而,關於本發明之優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。Therefore, the advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

1. 系統概述1. System Overview

參考第1圖,係為一個具有結構式照明之光切片顯微鏡100的一個具體實施例。光切片顯微鏡100具有傳統顯微鏡的數個組件,包括一個光源110以產生一個光束112,一個光束分離器140以反射光束112至欲進行影像處理的一個樣本160。一套光學組件,包括一個物鏡150以便將光束112對焦至樣本160所選擇的影像平面上。由樣本160所反射(或發射)的光先被物鏡150接收,且在通過光束分離器140之後,被一個偵測器170(如CCD照像機)偵測。偵測器170將所偵測的光信號轉換成電氣信號並傳遞至一個處理器180(如電腦)以形成樣本160的數值影像。Referring to Fig. 1, a specific embodiment of a light sectioning microscope 100 having structured illumination is shown. The light sectioning microscope 100 has several components of a conventional microscope, including a light source 110 to produce a beam 112, and a beam splitter 140 to reflect the beam 112 to a sample 160 for image processing. A set of optical components includes an objective lens 150 for focusing the beam 112 onto the image plane selected by the sample 160. The light reflected (or emitted) by the sample 160 is first received by the objective lens 150 and, after passing through the beam splitter 140, detected by a detector 170 (e.g., a CCD camera). The detector 170 converts the detected optical signal into an electrical signal and passes it to a processor 180 (such as a computer) to form a numerical image of the sample 160.

樣本160(或是物鏡150)安裝在一個定位臺162上,能在橫向和縱向上進行線性移動。在此說明中,「橫向」一詞通常描述一個沿著光傳播之光軸的方向(如第1圖所示的z軸),而「縱向」一詞通常描述一個與光軸垂直的平面(如x-y-平面)。對於「厚的」樣本160(如一個高度大於1μm的物體),可在樣本160與物鏡150之間調整z的距離,以便在各種深度形成樣本的切片影像,亦稱為顯微鏡之光切片的能力。The sample 160 (or the objective lens 150) is mounted on a positioning table 162 for linear movement in the lateral and longitudinal directions. In this description, the term "lateral" generally describes a direction along the optical axis of light propagation (as shown in Figure 1 for the z-axis), while the term "longitudinal" generally describes a plane perpendicular to the optical axis ( Such as xy-plane). For a "thick" sample 160 (such as an object having a height greater than 1 μm), the distance of z can be adjusted between sample 160 and objective 150 to form a slice image of the sample at various depths, also known as the ability of a microscope to slice light. .

傳統廣視野顯微鏡之空間解析率會受到光之繞射極限的限制。在這裏,「空間解析率」或「光學解析率」一詞通常描述:一個影像處理系統之光學組件解析欲進行影像處理之樣本內細節的能力。換句話說,「空間解析率」相當於樣本內兩個可分辨的(可解析的)點被分開之最小的空間距離。因此,具有「較大」或「強化」之空間解析率的影像處理系統能在樣本內顯示「較細」的結構,或能分辨以較小空間距離分開之相臨的點。The spatial resolution of conventional wide-field microscopes is limited by the diffraction limit of light. Here, the term "spatial resolution" or "optical resolution" generally describes the ability of an optical component of an image processing system to resolve details within a sample for image processing. In other words, the "space resolution rate" is equivalent to the smallest spatial distance at which two distinguishable (resolvable) points within a sample are separated. Therefore, an image processing system with a "larger" or "enhanced" spatial resolution can display a "thinner" structure within a sample, or can distinguish adjacent points separated by a smaller spatial distance.

一個改進廣視野顯微鏡之空間解析率的方法是,使用一種空間調變圖樣以照明樣本,如下所述,基本上是執行一個諧波之空間頻率進行混合的程序。One way to improve the spatial resolution of wide field microscopes is to use a spatially modulated pattern to illuminate the sample, essentially as described below, to perform a mixing of the spatial frequencies of a harmonic.

在具體實施例中,提供一個光調變器120和光源110以便將一個空間圖樣(如實質上週期性的空間圖樣)透過一個圖樣式光束112投影到樣本160上。光調變器120的一個範例包括一個遮罩130(如一個二維柵狀的形式)和一個控制單元(未顯示)以調整遮罩的空間結構,以便能分段或連續改變圖樣式光束112的空間相位。遮罩130能有局部之一維或多維的週期性(如第1圖所示在一個與光束112垂直的平面上沿著px 和py 軸運動)。可以改變遮罩130的空間結構,例如,以線性或旋轉的方式空間移動遮罩130。In a particular embodiment, a light modulator 120 and light source 110 are provided to project a spatial pattern (e.g., a substantially periodic spatial pattern) onto a sample 160 through a pattern pattern beam 112. An example of a light modulator 120 includes a mask 130 (as in the form of a two-dimensional grid) and a control unit (not shown) to adjust the spatial structure of the mask to enable segmental or continuous change of the pattern pattern beam 112. Spatial phase. The mask 130 can have a local one-dimensional or multi-dimensional periodicity (as shown in Figure 1 on a plane perpendicular to the beam 112 along the p x and p y axes). The spatial structure of the mask 130 can be varied, for example, to move the mask 130 spatially or in a rotational manner.

在此沒有提出任何理論限制,至少可根據下述部份,了解具有結構式照明顯微鏡100的解析率強化能力。There is no theoretical limitation here, and at least the resolution enhancement capability of the structured illumination microscope 100 can be understood from the following sections.

假設I 0 是物鏡150之焦面上一個均勻照明的強度,且M 0 是一個樣本經由均勻照明所產生的一般影像。目前,在一個空間頻譜內(亦參考為倒立空間)以樣本的傅立葉轉換來考量樣本。對每一個光學系統而言,根據光學轉移函數(OTF),只有低於一個切斷頻率門檻之樣本的空間頻率能透過系統而進行轉移。因此,以光學系統形成的影像M 0 只包含:由屬於轉移之空間頻帶(「通帶」)的樣本所發出的光學資訊。換句話說,在此通帶外面之樣本資訊,會在M 0 內失去,且無法恢復。Let I 0 be the intensity of a uniform illumination on the focal plane of objective lens 150, and M 0 is a general image produced by a sample through uniform illumination. Currently, samples are considered in a spatial spectrum (also referred to as inverted space) with a Fourier transform of the sample. For each optical system, according to the optical transfer function (OTF), only the spatial frequency of a sample below a cutoff frequency threshold can be transferred through the system. Therefore, the image M 0 formed by the optical system contains only optical information emitted by samples belonging to the spatial band of the transfer ("pass band"). In other words, the sample information outside the passband will be lost in M 0 and cannot be recovered.

當一個調變之二維(2D)空間圖樣被投影到樣本上時,在焦面上之結構式照明的強度I(x ,y )會變成:When a modulated two-dimensional (2D) spatial pattern is projected onto the sample, the intensity I( x , y ) of the structured illumination on the focal plane becomes:

I (x ,y )=I 0 [2+cos(ux -ΔΦ x )+cos(uy -ΔΦ y )] (1) I ( x , y )= I 0 [2+cos( ux -ΔΦ x )+cos( uy -ΔΦ y )] (1)

其中u 為倒立空間內調變圖樣的空間頻率,ΔΦ x 和ΔΦ y 分別是在x和y方向中,調變圖樣相對於樣本之移動的空間相位常數。空間頻率u 能表示為:Where u is the spatial frequency of the modulation pattern in the inverted space, and ΔΦ x and ΔΦ y are the spatial phase constants of the modulation pattern relative to the movement of the sample in the x and y directions, respectively. The spatial frequency u can be expressed as:

u =(4πn )sin(α)/λ (2) u =(4π n )sin(α)/λ (2)

其中n 為玻璃的折射率,α為光束與光學系統之光軸的夾角,且λ為照明的真空波長。Where n is the refractive index of the glass, α is the angle between the beam and the optical axis of the optical system, and λ is the vacuum wavelength of the illumination.

