JP7105933B2 - Outdoor unit of refrigerating device and refrigerating device provided with the same - Google Patents

Outdoor unit of refrigerating device and refrigerating device provided with the same Download PDF

Info

Publication number
JP7105933B2
JP7105933B2 JP2020570246A JP2020570246A JP7105933B2 JP 7105933 B2 JP7105933 B2 JP 7105933B2 JP 2020570246 A JP2020570246 A JP 2020570246A JP 2020570246 A JP2020570246 A JP 2020570246A JP 7105933 B2 JP7105933 B2 JP 7105933B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
outdoor unit
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020570246A
Other languages
Japanese (ja)
Other versions
JPWO2020161803A1 (en
Inventor
智隆 石川
寛也 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020161803A1 publication Critical patent/JPWO2020161803A1/en
Application granted granted Critical
Publication of JP7105933B2 publication Critical patent/JP7105933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍装置の室外機およびそれを備える冷凍装置に関する。 TECHNICAL FIELD The present invention relates to an outdoor unit of a refrigerating device and a refrigerating device including the same.

冷凍装置には、クーラーに付着する霜を融解させるための除霜モードが設けられる。除霜方式としては、たとえば、四方弁によって圧縮機からの高温ガスを通常は蒸発器として働くクーラーに送るように冷媒の循環方向を変更するリバースホットガス除霜方式が知られている。 The refrigerating device is provided with a defrosting mode for melting frost adhering to the cooler. As a defrosting method, for example, a reverse hot gas defrosting method is known, in which a four-way valve changes the refrigerant circulation direction so that high-temperature gas from a compressor is sent to a cooler that normally functions as an evaporator.

特許第5595245号公報(特許文献1)は、二元サイクルの低温側サイクルにおいて、リバースホットガス除霜方式で除霜を行なう冷凍装置を開示する。 Japanese Patent No. 5595245 (Patent Document 1) discloses a refrigerating device that performs defrosting by a reverse hot gas defrosting method in a low temperature side cycle of a binary cycle.

特許第5595245号公報Japanese Patent No. 5595245

特許第5595245号公報(特許文献1)に開示された冷凍装置では、高温側サイクルの冷媒と低温側サイクルの冷媒との間の熱交換を行なうカスケードコンデンサによる冷却で、除霜時の高圧上昇を抑制できる。 In the refrigeration system disclosed in Japanese Patent No. 5595245 (Patent Document 1), cooling by a cascade condenser that exchanges heat between the refrigerant in the high temperature side cycle and the refrigerant in the low temperature side cycle prevents the high pressure from rising during defrosting. can be suppressed.

二元サイクルのカスケードコンデンサとしては一般的にプレート型熱交換器が用いられる。プレート型熱交換器は、内容積が小さい。このため、カスケードコンデンサで除霜時の冷媒凝縮を促進させても、圧力抑制効果には限度がある。したがって、ファンを停止している除霜運転中に蒸発器に付着した霜の融解が完了すると、冷媒が十分に冷却されずに冷媒圧力が設計圧力まで急上昇し、保護のために運転が自動停止する可能性がある。二元サイクルに限らず、通常の冷凍サイクル装置であっても、設計圧力が低くて済む点で、除霜運転中に冷媒圧力が上昇しすぎる事態を避けることが望ましい。 A plate heat exchanger is generally used as a binary cycle cascade condenser. A plate heat exchanger has a small internal volume. Therefore, even if the cascade condenser promotes condensation of the refrigerant during defrosting, there is a limit to the pressure suppression effect. Therefore, if the frost on the evaporator completes melting during defrosting operation with the fan stopped, the refrigerant will not cool sufficiently and the refrigerant pressure will rise to the design pressure, and the operation will automatically stop for protection. there's a possibility that. Not only in the binary cycle, but also in a normal refrigerating cycle device, it is desirable to avoid a situation in which the refrigerant pressure rises excessively during the defrosting operation because the design pressure can be low.

本発明は、上記課題を解決するためになされたものであって、除霜運転中に冷媒圧力の上昇を抑制できる冷凍装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigeration system capable of suppressing an increase in refrigerant pressure during defrosting operation.

本開示は、冷凍モードと除霜モードとを有する冷凍装置の室外機に関する。室外機は、第1圧縮機および第2熱交換器と、四方弁と、冷媒量調整機構とを備える。第1圧縮機および第2熱交換器は、第1膨張弁および第1熱交換器が直列接続された室内機との間で第1冷媒が循環するように接続される。四方弁は、冷凍モードにおいて、第1冷媒を第1圧縮機、第2熱交換器を経て第1膨張弁に向かう正方向に流すとともに、除霜モードにおいて、第1冷媒を第1圧縮機から第1熱交換器に流し、かつ第1膨張弁から第2熱交換器を経て第1圧縮機に戻す逆方向に流すように、第1圧縮機の吐出口の接続先と第1圧縮機の吸入口の接続先とを入れ替える。冷媒量調整機構は、除霜モードにおける第1冷媒の循環量を調整する。 The present disclosure relates to an outdoor unit of a refrigeration system having a freezing mode and a defrosting mode. The outdoor unit includes a first compressor, a second heat exchanger, a four-way valve, and a refrigerant amount adjustment mechanism. The first compressor and the second heat exchanger are connected so that the first refrigerant circulates with the indoor unit in which the first expansion valve and the first heat exchanger are connected in series. The four-way valve allows the first refrigerant to flow in the positive direction toward the first expansion valve through the first compressor and the second heat exchanger in the freezing mode, and allows the first refrigerant to flow from the first compressor in the defrosting mode. Between the connection destination of the discharge port of the first compressor and the first compressor so that it flows in the first heat exchanger and flows in the opposite direction from the first expansion valve through the second heat exchanger and back to the first compressor. Replace the connection destination of the suction port. The refrigerant amount adjustment mechanism adjusts the circulation amount of the first refrigerant in the defrosting mode.

