WO2020178918A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
WO2020178918A1
WO2020178918A1 PCT/JP2019/008195 JP2019008195W WO2020178918A1 WO 2020178918 A1 WO2020178918 A1 WO 2020178918A1 JP 2019008195 W JP2019008195 W JP 2019008195W WO 2020178918 A1 WO2020178918 A1 WO 2020178918A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
base station
control unit
wireless communication
link control
Prior art date
Application number
PCT/JP2019/008195
Other languages
English (en)
French (fr)
Inventor
大地 内野
忠宏 下田
望月 満
福井 範行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980092832.1A priority Critical patent/CN113498618A/zh
Priority to PCT/JP2019/008195 priority patent/WO2020178918A1/ja
Priority to KR1020217026457A priority patent/KR102661184B1/ko
Priority to JP2021503268A priority patent/JP7072716B2/ja
Priority to EP19918013.4A priority patent/EP3934315A4/en
Publication of WO2020178918A1 publication Critical patent/WO2020178918A1/ja
Priority to US17/343,203 priority patent/US20210298123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0846Load balancing or load distribution between network providers, e.g. operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the present invention relates to a wireless communication system in which a base station duplicates a packet and transmits it to a mobile terminal.
  • the traffic volume of mobile networks is on the rise, and the communication speed is also increasing.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • the 5th generation wireless access system is also called 5G (5th Generation).
  • the system capacity is 1000 times that of the LTE system
  • the data transmission speed is 100 times
  • the data processing delay is 1/10
  • the number of simultaneous connections of communication terminals is 100 times, further reducing power consumption.
  • the realization of cost reduction of the equipment is mentioned as a requirement.
  • Non-Patent Document 1 describes a packet replication method using a dual connectivity (DC) method or a multi-connectivity (MC) method in which a UE connects and communicates with two eNBs (eNodeBs). And NR that separates gNB (next generation NodeB) into CU (Central Unit) and multiple DUs (Distributed Unit) is described.
  • the DC method is specifically defined by the NR of 3GPP, and is a function that enables the use of additional resources by a secondary node of New RAN (Radio Access Network).
  • the MC method is specifically defined by the NR of 3GPP and is a radio resource backhaul between E-UTRAN (Evolved Universal Terrestrial Radio Access Network) or NR provided by a plurality of different schedulers.
  • the CU controls a plurality of DUs and controls the transmission / reception data processing of each DU.
  • the MC system and the DC system include a mobile terminal, a plurality of lower base stations that communicate with the mobile terminal, and a higher base station that controls a plurality of lower base stations, and a plurality of data replicated by the upper base station. Is transmitted to a plurality of lower base stations, and the plurality of lower base stations each transmit data to a mobile terminal.
  • the NR uses a packet duplication method in which the same packet is transmitted and received in each gNB using the DC method or the MC method. Therefore, when the packet duplication method is used, there is a problem that radio resources are consumed by the duplication.
  • the wireless resource is a resource used for wireless communication, and specifically indicates a frequency and a communication period used for wireless communication.
  • the present invention has been made in view of the above, and is a radio communication system in which a base station duplicates a packet and transmits the packet to a mobile terminal, and a radio communication system capable of improving the use efficiency of radio resources.
  • the purpose is to get.
  • a mobile terminal In order to solve the above-mentioned problems and achieve the purpose, a mobile terminal, a plurality of lower base stations communicating with the mobile terminal, and a higher base station controlling a plurality of lower base stations are provided, and the upper base station is duplicated. It is a wireless communication system in which a plurality of first data is transmitted to a plurality of lower base stations, and the plurality of lower base stations transmit the first data to a mobile terminal, respectively.
  • the mobile terminal is a plurality of lower base stations.
  • a plurality of link control units that receive the first data for each, and a first link control unit among the plurality of link control units are the first from the first lower base station among the plurality of lower base stations.
  • the wireless communication system in which the base station according to the present invention duplicates packets and transmits them to a mobile terminal has the effect of improving the efficiency of using wireless resources.
  • FIG. 3 is a diagram showing a control circuit according to the first embodiment. The figure which shows the communication environment which separated the base station which concerns on Embodiment 1 into two units.
  • FIG. 3 is a diagram showing a wireless communication system according to a second embodiment. A sequence diagram showing a data flow of the wireless communication system according to the second embodiment.
  • FIG. 1 is a block diagram showing the configuration of the wireless communication system according to the first exemplary embodiment.
  • the wireless communication system 1 includes a mobile terminal 101, a base station 102, and control stations 105-1 and 105-2. When the control stations 105-1 and 105-2 are shown without distinction, they are referred to as the control station 105.
  • the mobile terminal 101 has a function as a UE.
  • the mobile terminal 101 and the base station 102 transmit and receive data by the NR communication method.
  • the control station 105 has a function as a mobility management entity (MME) or an S-GW (Serving Gateway).
  • MME mobility management entity
  • S-GW Serving Gateway
  • the mobile terminal 101 and the base station 102 can wirelessly communicate with each other, and transmit and receive signals by wireless communication.
  • the mobile terminal 101 includes not only a mobile mobile phone terminal device but also a sensor device.
  • the control protocol applied to the mobile terminal 101 is, for example, a PDCP (Packet Data Convergence Protocol) layer, an RLC (Radio Link Control) layer, a MAC (Medium Access Control) layer, a PHY layer (physical layer), or the like.
  • PDCP layer is abbreviated as PDCP.
  • the RLC layer is abbreviated as RLC.
  • the PHY layer is abbreviated as PHY.
  • the MAC layer is abbreviated as MAC.
  • PDCP and RLC are protocols defined by NR of 3GPP. PDCP performs packet data encryption.
  • the RLC performs radio link control.
  • the base station 102 includes eNBs 103-1 to 103-3. When each of the eNBs 103-1 to 103-3 is shown without being distinguished, it is referred to as an eNB 103.
  • the eNB 103 and the control station 105 communicate with each other via the S1 interface defined by LTE of 3GPP, and control information is transmitted and received between the eNB 103 and the control station 105.
  • one control station 105 is connected to one eNB 103, but one eNB 103 may be connected to a plurality of control stations 105. Communication is performed between the eNBs 103 by the X2 interface defined by LTE of 3GPP, and control information is also transmitted and received between the eNBs 103.
  • the control station 105 controls the eNB 103 and the mobile terminal 101.
  • the control station 105 constitutes an EPC (Evolved Packet Core) network which is a core network
  • the base station 102 constitutes an E-UTRAN.
  • the EPC and E-UTRAN may be collectively referred to as a network.
  • the base station 102 may form one cell or may form a plurality of cells.
  • a cell is a communication range of the base station 102.
  • Each cell constitutes coverage, which is a communicable range with the mobile terminal 101.
  • the base station 102 wirelessly communicates with the mobile terminal 101 within the coverage.
  • each cell can communicate with the mobile terminal 101.
  • FIG. 2 is a block diagram showing the configuration of the mobile terminal 101 according to the first embodiment.
  • the mobile terminal 101 includes a first protocol processing unit 201, an application unit 202, a first transmission data buffer unit 203, an encoder unit 204, a modulation unit 205, a frequency conversion unit 206, an antenna 207, and demodulation.
  • a unit 208, a decoder unit 209, and a first control unit 210 are provided.
  • the first protocol processing unit 201 generates control data and outputs it to the first transmission data buffer unit 203.
  • the control data is data used for controlling communication. Specifically, the control data used in the downlink communication from the base station 102 to the mobile terminal 101 is a PDCCH (Physical Downlink Control Channel).
  • the control data used in the uplink communication from the mobile terminal 101 to the base station 102 is PUCCH (Physical Uplink Control Channel).
  • the application unit 202 generates user data and outputs it to the first transmission data buffer unit 203.
  • the user data is the contents of the actual communication and is the data required by the user of the mobile terminal 101.
  • the first transmission data buffer unit 203 stores control data and user data.
  • the first transmission data buffer unit 203 also outputs the control data and the user data to the encoder unit 204.
  • the encoder unit 204 performs encoding processing such as error correction on the control data and the user data.
  • the encoder unit 204 outputs the encoded data to the modulation unit 205. Note that there may be data that is directly output from the first transmission data buffer unit 203 to the modulation unit 205 without being encoded by the encoder unit 204.
  • the modulation unit 205 performs a modulation process on the encoded data.
  • the frequency conversion unit 206 converts the modulated data into a baseband signal.
