WO2020177353A1 - 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法 - Google Patents

用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法 Download PDF

Info

Publication number
WO2020177353A1
WO2020177353A1 PCT/CN2019/114368 CN2019114368W WO2020177353A1 WO 2020177353 A1 WO2020177353 A1 WO 2020177353A1 CN 2019114368 W CN2019114368 W CN 2019114368W WO 2020177353 A1 WO2020177353 A1 WO 2020177353A1
Authority
WO
WIPO (PCT)
Prior art keywords
arch
arch structure
rows
structural units
bridge
Prior art date
Application number
PCT/CN2019/114368
Other languages
English (en)
French (fr)
Inventor
邵旭东
何广
晏班夫
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920290014.XU external-priority patent/CN209703270U/zh
Priority claimed from CN201910172896.4A external-priority patent/CN109778667B/zh
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2020177353A1 publication Critical patent/WO2020177353A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D4/00Arch-type bridges

Definitions

  • the invention belongs to the field of bridge engineering, and in particular relates to an arch structure for a combined truss arch bridge and a construction method thereof.
  • Arch bridges have always been the main form of long-span bridges due to their economy and durability. Arch bridges are especially suitable for bridges built in mountainous areas. However, when the span of the arch bridge reaches 600m or more, its economic efficiency becomes worse or even difficult to construct due to its structural weight and construction difficulties. At the same time, ordinary concrete or concrete-filled steel tube arch bridges have excessive structural weight and concrete strength. It is basically exhausted by its own weight. The extra-large-span steel arch bridge has problems such as difficulty in welding of thick plates and high cost. These are the main factors restricting the development of arch bridges to larger spans. Therefore, from the perspective of bridge technology and construction costs, the 600m-span arch bridge is a technical bottleneck that is difficult to effectively break through in current bridge engineering.
  • the construction methods mainly include cable hoisting construction method, rotating construction method, rigid skeleton construction method and cantilever construction method (including cantilever pouring method and cantilever assembly method).
  • cantilever assembly combined with cable-stayed buckle hanging method is mainly used for construction.
  • the main arch itself cannot bear the force before closing, it is necessary to use cable-stayed buckles to support each main arch section, that is, first make a ground anchor After closing the cable-stayed bridge, remove the buckle and form an arch bridge (as shown in Figure 1). Due to the self-weight of the main arch, the cost of temporary measures such as buckling towers, buckling cables, and ground anchors is very high, which seriously affects the economics of the arch bridge plan.
  • the technical problem to be solved by the present invention is to overcome the shortcomings and deficiencies mentioned in the above background technology, and provide an arch shape for super large span steel-UHPC composite truss arch bridge with light weight, high construction efficiency and low construction cost Structure and its circular construction method.
  • the technical solution proposed by the present invention is:
  • An arch structure for a super long-span steel-UHPC composite truss arch bridge includes multiple rows of arch structure units arranged in the transverse direction, and the multiple rows of the arch structure units are centered along the longitudinal bridge direction The lines are distributed symmetrically, and multiple rows of the arched structural units are connected to form a whole through transverse bridge connectors.
  • the arched structural units include webs and upper chord arch ribs and lower chord arch ribs made of all UHPC materials. The arch rib and the lower chord arch rib are connected by a web rod.
  • the upper chord arch rib and the lower chord arch rib may be box-shaped arch ribs, rectangular arch ribs or I-shaped arch ribs.
  • the upper and lower chord arch ribs are the main pressure-bearing components. Since UHPC has excellent compressive performance and light weight, UHPC can improve the spanning capacity of the arch bridge under the premise of ensuring the force requirements.
  • the upper and lower chord arch ribs connect the upper chord arch rib and the lower chord arch rib through the web rods to form a whole to realize the common force. Under the fixing of the transverse bridge connection pieces, the overall stability of the arch structure is guaranteed and its force performance is improved. .
  • the transverse connecting piece and the web member are all steel members, and the transverse connecting member, the upper chord arch rib, the web member and the lower chord arch rib are all thin members, and
  • the UHPC material has a bending tensile strength of more than 20 MPa and a compressive strength of more than 120 MPa (for example, the preferred reactive powder concrete (RPC), etc.). Because the transverse bridge connecting piece and the web member are not the main force-bearing members, a steel structure with a smaller cross-sectional size can be used to reduce the weight and facilitate the connection, and some of them can withstand greater tension, so pure UHPC material is not suitable.
  • the upper and lower arch ribs are box-shaped arch ribs, the distance h1 between the upper and lower arch ribs is 6-60 m, and the upper and lower arch ribs
  • the length and width a1 of the cross section of the arch rib are both 1.0-8m, and the wall thickness b1 is 0.15-0.8m.
  • Our preferred box-shaped arch rib has a large moment of inertia against bending and torsion, which can resist the bending moment generated by it.
  • the above-mentioned arch rib size is determined in consideration of the stability of the arch bridge during construction and completion, as well as the requirements for strength and rigidity. Too high a size value will increase the weight of the arch bridge, resulting in too much thrust of the arch foot and waste of materials ; Too low size value may increase the probability of instability of the arch bridge structure under construction or completion, and may also cause excessive local stress.
  • the extra-large-span steel-UHPC composite arch bridge of the present invention is an arch bridge with a structural structure between ordinary concrete arch bridges and steel arch bridges, and the dimensions of the UHPC materials, the upper chord arch ribs and the lower chord arch ribs are limited.
  • the above-mentioned ultra-high performance concrete is combined with the structural setting of the above-mentioned thin members (the member thickness is only about 1/3 of the design value of the traditional concrete arch bridge member thickness), which makes the thickness of the arch rib section of the ultra-high performance concrete arch bridge of the present invention and
  • the width is equivalent to the design value of the arch rib strength of the traditional concrete arch bridge, the weight of the entire arch rib can be greatly reduced, and its weight is only about 40% of the corresponding traditional concrete arch rib;
  • the arch rib is the main pressure-bearing component, and its material is UHPC with high compressive strength, which avoids a large number of thick plate welding of steel arch ribs, and improves the feasibility and economic efficiency of construction.
  • the number of the arched structural units is equal to or more than two rows, and the arched structural units are arranged vertically or obliquely toward the two outermost rows of the transverse bridge, and the arched structural units are inclined.
  • the distance from the longitudinal bridge to the centerline gradually decreases from the arch toe to the dome, and the non-inclined arch structure units are arranged parallel to the longitudinal centerline.
