WO2020177259A1 - 气雾淬火装置、零件界面传热系数的测试系统及测试方法 - Google Patents

气雾淬火装置、零件界面传热系数的测试系统及测试方法 Download PDF

Info

Publication number
WO2020177259A1
WO2020177259A1 PCT/CN2019/095539 CN2019095539W WO2020177259A1 WO 2020177259 A1 WO2020177259 A1 WO 2020177259A1 CN 2019095539 W CN2019095539 W CN 2019095539W WO 2020177259 A1 WO2020177259 A1 WO 2020177259A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
temperature
heat transfer
transfer coefficient
nozzle
Prior art date
Application number
PCT/CN2019/095539
Other languages
English (en)
French (fr)
Inventor
李辉平
宁莉丹
邹立平
王晓伟
李志超
贺连芳
朱希斌
孙亚星
孙然
牟延杰
肖慈超
周卫鲁
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020177259A1 publication Critical patent/WO2020177259A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the present disclosure relates to the technical field of aerosol quenching, and particularly relates to a testing system and a testing method for aerosol quenching device, part interface heat transfer coefficient.
  • Resistance furnace is an industrial furnace that uses electric current to heat the electric heating element or heating medium in the furnace to heat the workpiece or material. It is a heating furnace that uses electric current to pass through the resistance material to generate heat energy. It uses electricity as a heat source and converts electrical energy into heat energy through electric heating elements to heat the metal in the furnace.
  • the resistance furnace has the advantages of high thermal efficiency, easy control of thermal precision, good working conditions, and long furnace life. It is suitable for heating workpieces with strict requirements, but high power consumption.
  • Electromagnetic induction heating technology is developed on the basis of Faraday's law of electromagnetic induction, and is an application form of Faraday's law of induction.
  • the main principles of induction heating are: electromagnetic induction, skin effect, and heat conduction.
  • the induced current in the workpiece is required to be as large as possible.
  • Increasing the current in the induction coil can increase the alternating magnetic flux in the metal workpiece, thereby increasing the induced current in the workpiece.
  • induction heating technology has precise heating depth and heating area, and is easy to control; it is easy to achieve high power density, heating speed, high efficiency, and low energy consumption; heating temperature is high, and heating temperature is easy to control; The heating temperature is conducted or penetrated from the surface of the workpiece to the inside; using non-contact heating method, it is not easy to be mixed with impurities during the heating process, the workpiece material is less burned, and the oxide scale is less generated. It can work in various carrier gases with very low loss , Does not produce any physical pollution, conforms to environmental protection and sustainable development guidelines, and is one of the green and environmentally friendly heating processes.
  • Induction heating surface quenching is a quenching method that uses the principle of electromagnetic induction to generate a high-density induction current on the surface of the workpiece, rapidly heat it to the austenite state, and then rapidly cool it to obtain the martensite structure.
  • an alternating current of a certain frequency is passed through the induction coil, an alternating magnetic field with the same frequency as the current change will be generated inside and outside.
  • the metal workpiece is put into the induction coil, and under the action of the magnetic field, the induction current with the same frequency as the induction coil but the opposite direction will be generated in the workpiece. Because the induced current forms a closed loop along the surface of the workpiece, it is usually called eddy current.
  • This eddy current turns electrical energy into heat energy, rapidly heating the surface of the workpiece.
  • Eddy currents are mainly distributed on the surface of the workpiece, and there is almost no current passing through the workpiece. This phenomenon is called surface effect or skin effect.
  • Induction heating uses the skin effect to quickly heat the surface of the workpiece to the quenching temperature by the heating effect of the current.
  • the induction coil is made of red copper pipe with cooling water inside. When the surface of the workpiece is heated to a certain temperature in the induction coil, it is immediately cooled by spraying water to obtain the martensite structure on the surface layer.
  • the aerosol quenching technology is a method of spraying aerosol onto the heated steel plate to quickly cool the steel plate to achieve the purpose of quenching.
  • aerosol quenching has the characteristics of strong cooling capacity and good quenching effect, and can still ensure a high quenching rate when the sheet is at a low temperature; it can be achieved by adjusting the ratio of gas to water and the injection speed Control of cooling rate.
  • Aerosol quenching has the largest quenching capacity and quenching rate adjustment range. Aerosol quenching can increase the cooling rate, increase the heat transfer coefficient, and obtain quenched parts with excellent mechanical properties.
  • the spray volume of aerosol quenching can be controlled, and the cross-section sprayed on the steel plate is flat.
  • Aerosol quenching During quenching, the structure is uniformly transformed, clean and pollution-free, and low energy consumption. Aerosol quenching has a strong cooling capacity, and the aerosol sprays on the steel plate at a fast speed and strong strength. It can break through the oxide scale on the steel plate and blow it off, or fall off due to gravity, which can reduce the oxide scale in the post-processing work.
  • the quenching process is mainly used for steel that can be strengthened by heat treatment.
  • the interface heat transfer coefficient is one of the key parameters for studying the heat transfer mechanism of aerosol quenching, and its accuracy directly affects the solution accuracy of the temperature field, the stress-strain field and the structure field. Therefore, accurately solving the heat transfer coefficient of the interface between the quenched surface of the workpiece and the quenching medium is of great significance for studying the heat transfer mechanism of aerosol quenching.
  • one of the objectives of the embodiments of the present disclosure is to provide an aerosol quenching device with variable nozzle angles, which can be used for induction heating quenching and resistance furnace heating quenching.
  • the embodiment of the present disclosure discloses an aerosol quenching device, which is realized by the following technical solutions:
  • It includes a containing cavity formed by a plurality of plates.
  • a rotating part is installed between two opposing plates in the containing cavity.
  • a fixed nozzle is installed on the rotating part to realize that the angle between the nozzle and the axis of the workpiece can be adjusted.
  • a workpiece clamping hole is opened on part of the plates constituting the containing cavity, and the workpiece clamping hole fixes the workpiece after the workpiece is placed.
  • the above-mentioned device of the embodiment of the present disclosure involves the variable angle of the nozzle, which can obtain the quenching conditions at different angles between the nozzle and the axis of the workpiece.
  • the device can also achieve the horizontal placement of the workpiece and quench the quenched surface of the workpiece; Place it straight and study the effect of gravity on the quenched surface.
  • the device can realize the aerosol quenching process under different nozzle angles, different spray heights, different workpiece diameters, gravity and other conditions, and then through the obtained experimental data, further analyze the structure and mechanical properties of the quenched workpiece to evaluate the workpiece Aerosol quenching effect.
  • the second purpose of the embodiment of the present disclosure is to provide a test system for the heat transfer coefficient of the part interface.
  • the test system is based on the above-mentioned aerosol quenching device and is realized by the following technical solutions:
  • the gas inlet end of the nozzle is connected with an air compression system, the air compression system provides gas with a certain pressure for the nozzle, and the liquid inlet end of the nozzle is connected with a water pump system, and the water pump system provides liquid water for the nozzle;
  • the workpiece hole is inserted into a temperature measuring device, and the temperature measuring device transmits the measured temperature of the workpiece to a computer analysis system in real time, and the computer analysis system is configured to perform the following process:
  • the third purpose of the embodiments of the present disclosure is to provide a test method for the heat transfer coefficient of the part interface.
  • the test method is implemented based on the test system and is achieved through the following technical solutions:
  • the temperature of the quenched surface of the part during the spray cooling process is transmitted to the computer analysis system in real time, and the computer analysis system is configured to perform the following process:
  • the aerosol quenching device of the present disclosure relates to a variable angle of the nozzle, which can obtain the quenching conditions at different angles between the nozzle and the axis of the workpiece.
  • the device can also realize the horizontal placement of the workpiece and quench the quenched surface of the workpiece; Place it straight and study the effect of gravity on the quenched surface.
  • the device can realize the aerosol quenching process under different nozzle angles, different spray heights, different workpiece diameters, gravity and other conditions, and then through the obtained experimental data, further analyze the structure and mechanical properties of the quenched workpiece to evaluate the workpiece Aerosol quenching effect.
  • the test system of the present disclosure can obtain the interface heat transfer coefficients at different air pressures, different spray angles, different spray heights, aerosol ratios, different airflow speeds, and different workpiece diameters, and provide reliable interface transfer coefficients for numerical simulation of aerosol quenching processes.
  • the thermal coefficient improves the reliability of the numerical simulation results of the aerosol quenching process.
  • Figure 1 (a) is a front view of an aerosol quenching device for cylindrical parts according to an embodiment of the present disclosure
  • Figure 1(b) is a three-dimensional view of an aerosol quenching device for cylindrical parts according to an embodiment of the present disclosure
  • Fig. 2 is a left side view of an aerosol quenching device for cylindrical parts according to an embodiment of the present disclosure
  • Figure 3 is a top view of an aerosol quenching device for cylindrical parts according to an embodiment of the present disclosure
  • Figure 4 is a working schematic diagram of an aerosol quenching device for cylindrical parts according to an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the overall device for the experimental process of the embodiment of the present disclosure.
  • Figure 6 is a flow chart of solving the interface heat transfer coefficient of an embodiment of the present disclosure
  • This embodiment provides an aerosol quenching device, which is suitable for aerosol quenching of cylindrical parts, and includes a basic support device, a workpiece fixing device, and a nozzle installation fixed and adjustable device.
  • the basic support device plays a basic supporting role
  • the nozzle of the aerosol quenching device and the placement of the workpiece play a supporting role.
  • the workpiece fixing device is used to fix the workpiece at the set position during aerosol quenching, so that the nozzle can perform aerosol quenching on the workpiece.
  • the nozzle installation can be fixed.
  • the adjusting device is used to install the nozzle to realize the adjustment of the angle of the nozzle and meet the needs of aerosol quenching at different angles.
  • the basic supporting device may include a bottom plate 1, a top plate 4, a right side plate 3, a left side plate 9, a front plate 14 and a rear plate 15.
  • the above-mentioned boards at different positions jointly constitute a containing cavity, the containing cavity may be square, and the board and the board are connected by screws, which is convenient for installation and disassembly, and is convenient for operation.
  • the nozzle mounting and fixing adjustable device includes a nozzle fixing rotatable shaft 7 and a dial 16, wherein the nozzle fixing rotatable shaft 7 is provided with a threaded hole 6 for nozzle fixing, and one end of the nozzle fixing rotatable shaft 7 It is provided with a shaft shoulder, which is matched with the dial 16 and fixed by screws to jointly realize the purpose of adjusting the angle between the nozzle and the axis of the workpiece.
  • the rotatable shaft as a shaft part is easy to install and use, easy to operate, and easy to achieve the purpose of adjusting the nozzle angle.
  • the rotatable shaft can also be replaced with other rotatable parts.
  • the rotating shaft is installed on two plates with holes in the plates, and the shaft is placed in the holes. Both ends of the rotating shaft, either end of which can be set as a shoulder, and the end with the shoulder is installed on the front plate, A dial 16 is arranged on the front plate, and the shoulder of the shaft and the dial 16 and the plate are fastened by screws.
  • the scale 16 can also be integrated with the plate, and the scale is drawn on the front plate. At this time, the shaft is still placed in the two holes of the front and rear plates, and the shaft shoulder and the plate are fastened with screws, which can also achieve the nozzle angle Adjustable purpose.
  • the rotating shaft 7 used to install the fixed nozzle is fixed on the front plate 14 and the rear plate 15, and the adjustable siphon nozzle with screw mounting is fixed on the rotating shaft 7 through a screw connection.
  • the rotating shaft can realize spray quenching from 0 to 90°. When the rotating shaft rotates through 90°, spray quenching of the quenched surface at the horizontal position of the workpiece axis can be achieved.
  • the rotating shaft 7 for installing the fixed nozzle is fixed on the front plate 14 and the rear plate 15.
  • the fixing method is not limited to Fig. 2.
  • a sliding groove is provided on the plate and the rotating shaft 7 is fixed with screws.
  • the middle position of the rotating shaft is provided with a threaded hole for installing the nozzle.
  • the aerosol quenching device can place the workpiece horizontally and quench the quenched surface of the workpiece; place the test piece vertically to study the influence of gravity on the quenched surface.
  • the workpiece fixing device includes a workpiece clamping counterbore (respectively, the right side plate workpiece clamping counterbore 2, the top plate workpiece clamping counterbore 5, and the left workpiece clamping counterbore 8.
  • a workpiece clamping counterbore (respectively, the right side plate workpiece clamping counterbore 2, the top plate workpiece clamping counterbore 5, and the left workpiece clamping counterbore 8.
  • sliding plate 11 fixed block 12
  • thermal insulation sleeve 17 wherein the workpiece installation counterbore is set as a counterbore, which facilitates placing the thermal insulation sleeve and picking and placing the workpiece.
  • the workpiece clamping counterbore in the vertical direction includes the top plate workpiece clamping counterbore 5 and the bottom plate workpiece clamping counterbore 10;
  • the horizontal workpiece clamping counterbore includes the left side plate workpiece clamping counterbore 8, Counterbore 2 for clamping the workpiece on the right side.
  • the setting of the counterbore facilitates the taking and placing of the workpiece.
  • the side plate workpiece clamping counterbore can be used to place the workpiece horizontally to study the influence factors of spray quenching. At this time, the workpiece is installed and fixed and the rotating shaft is rotated by 90°, and the quenched surface of the workpiece placed horizontally can be spray quenched.
  • thermocouple can be fixed by welding to ensure the contact between the temperature measurement end and the surface near the quenched surface.
  • the workpiece clamping counterbore can be used to place workpieces of different diameters, as long as the insulation sleeve and the workpiece can be placed together in the workpiece clamping counterbore without falling.
  • the diameter of the counterbore is larger than the diameter of the workpiece.
  • the thickness of the insulation sleeve and the diameter of the workpiece can be coordinated with each other to achieve the purpose of aerosol quenching of different workpiece diameters.
  • thermocouple When the workpiece is installed in the workpiece clamping counterbore 5 of the top plate, the thermocouple can be directly inserted into the hole of the workpiece, and the quenched surface is the bottom surface of the workpiece; when the workpiece is installed in the bottom plate workpiece clamping counterbore 10, the hole is facing downward at this time, so The thermocouple needs to be in contact with the workpiece near the quenched surface in a certain way (such as welding) to achieve the purpose of temperature measurement.