本開示の冷凍装置によれば、除霜モードでの運転中に第1冷媒の循環量を調整することができるので、除霜モードでの運転中に冷媒圧力を適切な範囲に保つことができる。 According to the refrigeration system of the present disclosure, the circulation amount of the first refrigerant can be adjusted during operation in the defrost mode, so the refrigerant pressure can be kept within an appropriate range during operation in the defrost mode. .

実施の形態1に係る冷凍装置の構成を示す図である。1 is a diagram showing the configuration of a refrigeration system according to Embodiment 1; FIG. 冷凍装置の制御を行なう制御装置50の構成を示す図である。3 is a diagram showing the configuration of a control device 50 that controls a refrigeration system; FIG. 実施の形態1の冷凍装置の除霜モードにおける冷媒の流れを示す図である。4 is a diagram showing the flow of refrigerant in the defrosting mode of the refrigeration system of Embodiment 1; FIG. 実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。4 is a flow chart for explaining control executed by a control device in Embodiment 1. FIG. 実施の形態2に係る冷凍装置の構成を示す図である。FIG. 6 is a diagram showing the configuration of a refrigeration system according to Embodiment 2; 実施の形態2の冷凍装置の除霜モードにおける冷媒の流れを示す図である。FIG. 10 is a diagram showing the flow of refrigerant in the defrosting mode of the refrigeration system of Embodiment 2; 実施の形態3に係る冷凍装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 3; 実施の形態4に係る冷凍装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 4;

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.

実施の形態1.
図1は、実施の形態1に係る冷凍装置の構成を示す図である。図1を参照して、冷凍装置100は、室外機101と、室内機102と、室外機101と室内機102とを接続する配管27,31とを備える。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a refrigeration system according to Embodiment 1. FIG. Referring to FIG. 1 , refrigerating apparatus 100 includes an outdoor unit 101 , an indoor unit 102 , and pipes 27 and 31 connecting outdoor unit 101 and indoor unit 102 .

室内機102は、第1膨張弁3と、第1熱交換器4とを含む。第1膨張弁3と第1熱交換器4とは直列接続される。第1膨張弁3として、たとえば、第1熱交換器4の冷媒出口の温度に基づいて制御される温度膨張弁を使用することができる。 Indoor unit 102 includes a first expansion valve 3 and a first heat exchanger 4 . The first expansion valve 3 and the first heat exchanger 4 are connected in series. As the first expansion valve 3, for example, a temperature expansion valve controlled based on the temperature of the refrigerant outlet of the first heat exchanger 4 can be used.

室外機101は、第1圧縮機1および第2熱交換器2と、四方弁7と、冷媒量調整機構10と、制御装置50とを備える。 The outdoor unit 101 includes a first compressor 1 , a second heat exchanger 2 , a four-way valve 7 , a refrigerant amount adjusting mechanism 10 and a controller 50 .

図2は、冷凍装置の制御を行なう制御装置50の構成を示す図である。図2を参照して、制御装置50は、プロセッサ51と、メモリ52と、図示しない通信インターフェース等とを含む。プロセッサ51は、メモリ52に記憶されたデータおよび通信インターフェースを経由して得た情報に従って、第1圧縮機1の運転周波数、四方弁7の接続等を制御する。 FIG. 2 is a diagram showing the configuration of a control device 50 that controls the refrigeration system. Referring to FIG. 2, control device 50 includes a processor 51, a memory 52, a communication interface (not shown), and the like. The processor 51 controls the operating frequency of the first compressor 1, the connection of the four-way valve 7, etc. according to the data stored in the memory 52 and the information obtained via the communication interface.

メモリ52は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。なお、図1に示した制御装置50は、プロセッサ51がメモリ52に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。アプリケーションプログラムの実行の際には、メモリ52に記憶されている各種のデータが参照される。 The memory 52 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory. The flash memory stores an operating system, application programs, and various data. Control device 50 shown in FIG. 1 is implemented by processor 51 executing an operating system and application programs stored in memory 52 . Various data stored in the memory 52 are referenced when the application program is executed.

再び図1を参照して、第1圧縮機1および第2熱交換器2は、室内機102との間で第1冷媒が循環するように接続される。 Referring to FIG. 1 again, first compressor 1 and second heat exchanger 2 are connected to indoor unit 102 so that the first refrigerant circulates.

冷凍装置100は、動作モードとして、冷凍モードと除霜モードとを有する。冷凍モードでは、図1の矢印に示す向きに冷媒が流れる。図3は、実施の形態1の冷凍装置の除霜モードにおける冷媒の流れを示す図である。 Refrigeration apparatus 100 has a freezing mode and a defrosting mode as operation modes. In the freezing mode, the refrigerant flows in the direction indicated by the arrows in FIG. 3 is a diagram showing the flow of refrigerant in the defrosting mode of the refrigeration system of Embodiment 1. FIG.

