WO2020179015A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020179015A1
WO2020179015A1 PCT/JP2019/008866 JP2019008866W WO2020179015A1 WO 2020179015 A1 WO2020179015 A1 WO 2020179015A1 JP 2019008866 W JP2019008866 W JP 2019008866W WO 2020179015 A1 WO2020179015 A1 WO 2020179015A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
circulation direction
port
flow path
Prior art date
Application number
PCT/JP2019/008866
Other languages
French (fr)
Japanese (ja)
Inventor
幹 佐藤
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/008866 priority Critical patent/WO2020179015A1/en
Priority to JP2021503336A priority patent/JP7118239B2/en
Priority to CN201980093345.7A priority patent/CN113518886B/en
Priority to ES19917871T priority patent/ES2961815T3/en
Priority to EP19917871.6A priority patent/EP3936786B1/en
Publication of WO2020179015A1 publication Critical patent/WO2020179015A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator

Definitions

  • the present invention relates to a refrigeration cycle device in which a refrigerant circulates.
  • Patent Document 1 discloses an air conditioner in which a part of the refrigerant filled in the refrigerant circuit is stored in a plurality of receivers and the remaining refrigerant circulates in the refrigerant circuit. ing. According to the air conditioner, by accumulating the refrigerant by using the plurality of receivers, the circulating refrigerant amount can be set to the optimum refrigerant amount according to the operating condition, and the air conditioning operation can be efficiently performed.
  • the air conditioner disclosed in Patent Document 1 multiple receivers are required to adjust the amount of refrigerant circulating in the air conditioner (circulating refrigerant amount). Therefore, the air conditioner can be upsized.
  • the present invention has been made to solve the above problems, and an object thereof is to improve the operation of the refrigeration cycle apparatus while suppressing the enlargement of the refrigeration cycle apparatus.
  • a refrigerant circulates in the refrigeration cycle apparatus according to the present invention.
  • the refrigeration cycle device includes a compressor, a first heat exchanger, a second heat exchanger, a third heat exchanger, a first expansion valve, and a first switching unit.
  • the first switching unit includes a first port, a second port, and a third port.
  • the first switching unit can switch opening and closing of each of the first flow path and the second flow path.
  • the first flow path communicates the first port and the second port.
  • the second flow path connects the first port and the third port.
  • the refrigerant is the first of the compressor, the first heat exchanger, the first port, the second port, the second heat exchanger, the first expansion valve, and the third heat exchanger.
  • the refrigeration cycle apparatus of the present invention when the circulation direction of the refrigerant is switched from the first circulation direction to the second circulation direction, a part of the refrigerant remains in the second heat exchanger, so that the refrigeration cycle apparatus It is possible to suppress the increase in size of the refrigeration cycle apparatus while improving the performance of 1.
  • 3 is a flowchart for explaining a flow of processing performed by the control device of FIG. 1 on a switching unit in low load operation.
  • FIG. 9 is a functional block diagram showing a configuration of an air conditioner that is an example of a refrigeration cycle device according to a second embodiment, and a flow of refrigerant in a low load operation of a cooling operation and a low load operation of a defrosting operation.
  • FIG. 6 is a functional block diagram showing a configuration of an air conditioner, which is an example of a refrigeration cycle device according to a second embodiment, and a refrigerant flow in a high load operation of a heating operation.
  • FIG. 6 is a functional block diagram showing a configuration of an air conditioner that is an example of a refrigeration cycle device according to a second embodiment and a flow of refrigerant in a low load operation of a heating operation. It is a flowchart for demonstrating the flow of processing with respect to the switching part performed by the control device of FIG. 9 in low load operation. It is a flowchart which shows an example of the flow of the frost formation determination processing performed by a control device in a heating operation.
  • 17 is a flowchart for explaining a flow of processing performed on the three-way valve by the control device of FIG. 16 in the low load operation of the heating operation. It is a flowchart which shows an example of the flow of the frost formation determination processing performed by a control device in a heating operation. It is a flowchart which shows another example of the flow of the frost formation determination processing performed by the control device in a heating operation.
  • FIG. 1 is a functional block diagram showing a configuration of an air conditioner 100 which is an example of the refrigeration cycle device according to the first embodiment.
  • the main flow of the refrigerant is indicated by a thick line. The same applies to FIG. 4, FIG. 7 to FIG. 10, and FIG. 14 which will be described later.
  • the air conditioner 100 includes an outdoor unit 110 and an indoor unit 120.
  • the air conditioner 100 performs a cooling operation on the indoor space in which the indoor unit 120 is arranged.
  • the outdoor unit 110 includes a compressor 1, a heat exchanger 3a (first heat exchanger), a heat exchanger 3b (second heat exchanger), an expansion valve 4a (first expansion valve), and a switching unit 7. (First switching unit), a control device 50, temperature sensors 11 to 14, and an outdoor fan (not shown) are included.
  • the indoor unit 120 includes a heat exchanger 5 (third heat exchanger) and an indoor fan (not shown).
  • the control device 50 may be included in the indoor unit 120, or may be provided separately from the outdoor unit 110 and the indoor unit 120.
  • an arrow G1 indicates the direction of gravity around the heat exchanger 3b. The same applies to FIGS. 6 to 10, 14, and 16 which will be described later.
  • the switching unit 7 includes a port P1 (first port), a port P2 (second port), and a port P3 (third port).
  • the switching unit 7 selectively forms the flow path F1 (first flow path) and the flow path F2 (second flow path).
  • the flow path F1 communicates between ports P1 and P2.
  • the flow path F2 communicates with ports P1 and P3.
  • the refrigerant is circulated in the compressor 1, the heat exchanger 3a, the port P1, the port P2, the heat exchanger 3b, the expansion valve 4a, and the heat exchanger 5 (first circulation direction). ) Cycles.
  • the heat exchangers 3a and 3b integrally function as a condenser, and the heat exchanger 5 functions as an evaporator.
  • the refrigerant flows in from the port P4 (fourth port), and the refrigerant flows out from the port P5 (fifth port).
  • a fan is provided in each of the heat exchangers 3a, 3b, and 5.
  • the fan blows air to the corresponding heat exchanger to increase the heat exchange efficiency between the refrigerant and the air in the heat exchanger.
  • a line flow fan, a propeller fan, a turbo fan, or a sirocco fan can be used as the fan.
  • a plurality of fans may be provided for one heat exchanger, or one fan may be provided for a plurality of heat exchangers.
  • the control device 50 acquires the temperature T11 of the refrigerant passing through the heat exchanger 3a from the temperature sensor 11 installed in the middle part of the heat exchanger 3a.
  • the controller 50 acquires the temperature T12 of the refrigerant flowing between the heat exchanger 3a and the switching unit 7 from the temperature sensor 12.
  • the control device 50 acquires the temperature T13 of the refrigerant flowing between the heat exchanger 3b and the expansion valve 4a from the temperature sensor 13.
  • the control device 50 acquires the temperature T14 of the indoor space where the indoor unit 120 is installed from the temperature sensor 14.
  • the control device 50 controls the drive frequency of the compressor 1 by the command value fc, so that the compressor 1 per unit time is adjusted so that the temperature T14 of the indoor space becomes the target temperature (for example, the temperature set by the user). Control the amount of refrigerant to be discharged.
  • the control device 50 calculates the degree of supercooling of the refrigerant flowing out from the heat exchanger functioning as a condenser using the temperatures T11 to T13.
  • the pressure difference between the refrigerant discharged from the compressor 1 before being depressurized (high pressure side refrigerant) and the refrigerant being depressurized before being sucked into the compressor 1 (low pressure side refrigerant) is in a desired range.
  • the opening of the expansion valve 4a is controlled so that the value becomes.
  • FIG. 2 is a functional block diagram showing the configuration of the control device 50 of FIG.
  • the control device 50 includes a processing circuit 51, a memory 52, and an input / output unit 53.
  • the processing circuit 51 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 52.
  • the processing circuit 51 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FGA (Field Programmable Gate Array) or a combination of these is applicable.
  • the processing circuit 51 is a CPU, the function of the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 52.
  • the processing circuit 51 reads and executes the program stored in the memory.
  • the memory 52 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
  • the CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
  • the operating state of the air conditioner 100 can be divided into high load operation and low load operation according to the load state of the compressor 1.
  • the drive frequency of the compressor 1 in high load operation is higher than the drive frequency of the compressor 1 in low load operation.
  • the operating state of the air conditioner 100 is determined from the command value fc to the compressor 1. For example, the operating state of the air conditioner 100 when the drive frequency of the compressor 1 represented by the command value fc is equal to or higher than the reference frequency is high load operation, and the operating state of the air conditioner 100 when the drive frequency is less than the reference frequency is Low load operation.
  • the command value fc may be changed according to the temperatures T11 to T14.
  • the temperature range is set stepwise (for example, 0°C or more and less than 1°C, 1°C or more and less than 2°C, and 2°C or more and less than 3°C), and the temperature difference between the temperature T14 and the target temperature of the indoor space is
  • the drive frequency of the compressor 1 may be changed depending on which temperature range is included.
  • FIG. 3 is a diagram schematically showing the relationship between the circulating refrigerant amount and the performance of the air conditioner 100 in each of the high load operation and the low load operation of the air conditioner 100 of FIG. 1.
  • COP Coefficient of Performance
  • the curve C1 shows the relationship between the amount of circulating refrigerant and the performance of the air conditioner 100 in high-load operation.
  • a curve C2 shows the relationship between the circulating refrigerant amount and the performance of the air conditioner 100 in the low load operation.
  • the amount of refrigerant M10 is the amount of refrigerant sealed in the air conditioner 100. Since a part of the refrigerant amount M10 is dissolved in the refrigerating machine oil stored in the compressor 1, the circulating refrigerant amount is smaller than the refrigerant amount M10.
  • the performance of the air conditioner 100 is maximized when the amount of circulating refrigerant is M1.
  • the refrigerant amount M10 is determined such that the refrigerant amount obtained by subtracting the amount of dissolution in the refrigerating machine oil from the refrigerant amount M10 becomes M1.
  • the performance of the air conditioner 100 is maximized when the circulating refrigerant amount is M2 ( ⁇ M1). If the low load operation is performed while the amount of circulating refrigerant is M1, the performance of the air conditioner 100 is not maximized.
  • the flow passage F2 is opened as shown in FIG.
  • the heat exchanger 3b is formed and separated from the circulation channel of the refrigerant. The greater the amount of circulating refrigerant, the greater the degree of supercooling of the refrigerant flowing out of the heat exchanger functioning as a condenser. Therefore, whether or not the amount of circulating refrigerant is excessive is determined by the degree of supercooling.
  • the refrigerant circulates in the circulation direction (second circulation direction) of the compressor 1, the heat exchanger 3a, the port P1, the port P3, the expansion valve 4a, and the heat exchanger 5.
  • the circulation direction of the refrigerant is switched from the circulation direction of FIG. 1 to the circulation direction of FIG. 4, a part of the refrigerant remains in the heat exchanger 3b.
  • the heat exchanger 3b is designed so that the refrigerant amount obtained by subtracting the refrigerant amount stored in the heat exchanger 3b from the circulating refrigerant amount M1 becomes M2. Since the heat exchanger 3b can be used as a container for adjusting the amount of circulating refrigerant in the air conditioner 100, a refrigerant container (for example, a receiver) separate from the heat exchanger is unnecessary. According to the air conditioner 100, it is possible to suppress the increase in size of the air conditioner 100 while improving the performance of the air conditioner 100.
  • the flow passage F3 from the heat exchanger 3b to the expansion valve 4a is connected to the flow passage F4 (fourth flow passage) from the port P3 at the connection portion N1 (specific portion).
  • the connecting portion N1 is formed at a position higher than the port P5.
  • the height of the connecting portion N1 may be the same as the height of the port P5.
  • the heat exchanger 3b is separated from the circulation flow path of the refrigerant, but the port P5 communicates with the circulation flow path, so the refrigerant is not sealed in the heat exchanger 3b. Even if the temperature of the heat exchanger 3b rises, the pressure of the refrigerant in the heat exchanger 3b hardly rises, so that the safety of the air conditioner 100 can be ensured.
  • FIG. 5 is a flowchart for explaining the flow of processing for the switching unit 7 performed by the control device 50 of FIG. 1 in low load operation.
  • the process shown in FIG. 5 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 100.
  • the step will be simply referred to as S.
  • the control device 50 determines whether or not the flow path F1 is formed in S101.
  • the control device 50 sets the supercooling degree of the refrigerant flowing out of the heat exchanger 3b in S102 to SC, and advances the process to S104.
  • the control device 50 advances the processing to S104 with the degree of supercooling of the refrigerant flowing out from the heat exchanger 3a being SC in S103.