  • the frequency conversion unit 206 also converts the baseband signal into a radio frequency signal and outputs the radio frequency signal to the antenna 207.
  • the antenna 207 transmits a radio frequency signal as a transmission signal to the base station 102.
  • the antenna 207 receives a radio signal from the base station 102.
  • the frequency conversion unit 206 converts the radio frequency reception signal into a baseband signal and outputs the baseband signal to the demodulation unit 208.
  • the demodulation unit 208 performs demodulation processing on the baseband signal and outputs it to the decoder unit 209.
  • the decoder unit 209 performs decoding processing such as error correction on the demodulated data.
  • the decoder unit 209 outputs the control data among the decoded data to the first protocol processing unit 201, and outputs the user data to the application unit 202.
  • the processing of transmitting and receiving signals of the mobile terminal 101 is controlled by the first control unit 210. Therefore, although omitted in FIG. 2, the first control unit 210 is connected to each functional unit other than the antenna 207.
  • FIG. 3 is a block diagram showing the configuration of the base station 102 according to the first embodiment.
  • the base station 102 includes a first communication unit 301, a second communication unit 302, a second protocol processing unit 303, a second transmission data buffer unit 304, an encoder unit 204, and a modulation unit 205.
  • the frequency conversion unit 206, the antenna 207, the demodulation unit 208, the decoder unit 209, and the second control unit 311 are provided.
  • the process when the base station 102 transmits a signal to the mobile terminal 101 will be described.
  • the first communication unit 301 transmits / receives data to / from the control station 105.
  • the second communication unit 302 transmits / receives data to / from another base station.
  • the first communication unit 301 and the second communication unit 302 each exchange information with the second protocol processing unit 303.
  • the second transmission data buffer unit 304 stores the control data from the second protocol processing unit 303, and the user data and control data from the first communication unit 301 and the second communication unit 302. Further, the second transmission data buffer unit 304 outputs these data to the encoder unit 204.
  • the encoder unit 204 performs encoding processing such as error correction on the input data. Note that the encoder unit 204 may have data that is directly output from the second transmission data buffer unit 304 to the modulation unit 205 without performing the encoding process.
  • the modulation unit 205 performs a modulation process on the encoded data.
  • the frequency conversion unit 206 converts the modulated data into a baseband signal and then a radio frequency signal.
  • the antenna 207 transmits a radio frequency signal to one or more mobile terminals 101.
  • the antenna 207 receives a radio signal from the mobile terminal 101.
  • the frequency conversion unit 206 converts a received signal, which is a received wireless signal, from a radio frequency to a baseband signal, and outputs the baseband signal to the demodulation unit 208.
  • the demodulation unit 208 performs demodulation processing on the baseband signal and outputs it to the decoder unit 209.
  • the decoder unit 209 performs decoding processing such as error correction on the demodulated data.
  • the control data is transferred to the second protocol processing unit 303, the first communication unit 301, or the second communication unit 302.
  • User data of the decoded data is transferred to the first communication unit 301 or the second communication unit 302.
  • a series of processes of the base station 102 is controlled by the second control unit 311. Therefore, although the second control unit 311 is omitted in FIG. 3, it is connected to each functional unit other than the antenna 207.
  • the 210, the first communication unit 301, the second communication unit 302, the second protocol processing unit 303, the second transmission data buffer unit 304, and the second control unit 311 are electronic circuits that perform each processing. It is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, an optical disk, or the like.
  • FIG. 4 is a diagram showing the control circuit according to the first embodiment.
  • the control circuit is, for example, the control circuit 10 having the configuration shown in FIG.
  • the control circuit 10 includes a processor 10a which is a CPU and a memory 10b.
  • a processor 10a which is a CPU
  • a memory 10b When it is realized by the control circuit 10 shown in FIG. 4, it is realized by the processor 10a reading and executing the program corresponding to each process stored in the memory 10b.
  • the memory 10b is also used as a temporary memory in each process performed by the processor 10a.
  • the cell configured by the eNB has a relatively wide range of coverage, and when configured by a plurality of cells, the cell is configured to cover a specific area. It was When the small cell is introduced, the coverage of the cell configured by the eNB is narrower than the coverage of the cell not configured by the eNB. Therefore, in order for a cell composed of eNBs to cover a specific area, a large number of small-celled eNBs are required.
  • a cell having a relatively large coverage such as a cell configured by a conventional eNB
  • a macro cell an eNB forming a macro cell
  • a cell having a relatively small coverage such as a small cell
  • an eNB included in the small cell is referred to as a small eNB.
  • the NR provides three services.
  • the first service is URLLC (Ultra-Reliability Low Latency Communication), which requires low latency and high reliability.
  • the second service is eMBB (enhanced Mobile Broadband), which requires high-speed, large-capacity communication.
  • the third service is mMTC (massive Machine Type Communication) that enables connection of ultra-large capacity terminals. It is assumed that these three services use frequencies of 6 GHz or higher and perform broadband communication. However, the high frequency has a characteristic that it has a higher attenuation factor in the air and is hard to be diffracted as compared with the frequency of 6 GHz or less used in LTE. Therefore, in order to secure the coverage like LTE, it is necessary to install many base stations 102 with narrow coverage.
  • the first embodiment discloses a method for solving such a problem.
  • 3GPP proposes to separate the base station into two units.
  • the two units are called CU and DU, respectively.
  • a plurality of DUs may be connected to the CU.
  • Multiple options have been proposed for the division of functions between CU and DU.
  • the CU has a PDCP and the DU has an RLC, a MAC, and a PHY.
  • option 3 it is proposed that the CU has PDCP and H-RLC and the DU has L-RLC, MAC, and PHY.
  • Option 3 includes Option 3-1.
  • L-RLC has the function of dividing RLC-PDU (Protocol Data Unit)
  • Option 3 H-RLC has the function of delivery confirmation and RLC. It is proposed to have other functions.
  • NR it is proposed to apply DC or MC to communication using multiple DUs.
  • a plurality of DUs it is possible to suppress the occurrence of communication disconnection between the mobile terminal 101 and the base station 102 even in an environment shielded by buildings and obstacles. For example, even if the mobile terminal 101 is connected to a plurality of DUs and a communication disconnection occurs with any one DU, the data communication is continued by maintaining the connection with the DU other than the DU in which the communication interruption occurred. It becomes possible to do. Further, by transmitting the same data to a plurality of DUs, the communication can be made redundant, and even if the connection with any one DU or a plurality of DUs is lost, data communication can be performed without retransmission.
  • radio resources may be insufficient.
  • by introducing a mechanism for reducing the retransmission of redundant data it is possible to suppress the shortage of radio resources.
  • FIG. 5 is a diagram showing a communication environment in which the base station according to the first embodiment is separated into two units.
  • the mobile terminal 101 is in the environment as shown in FIG.
  • the mobile terminal 101 is connected to a plurality of eNBs 103 having a function as a DU in the multi-connectivity method, and each of the plurality of DUs is connected to a CU 404.
  • the CU is also called an upper base station.
  • the DU is also called a subordinate base station.
  • the DU of eNB 103-1 will be referred to as DU 401.
  • the DU of eNB103-2 is called DU402.
  • the DU of eNB103-3 is called DU403.
  • the DU 401, DU 402, and DU 403 each communicate with the mobile terminal 101.
  • DU401, DU402, and DU403 connect with CU404.
  • the CU 404 controls transmission/reception of data of the DU 401, DU 402, and DU 403. Further, the CU 404 duplicates the data to be transmitted to the mobile terminal 101 and transmits it to the DU 401, DU 402, and DU 403.
  • the DU 401, DU 402, and DU 403 each transmit the data duplicated by the CU 404 to the mobile terminal 101.
  • the DU 401 has a link control unit 407, an access control unit 410, and a physical control unit 413.
  • the link control unit 407 performs RLC processing.
  • the access control unit 410 performs MAC processing.
  • the physical control unit 413 performs PHY processing.
  • the link control unit 407 is also referred to as the RLC 407.
  • the physical control unit 413 is also referred to as PHY413.
  • the access control unit 410 is also called a MAC 410.
  • the DU 402 includes a link control unit 408, an access control unit 411, and a physical control unit 414.
  • the link control unit 408 performs RLC processing.
  • the access control unit 411 performs MAC processing.
  • the physical control unit 414 performs PHY processing.
  • the link control unit 408 is also referred to as RLC 408.
  • the physical control unit 414 is also referred to as PHY414.