由於結構式照明的結果,現在樣本的影像M (x ,y )能被描述為:As a result of structured illumination, the image M ( x , y ) of the sample can now be described as:

其中M 0 為樣本在均勻照明下的一般影像,且M x ± (x ,y )和M Y ± (x ,y )為四個影像成份,其頻譜中心分別在正和負的方向上沿著k x k y 軸,由倒立空間內的空間頻率u 來進行偏移。且使用~(波紋符號)來表示一個變數的二維傅立葉轉換,以來表示影像M 0 的頻譜,且分別以(k x ±u ,k y )和(k x ,k y ±u )以表示M x ± (x ,y )和M Y ± (x ,y )的頻譜。Wherein M 0 is the sample images generally uniform illumination, and M x ± (x, y) and M Y ± (x, y) is the image four ingredients, which are along the center of the spectrum k in the positive and negative directions The x or k y axis is offset by the spatial frequency u in the inverted space. And use ~ (corrugated symbol) to represent a two-dimensional Fourier transform of a variable, To represent the spectrum of the image M 0 , and ( k x ± u , k y ) and ( k x , k y ± u ) to represent the spectrum of M x ± ( x , y ) and M Y ± ( x , y ).

結構式照明的一個主要效應是,藉由將空間頻譜之額外的高頻區域,移入光學系統的通帶內,故可在影像M (x ,y )的重建內,恢復於傳統廣視野顯微鏡內所接觸不到的資訊,因此可以改進光學系統的空間解析率。One of the main effects of structured illumination is that by moving the extra high-frequency region of the spatial spectrum into the passband of the optical system, it can be restored to the traditional wide-field microscope within the reconstruction of the image M ( x , y ). Information that is not accessible, thus improving the spatial resolution of the optical system.

根據方程式(3),目前所觀察的影像M (x ,y ),是一般影像與四個頻譜,而其原點被偏移+u 或-u 之額外成份的組合。由於這些成份在方程式(3)內加總的係數與照明的相位相關(即ΔΦ x 和ΔΦ y ),可在不同的照明相位下記錄樣本之一系列的影像,以及在記錄的影像上進行算術運算以萃取出這些成份。在分離這些成份之後,可在大於傳統廣視野顯微鏡的縱向和橫向解析率上,使用這些成份內的資訊以重建樣本的一張影像,詳細的描述如下。According to equation (3), the currently observed image M ( x , y ) is a combination of a general image and four spectra, and its origin is offset by an additional component of + u or - u . Since the total coefficients of these components in equation (3) are related to the phase of the illumination (ie, ΔΦ x and ΔΦ y ), an image of one of the samples can be recorded at different illumination phases, and arithmetic can be performed on the recorded image. Operate to extract these ingredients. After separating these components, information within these components can be used to reconstruct an image of the sample at greater than the longitudinal and lateral resolution of a conventional wide-field microscope, as described in detail below.

2. 操作2. Operation

參考圖2,提供示範流程200供顯微鏡100使用,以執行一個三維(3D)樣本的光切片。使用此流程,在橫向和縱向上,可獲得比傳統廣視野顯微鏡較大解析率之樣本的縱向切片影像。Referring to Figure 2, an exemplary process 200 is provided for use with microscope 100 to perform a light slice of a three dimensional (3D) sample. Using this procedure, longitudinal slice images of samples with larger resolutions than conventional wide field microscopes can be obtained in both the lateral and longitudinal directions.

步驟210:先找出一個初步「有興趣的區域」(ROI)以進行影像處理。通常是在樣本160之一個所選擇的z深度上,以一個二維(x-和y-)的區域來定義該「有興趣的區域」。藉由樣本160在縱向和橫向上,相對於物鏡150的移動,可將入射光束聚焦到該「有興趣的區域」上,例如,藉由移動定位臺162。Step 210: First find a preliminary "interest area of interest" (ROI) for image processing. The "interested area" is typically defined by a two-dimensional (x- and y-) region at a selected z-depth of the sample 160. By moving the sample 160 in the longitudinal and lateral directions relative to the movement of the objective lens 150, the incident beam can be focused onto the "interesting region", for example, by moving the positioning stage 162.

步驟220:在一系列空間相位的每一個相位上,以一個光學圖樣連續照明樣本160。在本例中,該光學圖樣係以光束112穿過遮罩130所產生,且藉由沿著px 和py 軸線性地移動遮罩130,以調整光學圖樣的空間相位。Step 220: Continuously illuminate the sample 160 in an optical pattern over each of a series of spatial phases. In the present embodiment, the optical system to the beam pattern 112 is generated through the mask 130, and by moving the mask 130 p x p and y-axis along a manner as to adjust the optical spatial phase pattern.

例如,參考第3A圖至第3E圖,在一套的五個空間相位上顯示一個二維(2D)週期性光學圖樣。在第3A圖中,光學圖樣的中心是在原點上,且其線距分別沿著px 和py 軸在一個Tx 和Ty 的一個空間週期上重複。在本例中,Tx 和的結構與Ty 相同。而在某些其它範例中,亦可在兩個方向的每一個方向上,以一個特別的局部週期性來設定一個二維光學圖樣的結構。For example, referring to Figures 3A through 3E, a two-dimensional (2D) periodic optical pattern is displayed over five spatial phases of a set. In Fig. 3A, the center of the optical pattern is at the origin, and its line pitch is repeated over a space period of one of T x and T y along the p x and p y axes, respectively. In this example, the structure of T x and is the same as T y . In some other examples, the structure of a two-dimensional optical pattern can also be set in a particular local periodicity in each of the two directions.

在第3B圖和第3C圖中,光學圖樣分別在負和正的方向上,沿著px 軸以120°(或T/3)偏移。與此類似地,在第3D圖和第3E圖中,光學圖樣分別在負和正的方向上,沿著py 軸以120°(或T/3)偏移。In FIGS. 3B and 3C, the optical patterns are offset by 120° (or T/3) along the p x axis in the negative and positive directions, respectively. Similarly, in FIGS. 3D and 3E, the optical patterns are shifted by 120° (or T/3) along the p y axis in the negative and positive directions, respectively.

第3A圖至第3E圖中顯示,五個圖樣空間相位常數φ mn 可以表示為φ mn =(2π/3)‧(m ,n ),其中(m ,n )分別=(0,0)、(1,0)、(2,0)、(0,1)、和(0,2)。3A to 3E show that the five pattern spatial phase constants φ mn can be expressed as φ mn = (2π / 3) ‧ ( m , n ), where ( m , n ) = (0, 0), (1,0), (2,0), (0,1), and (0,2).

步驟230:在結構式照明下,可由偵測器170連續獲得樣本160內,具有「有興趣的區域」的五張影像,而每一張影像可以顯示,且形成在所照明的五個空間相位的每一個相位上。根據方程式(3),在相位φ mn 上所獲得的一張影像M φ mn 可表示為:Step 230: Under structured illumination, five images of the "area of interest" in the sample 160 may be continuously obtained by the detector 170, and each image may be displayed and formed in five spatial phases illuminated. Every phase of it. According to Equation (3) an image in M φ mn phase φ mn obtained can be expressed as:

在此步驟上,所獲得之影像M φ mn 的橫向和縱向解析率可與傳統廣視野顯微鏡解析率進行比較。At this step, the lateral and longitudinal resolution of the image M φ mn obtained can be compared with the conventional wide field microscope resolution.