  • the arched structure of this structure preferably adopts the construction method from outside to inside.
  • the number of the arched structure units is more than two rows of even-numbered rows, all the arched structure units are arranged obliquely, and the oblique arched structure unit is between the longitudinal bridge and the centerline. The distance between the arch to the vault gradually decreases.
  • the arched structure of this structure preferably adopts an inside-out construction method.
  • the transverse bridge connection member includes a wind brace and an inner diagonal brace;
  • the wind brace includes a straight flat joint wind brace, and the straight flat joint wind brace is arranged perpendicular to the longitudinal bridge direction centerline ,
  • the inner diagonal brace is arranged between two adjacent straight flat joint wind braces in the vertical direction (vertical direction refers to between the upper and lower straight flat joint wind braces), and the distance f between the adjacent straight flat joint wind braces It is 4-60m.
  • the wind bracing further includes a plurality of oblique and flat joint wind braces for cooperating with the straight and flat joint wind braces to increase the stability of the arch structure, and the inclined and flat joint wind braces are arranged in two adjacent rows. Between the arched structural units, it is preferable that the cross section of the oblique and flat wind brace is I-steel (other cross sections are acceptable).
  • the span of the arched structure is greater than 400m (more preferably 500-1000m). Generally, the span is too large and the stability of the arched structure is not high.
  • the preferred arched structure in the present invention The structural form, with the optimization of the arch structure material, size, and configuration, can further increase the span of the arch structure while ensuring stability.
  • the present invention also provides a construction method for the above-mentioned arch structure.
  • the first construction method (construction from outside to inside) includes the following steps:
  • S1 Construct the arch, and then use the cable-stayed buckle cantilever method to install the two outermost rows of arched structural units and the transverse connectors on the arch at the same time.
  • the arched structural units and the transverse connectors adopt joints. Segment prefabrication (segment length is preferably 5-30m); after the two outermost rows of arched structural units are closed, the buckle is released;
  • the present invention also provides a construction method for the above-mentioned arched structure.
  • the second construction method (construction from inside to outside) includes the following steps:
  • S1 Construct the arch, and then use the cable-stayed buckle cantilever method to install the two innermost rows of arched structural units and transverse connectors on the arch at the same time.
  • the arched structural units and the transverse connectors adopt joints. Segment prefabrication (segment length is preferably 5-30m); after the two innermost rows of arched structural units are closed, the buckle is released;
  • the construction method from inside to outside generally requires that the two innermost rows of arched structural units constructed first have a larger spacing in the transverse direction. In this way, the stability requirements can be met, and the arched structural unit should be inclined appropriately.
  • the bridge type can be a deck bridge, a middle deck or a through arch bridge type.
  • the steel-UHPC composite truss arch bridge for extra-long span provided by the present invention adopts ultra-high-performance concrete with excellent mechanical properties and durability, which avoids the difficulties of ordinary concrete with low strength and difficulty in achieving extra-large spans, and at the same time avoids Taking into account the disadvantages of difficult welding and expensive construction of thick plates of extra-large-span steel arch bridges, it is expected that the spanning capacity of the arch bridge will be increased to 1000m, and it will have an economic advantage over other bridge types.
  • the present invention adopts a cyclic construction method, such as the three-cycle construction method.
  • the buckle cable only needs to bear 1/3 of the main arch load and is recycled three times, which greatly saves temporary measures such as buckle tower, buckle cable, and ground anchor. Expenses and construction costs are greatly reduced.
  • the technical scheme of the present invention can be realized with mature construction technology and construction equipment, so as to ensure the feasibility of the bridge structure of the present invention and its construction; the construction is carried out by using a circular construction method that combines cantilever assembly and cable-stayed buckle hanging. It can not only ensure the construction quality and speed up the construction, but also reduce the construction cost, facilitate the later maintenance of the bridge and enhance the durability of the bridge structure.
  • Figure 1 is a schematic diagram of the construction of the cantilever method.
  • Figure 2 is an elevation view of the arched structure in Example 1-3.
  • Fig. 3 is a plan view of the arch structure in embodiment 1.
  • Fig. 4 is another plan view of the arch structure in embodiment 1.
  • Figure 5 is the component size diagram of the arched structure in Example 1-3 (a is the upper and lower chord arch ribs, b is the straight flat joint wind brace, c is the web rod, d is the inclined flat joint wind brace, and e is the inner Diagonal brace).
  • Fig. 6 is a construction step diagram of the first closing of the outermost arch structure unit of the arch structure in Example 1.
  • Fig. 7 is a construction step diagram of the arch structure unit of the second closure of the arch structure in Example 1.
  • FIG. 8 is a construction step diagram of the innermost arch structure unit of the arch structure in the third closure of the embodiment 1.
  • Fig. 9 is a plan view of the arch structure in the second embodiment.
  • Fig. 10 is a construction step diagram of the first closing of the outermost arch structure unit of the arch structure in Example 2.
  • Fig. 11 is a construction step diagram of the innermost arch structure unit of the arch structure in the second closure of the second embodiment.
  • Fig. 12 is a plan view of the arch structure in the third embodiment.
  • Fig. 13 is a construction step diagram of the first closing of the innermost arch structure unit of the arch structure in Example 3.
  • FIG. 14 is a construction step diagram of the second closure of the arch structure unit of the arch structure in the third embodiment.
  • Fig. 15 is a construction step diagram of the outermost arch structure unit of the arch structure in the third closure of the third embodiment.
  • the arch structure of this embodiment used for the extra-large-span steel-UHPC composite truss arch bridge.
  • the arch structure includes 5 rows of longitudinally arranged arch structure units, and 5 rows of arch structures The units are distributed symmetrically along the centerline of the longitudinal bridge. 5 rows of arched structural units are connected into a whole by steel (such as Q345 material) wind bracing 3 and inner diagonal brace 4.
  • the arched structural unit includes upper chord arch rib 101 and web member 2 (Steel material, such as Q345 material) and the lower chord arch rib 102, the upper chord arch rib 101 and the lower chord arch rib 102 are connected by the web member 2, the web member 2 adopts N-shaped truss, the upper chord arch rib 101 and the lower chord arch rib 102 It is a box-shaped arch rib made of all UHPC materials.