四方弁7は、冷凍モードと除霜モードとで第1圧縮機1の吐出口の接続先と第1圧縮機1の吸入口の接続先とを入れ替える。四方弁7は、図1に示す冷凍モードにおいては、第1冷媒を第1圧縮機1、第2熱交換器2を経て第1膨張弁3に向かう正方向に流すように第1圧縮機1を接続する。四方弁7は、図3に示す除霜モードにおいては、第1冷媒を第1圧縮機1から第1熱交換器4に流し、かつ第1膨張弁3から第2熱交換器2を経て第1圧縮機1に戻す逆方向に流すように第1圧縮機1を接続する。 The four-way valve 7 switches the connection destination of the discharge port of the first compressor 1 and the connection destination of the suction port of the first compressor 1 between the freezing mode and the defrosting mode. In the refrigerating mode shown in FIG. 1, the four-way valve 7 is arranged in the first compressor 1 so that the first refrigerant flows in the positive direction toward the first expansion valve 3 via the first compressor 1 and the second heat exchanger 2. to connect. In the defrosting mode shown in FIG. 3, the four-way valve 7 allows the first refrigerant to flow from the first compressor 1 to the first heat exchanger 4 and from the first expansion valve 3 to the second heat exchanger 2. The first compressor 1 is connected so as to flow in the opposite direction back to the first compressor 1 .

冷媒量調整機構10は、除霜モードにおける第1冷媒の循環量を調整するように構成される。 The refrigerant amount adjustment mechanism 10 is configured to adjust the circulation amount of the first refrigerant in the defrost mode.

冷媒量調整機構10は、受液器8と、冷媒排出管34,35と、流量調整弁45とを含む。受液器8は、第2熱交換器2と第1膨張弁3との間に設置される。冷媒排出管34,35は、受液器8の出口と第1圧縮機1の吸入口との間を接続する。流量調整弁45は、冷媒排出管34,35を流通する第1冷媒の流量を調整する。 The refrigerant amount adjustment mechanism 10 includes a liquid receiver 8 , refrigerant discharge pipes 34 and 35 and a flow rate adjustment valve 45 . A liquid receiver 8 is installed between the second heat exchanger 2 and the first expansion valve 3 . Refrigerant discharge pipes 34 and 35 connect between the outlet of the liquid receiver 8 and the suction port of the first compressor 1 . The flow rate adjustment valve 45 adjusts the flow rate of the first refrigerant flowing through the refrigerant discharge pipes 34 and 35 .

室外機101は、図3に示す除霜モードにおいて、受液器8を経由せずに第1冷媒を第1膨張弁3から第2熱交換器2に向けて流すバイパス流路36,37をさらに備える。 In the defrosting mode shown in FIG. 3, the outdoor unit 101 has bypass passages 36 and 37 that flow the first refrigerant from the first expansion valve 3 toward the second heat exchanger 2 without passing through the liquid receiver 8. Prepare more.

室外機101は、バイパス流路36,37に設けられた第2膨張弁46と、バイパス流路37に設けられ、冷媒流通方向を第2膨張弁46から第2熱交換器2に向けて流す向きに制限する逆止弁43とをさらに備える。 The outdoor unit 101 includes a second expansion valve 46 provided in the bypass passages 36 and 37 and a refrigerant flow direction provided in the bypass passage 37 from the second expansion valve 46 to the second heat exchanger 2. and an orientation-limiting check valve 43 .

四方弁7を図3に示す状態に切り替えると、逆止弁41~43があるので、図3の矢印に示す向きに冷媒が循環する。冷凍モードから除霜モードに切り替えるときには、冷媒量調整機構10の受液器8には十分な量の冷媒が貯留されている。除霜モードにおいて、流量調整弁45を開けると循環する冷媒量が追加される。したがって、除霜モードで循環する冷媒量を適切な量に設定するには、冷媒量が適量となった時点で流量調整弁45を閉じればよい。なお、逆止弁42が冷媒排出管34が分岐した後の配管25と配管26との間に設けられているので、除霜モードにおいて流量調整弁45を開けても第1膨張弁3からの冷媒が受液器8側に逆流することはない。 When the four-way valve 7 is switched to the state shown in FIG. 3, the refrigerant circulates in the direction indicated by the arrows in FIG. 3 because of the check valves 41 to 43. FIG. When switching from the freezing mode to the defrosting mode, a sufficient amount of refrigerant is stored in the liquid receiver 8 of the refrigerant amount adjusting mechanism 10 . In the defrosting mode, opening the flow control valve 45 adds the amount of refrigerant to circulate. Therefore, in order to set the amount of refrigerant circulating in the defrosting mode to an appropriate amount, the flow control valve 45 should be closed when the amount of refrigerant reaches an appropriate amount. In addition, since the check valve 42 is provided between the pipe 25 and the pipe 26 after the refrigerant discharge pipe 34 branches, even if the flow control valve 45 is opened in the defrosting mode, The refrigerant does not flow back to the liquid receiver 8 side.