步驟240:處理所獲得的五張影像M φ mn ,以便在真實空間內形成縱向的切片影像。特別是基於本範例內照明所用之特殊的相位常數,可由所獲得的五張影像中,萃取出M 0 如下:Step 240: Process the obtained five images M φ mn to form a longitudinal slice image in the real space. In particular, based on the special phase constants used in the illumination in this example, M 0 can be extracted from the five images obtained as follows:

而可獲得縱向切片影像M 和M 如下:The longitudinal slice images M and M can be obtained as follows:

如上所述,該四張縱向切片影像M 和M 的每一張影像,可提供比傳統廣視野顯微鏡更大的縱向解析率,亦如Neil,et al.在1997年12月15日於光學通訊(Optics Letters)刊物所出版的「在傳統顯微鏡中,使用結構式光以獲得光切片的方法」內所述之參考。As described above, each of the four longitudinal slice images M and M provides a larger longitudinal resolution than a conventional wide-field microscope, as in Neil, et al., December 15, 1997. A reference cited in the "Methods of Using Structured Light to Obtain Light Slices in Conventional Microscopy", published in the Optics Letters publication.

步驟250:為了能更進一步改進樣本160影像的橫向解析率,以二維傅立葉轉換,將該四張縱向切片影像M 和M 轉入一個空間頻譜(倒立空間)內。因此,分別以來表示所獲得之M x ± (x ,y )和M Y ± (x ,y )的頻譜。Step 250: In order to further improve the lateral resolution of the sample 160 image, the four longitudinal slice images M and M Y± are transferred into a spatial spectrum (inverted space) by two-dimensional Fourier transform. Therefore, respectively To represent the obtained spectrum of M x ± ( x , y ) and M Y ± ( x , y ).

步驟260:在空間頻譜內,沿著k x k y ,以一個u 的大小,將由其原先的位置偏移,而產生該四張偏移的頻譜影像M (k x ,k y )和M (k x ,k y )。Step 260: Within the spatial spectrum, along k x and k y , with a size of u , The four offset spectral images M ( k x , k y ) and M ( k x , k y ) are generated by their original positional offsets.

步驟270:處理該四張偏移的頻譜影像,以形成一個複合頻譜M super ,例如,「聯結」偏移頻譜影像之個別的部份,以建立一張超重疊的頻譜影像。較佳地,在建立超重疊頻譜影像的程序中,亦補償顯微鏡之光學轉移函數所引起的訊號衰減。Step 270: Process the four offset spectral images to form a composite spectrum M super , for example, "joining" the individual portions of the offset spectral image to create an ultra-overlapping spectral image. Preferably, in the process of creating a super-overlapping spectral image, the signal attenuation caused by the optical transfer function of the microscope is also compensated.

步驟280:經由在該複合頻譜上,進行反傅立葉轉換,重建一張「有興趣的區域」的超解析率影像M super 。經由步驟250至步驟280的頻譜分析,所重建的超解析率影像M super ,會比縱方切片影像M M 提供一較大的橫向解析率。因此,超解析率影像M super 有時候亦被認為是一張強化的切片影像,其在橫向和縱向上,比傳統廣視野顯微鏡具有更大的解析率。Step 280: Reconstruct a super-resolution image M super of an "interested area" by performing inverse Fourier transform on the composite spectrum. Through the spectrum analysis from step 250 to step 280, the reconstructed super-resolution image M super will provide a larger lateral resolution than the vertical slice images M and M . Therefore, the super-resolution image M super is sometimes also considered to be a reinforced slice image, which has a larger resolution in the horizontal and vertical directions than the conventional wide-field microscope.

步驟290:在獲得目前之「有興趣的區域」的超解析率影像M super 之後,選擇不同z深度下的,下一個「有興趣的區域」樣本,例如,以預定的增量/減量在縱向上移動樣本160。因此,可在每一個z深度重複執行步驟220至步驟280,以便在一套z深度上,連續形成樣本的超解析率影像。Step 290: After obtaining the super-resolution image M super of the current "interested area", select the next "interested area" sample at different z depths, for example, in a predetermined increment/decrement in the vertical direction. Move sample 160 up. Thus, steps 220 through 280 can be repeated at each z-depth to continuously form a super-resolution image of the sample over a set of z-depths.

在本範例中,會以一系列方式來描述一個三維樣本的光分片。特別是在下一個深度開始的照明步驟220之前,且在一選擇深度下,於影像重建步驟280時完成樣本。在其它範例中,可用平行的方式獨立處理影像取得步驟220至步驟230,和影像分析步驟240至步驟280。例如,可先在不間斷下,經由一套樣本的深度,取得五張影像的群組,而在一個稍後的步驟中執行,以取得影像的頻譜分析。In this example, a light slice of a three-dimensional sample is described in a series of ways. In particular, prior to the illumination step 220 beginning with the next depth, and at a selected depth, the sample is completed at image reconstruction step 280. In other examples, image acquisition steps 220 through 230, and image analysis steps 240 through 280 may be independently processed in a parallel manner. For example, a group of five images can be taken without interruption, via a set of sample depths, and executed in a later step to obtain a spectral analysis of the image.

現在參考第4A圖至第4F圖,可於以下說明中,進一步說明上述的步驟200。為了簡單起見,將第3A圖的二維光學圖樣投影到一個平面上,進行影像處理。Referring now to Figures 4A through 4F, the above-described step 200 can be further illustrated in the following description. For the sake of simplicity, the two-dimensional optical pattern of FIG. 3A is projected onto a plane for image processing.

第4A圖顯示第3A圖的二維光學圖樣,已被投影到平面上的一張影像M φ 00 (如在步驟230中所獲得的)。Figure 4A shows a two-dimensional optical pattern of Figure 3A, an image M φ 00 that has been projected onto a plane (as obtained in step 230).

第4B圖顯示影像M φ 00 頻譜在空間頻譜內以二維傅立葉轉換形成的一個頻譜。該頻譜包含在原點上的一個Airy圖樣,以及分別沿著k x k y 軸偏移原點一段補償距離後,成為四個另外的Airy圖樣。該補償距離與第3A圖之光學圖樣的線距會成反比。Figure 4B shows a spectrum formed by two-dimensional Fourier transform of the image M φ 00 spectrum in the spatial spectrum. . The spectrum An Airy pattern contained at the origin and four offsets of the origin along the k x or k y axis respectively become four additional Airy patterns. This compensation distance is inversely proportional to the line spacing of the optical pattern of Figure 3A.

第4C圖顯示,二維光學圖樣被投影到平面上的一張縱向切片影像M X - (如在步驟240所獲得的)。Figure 4C shows a two-dimensional optical pattern being projected onto a longitudinal slice image M X - on the plane (as obtained at step 240).

第4D圖顯示,空間頻譜內M X - 的頻譜影像(如在步驟250所獲得的)。在該頻譜影像內,僅使用兩條虛線右邊的頻率成份,藉以建立複合頻譜Figure 4D shows the spectral image of M X - in the spatial spectrum (as obtained at step 250). Within the spectrum image, only the frequency components to the right of the two dashed lines are used to establish a composite spectrum. .

第4E圖顯示,聯結四張偏移頻譜影像的個別部份,至一個頻譜內,以獲得一個複合頻譜(如在步驟270所獲得的)。由第4D圖之虛線所圍住的頻率成份,形成該複合頻譜的四分之一。Figure 4E shows the connection of four offset spectrum images with Individual parts, into a spectrum to obtain a composite spectrum (as obtained at step 270). The frequency component enclosed by the dotted line of Fig. 4D forms the composite spectrum One quarter of the.