  • the aerosol nozzle is equipped with a screw and an adjustable siphon nozzle is fixed on the rotating shaft 7 to perform aerosol quenching of the workpiece at different angles.
  • the nozzle angle is adjustable between 0 and 90°.
  • the rotating shaft 7 can be installed on the chute and fixed with screws to realize the adjustable spray height (the distance between the nozzle and the quenched surface of the workpiece).
  • the workpiece When in use, the workpiece can be heated by induction heating or resistance furnace heating.
  • induction heating the induction coil is arranged in the circumferential direction of the workpiece, and an insulation sleeve is set between the induction coil and the workpiece, and the heating depends on the sliding plate 11 and The fixing block 12 fixes the workpiece.
  • Resistance furnace heating use resistance furnace to heat to a certain temperature, use refractory tongs to take the workpiece out of the furnace, place it in the counterbore of the workpiece clamping, and perform spray quenching.
  • This embodiment provides a test system for the interface heat transfer coefficient of the parts of the aerosol quenching device based on the above embodiment 1.
  • the pipeline where the liquid inlet end of the nozzle is located is connected with a flow meter, a check valve, and A flow meter, a pressure gauge, and a pump.
  • the pipeline between the flow meter and the pressure gauge is connected to a water bucket, and the outlet pipeline of the water bucket is provided with a thermometer.
  • the pipeline at the gas inlet end of the nozzle is sequentially connected with a flow meter, a check valve, a flow meter, a pressure gauge and an air compressor.
  • thermocouple is inserted into the hole of the workpiece, and the thermocouple transmits the measured temperature to the computer through the data acquisition instrument.
  • the software interface heat transfer coefficient inverse calculation system is used to calculate and analyze the temperature field of the quenched part to estimate the interface heat transfer at the initial stage of quenching
  • the coefficient uses finite element software to simulate the aerosol quenching process to obtain a temperature-time cooling curve, and compare whether the calculated temperature is consistent with the measured temperature. If it does not match, calculate the corrected value of the interface heat transfer coefficient based on the difference between the calculated value and the measured value, and use the corrected interface heat transfer coefficient to recalculate the temperature-time cooling curve. After repeated calculations, the calculated temperature will approach the measured temperature. Record the interface heat transfer coefficient.
  • the temperature-time data obtained from the experiment is imported into the DEFORM software, and the Inverse Heat Transfer module of the DEFORM software is used to calculate and analyze the temperature field of the quenched part, and estimate (given) the interface heat transfer coefficient of the quenching process . Based on the initial interface heat transfer coefficient, DEFORM software will run a simulation of the quenching process. Finally, the DEFORM optimization program will compare the simulated time-temperature data with the experimental time-temperature data, and perform optimization calculations until it reaches an optimal value. The main steps of the optimization program operation are: use the software to simulate the data of the quenching process and compare it with the measured temperature.
  • the interface heat transfer coefficient recalculates the temperature-time cooling curve. After repeated calculations, the calculated temperature is close to the measured temperature, and the interface heat transfer coefficient is recorded. The relationship between the interface heat transfer coefficient and temperature is different for the different materials used.
  • the flow meter and the flow meter can be selected in the experiment, and the parameter can be converted through the formula.
  • the system can obtain the interface heat transfer coefficient of different air pressures, different spray angles, different spray heights, aerosol ratios, different airflow speeds, and different workpiece diameters. It provides a reliable interface heat transfer coefficient for the numerical simulation of aerosol quenching process and improves Reliability of numerical simulation results of aerosol quenching process.
  • This embodiment provides a test method for a test system based on the heat transfer coefficient of the part interface.
  • the method uses induction heating.
  • the method is specifically:
  • the workpiece is fixed on the inner side of the induction coil by the fixing block 12 and the sliding plate 11, wherein a protective sleeve 17 is provided between the workpiece and the induction coil.
  • thermocouple Insert the temperature measuring end of the thermocouple into the workpiece hole, and connect the other end to the data acquisition instrument.
  • the data acquisition instrument is connected to a computer through a USB interface, and a temperature measurement software is installed on the computer.
  • the temperature measurement software is used to perform temperature-time cooling curve measurement and data acquisition.
  • the adjustable siphon nozzle with screw installation has one end for gas inlet and one end for liquid inlet.
  • an air compression pump is used to provide gas at a certain pressure; a bucket is used to provide tap water.
  • the air compression pump is turned on, and the adjustable siphon nozzle with screw is installed to form aerosol and spray the quenched surface of the workpiece cool down.
  • the software interface heat transfer coefficient inverse calculation system is used to calculate and analyze the temperature field of the quenched part to estimate the interface heat transfer at the initial stage of quenching
  • the coefficient uses finite element software to simulate the aerosol quenching process to obtain a temperature-time cooling curve, and compare whether the calculated temperature is consistent with the measured temperature. If it does not match, calculate the corrected value of the interface heat transfer coefficient based on the difference between the calculated value and the measured value, and use the corrected interface heat transfer coefficient to recalculate the temperature-time cooling curve. After repeated calculations, the calculated temperature will approach the measured temperature. Record the interface heat transfer coefficient.
  • This embodiment provides a test method of a test system based on the heat transfer coefficient of the part interface.
  • the method adopts resistance furnace heating, specifically:
  • thermocouple Fix the temperature measuring end of the thermocouple in the small hole of the workpiece in a certain way, and put the workpiece with the thermocouple into the resistance furnace.
  • the heating with the furnace can ensure the uniformity of the heating temperature of the workpiece.
  • thermocouple Insert the other end of the thermocouple into the data acquisition instrument, and the data acquisition instrument is connected to a computer through a USB interface.
  • the computer is equipped with temperature measurement software.
  • the temperature measurement software is used to measure the temperature-time cooling curve and collect data.
  • the workpiece is taken out with refractory tongs and placed in the workpiece clamping counterbore of the cylindrical part aerosol quenching device, and an insulation sleeve is arranged between the clamping counterbore and the workpiece.
  • the adjustable siphon nozzle with screw installation has one end for gas inlet and one end for liquid inlet.
  • an air compression pump is used to provide gas at a certain pressure; a bucket is used to provide tap water.
  • the adjustable siphon nozzle with screw is installed to form spray, and spray quenching on the quenched surface of the workpiece.
  • the software interface heat transfer coefficient backcalculation system is used to calculate and analyze the temperature field of the quenched part to estimate
  • the interface heat transfer coefficient at the initial stage of quenching according to the obtained initial stage interface heat transfer coefficient, use finite element software to simulate the aerosol quenching process to obtain the temperature-time cooling curve, and compare whether the calculated temperature is consistent with the measured temperature. If it does not match, calculate the corrected value of the interface heat transfer coefficient based on the difference between the calculated value and the measured value, and use the corrected interface heat transfer coefficient to recalculate the temperature-time cooling curve. After repeated calculations, the calculated temperature will approach the measured temperature. Record the interface heat transfer coefficient.