  • the access control unit 411 is also referred to as the MAC 411.
  • the DU 403 has a link controller 409, an access controller 412, and a physical controller 415.
  • the link control unit 409 performs RLC processing.
  • the access control unit 412 performs MAC processing.
  • the physical control unit 415 performs PHY processing.
  • the link control unit 409 is also referred to as the RLC 409.
  • the physical control unit 415 is also referred to as PHY415.
  • the access control unit 412 is also called a MAC 412.
  • the CU 404 includes a first upper control unit 405 and a second upper control unit 406.
  • the first upper control unit 405 performs processing of the SDAP (Service Data Adaptation Protocol) layer.
  • the SDAP layer is abbreviated as SDAP.
  • the second upper control unit 406 performs PDCP processing.
  • the first upper control unit 405 is also referred to as SDAP405.
  • the second upper control unit 406 is also referred to as PDCP 406.
  • the mobile terminal 101 includes an upper control unit 420, a data control unit 419, a plurality of link control units 418, 423, 426, a plurality of access control units 417, 422, 425, and a plurality of physical control units 416,421. And 424.
  • the data control unit 419 performs PDCP processing.
  • the plurality of link control units 418, 423, 426 perform RLC processing.
  • the plurality of access control units 417, 422, 425 perform MAC processing.
  • the plurality of physical control units 416, 421, 424 perform PHY processing.
  • the upper control unit 420 is also referred to as an SDAP 420.
  • the data control unit 419 is also referred to as PDCP 419.
  • the plurality of link control units 418, 423, 426 are also referred to as RLCs 418, 423, 426.
  • the plurality of access control units 417, 422, 425 are also referred to as MACs 417, 422, 425.
  • the plurality of physical control units 416, 421, 424 are also referred to as PHY 416, 421, 424.
  • SDAP is a protocol for encapsulating IP (Internet Protocol) packets specified in the NR of 3GPP.
  • the data control unit, the link control unit, the access control unit, and the physical control unit are realized by the processing circuit shown in FIG.
  • the data for the mobile terminal 101 input to the SDAP 405 is replicated in a plurality of packets by the PDCP 406 and transferred from the CU 404 to the DU 401, DU 402, and DU 403, respectively.
  • the DU 401 divides the RLC PDU included in the packet by the RLC 407 into RLC SDUs (Service Data Units) and transfers them to the MAC 410.
  • the MAC 410 determines a resource that can be transmitted and performs scheduling.
  • the PHY413 converts the RLC SDU into a radio frequency signal and transmits the data to the mobile terminal 101.
  • the DU 401 also performs the same data transmission process on the DU 402 and the DU 403. Further, the DU 402 and the DU 403 also perform the same data transmission processing as the DU 401.
  • the RLC SDU is also called the first data.
  • the RLC PDU is also called the second data.
  • FIG. 6 is a sequence diagram showing a data flow of the wireless communication system 1 according to the first exemplary embodiment.
  • the first data a transmitted from the RLC 407 of the eNB 103 is received by the RLC 418 of the mobile terminal 101 (step S1).
  • the base station having the RLC 407 is also referred to as a first base station.
  • RLC407 uses RLC SDU to generate RLC PDU.
  • the data a is RLC SDU.
  • Data including header information in one or more RLC SDUs is an RLC PDU.
  • an ACK is transmitted from the RLC 418 of the mobile terminal 101 to the RLC 407 of the eNB 103 to inform that the reception has been normally performed (step S2).
  • the RLC 418 transfers the data a to the PDCP 419 in the upper layer (step S3). After confirming that the data a has arrived from the RLC 418 first, the PDCP 419 sends a message to stop the retransmission request to the RLC 423 that has not yet transferred the data a (step S4). In other words, when the PDCP 419 receives the data a from any one of the plurality of DUs, the PDCP 419 transmits a retransmission request stop message for stopping the retransmission request of the data a to the RLC 423 that has not received the data a.
  • the RLC 423 is also called a first link control unit.
  • the RLC 407 of the eNB 103 transmits a delivery completion notification message to the PDCP 406 (step S5).
  • the delivery completion notification message is a message notifying that the RLC 407 has completed transmission of the RLC PDU to the RLC 418.
  • the PDCP406 Upon receiving the delivery completion notification, the PDCP406 transmits a retransmission stop message to the RLC 408 of the DU 402 that has not received the data a, that is, has not transmitted the delivery completion notification message (step S6).
  • a base station having an RLC 408 is also referred to as a second base station.
  • PDCP406 of CU404 uses a control message to RLC423 to transmit discard information indicating that data a has been discarded (step S7).
  • the discard information includes the sequence number of the RLC SDU or RLC PDU for which retransmission has been stopped, and the RLC 423 can stop the retransmission request based on the discard information.
  • the retransmission stop message includes a message for stopping the transmission of the RLC PDU including the transfer to the MAC.
  • the retransmission stop message includes a message for stopping the transmission of the RLC SDU divided in the RLC 408 to the mobile terminal 101 or the transfer to the MAC 411.
  • RLC423 stops the resend request of the corresponding RLC SDU or RLC PDU according to the resend request stop message.
  • the notification of the discard information, which is the control message is transmitted from the PDCP406 and received by the RLC423 of the mobile terminal 101, but the retransmission request stop message is not received from the PDCP419 to the RLC423, the RLC423 does not follow the notification of the discard information.
  • RLC 408 requests data retransmission.
  • the RLC 423 When the RLC 423 receives the retransmission request stop message, but the data a is transmitted from the RLC 408, the RLC 423 receives the data a, generates the RLC PDU using the RLC SDU, and transfers the data a to the PDCP 419. To do.
  • RLC408 If a retransmission stop message is sent from PDCP406 to RLC408 and RLC408 receives a retransmission request from RLC423 while RLC408 is discarding the RLC PDU or RLC SDU that is the target of retransmission stop, the RLC408 is the RLC SDU that is the target of retransmission stop. Or do not retransmit the RLC PDU.
  • the data that arrives later for mobile terminal 101 is prevented from being retransmitted by eNB 103. It is possible to provide a communication system that suppresses the consumption of radio resources with the mobile terminal 101 and has high speed, high reliability, and low delay.
  • FIG. 7 is a diagram showing a wireless communication system according to the second embodiment.
  • RLC is divided into H-RLC and L-RLC.
  • the mobile terminal 101a includes an upper link control unit 702 and lower link control units 701, 703, 704.
  • the upper link control unit 702 performs H-RLC processing.
  • the lower link control units 701, 703, and 704 perform L-RLC processing.
  • the upper link control unit 702 is also called an H-RLC 702.
  • the lower link control units 701, 703 and 704 are also called L-RLC 701, 703 and 704, respectively.
  • FIG. 8 is a sequence diagram showing a data flow of the wireless communication system 1a according to the second embodiment.
  • the data a transmitted from the RLC 407 is divided into one or a plurality of RLC SDUs and transmitted (step S11). It is assumed that one or more RLC SDUs are data b that is missing or corrupted during transmission from the eNB 103 to the mobile terminal 101.
  • the L-RLC 701 sends the data b from the RLC SDU to the RLC PDU without combining it with the H-RLC 702 (step S12).
  • the data a transmitted from the RLC 408 is divided into one or a plurality of RLC SDUs and transmitted to the L-RLC 703 (step S13). It is assumed that one or more RLC SDUs are missing or corrupted during transmission from the eNB 103 to the mobile terminal 101.
  • the L-RLC 703 transfers the data c to the H-RLC 702 without combining the RLC SDU into the RLC PDU (step S14).
  • L-RLC 701 and L-RLC 703 send ACK to RLC 407 and RLC 408, respectively, and RLC 407 and RLC 408 send a delivery completion notification to PCDP 406.
  • the H-RLC 702 which has received the data from the L-RLC 701 and the L-RLC 703 combines the data b and the data c. That is, RLC PDUs are generated from RLC SDUs transmitted by multiple L-RLCs. Further, H-RLC702 synthesizes RLC SDUs having the same sequence number and generates RLC SDUs lacking each other.
  • the PDCP 406 has a feature that the RLC 407 and the RLC 408 specify a size for dividing an RLC PDU into RLC SDUs to make RLC SDUs generated by two or more RLCs equal or the same.
  • the data that arrives later for the mobile terminal 101a among the data of the packets duplicated by the PDCP 406 will be displayed.
  • the eNB 103 By preventing the eNB 103 from retransmitting, it is possible to release a radio resource between one or more eNBs 103 and the mobile terminal 101a, and to provide a communication system having high speed, high reliability, and low delay.
  • 1, 1a wireless communication system 10 control circuit, 10a processor, 10b memory, 101, 101a mobile terminal, 102 base station, 103, 103-1 to 103-3 eNB, 105, 105-1, 105-2 control station, 201 first protocol processing unit, 202 application unit, 203 first transmission data buffer unit, 204 encoder unit, 205 modulation unit, 206 frequency conversion unit, 207 antenna, 208 demodulation unit, 209 decoder unit, 210 first control Section, 301 first communication section, 302 second communication section, 303 second protocol processing section, 304 second transmission data buffer section, 311 second control section, 401, 402, 403 DU (lower base station ), 404 CU (upper base station), 405, 420 SDAP, 406, 419 PDCP, 407, 408, 409, 418, 423, 426 RLC, 410, 411, 412, 417, 422, 425 MAC, 413, 414, 414. 415, 416, 421, 424 PHY, 701, 70