図4は、実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。このフローチャートの処理は、冷凍装置の運転中において、一定時間経過ごと、または予め定められた条件が成立するごとに繰返し実行される。たとえば、一定時間ごとに除霜を行なう場合には、制御装置50は、前回の第1熱交換器4の除霜から一定時間が経過した場合に図4のフローチャートの処理を実行する。なお、この除霜モードへの移行の判断は、冷媒温度または第1熱交換器4への霜の付着状態を検出し、これらに基づいて行なっても良い。 FIG. 4 is a flowchart for explaining control executed by a control device in Embodiment 1. FIG. The processing of this flow chart is repeatedly executed every time a certain period of time elapses or every time a predetermined condition is satisfied during the operation of the refrigeration system. For example, when defrosting is performed at regular time intervals, the control device 50 executes the process of the flowchart of FIG. 4 when a certain time has passed since the previous defrosting of the first heat exchanger 4 . It should be noted that the decision to switch to the defrost mode may be made based on the detection of the refrigerant temperature or the state of frost on the first heat exchanger 4 .

図4を参照して、制御装置50は、除霜モードに切り替える条件が成立すると、ステップS1において、四方弁7を図1の状態から図3の状態に切り換える。 Referring to FIG. 4, control device 50 switches four-way valve 7 from the state shown in FIG. 1 to the state shown in FIG. 3 in step S1 when the condition for switching to the defrosting mode is established.

そして、ステップS2において、制御装置50は、温度センサ61および圧力センサ62の出力を監視し、第2膨張弁46の手前のバイパス流路36における第1冷媒の過冷却度(SC:サブクール)が判定値よりも低いか否かを判断する。 Then, in step S2, the control device 50 monitors the outputs of the temperature sensor 61 and the pressure sensor 62, and determines that the degree of subcooling (SC: subcooling) of the first refrigerant in the bypass flow path 36 before the second expansion valve 46 is It is judged whether or not it is lower than the judgment value.

SCが判定値よりも低い場合には(S2でYES)、循環させる冷媒量を追加するために、制御装置50は流量調整弁45を開く。一方、SCが判定値以上であった場合には(S2でNO)、循環させる冷媒量は十分であるので、制御装置50は流量調整弁45を閉じる。 If SC is lower than the judgment value (YES in S2), controller 50 opens flow control valve 45 to increase the amount of refrigerant to be circulated. On the other hand, when SC is equal to or greater than the judgment value (NO in S2), the control device 50 closes the flow control valve 45 because the amount of refrigerant to be circulated is sufficient.

ステップS5において除霜完了と判断されるまで、ステップS2~S4の処理が繰返される。これによって、除霜モードにおいて循環する冷媒量が適量に調整される。 The processes of steps S2 to S4 are repeated until it is determined in step S5 that the defrosting is completed. As a result, the amount of refrigerant circulating in the defrost mode is adjusted appropriately.

除霜完了と判断された場合には(S5でYES)、ステップS6において、制御装置50は、四方弁7を図1の冷凍モードの状態に戻す。 When it is determined that the defrosting is completed (YES in S5), in step S6, the control device 50 returns the four-way valve 7 to the freezing mode of FIG.

実施の形態1に示した冷凍装置100によれば、除霜時の冷媒循環量を適正に保つことができるので、冷媒不足による除霜能力の低下および高圧の過上昇を避けることができる。したがって、短時間で確実に霜を融解させることができるとともに、設計圧力を低く抑えることができる。 According to the refrigerating apparatus 100 shown in Embodiment 1, since the refrigerant circulation amount during defrosting can be properly maintained, it is possible to avoid a decrease in defrosting capability and an excessive increase in high pressure due to insufficient refrigerant. Therefore, the frost can be reliably melted in a short time, and the design pressure can be kept low.

実施の形態2.
図5は、実施の形態2に係る冷凍装置の構成を示す図である。図5を参照して、冷凍装置200は、室外機201と、室内機202と、室外機201と室内機202とを接続する配管27,31とを備える。
Embodiment 2.
FIG. 5 is a diagram showing the configuration of a refrigeration system according to Embodiment 2. As shown in FIG. Referring to FIG. 5 , refrigerating apparatus 200 includes an outdoor unit 201 , an indoor unit 202 , and pipes 27 and 31 connecting outdoor unit 201 and indoor unit 202 .

室内機202は、実施の形態1の室内機102と同様な構成である。
室外機201は、実施の形態1の室外機101の構成を低温側の第1冷凍サイクル装置207とし、第3熱交換器214と、高温側の第2冷凍サイクル装置206とをさらに備え、制御装置50に代えて制御装置250を備える。たとえば、第1冷凍サイクル装置207で用いられる第1冷媒はCO等であり、第2冷凍サイクル装置206で用いられる第2冷媒は、CO、プロパン等である。他の部分の室外機201の構成については、図1の室外機101と共通するので、ここでは説明は繰返さない。また、制御装置250の構成も図2に示した制御装置50と同様であるので、説明は繰返さない。
The indoor unit 202 has the same configuration as the indoor unit 102 of the first embodiment.
The outdoor unit 201 has the structure of the outdoor unit 101 of Embodiment 1 as a low-temperature side first refrigerating cycle device 207, and further includes a third heat exchanger 214 and a high-temperature side second refrigerating cycle device 206. A control device 250 is provided instead of the device 50 . For example, the first refrigerant used in first refrigeration cycle device 207 is CO 2 or the like, and the second refrigerant used in second refrigeration cycle device 206 is CO 2 , propane, or the like. Other parts of the configuration of the outdoor unit 201 are the same as those of the outdoor unit 101 in FIG. 1, and therefore description thereof will not be repeated here. The configuration of control device 250 is also the same as that of control device 50 shown in FIG. 2, and therefore description thereof will not be repeated.