Abstract

一种气雾淬火装置、零件界面传热系数的测试系统及测试方法,其中,气雾淬火装置,包括由若干板所构成的容纳空腔,所述容纳空腔中的呈相对的两块板之间安装有旋转部件(7),所述旋转部件(7)上安装固定喷嘴,实现喷嘴与工件(13)轴线之间的角度可调;所述构成容纳空腔的部分个板上开设有工件装夹孔,所述工件装夹孔在放置工件(13)后对工件(13)进行固定。喷嘴可变角度,可以得到喷嘴与工件(13)轴线不同角度下的淬火情况。

Description

气雾淬火装置、零件界面传热系数的测试系统及测试方法 技术领域
本公开涉及气雾淬火技术领域,特别是涉及气雾淬火装置、零件界面传热系数的测试系统及测试方法。
背景技术
电阻炉是利用电流使炉内电热元件或加热介质发热,从而对工件或物料加热的工业炉。它是利用电流通过电阻材料发生热能的加热炉,以电为热源,通过电热元件将电能转化为热能,在炉内对金属进行加热。电阻炉具有热效率高,热工精度容易控制,劳动条件好,炉体寿命长等优点,适用于要求较严的工件的加热,但耗电费用高。
电磁感应加热技术是在法拉第电磁感应定律的基础上发展起来的,是法拉第感应定律的一种应用形式。感应加热所遵循的主要原理是:电磁感应、集肤效应、热传导。为了将金属工件加热到一定的温度,要求工件中的感应电流尽可能地大,增加感应线圈中的电流,可以增加金属工件中的交变磁通,进而增加工件中的感应电流。与传统的加热方式相比,感应加热技术具有精确的加热深度和加热区域,并易于控制;易于实现高功率密集,加热速度快,效率高,能耗小;加热温度高,加热温度易于控制;加热温度由工件表面向内部传导或渗透;采用非接触式加热方式,在加热过程中不易掺入杂质,工件材料烧损小,氧化皮生成少,能在各种载气中工作,损耗极低,不产生任何物理污染,符合环保和可持续发展方针,是绿色环保型加热工艺之一。
感应加热表面淬火是利用电磁感应原理,在工件表面层产生密度很高的感应电流,迅速加热至奥氏体状态,随后快速冷却得到马氏体组织的淬火方法。当感应圈中通过一定频率的交流电时,在其内外将产生与电流变化频率相同的交变磁场。金属工件放入感应圈内,在磁场作用下,工件内就会产生与感应圈频率相同而方向相反的感应电流。由于感应电流沿工件表面形成封闭回路,通常称为涡流。此涡流将电能变成热能,将工件的表面迅速加热。涡流主要分布于工件表面,工件内部几乎没有电流通过,这种现象称为表面效应或集肤效应。感应加热就是利用集肤效应,依靠电流热效应把工件表面迅速加热到淬火温度的。感应圈用紫铜管制做,内通冷却水。当工件表面在感应圈内加热到一定温度时,立即喷水冷却,使表面层获得马氏体组织。
气雾淬火技术是将气雾喷射到加热后的钢板上,使钢板迅速冷却,达到淬火目的的一种方法。气雾淬火作为一种新型的淬火工艺,具有冷却能力强,淬火效果好的特点,且在板料处于低温时仍能保证较高的淬火速率;通过调节气体与水的比例及喷射速度可以实现冷却速率的控制。气雾淬火具有最大的淬火能力和淬火速率调节范围。气雾淬火可以提高冷却速率,增加传热系数,得到力学性能优良的淬火件。气雾淬火的喷出量是可以控制的,而且喷射到钢板上的截面是面状的,淬火时,组织转变均匀,清洁无污染,能耗低。气雾淬火的冷却能力强,气雾喷射到钢板上的速度快,力度大,可以冲破钢板上的氧化皮,可以将它吹下来,或者是由于重力的作用脱落下来,可以减轻后期处理氧化皮的工作。淬火工艺主要用于可以进行热处理强化的钢。
发明人在研究中发现,气雾淬火因其具有较好的冷却效果等优点,引起了人们的广泛关注,但其淬火机理的研究结果不尽相同,这在一定程度上削弱了气 雾淬火技术在工业上的实际应用。由于工件在气雾淬火过程中的应力和应变是难以测量的,因此研究人员通常采用数值模拟来求得工件的应力场和应变场,进而分析工件微观组织结构。但在利用数值模拟来模拟气雾淬火过程时,需要一系列的关键参数,包括工件材料的热物性参数、工件温度、气体流量(流速)、气体压力、液体温度、液体压力、液体流量(流速)、界面传热系数等。其中,界面传热系数是研究气雾淬火传热机理的关键参数之一,其准确程度直接影响温度场、应力应变场和组织场的求解精度。因此,精确的求解工件淬火表面与淬火介质之间界面传热系数,对于研究气雾淬火传热机理具有重要意义。
发明内容
为了解决现有技术的不足,本公开实施例子目的之一是提供了一种气雾淬火装置,该装置喷嘴可变角度,既可适用于感应加热淬火,也可适用于电阻炉加热淬火。
本公开实施例子公开了气雾淬火装置,该装置是通过以下技术方案实现的:
包括由若干板所构成的容纳空腔,所述容纳空腔中的呈相对的两块板之间安装有旋转部件,所述旋转部件上安装固定喷嘴,实现喷嘴与工件轴线之间的角度可调;
所述构成容纳空腔的部分个板上开设有工件装夹孔,所述工件装夹孔在放置工件后对工件进行固定。
本公开实施例子的上述装置涉及了喷嘴可变角度,可以得到喷嘴与工件轴线不同角度下的淬火情况,此外,该装置还可以实现将工件水平放置,对工件淬火表面进行淬火;将试件竖直放置,研究重力对淬火表面的影响。该装置可实现不同喷嘴角度、不同喷雾高度、不同工件直径、重力等条件下的气雾淬火 过程,然后通过得到的实验数据进一步对淬火后的工件进行组织及力学性能方面的分析,以评估工件气雾淬火效果。
本公开实施例子目的之二是提供了零件界面传热系数的测试系统,该测试系统基于上述的气雾淬火装置,是通过以下技术方案实现的:
所述喷嘴的气体入口端与空气压缩系统相连,所述空气压缩系统为喷嘴提供一定压力的气体,所述喷嘴的液体入口端与水泵系统相连,所述水泵系统为喷嘴提供液体水;
所述工件孔插入测温装置,所述测温装置将测量的工件的温度实时传输至计算机分析系统,所述计算机分析系统被配置为执行以下过程:
根据获得的零件淬火表面的温度-时间冷却曲线,估算淬火初始阶段的界面传热系数;