  • the control device 50 determines whether or not the supercooling degree SC is larger than the reference value SC1 in S104. When supercooling degree SC is larger than reference value SC1 (YES in S104), control device 50 advances the process to S107. When supercooling degree SC is equal to or lower than reference value SC1 (NO in S104), control device 50 determines in S105 whether or not supercooling degree SC is smaller than reference value SC2 ( ⁇ SC1). When the degree of supercooling SC is equal to or higher than the reference value SC2 (NO in S106), control device 50 returns the process to the main routine. When the degree of supercooling SC is smaller than the reference value SC2 (YES in S105), the control device 50 forms the flow path F1 in S106 and advances the process to S107. The control device 50 forms the flow path F2 in S107 and returns the processing to the main routine.
  • the reference values SC1 and SC2 are appropriately calculated by actual machine experiments or simulations.
  • the reference values SC1 and SC2 are set to an upper limit value (for example, 5 ° C.) and a lower limit value (for example, 3 ° C.) of the allowable range (for example, 3 ° C. or higher and 5 ° C. or lower) of the design value of the supercooling degree SC, respectively.
  • connection portion N1 between the flow paths F3 and F4 is formed at a position higher than the port P5
  • the connecting portion N1A between the flow passages F3 and F4 is larger than the port P5. May be formed at a lower position.
  • the height of the portion N2 may be the same as the height of the port P5.
  • the refrigerant filled in the air conditioner 100 includes, for example, HFC (Hydro Fluoro Carbon) refrigerant, HFO (Hydro Fluoro Olefin) refrigerant, HC (Hydro Carbon) refrigerant, or non-azeotropic mixed refrigerant such as R454A.
  • HFC Hydro Fluoro Carbon
  • HFO Hydrofluoro Fluoro Olefin
  • HC Hydrocarbon refrigerant
  • non-azeotropic mixed refrigerant such as R454A.
  • the refrigeration cycle device According to the refrigeration cycle device according to the first embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device.
  • Embodiment 2 In the first embodiment, the refrigeration cycle device that performs the cooling operation on the indoor space in which the indoor unit is arranged has been described. In the second embodiment, a refrigeration cycle device that performs a heating operation and a cooling operation on the indoor space and also performs a defrosting operation during the heating operation will be described.
  • FIG. 7 and 8 are functional block diagrams showing the configuration of the air conditioner 200, which is an example of the refrigeration cycle device according to the second embodiment, and the flow of the refrigerant in the cooling operation and the defrosting operation.
  • a four-way valve 2 second switching unit
  • an expansion valve 4b second expansion valve
  • temperature sensors 15 and 16 are added to the configuration of the air conditioner 100 shown in FIG.
  • 50 is replaced with 50B.
  • the expansion valve 4b that is fully open is represented by a dotted line. The same applies to FIG. 9 described later.
  • the expansion valve 4b is connected between the heat exchanger 3a and the port P1.
  • the control device 50B fully opens the expansion valve 4b so that the heat exchangers 3a and 3b integrally function as a condenser.
  • the control device 50B controls the expansion valves 4a and 4b, and the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is a value in a desired range.
  • the opening degrees of the expansion valves 4a and 4b are controlled so that When the flow path F2 is formed, the opening degree of either one of the expansion valves 4a and 4b may be fully opened.
  • the control device 50B controls the four-way valve 2 to switch the circulation direction of the refrigerant. In the low load operation of the cooling operation and the low load operation of the defrosting operation of the air conditioner 200, the processes shown in FIG. 5 are performed.
  • FIG. 9 and FIG. 10 are functional block diagrams showing a configuration of an air conditioner 200, which is an example of the refrigeration cycle apparatus according to the second embodiment, and a refrigerant flow in heating operation.
  • the refrigerant circulates in the direction opposite to the circulation direction shown in FIG. 7 (the third circulation direction).
  • the heat exchangers 3a and 3b integrally function as an evaporator.
  • the control device 50B fully opens the expansion valve 4b.
  • the refrigerant circulates in the direction opposite to the circulation direction in FIG. 8 (the fourth circulation direction).
  • the heat exchanger 3a functions as an evaporator.
  • the control device 50B controls the expansion valves 4a and 4b so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant becomes a value in a desired range.
  • the opening degree of 4b is controlled.
  • the control device 50B uses the temperatures T15 and T16 to calculate the degree of supercooling of the refrigerant flowing out of the heat exchanger 5.
  • FIG. 11 is a flowchart for explaining the flow of processing for the switching unit 7 performed by the control device 50 of FIG. 9 in the low load operation.
  • the process shown in FIG. 11 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 200.
  • a main routine not shown
  • FIGS. 12 and 13 which will be described later.
  • the control device 50B determines in S201 whether or not the supercooling degree SC is larger than the reference value SC3.
  • the control device 50B advances the process to S204.
  • control device 50B determines in S202 whether supercooling degree SC is smaller than reference value SC4 ( ⁇ SC3).
  • the control device 50B returns the process to the main routine.
  • the control device 50B When the degree of supercooling SC is smaller than the reference value SC4 (YES in S202), the control device 50B forms the flow path F1 in S203 and advances the process to S204. The control device 50B forms the flow path F2 in S204 and returns the process to the main routine.
  • reference values SC3 and SC4 are appropriately calculated by actual machine experiments or simulations.
  • reference values SC3 and SC4 are set to the upper limit value (for example, 3° C.) and the lower limit value (for example, 1° C.) of the allowable range (for example, 1° C. or more and 3° C. or less) of the design value of supercooling degree SC in the heating operation, respectively. To be done.
  • FIG. 12 is a flowchart showing an example of the flow of the frost formation determination process performed by the control device 50B in the heating operation.
  • the control device 50B determines in S211 whether or not the defrosting start condition of the heat exchanger 3b is satisfied.
  • Examples of the defrosting start condition of the heat exchanger 3b include a condition that the temperature T13 is lower than the reference temperature Ds1 (for example, -3 ° C.). If the defrosting start condition of the heat exchanger 3b is not satisfied (NO in S211), the control device 50B returns the process to the main routine.
  • the control device 50B determines in S212 whether the defrosting start condition of the heat exchanger 3a is satisfied. As a condition for starting defrosting of the heat exchanger 3a, a condition that the temperature T11 is lower than the reference temperature Ds2 (for example, -3 ° C.) can be mentioned. If the defrosting start condition of the heat exchanger 3a is not satisfied (NO in S212), the control device 50B returns the process to the main routine. When the defrosting start condition of the heat exchanger 3a is satisfied (YES in S212), the control device 50B advances the process to S213.
  • the control device 50B forms the flow path F1 in S213, and advances the processing to S214.
  • the controller 50B fully opens the expansion valve 4b in S214 and advances the process to S215.
  • the control device 50B switches the circulation direction of the refrigerant in S215 to the circulation direction shown in FIG. 7, and returns the process to the main routine.
  • both the heat exchangers 3a and 3b function as a condenser.
  • the heat exchangers 3a and 3b are defrosted by the heat of condensation released from the refrigerant.
  • FIG. 13 is a flowchart for explaining the flow of processing performed by the control device 50B of FIG. 7 during the reverse defrosting operation.
  • the control device 50B determines in S221 whether or not the defrosting end condition of the heat exchanger 3a is satisfied.
  • the defrosting end condition of the heat exchanger 3a a condition that the temperature T11 is higher than the reference temperature Df1 (for example, 0 ° C.) can be mentioned. If the defrosting end condition of the heat exchanger 3a is not satisfied (NO in S221), the control device 50B returns the process to the main routine.
  • the control device 50B switches the circulation direction of the refrigerant in S222 and proceeds to the process in S223.
  • the control device 50B determines in S223 whether or not the defrosting end condition of the heat exchanger 3b is satisfied.
  • the defrosting end condition of the heat exchanger 3b a condition that the temperature T13 is higher than the reference temperature Df2 (for example, 0 ° C.) can be mentioned.
  • control device 50B fully opens expansion valve 4b in S224 and returns the process to the main routine.
  • the control device 50B controls the opening degree of the expansion valve 4a so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is within a desired range.
  • the control device 50B fully opens the expansion valve 4a and returns the process to the main routine in S225.
  • FIG. 14 shows the flow of the refrigerant when the defrosting end condition of the heat exchanger 3a is satisfied and the defrosting end condition of the heat exchanger 3b is not satisfied (when S225 of FIG. 13 is performed). It is a figure. As shown in FIG. 14, since the expansion valve 4a is fully open, the heat exchanger 3b functions as a condenser. The heat exchanger 3b is defrosted by the heat of condensation of the refrigerant. The heating by the condensation heat of the refrigerant is performed until the defrosting termination condition of the heat exchanger 3b is satisfied.
  • the control device 50B controls the opening degree of the expansion valve 4b so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is within a desired range.
  • the heating operation to be restarted may be either a high load operation or a low load operation.
  • FIG. 15 is a flowchart showing another example of the flow of the frost formation determination process performed by the control device 50B in the heating operation.
  • the flowchart shown in FIG. 15 is a flowchart in which S216 is added to the flowchart shown in FIG. 12 and the order of S212 and S213 is reversed.
  • control device 50B forms the flow path F1 in S213 and advances the process to S212.
  • control device 50B fully opens expansion valve 4a in S216 and returns the process to the main routine.
  • the flow of the refrigerant in the air conditioner 200 after S216 is performed is the flow of the refrigerant shown in FIG.
  • the expansion valve 4b since the expansion valve 4b is connected between the heat exchangers 3b and 3a, the liquid refrigerant can flow into the heat exchanger 3b with the expansion valve 4a fully opened. Since the liquid refrigerant can be stored in the heat exchanger 3b, the heat exchange is more than the case where there is no expansion valve 4b and the heat exchanger 3b stores the gas-liquid two-phase refrigerant after decompression by the expansion valve 4a.
  • the vessel 3b can be downsized.
  • the air conditioner 200 since the defrosting of the heat exchanger 3b can be continued while performing the heating operation, it is possible to reduce the decrease in the temperature of the indoor space due to the reverse defrosting operation. Further, when a non-azeotropic mixed refrigerant is sealed as the refrigerant, the vicinity of the port P5 of the heat exchanger 3b is likely to frost due to the influence of the temperature gradient. In the air conditioner 200, since the refrigerant having a relatively high temperature can flow into the heat exchanger 3b while continuing the heating operation, frost formation in the vicinity of the port P5 of the heat exchanger 3b can be suppressed. Furthermore, by suppressing the frost formation on the heat exchanger 3b, it is possible to prevent the frost formation on the heat exchanger 3a.
  • the refrigeration cycle device According to the refrigeration cycle device according to the second embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device in any of the cooling operation, the heating operation, and the defrosting operation. it can.
  • Embodiment 3 In the first and second embodiments, the case where the first switching unit can selectively form the first flow path and the second flow path has been described. In the third embodiment, a case will be described in which the first switching unit can form a state in which both the first flow path and the second flow path are open.
  • FIG. 16 is a functional block diagram showing the configuration of an air conditioner 300 which is an example of the refrigeration cycle device according to the third embodiment.
  • the air conditioner 300 has a configuration in which the switching unit 7 and the control device 50B in FIG. 7 are replaced with a three-way valve 7C and a control device 50C, respectively. Other than these, it is the same, and therefore the description will not be repeated.
  • the three-way valve 7C includes a port P31 (first port), a port P32 (second port), a port P33 (third port), and a passage F31 (first passage). , And a flow channel F32 (second flow channel).
  • the flow path F31 communicates between ports P31 and P32.
  • the flow path F32 communicates the ports P31 and P33.
  • the three-way valve 7C can switch between opening and closing of the flow paths F31 and F32.
  • FIG. 17 is a flow chart for explaining the flow of processing performed on the three-way valve 7C by the control device 50C of FIG. 16 in the low load operation of the cooling operation.
  • the process shown in FIG. 17 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 300. The same applies to the processing shown in FIG.
  • the control device 50C determines in S301 whether or not the flow path F31 is open.
  • the control device 50C sets the supercooling degree of the refrigerant flowing from the heat exchanger 3b in S302 to SC, and advances the process to S304.
  • the control device 50C sets the supercooling degree of the refrigerant flowing out of the heat exchanger 3a in S303 to SC, and advances the process to S304.
  • the control device 50C determines whether or not the supercooling degree SC is larger than the reference value SC1 in S304. When the supercooling degree SC is larger than the reference value SC1 (YES in S304), the control device 50C proceeds to S305.
  • control device 50C determines in S305 whether the supercooling degree SC is smaller than the reference value SC2. When the supercooling degree SC is equal to or higher than the reference value SC2 (NO in S305), the control device 50C returns the process to the main routine. When supercooling degree SC is smaller than reference value SC2 (YES in S305), control device 50C opens channel F31 in S306 and advances the process to S307.
  • the control device 50C opens the channel F32 in S307 and advances the process to S308.
  • the control device 50C closes the flow path F31 in S308 and returns the process to the main routine.
  • both the flow passages F31 and F32 are opened, so that it is possible to suppress a rapid change in the amount of refrigerant stored in the heat exchanger 3b. As a result, it becomes easy to control the supercooling degree SC within the allowable range of the design value. Further, it is possible to suppress fluctuations in the performance of the air conditioner 200 (for example, the temperature at which air is blown from the indoor unit 120 to the indoor space).