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動端末(101)と、移動端末(101)と通信する複数の下位基地局(401~403)と、複数の下位基地局を制御する上位基地局(404)とを備え、上位基地局(404)が複製した複数の第1のデータを複数の下位基地局(401~403)へ送信し、複数の下位基地局(401~403)が第1のデータをそれぞれ移動端末に送信する無線通信システム(1)であって、移動端末(101)は、複数の下位基地局(401~403)ごとに第1のデータを受信する複数のリンク制御部と、複数のリンク制御部の中の第1のリンク制御部が、複数の下位基地局の中の第1の下位基地局から第1のデータを受信した場合、第1の下位基地局以外の下位基地局である第2の下位基地局から第1のデータを受信していない第2のリンク制御部に第1のデータの再送の要求を停止させる再送要求停止メッセージを送信するデータ制御部と、を備えることを特徴とする。

Description

無線通信システム
 本発明は、基地局がパケットを複製して移動端末に送信する無線通信システムに関する。
 モバイルネットワークのトラフィック量は、増加傾向にあり、通信速度も高速化が進んでいる。LTE(Long Term Evolution)およびLTE-A(Long Term Evolution Advanced)が本格的に運用を開始されると、モバイルネットワークの通信速度が更に高速化されることが見込まれる。さらに、高度化するモバイルネットワークに対して、2020年以降にサービスを開始することを目標とした第5世代無線アクセスシステムが検討されている。第5世代無線アクセスシステムは、5G(5th Generation)とも呼ばれる。
 5Gでは、LTEシステムに対して、システム容量は1000倍、データの伝送速度は100倍、データの処理遅延は10分の1、通信端末の同時接続数は100倍として、更なる低消費電力化、および装置の低コスト化を実現することが要件として挙げられている。
 このような要求を満たすために、3GPP(3rd Generation Partnership Project)では、リリース15として、5Gの規格検討が進められている。5Gの無線区間の技術は、New Radio Access Technology(NR)と称され、いくつかの新たな技術が検討されている。非特許文献1には、UEが2つのeNB(eNodeB)と接続して通信を行うデュアルコネクティビティ(Dual Connectivity:DC)方式、またはマルチコネクティビティ(Multi-Connectivity:MC)方式を用いたパケット複製方法、およびgNB(next generation NodeB)をCU(Central Unit)と複数のDU(Distributed Unit)とに分離するNRが記載されている。DC方式は具体的には、3GPPのNRで規定されており、New RAN(Radio Access Network)のセカンダリノードで追加リソースの使用を可能にする機能である。MC方式は具体的には、3GPPのNRで規定されており、複数の異なるスケジューラによって提供されるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)またはNR間の無線リソースバックホールである。CUは複数のDUを制御し、各DUの送受信データ処理の制御などを行う。MC方式およびDC方式は、言い換えれば、移動端末と、移動端末と通信する複数の下位基地局と、複数の下位基地局を制御する上位基地局とを備え、上位基地局が複製した複数のデータを複数の下位基地局へ送信し、複数の下位基地局がデータをそれぞれ移動端末に送信する方式である。
3GPP R2-1700672
 しかしながら、上記従来の技術によれば、NRでは、DC方式またはMC方式を用いて各gNBにて同じパケットを送受信するというパケット複製方法を用いる。このため、パケット複製方法を用いると複製した分だけ無線リソースを消費してしまう問題があった。無線リソースとは、無線通信のために使用されるリソースのことであり、具体的には無線通信に用いられる周波数および通信期間を示す。
 本発明は、上記に鑑みてなされたものであって、基地局がパケットを複製して移動端末に送信する無線通信システムであって、無線リソースの使用効率を向上することができる無線通信システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、移動端末と、移動端末と通信する複数の下位基地局と、複数の下位基地局を制御する上位基地局とを備え、上位基地局が複製した複数の第1のデータを複数の下位基地局へ送信し、複数の下位基地局が第1のデータをそれぞれ移動端末に送信する無線通信システムであって、移動端末は、複数の下位基地局ごとに第1のデータを受信する複数のリンク制御部と、複数のリンク制御部の中の第1のリンク制御部が、複数の下位基地局の中の第1の下位基地局から第1のデータを受信した場合、第1の下位基地局以外の下位基地局である第2の下位基地局から第1のデータを受信していない第2のリンク制御部に第1のデータの再送の要求を停止させる再送要求停止メッセージを送信するデータ制御部と、を備えることを特徴とする。
 本発明にかかる基地局がパケットを複製して移動端末に送信する無線通信システムは、無線リソースの使用効率を向上することができるという効果を奏する。
実施の形態1にかかる無線通信システムの構成を示すブロック図 実施の形態1にかかる移動端末の構成を示すブロック図 実施の形態1にかかる基地局の構成を示すブロック図 実施の形態1にかかる制御回路を示す図 実施の形態1にかかる基地局を2つのユニットに分離した通信環境を示す図 実施の形態1にかかる無線通信システムのデータの流れを示すシーケンス図 実施の形態2にかかる無線通信システムを示す図 実施の形態2にかかる無線通信システムのデータの流れを示すシーケンス図
 以下に、本発明の実施の形態にかかる無線通信システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかる無線通信システムの構成を示すブロック図である。無線通信システム1は、移動端末101と、基地局102と、制御局105-1,105-2とを備える。制御局105-1,105-2のそれぞれを区別せずに示すときは、制御局105と呼ぶ。移動端末101はUEとしての機能を有する。移動端末101と基地局102は、NR通信方式でデータの送受信を行う。制御局105は、移動管理エンティティ(Mobility Management Entity:MME)、またはS-GW(Serving Gateway)としての機能を有す。MMEは、3GPPのLTE-Aにおいて規定されている、モビリティ制御を提供する論理ノードである。S-GWは、3GPPのLTE-Aにおいて規定されている、3GPPアクセスシステムを収容するパケットゲートウェイである。
 移動端末101と基地局102は、互いに無線通信可能であり、無線通信で信号の送受信を行う。移動端末101は、移動可能な携帯電話端末装置だけではなく、センサデバイスを含む。移動端末101に適用される制御プロトコルは、例えばPDCP(Packet Data Convergence Protocol)層、RLC(Radio Link Control)層、MAC(Medium Access Control)層、PHY層(physical layer)などである。以下、PDCP層はPDCPと略す。RLC層はRLCと略す。PHY層はPHYと略す。また、MAC層はMACと略す。PDCP、RLCは、3GPPのNRで規定されたプロトコルである。PDCPは、パケットデータ暗号化を行う。RLCは、無線リンク制御を行う。