  • the wind brace 3, the inner diagonal brace 4, the upper chord arch rib 101, the web member 2 and the lower chord arch rib 102 are all thin members, and the bending tensile strength of UHPC material is above 20MPa, and the compressive strength is above 120MPa .
  • the wind brace 3 includes a straight and flat joint wind brace 301 and an oblique and flat joint wind brace 302.
  • the straight and flat joint wind braces 301 are arranged every other web rod 2, and its position corresponds to the web rod 2, which is straight and flat.
  • the wind bracing 301 is arranged perpendicular to the centerline of the longitudinal bridge, the distance f between adjacent straight and flat joint wind braces 301 is 11-31m, and the inclined flat joint wind brace 302 is set in the two rows of arches at the outermost and second outer sides of the transverse bridge. Between structural units.
  • the distance h1 between the upper chord arch rib 101 and the lower chord arch rib 102 is 16m, and the length and width a1 of the cross section of the upper chord arch rib 101 and the lower chord arch rib 102 are both 2m, wall thickness b1 is 0.2m.
  • the cross section of the web rod 2 is a ribbed box-shaped section, and each inner wall side of the web rod 2 is provided with ribs.
  • the length and width a3 of the web rod 2 are both 0.4m and the wall thickness b3 is 3cm.
  • the length h3 of the rib in the web 2 is 15 cm, and the thickness k3 is 3 cm.
  • the cross section of the straight flat wind brace 301 is a box-shaped cross section with ribs. Each inner wall side of the straight flat wind brace 301 is provided with ribs.
  • the length and width a2 of the cross section of the straight flat wind brace 301 are both 1.0m, the wall thickness b2 is 3cm, the length h2 of the rib in the straight flat wind brace 301 is 0.3m, and the thickness k2 is 3cm.
  • the cross section of the inclined flat joint wind brace 302 and the inner diagonal brace 4 are both I-steel.
  • the cross section of the inclined flat joint wind brace 302 has a flange plate width a4 of 0.4m, a flange plate thickness b4 of 3cm, and a web height.
  • h4 is 0.6m
  • web thickness k4 is 2cm
  • the flange width a5 of the cross section of the inner brace 4 is 0.4m
  • the flange thickness b5 is 3cm
  • the web height h5 is 0.6m
  • the web thickness k5 is 2cm.
  • the five rows of arched structural units arranged in the longitudinal bridge direction are arranged in the following two ways: the first is as shown in Figure 3, the five rows of arched structural units are arranged in parallel across the bridge, and the two outermost arches The distance c of the outer edge of the shaped structural unit is 30m, the distance of the inner edge between the outermost and the second outer arched structural unit is 8.5m, and the inner edge distance between the remaining two adjacent rows of arched structural units is 1.5m.
  • the second type is shown in Figure 4.
  • the two outermost arched structural units are arranged horizontally 1:20 obliquely, the other arched structural units are arranged in parallel transversely, and the outer edge distance d of the two outermost arched structural units is in the arch
  • the top is 30m, the arch foot is 40m, and the distance between the other two adjacent rows of arched structural units is 1.5m.
  • the column is the turning point.
  • this embodiment also provides a construction method for the above-mentioned arch structure, which includes the following steps:
  • S1 Construct the arch seat, and then use the cable-stayed buckle cantilever method (with buckle cable 5 and ground anchor 6) to install the two outermost rows of arched structural units in the transverse direction and the transverse bridge connecting pieces on the arch seat at the same time.
  • Sectional prefabrication is used for the curved structural unit and the transverse bridge connection (segment length is preferably 5-30m); after the two outermost rows of arched structural units are closed, the buckle 5 is released;
  • the arch structure unit in the arch structure of the ultra-long-span steel-UHPC composite truss arch bridge in this embodiment is the same as that in Embodiment 1, except that it has only 3 rows of arches. Structural units, and 3 rows of arched structural units are arranged parallel to the centerline of the longitudinal bridge. Specifically, in this embodiment, the distance c between the outer edges of the two outermost arched structural units is 30m, and the cross-sectional dimensions of the upper chord arch rib 101 and the lower chord arch rib 102 of the middle arch adopt the length and width a1 of 2m, and the thickness b1 is 0.4m, and the distance between two adjacent rows of arched structural units is 12m.
  • the distance e4 between the nodes of the inner diagonal brace 4 between the two rows of arched structural units is 6 m; the arrangement of the inclined flat joint wind brace 302 is similar to that in the first embodiment.
  • the column is the turning point.
  • this embodiment also provides a construction method for the above-mentioned arch structure, which includes the following steps:
  • S1 Construct the arch seat, and then use the cable-stayed buckle cantilever method (with buckle cable 5 and ground anchor 6) to install the two outermost rows of arched structural units in the transverse direction and the transverse bridge connecting pieces on the arch seat at the same time.
  • Sectional prefabrication is used for the curved structural unit and the transverse bridge connection (segment length is preferably 5-30m); after the two outermost rows of arched structural units are closed, the buckle 5 is released;
  • the arch structure unit used in the arch structure of the extra-large-span steel-UHPC composite truss arch bridge of this embodiment is the same as that of Embodiment 1, except that the arch structure unit constitutes an arch
  • the arrangement of the arched structure is different. Specifically, in this embodiment, there are 6 rows of arched structural units. The 6 rows of arched structural units are arranged at a 1:5 inclination in the lateral direction, and the two outermost lower chord arches The center distance d1 of the rib 102 is 32 m at the dome and 72 m at the arch foot.
  • the distance e1 between the 4 nodes of the inner diagonal braces between the two arched structural units is 8m; the length e2 of the straight flat joint wind bracing 301 between the second outer arched structural unit and the outermost arched structural unit is 1m, in the transverse direction ,
  • the center spacing of the lower chord arch ribs of the two innermost rows of arched structural units is 20m at the top of the arch and 60m at the arch foot (or the center spacing of the lower chord arch ribs of the two innermost rows of arched structural units
  • the vault is very small and remains unchanged at 60m at the arch foot).
  • the inclined flat joint wind brace 302 is located between the two innermost rows of arched structural units, and the start and end points of the inclined flat joint wind brace 302 are both set at two adjacent straight flat joint wind braces 301 and the two innermost rows. At the intersection of arched structural units, and the starting point and end point are not on the same row of arched structural units.
  • the column is the turning point.
  • this embodiment also provides a construction method for the above-mentioned arch structure, which includes the following steps:
  • S1 Construct the arch seat, and then use the cable-stayed buckle hanging cantilever method (with buckle cable 5 and ground anchor 6) to install the two rows of arched structural units on the innermost side of the transverse bridge and the transverse bridge connectors on the arch at the same time.
  • Sectional prefabrication is used for the curved structural unit and the transverse bridge connection (the length of the section is preferably 5-30m); the buckle 5 is released after the two innermost rows of arched structural units are closed;