第2冷凍サイクル装置206は、第2冷媒が、第2圧縮機211、第4熱交換器212、第3膨張弁213および第3熱交換器214の順に循環するように構成される。第3熱交換器214は、冷凍モードにおいて、第2冷媒と第2熱交換器2から排出され受液器8に流入する第1冷媒との間の熱交換を行なう。受液器8に流入する冷媒を第3熱交換器214で冷却するので、受液器8内の圧力上昇が抑制される。 The second refrigerating cycle device 206 is configured such that the second refrigerant circulates through the second compressor 211, the fourth heat exchanger 212, the third expansion valve 213 and the third heat exchanger 214 in this order. The third heat exchanger 214 exchanges heat between the second refrigerant and the first refrigerant discharged from the second heat exchanger 2 and flowing into the liquid receiver 8 in the refrigerating mode. Since the refrigerant flowing into the liquid receiver 8 is cooled by the third heat exchanger 214, pressure rise in the liquid receiver 8 is suppressed.

第1圧縮機1および第2熱交換器2は、室内機202との間で第1冷媒が循環するように接続される。 First compressor 1 and second heat exchanger 2 are connected to indoor unit 202 so that the first refrigerant circulates.

冷凍装置200は、動作モードとして、冷凍モードと除霜モードとを有する。冷凍モードでは、図5の矢印に示す向きに冷媒が流れる。図6は、実施の形態2の冷凍装置の除霜モードにおける冷媒の流れを示す図である。 Refrigeration apparatus 200 has a freezing mode and a defrosting mode as operation modes. In the freezing mode, the refrigerant flows in the directions indicated by the arrows in FIG. FIG. 6 is a diagram showing the flow of refrigerant in the defrosting mode of the refrigeration system of Embodiment 2. FIG.

実施の形態2における冷凍モードと除霜モードにおける冷媒の循環方向の違いについては、図1および図3で説明した実施の形態1と基本的には同じである。また、冷媒量を調整する制御についても、図4で示したフローチャートと共通する。したがって、これらについては説明を繰返さない。 The difference in the refrigerant circulation direction between the freezing mode and the defrosting mode in the second embodiment is basically the same as in the first embodiment described with reference to FIGS. 1 and 3 . Also, the control for adjusting the amount of refrigerant is common to the flowchart shown in FIG. Therefore, description of these will not be repeated.

実施の形態2に示したような、高温側の第2冷凍サイクル装置206と低温側の第1冷凍サイクル装置207とを含む2元サイクルの場合には、低温側の第1冷凍サイクル装置207の設計圧力は低く設定される。したがって、除霜モードにおける冷媒循環量を冷媒量調整機構10で調整することは、低温側の第1冷凍サイクル装置207の圧力抑制に効果的であり、炭酸ガスなどを第2冷媒として適用した場合に有効である。 In the case of a binary cycle including the second refrigeration cycle device 206 on the high temperature side and the first refrigeration cycle device 207 on the low temperature side, as shown in the second embodiment, the first refrigeration cycle device 207 on the low temperature side Design pressure is set low. Therefore, adjusting the refrigerant circulation amount in the defrosting mode with the refrigerant amount adjustment mechanism 10 is effective for suppressing the pressure of the first refrigeration cycle device 207 on the low temperature side, and when carbon dioxide gas or the like is applied as the second refrigerant effective for

実施の形態3.
図7は、実施の形態3に係る冷凍装置の構成を示す図である。図7を参照して、冷凍装置300は、室外機301と、室内機302と、室外機301と室内機302とを接続する配管27,31とを備える。
Embodiment 3.
FIG. 7 is a diagram showing the configuration of a refrigeration system according to Embodiment 3. FIG. Referring to FIG. 7 , refrigerating apparatus 300 includes an outdoor unit 301 , an indoor unit 302 , and pipes 27 and 31 connecting outdoor unit 301 and indoor unit 302 .

室内機302は、実施の形態2の室内機202と同様な構成である。
室外機301は、実施の形態2の室外機201の構成に加えて、第5熱交換器310をさらに備える。第5熱交換器310は、除霜モードにおいて、受液器8から排出される第1冷媒と冷媒排出管35を流通する第1冷媒との間で熱交換を行なうように構成される。
The indoor unit 302 has the same configuration as the indoor unit 202 of the second embodiment.
Outdoor unit 301 further includes a fifth heat exchanger 310 in addition to the configuration of outdoor unit 201 of the second embodiment. The fifth heat exchanger 310 is configured to exchange heat between the first refrigerant discharged from the liquid receiver 8 and the first refrigerant flowing through the refrigerant discharge pipe 35 in the defrosting mode.

他の部分の室外機301の構成については、図5の室外機201と共通するので、ここでは説明は繰返さない。 Other parts of the configuration of the outdoor unit 301 are the same as those of the outdoor unit 201 in FIG. 5, and therefore description thereof will not be repeated here.