根据得到的初始阶段界面传热系数,模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合;
若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
本公开实施例子目的之三是提供了零件界面传热系数的测试方法,所述测试方法基于所述测试系统实现,是通过以下技术方案实现的:
将工件加热至设置温度,保温一定时间后,将工件固定在气雾淬火装置的工件装夹孔内;
利用喷嘴对工件淬火表面进行喷雾冷却;
经过喷雾淬火,将工件冷却到室温后,停止喷雾;
将喷雾冷却过程中零件淬火表面的温度实时传输至计算机分析系统,所述计算机分析系统被配置为执行以下过程:
根据获得的零件淬火表面的温度-时间冷却曲线,估算淬火初始阶段的界面传热系数;
根据得到的初始阶段界面传热系数,模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合;
若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
与现有技术相比,本公开的有益效果是:
本公开的气雾淬火装置涉及了喷嘴可变角度,可以得到喷嘴与工件轴线不同角度下的淬火情况,此外,该装置还可以实现将工件水平放置,对工件淬火表面进行淬火;将试件竖直放置,研究重力对淬火表面的影响。该装置可实现不同喷嘴角度、不同喷雾高度、不同工件直径、重力等条件下的气雾淬火过程,然后通过得到的实验数据进一步对淬火后的工件进行组织及力学性能方面的分析,以评估工件气雾淬火效果。
本公开的测试系统,可以得到不同气压、不同喷射角度、不同喷雾高度、气雾比、不同气流速度、不同工件直径时的界面传热系数,为气雾淬火工艺的数值模拟提供可靠的界面传热系数,提高气雾淬火工艺数值模拟结果的可靠性。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1(a)是本公开实施例子适用于圆柱体零件气雾淬火装置的主视图;
图1(b)是本公开实施例子适用于圆柱体零件气雾淬火装置的三维视图;
图2是本公开实施例子适用于圆柱体零件气雾淬火装置的左视图;
图3是本公开实施例子适用于圆柱体零件气雾淬火装置的俯视图;
图4是本公开实施例子适用于圆柱体零件气雾淬火装置的工作示意图;
图5是本公开实施例子实验过程整体装置示意图;
图6是本公开实施例子界面传热系数求解流程图;
其中:1、底板;2、右侧板工件装夹沉孔;3、右侧板;4、顶板;5、顶板工件装夹沉孔;6、喷嘴固定螺纹孔;7、喷嘴固定旋转轴;8、左侧工件装夹沉孔;9、左侧板;10、底板工件装夹沉孔;11、滑板;12、固定板;13、工件;14、前板;15、后板;16、刻度盘;17、保温套。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例子一
该实施例提供了气雾淬火装置,该装置适用于圆柱体零件气雾淬火,包括基 本支撑装置、工件固定装置和喷嘴安装固定可调装置,其中,基本支撑装置起到基本的支撑作用,对气雾淬火装置的喷嘴、工件的放置等起到支撑作用,工件固定装置用于在气雾淬火时将工件固定在设定的位置,使得喷嘴对该工件进行气雾淬火工作,喷嘴安装固定可调装置用于安装喷嘴,实现喷嘴的角度可调,满足不同的角度的气雾淬火的需要。
在一实施例子中,参见附图1(a)-图1(b)所示,基本支撑装置可包括底板1、顶板4、右侧板3、左侧板9、前板14和后板15,上述位于不同位置的板共同构成一个容纳空腔,该容纳空腔可以为方形,且板与板之间采用螺钉联接,便于安装与拆卸,操作方便。
在一实施例子中,喷嘴安装固定可调装置包括喷嘴固定可旋转轴7,刻度盘16,其中喷嘴固定可旋转轴7上设有喷嘴固定所用螺纹孔6,且喷嘴固定可旋转轴7的一端设置有轴肩,与刻度盘16相配合,采用螺钉固定,共同实现调节喷嘴与工件轴线的角度的目的。
在该实施例子中,可旋转轴作为轴类零件安装使用方便,便于操作,而且便于实现喷嘴角度可调的目的,当然,可旋转轴也可替换为可旋转的其他部件。
具体的,旋转轴安装在两块板上,板上有孔,轴放入孔内,旋转轴的两端,其中任意一端均可以设置成轴肩,具有轴肩的一端安装在前板上,前板上设置有刻度盘16,其中轴的轴肩与刻度盘16、板采用螺钉紧固。其中刻度盘16也可以与板做成一体,将刻度画在前板上,此时轴仍然放在前后板的两孔内,且轴的轴肩与板用螺钉紧固,同样可以达到喷嘴角度可调的目的。
参见附图2、3所示,用于安装固定喷嘴的旋转轴7,固定于前板14和后板15上,带螺杆安装可调虹吸式喷嘴通过螺纹连接固定在旋转轴7上,通过调节 旋转轴,可以实现0~90°喷雾淬火。当旋转轴转过90°时,即可实现工件轴线水平位置时的淬火表面喷雾淬火。
需要说明的是,安装固定喷嘴的旋转轴7固定于前板14和后板15上,其固定方式不限于附图2,在板上开设滑槽,用螺钉固定旋转轴7,此时便可达到喷嘴距离可变的目的,并且旋转轴中间位置设有螺纹孔,用于安装喷嘴。
因此,气雾淬火装置可以实现将工件水平放置,对工件淬火表面进行淬火;将试件竖直放置,研究重力对淬火表面的影响。
在一实施例子中,参见附图4所示,工件固定装置包括工件装夹沉孔(分别为右侧板工件装夹沉孔2、顶板工件装夹沉孔5、左侧工件装夹沉孔8、底板工件装夹沉孔10)、滑板11、固定块12、保温套17,其中,将工件安装沉孔设置成沉孔,可便于放置保温套,取放工件。
其中,位于竖直方向的工件装夹沉孔,包括顶板工件装夹沉孔5、底板工件装夹沉孔10;水平方向的工件装夹沉孔,包括左侧板工件装夹沉孔8、右侧板工件装夹沉孔2。沉孔的设置有利于工件的取与放。
侧板工件装夹沉孔,可用于工件水平放置,进而研究喷雾淬火影响因素。此时,将工件安装固定旋转轴旋转90°,即可对水平放置的工件淬火表面进行喷雾淬火。