Abstract

本发明公开了一种用于特大跨径钢-UHPC组合桁式拱桥的拱形结构,所述拱形结构包括多排横桥向排列的拱形结构单元,多排所述拱形结构单元沿纵桥向中心线呈对称分布,多排所述拱形结构单元通过横桥向连接件连接成一整体,所述拱形结构单元包括腹杆和由全UHPC材料构成的上弦拱肋与下弦拱肋,所述上弦拱肋与下弦拱肋之间通过腹杆连接。本发明还相应提供一种上述用于特大跨径钢-UHPC组合桁式拱桥的拱形结构的循环施工方法。本发明的钢-UHPC组合桁式拱桥的拱形结构具有自重轻的优点,本发明的施工方法具有施工效率高、施工成本低。本发明为600-1000m特大跨径拱桥提供了一种切实可行的解决方案。

Description

用于特大跨径钢-UHPC组合桁式拱桥的拱形结构及其施工方法 技术领域
本发明属于桥梁工程领域,尤其涉及一种用于组合桁式拱桥的拱形结构及其施工方法。
背景技术
拱桥由于经济性、耐久性好等优点,一直是大跨径桥梁的主要形式,拱桥尤其适用于山区建设的桥梁。但是当拱桥的跨径达到600m级或更大时,由于其结构自重大、施工困难等因素致使其经济性变差甚至难以施工;同时,普通混凝土或钢管混凝土拱桥存在结构自重过大,混凝土强度基本被其自重消耗殆尽等问题,特大跨径钢拱桥又存在厚板焊接困难、费用高等问题,这些都是制约拱桥向更大跨度发展的主要因素。因此,从桥梁技术和建造成本来看,600m级跨径拱桥是当前桥梁工程难以有效突破的一个技术瓶颈。
在大跨度拱桥施工方面,施工方法主要有缆索吊装施工法、转体施工法、劲性骨架施工法以及悬臂施工法(包括悬臂浇筑法和悬臂拼装法)等。对于特大跨径拱桥,主要采用悬臂拼装结合斜拉扣挂法施工,但由于主拱在合龙前自身不能受力,需用斜拉扣索支撑各个主拱节段,即先做成带地锚的斜拉桥,待合龙后拆除扣索再形成拱桥(如图1所示)。因主拱自重大,扣塔、扣索、地锚等临时措施费用非常高,严重影响了拱桥方案的经济性。
发明内容
本发明所要解决的技术问题是克服以上背景技术中提到的不足和缺陷,提供一种自重轻、施工效率高、施工成本低的、用于特大跨径钢-UHPC组合桁式拱桥的拱形结构及其循环施工方法。为解决上述技术问题,本发明提出的技术方案为:
一种用于特大跨径钢-UHPC组合桁式拱桥的拱形结构,所述拱形结构包括多排横桥向排列的拱形结构单元,多排所述拱形结构单元沿纵桥向中心线呈对称分布,多排所述拱形结构单元通过横桥向连接件连接成一整体,所述拱形结构单元包括腹杆和由全UHPC材料构成的上弦拱肋与下弦拱肋,所述上弦拱肋与下弦拱肋之间通过腹杆连接。
本发明中,上弦拱肋与下弦拱肋的可为箱型拱肋、矩形拱肋或工字型拱肋等结构形式的拱肋。本发明中,上下弦拱肋是主要承受压力的构件,由于UHPC的抗压性能优异,并且自重较轻,所以采用UHPC可以在保证受力要求的前提下提高拱桥的跨越能力。上下弦拱肋通过腹杆将上弦拱肋与下弦拱肋连接起来形成一个整体,实现共同受力,在横桥向连接件的固定下,保证拱形结构的整体稳定性,提高其受力性能。
上述拱形结构中,优选的,所述横桥向连接件与腹杆均为钢质构件,所述横桥向连接件、上弦拱肋、腹杆与下弦拱肋均为薄型构件,且所述UHPC材料的弯曲抗拉强度在20MPa以上,抗压强度在120MPa以上(例如优选的活性粉末混凝土(RPC)等)。由于横桥向连接件与腹 杆不是主要受力构件,所以可以采用较小的截面尺寸的钢结构,减轻自重,方便连接,并且有一部分承受了较大的拉力,不宜用纯UHPC材料。
上述拱形结构中,优选的,所述上弦拱肋与下弦拱肋为箱型拱肋,所述上弦拱肋与下弦拱肋之间的距离h1为6-60m,所述上弦拱肋与下弦拱肋的横截面的长、宽a1均为1.0-8m,壁厚b1为0.15-0.8m。我们优选的箱形拱肋具有很大的抗弯惯性矩以及抗扭惯性矩,可以很好地抵抗其产生的弯矩。上述拱肋尺寸确定是考虑到拱桥在施工以及成桥状态下的稳定性,以及对强度和刚度的需求,尺寸数值过高会加大拱桥的自重,导致拱脚推力太大,并且浪费了材料;尺寸数值过低可能会增加拱桥结构在施工状态或者成桥状态下的失稳几率,也可能会导致局部应力过大。
本发明的特大跨径钢-UHPC组合拱桥为一种结构构造介于普通混凝土拱桥和钢拱桥之间的拱桥,并对上述UHPC材料、上述上弦拱肋与下弦拱肋尺寸的进行了限定,采用了上述超高性能混凝土并配合了上述薄型构件的结构设置(构件厚度仅为传统混凝土拱桥构件厚度设计值的1/3左右),这使得本发明的超高性能混凝土拱桥的拱肋截面厚度和宽度在与传统混凝土拱桥拱肋强度设计值保持相当的前提下,整个拱肋的自重能大幅度减轻,其自重仅为相应传统混凝土拱肋的40%左右;相比纯钢拱桥,由于上下弦拱肋为主要承压构件,其材料采用抗压强度高的UHPC,避免了钢拱肋大量的厚板焊接,提高了施工可行性和经济性。
上述拱形结构中,优选的,所述拱形结构单元的数量等于或多于两排,横桥向最外侧两排所述拱形结构单元呈竖直或倾斜布置,且倾斜拱形结构单元与纵桥向中心线之间的距离由拱脚至拱顶逐渐变小,未倾斜的拱形结构单元平行于纵桥向中心线布置。此种结构的拱形结构优选的采用由外至内的施工方法。
上述拱形结构中,优选的,所述拱形结构单元的数量为多于两排的偶数排,所有的拱形结构单元均呈倾斜布置,且倾斜拱形结构单元与纵桥向中心线之间的距离由拱脚至拱顶逐渐变小。此种结构的拱形结构优选的采用由内至外的施工方法。
上述拱形结构中,优选的,所述横桥向连接件包括风撑和内斜撑;所述风撑包括直平联风撑,所述直平联风撑垂直于纵桥向中心线设置,所述内斜撑设于竖向(竖向指上下两根直平联风撑之间)两相邻直平联风撑之间,相邻所述直平联风撑之间的距离f为4-60m。更优选的,所述风撑还包括多根用于与直平联风撑相配合以增加拱形结构稳定性的斜平联风撑,所述斜平联风撑设于相邻两排所述拱形结构单元之间,优选所述斜平联风撑的横截面为工字钢(其它截面均可)。