 基地局102は、eNB103-1~103-3を備える。eNB103-1~103-3のそれぞれを区別せずに示すときは、eNB103と呼ぶ。eNB103と制御局105とは、3GPPのLTEで規定されるS1インターフェースにより通信を行い、eNB103と制御局105との間で制御情報が送受信される。図1では、1つのeNB103に対して、1つの制御局105が接続されているが、1つのeNB103が、複数の制御局105と接続されてもよい。eNB103間では、3GPPのLTEで規定されるX2インターフェースにより通信を行い、eNB103間でも制御情報が送受信される。制御局105は、eNB103と、移動端末101とを制御する。制御局105は、コアネットワークであるEPC(Evolved Packet Core)ネットワークを構成しており、基地局102は、E-UTRANを構成する。EPCと、E-UTRANと、を合わせてネットワークと呼ぶ場合がある。
 基地局102は、1つのセルを構成してもよいし、複数のセルを構成してもよい。セルとは、基地局102の通信範囲である。各セルは移動端末101との通信可能な範囲であるカバレッジを構成する。基地局102は、カバレッジ内で移動端末101と無線通信を行う。基地局102が複数のセルを構成する場合には、それぞれのセルが移動端末101と通信可能である。
 図2は、実施の形態1にかかる移動端末101の構成を示すブロック図である。移動端末101は、第1のプロトコル処理部201と、アプリケーション部202と、第1の送信データバッファ部203と、エンコーダ部204と、変調部205と、周波数変換部206と、アンテナ207と、復調部208と、デコーダ部209と、第1の制御部210と、を備える。
 移動端末101が信号を基地局102に送信するときの処理について説明する。第1のプロトコル処理部201は、制御データを生成し第1の送信データバッファ部203に出力する。制御データとは、通信の制御のために用いられるデータである。具体的には基地局102から移動端末101向けの下り方向の通信で用いられる制御データは、PDCCH(Physical Downlink Control Channel)である。移動端末101から基地局102向けの上り方向の通信で用いられる制御データは、PUCCH(Physical Uplink Control Channel)である。アプリケーション部202は、ユーザデータを生成し第1の送信データバッファ部203に出力する。ユーザデータとは、実際の通信の中身であり、移動端末101の利用者が必要とするデータである。具体的には下り方向の通信で用いられるユーザデータは、PDSCH(Physical Downlink Shared Channel)であり、上り方向の通信で用いられるユーザデータは、PUSCH(Physical Uplink Shared Channel)である。第1の送信データバッファ部203は、制御データおよびユーザデータを保存する。また、第1の送信データバッファ部203は、制御データおよびユーザデータをエンコーダ部204に出力する。エンコーダ部204は、制御データおよびユーザデータに誤り訂正などのエンコード処理を施す。エンコーダ部204は、エンコード処理を施したデータを変調部205に出力する。なお、エンコーダ部204でエンコード処理が施されずに、第1の送信データバッファ部203から変調部205へ直接出力されるデータが存在してもよい。変調部205は、エンコード処理されたデータに、変調処理を施す。周波数変換部206は、変調されたデータをベースバンド信号に変換する。また、周波数変換部206は、ベースバンド信号を無線周波数の信号に変換し、アンテナ207に出力する。アンテナ207は無線周波数の信号を送信信号として基地局102に送信する。
 移動端末101が基地局102からの信号を受信するときの処理について説明する。アンテナ207は、基地局102からの無線信号を受信する。周波数変換部206は、無線周波数の受信信号をベースバンド信号に変換し、復調部208に出力する。復調部208は、ベースバンド信号に復調処理を施し、デコーダ部209に出力する。デコーダ部209は、復調後のデータに誤り訂正などのデコード処理を施す。デコーダ部209は、デコード処理されたデータのうち、制御データを第1のプロトコル処理部201に出力し、ユーザデータをアプリケーション部202に出力する。移動端末101の信号の送受信の処理は、第1の制御部210によって制御されている。よって、図2では省略しているが、第1の制御部210は、アンテナ207以外の各機能部と接続している。
 図3は、実施の形態1にかかる基地局102の構成を示すブロック図である。基地局102は、第1の通信部301と、第2の通信部302と、第2のプロトコル処理部303と、第2の送信データバッファ部304と、エンコーダ部204と、変調部205と、周波数変換部206と、アンテナ207と、復調部208と、デコーダ部209と、第2の制御部311と、を備える。
 基地局102が信号を移動端末101に送信するときの処理について説明する。第1の通信部301は、制御局105とデータの送受信を行う。第2の通信部302は、他の基地局とデータ送受信を行う。第1の通信部301および第2の通信部302はそれぞれ第2のプロトコル処理部303と情報の受け渡しを行う。第2の送信データバッファ部304は、第2のプロトコル処理部303からの制御データと、第1の通信部301および第2の通信部302からのユーザデータおよび制御データとを保存する。また、第2の送信データバッファ部304は、これらのデータをエンコーダ部204に出力する。
 エンコーダ部204は、入力されたデータに誤り訂正などのエンコード処理を施す。なお、エンコーダ部204は、エンコード処理を実施せずに、第2の送信データバッファ部304から変調部205へ直接出力されるデータが存在してもよい。変調部205は、エンコードされたデータに変調処理を施す。周波数変換部206は、変調データをベースバンド信号に変換した後、無線周波数の信号に変換する。アンテナ207は、1つもしくは複数の移動端末101に無線周波数の信号を送信する。
 基地局102が移動端末101からの信号を受信するときの処理について説明する。アンテナ207は、移動端末101からの無線信号を受信する。周波数変換部206は、受信した無線信号である受信信号を、無線周波数からベースバンド信号に変換し、復調部208に出力する。復調部208は、ベースバンド信号に復調処理を施し、デコーダ部209に出力する。デコーダ部209は、復調後のデータに誤り訂正などのデコード処理を施す。デコードされたデータのうち、制御データは第2のプロトコル処理部303、第1の通信部301、または第2の通信部302へ転送される。デコードされたデータのうち、ユーザデータは第1の通信部301または第2の通信部302へ転送される。基地局102の一連の処理は、第2の制御部311によって制御される。よって、第2の制御部311は図3では省略しているが、アンテナ207以外の各機能部と接続している。
 第1のプロトコル処理部201、アプリケーション部202、第1の送信データバッファ部203、エンコーダ部204、変調部205、周波数変換部206、アンテナ207、復調部208、デコーダ部209、第1の制御部210、第1の通信部301、第2の通信部302、第2のプロトコル処理部303、第2の送信データバッファ部304、および第2の制御部311は、各処理を行う電子回路である処理回路により実現される。
 本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。図4は、実施の形態1にかかる制御回路を示す図である。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図4に示す構成の制御回路10となる。
 図4に示すように、制御回路10は、CPUであるプロセッサ10aと、メモリ10bとを備える。図4に示す制御回路10により実現される場合、プロセッサ10aがメモリ10bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ10bは、プロセッサ10aが実施する各処理における一時メモリとしても使用される。
 スマートフォンおよびタブレット型端末装置の普及によって、セルラー系の無線通信によるトラフィックが爆発的に増大している。このため、無線リソースの不足が懸念されている。無線リソースの不足に対応して周波数利用効率を高めるために、基地局102が構成するセルを小セル化し、空間分離を進めることが検討されている。