底板工件装夹沉孔,可研究重力对喷雾淬火的影响,此时热电偶可采取焊接的方法来固定,以确保测温端与近淬火表面的接触。
工件装夹沉孔可以放置不同直径的工件,只要保温套和工件能够共同放置在工件装夹沉孔内,不掉落即可。
沉孔直径大于工件直径,工件装夹沉孔与工件13之间有间隙,其间隙处可 以装有保温套17。其保温套厚度与工件直径之间可相互协调,实现不同工件直径气雾淬火的目的。
当工件安装在顶板工件装夹沉孔5时,热电偶可以直接插入工件的孔内,淬火表面为工件底面;当工件安装在底板工件装夹沉孔10时,此时孔口朝下,因此热电偶需要采取一定的方式(比如焊接)与工件近淬火表面保持接触,以达到测温的目的。
气雾喷嘴,带螺杆安装可调虹吸式喷嘴固定于旋转轴7上,以对工件进行不同角度的气雾淬火,喷嘴角度在0~90°之间可调。旋转轴7可安装在滑槽上,用螺钉固定,实现喷雾高度(喷嘴与工件淬火表面的距离)可调。
在进行使用时,对工件可进行感应加热或电阻炉加热,其中,感应加热,感应线圈设于工件的环向方向,其感应线圈与工件之间设有保温套,并且加热时依靠滑板11和固定块12对工件进行固定。
电阻炉加热,使用电阻炉加热到一定的温度,使用耐火钳将工件从炉内取出,置于工件装夹沉孔内,进行喷雾淬火。
实施例子二
该实施例提供了基于上述实施例子一的气雾淬火装置的零件界面传热系数的测试系统,参见附图5所示,喷嘴的液体入口端所在管路依次连接有流速计、止回阀、流量计、压力表、泵,所述流量计与压力表之间的管路与水桶相连,所述水桶的出口管路上设置有温度计。
喷嘴的气体入口端所在管路依次连接有流速计、止回阀、流量计、压力表及空气压缩机。
工件的孔插入有热电偶,所述热电偶将测量的温度通过数据采集仪传输至 电脑。
根据数据采集仪和电脑测温软件获得的零件淬火表面的温度-时间冷却曲线,采用软件界面传热系数反算系统,通过对淬火零件的温度场进行计算分析,估算淬火初始阶段的界面传热系数,根据得到的初始阶段界面传热系数,利用有限元软件模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合。若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
具体实施例中,将由实验获得的温度-时间数据,导入到DEFORM软件,利用DEFORM软件的Inverse Heat Transfer模块,对淬火零件的温度场进行计算分析,估算(给定)淬火过程的界面传热系数。基于初始的界面传热系数,DEFORM软件将会运行一个淬火过程的仿真。最后DEFORM最优化程序将会对比仿真出来的时间-温度数据与实验得到的时间-温度数据,并且进行最优化计算直到达到一个最优值。最优化程序运行的主要步骤为:利用软件模拟淬火过程的数据,与实测温度进行对比,若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。所采用材料的不同,其界面传热系数与温度的关系不尽相同。
在另一实施例中,也可根据反传热原理,独立进行程序设计,来求解界面传热系数。
在该实施例子中,压力表两个,一个用于测量气体压力,另外一个测量水的压力(采用压力式喷嘴时需要用两个压力表。
流量计两个,一个用于测量气体的流量,另外一个用于测量水的流量。止回阀两个,防止气体、液体回流。流速计两个,一个用于测量气体的流速,一个用于测量液体的流速。
作为一种优选的实施例子,为了节省成本,实验时,流量计和流速计可任选一种,通过公式可进行参数转换。
该系统可以得到不同气压、不同喷射角度、不同喷雾高度、气雾比、不同气流速度、不同工件直径时的界面传热系数,为气雾淬火工艺的数值模拟提供可靠的界面传热系数,提高气雾淬火工艺数值模拟结果的可靠性。
实施例子三
该实施例提供了基于零件界面传热系数的测试系统的测试方法,该方法采用感应加热,该方法具体为:
将工件利用固定块12和滑板11固定在感应线圈内侧,其中工件与感应线圈之间设有保护套17。
将热电偶测温端插入工件孔内,另一端与数据采集仪连接起来。
数据采集仪通过USB接口与电脑相连,其电脑上安装有测温软件,利用该测温软件进行温度-时间冷却曲线的测量与数据采集。
带螺杆安装可调虹吸式喷嘴一端为气体入口,一端为液体入口。本实施方案中采用空气压缩泵提供一定压力的气体;采用水桶提供自来水。
开启空气压缩泵,调节气体压力,使空气压缩泵内存储一定压力的气体。
启动感应加热电源,对工件进行加热。待工件加热到所需温度后,关闭感应加热电源,停止加热。
将工件保温一段时间后,通过调节滑板和固定块,使工件和保温套位于工 件装夹沉孔内,开启空气压缩泵,带螺杆安装可调虹吸式喷嘴形成气雾,对工件淬火表面进行喷雾冷却。
经过喷雾淬火,将工件冷却到室温后,停止喷雾,关闭空气压缩泵。
根据数据采集仪和电脑测温软件获得的零件淬火表面的温度-时间冷却曲线,采用软件界面传热系数反算系统,通过对淬火零件的温度场进行计算分析,估算淬火初始阶段的界面传热系数,根据得到的初始阶段界面传热系数,利用有限元软件模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合。若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
实施例子四
该实施例提供了基于零件界面传热系数的测试系统的测试方法,该方法采用电阻炉加热,具体为:
将热电偶测温端采用一定的方式固定在工件的小孔内,将安装有热电偶的工件放入电阻炉内。采用随炉加热,可以确保工件加热温度的均匀性。
将热电偶另一端插入数据数据采集仪,数据采集仪通过USB接口与电脑相连,其电脑上安装有测温软件,利用该测温软件进行温度-时间冷却曲线的测量与数据采集。
设置电阻炉,利用电阻炉将工件加热到所需温度,保温一定时间,关闭电阻炉。
用耐火钳取出工件,置于圆柱体零件气雾淬火装置工件装夹沉孔内,其装夹沉孔与工件之间设有保温套。