第4F圖是一個以第4A圖之圖樣式影像,所重建的超解析率影像(未按相同的比例顯示)。Figure 4F is a super-resolution image reconstructed from the image of Figure 4A. (Not shown in the same scale).

3.範例3. Examples

以下章節提供上述系統與使用方法流程的範例。在某些範例中,進行結構式照明的結果與均勻照明比較,以說明結構式照明之強化效應。The following sections provide examples of the above systems and usage methods. In some examples, the results of structured illumination are compared to uniform illumination to illustrate the enhanced effects of structured illumination.

3.1範例I3.1 Example I

參考第5A圖至第5C圖,使用光切片顯微鏡100進行影像處理,包括直徑為100-nm螢光球之樣本。該螢光球的發射波長約為560nm。在該發射波長下,均勻照明之理論橫向解析率的限度約為263nm。因此,一顆100-nm螢光球之均勻照明的影像,將有約280nm的觀察差寬度。在此處,「寬度」一詞指的是假設影像內個別粒子是一種高斯(Gaussian)強度分佈時,在最大值的一半的全寬度(FWHM)。Referring to FIGS. 5A to 5C, image processing is performed using the light sectioning microscope 100, including a sample having a diameter of 100-nm fluorescent spheres. The fluorescent sphere has an emission wavelength of about 560 nm. At this emission wavelength, the theoretical lateral resolution of uniform illumination is about 263 nm. Therefore, a uniformly illuminated image of a 100-nm fluorescent sphere will have a viewing width of about 280 nm. Here, the term "width" refers to the full width (FWHM) of half of the maximum value when an individual particle in an image is a Gaussian intensity distribution.

第5A圖顯示,在均勻照明下,兩顆100-nm螢光球的影像。第5B圖顯示,於焦面上,在使用具有750-nm週期性二維網狀圖樣的結構式照明下,兩顆螢光球的一張超解析率影像。第5C圖顯示,一個所選擇之螢光球的兩個強度分佈曲線,虛線的曲線是沿著第5A圖之虛線的樣本,而實線的曲線是沿著第5B圖之虛線的樣本。Figure 5A shows an image of two 100-nm fluorescent spheres under uniform illumination. Figure 5B shows an ultra-resolution image of two fluorescent spheres on a focal plane using structured illumination with a 750-nm periodic two-dimensional mesh pattern. Figure 5C shows two intensity distribution curves for a selected phosphor sphere, the dashed curve is a sample along the dashed line of Figure 5A, and the solid curve is a sample along the dashed line of Figure 5B.

基於第5C圖內,兩個強度分佈曲線的「在最大值的一半的全寬度」,第5A圖之均勻照明影像的橫向解析率,約為325nm。經由比較,第5B圖之結構式照明影像的橫向解析率約為180nm,故顯示解析率的改進約為2倍。Based on the 5C plot, the "full width at half of the maximum value" of the two intensity distribution curves, and the lateral resolution of the uniform illumination image of Fig. 5A, is about 325 nm. By comparison, the lateral resolution of the structured illumination image of FIG. 5B is about 180 nm, so the improvement of the display resolution is about 2 times.

3.2範例II3.2 Example II

參考第6A圖至第6C圖,沿著z軸掃描三顆200-nm螢光球,以估計具有結構式照明之顯微鏡100的縱向解析率。在第一個範例內,選擇較大直徑比螢光球,以避免縱向和橫向強度變化之間的耦合,當物體的成像比光學系統的橫向解析率小得多時,通常會發生此情況。Referring to Figures 6A through 6C, three 200-nm fluorescent spheres are scanned along the z-axis to estimate the longitudinal resolution of the microscope 100 with structured illumination. In the first example, a larger diameter ratio of the fluorescent sphere is chosen to avoid coupling between longitudinal and lateral intensity variations, which typically occurs when the imaging of the object is much smaller than the lateral resolution of the optical system.

測量和比較不同週期之兩個網狀圖樣的縱向強度曲線。在第6C圖中,虛線的曲線是將一個750nm週期的網狀圖樣(在焦面上測量)投影到樣本上所獲得的,而實線的曲線是將一個500nm週期的網狀圖樣投影到樣本上所獲得的。實線曲線的「在最大值的一半的全寬度」約為290nm,相當於一個210nm的縱向解析率(約0.38λ)。The longitudinal strength curves of the two mesh patterns of different periods are measured and compared. In Figure 6C, the dashed curve is obtained by projecting a 750 nm period mesh pattern (measured on the focal plane) onto the sample, while the solid line curve is a projection of a 500 nm period mesh pattern to the sample. Obtained on it. The "full width at half the maximum value" of the solid line curve is about 290 nm, which corresponds to a longitudinal resolution of 210 nm (about 0.38 λ).

第6A圖和第6B圖是在使用一個750-nm網狀圖樣的,兩個不同橫向位置下所記錄之螢光球的影像。這兩張影像顯示橫向解析率已被改進,因此三顆球能清楚地解析,且當樣本被移離焦面時,螢光球的強度會降低。Figures 6A and 6B are images of the fluorescent spheres recorded at two different lateral positions using a 750-nm mesh pattern. These two images show that the lateral resolution has been improved so that the three spheres are clearly resolved and the intensity of the fluorosphere is reduced as the sample is moved away from the focal plane.

值得注意的是,以500-nm網狀圖樣所獲得之縱向強度曲線的側翼,仍有高峰強度的20%,可能是由物鏡的縱向色差所造成的。對於所堆疊的樣本而言,此種側翼可能影響影像的品質,因此,在某些範例中,750-nm網狀圖樣在觀察生物樣本(如細胞)內部結構上,可能是較好的。在某些應用中,可使用某些過濾技術(如縱向變迹過濾器)與調變圖樣來減低側翼的大小。It is worth noting that the flank of the longitudinal intensity curve obtained with the 500-nm mesh pattern still has 20% of the peak intensity, which may be caused by the longitudinal chromatic aberration of the objective lens. Such flank may affect the quality of the image for the stacked samples, so in some instances, a 750-nm mesh pattern may be better at observing the internal structure of a biological sample, such as a cell. In some applications, certain filtering techniques (such as longitudinal apodization filters) and modulation patterns can be used to reduce the size of the flanks.

3.3範例III3.3 Example III

上述的光分片顯微鏡100和使用流程可被用於生物應用中,如觀察細胞內結構物,甚至當細胞被堆疊在一起時,亦可以使用。The light-slicing microscope 100 described above and the flow of use can be used in biological applications, such as viewing intracellular structures, even when cells are stacked together.

參考第7A圖至第7E圖,在各種影像處理條件下,所獲得之固定纖維母細胞內,肌動蛋白微絲(使用Alexa Fluor 488 phalloidin染色技術)的螢光影像。Fluorescence images of actin filaments (using Alexa Fluor 488 phalloidin staining technique) in fixed fibroblasts obtained under various image processing conditions with reference to Figures 7A through 7E.

第7A圖是在均勻照明下,肌動蛋白微絲的影像。該影像是在具有一個0.4之數值孔(NA)的一個低放大(20x)物鏡下所獲得的。在此影像內,可以看到數個堆疊細胞內的肌動蛋白微絲。Figure 7A is an image of actin filaments under uniform illumination. The image was obtained under a low magnification (20x) objective having a numerical aperture (NA) of 0.4. Within this image, actin microfilaments in several stacked cells can be seen.