  • FIG. 18 is a flow chart for explaining the flow of processing performed on the three-way valve 7C by the control device 50C of FIG. 16 in the low load operation of the heating operation.
  • the process shown in FIG. 11 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 200. The same applies to the processes shown in FIGS. 12 and 13 which will be described later.
  • control device 50C determines in S311 whether or not the supercooling degree SC is larger than the reference value SC3.
  • the control device 50C advances the process to S314.
  • control device 50C determines in S312 whether supercooling degree SC is smaller than reference value SC4 ( ⁇ SC3).
  • the control device 50C returns the process to the main routine.
  • control device 50C opens channel F31 in S313 and advances the process to S314.
  • the control device 50C opens the flow path F32 in S314 and advances the process to S315.
  • the control device 50C closes the flow path F31 in S315 and returns the process to the main routine.
  • FIG. 19 is a flowchart showing an example of the flow of the frost formation determination process performed by the control device 50C in the heating operation.
  • the flowchart shown in FIG. 19 is a flowchart in which S213 shown in FIG. 12 is replaced by S323 and S324 is added between S323 and S214.
  • the control is performed.
  • the device 50C opens the flow path F31 in S323 and closes the flow path F32 in S324 to proceed with the process to S214.
  • Control device 50C returns to the main routine after performing S214 and S215 as in the second embodiment.
  • FIG. 20 is a flowchart showing another example of the flow of the frost formation determination process performed by the control device 50C in the heating operation.
  • the flowchart shown in FIG. 20 is a flowchart in which S213 is replaced by S323 in FIG. 19 and S324 in FIG. 19 is added between S323 and S212.
  • the control device 50C performs the process shown in FIG.
  • the control device 50C opens the flow passage F31 in S323 and closes the flow passage F32 in S324. Then, the process proceeds to S212.
  • the controller 50C performs S212 and S214 to S216 as in the second embodiment, and returns the process to the main routine.
  • an electronic expansion valve may be connected to each of the flow paths F31 and F32 instead of the three-way valve 7C. Further, it is desirable that the amount of refrigerant flowing in each of the flow paths F31 and F32 can be adjusted.
  • the refrigeration cycle device According to the refrigeration cycle device according to the third embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device (100) is provided with a compressor (1), a first heat exchanger (3a), a second heat exchanger (3b), a third heat exchanger (5), a first expansion valve (4a) and a first switching unit (7). The first switching unit (7) can switch a first flow path (F1) and a second flow path (F2) between open and closed. If the first flow path (F1) is open, then refrigerant circulates in the first circulation direction of the compressor (1), the first heat exchanger (3a), a first port (P1), a second port (P2), the second heat exchanger (3b), the first expansion valve (4a) and the third heat exchanger (5). If the second flow path (F2) is open, then the refrigerant circulates in the second circulation direction of the compressor (1), the first heat exchanger (3a), the first port (P1), a third port (P3), the first expansion valve (4a) and the third heat exchanger (5). When the circulation direction of the refrigerant is switched from the first circulation direction to the second circulation direction, some of the refrigerant remains in the second heat exchanger (3b).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷媒が循環する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device in which a refrigerant circulates.
 従来、冷媒が循環する冷凍サイクル装置が知られている。たとえば、特開2015-87065号公報(特許文献1)には、冷媒回路に充填された冷媒の一部が複数のレシーバに溜められ、残りの冷媒が冷媒回路を循環する空気調和機が開示されている。当該空気調和機によれば、複数のレシーバを用いて冷媒を溜めることにより、循環する冷媒量を運転状況に応じた最適な冷媒量にすることができ、効率よく空調運転を行うことができる。 Conventionally, a refrigeration cycle device in which a refrigerant circulates is known. For example, Japanese Patent Application Laid-Open No. 2015-87065 (Patent Document 1) discloses an air conditioner in which a part of the refrigerant filled in the refrigerant circuit is stored in a plurality of receivers and the remaining refrigerant circulates in the refrigerant circuit. ing. According to the air conditioner, by accumulating the refrigerant by using the plurality of receivers, the circulating refrigerant amount can be set to the optimum refrigerant amount according to the operating condition, and the air conditioning operation can be efficiently performed.
特開2015-87065号公報Japanese Unexamined Patent Publication No. 2015-87065
 特許文献1に開示されている空気調和機においては、空気調和機を循環する冷媒量(循環冷媒量)を調整するために複数のレシーバが必要になる。そのため、空気調和機が大型化し得る。 In the air conditioner disclosed in Patent Document 1, multiple receivers are required to adjust the amount of refrigerant circulating in the air conditioner (circulating refrigerant amount). Therefore, the air conditioner can be upsized.
 本発明は、上記の課題を解決するためになされたものであって、その目的は、冷凍サイクル装置の運転を改善しながら、冷凍サイクル装置の大型化を抑制することである。 The present invention has been made to solve the above problems, and an object thereof is to improve the operation of the refrigeration cycle apparatus while suppressing the enlargement of the refrigeration cycle apparatus.
 本発明に係る冷凍サイクル装置においては、冷媒が循環する。冷凍サイクル装置は、圧縮機と、第1熱交換器と、第2熱交換器と、第3熱交換器と、第1膨張弁と、第1切替部とを備える。第1切替部は、第1ポート、第2ポート、および第3ポートを含む。第1切替部は、第1流路および第2流路の各々の開放および閉止を切替可能である。第1流路は、第1ポートと第2ポートとを連通する。第2流路は、第1ポートと第3ポートとを連通する。第1流路が開放している場合、冷媒は、圧縮機、第1熱交換器、第1ポート、第2ポート、第2熱交換器、第1膨張弁、および第3熱交換器の第1循環方向に循環する。第2流路が開放している場合、冷媒は、圧縮機、第1熱交換器、第1ポート、第3ポート、第1膨張弁、および第3熱交換器の第2循環方向に循環する。冷媒の循環方向が第1循環方向から第2循環方向に切り替えられた場合、第2熱交換器に冷媒の一部が残留する。 A refrigerant circulates in the refrigeration cycle apparatus according to the present invention. The refrigeration cycle device includes a compressor, a first heat exchanger, a second heat exchanger, a third heat exchanger, a first expansion valve, and a first switching unit. The first switching unit includes a first port, a second port, and a third port. The first switching unit can switch opening and closing of each of the first flow path and the second flow path. The first flow path communicates the first port and the second port. The second flow path connects the first port and the third port. When the first flow path is open, the refrigerant is the first of the compressor, the first heat exchanger, the first port, the second port, the second heat exchanger, the first expansion valve, and the third heat exchanger. 1 Circulates in the circulation direction. When the second flow path is open, the refrigerant circulates in the second circulation direction of the compressor, the first heat exchanger, the first port, the third port, the first expansion valve, and the third heat exchanger. .. When the circulation direction of the refrigerant is switched from the first circulation direction to the second circulation direction, a part of the refrigerant remains in the second heat exchanger.
 本発明に係る冷凍サイクル装置によれば、冷媒の循環方向が第1循環方向から第2循環方向に切り替えられた場合に第2熱交換器に冷媒の一部が残留することにより、冷凍サイクル装置の性能を改善しながら、冷凍サイクル装置の大型化を抑制することができる。 According to the refrigeration cycle apparatus of the present invention, when the circulation direction of the refrigerant is switched from the first circulation direction to the second circulation direction, a part of the refrigerant remains in the second heat exchanger, so that the refrigeration cycle apparatus It is possible to suppress the increase in size of the refrigeration cycle apparatus while improving the performance of 1.
実施の形態1に係る冷凍サイクル装置の一例である空調装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the air conditioning apparatus which is an example of the refrigeration cycle apparatus which concerns on Embodiment 1. 図1の制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control apparatus of FIG. 図1の空調装置の高負荷運転および低負荷運転の各々における循環冷媒量と空調装置の性能との関係を模式的に示す図である。It is a figure which shows typically the relationship between the circulating refrigerant amount and the performance of the air conditioner in each of the high load operation and the low load operation of the air conditioner of FIG. 実施の形態1に係る冷凍サイクル装置の一例である空調装置の構成および低負荷運転における冷媒の流れを併せて示す機能ブロック図である。It is a functional block diagram which also shows the structure of the air conditioner which is an example of the refrigeration cycle apparatus which concerns on Embodiment 1, and the flow of the refrigerant in low load operation. 低負荷運転において図1の制御装置によって行なわれる切替部に対する処理の流れを説明するためのフローチャートである。3 is a flowchart for explaining a flow of processing performed by the control device of FIG. 1 on a switching unit in low load operation. 熱交換器からの流路の他の構成例を示す図である。It is a figure which shows the other structural example of the flow path from a heat exchanger. 実施の形態2に係る冷凍サイクル装置の一例である空調装置の構成、ならびに冷房運転の高負荷運転および除霜運転の高負荷運転における冷媒の流れを併せて示す機能ブロック図である。It is a functional block diagram which shows the structure of the air conditioner which is an example of the refrigeration cycle apparatus which concerns on Embodiment 2, and the flow of the refrigerant in the high load operation of a cooling operation and the high load operation of a defrosting operation. 実施の形態2に係る冷凍サイクル装置の一例である空調装置の構成、ならびに冷房運転の低負荷運転および除霜運転の低負荷運転における冷媒の流れを併せて示す機能ブロック図である。FIG. 9 is a functional block diagram showing a configuration of an air conditioner that is an example of a refrigeration cycle device according to a second embodiment, and a flow of refrigerant in a low load operation of a cooling operation and a low load operation of a defrosting operation. 実施の形態2に係る冷凍サイクル装置の一例である空調装置の構成、ならびに暖房運転の高負荷運転における冷媒の流れを併せて示す機能ブロック図である。FIG. 6 is a functional block diagram showing a configuration of an air conditioner, which is an example of a refrigeration cycle device according to a second embodiment, and a refrigerant flow in a high load operation of a heating operation. 実施の形態2に係る冷凍サイクル装置の一例である空調装置の構成、ならびに暖房運転の低負荷運転における冷媒の流れを併せて示す機能ブロック図である。FIG. 6 is a functional block diagram showing a configuration of an air conditioner that is an example of a refrigeration cycle device according to a second embodiment and a flow of refrigerant in a low load operation of a heating operation. 低負荷運転において図9の制御装置によって行なわれる切替部に対する処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of processing with respect to the switching part performed by the control device of FIG. 9 in low load operation. 暖房運転において制御装置によって行われる着霜判定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the frost formation determination processing performed by a control device in a heating operation. リバース除霜運転の間、図7の制御装置によって行なわれる処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process performed by the control device of FIG. 7 during a reverse defrosting operation. 一方の熱交換器の除霜終了条件が成立し、かつ他方の熱交換器の除霜終了条件が成立していない場合の冷媒の流れを示す図である。It is a figure which shows the flow of a refrigerant|coolant when the defrosting termination condition of one heat exchanger is satisfied, and the defrosting termination condition of the other heat exchanger is not satisfied. 暖房運転において制御装置によって行われる着霜判定処理の流れの他の例を示すフローチャートである。It is a flowchart which shows another example of the flow of the frost formation determination processing performed by the control device in a heating operation. 実施の形態3に係る冷凍サイクル装置の一例である空調装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the air conditioning apparatus which is an example of the refrigerating-cycle apparatus which concerns on Embodiment 3. 冷房運転の低負荷運転において図16の制御装置によって行なわれる三方弁に対する処理の流れを説明するためのフローチャートである。17 is a flowchart for explaining a flow of processing performed on the three-way valve by the control device of FIG. 16 in the low load operation of the cooling operation. 暖房運転の低負荷運転において図16の制御装置によって行なわれる三方弁に対する処理の流れを説明するためのフローチャートである。17 is a flowchart for explaining a flow of processing performed on the three-way valve by the control device of FIG. 16 in the low load operation of the heating operation. 暖房運転において制御装置によって行われる着霜判定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the frost formation determination processing performed by a control device in a heating operation. 暖房運転において制御装置によって行われる着霜判定処理の流れの他の例を示すフローチャートである。It is a flowchart which shows another example of the flow of the frost formation determination processing performed by the control device in a heating operation.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In principle, the same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置の一例である空調装置100の構成を示す機能ブロック図である。図1においては、冷媒の主な流れが太線で表されている。後に説明する図4、図7~図10、図14においても同様である。
Embodiment 1.
FIG. 1 is a functional block diagram showing a configuration of an air conditioner 100 which is an example of the refrigeration cycle device according to the first embodiment. In FIG. 1, the main flow of the refrigerant is indicated by a thick line. The same applies to FIG. 4, FIG. 7 to FIG. 10, and FIG. 14 which will be described later.