带螺杆安装可调虹吸式喷嘴一端为气体入口,一端为液体入口。本实施方案中采用空气压缩泵提供一定压力的气体;采用水桶提供自来水。
开启空气压缩泵,调节气体压力,使空气压缩泵内存储具有一定压力的气体。带螺杆安装可调虹吸式喷嘴形成喷雾,对工件淬火表面进行喷雾淬火。
经过喷雾淬火,将工件冷却到室温后,停止喷雾,关闭空气压缩泵。
参见附图6所示,根据数据采集仪和电脑测温软件获得的零件淬火表面的温度-时间冷却曲线,采用软件界面传热系数反算系统,通过对淬火零件的温度场进行计算分析,估算淬火初始阶段的界面传热系数,根据得到的初始阶段界面传热系数,利用有限元软件模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合。若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
可以理解的是,在本说明书的描述中,参考术语“一实施例”、“另一实施例”、“其他实施例”、或“第一实施例~第N实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 气雾淬火装置,其特征是,该装置包括由若干板所构成的容纳空腔,所述容纳空腔中的呈相对的两块板之间安装有旋转部件,所述旋转部件上安装固定喷嘴,实现喷嘴与工件轴线之间的角度可调;
    所述构成容纳空腔的部分个板上开设有工件装夹孔,所述工件装夹孔在放置工件后对工件进行固定。
  2. 如权利要求1所述的气雾淬火装置,其特征是,所述旋转部件为旋转轴,所述旋转轴上设置有喷嘴固定所用螺纹孔,旋转轴的一端设置有轴肩,轴肩与刻度盘相配合,共同实现调节喷嘴与工件轴线的角度。
  3. 如权利要求1所述的气雾淬火装置,其特征是,所述喷嘴与工件轴线的可调角度范围为0~90°。
  4. 如权利要求1所述的气雾淬火装置,其特征是,旋转轴采用滑槽的方式固定在呈相对的两块板上,喷嘴与工件淬火表面的距离可调。
  5. 如权利要求1所述的气雾淬火装置,其特征是,所述工件装夹孔包括位于竖直方向的工件装夹沉孔及位于水平方向的工件装夹沉孔,沉孔直径大于工件直径,沉孔与工件之间的间隙处安装有保温套。
  6. 如权利要求1所述的气雾淬火装置,其特征是,所述工件装夹孔在放置工件后利用滑板和固定块对工件进行固定。
  7. 零件界面传热系数的测试系统,其特征是,该测试系统基于上述权利要求1-6任一所述的气雾淬火装置,所述喷嘴的气体入口端与空气压缩系统相连,所述空气压缩系统为喷嘴提供一定压力的气体,所述喷嘴的液体入口端与水泵系统相连,所述水泵系统为喷嘴提供液体水;
    所述工件孔插入测温装置,所述测温装置将测量的工件的温度实时传输至 计算机分析系统,所述计算机分析系统被配置为执行以下过程:
    根据获得的零件淬火表面的温度-时间冷却曲线,估算淬火初始阶段的界面传热系数;
    根据得到的初始阶段界面传热系数,模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合;
    若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
  8. 如权利要求7所述的零件界面传热系数的测试系统,其特征是,所述空气压缩系统包括依次连接的第一流速计、第一止回阀、第一流量计、第一压力表及空气压缩机,所述第一流速计与喷嘴的气体入口端相连;
    所述水泵系统包括依次连接的第二流速计、第二止回阀、第二流量计、第二压力表、泵,所述第二流量计与第二压力表之间的管路与水桶相连,所述水桶的出口管路上设置有温度计,所述第二流速计与喷嘴的液体入口端相连。
  9. 零件界面传热系数的测试方法,其特征是,所述测试方法基于权利要求7、8任一所述测试系统实现,包括:
    将工件加热至设置温度,保温一定时间后,将工件固定在气雾淬火装置的工件装夹孔内;
    利用喷嘴对工件淬火表面进行喷雾冷却;
    经过喷雾淬火,将工件冷却到室温后,停止喷雾;
    将喷雾冷却过程中零件淬火表面的温度实时传输至计算机分析系统,所述计算机分析系统被配置为执行以下过程:
    根据获得的零件淬火表面的温度-时间冷却曲线,估算淬火初始阶段的界面传热系数;
    根据得到的初始阶段界面传热系数,模拟气雾淬火过程得到温度-时间冷却曲线,比较计算温度与实测温度是否吻合;
    若不吻合,根据计算值与测定值的差值求出界面传热系数的修正值,用修正后的界面传热系数重新计算温度-时间冷却曲线,经过反复计算,使计算温度逼近实测温度,记录界面传热系数。
  10. 权利要求9所述的零件界面传热系数的测试方法,其特征是,将工件加热采用感应加热或电阻炉加热,其中,感应加热,感应线圈设于工件的环向方向,其感应线圈与工件之间设有保温套,并且加热时依靠滑板和固定块对工件进行固定;
    电阻炉加热,使用电阻炉将工件加热到一定的温度,将工件从炉内取出置于工件装夹沉孔内,进行喷雾淬火。
PCT/CN2019/095539 2019-03-07 2019-07-11 气雾淬火装置、零件界面传热系数的测试系统及测试方法 WO2020177259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910172393.7A CN109709143A (zh) 2019-03-07 2019-03-07 气雾淬火装置、零件界面传热系数的测试系统及测试方法
CN201910172393.7 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020177259A1 true WO2020177259A1 (zh) 2020-09-10