第7B圖是在均勻照明下,由第7A圖之一個所選擇區域(正方形虛線所圍的區域)的放大影像。該影像是在具有一個1.3之數值孔的一個高放大(100x)物鏡下,所獲得的。Figure 7B is an enlarged image of the selected area (the area enclosed by the square dotted line) of one of the 7A maps under uniform illumination. The image was obtained under a high magnification (100x) objective with a numerical aperture of 1.3.

第7C圖與第7B圖具有相同區域,但卻是在結構式照明下所獲得的影像。第7D圖是與第7C圖具有相同區域,且在物鏡縱向移動500nm之後,所獲得的離焦影像。在第7C圖內,所改進的橫向解析率,使得第7B圖內模糊的數個微絲,能被清楚地分辨出來。因此,可使用該技術準確的定量細胞骨架和/或其它細胞內結構物。此外,第7D圖的強度會出現比第7C圖還低的現象,故與本發明的切片能力是正相關的。The 7C and 7B maps have the same area, but are images obtained under structural illumination. Fig. 7D is an out-of-focus image obtained having the same area as that of Fig. 7C and after the objective lens is moved by 500 nm in the longitudinal direction. In Figure 7C, the improved lateral resolution allows the number of microfilaments blurred in Figure 7B to be clearly distinguished. Thus, this technique can be used to accurately quantify the cytoskeleton and/or other intracellular structures. Further, the intensity of the 7D image appears to be lower than that of the 7C chart, and is therefore positively correlated with the slicing ability of the present invention.

第7E圖顯示為,沿著第7B圖(虛線的強度曲線)和第7C圖(實線的強度曲線)之虛線的強度分佈曲線。基於該兩個分佈曲線,觀察到肌動蛋白微絲的寬度分別為約330nm和約200nm,表示結構式照明與均勻照明相比較下,結構式照明能夠揭示生物樣本中更細微的結構。Figure 7E shows the intensity distribution curve along the dashed line of Figure 7B (the intensity curve of the dashed line) and the 7C chart (the intensity curve of the solid line). Based on the two distribution curves, the width of the actin filaments was observed to be about 330 nm and about 200 nm, respectively, indicating that structured illumination can reveal a more subtle structure in a biological sample compared to uniform illumination.

4其它的具體實施例4 other specific embodiments

以下描述可提供上述系統和方法的各種的其它具體實施例。The following description may provide various other specific embodiments of the above systems and methods.

參考圖8,顯示光切片顯微鏡800的另外一個具體實施例的圖。在該具體實施例內,一個空間光調變器820:包含一個耦合至極化器822的反射矽液晶(LCoS)板824,以做為照明光的二維調變。而反射矽液晶板824由1024 x 768像素所組成,且像素大小為11.3 x 11.3μm2 。可在二維反射矽液晶824上,以高達60赫茲(Hz)的更新速率,迅速改變一個驅動信號,以移動投影到一個樣本860上的正弦調變圖樣。Referring to Figure 8, a diagram of another embodiment of a light sectioning microscope 800 is shown. In this embodiment, a spatial light modulator 820 includes a reflective germanium liquid crystal (LCoS) panel 824 coupled to a polarizer 822 for two-dimensional modulation of illumination light. The reflective 矽 liquid crystal panel 824 is composed of 1024 x 768 pixels and has a pixel size of 11.3 x 11.3 μm 2 . A drive signal can be rapidly changed on the two-dimensional reflective 矽 liquid crystal 824 at an update rate of up to 60 Hertz (Hz) to move the sinusoidal modulation pattern projected onto a sample 860.

一個光源810(如一個50mW,475nm二極體泵送的固態的雷射)產生一個光束,在通過一個空間過濾器812後,接著,藉由透鏡814擴大至約8mm直徑的「最大值的一半的全寬度」,藉以照明空間光調變器820。然後,空間光調變器820上的網狀圖樣,透過透鏡880和物鏡850,投影到樣本860上(如一個具有1.3數值孔的浸油物鏡)。樣本860係以CCD照像機870所捕獲的影像。一個壓電(PZT)的轉換器852被耦合至物鏡850上,以控制焦面與樣本860的相對高度。A light source 810 (e.g., a 50 mW, 475 nm diode pumped solid state laser) produces a beam that passes through a spatial filter 812 and then is expanded by lens 814 to a "maximum of about 8 mm diameter" The full width" is used to illuminate the spatial light modulator 820. The mesh pattern on spatial light modulator 820 is then projected through lens 880 and objective lens 850 onto sample 860 (e.g., an oil immersion objective having a 1.3 numerical aperture). Sample 860 is an image captured by CCD camera 870. A piezoelectric (PZT) converter 852 is coupled to the objective lens 850 to control the relative height of the focal plane to the sample 860.

再次參考圖1,適用於光源110的其它範例包括了:各種燈(如LED燈和氙電弧燈)和雷射(如單一和多重波長雷射)。光源110亦可包括一套光學組件如透鏡、鏡子、和過濾器(未顯示)以控制所輸出之光束112的特性(如強度、波長、和方向)。偵測器170的範例包括CCD照像機和其它的CMOS偵測器。Referring again to FIG. 1, other examples for light source 110 include: various lamps (such as LED lamps and xenon arc lamps) and lasers (such as single and multiple wavelength lasers). Light source 110 can also include a set of optical components such as lenses, mirrors, and filters (not shown) to control the characteristics (e.g., intensity, wavelength, and direction) of the output beam 112. Examples of detectors 170 include CCD cameras and other CMOS detectors.

除了使用遮罩之外,亦可使用光源本身產生的圖樣進行光的調變。例如,可建構一個LED陣列使其有能力,產生可移動的二維網狀圖樣。In addition to the use of a mask, the pattern produced by the light source itself can be used to modulate the light. For example, an array of LEDs can be constructed to enable the creation of a movable two-dimensional mesh pattern.

空間圖樣的各種形式皆可使用。例如,可使用對稱或非對稱週期的一維正弦圖樣或二維正弦圖樣。同時,藉由光學圖樣,可以很方便地改變空間相位的模式化。Various forms of space patterns can be used. For example, a one-dimensional sinusoidal pattern or a two-dimensional sinusoidal pattern of symmetric or asymmetric periods can be used. At the same time, the patterning of the spatial phase can be easily changed by the optical pattern.

參考第9A圖至第9F圖,顯示使用一維(1D)格柵調變照明之空間相位的模式化範例。在該範例中,旋轉一維格柵到一系列的角位置,每個角位置皆可相對於系列空間相位中的一個。Referring to Figures 9A through 9F, a graphical example of the spatial phase of a one-dimensional (1D) grid modulated illumination is shown. In this example, the one-dimensional grid is rotated to a series of angular positions, each of which can be relative to one of the series of spatial phases.

產生空間圖樣亦可能有另外的方法。在某些範例中,可使用雷射斑點技術產生空間圖樣。例如,若將某片毛玻璃或光擴散器安裝沿著光照明路徑安裝,亦可產生固定斑點的圖樣,藉以用於照明樣本。在某些情況中,由於該斑點圖樣,可進行處理許多框架,以取得一張具有強化解析率的切片影像。There may be additional ways to create a spatial pattern. In some examples, a laser speckle technique can be used to create a spatial pattern. For example, if a piece of frosted glass or light diffuser is mounted along a light illumination path, a pattern of fixed spots can also be created for illuminating the sample. In some cases, due to the speckle pattern, a number of frames can be processed to obtain a slice image with an enhanced resolution.