上述拱形结构中,优选的,所述拱形结构的跨径大于400m(更优选为500-1000m),一般跨径过大,拱形结构的稳定性不高,本发明中优选的拱形结构形式,配合拱形结构材料、 尺寸、构型的优化,可以在保证稳定性的前提下,进一步提升拱形结构的跨径。
作为一个总的技术构思,本发明还提供一种上述拱形结构的施工方法,第一种施工方法(由外至内施工)包括以下步骤:
S1:建设拱座,再利用斜拉扣挂悬臂法在拱座上同时安装横桥向最外侧两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制(节段长度优选为5-30m);待最外侧两排拱形结构单元合龙后放松扣索;
S2:再利用斜拉扣挂悬臂法在拱座上安装与最外侧两排拱形结构单元相邻的拱形结构单元,将放松后的扣索从最外侧两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接其与横桥向连接件之间的接头,用UHPC浇筑拱肋与横桥向连接件之间的接合处,合龙后放松扣索。
S3:重复S2,直至所有的拱形结构单元均合龙,拆除扣索,即完成拱形结构的施工。
作为一个总的技术构思,本发明还提供一种上述拱形结构的施工方法,第二种施工方法(由内至外施工)包括以下步骤:
S1:建设拱座,再利用斜拉扣挂悬臂法在拱座上同时安装横桥向最内侧两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制(节段长度优选为5-30m);待最内侧的两排拱形结构单元合龙后放松扣索;
S2:再利用斜拉扣挂悬臂法在拱座上安装与最内侧两排拱形结构单元相邻的拱形结构单元,将放松后的扣索从最内侧两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接相邻拱形结构单元之间的横桥向连接件,合龙后放松扣索;
S3:重复S2,直至所有的拱形结构单元均合龙,拆除扣索,即完成拱形结构的施工。
上述两种施工方法中,有由外到内以及由内到外两种施工方式,由内到外的施工方式一般要求先施工的最内侧两排拱形结构单元在横桥向间距较大,这样才能满足其稳定性的要求,并且拱形结构单元应适当倾斜。
本发明中,桥型可为上承、中承或下承式拱桥桥型。
与现有技术相比,本发明的优点在于:
1、本发明提供的用于特大跨径钢-UHPC组合桁式拱桥采用了具有优异力学性能和耐久性能的超高性能混凝土,避免了普通混凝土强度低、难以实现特大跨径的困难,同时避免了特大跨径钢拱桥厚板焊接困难、造价昂贵的弊端,有望使拱桥的跨越能力提高至1000m,并在经济性方面比其他桥型更具优势。
2、本发明采用循环施工方法,如3次循环施工法,扣索只需承担1/3强的主拱荷载并三次循环利用,极大节省了扣塔、扣索、地锚等临时措施的费用,施工成本大大降低。
3、本发明的技术方案可用成熟的施工技术和施工设备实现,从而保证本发明桥梁构造及其施工建造的可行性;通过采用悬臂拼装与斜拉扣挂相结合的循环施工方法进行施工,这样既可保证施工质量和加快施工速度,又可减少施工成本,方便桥梁后期维护和增强桥梁结构的耐久性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为斜拉扣挂悬臂法的施工示意图。
图2为实施例1-3中拱形结构的立面图。
图3为实施例1中拱形结构的平面图。
图4为实施例1中拱形结构的另一种平面图。
图5为实施例1-3中拱形结构的构件尺寸图(图中a为上下弦拱肋,b为直平联风撑,c为腹杆,d为斜平联风撑,e为内斜撑)。
图6为实施例1中拱形结构第一次合龙最外侧拱形结构单元的施工步骤图。
图7为实施例1中拱形结构第二次合龙次外侧拱形结构单元的施工步骤图。
图8为实施例1中拱形结构第三次合龙最内侧拱形结构单元的施工步骤图。
图9为实施例2中拱形结构的平面图。
图10为实施例2中拱形结构第一次合龙最外侧拱形结构单元的施工步骤图。
图11为实施例2中拱形结构第二次合龙最内侧拱形结构单元的施工步骤图。
图12为实施例3中拱形结构的平面图。
图13为实施例3中拱形结构第一次合龙最内侧拱形结构单元的施工步骤图。
图14为实施例3中拱形结构第二次合龙次外侧拱形结构单元的施工步骤图。
图15为实施例3中拱形结构第三次合龙最外侧拱形结构单元的施工步骤图。
图例说明:
101、上弦拱肋;102、下弦拱肋;2、腹杆;3、风撑;301、直平联风撑;302、斜平联风撑;4、内斜撑;5、扣索;6、地锚。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
如图2-5所示,本实施例的用于特大跨径钢-UHPC组合桁式拱桥的拱形结构,拱形结构包括5排纵桥向排列的拱形结构单元,5排拱形结构单元沿纵桥向中心线呈对称分布,5排拱形结构单元通过钢质(如Q345材料)风撑3和内斜撑4连接成一整体,拱形结构单元包括上弦拱肋101、腹杆2(钢质材料,如Q345材料)与下弦拱肋102,上弦拱肋101与下弦拱肋102之间通过腹杆2连接,腹杆2采用N形桁式,上弦拱肋101与下弦拱肋102为全UHPC材料构成的箱形拱肋。
本实施例中,风撑3、内斜撑4、上弦拱肋101、腹杆2与下弦拱肋102均为薄型构件,且UHPC材料的弯曲抗拉强度在20MPa以上,抗压强度在120MPa以上。
本实施例中,风撑3包括直平联风撑301和斜平联风撑302,直平联风撑301每隔一个腹杆2布置一道,其位置与腹杆2相对应,直平联风撑301垂直于纵桥向中心线设置,相邻直平联风撑301之间的距离f为11-31m,斜平联风撑302设于横桥向最外侧与次外侧两排拱形结构单元之间。