実施の形態3における冷凍モードと除霜モードにおける冷媒の循環方向の違いについては、図1および図3で説明した実施の形態1および図5、図6で説明した実施の形態2と基本的には同じである。また、冷媒量を調整する制御についても、図4で示したフローチャートと共通する。したがって、これらについては説明を繰返さない。 The difference in the refrigerant circulation direction between the freezing mode and the defrosting mode in Embodiment 3 is basically the same as in Embodiment 1 described in FIGS. 1 and 3 and Embodiment 2 described in FIGS. are the same. Also, the control for adjusting the amount of refrigerant is common to the flowchart shown in FIG. Therefore, description of these will not be repeated.

実施の形態3に示す冷凍装置300は、実施の形態2に示した冷凍装置200が奏する効果に加え、第5熱交換器310によって、流量調整弁45に流入する冷媒を液化させるので、流量調整弁45にガス冷媒が混入して流入し流量が低下することを防止することができる。これにより、除霜モードによる冷媒量の調整が早期に完了するという効果がさらに得られる。 In addition to the effects of the refrigerating device 200 according to the second embodiment, the refrigerating device 300 according to the third embodiment liquefies the refrigerant flowing into the flow control valve 45 by the fifth heat exchanger 310, so that the flow rate can be adjusted. It is possible to prevent the gas refrigerant from entering the valve 45 and flowing into the valve 45 to reduce the flow rate. As a result, the effect that the adjustment of the refrigerant amount in the defrosting mode is completed early is obtained.

実施の形態4.
図8は、実施の形態4に係る冷凍装置の構成を示す図である。図8を参照して、冷凍装置400は、室外機401と、室内機402と、室外機401と室内機402とを接続する配管27,31とを備える。
Embodiment 4.
FIG. 8 is a diagram showing the configuration of a refrigeration system according to Embodiment 4. As shown in FIG. Referring to FIG. 8 , refrigerating apparatus 400 includes an outdoor unit 401 , an indoor unit 402 , and pipes 27 and 31 connecting outdoor unit 401 and indoor unit 402 .

室内機402は、実施の形態2の室内機202と同様な構成である。
室外機401は、実施の形態2の室外機201の構成に加えて、第3熱交換器214の第1冷媒の入口と受液器8の第1冷媒出口との間を接続し、第3熱交換器214と受液器8との間で第1冷媒を循環させる循環流路410と、循環流路410に設けられた電磁弁411とをさらに備える。
The indoor unit 402 has the same configuration as the indoor unit 202 of the second embodiment.
In addition to the configuration of the outdoor unit 201 of Embodiment 2, the outdoor unit 401 connects between the first refrigerant inlet of the third heat exchanger 214 and the first refrigerant outlet of the liquid receiver 8, It further includes a circulation passage 410 for circulating the first refrigerant between the heat exchanger 214 and the liquid receiver 8 , and an electromagnetic valve 411 provided in the circulation passage 410 .

このように、循環流路410を設け、除霜モード中において電磁弁411を開くことによって第3熱交換器で冷却され液化された第1冷媒が受液器8に移動し、受液器8の温かい冷媒が第3熱交換器に移動し冷却されるという第1冷媒の循環が生じる。 Thus, by providing the circulation flow path 410 and opening the solenoid valve 411 during the defrosting mode, the first refrigerant cooled and liquefied in the third heat exchanger moves to the liquid receiver 8 and Circulation of the first refrigerant occurs in which the warm refrigerant moves to the third heat exchanger and is cooled.

これによって、除霜モード中に、受液器8の冷媒の温度が低く維持されるので、除霜モードから冷凍モードに戻った場合に、速やかに室内機402における低温での冷却が再開できる。 As a result, the temperature of the refrigerant in the liquid receiver 8 is kept low during the defrosting mode, so that when the defrosting mode returns to the freezing mode, the indoor unit 402 can quickly resume cooling at a low temperature.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1 第1圧縮機、2 第2熱交換器、3 第1膨張弁、4 第1熱交換器、7 四方弁、8 受液器、10 冷媒量調整機構、25~27,31 配管、34,35 冷媒排出管、36,37,410 流路、41~43 逆止弁、45 流量調整弁、46 第2膨張弁、50,250 制御装置、51 プロセッサ、52 メモリ、61 温度センサ、62 圧力センサ、100,200,300,400 冷凍装置、101,201,301,401 室外機、102,202,302,402 室内機、206 第2冷凍サイクル装置、207 第1冷凍サイクル装置、211 第2圧縮機、212 第4熱交換器、213 第3膨張弁、214 第3熱交換器、310 第5熱交換器、411 電磁弁。 1 first compressor, 2 second heat exchanger, 3 first expansion valve, 4 first heat exchanger, 7 four-way valve, 8 liquid receiver, 10 refrigerant amount adjustment mechanism, 25 to 27, 31 piping, 34, 35 refrigerant discharge pipe, 36, 37, 410 flow path, 41 to 43 check valve, 45 flow control valve, 46 second expansion valve, 50, 250 control device, 51 processor, 52 memory, 61 temperature sensor, 62 pressure sensor , 100,200,300,400 Refrigerating device 101,201,301,401 Outdoor unit 102,202,302,402 Indoor unit 206 Second refrigerating cycle device 207 First refrigerating cycle device 211 Second compressor , 212 fourth heat exchanger, 213 third expansion valve, 214 third heat exchanger, 310 fifth heat exchanger, 411 solenoid valve.