本發明可在電腦程式產品內,執行操作和信號處理的方法;本發明可使用可程式處理器和方法以執行機器可讀的儲存設備;本發明可輸入數據並透過可程式處理器來產生輸出。本發明可將一個或多個空間光調變器、偵測器、光源、處理器,和系統的其它組件耦合到電腦程式內的控制器來執行;本發明的可程式系統,至少包括一個可接收和傳送數據與指示的可程式處理器、一個數據存儲系統、至少一個輸入裝置、和至少一個輸出設備。The present invention can be used in a computer program product to perform operations and signal processing; the present invention can use a programmable processor and method to execute a machine readable storage device; the present invention can input data and generate output through a programmable processor . The present invention can be implemented by coupling one or more spatial light modulators, detectors, light sources, processors, and other components of the system to a controller within the computer program; the programmable system of the present invention includes at least one A programmable processor that receives and transmits data and instructions, a data storage system, at least one input device, and at least one output device.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following. Within the scope of the patent application.

100...光切片顯微鏡100. . . Light sectioning microscope

110...光源110. . . light source

112...光束112. . . beam

140...光束分離器140. . . Beam splitter

150...物鏡150. . . Objective lens

160...樣本160. . . sample

162...定位臺162. . . Positioning table

170...偵測器170. . . Detector

180...處理器180. . . processor

810‧‧‧光源810‧‧‧Light source

812‧‧‧空間過濾器812‧‧‧Space filter

814‧‧‧透鏡814‧‧‧ lens

820‧‧‧空間光調變器820‧‧‧Space light modulator

880‧‧‧透鏡880‧‧‧ lens

850‧‧‧物鏡850‧‧‧ objective lens

860‧‧‧樣本860‧‧‧ sample

870‧‧‧CCD照像機870‧‧‧CCD camera

852‧‧‧壓電轉換器852‧‧‧Piezoelectric converter

第1圖係一個具有結構式照明之光切片顯微鏡的具體實施例圖。Figure 1 is a diagram of a specific embodiment of a light sectioning microscope with structured illumination.

第2圖係第1圖所示之光切片顯微所使用的影像處理流程圖。Fig. 2 is a flow chart showing the image processing used in the light section microscopy shown in Fig. 1.

第3A至第3E圖,係根據第2圖的流程圖,在一序列相位下,調變一個二維週期性圖樣範例的圖。3A to 3E are diagrams for modulating a two-dimensional periodic pattern example in a sequence of phases according to the flowchart of FIG. 2.

第4A圖係一個投影到一個平面上,第3A圖的二維週期性圖樣之光學影像圖。Figure 4A is an optical image of a two-dimensional periodic pattern projected onto a plane, Figure 3A.

第4B圖係將第4A圖轉換到一個空間頻譜的二維週期性圖樣的頻譜影像。Figure 4B is a spectral image of a 2D periodic pattern that converts Figure 4A into a spatial spectrum.

第4C圖係將第3A圖之二維週期性圖樣進行切片的影像M X -Fig. 4C is an image M X - which is a slice of the two-dimensional periodic pattern of Fig. 3A.

第4D圖係一個空間頻譜內M X - 的頻譜影像M X - (k -u ,k y )。The 4D image is a spectral image M X - ( k -u , k y ) of M X - in a spatial spectrum.

第4E圖係一個組合四張偏移頻譜影像M (k x ,k y )和My± (k x ,k y )所產生的複合頻譜影像Figure 4E is a composite spectrum image generated by combining four offset spectral images M ( k x , k y ) and My± ( k x , k y ) .

第4F圖係一個投影到平面上之二維週期性圖樣之重建的影像Figure 4F is a reconstructed image of a two-dimensional periodic pattern projected onto a plane .

第5A圖係在均勻照明下,兩顆100奈米(nm)螢光球的影像。Figure 5A is an image of two 100 nanometer (nm) fluorescent spheres under uniform illumination.

第5B圖係在使用具有750nm週期性二維網狀圖樣的結構式照明下,由兩顆螢光球所重建的超解析率影像。Figure 5B is an ultra-resolution image reconstructed from two fluorescent spheres using structured illumination with a periodic two-dimensional mesh pattern of 750 nm.

第5C圖係沿著第5A圖之虛線的第一個強度分佈曲線(虛線的曲線)的圖,和沿著第5B圖之虛線的第二個強度分佈曲線(實線的曲線)的圖。Fig. 5C is a diagram of a first intensity distribution curve (a curve of a broken line) along a broken line of Fig. 5A, and a second intensity distribution curve (a curve of a solid line) along a broken line of Fig. 5B.

第6A圖和第6B圖,係在使用750nm週期性網狀圖樣的不同橫向位置下,所記錄之三顆球的影像。Figures 6A and 6B show images of the three balls recorded at different lateral positions using a 750 nm periodic mesh pattern.

第6C圖,係沿著光軸,使用750nm週期性網狀圖樣下,所獲得的第一個強度分佈曲線(虛線的曲線)的圖,和使用一個500nm週期性網狀圖樣所獲得的第二個強度分佈曲線(實線的曲線)的圖。Figure 6C is a plot of the first intensity distribution curve (dashed curve) obtained using a 750 nm periodic mesh pattern along the optical axis, and a second obtained using a 500 nm periodic mesh pattern. A plot of intensity distribution curves (solid curves).

第7A圖係在一個具有20X物鏡的均勻照明下,一組纖維母細胞內肌動蛋白微絲的影像(NA=0.4)。Figure 7A is an image of a group of fibroblast actin filaments (NA = 0.4) under uniform illumination with a 20X objective.

第7B圖係在一個具有100X物鏡的均勻照明下,第7A圖之正方形虛線所圍區域的詳細影像(NA=1.3)。Figure 7B is a detailed image of the area enclosed by the square dotted line of Figure 7A under uniform illumination with a 100X objective (NA = 1.3).

第7C圖係在一個具有100X物鏡的結構式照明下,與第7B圖相同區域的詳細影像(NA=1.3)。Figure 7C is a detailed image of the same area as in Figure 7B (NA = 1.3) under a structured illumination with a 100X objective.

第7D圖係在一個具有100X物鏡的結構式照明下,與第7C圖相同區域的詳細影像(NA=1.3),係由第7C圖的位置縱向移動500nm。Fig. 7D is a detailed image (NA = 1.3) of the same region as Fig. 7C under a structured illumination with a 100X objective lens, which is longitudinally shifted by 500 nm from the position of Fig. 7C.

第7E圖係沿著第7B圖之虛線的第一個強度分佈曲線(虛線的曲線)的圖,和沿著第7C圖之虛線的第二個強度分佈曲線(實線的曲線)的圖。Fig. 7E is a diagram of a first intensity distribution curve (dashed curve) along a broken line of Fig. 7B, and a second intensity distribution curve (curve of a solid line) along a broken line of Fig. 7C.

第8圖係第1圖所示,光切片顯微鏡的其他具體實施例圖。Fig. 8 is a view showing another specific embodiment of the light sectioning microscope shown in Fig. 1.

第9A圖至第9F圖係根據第2圖的流程圖,在一序列相位下,調變另外一維週期性圖樣的圖。Figures 9A through 9F are diagrams for modulating another one-dimensional periodic pattern in a sequence of phases according to the flow chart of Figure 2.