 今までの基地局のセル構成では、eNBによって構成されるセルは比較的広い範囲のカバレッジを持っており、複数のセルで構成される場合には特定のエリアを覆うようにセルが構成されていた。小セル化を導入した場合、eNBで構成されるセルのカバレッジは、eNBで構成されないセルのカバレッジに比べて、範囲が狭い。したがって、eNBで構成されるセルが特定のエリアを覆うためには、多数の小セル化したeNBが必要となる。
 以下の説明では、従来のeNBによって構成されるセルのように、カバレッジが比較的大きいセルをマクロセルと呼び、マクロセルを構成するeNBをマクロeNBと呼ぶ。また、小セル化されたセルのように、カバレッジが比較的小さいセルをスモールセルと呼び、スモールセルを構成するeNBをスモールeNBと呼ぶ。
 NRは3つのサービスを提供する。1つ目のサービスは、低遅延かつ高信頼性を求めるURLLC(Ultra-Reliability Low Latency Communication)である。2つ目のサービスは、高速大容量通信を求めるeMBB(enhanced Mobile Broadband)である。3つ目のサービスは、超大容量端末の接続を可能とするmMTC(massive Machine Type Communication)である。これらの3つのサービスは、6GHz以上の周波数を使用し、広帯域通信を行うことが想定されている。しかし、高周波数はLTEで使用されている6GHz以下の周波数と比べ、空気中での減衰率が高く、回折し難い特徴がある。このため、LTEのようにカバレッジを確保するためにはカバレッジが狭い基地局102を多く設置する必要がある。
 カバレッジが狭い基地局102を多く設置する場合、移動端末101ではハンドオーバーが発生することが多くなる。また、6GHz以上の周波数では回折し難い特徴があるため、建物および障害物に遮蔽される環境に移動端末101が入ると基地局102と接続が途絶える通信断が発生する。このような通信断が発生した場合、通信中の移動端末101は一旦データ通信が停止し、基地局102と移動端末101との間で通信できないという問題が生じる。実施の形態1では、このような問題を解決する方法を開示する。
 3GPPでは、基地局を2つのユニットに分離することを提案している。2つのユニットをそれぞれCUとDUと称する。また、CUに複数のDUが接続されることもある。CUとDUとの機能分担について、複数のオプションが提案されている。例えば、オプション2では、CUはPDCPを有し、DUはRLCとMAC、PHYを有することが提案されている。また、オプション3として、CUはPDCPおよびH-RLCを有し、DUはL-RLC、MAC、およびPHYを有することが提案されている。オプション3はオプション3-1を含み、オプション3-1では、L-RLCがRLC-PDU(Protocol Data Unit)を分割する機能を有し、オプション3のH-RLCが送達確認の機能およびRLCの他の機能を有することが提案されている。
 NRにおいて、複数のDUを用いた通信にDCまたはMCを適用することが提案されている。複数のDUを用いることで、建物および障害物に遮蔽される環境においても、移動端末101と基地局102との間で通信断が発生することを抑制することが可能となる。例えば、移動端末101は複数のDUと接続することによりどれか1つのDUと通信断が発生しても、通信断が発生したDU以外のDUとの接続を維持することにより、データ通信を継続することが可能となる。また、複数のDUにおいて同一のデータを送信することによって通信に冗長性を持たせ、いずれか1つのDUまたは複数のDUとの接続が途絶えても、再送することなくデータ通信することが可能となり、低遅延を維持することが可能となる。しかしながら、複数のDUにおいて同一のデータを送信することによって通信に冗長性を持たせた場合、無線リソースが不足する場合がある。ここで、本実施の形態では、冗長なデータの再送を軽減する仕組みを導入することにより、無線リソースが不足することを抑制する。
 図5は、実施の形態1にかかる基地局を2つのユニットに分離した通信環境を示す図である。例えば、図5に示すような環境に移動端末101があることを想定する。移動端末101は、マルチコネクティビティ方式における、DUとしての機能を有する複数のeNB103と接続しており、複数のDUはそれぞれCU404と接続する。CUは、上位基地局とも呼ばれる。DUは、下位基地局とも呼ばれる。以下ではeNB103-1が有するDUをDU401と呼ぶ。eNB103-2が有するDUをDU402と呼ぶ。eNB103-3が有するDUをDU403と呼ぶ。DU401、DU402、およびDU403は、それぞれ移動端末101と通信する。DU401、DU402、およびDU403は、CU404と接続する。CU404は、DU401、DU402、およびDU403のデータの送受信の制御を行う。また、CU404は、移動端末101に送信するデータを複製し、DU401、DU402、およびDU403に送信する。DU401、DU402、およびDU403は、それぞれCU404が複製したデータを移動端末101に送信する。
 DU401は、リンク制御部407と、アクセス制御部410と、物理制御部413とを有する。リンク制御部407はRLCの処理を行う。アクセス制御部410はMACの処理を行う。物理制御部413はPHYの処理を行う。以下では、リンク制御部407はRLC407とも称される。物理制御部413はPHY413とも称される。アクセス制御部410はMAC410とも称される。DU402は、リンク制御部408と、アクセス制御部411と、物理制御部414とを有す。リンク制御部408はRLCの処理を行う。アクセス制御部411はMACの処理を行う。物理制御部414はPHYの処理を行う。以下では、リンク制御部408はRLC408とも称される。物理制御部414はPHY414とも称される。アクセス制御部411はMAC411とも称される。DU403は、リンク制御部409と、アクセス制御部412と、物理制御部415とを有す。リンク制御部409はRLCの処理を行う。アクセス制御部412はMACの処理を行う。物理制御部415はPHYの処理を行う。以下では、リンク制御部409はRLC409とも称される。物理制御部415はPHY415とも称される。アクセス制御部412はMAC412とも称される。
 CU404は、第1の上位制御部405と第2の上位制御部406とを備える。第1の上位制御部405は、SDAP(Service Data Adaptation Protocol)層の処理を行う。SDAP層は、SDAPと略す。第2の上位制御部406は、PDCPの処理を行う。第1の上位制御部405は、SDAP405とも称される。第2の上位制御部406は、PDCP406とも称される。移動端末101は、上位制御部420と、データ制御部419と、複数のリンク制御部418,423,426と、複数のアクセス制御部417,422,425と、複数の物理制御部416,421,424とを備える。データ制御部419はPDCPの処理を行う。複数のリンク制御部418,423,426はRLCの処理を行う。複数のアクセス制御部417,422,425はMACの処理を行う。複数の物理制御部416,421,424はPHYの処理を行う。上位制御部420は、SDAP420とも称される。データ制御部419はPDCP419とも称される。複数のリンク制御部418,423,426はRLC418,423,426とも称される。複数のアクセス制御部417,422,425はMAC417,422,425とも称される。複数の物理制御部416,421,424はPHY416,421,424とも称される。SDAPは、3GPPのNRにおいて規定されているIP(Internet Protocol)パケットをカプセリングするプロトコルである。データ制御部、リンク制御部、およびアクセス制御部、および物理制御部は、図4に示される処理回路により実現される。