 図1に示されるように、空調装置100は、室外機110と、室内機120とを備える。空調装置100は、室内機120が配置されている室内空間に対して冷房運転を行う。室外機110は、圧縮機1と、熱交換器3a(第1熱交換器)と、熱交換器3b(第2熱交換器)と、膨張弁4a(第1膨張弁)と、切替部7(第1切替部)と、制御装置50と、温度センサ11~14と、不図示の室外ファンとを含む。室内機120は、熱交換器5(第3熱交換器)と、不図示の室内ファンとを含む。制御装置50は、室内機120に含まれていてもよいし、室外機110および室内機120とは別個に設けられていてもよい。図1において矢印G1は、熱交換器3b周辺の重力方向を示している。後に説明する図6~図10、図14、および図16においても同様である。 As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 110 and an indoor unit 120. The air conditioner 100 performs a cooling operation on the indoor space in which the indoor unit 120 is arranged. The outdoor unit 110 includes a compressor 1, a heat exchanger 3a (first heat exchanger), a heat exchanger 3b (second heat exchanger), an expansion valve 4a (first expansion valve), and a switching unit 7. (First switching unit), a control device 50, temperature sensors 11 to 14, and an outdoor fan (not shown) are included. The indoor unit 120 includes a heat exchanger 5 (third heat exchanger) and an indoor fan (not shown). The control device 50 may be included in the indoor unit 120, or may be provided separately from the outdoor unit 110 and the indoor unit 120. In FIG. 1, an arrow G1 indicates the direction of gravity around the heat exchanger 3b. The same applies to FIGS. 6 to 10, 14, and 16 which will be described later.
 切替部7は、ポートP1(第1ポート)と、ポートP2(第2ポート)と、ポートP3(第3ポート)とを含む。切替部7は、流路F1(第1流路)および流路F2(第2流路)を選択的に形成する。流路F1は、ポートP1とP2とを連通する。流路F2は、ポートP1とP3とを連通する。 The switching unit 7 includes a port P1 (first port), a port P2 (second port), and a port P3 (third port). The switching unit 7 selectively forms the flow path F1 (first flow path) and the flow path F2 (second flow path). The flow path F1 communicates between ports P1 and P2. The flow path F2 communicates with ports P1 and P3.
 流路F1が形成されている場合、冷媒は、圧縮機1、熱交換器3a、ポートP1、ポートP2、熱交換器3b、膨張弁4a、および熱交換器5の循環方向(第1循環方向)に循環する。流路F1が形成されている場合、熱交換器3aおよび3bは一体的に凝縮器として機能し、熱交換器5は蒸発器として機能する。熱交換器3bにおいては、ポートP4(第4ポート)から冷媒が流入し、ポートP5(第5ポート)から冷媒が流出する。 When the flow path F1 is formed, the refrigerant is circulated in the compressor 1, the heat exchanger 3a, the port P1, the port P2, the heat exchanger 3b, the expansion valve 4a, and the heat exchanger 5 (first circulation direction). ) Cycles. When the flow path F1 is formed, the heat exchangers 3a and 3b integrally function as a condenser, and the heat exchanger 5 functions as an evaporator. In the heat exchanger 3b, the refrigerant flows in from the port P4 (fourth port), and the refrigerant flows out from the port P5 (fifth port).
 熱交換器3a、3b、および5の各々には、ファンが設けられている。当該ファンは、対応する熱交換器に空気を送風して当該熱交換器における冷媒と空気との熱交換効率を高める。ファンとしては、たとえばラインフローファン、プロペラファン、ターボファン、あるいはシロッコファンを用いることができる。また、1つの熱交換器に対して複数のファンを設けてもよいし、複数の熱交換器に対して1つのファンを設けてもよい。 A fan is provided in each of the heat exchangers 3a, 3b, and 5. The fan blows air to the corresponding heat exchanger to increase the heat exchange efficiency between the refrigerant and the air in the heat exchanger. As the fan, for example, a line flow fan, a propeller fan, a turbo fan, or a sirocco fan can be used. Further, a plurality of fans may be provided for one heat exchanger, or one fan may be provided for a plurality of heat exchangers.
 制御装置50は、熱交換器3aを通過する冷媒の温度T11を熱交換器3aの中間部に設置された温度センサ11から取得する。制御装置50は、熱交換器3aと切替部7との間を流れる冷媒の温度T12を温度センサ12から取得する。制御装置50は、熱交換器3bと膨張弁4aとの間を流れる冷媒の温度T13を温度センサ13から取得する。制御装置50は、温度センサ14から室内機120が設置されている室内空間の温度T14を取得する。 The control device 50 acquires the temperature T11 of the refrigerant passing through the heat exchanger 3a from the temperature sensor 11 installed in the middle part of the heat exchanger 3a. The controller 50 acquires the temperature T12 of the refrigerant flowing between the heat exchanger 3a and the switching unit 7 from the temperature sensor 12. The control device 50 acquires the temperature T13 of the refrigerant flowing between the heat exchanger 3b and the expansion valve 4a from the temperature sensor 13. The control device 50 acquires the temperature T14 of the indoor space where the indoor unit 120 is installed from the temperature sensor 14.
 制御装置50は、指令値fcによって圧縮機1の駆動周波数を制御することにより、室内空間の温度T14が目標温度(たとえばユーザによって設定された温度)となるように圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置50は、温度T11~T13を用いて凝縮器として機能する熱交換器から流出する冷媒の過冷却度を算出する。 The control device 50 controls the drive frequency of the compressor 1 by the command value fc, so that the compressor 1 per unit time is adjusted so that the temperature T14 of the indoor space becomes the target temperature (for example, the temperature set by the user). Control the amount of refrigerant to be discharged. The control device 50 calculates the degree of supercooling of the refrigerant flowing out from the heat exchanger functioning as a condenser using the temperatures T11 to T13.
 制御装置50は、圧縮機1から吐出されて減圧される前の冷媒(高圧側冷媒)と減圧されて圧縮機1に吸入される前の冷媒(低圧側冷媒)との圧力差が所望の範囲の値となるように膨張弁4aの開度を制御する。 In the control device 50, the pressure difference between the refrigerant discharged from the compressor 1 before being depressurized (high pressure side refrigerant) and the refrigerant being depressurized before being sucked into the compressor 1 (low pressure side refrigerant) is in a desired range. The opening of the expansion valve 4a is controlled so that the value becomes.
 図2は、図1の制御装置50の構成を示す機能ブロック図である。図2に示されるように、制御装置50は、処理回路51と、メモリ52と、入出力部53とを含む。処理回路51は、専用のハードウェアであってもよいし、メモリ52に格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。処理回路51が専用のハードウェアである場合、処理回路51は、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FGA(Field Programmable Gate Array)、あるいはこれらを組み合わせたものが該当する。処理回路51がCPUの場合、制御装置50の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアあるいはファームウェアはプログラムとして記述され、メモリ52に格納される。処理回路51は、メモリに記憶されたプログラムを読み出して実行する。メモリ52には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、あるいはEEPROM(Electrically Erasable Programmable Read Only Memory))、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいはDVD(Digital Versatile Disc)が含まれる。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 FIG. 2 is a functional block diagram showing the configuration of the control device 50 of FIG. As shown in FIG. 2, the control device 50 includes a processing circuit 51, a memory 52, and an input / output unit 53. The processing circuit 51 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 52. When the processing circuit 51 is dedicated hardware, the processing circuit 51 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FGA (Field Programmable Gate Array) or a combination of these is applicable. When the processing circuit 51 is a CPU, the function of the control device 50 is realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 52. The processing circuit 51 reads and executes the program stored in the memory. The memory 52 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc). The CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
 空調装置100の運転状態は、圧縮機1の負荷状態に応じて高負荷運転あるいは低負荷運転に分けられる。高負荷運転における圧縮機1の駆動周波数は、低負荷運転における圧縮機1の駆動周波数よりも高い。空調装置100の運転状態は、圧縮機1への指令値fcから判断される。たとえば、指令値fcが表す圧縮機1の駆動周波数が基準周波数以上の場合の空調装置100の運転状態が高負荷運転であり、当該駆動周波数が基準周波数未満の場合の空調装置100の運転状態が低負荷運転である。 The operating state of the air conditioner 100 can be divided into high load operation and low load operation according to the load state of the compressor 1. The drive frequency of the compressor 1 in high load operation is higher than the drive frequency of the compressor 1 in low load operation. The operating state of the air conditioner 100 is determined from the command value fc to the compressor 1. For example, the operating state of the air conditioner 100 when the drive frequency of the compressor 1 represented by the command value fc is equal to or higher than the reference frequency is high load operation, and the operating state of the air conditioner 100 when the drive frequency is less than the reference frequency is Low load operation.
 指令値fcは、温度T11~T14に応じて変更されてもよい。たとえば、段階的に温度範囲を設定し(たとえば0℃以上1℃未満、1℃以上~2℃未満、および2℃以上~3℃未満)、温度T14と室内空間の目標温度との温度差がどの温度範囲に含まれるによって圧縮機1の駆動周波数が変更されてもよい。 The command value fc may be changed according to the temperatures T11 to T14. For example, the temperature range is set stepwise (for example, 0°C or more and less than 1°C, 1°C or more and less than 2°C, and 2°C or more and less than 3°C), and the temperature difference between the temperature T14 and the target temperature of the indoor space is The drive frequency of the compressor 1 may be changed depending on which temperature range is included.
 図3は、図1の空調装置100の高負荷運転および低負荷運転の各々における循環冷媒量と空調装置100の性能との関係を模式的に示す図である。空調装置100の性能を示す指標としては、たとえばCOP(Coefficient of Performance)が用いられる。図3において、曲線C1は、高負荷運転における循環冷媒量と空調装置100の性能との関係を示す。曲線C2は、低負荷運転における循環冷媒量と空調装置100の性能との関係を示す。冷媒量M10は、空調装置100に封入された冷媒量である。冷媒量M10の一部は圧縮機1に貯留されている冷凍機油に溶解するため、循環冷媒量は冷媒量M10よりも少ない。 FIG. 3 is a diagram schematically showing the relationship between the circulating refrigerant amount and the performance of the air conditioner 100 in each of the high load operation and the low load operation of the air conditioner 100 of FIG. 1. For example, COP (Coefficient of Performance) is used as an index showing the performance of the air conditioner 100. In FIG. 3, the curve C1 shows the relationship between the amount of circulating refrigerant and the performance of the air conditioner 100 in high-load operation. A curve C2 shows the relationship between the circulating refrigerant amount and the performance of the air conditioner 100 in the low load operation. The amount of refrigerant M10 is the amount of refrigerant sealed in the air conditioner 100. Since a part of the refrigerant amount M10 is dissolved in the refrigerating machine oil stored in the compressor 1, the circulating refrigerant amount is smaller than the refrigerant amount M10.
 図3に示されるように、高負荷運転においては循環冷媒量がM1の場合に空調装置100の性能は最大となる。空調装置100においては、冷媒量M10から冷凍機油への溶解量等を引いた冷媒量がM1となるように冷媒量M10が決定される。一方、低負荷運転においては循環冷媒量がM2(<M1)の場合に空調装置100の性能が最大となる。循環冷媒量がM1のまま低負荷運転が行なわれると、空調装置100の性能が最大化されない。 As shown in FIG. 3, in high load operation, the performance of the air conditioner 100 is maximized when the amount of circulating refrigerant is M1. In the air conditioner 100, the refrigerant amount M10 is determined such that the refrigerant amount obtained by subtracting the amount of dissolution in the refrigerating machine oil from the refrigerant amount M10 becomes M1. On the other hand, in the low load operation, the performance of the air conditioner 100 is maximized when the circulating refrigerant amount is M2 (<M1). If the low load operation is performed while the amount of circulating refrigerant is M1, the performance of the air conditioner 100 is not maximized.
 そこで、空調装置100においては、低負荷運転を図1に示される状態から開始し、循環冷媒量が過剰であることを示す条件が成立した場合に、図4に示されるように流路F2を形成して熱交換器3bを冷媒の循環流路から切り離す。循環冷媒量が多いほど凝縮器として機能する熱交換器から流出する冷媒の過冷却度は大きくなるため、循環冷媒量が過剰か否かは当該過冷却度によって判定される。 Therefore, in the air conditioner 100, when the low load operation is started from the state shown in FIG. 1 and the condition indicating that the circulating refrigerant amount is excessive is satisfied, the flow passage F2 is opened as shown in FIG. The heat exchanger 3b is formed and separated from the circulation channel of the refrigerant. The greater the amount of circulating refrigerant, the greater the degree of supercooling of the refrigerant flowing out of the heat exchanger functioning as a condenser. Therefore, whether or not the amount of circulating refrigerant is excessive is determined by the degree of supercooling.
 流路F2が形成されている場合、冷媒は、圧縮機1、熱交換器3a、ポートP1、ポートP3、膨張弁4a、および熱交換器5の循環方向(第2循環方向)に循環する。冷媒の循環方向が図1の循環方向から図4の循環方向に切り替えられた場合、熱交換器3bに冷媒の一部が残留する。 When the flow path F2 is formed, the refrigerant circulates in the circulation direction (second circulation direction) of the compressor 1, the heat exchanger 3a, the port P1, the port P3, the expansion valve 4a, and the heat exchanger 5. When the circulation direction of the refrigerant is switched from the circulation direction of FIG. 1 to the circulation direction of FIG. 4, a part of the refrigerant remains in the heat exchanger 3b.