如图2、图5所示,本实施例中,上弦拱肋101与下弦拱肋102之间的距离h1为16m,上弦拱肋101与下弦拱肋102的横截面的长、宽a1均为2m,壁厚b1为0.2m。腹杆2的横截面为带肋的箱形截面,腹杆2的每个内壁侧面上均设有肋,腹杆2的横截面的长、宽a3均为0.4m,壁厚b3为3cm,腹杆2中的肋的长度h3为15cm,厚度k3为3cm。直平联风撑301的横截面为带肋的箱形截面,直平联风撑301的每个内壁侧面上均设有肋,直平联风撑301的横截面的长、宽a2均为1.0m,壁厚b2为3cm,直平联风撑301中的肋的长度h2为0.3m,厚度k2为3cm。斜平联风撑302与内斜撑4的横截面均为工字钢,斜平联风撑302的横截面的翼缘板宽a4为0.4m,翼缘板厚b4为3cm,腹板高h4为0.6m,腹板厚k4为2cm,内斜撑4的横截面的翼缘板宽a5为0.4m,翼缘板厚b5为3cm,腹板高h5为0.6m,腹板厚k5为2cm。
本实施例,5排纵桥向排列的拱形结构单元的排布方式有以下两种:第一种如图3所示,5排拱形结构单元横桥向平行布置,两个最外侧拱形结构单元的外边缘距离c为30m,最外侧与次外侧拱形结构单元之间的内边缘距离为8.5m,其余相邻两排拱形结构单元之间的内边缘距离为1.5m。第二种如图4所示,两个最外侧拱形结构单元横向1:20倾斜布置,其余拱 形结构单元横桥向平行布置,两个最外侧拱形结构单元的外边缘距离d在拱顶处为30m,在拱脚处为40m,其余相邻两排拱形结构单元之间的距离为1.5m。
本实施例中钢-UHPC组合拱桥的跨径布置w为800m,采用上承式拱桥桥型设计,其拱轴线为悬链线,并且初步取拱轴系数m=1.2,或者采用折线形拱轴线,立柱处即为折点。
如图6-8所示,本实施例还提供一种上述拱形结构的施工方法,包括以下步骤:
S1:建设拱座,再利用斜拉扣挂悬臂法(带扣索5和地锚6)在拱座上同时安装横桥向最外侧的两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制(节段长度优选为5-30m);待最外侧两排拱形结构单元合龙后放松扣索5;
S2:再利用斜拉扣挂悬臂法在拱座上安装与最外侧的两排拱形结构单元相邻的拱形结构单元,将放松后的扣索5从最外侧的两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接其与横桥向连接件之间的接头,用UHPC浇筑拱肋与横桥向连接件之间的接合处,合龙后放松扣索5;
S3:将放松后的扣索5从次外侧的两排拱形结构单元移至内拱并张紧,再利用斜拉扣挂悬臂法在拱座上安装最内侧拱形结构单元,并连接其与横桥向连接件之间的接头,并利用UHPC修补拱肋与横桥向连接件之间的接合处,合龙后放松扣索5,即完成拱形结构的施工。
实施例2:
如图5、9所示,本实施例的用于特大跨径钢-UHPC组合桁式拱桥的拱形结构中的拱形结构单元与实施例1相同,不同之处在于其只有3排拱形结构单元,且3排拱形结构单元沿纵桥向中心线平行排布。具体的,本实施例中,两个最外侧拱形结构单元的外边缘距离c为30m,且中间拱的上弦拱肋101与下弦拱肋102的横截面的尺寸采用长宽a1为2m,厚b1为0.4m,相邻两排拱形结构单元之间的距离为12m。
本实施例中,两排拱形结构单元间内斜撑4节点间的距离e4为6m;斜平联风撑302的布置和实施例1中类似。
本实施例中钢-UHPC组合拱桥的跨径布置w为800m,采用上承式拱桥桥型设计,其拱轴线为悬链线,并且初步取拱轴系数m=1.2,或者采用折线形拱轴线,立柱处即为折点。
如图10、11所示,本实施例还提供一种上述拱形结构的施工方法,包括以下步骤:
S1:建设拱座,再利用斜拉扣挂悬臂法(带扣索5和地锚6)在拱座上同时安装横桥向最外侧的两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制(节段长度优选为5-30m);待最外侧两排拱形结构单元合龙后放松扣索5;
S2:再利用斜拉扣挂悬臂法在拱座上安装最内侧拱形结构单元,将放松后的扣索5从最外侧两排拱形结构单元移至内拱并张紧,并连接其与横桥向连接件之间的接头,用UHPC浇 筑拱肋与横桥向连接件之间的接合处,合龙后放松扣索5,即完成拱形结构的施工。
实施例3:
如图5、12所示,本实施例的用于特大跨径钢-UHPC组合桁式拱桥的拱形结构中的拱形结构单元与实施例1相同,不同之处在于拱形结构单元构成拱形结构时的排布方式有所不同,具体的,本实施例中,拱形结构单元有6排,6排拱形结构单元在横向均按1:5倾斜布置,两个最外侧的下弦拱肋102的中心间距d1在拱顶为32m,在拱脚处为72m。两片拱形结构单元间内斜撑4节点间的距离e1为8m;次外侧拱形结构单元与最外侧拱形结构单元间直平联风撑301的长度e2均为1m,在横桥向,两排最内侧拱形结构单元的下弦拱肋的中心间距在拱顶处为20m,在拱脚处为60m(或者也可以将两排最内侧拱形结构单元的下弦拱肋的中心间距在拱顶处取得非常小,在拱脚处保持60m不变)。
本实施例中,斜平联风撑302位于最内侧两排拱形结构单元之间,斜平联风撑302起点与终点均设于横向两相邻直平联风撑301与最内侧两排拱形结构单元的交点处,且起点与终点不在同一排拱形结构单元上。
本实施例中钢-UHPC组合拱桥的跨径布置w为800m,采用上承式拱桥桥型设计,其拱轴线为悬链线,并且初步取拱轴系数m=1.2,或者采用折线形拱轴线,立柱处即为折点。
如图13-15所示,本实施例还提供一种上述拱形结构的施工方法,包括以下步骤:
S1:建设拱座,再利用斜拉扣挂悬臂法(带扣索5和地锚6)在拱座上同时安装横桥向最内侧的两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制(节段长度优选为5-30m);待最内侧两排拱形结构单元合龙后放松扣索5;
S2:再利用斜拉扣挂悬臂法在拱座上安装与最内侧两排拱形结构单元相邻的拱形结构单元,将放松后的扣索5从最内侧两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接相邻拱形结构单元之间的横桥向连接件,合龙后放松扣索5;
S3:重复S2,直至所有的拱形结构单元均合龙,拆除扣索5,即完成拱形结构的施工。