 SDAP405に入力された移動端末101向けのデータは、PDCP406で複数のパケットに複製され、それぞれCU404からDU401、DU402、およびDU403へ転送される。DU401は、RLC407によりパケットに含まれるRLC PDUをRLC SDU(Service Data Unit)に分割し、MAC410に転送する。MAC410は、送信可能なリソースを判断し、スケジューリングを行う。PHY413は、RLC SDUを無線周波数の信号に変換し、移動端末101へデータを送信する。DU401は、同様のデータ送信の処理をDU402およびDU403に対しても行う。また、DU402およびDU403もDU401と同様のデータ送信の処理を行う。RLC SDUは、第1のデータとも呼ばれる。RLC PDUは、第2のデータとも呼ばれる。
 図6は、実施の形態1にかかる無線通信システム1のデータの流れを示すシーケンス図である。eNB103のRLC407から送信された初送のデータaは移動端末101のRLC418に受信される(ステップS1)。RLC407を有する基地局は、第1の基地局とも呼ばれる。RLC407は、RLC SDUを用いてRLC PDUを生成する。データaは、RLC SDUである。1つまたは複数のRLC SDUにヘッダ情報を含んだデータがRLC PDUである。RLC PDUの生成に成功し、CRC OKになった場合には、移動端末101のRLC418からeNB103のRLC407へ正常に受信できたことを伝えるACKを送信する(ステップS2)。また、RLC418は、上位レイヤでPDCP419へデータaを転送する(ステップS3)。PDCP419は、RLC418からデータaが先着したことを確認後、まだデータaを転送していないRLC423へ再送要求を停止するメッセージを送信する(ステップS4)。言い換えれば、PDCP419は、複数のDUのいずれか1つからデータaを受信した場合、データaを受信していないRLC423にデータaの再送の要求を停止させる再送要求停止メッセージを送信する。RLC423は、第1のリンク制御部とも呼ばれる。
 また、eNB103のRLC407は、送達完了通知のメッセージをPDCP406に送信する(ステップS5)。送達完了通知のメッセージは、RLC407がRLC PDUをRLC418に送信完了したことを伝えるメッセージである。送達完了通知を受信したPDCP406は、データaを受信していない、つまり送達完了通知メッセージを送信していないDU402のRLC408に再送停止メッセージを送信する(ステップS6)。RLC408を有する基地局は、第2の基地局とも呼ばれる。また、CU404のPDCP406は、RLC423に制御メッセージを使用して、データaを破棄したことを示す破棄情報を送信する(ステップS7)。破棄情報には再送停止したRLC SDUまたはRLC PDUのシーケンス番号が含まれており、RLC423は破棄情報を元に、再送要求を停止することができる。また、再送停止メッセージには、MACへの転送を含むRLC PDUの送信を停止させるメッセージが含まれる。または、再送停止メッセージには、RLC408内で分割したRLC SDUを移動端末101へ送信またはMAC411への転送を停止させるメッセージが含まれる。
 再送要求停止メッセージがRLC423に送信されたが、制御メッセージである破棄情報の通知がRLC423に受信されない場合、RLC423は、再送要求停止メッセージに従い該当のRLC SDUまたはRLC PDUの再送要求を停止する。制御メッセージである破棄情報の通知がPDCP406から送信され、移動端末101のRLC423に受信されたが、PDCP419からRLC423へ再送要求停止メッセージが受信されない場合、RLC423は、破棄情報の通知には従わずに、RLC408にデータの再送の要求を行う。RLC423が再送要求停止メッセージを受信したが、RLC408からデータaが送信されている場合には、RLC423は、データaを受信し、RLC SDUを用いてRLC PDUを生成し、PDCP419にデータaを転送する。
 再送停止メッセージがPDCP406からRLC408に送信され、RLC408が再送停止の対象のRLC PDUまたはRLC SDUを破棄している最中に、RLC423から再送要求を受信した場合、RLC408は再送停止の対象のRLC SDUまたはRLC PDUを再送しない。
 以上説明したように、本実施の形態では、PDCP406で複製されたパケットのデータの中で移動端末101にとって後着となるデータをeNB103に再送させないようにすることで、1つまたは複数のeNB103と移動端末101との間の無線リソースの消費を抑制し、高速かつ、高い信頼性と低遅延を有する通信システムを提供することができる。
実施の形態2.
 図7は、実施の形態2にかかる無線通信システムを示す図である。図7では、RLCがH-RLCとL-RLCに分割されている。移動端末101aは、上位リンク制御部702と下位リンク制御部701,703,704とを備える。上位リンク制御部702はH-RLCの処理を行う。下位リンク制御部701,703,704は、L-RLCの処理を行う。上位リンク制御部702は、H-RLC702とも呼ばれる。下位リンク制御部701,703,704は、それぞれL-RLC701,703,704とも呼ばれる。
 図8は、実施の形態2にかかる無線通信システム1aのデータの流れを示すシーケンス図である。RLC407から送信されたデータaは1つまたは複数のRLC SDUに分割されて送信される(ステップS11)。1つまたは複数のRLC SDUがeNB103から移動端末101に送信中に欠落または破損したデータbとする。
 L-RLC701はデータbをRLC SDUからRLC PDUに結合せずに、H-RLC702に送信する(ステップS12)。同様に、RLC408から送信されたデータaは、L-RLC703に1つまたは複数のRLC SDUに分割されて送信する(ステップS13)。1つまたは複数のRLC SDUがeNB103から移動端末101に送信中に欠落または破損したデータcとする。このデータcをL-RLC703ではRLC SDUからRLC PDUに結合せずに、H-RLC702に転送する(ステップS14)。
 L-RLC701およびL-RLC703はそれぞれACKをRLC407およびRLC408に送信し、RLC407およびRLC408はPCDP406に送達完了通知をを送信する。L-RLC701およびL-RLC703からデータを受信したH-RLC702はデータbとデータcを結合する。すなわち、複数のL-RLCが送信したRLC SDUからRLC PDUを生成する。また、H-RLC702は、同じシーケンス番号のRLC SDU同士を合成し、互いに不足したRLC SDUを生成する。PDCP406はRLC407とRLC408にRLC PDUをRLC SDUへ分割するサイズを指定して、2つ以上のRLCで生成されるRLC SDUを同等または同じにする特徴を有する。
 以上説明したように、本実施の形態では、RLCがH-RLCとL-RLCに分割されている場合でも、PDCP406で複製されたパケットのデータの中で移動端末101aにとって後着となるデータをeNB103に再送させないようにすることで、1つまたは複数のeNB103と移動端末101aとの間の無線リソースを開放し、高速かつ、高い信頼性と低遅延を有する通信システムを提供することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1a 無線通信システム、10 制御回路、10a プロセッサ、10b メモリ、101,101a 移動端末、102 基地局、103,103-1~103-3 eNB、105,105-1,105-2 制御局、201 第1のプロトコル処理部、202 アプリケーション部、203 第1の送信データバッファ部、204 エンコーダ部、205 変調部、206 周波数変換部、207 アンテナ、208 復調部、209 デコーダ部、210 第1の制御部、301 第1の通信部、302 第2の通信部、303 第2のプロトコル処理部、304 第2の送信データバッファ部、311 第2の制御部、401,402,403 DU(下位基地局)、404 CU(上位基地局)、405,420 SDAP、406,419 PDCP、407,408,409,418,423,426 RLC、410,411,412,417,422,425 MAC、413,414,415,416,421,424 PHY、701,703,704 L-RLC、702 H-RLC。