100...光切片顯微鏡100. . . Light sectioning microscope

110...光源110. . . light source

112...光束112. . . beam

140...光束分離器140. . . Beam splitter

150...物鏡150. . . Objective lens

160...樣本160. . . sample

162...定位臺162. . . Positioning table

170...偵測器170. . . Detector

180...處理器180. . . processor

Claims (24)

一種光學影像形成的方法,至少包含:在複數個相位的每個相位上以一空間圖樣連續地照明一樣品;一獲得數據代表該樣品之一第一套影像,係在一第一縱向解析率和一第一橫向解析率上,每個影像與該照明之複數個相位的一個別相位相關;以及處理該獲得數據以產生該樣品之一強化切片影像,包括:處理該獲得數據,以在比該第一縱向解析率還大的該第二個縱向解析率上,產生代表第二套影像的數據;以及在代表該第二套影像的數據上,進行頻譜分析以便在比該第一個橫向解析率還大的一第二橫向解析率上,形成代表該樣品之該強化切片影像數據。A method for forming an optical image, comprising: illuminating a sample continuously in a spatial pattern on each phase of a plurality of phases; and obtaining a data representing a first set of images of the sample at a first longitudinal resolution And a first lateral resolution, each image being associated with a different phase of the plurality of phases of the illumination; and processing the obtained data to produce an enhanced slice image of the sample, comprising: processing the obtained data to And the second longitudinal resolution of the first longitudinal resolution is greater, generating data representing the second set of images; and performing spectral analysis on the data representing the second set of images to be transverse to the first The enhanced slice image data representing the sample is formed at a second lateral resolution of the resolution. 如申請專利範圍第1項所述之光學影像形成的方法,其中處理獲得數據以產生代表第二套影像的數據,包括:根據與第一套影像的每一個影像有關之該照明的個別的相位,計算組合該第一套影像以產生該第二套影像。The method of forming an optical image according to claim 1, wherein the processing obtains data to generate data representing the second set of images, comprising: determining an individual phase of the illumination according to each image of the first set of images And calculating the first set of images to generate the second set of images. 如申請專利範圍第1項所述之光學影像形成的方法,其中對於代表第二套影像數據所進行的頻譜分析,包括:對於第二套影像之子集的每個影像而言,進行傅立葉分析以便在一個空間頻譜內,形成該影像之一頻譜。The method of optical image formation according to claim 1, wherein the spectrum analysis performed on behalf of the second set of image data comprises: performing Fourier analysis on each image of the subset of the second set of images for Within a spatial spectrum, a spectrum of the image is formed. 如申請專利範圍第3項所述之光學影像形成的方法,其中對於代表該第二套影像數據所進行的頻譜分析,更進一步包括:組合該頻譜之每個個別部份,以形成該樣品之強化切片影像之複合頻譜。The method of forming an optical image according to claim 3, wherein the spectrum analysis performed on the second set of image data further comprises: combining each individual part of the spectrum to form the sample. Enhance the composite spectrum of sliced images. 如申請專利範圍第4項所述之光學影像形成的方法,其中該組合頻譜表示之每個個別部份,包括:根據該空間圖樣的一物理特性,轉移該第二套影像子集的頻譜,係以一向量所決定之頻譜的一原點。The method of forming an optical image according to claim 4, wherein each of the individual portions of the combined spectrum representation includes: shifting a spectrum of the second set of image subsets according to a physical characteristic of the spatial pattern, An origin of the spectrum determined by a vector. 如申請專利範圍第5項所述之光學影像形成的方法,其中該空間圖樣的物理特性包括該空間圖樣的一週期性。The method of forming an optical image according to claim 5, wherein the physical characteristic of the spatial pattern comprises a periodicity of the spatial pattern. 如申請專利範圍第4項所述之光學影像形成的方法,其中對於代表第二套影像數據所進行的頻譜分析,進一步更包括:使用反傅立葉轉換以產生該強化切片影像以處理該複合的頻譜。The method of optical image formation according to claim 4, wherein the spectrum analysis performed on behalf of the second set of image data further comprises: using an inverse Fourier transform to generate the enhanced slice image to process the composite spectrum . 如申請專利範圍第1項所述之光學影像形成的方法,其中該空間圖樣在一維空間內顯示週期性。The method of forming an optical image according to claim 1, wherein the spatial pattern exhibits periodicity in a one-dimensional space. 如申請專利範圍第1項所述之光學影像形成的方法,其中該空間圖樣在二維空間內顯示週期性。The method of forming an optical image according to claim 1, wherein the spatial pattern displays periodicity in a two-dimensional space. 如申請專利範圍第1項所述之光學影像形成的方法,其中在複數個相位的每個相位上以一空間圖樣連續地照明一樣品,包括:在一垂直光軸的平面內,使用線性方式轉移該空間圖樣,至根據該空間圖樣的週期性所決定之一系列位置的每一個位置。The method of optical image formation according to claim 1, wherein a sample is continuously illuminated in a spatial pattern on each phase of the plurality of phases, including: in a plane of a vertical optical axis, using a linear manner The spatial pattern is transferred to determine each position of a series of positions based on the periodicity of the spatial pattern. 如申請專利範圍第1項所述之光學影像形成的方法,其中在複數個相位的每個相位上以一空間圖樣連續地照明一樣品,包括:在一垂直光軸的平面內,以一系列角度的每一個角度旋轉該空間圖樣。The method of optical image formation according to claim 1, wherein a sample is continuously illuminated in a spatial pattern on each phase of the plurality of phases, including: in a plane of a vertical optical axis, in a series The space pattern is rotated at each angle of the angle. 如申請專利範圍第1項所述之光學影像形成的方法,其中在複數個相位的每個相位上以一空間圖樣連續地照明一樣品,包括:聚焦該照明至該樣品的一第一個深度,以在第一個深度產生該樣品的一切片影像。The method of optical image formation of claim 1, wherein continuously scanning a sample in a spatial pattern over each of the plurality of phases comprises: focusing the illumination to a first depth of the sample To produce a slice image of the sample at the first depth. 如申請專利範圍第12項所述之光學影像形成的方法,更進一步包含:連續聚焦該照明至該樣品之一系列的深度,以在每個個別深度產生該樣品之一系列切片影像。The method of optical image formation of claim 12, further comprising: continuously focusing the illumination to a depth of a series of the samples to produce a series of slice images of the sample at each individual depth. 一種光學影像形成的系統,至少包含:一光源,係產生一光束與一空間圖樣,在複數個相位的每一個相位上,連續照明一樣品;一偵測器,係偵測該樣品在第一縱向解析率和第一橫向解析率之第一套影像,每個影像與該照明之複數個相位的個別相位有關;以及一處理器,係處理該第一套影像以產生該樣品之一強化切片影像,該處理器的模組為:處理該第一套影像,以在比該第一個縱向解析率還大的一第二個縱向解析率上,產生一第二套影像數據;以及在該第二套影像數據上進行頻譜分析,以在比該第一個橫向解析率還大的一第二個橫向解析率上,形成該樣品之該強化切片影像數據。A system for forming an optical image, comprising: a light source that generates a light beam and a spatial pattern, continuously illuminating a sample in each phase of the plurality of phases; and a detector that detects the sample at the first a first set of images of a longitudinal resolution and a first lateral resolution, each image being associated with an individual phase of a plurality of phases of the illumination; and a processor processing the first set of images to produce an enhanced slice of the sample Image, the processor module is: processing the first set of images to generate a second set of image data at a second longitudinal resolution greater than the first longitudinal resolution; and A spectrum analysis is performed on the second set of image data to form the enhanced slice image data of the sample at a second lateral resolution greater than the first lateral resolution. 如申請專利範圍第14項所述之光學影像形成的系統,更進一步包含:一個光學組件以聚焦該光束於該樣品的第一深度。The optical image forming system of claim 14, further comprising: an optical component to focus the beam at a first depth of the sample. 如申請專利範圍第15項所述之光學影像形成的系統,更進一步包含:一控制器,係耦合至該光學組件,且其模組控制該光束聚焦至該樣品的第二深度。The optical image forming system of claim 15, further comprising: a controller coupled to the optical component, and a module that controls the beam to focus to a second depth of the sample. 如申請專利範圍第16項所述之光學影像形成的系統,其中該控制器包括壓電定位器。The optical image forming system of claim 16, wherein the controller comprises a piezoelectric positioner. 如申請專利範圍第14項所述之光學影像形成的系統,其中該光源包括在一維空間內具有第一週期性的遮罩。The optical image forming system of claim 14, wherein the light source comprises a mask having a first periodicity in a one-dimensional space. 如申請專利範圍第18項所述之光學影像形成的系統,其中該遮罩在二維空間內,更進一步有第二週期性。The optical image forming system of claim 18, wherein the mask is in a two-dimensional space, and further has a second periodicity. 如申請專利範圍第18項所述之光學影像形成的系統,其中該光源更進一步包括:一調變器,係耦合至該遮罩,且改變該遮罩的一模組以調節該照明的該相位。The optical image forming system of claim 18, wherein the light source further comprises: a modulator coupled to the mask and changing a module of the mask to adjust the illumination Phase. 如申請專利範圍第20項所述之光學影像形成的系統,其中該遮罩的模組包括該遮罩的一位置。The optical image forming system of claim 20, wherein the mask module comprises a position of the mask. 如申請專利範圍第20項所述之光學影像形成的系統,其中該遮罩的模組包括該遮罩的一方向。The optical image forming system of claim 20, wherein the mask module comprises a direction of the mask. 如申請專利範圍第14項所述之光學影像形成的系統,其中該處理器之更進一步的組態為:計算組合該第一套影像以產生該第二套影像,係根據該第一套影像的每個影像有關之該照明的該個別相位;對於該第二套影像之一子集的每個影像,進行傅立葉分析以形成該影像之一頻譜在一空間頻譜內;組合該頻譜之每個個別部份以形成該樣品之該強化切片影像之一複合頻譜;以及使用反傅立葉轉換以產生該強化切片影像以處理該複合頻譜。The optical image forming system of claim 14, wherein the processor is further configured to: calculate and combine the first set of images to generate the second set of images according to the first set of images Each image of the image is associated with the individual phase of the illumination; for each image of a subset of the second set of images, Fourier analysis is performed to form a spectrum of the image in a spatial spectrum; each of the spectra is combined The individual portions are combined to form a composite spectrum of the enhanced slice image of the sample; and an inverse Fourier transform is used to generate the enhanced slice image to process the composite spectrum. 如申請專利範圍第14項所述之光學影像形成的系統,其中該光源包括一個LED陣列結構,以產生可移動之光圖樣。The optical image forming system of claim 14, wherein the light source comprises an LED array structure to produce a movable light pattern.
TW98110046A 2008-12-22 2009-03-27 Wide-field super-resolution optical sectioning microscopy using a spatial light modulator TWI414818B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/341,447 US8019136B2 (en) 2008-12-03 2008-12-22 Optical sectioning microscopy