 低負荷運転において循環冷媒量が過剰であることを示す条件が成立した以降は、熱交換器3bに貯留されている冷媒量が循環冷媒量M1から除かれるため、低負荷運転における空調装置100の性能が改善される。空調装置100においては、循環冷媒量M1から熱交換器3bに貯留される冷媒量を引いた冷媒量がM2となるように熱交換器3bが設計される。空調装置100においては循環冷媒量を調整するための容器として熱交換器3bを用いることができるため、熱交換器とは別個の冷媒容器(たとえばレシーバ)が不要である。空調装置100によれば、空調装置100の性能を改善しながら、空調装置100の大型化を抑制することができる。 After the condition indicating that the amount of circulating refrigerant is excessive in the low load operation is satisfied, the amount of the refrigerant stored in the heat exchanger 3b is excluded from the circulating refrigerant amount M1, so that the air conditioner 100 in the low load operation Performance is improved. In the air conditioner 100, the heat exchanger 3b is designed so that the refrigerant amount obtained by subtracting the refrigerant amount stored in the heat exchanger 3b from the circulating refrigerant amount M1 becomes M2. Since the heat exchanger 3b can be used as a container for adjusting the amount of circulating refrigerant in the air conditioner 100, a refrigerant container (for example, a receiver) separate from the heat exchanger is unnecessary. According to the air conditioner 100, it is possible to suppress the increase in size of the air conditioner 100 while improving the performance of the air conditioner 100.
 図4を参照しながら、熱交換器3bから膨張弁4aに至る流路F3は、接続部分N1(特定部分)において、ポートP3からの流路F4(第4流路)に接続されている。熱交換器3bからの冷媒の流出を防止するため、接続部分N1はポートP5よりも高い位置に形成されていることが望ましい。接続部分N1の高さは、ポートP5の高さと同じでもよい。 Referring to FIG. 4, the flow passage F3 from the heat exchanger 3b to the expansion valve 4a is connected to the flow passage F4 (fourth flow passage) from the port P3 at the connection portion N1 (specific portion). In order to prevent the outflow of the refrigerant from the heat exchanger 3b, it is desirable that the connecting portion N1 is formed at a position higher than the port P5. The height of the connecting portion N1 may be the same as the height of the port P5.
 図4において熱交換器3bは、冷媒の循環流路から切り離されているが、ポートP5は、循環流路に連通しているため、冷媒は熱交換器3bに密閉されてない。熱交換器3bの温度が上昇しても熱交換器3b内の冷媒の圧力は上昇し難いため、空調装置100の安全性を確保することができる。 In FIG. 4, the heat exchanger 3b is separated from the circulation flow path of the refrigerant, but the port P5 communicates with the circulation flow path, so the refrigerant is not sealed in the heat exchanger 3b. Even if the temperature of the heat exchanger 3b rises, the pressure of the refrigerant in the heat exchanger 3b hardly rises, so that the safety of the air conditioner 100 can be ensured.
 図5は、低負荷運転において図1の制御装置50によって行なわれる切替部7に対する処理の流れを説明するためのフローチャートである。図5に示される処理は、空調装置100の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎で呼び出される。以下ではステップを単にSと記載する。 FIG. 5 is a flowchart for explaining the flow of processing for the switching unit 7 performed by the control device 50 of FIG. 1 in low load operation. The process shown in FIG. 5 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 100. In the following, the step will be simply referred to as S.
 図5に示されるように、制御装置50は、S101において流路F1が形成されているか否かを判定する。流路F1が形成されている場合(S101においてYES)、制御装置50は、S102において熱交換器3bから流出する冷媒の過冷却度をSCとして処理をS104に進める。流路F2が形成されている場合(S101においてNO)、制御装置50は、S103において熱交換器3aから流出する冷媒の過冷却度をSCとして処理をS104に進める。 As shown in FIG. 5, the control device 50 determines whether or not the flow path F1 is formed in S101. When the flow path F1 is formed (YES in S101), the control device 50 sets the supercooling degree of the refrigerant flowing out of the heat exchanger 3b in S102 to SC, and advances the process to S104. When the flow path F2 is formed (NO in S101), the control device 50 advances the processing to S104 with the degree of supercooling of the refrigerant flowing out from the heat exchanger 3a being SC in S103.
 制御装置50は、S104において過冷却度SCが基準値SC1よりも大きいか否かを判定する。過冷却度SCが基準値SC1よりも大きい場合(S104においてYES)、制御装置50は、処理をS107に進める。過冷却度SCが基準値SC1以下である場合(S104においてNO)、制御装置50は、S105において、過冷却度SCが基準値SC2(<SC1)よりも小さいか否かを判定する。過冷却度SCが基準値SC2以上である場合(S106においてNO)、制御装置50は、処理をメインルーチンに返す。過冷却度SCが基準値SC2よりも小さい場合(S105においてYES)、制御装置50は、S106において流路F1を形成し、処理をS107に進める。制御装置50は、S107において流路F2を形成して処理をメインルーチンに返す。 The control device 50 determines whether or not the supercooling degree SC is larger than the reference value SC1 in S104. When supercooling degree SC is larger than reference value SC1 (YES in S104), control device 50 advances the process to S107. When supercooling degree SC is equal to or lower than reference value SC1 (NO in S104), control device 50 determines in S105 whether or not supercooling degree SC is smaller than reference value SC2 (<SC1). When the degree of supercooling SC is equal to or higher than the reference value SC2 (NO in S106), control device 50 returns the process to the main routine. When the degree of supercooling SC is smaller than the reference value SC2 (YES in S105), the control device 50 forms the flow path F1 in S106 and advances the process to S107. The control device 50 forms the flow path F2 in S107 and returns the processing to the main routine.
 基準値SC1およびSC2は、実機実験あるいはシミュレーションによって適宜算出される。たとえば、基準値SC1およびSC2は、過冷却度SCの設計値の許容範囲(たとえば3℃以上5℃以下)の上限値(たとえば5℃)および下限値(たとえば3℃)にそれぞれ設定される。 The reference values SC1 and SC2 are appropriately calculated by actual machine experiments or simulations. For example, the reference values SC1 and SC2 are set to an upper limit value (for example, 5 ° C.) and a lower limit value (for example, 3 ° C.) of the allowable range (for example, 3 ° C. or higher and 5 ° C. or lower) of the design value of the supercooling degree SC, respectively.
 空調装置100においては、流路F3とF4との接続部分N1が、ポートP5よりも高い位置に形成されている場合について説明した。図6に示されるように、流路F3がポートP5よりも高い位置に配置された部分N2(特定部分)を有していれば、流路F3とF4との接続部分N1Aは、ポートP5よりも低い位置に形成されていてもよい。部分N2の高さは、ポートP5の高さと同じでもよい。 In the air conditioner 100, a case where the connection portion N1 between the flow paths F3 and F4 is formed at a position higher than the port P5 has been described. As shown in FIG. 6, if the flow passage F3 has a portion N2 (specific portion) arranged at a position higher than the port P5, the connecting portion N1A between the flow passages F3 and F4 is larger than the port P5. May be formed at a lower position. The height of the portion N2 may be the same as the height of the port P5.
 空調装置100に封入される冷媒は、たとえば、HFC(Hydro Fluoro Carbon)冷媒、HFO(Hydro Fluoro Olefin)冷媒、HC(Hydro Carbon)冷媒、あるいはR454A等の非共沸混合冷媒を含む。HC冷媒(たとえばR290)あるいは非共沸混合冷媒(たとえばR454A)を用いることによって、GWP(Global Warming Point)を低減することができる。 The refrigerant filled in the air conditioner 100 includes, for example, HFC (Hydro Fluoro Carbon) refrigerant, HFO (Hydro Fluoro Olefin) refrigerant, HC (Hydro Carbon) refrigerant, or non-azeotropic mixed refrigerant such as R454A. By using an HC refrigerant (for example, R290) or a non-azeotropic mixed refrigerant (for example, R454A), GWP (Global Warming Point) can be reduced.
 以上、実施の形態1に係る冷凍サイクル装置によれば、冷凍サイクル装置の性能を改善しながら、冷凍サイクル装置の大型化を抑制することができる。 As described above, according to the refrigeration cycle device according to the first embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device.
 実施の形態2.
 実施の形態1においては、室内機が配置されている室内空間に対して冷房運転を行う冷凍サイクル装置について説明した。実施の形態2においては、室内空間に対して暖房運転および冷房運転を行うとともに、暖房運転中に除霜運転を行う冷凍サイクル装置について説明する。
Embodiment 2.
In the first embodiment, the refrigeration cycle device that performs the cooling operation on the indoor space in which the indoor unit is arranged has been described. In the second embodiment, a refrigeration cycle device that performs a heating operation and a cooling operation on the indoor space and also performs a defrosting operation during the heating operation will be described.
 図7および図8は、実施の形態2に係る冷凍サイクル装置の一例である空調装置200の構成、ならびに冷房運転および除霜運転における冷媒の流れを併せて示す機能ブロック図である。空調装置200の構成は、図1の空調装置100の構成に四方弁2(第2切替部)、膨張弁4b(第2膨張弁)、温度センサ15,16が追加されているとともに、制御装置50が50Bに置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。なお、図7においては、全開である膨張弁4bを点線で表している。後に説明する図9においても同様である。 7 and 8 are functional block diagrams showing the configuration of the air conditioner 200, which is an example of the refrigeration cycle device according to the second embodiment, and the flow of the refrigerant in the cooling operation and the defrosting operation. As for the configuration of the air conditioner 200, a four-way valve 2 (second switching unit), an expansion valve 4b (second expansion valve), temperature sensors 15 and 16 are added to the configuration of the air conditioner 100 shown in FIG. In this configuration, 50 is replaced with 50B. Other than these, it is the same, and therefore the description will not be repeated. In FIG. 7, the expansion valve 4b that is fully open is represented by a dotted line. The same applies to FIG. 9 described later.
 図7に示されるように、膨張弁4bは、熱交換器3aとポートP1との間に接続されている。流路F1が形成されている場合、制御装置50Bは、熱交換器3aおよび3bが一体的に凝縮器として機能するように膨張弁4bを全開とする。図8に示されるように、流路F2が形成されている場合、制御装置50Bは、膨張弁4aおよび4bを制御して、高圧側冷媒と低圧側冷媒との圧力差が所望の範囲の値となるように膨張弁4a,4bの開度を制御する。流路F2が形成されている場合、膨張弁4aおよび4bのいずれか一方の開度を全開としてもよい。制御装置50Bは、四方弁2を制御して、冷媒の循環方向を切り替える。空調装置200の冷房運転の低負荷運転および除霜運転の低負荷運転においては、図5に示される処理が行われる。 As shown in FIG. 7, the expansion valve 4b is connected between the heat exchanger 3a and the port P1. When the flow path F1 is formed, the control device 50B fully opens the expansion valve 4b so that the heat exchangers 3a and 3b integrally function as a condenser. As shown in FIG. 8, when the flow path F2 is formed, the control device 50B controls the expansion valves 4a and 4b, and the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is a value in a desired range. The opening degrees of the expansion valves 4a and 4b are controlled so that When the flow path F2 is formed, the opening degree of either one of the expansion valves 4a and 4b may be fully opened. The control device 50B controls the four-way valve 2 to switch the circulation direction of the refrigerant. In the low load operation of the cooling operation and the low load operation of the defrosting operation of the air conditioner 200, the processes shown in FIG. 5 are performed.
 図9および図10は、実施の形態2に係る冷凍サイクル装置の一例である空調装置200の構成、ならびに暖房運転における冷媒の流れを併せて示す機能ブロック図である。図9に示されるように、流路F1が形成されている場合、冷媒は、図7に示される循環方向とは逆方向(第3循環方向)に循環する。流路F1が形成されている場合、熱交換器3aおよび3bは、一体的に蒸発器として機能する。流路F1が形成されている場合、制御装置50Bは、膨張弁4bを全開とする。 FIG. 9 and FIG. 10 are functional block diagrams showing a configuration of an air conditioner 200, which is an example of the refrigeration cycle apparatus according to the second embodiment, and a refrigerant flow in heating operation. As shown in FIG. 9, when the flow path F1 is formed, the refrigerant circulates in the direction opposite to the circulation direction shown in FIG. 7 (the third circulation direction). When the flow path F1 is formed, the heat exchangers 3a and 3b integrally function as an evaporator. When the flow path F1 is formed, the control device 50B fully opens the expansion valve 4b.