Claims (11)

  1.  移動端末と、前記移動端末と通信する複数の下位基地局と、前記複数の下位基地局を制御する上位基地局とを備え、前記上位基地局が複製した複数の第1のデータを前記複数の下位基地局へ送信し、前記複数の下位基地局が前記第1のデータをそれぞれ前記移動端末に送信する無線通信システムであって、
     前記移動端末は、
     前記複数の下位基地局ごとに前記第1のデータを受信する複数のリンク制御部と、
     前記複数のリンク制御部の中の第1のリンク制御部が、前記複数の下位基地局の中の第1の下位基地局から前記第1のデータを受信した場合、前記第1の下位基地局以外の下位基地局である第2の下位基地局から前記第1のデータを受信していない第2のリンク制御部に前記第1のデータの再送の要求を停止させる再送要求停止メッセージを送信するデータ制御部と、
     を備えることを特徴とする無線通信システム。
  2.  前記第1の下位基地局は、
     前記第1のリンク制御部から前記第1のデータを受信したことを示す情報を受信したとき、前記上位基地局に前記第1のデータを送信完了したことを示す通知を送信し、
     前記上位基地局は、
     前記第1の下位基地局から前記通知を受信し、前記第2の下位基地局に前記第1のデータの再送を停止させる再送停止メッセージを送信することを特徴とする請求項1に記載の無線通信システム。
  3.  前記上位基地局は、
     前記第2の下位基地局に前記第1のデータを破棄させ、前記第1のデータを破棄したことを示す破棄情報を前記第1のリンク制御部に送信すること特徴とする請求項2に記載の無線通信システム。
  4.  前記破棄情報は、
     前記第1のデータまたは1つ以上の前記第1のデータにヘッダ情報を含んだデータである第2のデータのシーケンス番号を含み、
     前記上位基地局は、
     前記シーケンス番号を用いて前記データの再送を停止させることを特徴とする請求項3に記載の無線通信システム。
  5.  前記下位基地局は、
     前記第1のデータの送受信を行うアクセス制御部を備え、
     前記再送停止メッセージは、
     前記第1のデータまたは前記第2のデータを前記アクセス制御部に転送させない機能を有することを特徴とする請求項4に記載の無線通信システム。
  6.  前記第2のリンク制御部は、
     前記再送要求停止メッセージを受信した後、前記データを受信した場合、前記第1のデータを用いて前記第2のデータを生成し、該第2のデータを前記データ制御部に送信することを特徴とする請求項4または5に記載の無線通信システム。
  7.  前記第2の下位基地局は、
     前記移動端末から前記第1のデータの再送の要求のメッセージを受信した場合、再送を停止する対象の前記第1のデータまたは前記第2のデータを前記移動端末に再送しないことを特徴とする請求項4から6のいずれか1つに記載の無線通信システム。
  8.  前記複数のリンク制御部は、
     一つの上位リンク制御部と複数の下位リンク制御部とに分割され、
     前記複数の下位リンク制御部は、前記第1のデータを用いて前記第2のデータを生成せずに、前記第1のデータを前記上位リンク制御部に送信することを特徴とする請求項6に記載の無線通信システム。
  9.  前記上位リンク制御部は、
     前記複数の下位リンク制御部が送信した前記第1のデータを用いて前記第2のデータを生成することを特徴とする請求項8に記載の無線通信システム。
  10.  前記上位リンク制御部は、
     前記複数の下位リンク制御部が送信した同じシーケンス番号の前記第1のデータ同士を合成することを特徴とする請求項9に記載の無線通信システム。
  11.  前記上位基地局は、
     前記複数の下位基地局に前記第2のデータを前記第1のデータに分割するときのサイズを指定することを特徴とする請求項8から10のいずれか1つに記載の無線通信システム。
PCT/JP2019/008195 2019-03-01 2019-03-01 無線通信システム WO2020178918A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980092832.1A CN113498618A (zh) 2019-03-01 2019-03-01 无线通信系统
PCT/JP2019/008195 WO2020178918A1 (ja) 2019-03-01 2019-03-01 無線通信システム
KR1020217026457A KR102661184B1 (ko) 2019-03-01 2019-03-01 무선 통신 시스템, 송수신 방법, 프로그램, 무선 통신 기지국 장치, 제어 회로 및 제어 방법
JP2021503268A JP7072716B2 (ja) 2019-03-01 2019-03-01 無線通信システム、送受信方法、プログラム、無線通信基地局装置、制御回路および制御方法
EP19918013.4A EP3934315A4 (en) 2019-03-01 2019-03-01 WIRELESS COMMUNICATION SYSTEM
US17/343,203 US20210298123A1 (en) 2019-03-01 2021-06-09 Wireless communication system, transmission and reception method, recording medium, wireless communication base station device, control circuit, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008195 WO2020178918A1 (ja) 2019-03-01 2019-03-01 無線通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/343,203 Continuation US20210298123A1 (en) 2019-03-01 2021-06-09 Wireless communication system, transmission and reception method, recording medium, wireless communication base station device, control circuit, and control method

Publications (1)

Publication Number Publication Date
WO2020178918A1 true WO2020178918A1 (ja) 2020-09-10

Family

ID=72338241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008195 WO2020178918A1 (ja) 2019-03-01 2019-03-01 無線通信システム

Country Status (6)

Country Link
US (1) US20210298123A1 (ja)
EP (1) EP3934315A4 (ja)
JP (1) JP7072716B2 (ja)
KR (1) KR102661184B1 (ja)
CN (1) CN113498618A (ja)
WO (1) WO2020178918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3997957A1 (en) * 2019-07-08 2022-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Radio resource management to enhance reliability in mobility scenarios

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198963A1 (ja) * 2017-04-27 2018-11-01 三菱電機株式会社 通信システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020233A1 (zh) * 2009-08-17 2011-02-24 上海贝尔股份有限公司 多跳中继通信系统中对下行数据传输控制的方法和装置
US9444727B2 (en) 2012-10-16 2016-09-13 Cisco Technology, Inc. Duplicating traffic along local detours before path remerge to increase packet delivery
CN104080121B (zh) * 2013-03-26 2019-04-26 中兴通讯股份有限公司 一种传输数据的方法及系统
JP5852193B1 (ja) * 2014-08-06 2016-02-03 株式会社Nttドコモ ユーザ装置
JP2016092700A (ja) * 2014-11-07 2016-05-23 株式会社Nttドコモ ユーザ装置、及び重複パケット処理方法
KR20180050015A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선통신시스템에서 고신뢰 저지연 통신을 위한 데이터 송수신 방법 및 장치
US10448386B2 (en) * 2017-01-06 2019-10-15 Kt Corporation Method and apparatus for controlling redundant data transmission
KR102077780B1 (ko) * 2017-03-23 2020-02-17 주식회사 케이티 무선 링크 실패를 처리하는 방법 및 그 장치
US10805836B2 (en) * 2017-05-05 2020-10-13 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (PDCP) entity
KR102041996B1 (ko) * 2017-05-31 2019-11-07 한국전자통신연구원 이동 통신 시스템에서의 통신 방법 및 장치
CN109151903B (zh) * 2017-06-16 2022-07-15 三星电子株式会社 用于在下一代移动通信系统中处理分组的方法和装置
US20190200273A1 (en) * 2017-12-22 2019-06-27 Nokia Technologies Oy Flushing PDCP Packets To Reduce Network Load In Multi-Connectivity Scenarios

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198963A1 (ja) * 2017-04-27 2018-11-01 三菱電機株式会社 通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Resource Efficient PDCP duplication operation", 3GPP TSG-RAN WG2 MEETING #105 R2-1902183, 15 February 2019 (2019-02-15), pages 1 - 4, XP051603526 *
See also references of EP3934315A4 *

Also Published As

Publication number Publication date
JP7072716B2 (ja) 2022-05-20
CN113498618A (zh) 2021-10-12
JPWO2020178918A1 (ja) 2021-10-07
KR20210116603A (ko) 2021-09-27
EP3934315A4 (en) 2022-03-30
US20210298123A1 (en) 2021-09-23
EP3934315A1 (en) 2022-01-05
KR102661184B1 (ko) 2024-04-25

Similar Documents

Publication Publication Date Title
US11658722B2 (en) Method and apparatus for managing user plane operation in wireless communication system
US11395365B2 (en) Method and system for handling PDCP operation in wireless communication system
CN112753247B (zh) 进行无线通信系统中的双连接的装置和方法
US10966123B2 (en) Method and apparatus for preventing loss of data packets
JP2021535634A (ja) 異種ネットワークで二重接続動作を行うための方法及び装置
EP3649829B1 (en) Enabling efficient handling of redundant packet copies in a wireless communication system
CN104581824A (zh) 一种数据包分流传输的方法及系统
TWI807527B (zh) 降低多分支傳輸中封包延遲的方法和裝置
WO2019137641A1 (en) Submitting a pdcp pdu for transmission
WO2015113625A1 (en) Acknowledgement of a range of sequence numbers
JP7549077B2 (ja) 通信制御方法、ユーザ装置及びプロセッサ
TWI797414B (zh) 用於行動性增強之方法及其使用者設備
WO2020090442A1 (ja) 無線通信方法及び装置
JP7072716B2 (ja) 無線通信システム、送受信方法、プログラム、無線通信基地局装置、制御回路および制御方法
CN113767671A (zh) 下一代移动通信系统中用于无数据发送和接收中断的切换的方法和设备
KR20200112609A (ko) 차세대 이동 통신 시스템에서 네트워크와 연결 실패를 복구하는 방법 및 장치
CN114514777B (zh) 用于在无线通信系统中执行切换的方法和装置
CN118828754A (zh) 进行无线通信系统中的双连接的装置和方法
WO2019052174A1 (zh) 一种改变承载类型的方法及装置、计算机存储介质
WO2016127297A1 (zh) 一种rlc数据包重传方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503268

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217026457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019918013

Country of ref document: EP