Claims (10)

  1. 一种用于特大跨径钢-UHPC组合桁式拱桥的拱形结构,其特征在于,所述拱形结构包括多排横桥向排列的拱形结构单元,多排所述拱形结构单元沿纵桥向中心线呈对称分布,多排所述拱形结构单元通过横桥向连接件连接成一整体,所述拱形结构单元包括腹杆(2)和由全UHPC材料构成的上弦拱肋(101)与下弦拱肋(102),所述上弦拱肋(101)与下弦拱肋(102)之间通过腹杆(2)连接。
  2. 根据权利要求1所述的拱形结构,其特征在于,所述横桥向连接件与腹杆(2)均为钢质构件,所述横桥向连接件、上弦拱肋(101)、腹杆(2)与下弦拱肋(102)均为薄型构件,且所述UHPC材料的弯曲抗拉强度在20MPa以上,抗压强度在120MPa以上。
  3. 根据权利要求1所述的拱形结构,其特征在于,所述上弦拱肋(101)与下弦拱肋(102)为箱型拱肋,所述上弦拱肋(101)与下弦拱肋(102)之间的距离h1为6-60m,所述上弦拱肋(101)与下弦拱肋(102)的横截面的长、宽a1均为1.0-8m,壁厚b1为0.15-0.8m。
  4. 根据权利要求1-3中任一项所述的拱形结构,其特征在于,所述拱形结构单元的数量等于或多于两排,横桥向最外侧两排所述拱形结构单元呈竖直或倾斜布置,且倾斜拱形结构单元与纵桥向中心线之间的距离由拱脚至拱顶逐渐变小,未倾斜的拱形结构单元平行于纵桥向中心线布置。
  5. 根据权利要求1-3中任一项所述的拱形结构,其特征在于,所述拱形结构单元的数量为多于两排的偶数排,所有的拱形结构单元均呈倾斜布置,且倾斜拱形结构单元与纵桥向中心线之间的距离由拱脚至拱顶逐渐变小。
  6. 根据权利要求1-3中任一项所述的拱形结构,其特征在于,所述横桥向连接件包括风撑(3)和内斜撑(4);所述风撑(3)包括直平联风撑(301),所述直平联风撑(301)垂直于纵桥向中心线设置,所述内斜撑(4)设于竖向两相邻直平联风撑(301)之间。
  7. 根据权利要求6所述的拱形结构,其特征在于,所述风撑(3)还包括多根用于与直平联风撑(301)相配合以增加拱形结构稳定性的斜平联风撑(302),所述斜平联风撑(302)设于相邻两排所述拱形结构单元之间。
  8. 根据权利要求1-3中任一项所述的拱形结构,其特征在于,所述拱形结构的跨径大于400m。
  9. 一种如权利要求1-8中任一项所述的拱形结构的施工方法,其特征在于,包括以下步骤:
    S1:建设拱座,再利用斜拉扣挂悬臂法在拱座上同时安装横桥向最外侧两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制;待最外侧两排拱形结构单元合龙后放松扣索(5);
    S2:再利用斜拉扣挂悬臂法在拱座上安装与最外侧两排拱形结构单元相邻的拱形结构单元,将放松后的扣索(5)从最外侧两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接其与横桥向连接件之间的接头,用UHPC浇筑拱肋与横桥向连接件之间的接合处,合龙后放松扣索(5);
    S3:重复S2,直至所有的拱形结构单元均合龙,拆除扣索(5),即完成拱形结构的施工。
  10. 一种如权利要求1-8中任一项所述的拱形结构的施工方法,其特征在于,包括以下步骤:
    S1:建设拱座,再利用斜拉扣挂悬臂法在拱座上同时安装横桥向最内侧两排拱形结构单元以及横桥向连接件,拱形结构单元和横桥向连接件采用节段预制;待最内侧两排拱形结构单元合龙后放松扣索(5);
    S2:再利用斜拉扣挂悬臂法在拱座上安装与最内侧两排拱形结构单元相邻的拱形结构单元,将放松后的扣索(5)从最内侧两排拱形结构单元分别移至相邻的拱形结构单元并张紧,并连接相邻拱形结构单元之间的横桥向连接件,合龙后放松扣索(5);
    S3:重复S2,直至所有的拱形结构单元均合龙,拆除扣索(5),即完成拱形结构的施工。
PCT/CN2019/114368 2019-03-07 2019-10-30 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法 WO2020177353A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920290014.X 2019-03-07
CN201910172896.4 2019-03-07
CN201920290014.XU CN209703270U (zh) 2019-03-07 2019-03-07 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构
CN201910172896.4A CN109778667B (zh) 2019-03-07 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法