Claims (6)

冷凍モードと除霜モードとを有する冷凍装置の室外機であって、
第1膨張弁および第1熱交換器が直列接続された室内機との間で第1冷媒が循環するように接続された、第1圧縮機および第2熱交換器と、
前記冷凍モードにおいて、前記第1冷媒を前記第1圧縮機、前記第2熱交換器を経て前記第1膨張弁に向かう正方向に流すとともに、前記除霜モードにおいて、前記第1冷媒を前記第1圧縮機から前記第1熱交換器に流し、かつ前記第1膨張弁から前記第2熱交換器を経て前記第1圧縮機に戻す逆方向に流すように前記第1圧縮機の吐出口の接続先と前記第1圧縮機の吸入口の接続先とを入れ替える四方弁と、
前記除霜モードにおける前記第1冷媒の循環量を調整する冷媒量調整機構とを備え
前記冷媒量調整機構は、
前記第2熱交換器と前記第1膨張弁との間に設置される受液器と、
前記受液器の出口と前記第1圧縮機の吸入口との間を接続する冷媒排出管と、
前記冷媒排出管を流通する前記第1冷媒の流量を調整する流量調整弁とを含み、
前記室外機は、
前記除霜モードにおいて、前記受液器を経由せずに前記第1冷媒を前記第1膨張弁から前記第2熱交換器に向けて流すバイパス流路をさらに備える、室外機。
An outdoor unit of a refrigeration system having a freezing mode and a defrosting mode,
a first compressor and a second heat exchanger connected so that the first refrigerant circulates between the indoor unit in which the first expansion valve and the first heat exchanger are connected in series;
In the freezing mode, the first refrigerant flows through the first compressor and the second heat exchanger in the positive direction toward the first expansion valve, and in the defrosting mode, the first refrigerant flows in the first direction. From the first compressor to the first heat exchanger, and from the first expansion valve through the second heat exchanger and back to the first compressor, the discharge port of the first compressor is flowed in the opposite direction. a four-way valve for exchanging the connection destination and the connection destination of the suction port of the first compressor;
A refrigerant amount adjustment mechanism that adjusts the circulation amount of the first refrigerant in the defrosting mode ,
The refrigerant amount adjustment mechanism is
a liquid receiver installed between the second heat exchanger and the first expansion valve;
a refrigerant discharge pipe connecting between the outlet of the liquid receiver and the suction port of the first compressor;
a flow rate adjustment valve that adjusts the flow rate of the first refrigerant flowing through the refrigerant discharge pipe,
The outdoor unit is
The outdoor unit further comprising a bypass flow path that allows the first refrigerant to flow from the first expansion valve toward the second heat exchanger without passing through the liquid receiver in the defrosting mode .
前記バイパス流路に設けられた第2膨張弁と、
前記バイパス流路に設けられ、冷媒流通方向を前記第2膨張弁から前記第2熱交換器に向けて流す向きに制限する逆止弁とをさらに備える、請求項に記載の室外機。
a second expansion valve provided in the bypass flow path;
2. The outdoor unit according to claim 1 , further comprising a check valve that is provided in said bypass flow path and restricts a direction in which refrigerant flows from said second expansion valve toward said second heat exchanger.
前記第1圧縮機、前記第2熱交換器、前記第1膨張弁および前記第1熱交換器は、前記第1冷媒を用いる第1冷凍サイクル装置を構成し、
前記冷凍モードにおいて前記第2熱交換器から排出され前記受液器に流入する前記第1冷媒と第2冷媒との間の熱交換を行なう第3熱交換器と、
前記第2冷媒が、第2圧縮機、第4熱交換器、第3膨張弁および前記第3熱交換器の順に循環する第2冷凍サイクル装置をさらに備える、請求項に記載の室外機。
The first compressor, the second heat exchanger, the first expansion valve and the first heat exchanger constitute a first refrigeration cycle device using the first refrigerant,
a third heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant discharged from the second heat exchanger and flowing into the liquid receiver in the freezing mode;
The outdoor unit according to claim 1 , further comprising a second refrigerating cycle device in which said second refrigerant circulates through a second compressor, a fourth heat exchanger, a third expansion valve and said third heat exchanger in this order.
前記除霜モードにおいて、前記受液器から排出される前記第1冷媒と前記冷媒排出管を流通する前記第1冷媒との間で熱交換を行なう第5熱交換器をさらに備える、請求項に記載の室外機。 4. The defrosting mode further comprises a fifth heat exchanger that exchanges heat between the first refrigerant discharged from the liquid receiver and the first refrigerant flowing through the refrigerant discharge pipe. The outdoor unit described in . 前記第3熱交換器の前記第1冷媒の入口と前記受液器の前記第1冷媒出口との間を接続し、前記第3熱交換器と前記受液器との間で前記第1冷媒を循環させる循環流路と、
前記循環流路に設けられた電磁弁とをさらに備える、請求項に記載の室外機。
connecting between an inlet of the first refrigerant of the third heat exchanger and an outlet of the first refrigerant of the liquid receiver, and connecting the first refrigerant between the third heat exchanger and the liquid receiver; a circulation channel for circulating the coolant;
4. The outdoor unit according to claim 3 , further comprising a solenoid valve provided in said circulation passage.
請求項1~のいずれか1項に記載の室外機と、
前記室内機とを備える、冷凍装置。
The outdoor unit according to any one of claims 1 to 5 ;
A refrigeration system comprising the indoor unit.
JP2020570246A 2019-02-05 2019-02-05 Outdoor unit of refrigerating device and refrigerating device provided with the same Active JP7105933B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004076 WO2020161803A1 (en) 2019-02-05 2019-02-05 Outdoor unit of refrigeration device and refrigeration device comprising same