 図10に示されるように、流路F2が形成されている場合、冷媒は、図8に循環方向とは逆方向(第4循環方向)に循環する。流路F2が形成されている場合、熱交換器3aが蒸発器として機能する。流路F2が形成されている場合、制御装置50Bは、膨張弁4aおよび4bを制御して、高圧側冷媒と低圧側冷媒との圧力差が所望の範囲の値となるように膨張弁4aおよび4bの開度を制御する。流路F2が形成されている場合、膨張弁4aおよび4bのいずれか一方の開度を全開としてもよい。暖房運転において制御装置50Bは、温度T15およびT16を用いて、熱交換器5から流出する冷媒の過冷却度を算出する。 When the flow path F2 is formed as shown in FIG. 10, the refrigerant circulates in the direction opposite to the circulation direction in FIG. 8 (the fourth circulation direction). When the flow path F2 is formed, the heat exchanger 3a functions as an evaporator. When the flow path F2 is formed, the control device 50B controls the expansion valves 4a and 4b so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant becomes a value in a desired range. The opening degree of 4b is controlled. When the flow path F2 is formed, the opening degree of either one of the expansion valves 4a and 4b may be fully opened. In the heating operation, the control device 50B uses the temperatures T15 and T16 to calculate the degree of supercooling of the refrigerant flowing out of the heat exchanger 5.
 図11は、低負荷運転において図9の制御装置50によって行なわれる切替部7に対する処理の流れを説明するためのフローチャートである。図11に示される処理は、空調装置200の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎で呼び出される。後に説明する図12および図13に示される処理についても同様である。 FIG. 11 is a flowchart for explaining the flow of processing for the switching unit 7 performed by the control device 50 of FIG. 9 in the low load operation. The process shown in FIG. 11 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 200. The same applies to the processes shown in FIGS. 12 and 13 which will be described later.
 図11に示されるように、制御装置50Bは、S201において過冷却度SCが基準値SC3よりも大きいか否かを判定する。過冷却度SCが基準値SC3よりも大きい場合(S201においてYES)、制御装置50Bは、処理をS204に進める。過冷却度SCが基準値SC3以下である場合(S201においてNO)、制御装置50Bは、S202において、過冷却度SCが基準値SC4(<SC3)よりも小さいか否かを判定する。過冷却度SCが基準値SC4以上である場合(S203においてNO)、制御装置50Bは、処理をメインルーチンに返す。過冷却度SCが基準値SC4よりも小さい場合(S202においてYES)、制御装置50Bは、S203において流路F1を形成し、処理をS204に進める。制御装置50Bは、S204において流路F2を形成し、処理をメインルーチンに返す。 As shown in FIG. 11, the control device 50B determines in S201 whether or not the supercooling degree SC is larger than the reference value SC3. When the supercooling degree SC is larger than the reference value SC3 (YES in S201), the control device 50B advances the process to S204. When supercooling degree SC is equal to or lower than reference value SC3 (NO in S201), control device 50B determines in S202 whether supercooling degree SC is smaller than reference value SC4 (<SC3). When the supercooling degree SC is equal to or higher than the reference value SC4 (NO in S203), the control device 50B returns the process to the main routine. When the degree of supercooling SC is smaller than the reference value SC4 (YES in S202), the control device 50B forms the flow path F1 in S203 and advances the process to S204. The control device 50B forms the flow path F2 in S204 and returns the process to the main routine.
 基準値SC3およびSC4は、実機実験あるいはシミュレーションによって適宜算出される。たとえば、基準値SC3およびSC4は、暖房運転における過冷却度SCの設計値の許容範囲(たとえば1℃以上3℃以下)の上限値(たとえば3℃)および下限値(たとえば1℃)にそれぞれ設定される。 The reference values SC3 and SC4 are appropriately calculated by actual machine experiments or simulations. For example, reference values SC3 and SC4 are set to the upper limit value (for example, 3° C.) and the lower limit value (for example, 1° C.) of the allowable range (for example, 1° C. or more and 3° C. or less) of the design value of supercooling degree SC in the heating operation, respectively. To be done.
 図12は、暖房運転において制御装置50Bによって行われる着霜判定処理の流れの一例を示すフローチャートである。図12に示されるように、制御装置50Bは、S211において熱交換器3bの除霜開始条件が成立しているか否かを判定する。熱交換器3bの除霜開始条件としては、たとえば温度T13が基準温度Ds1(たとえば-3℃)より低いという条件を挙げることができる。熱交換器3bの除霜開始条件が成立していない場合(S211においてNO)、制御装置50Bは、処理をメインルーチンに返す。 FIG. 12 is a flowchart showing an example of the flow of the frost formation determination process performed by the control device 50B in the heating operation. As shown in FIG. 12, the control device 50B determines in S211 whether or not the defrosting start condition of the heat exchanger 3b is satisfied. Examples of the defrosting start condition of the heat exchanger 3b include a condition that the temperature T13 is lower than the reference temperature Ds1 (for example, -3 ° C.). If the defrosting start condition of the heat exchanger 3b is not satisfied (NO in S211), the control device 50B returns the process to the main routine.
 熱交換器3bの除霜開始条件が成立している場合(S211においてYES)、制御装置50Bは、S212において熱交換器3aの除霜開始条件が成立しているか否かを判定する。熱交換器3aの除霜開始条件としては、温度T11が基準温度Ds2(たとえば-3℃)より低いという条件を挙げることができる。熱交換器3aの除霜開始条件が成立していない場合(S212においてNO)、制御装置50Bは、処理をメインルーチンに返す。熱交換器3aの除霜開始条件が成立している場合(S212においてYES)、制御装置50Bは、処理をS213に進める。 When the defrosting start condition of the heat exchanger 3b is satisfied (YES in S211), the control device 50B determines in S212 whether the defrosting start condition of the heat exchanger 3a is satisfied. As a condition for starting defrosting of the heat exchanger 3a, a condition that the temperature T11 is lower than the reference temperature Ds2 (for example, -3 ° C.) can be mentioned. If the defrosting start condition of the heat exchanger 3a is not satisfied (NO in S212), the control device 50B returns the process to the main routine. When the defrosting start condition of the heat exchanger 3a is satisfied (YES in S212), the control device 50B advances the process to S213.
 制御装置50Bは、S213において流路F1を形成し、処理をS214に進める。制御装置50Bは、S214において膨張弁4bを全開として処理をS215に進める。制御装置50Bは、S215において冷媒の循環方向を図7に示される循環方向に切り替えて、処理をメインルーチンに返す。 The control device 50B forms the flow path F1 in S213, and advances the processing to S214. The controller 50B fully opens the expansion valve 4b in S214 and advances the process to S215. The control device 50B switches the circulation direction of the refrigerant in S215 to the circulation direction shown in FIG. 7, and returns the process to the main routine.
 S215が行われた後、リバース除霜運転が開始される。リバース除霜運転においては、熱交換器3aおよび3bの双方が凝縮器として機能する。熱交換器3aおよび3bは、冷媒から放出される凝縮熱によって除霜される。 After S215, reverse defrosting operation is started. In the reverse defrosting operation, both the heat exchangers 3a and 3b function as a condenser. The heat exchangers 3a and 3b are defrosted by the heat of condensation released from the refrigerant.
 図13は、リバース除霜運転の間、図7の制御装置50Bによって行なわれる処理の流れを説明するためのフローチャートである。図13に示されるように、制御装置50Bは、S221において熱交換器3aの除霜終了条件が成立するか否かを判定する。熱交換器3aの除霜終了条件としては、温度T11が基準温度Df1(たとえば0℃)よりも高いという条件を挙げることができる。熱交換器3aの除霜終了条件が成立していない場合(S221においてNO)、制御装置50Bは、処理をメインルーチンに返す。熱交換器3aの除霜終了条件が成立している場合(S221においてYES)、制御装置50Bは、S222において、冷媒の循環方向を切り替えて、処理をS223に進める。 FIG. 13 is a flowchart for explaining the flow of processing performed by the control device 50B of FIG. 7 during the reverse defrosting operation. As shown in FIG. 13, the control device 50B determines in S221 whether or not the defrosting end condition of the heat exchanger 3a is satisfied. As the defrosting end condition of the heat exchanger 3a, a condition that the temperature T11 is higher than the reference temperature Df1 (for example, 0 ° C.) can be mentioned. If the defrosting end condition of the heat exchanger 3a is not satisfied (NO in S221), the control device 50B returns the process to the main routine. When the defrosting end condition of the heat exchanger 3a is satisfied (YES in S221), the control device 50B switches the circulation direction of the refrigerant in S222 and proceeds to the process in S223.
 制御装置50Bは、S223において熱交換器3bの除霜終了条件が成立しているか否かを判定する。熱交換器3bの除霜終了条件としては、温度T13が基準温度Df2(たとえば0℃)よりも高いという条件を挙げることができる。熱交換器3bの除霜終了条件が成立している場合(S223においてYES)、制御装置50Bは、S224において膨張弁4bを全開として処理をメインルーチンに返す。制御装置50Bは、高圧側冷媒と低圧側冷媒との圧力差が所望の範囲の値となるように膨張弁4aの開度を制御する。熱交換器3bの除霜終了条件が成立していない場合(S223においてNO)、制御装置50Bは、S225において、膨張弁4aを全開として処理をメインルーチンに返す。 The control device 50B determines in S223 whether or not the defrosting end condition of the heat exchanger 3b is satisfied. As the defrosting end condition of the heat exchanger 3b, a condition that the temperature T13 is higher than the reference temperature Df2 (for example, 0 ° C.) can be mentioned. When the defrosting termination condition of heat exchanger 3b is satisfied (YES in S223), control device 50B fully opens expansion valve 4b in S224 and returns the process to the main routine. The control device 50B controls the opening degree of the expansion valve 4a so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is within a desired range. When the defrosting termination condition of the heat exchanger 3b is not satisfied (NO in S223), the control device 50B fully opens the expansion valve 4a and returns the process to the main routine in S225.
 図14は、熱交換器3aの除霜終了条件が成立し、かつ熱交換器3bの除霜終了条件が成立していない場合(図13のS225が行われた場合)の冷媒の流れを示す図である。図14に示されるように、膨張弁4aが全開であるため、熱交換器3bは凝縮器として機能する。熱交換器3bは、冷媒の凝縮熱によって除霜される。冷媒の凝縮熱による加熱は、熱交換器3bの除霜終了条件が成立するまで行われる。制御装置50Bは、高圧側冷媒と低圧側冷媒との圧力差が所望の範囲の値となるように膨張弁4bの開度を制御する。熱交換器3aおよび3bの双方に対する除霜が終了した場合、暖房運転が再開される。再開される暖房運転は、高負荷運転および低負荷運転のいずれでもよい。 FIG. 14 shows the flow of the refrigerant when the defrosting end condition of the heat exchanger 3a is satisfied and the defrosting end condition of the heat exchanger 3b is not satisfied (when S225 of FIG. 13 is performed). It is a figure. As shown in FIG. 14, since the expansion valve 4a is fully open, the heat exchanger 3b functions as a condenser. The heat exchanger 3b is defrosted by the heat of condensation of the refrigerant. The heating by the condensation heat of the refrigerant is performed until the defrosting termination condition of the heat exchanger 3b is satisfied. The control device 50B controls the opening degree of the expansion valve 4b so that the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant is within a desired range. When the defrosting for both the heat exchangers 3a and 3b is completed, the heating operation is restarted. The heating operation to be restarted may be either a high load operation or a low load operation.
 冷媒の凝縮熱による熱交換器3bの加熱は、熱交換器3bへの着霜を抑制するために行われてもよい。図15は、暖房運転において制御装置50Bによって行われる着霜判定処理の流れの他の例を示すフローチャートである。図15に示されるフローチャートは、図12に示されるフローチャートにS216が追加されているとともに、S212とS213との順序が逆にされたフローチャートである。 The heat exchanger 3b may be heated by the heat of condensation of the refrigerant in order to suppress frost formation on the heat exchanger 3b. FIG. 15 is a flowchart showing another example of the flow of the frost formation determination process performed by the control device 50B in the heating operation. The flowchart shown in FIG. 15 is a flowchart in which S216 is added to the flowchart shown in FIG. 12 and the order of S212 and S213 is reversed.
 図15に示されるように、熱交換器3bの除霜開始条件が成立している場合(S211においてYES)、制御装置50Bは、S213において流路F1を形成し、処理をS212に進める。熱交換器3aの除霜開始条件が成立していない場合(S212においてNO)、制御装置50Bは、S216において膨張弁4aを全開として処理をメインルーチンに返す。 As shown in FIG. 15, when the defrosting start condition for the heat exchanger 3b is satisfied (YES in S211), the control device 50B forms the flow path F1 in S213 and advances the process to S212. When the defrosting start condition of heat exchanger 3a is not satisfied (NO in S212), control device 50B fully opens expansion valve 4a in S216 and returns the process to the main routine.