Publications (1)

Publication Number Publication Date
WO2020177353A1 true WO2020177353A1 (zh) 2020-09-10

Family

ID=72338402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114368 WO2020177353A1 (zh) 2019-03-07 2019-10-30 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法

Country Status (1)

Country Link
WO (1) WO2020177353A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205139A (ja) * 2006-02-06 2007-08-16 Sumitomo Mitsui Construction Co Ltd アーチ橋の構築方法
CN101581074A (zh) * 2009-06-09 2009-11-18 中国第一冶金建设有限责任公司 大跨度钢桁拱架的施工方法
CN106120573A (zh) * 2016-06-30 2016-11-16 中国化学工程第三建设有限公司 跨海多跨提篮拱桥自平衡扣挂施工方法
CN207079458U (zh) * 2017-06-21 2018-03-09 中国市政工程中南设计研究总院有限公司 双层桥面全钢结构的桁架式拱梁组合体系
CN109024225A (zh) * 2018-07-25 2018-12-18 湖南大学 超高性能混凝土桁架拱片单元、桁架拱片桥梁及施工方法
CN109778667A (zh) * 2019-03-07 2019-05-21 湖南大学 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205139A (ja) * 2006-02-06 2007-08-16 Sumitomo Mitsui Construction Co Ltd アーチ橋の構築方法
CN101581074A (zh) * 2009-06-09 2009-11-18 中国第一冶金建设有限责任公司 大跨度钢桁拱架的施工方法
CN106120573A (zh) * 2016-06-30 2016-11-16 中国化学工程第三建设有限公司 跨海多跨提篮拱桥自平衡扣挂施工方法
CN207079458U (zh) * 2017-06-21 2018-03-09 中国市政工程中南设计研究总院有限公司 双层桥面全钢结构的桁架式拱梁组合体系
CN109024225A (zh) * 2018-07-25 2018-12-18 湖南大学 超高性能混凝土桁架拱片单元、桁架拱片桥梁及施工方法
CN109778667A (zh) * 2019-03-07 2019-05-21 湖南大学 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法

Similar Documents

Publication Publication Date Title
CN109024225A (zh) 超高性能混凝土桁架拱片单元、桁架拱片桥梁及施工方法
CN103061243B (zh) 一种预应力钢管混凝土组合桁梁及其施工方法
CN106758748A (zh) 大跨度钢管混凝土拱桥结构
CN104032668A (zh) 中承式钢桁-混凝土组合连续钢构桥
WO2013044496A1 (zh) 大悬臂波-桁钢-混凝土组合结构pc桥梁
CN113882238A (zh) 大跨度上承式索辅梁拱组合刚构桥及其施工方法
CN210031457U (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁
CN113481818B (zh) 一种适用于超高速铁路的中承式拱桥
CN208455877U (zh) 预应力筋斜置的自复位装置及钢管混凝土框架钢板剪力墙
CN107119582B (zh) 一种t型刚构桥背塔斜拉加固结构及其施工方法
CN112982139A (zh) 一种宽幅大跨混合梁矮塔斜拉桥体系及其施工方法
WO2020177353A1 (zh) 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法
CN108374324B (zh) 大桁拱桥
JP2004324164A (ja) 波形鋼板ウエブpc橋閉合部の施工方法
CN110777679A (zh) 上承式拱桥桁架加固、提载、改造的方法
CN209703270U (zh) 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构
CN207793840U (zh) 双肢钢管桁架拱结构和含有该结构的上承式钢混肋拱桥
CN109778667B (zh) 用于特大跨径钢-uhpc组合桁式拱桥的拱形结构及其施工方法
CN214783221U (zh) 装配式拉筋矩形钢管混凝土桁架组合梁
CN207003212U (zh) 一种组合式拱桥
CN213653171U (zh) 一种新型装饰中承式拱架结构
CN110241728A (zh) 一种跨既有线路的钢梁临时支撑结构及钢梁施工方法
CN110029569B (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁及其施工方法
CN205999766U (zh) 竹节形钢管桁式折线拱桥
WO2022241814A1 (zh) 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19917581

Country of ref document: EP

Kind code of ref document: A1