Publications (2)

Publication Number Publication Date
JPWO2020161803A1 JPWO2020161803A1 (en) 2021-10-21
JP7105933B2 true JP7105933B2 (en) 2022-07-25

Family

ID=71948173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020570246A Active JP7105933B2 (en) 2019-02-05 2019-02-05 Outdoor unit of refrigerating device and refrigerating device provided with the same

Country Status (4)

Country Link
EP (1) EP3922928A4 (en)
JP (1) JP7105933B2 (en)
CN (1) CN113348333B (en)
WO (1) WO2020161803A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349640B2 (en) 2018-11-30 2023-09-25 パナソニックIpマネジメント株式会社 battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162730A1 (en) * 2021-01-26 2022-08-04 三菱電機株式会社 Outdoor unit for refrigeration device and refrigeration device equipped with same
DE112021007291T5 (en) 2021-03-16 2024-01-18 Mitsubishi Electric Corporation Heat source machine of a cooling device and cooling device including the same
WO2022219666A1 (en) * 2021-04-12 2022-10-20 三菱電機株式会社 Outdoor unit for refrigeration device and refrigeration device equipped with same
CN116026052B (en) * 2023-02-15 2023-05-30 中联云港数据科技股份有限公司 Air conditioner refrigerating system with dehumidification function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177766B2 (en) 1996-04-18 2001-06-18 オークマ株式会社 Tool transfer device
WO2012070082A1 (en) 2010-11-24 2012-05-31 三菱電機株式会社 Heat pump hot-water supply device
JP5595245B2 (en) 2010-11-26 2014-09-24 三菱電機株式会社 Refrigeration equipment
JP6341741B2 (en) 2014-04-22 2018-06-13 日本電産コパル株式会社 Booklet transport device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177766A (en) * 1989-12-06 1991-08-01 Hitachi Ltd Freezer
JPH06341741A (en) * 1993-06-01 1994-12-13 Daikin Ind Ltd Defrosting controller for refrigerating device
JP2013002678A (en) * 2011-06-14 2013-01-07 Daikin Industries Ltd Condensing unit set and refrigeration device
EP2792959B1 (en) * 2011-12-12 2021-11-03 Mitsubishi Electric Corporation Outdoor unit and air-conditioning device
JP6160725B1 (en) * 2016-02-29 2017-07-12 ダイキン工業株式会社 Refrigeration equipment
CN105758045A (en) * 2016-04-25 2016-07-13 深圳市派沃新能源科技有限公司 Ultralow-temperature overlapped triple generation heat pump unit
CN109157861B (en) * 2018-09-29 2024-02-06 南京五洲制冷集团有限公司 Indirect condensation type oil gas recovery unit with self-defrosting function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177766B2 (en) 1996-04-18 2001-06-18 オークマ株式会社 Tool transfer device
WO2012070082A1 (en) 2010-11-24 2012-05-31 三菱電機株式会社 Heat pump hot-water supply device
JP5595245B2 (en) 2010-11-26 2014-09-24 三菱電機株式会社 Refrigeration equipment
JP6341741B2 (en) 2014-04-22 2018-06-13 日本電産コパル株式会社 Booklet transport device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349640B2 (en) 2018-11-30 2023-09-25 パナソニックIpマネジメント株式会社 battery

Also Published As

Publication number Publication date
JPWO2020161803A1 (en) 2021-10-21
CN113348333A (en) 2021-09-03
WO2020161803A1 (en) 2020-08-13
EP3922928A4 (en) 2022-01-26
EP3922928A1 (en) 2021-12-15
CN113348333B (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP7105933B2 (en) Outdoor unit of refrigerating device and refrigerating device provided with the same
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
JP6910210B2 (en) Air conditioner
US9909790B2 (en) Methods and systems for controlling integrated air conditioning systems
JP6545252B2 (en) Refrigeration cycle device
US20050284174A1 (en) Cooling cycle apparatus and method of operating the same
KR20190005445A (en) Method for controlling multi-type air conditioner
JPWO2020066015A1 (en) Air conditioner
JP2013137123A (en) Refrigerating apparatus
EP4184080A1 (en) Outdoor unit for refrigeration device and refrigeration device comprising same
JP2007051841A (en) Refrigeration cycle device
JP2012117708A (en) Air conditioner
KR20080047242A (en) Air conditioning apparatus
JP6472510B2 (en) Refrigeration air conditioner
US11353234B2 (en) Air conditioning system
WO2016166873A1 (en) Heat pump system
JP2000211345A (en) Vehicle air-conditioner
KR101873419B1 (en) Refrigeration cycle apparatus for air conditioner
JP7399322B2 (en) Refrigeration equipment outdoor unit and refrigeration equipment equipped with the same
JP2004226025A (en) Air-conditioner
KR20060069714A (en) Over heating control method of compressor in air-conditioner
JP6835116B2 (en) Refrigeration equipment
WO2022219666A1 (en) Outdoor unit for refrigeration device and refrigeration device equipped with same
KR100984305B1 (en) Heat pump for supplying cool and hot water
WO2022091722A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220712

R150 Certificate of patent or registration of utility model

Ref document number: 7105933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150