 S216が行われた後の空調装置200における冷媒の流れは、図14に示される冷媒の流れとなる。空調装置200においては、熱交換器3bと3aとの間に膨張弁4bが接続されているため、膨張弁4aを全開として熱交換器3bに液冷媒を流入させることができる。熱交換器3bに液冷媒を貯留することができるため、膨張弁4bが無く、熱交換器3bに膨張弁4aによる減圧後の気液二相状態の冷媒が貯留される場合よりも、熱交換器3bを小型化することができる。 The flow of the refrigerant in the air conditioner 200 after S216 is performed is the flow of the refrigerant shown in FIG. In the air conditioner 200, since the expansion valve 4b is connected between the heat exchangers 3b and 3a, the liquid refrigerant can flow into the heat exchanger 3b with the expansion valve 4a fully opened. Since the liquid refrigerant can be stored in the heat exchanger 3b, the heat exchange is more than the case where there is no expansion valve 4b and the heat exchanger 3b stores the gas-liquid two-phase refrigerant after decompression by the expansion valve 4a. The vessel 3b can be downsized.
 空調装置200においては、暖房運転を行いながら熱交換器3bの除霜を継続することができるため、リバース除霜運転に伴う室内空間の温度の低下を低減する事ができる。また、冷媒として非共沸混合冷媒が封入されている場合、温度勾配の影響により、熱交換器3bのポートP5付近が着霜し易い。空調装置200においては、暖房運転を継続しつつ、熱交換器3bに比較的温度の高い冷媒を流入させるができるため、熱交換器3bのポートP5付近の着霜を抑制することができる。さらに、熱交換器3bの着霜を抑制することにより、熱交換器3aへの着霜の広がりを防ぐことができる。 In the air conditioner 200, since the defrosting of the heat exchanger 3b can be continued while performing the heating operation, it is possible to reduce the decrease in the temperature of the indoor space due to the reverse defrosting operation. Further, when a non-azeotropic mixed refrigerant is sealed as the refrigerant, the vicinity of the port P5 of the heat exchanger 3b is likely to frost due to the influence of the temperature gradient. In the air conditioner 200, since the refrigerant having a relatively high temperature can flow into the heat exchanger 3b while continuing the heating operation, frost formation in the vicinity of the port P5 of the heat exchanger 3b can be suppressed. Furthermore, by suppressing the frost formation on the heat exchanger 3b, it is possible to prevent the frost formation on the heat exchanger 3a.
 以上、実施の形態2に係る冷凍サイクル装置によれば、冷房運転、暖房運転、および除霜運転のいずれにおいても冷凍サイクル装置の性能を改善しながら、冷凍サイクル装置の大型化を抑制することができる。 As described above, according to the refrigeration cycle device according to the second embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device in any of the cooling operation, the heating operation, and the defrosting operation. it can.
 実施の形態3.
 実施の形態1および2においては、第1切替部が第1流路と第2流路とを選択的に形成可能な場合について説明した。実施の形態3においては、第1切替部が第1流路および第2流路がともに開放されている状態を形成可能な場合について説明する。
Embodiment 3.
In the first and second embodiments, the case where the first switching unit can selectively form the first flow path and the second flow path has been described. In the third embodiment, a case will be described in which the first switching unit can form a state in which both the first flow path and the second flow path are open.
 図16は、実施の形態3に係る冷凍サイクル装置の一例である空調装置300の構成を示す機能ブロック図である。空調装置300の構成は、図7の切替部7および制御装置50Bが、三方弁7Cおよび制御装置50Cにそれぞれ置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。 FIG. 16 is a functional block diagram showing the configuration of an air conditioner 300 which is an example of the refrigeration cycle device according to the third embodiment. The air conditioner 300 has a configuration in which the switching unit 7 and the control device 50B in FIG. 7 are replaced with a three-way valve 7C and a control device 50C, respectively. Other than these, it is the same, and therefore the description will not be repeated.
 図16に示されるように、三方弁7Cは、ポートP31(第1ポート)と、ポートP32(第2ポート)と、ポートP33(第3ポート)と、流路F31(第1流路)と、流路F32(第2流路)とを含む。流路F31は、ポートP31とP32とを連通する。流路F32は、ポートP31とP33とを連通する。三方弁7Cは、流路F31およびF32の開放および閉止を切替可能である。 As shown in FIG. 16, the three-way valve 7C includes a port P31 (first port), a port P32 (second port), a port P33 (third port), and a passage F31 (first passage). , And a flow channel F32 (second flow channel). The flow path F31 communicates between ports P31 and P32. The flow path F32 communicates the ports P31 and P33. The three-way valve 7C can switch between opening and closing of the flow paths F31 and F32.
 図17は、冷房運転の低負荷運転において図16の制御装置50Cによって行なわれる三方弁7Cに対する処理の流れを説明するためのフローチャートである。図17に示される処理は、空調装置300の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎で呼び出される。図18に示される処理についても同様である。 FIG. 17 is a flow chart for explaining the flow of processing performed on the three-way valve 7C by the control device 50C of FIG. 16 in the low load operation of the cooling operation. The process shown in FIG. 17 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 300. The same applies to the processing shown in FIG.
 図17に示されるように、制御装置50Cは、S301において流路F31が開放されているか否かを判定する。流路F31が開放されている場合(S301においてYES)、制御装置50Cは、S302において熱交換器3bから流出する冷媒の過冷却度をSCとして処理をS304に進める。流路F31が閉止されている場合(S301においてNO)、制御装置50Cは、S303において熱交換器3aから流出する冷媒の過冷却度をSCとして処理をS304に進める。 As shown in FIG. 17, the control device 50C determines in S301 whether or not the flow path F31 is open. When the flow path F31 is open (YES in S301), the control device 50C sets the supercooling degree of the refrigerant flowing from the heat exchanger 3b in S302 to SC, and advances the process to S304. When the flow path F31 is closed (NO in S301), the control device 50C sets the supercooling degree of the refrigerant flowing out of the heat exchanger 3a in S303 to SC, and advances the process to S304.
 制御装置50Cは、S304において過冷却度SCが基準値SC1よりも大きいか否かを判定する。過冷却度SCが基準値SC1よりも大きい場合(S304においてYES)、制御装置50Cは、S305に処理を進める。 The control device 50C determines whether or not the supercooling degree SC is larger than the reference value SC1 in S304. When the supercooling degree SC is larger than the reference value SC1 (YES in S304), the control device 50C proceeds to S305.
 過冷却度SCが基準値SC1以下である場合(S304においてNO)、制御装置50Cは、S305において、過冷却度SCが基準値SC2よりも小さいか否かを判定する。過冷却度SCが基準値SC2以上である場合(S305においてNO)、制御装置50Cは、処理をメインルーチンに返す。過冷却度SCが基準値SC2よりも小さい場合(S305においてYES)、制御装置50Cは、S306において流路F31を開放し、処理をS307に進める。 When the supercooling degree SC is equal to or less than the reference value SC1 (NO in S304), the control device 50C determines in S305 whether the supercooling degree SC is smaller than the reference value SC2. When the supercooling degree SC is equal to or higher than the reference value SC2 (NO in S305), the control device 50C returns the process to the main routine. When supercooling degree SC is smaller than reference value SC2 (YES in S305), control device 50C opens channel F31 in S306 and advances the process to S307.
 制御装置50Cは、S307において流路F32を開放して処理をS308に進める。制御装置50Cは、S308において流路F31を閉止して処理をメインルーチンに返す。 The control device 50C opens the channel F32 in S307 and advances the process to S308. The control device 50C closes the flow path F31 in S308 and returns the process to the main routine.
 S306およびS307の順に実行された場合、流路F31およびF32の双方が開放されるため、熱交換器3bに貯留されている冷媒量の急激な変化を抑制することができる。その結果、過冷却度SCを設計値の許容範囲内に制御し易くなる。また、空調装置200の性能(たとえば室内機120から室内空間へ送風する温度)の変動を抑制することができる。 When executed in the order of S306 and S307, both the flow passages F31 and F32 are opened, so that it is possible to suppress a rapid change in the amount of refrigerant stored in the heat exchanger 3b. As a result, it becomes easy to control the supercooling degree SC within the allowable range of the design value. Further, it is possible to suppress fluctuations in the performance of the air conditioner 200 (for example, the temperature at which air is blown from the indoor unit 120 to the indoor space).
 図18は、暖房運転の低負荷運転において図16の制御装置50Cによって行なわれる三方弁7Cに対する処理の流れを説明するためのフローチャートである。図11に示される処理は、空調装置200の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎で呼び出される。後に説明する図12および図13に示される処理についても同様である。 FIG. 18 is a flow chart for explaining the flow of processing performed on the three-way valve 7C by the control device 50C of FIG. 16 in the low load operation of the heating operation. The process shown in FIG. 11 is called at regular time intervals by a main routine (not shown) that performs integrated control of the air conditioner 200. The same applies to the processes shown in FIGS. 12 and 13 which will be described later.
 図18に示されるように、制御装置50Cは、S311において過冷却度SCが基準値SC3よりも大きいか否かを判定する。過冷却度SCが基準値SC3よりも大きい場合(S311においてYES)、制御装置50Cは、処理をS314に進める。過冷却度SCが基準値SC3以下である場合(S311においてNO)、制御装置50Cは、S312において、過冷却度SCが基準値SC4(<SC3)よりも小さいか否かを判定する。過冷却度SCが基準値SC4以上である場合(S312においてNO)、制御装置50Cは、処理をメインルーチンに返す。過冷却度SCが基準値SC4よりも小さい場合(S312においてYES)、制御装置50Cは、S313において流路F31を開放し、処理をS314に進める。 As shown in FIG. 18, the control device 50C determines in S311 whether or not the supercooling degree SC is larger than the reference value SC3. When the supercooling degree SC is larger than the reference value SC3 (YES in S311), the control device 50C advances the process to S314. When supercooling degree SC is equal to or lower than reference value SC3 (NO in S311), control device 50C determines in S312 whether supercooling degree SC is smaller than reference value SC4 (<SC3). When the supercooling degree SC is equal to or higher than the reference value SC4 (NO in S312), the control device 50C returns the process to the main routine. When supercooling degree SC is smaller than reference value SC4 (YES in S312), control device 50C opens channel F31 in S313 and advances the process to S314.
 制御装置50Cは、S314において流路F32を開放し、処理をS315に進める。制御装置50Cは、S315において流路F31を閉止して処理をメインルーチンに返す。 The control device 50C opens the flow path F32 in S314 and advances the process to S315. The control device 50C closes the flow path F31 in S315 and returns the process to the main routine.
 図19は、暖房運転において制御装置50Cによって行われる着霜判定処理の流れの一例を示すフローチャートである。図19に示されるフローチャートは、図12に示されるS213がS323に置き換えられているとともに、S324がS323とS214との間に追加されているフローチャートである。 FIG. 19 is a flowchart showing an example of the flow of the frost formation determination process performed by the control device 50C in the heating operation. The flowchart shown in FIG. 19 is a flowchart in which S213 shown in FIG. 12 is replaced by S323 and S324 is added between S323 and S214.
 図19に示されるように、熱交換器3bの除霜開始条件が成立している(S211においてYES)とともに熱交換器3aの除霜開始条件が成立している場合(S212においてYES)、制御装置50Cは、S323において流路F31を開放するとともに、S324において流路F32を閉止して処理をS214に進める。制御装置50Cは、実施の形態2と同様にS214およびS215を行った後、処理をメインルーチンに返す。 As shown in FIG. 19, when the defrosting start condition of the heat exchanger 3b is satisfied (YES in S211) and the defrosting start condition of the heat exchanger 3a is satisfied (YES in S212), the control is performed. The device 50C opens the flow path F31 in S323 and closes the flow path F32 in S324 to proceed with the process to S214. Control device 50C returns to the main routine after performing S214 and S215 as in the second embodiment.
 図20は、暖房運転において制御装置50Cによって行われる着霜判定処理の流れの他の例を示すフローチャートである。図20に示されるフローチャートは、S213が図19のS323に置き換えられているとともに、図19のS324がS323とS212との間に追加されているフローチャートである。なお、リバース除霜運転の間、制御装置50Cは、図14に示される処理を行う。 FIG. 20 is a flowchart showing another example of the flow of the frost formation determination process performed by the control device 50C in the heating operation. The flowchart shown in FIG. 20 is a flowchart in which S213 is replaced by S323 in FIG. 19 and S324 in FIG. 19 is added between S323 and S212. During the reverse defrosting operation, the control device 50C performs the process shown in FIG.
 図20に示されるように、熱交換器3bの除霜開始条件が成立している場合(S211においてYES)、制御装置50Cは、S323において流路F31を開放するとともにS324において流路F32を閉止して処理をS212に進める。制御装置50Cは、実施の形態2と同様にS212、S214~S216を行って処理をメインルーチンに返す。 As shown in FIG. 20, when the defrosting start condition for the heat exchanger 3b is satisfied (YES in S211), the control device 50C opens the flow passage F31 in S323 and closes the flow passage F32 in S324. Then, the process proceeds to S212. The controller 50C performs S212 and S214 to S216 as in the second embodiment, and returns the process to the main routine.