Family

ID=66266425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095539 WO2020177259A1 (zh) 2019-03-07 2019-07-11 气雾淬火装置、零件界面传热系数的测试系统及测试方法

Country Status (2)

Country Link
CN (1) CN109709143A (zh)
WO (1) WO2020177259A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709143A (zh) * 2019-03-07 2019-05-03 山东科技大学 气雾淬火装置、零件界面传热系数的测试系统及测试方法
CN113106217A (zh) * 2021-03-25 2021-07-13 广州市型腔模具制造有限公司 一种喷嘴点冷加工工艺
CN113361159A (zh) * 2021-05-31 2021-09-07 西安建筑科技大学 一种喷嘴射流冲击淬火的移动平板温度场仿真方法
CN115216597B (zh) * 2022-08-10 2023-12-29 东北大学 一种高强塑性热轧钢板热处理模拟实验方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293229A (zh) * 2008-01-16 2008-10-29 东北大学 一种喷气、喷雾两用式冷却装置
CN102308008A (zh) * 2009-02-10 2012-01-04 株式会社Ihi 热处理装置以及热处理方法
CN103033531A (zh) * 2012-12-07 2013-04-10 山东科技大学 一种用于测定气体淬火过程中界面换热系数的装置及方法
CN106112588A (zh) * 2016-07-21 2016-11-16 河南森源电气股份有限公司 一种带孔薄板类工件装夹装置
CN206373806U (zh) * 2016-12-26 2017-08-04 山东潍坊福田模具有限责任公司 一种工件装夹装置及具有该装置的加工机械
CN107442841A (zh) * 2017-09-29 2017-12-08 江阴市永昌交通机械部件有限公司 一种具有夹持功能的汽车部件加工用切割设备
CN109709143A (zh) * 2019-03-07 2019-05-03 山东科技大学 气雾淬火装置、零件界面传热系数的测试系统及测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293229A (zh) * 2008-01-16 2008-10-29 东北大学 一种喷气、喷雾两用式冷却装置
CN102308008A (zh) * 2009-02-10 2012-01-04 株式会社Ihi 热处理装置以及热处理方法
CN103033531A (zh) * 2012-12-07 2013-04-10 山东科技大学 一种用于测定气体淬火过程中界面换热系数的装置及方法
CN106112588A (zh) * 2016-07-21 2016-11-16 河南森源电气股份有限公司 一种带孔薄板类工件装夹装置
CN206373806U (zh) * 2016-12-26 2017-08-04 山东潍坊福田模具有限责任公司 一种工件装夹装置及具有该装置的加工机械
CN107442841A (zh) * 2017-09-29 2017-12-08 江阴市永昌交通机械部件有限公司 一种具有夹持功能的汽车部件加工用切割设备
CN109709143A (zh) * 2019-03-07 2019-05-03 山东科技大学 气雾淬火装置、零件界面传热系数的测试系统及测试方法

Also Published As

Publication number Publication date
CN109709143A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020177259A1 (zh) 气雾淬火装置、零件界面传热系数的测试系统及测试方法
CN101556256B (zh) 双平板式隔热材料导热系数测定仪
WO2014107827A1 (zh) 一种模拟热障涂层服役环境并实时检测其失效的试验装置
CN103983660B (zh) 一种室内岩样导热系数测试装置
CN103134828A (zh) 热障涂层热障性能与热震性能同步测试装置及其测试方法
CN102954981A (zh) 高温管道隔热包覆材料性能测试装置及测试方法
Dong et al. Analysis of several test methods about heat insulation capabilities of ceramic thermal barrier coatings
CN209542498U (zh) 气雾淬火装置、零件界面传热系数的测试系统
CN205826571U (zh) 一种高磁性钢导温系数的快速测量装置
CN208995537U (zh) 一种可控水空间歇端部淬火模拟试验装置
CN211402217U (zh) 一种快速抗热震性考核测试装置
CN112414739B (zh) 可进行瞬态和稳态测量试验的燃气涡轮实验台与试验方法
CN103033531B (zh) 一种用于测定气体淬火过程中界面换热系数的装置及方法
Su et al. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement
CN210604475U (zh) 一种导热系数测试装置
CN208270360U (zh) 一种高温冲蚀磨损测试设备
CN107271476B (zh) 电机铁芯轴向导热系数测试装置和测试方法
CN103091119B (zh) 一种液体空化加热设备输出热效率测试方法及装置
CN203881446U (zh) 红外测温设备离线比对装置
Fu et al. Experimental study of cooling speed for ultra-thick steel plate during the jet impinging and quenching process
CN202735270U (zh) 一种热障涂层热障性能与热震性能同步测试装置
CN202421102U (zh) 测定气体导热系数的装置
CN219015955U (zh) 一种可提高高温喷砂冲蚀试验机服役寿命的装置
CN212083291U (zh) 一种长输热网蒸汽保温管热工性能测试装置
Liu et al. Study on insulation effect of hollow riser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918438

Country of ref document: EP

Kind code of ref document: A1