Publications (2)

Publication Number Publication Date
TW201024792A TW201024792A (en) 2010-07-01
TWI414818B true TWI414818B (en) 2013-11-11

Family

ID=42583968

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110046A TWI414818B (en) 2008-12-22 2009-03-27 Wide-field super-resolution optical sectioning microscopy using a spatial light modulator

Country Status (2)

Country Link
JP (1) JP5085608B2 (en)
TW (1) TWI414818B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422744B2 (en) 2016-10-04 2019-09-24 Industrial Technology Research Institute Interferometer and imaging method therefor
TWI702420B (en) * 2019-03-08 2020-08-21 國立清華大學 Epi-coneshell lightsheet super resolution system and microscopy
TWI804861B (en) * 2020-05-22 2023-06-11 日商斯庫林集團股份有限公司 Optical scanning apparatus, object recognition apparatus and optical scanning method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659603B2 (en) * 2010-07-28 2015-01-28 株式会社豊田中央研究所 Light source device and evaluation method
JP5761458B2 (en) * 2012-06-05 2015-08-12 株式会社ニコン Microscope equipment
CN103018173B (en) * 2012-12-19 2014-12-03 中国科学院深圳先进技术研究院 Structured light illumination chromatography microimaging system
JP6305012B2 (en) * 2013-10-25 2018-04-04 株式会社キーエンス Microscope imaging apparatus, microscope imaging method, and microscope imaging program
CN116380408B (en) * 2023-04-10 2024-06-07 南京航空航天大学 Three-dimensional super-resolution flow field measurement method and system based on structured light and light field imaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200842319A (en) * 2007-04-25 2008-11-01 Academia Sinica Method for characterizing transparent thin-films using differential optical sectioning interference microscopy
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272347A (en) * 2000-03-23 2001-10-05 Olympus Optical Co Ltd Double resonance absorption microscope
PL1937137T3 (en) * 2005-09-29 2022-11-21 General Hospital Corporation Method and apparatus for optical imaging via spectral encoding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
TW200842319A (en) * 2007-04-25 2008-11-01 Academia Sinica Method for characterizing transparent thin-films using differential optical sectioning interference microscopy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422744B2 (en) 2016-10-04 2019-09-24 Industrial Technology Research Institute Interferometer and imaging method therefor
TWI702420B (en) * 2019-03-08 2020-08-21 國立清華大學 Epi-coneshell lightsheet super resolution system and microscopy
TWI804861B (en) * 2020-05-22 2023-06-11 日商斯庫林集團股份有限公司 Optical scanning apparatus, object recognition apparatus and optical scanning method

Also Published As

Publication number Publication date
JP5085608B2 (en) 2012-11-28
JP2010145985A (en) 2010-07-01
TW201024792A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US8019136B2 (en) Optical sectioning microscopy
TWI414818B (en) Wide-field super-resolution optical sectioning microscopy using a spatial light modulator
US8817088B2 (en) Sample observation device for generating super resolution image
JP4831072B2 (en) Microscope equipment
JP2016534389A (en) Aperture scanning Fourier typography imaging
CN110873957A (en) EPI illumination Fourier ptychographic imaging for thick samples
JP2016530567A (en) Variable illumination Fourier typographic imaging apparatus, system, and method
CN107966826B (en) A kind of small-scale structure optical illumination super-resolution micro imaging system
WO2019097587A1 (en) Quantitative phase image generating method, quantitative phase image generating device, and program
CN107850765B (en) Method and assembly for beam shaping and optical layer microscopy
CN106296585B (en) Fourier iteration splicing super-resolution microscopic method and device based on surface wave illumination
JP6408893B2 (en) 3D position information acquisition method and 3D position information acquisition apparatus
US20140133016A1 (en) Illumination optical system and microscope
JPWO2016199179A1 (en) Structured illumination microscope system, method and program
JP2014063151A (en) Microscope illumination optical system and microscope having the same
JP2009098215A (en) Microscope apparatus, and method of calculating amount of phase change in microscope apparatus
CN107202780A (en) A kind of super-resolution microscopic method and device based on speckle illumination
CN109870441A (en) Three-dimensional super-resolution light slice fluorescent microscopic imaging method and device based on shift frequency
US11947098B2 (en) Multi-focal light-sheet structured illumination fluorescence microscopy system
CN103168265A (en) Imaging systems and associated methods thereof
US10211024B1 (en) System and method for axial scanning based on static phase masks
CN110515192B (en) Super-resolution rapid automatic scanning imaging system and method based on water immersion objective lens
CN108982455A (en) A kind of multifocal light slice fluorescent microscopic imaging method and device
US20220244516A1 (en) Microscope device and data generation method using microscope
Wang et al. One-shot optical sectioning structured illumination microscopy