 なお、三方弁7Cに替えて、流路F31およびF32の各々に電子膨張弁が接続されてもよい。また、流路F31およびF32の各々を単位時間に流れる冷媒量は調節可能であることが望ましい。 Note that an electronic expansion valve may be connected to each of the flow paths F31 and F32 instead of the three-way valve 7C. Further, it is desirable that the amount of refrigerant flowing in each of the flow paths F31 and F32 can be adjusted.
 以上、実施の形態3に係る冷凍サイクル装置によれば、冷凍サイクル装置の性能を改善しながら、冷凍サイクル装置の大型化を抑制することができる。 As described above, according to the refrigeration cycle device according to the third embodiment, it is possible to suppress the increase in size of the refrigeration cycle device while improving the performance of the refrigeration cycle device.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 -Each embodiment disclosed this time is also planned to be implemented by appropriately combining as long as there is no contradiction. The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 圧縮機、2 四方弁、3a,3b,5 熱交換器、4a,4b 膨張弁、7 切替部、7C 三方弁、11~16 温度センサ、50,50B,50C 制御装置、51 処理回路、52 メモリ、53 入出力部、100,200,300 空調装置、110 室外機、120 室内機、F1~F4,F31,F32 流路、P1~P5,P31~P33 ポート。 1 compressor, 2 4-way valve, 3a, 3b, 5 heat exchanger, 4a, 4b expansion valve, 7 switching unit, 7C 3-way valve, 11-16 temperature sensor, 50, 50B, 50C controller, 51 processing circuit, 52 Memory, 53 input/output unit, 100, 200, 300 air conditioner, 110 outdoor unit, 120 indoor unit, F1 to F4, F31, F32 flow path, P1 to P5, P31 to P33 ports.

Claims (10)

  1.  冷媒が循環する冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第3熱交換器と、
     第1膨張弁と、
     第1ポート、第2ポート、および第3ポートを含む第1切替部とを備え、
     前記第1切替部は、前記第1ポートと前記第2ポートとを連通する第1流路および前記第1ポートと前記第3ポートとを連通する第2流路の各々の開放および閉止を切替可能であり、
     前記第1流路が開放している場合、前記冷媒は、前記圧縮機、前記第1熱交換器、前記第1ポート、前記第2ポート、前記第2熱交換器、前記第1膨張弁、および前記第3熱交換器の第1循環方向に循環し、
     前記第2流路が開放している場合、前記冷媒は、前記圧縮機、前記第1熱交換器、前記第1ポート、前記第3ポート、前記第1膨張弁、および前記第3熱交換器の第2循環方向に循環し、
     前記冷媒の循環方向が前記第1循環方向から前記第2循環方向に切り替えられた場合、前記第2熱交換器に前記冷媒の一部が残留する、冷凍サイクル装置。
    A refrigeration cycle device in which a refrigerant circulates,
    A compressor,
    A first heat exchanger,
    A second heat exchanger,
    A third heat exchanger,
    A first expansion valve,
    A first switching unit including a first port, a second port, and a third port,
    The first switching unit switches between opening and closing of each of a first flow path that communicates the first port and the second port and a second flow path that communicates the first port and the third port. Is possible,
    When the first flow path is open, the refrigerant is the compressor, the first heat exchanger, the first port, the second port, the second heat exchanger, the first expansion valve, And circulates in the first circulation direction of the third heat exchanger,
    When the second flow path is open, the refrigerant is the compressor, the first heat exchanger, the first port, the third port, the first expansion valve, and the third heat exchanger. Circulating in the second circulation direction of
    A refrigeration cycle device in which a part of the refrigerant remains in the second heat exchanger when the circulation direction of the refrigerant is switched from the first circulation direction to the second circulation direction.
  2.  前記第1切替部は、前記第1流路および前記第2流路を選択的に形成する、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the first switching unit selectively forms the first flow path and the second flow path.
  3.  前記第2熱交換器は、
     前記第1循環方向において前記冷媒が流入する第4ポートと、
     前記第1循環方向において前記冷媒が流出する第5ポートとを含み、
     前記第2熱交換器から前記第1膨張弁に至る第3流路は、前記第5ポートよりも高い位置に配置された特定部分を有する、請求項1または2に記載の冷凍サイクル装置。
    The second heat exchanger,
    A fourth port into which the refrigerant flows in the first circulation direction;
    A fifth port through which the refrigerant flows in the first circulation direction,
    The refrigeration cycle apparatus according to claim 1 or 2, wherein a third flow path from the second heat exchanger to the first expansion valve has a specific portion arranged at a position higher than the fifth port.
  4.  前記第3ポートから前記第3流路に至る第4流路は、前記特定部分において前記第3流路に接続している、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 3, wherein a fourth flow path from the third port to the third flow path is connected to the third flow path in the specific portion.
  5.  前記第1切替部を制御する制御装置をさらに備え、
     前記制御装置は、前記第1膨張弁に流入する前記冷媒の過冷却度が基準値よりも小さい場合、前記第1流路を開放する、請求項2~4のいずれか1項に記載の冷凍サイクル装置。
    Further comprising a control device for controlling the first switching unit,
    The refrigeration according to any one of claims 2 to 4, wherein the control device opens the first flow path when the degree of supercooling of the refrigerant flowing into the first expansion valve is smaller than a reference value. Cycle equipment.
  6.  前記制御装置は、前記過冷却度が前記基準値よりも大きい場合、前記第2流路を開放する、請求項5に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 5, wherein the control device opens the second flow path when the degree of supercooling is larger than the reference value.
  7.  前記冷媒の循環方向を前記第1循環方向および前記第1循環方向と逆方向の第3循環方向との間で切り替えるとともに、前記冷媒の循環方向を前記第2循環方向および前記第2循環方向とは逆方向の第4循環方向との間で切り替える第2切替部と、
     前記第1熱交換器および前記第2熱交換器の間に接続された第2膨張弁とをさらに備え、
     前記制御装置は、前記冷媒の循環方向が前記第1循環方向または前記第2循環方向である場合に、前記第1熱交換器の除霜終了条件が成立しかつ前記第2熱交換器の除霜終了条件が成立していないとき、前記第1流路を開放して前記冷媒の循環方向を前記第3循環方向に切り替えるとともに、前記第1膨張弁を全開とする、請求項5または6に記載の冷凍サイクル装置。
    The circulation direction of the refrigerant is switched between the first circulation direction and a third circulation direction opposite to the first circulation direction, and the circulation direction of the refrigerant is the second circulation direction and the second circulation direction. Is a second switching unit that switches between a fourth circulation direction in the opposite direction,
    Further comprising a second expansion valve connected between the first heat exchanger and the second heat exchanger,
    When the circulation direction of the refrigerant is the first circulation direction or the second circulation direction, the control device satisfies a defrosting termination condition for the first heat exchanger and removes the second heat exchanger. The frost ending condition is not satisfied, the first flow path is opened, the circulation direction of the refrigerant is switched to the third circulation direction, and the first expansion valve is fully opened. The refrigeration cycle device described.
  8.  前記制御装置は、前記冷媒の循環方向が前記第3循環方向または前記第4循環方向である場合に、前記第2熱交換器の除霜開始条件が成立しかつ前記第1熱交換器の除霜開始条件が成立していないとき、前記第1流路を開放するとともに、前記第1膨張弁を全開とする、請求項7に記載の冷凍サイクル装置。 When the circulation direction of the refrigerant is the third circulation direction or the fourth circulation direction, the control device satisfies the defrosting start condition of the second heat exchanger and defrosts the first heat exchanger. The refrigeration cycle apparatus according to claim 7, wherein when the frost start condition is not satisfied, the first flow path is opened and the first expansion valve is fully opened.
  9.  前記冷媒は、HC(Hydro Carbon)冷媒を含む、請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigerant contains an HC (Hydro Carbon) refrigerant.
  10.  前記冷媒は、非共沸混合冷媒を含む、請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigerant includes a non-azeotropic mixed refrigerant.
PCT/JP2019/008866 2019-03-06 2019-03-06 Refrigeration cycle device WO2020179015A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/008866 WO2020179015A1 (en) 2019-03-06 2019-03-06 Refrigeration cycle device
JP2021503336A JP7118239B2 (en) 2019-03-06 2019-03-06 refrigeration cycle equipment
CN201980093345.7A CN113518886B (en) 2019-03-06 2019-03-06 Refrigeration cycle device
ES19917871T ES2961815T3 (en) 2019-03-06 2019-03-06 Refrigeration cycle device
EP19917871.6A EP3936786B1 (en) 2019-03-06 2019-03-06 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008866 WO2020179015A1 (en) 2019-03-06 2019-03-06 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020179015A1 true WO2020179015A1 (en) 2020-09-10

Family

ID=72338482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008866 WO2020179015A1 (en) 2019-03-06 2019-03-06 Refrigeration cycle device

Country Status (5)

Country Link
EP (1) EP3936786B1 (en)
JP (1) JP7118239B2 (en)
CN (1) CN113518886B (en)
ES (1) ES2961815T3 (en)
WO (1) WO2020179015A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860168A (en) * 1981-07-09 1983-04-09 テイ−アイ(グル−プ・サ−ビシ−ズ)リミテツド Heat exchanger
JPH01116366U (en) * 1988-01-29 1989-08-04
JP2006317063A (en) * 2005-05-12 2006-11-24 Sharp Corp Air conditioner
JP2009041829A (en) * 2007-08-08 2009-02-26 Panasonic Corp Air conditioner
JP2015087065A (en) 2013-10-31 2015-05-07 シャープ株式会社 Air conditioner
JP2018087675A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Refrigeration unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860168U (en) * 1981-10-16 1983-04-22 三洋電機株式会社 Refrigeration equipment
CN201335568Y (en) * 2008-12-27 2009-10-28 广东美的电器股份有限公司 Defrosting system for outdoor unit of air conditioner
JP5755490B2 (en) * 2011-04-18 2015-07-29 トヨタ自動車株式会社 Cooling system
WO2014097899A1 (en) 2012-12-21 2014-06-26 富士フイルム株式会社 Solid-state image pickup device
US9605885B2 (en) * 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve
JP6017058B2 (en) * 2013-10-24 2016-10-26 三菱電機株式会社 Air conditioner
JP6319334B2 (en) * 2016-01-15 2018-05-09 ダイキン工業株式会社 Refrigeration equipment
CN105758075A (en) * 2016-04-01 2016-07-13 珠海格力电器股份有限公司 Sectional heating and defrosting air conditioning system and heating and defrosting control method thereof
CN206247522U (en) * 2016-11-07 2017-06-13 宁波甬凌环境设备有限公司 A kind of trilogy supply air source heat pump system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860168A (en) * 1981-07-09 1983-04-09 テイ−アイ(グル−プ・サ−ビシ−ズ)リミテツド Heat exchanger
JPH01116366U (en) * 1988-01-29 1989-08-04
JP2006317063A (en) * 2005-05-12 2006-11-24 Sharp Corp Air conditioner
JP2009041829A (en) * 2007-08-08 2009-02-26 Panasonic Corp Air conditioner
JP2015087065A (en) 2013-10-31 2015-05-07 シャープ株式会社 Air conditioner
JP2018087675A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Refrigeration unit

Also Published As

Publication number Publication date
EP3936786A4 (en) 2022-03-16
CN113518886A (en) 2021-10-19
JPWO2020179015A1 (en) 2021-12-02
EP3936786B1 (en) 2023-10-04
ES2961815T3 (en) 2024-03-14
CN113518886B (en) 2022-11-11
JP7118239B2 (en) 2022-08-15
EP3936786A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
JP6899928B2 (en) Refrigeration cycle equipment
JP3943092B2 (en) Air conditioner and control method thereof
JP7034319B2 (en) Air conditioner
JP7105933B2 (en) Outdoor unit of refrigerating device and refrigerating device provided with the same
JP6880213B2 (en) Air conditioner
JP5403093B2 (en) Air conditioner
JP6548742B2 (en) Air conditioner
US8769968B2 (en) Refrigerant system and method for controlling the same
JP6672619B2 (en) Air conditioning system
JP5082807B2 (en) Air conditioner
JPWO2020174687A1 (en) Outdoor unit of air conditioner
JP2017009269A5 (en)
WO2020179015A1 (en) Refrigeration cycle device
JP6529579B2 (en) Heat pump system
WO2022029845A1 (en) Air conditioner
JP7000261B2 (en) Combined heat source heat pump device
WO2020144843A1 (en) Air-conditioning apparatus
JPWO2021075013A5 (en)
JP7407920B2 (en) Refrigeration cycle equipment
WO2020161837A1 (en) Refrigeration cycle device
WO2022249394A1 (en) Refrigeration cycle device
KR101669971B1 (en) Air conditioner
JP6602397B2 (en) Refrigeration equipment
JPH11118263A (en) Air conditioner
JP2005233451A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019917871

Country of ref document: EP

Effective date: 20211006