WO2020177158A1 - 一种电缆接头谐振式互感局放检测装置及检测方法 - Google Patents
一种电缆接头谐振式互感局放检测装置及检测方法 Download PDFInfo
- Publication number
- WO2020177158A1 WO2020177158A1 PCT/CN2019/079203 CN2019079203W WO2020177158A1 WO 2020177158 A1 WO2020177158 A1 WO 2020177158A1 CN 2019079203 W CN2019079203 W CN 2019079203W WO 2020177158 A1 WO2020177158 A1 WO 2020177158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- partial discharge
- discharge signal
- cable
- resonance
- output unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/14—Circuits therefor, e.g. for generating test voltages, sensing circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
Definitions
- the invention relates to the field of high-voltage cable partial discharge detection, in particular to a cable joint resonance type mutual inductance partial discharge detection device and detection method.
- high-voltage cables provide the energy needed for urban life. Once the cable fails, the impact on urban life is immeasurable.
- the main fault location of the high-voltage circuit is the high-voltage cable connector. Doing a good job in the detection of high-voltage cable joints is the key to ensuring the stable operation of high-voltage cables.
- the partial discharge problem of high-voltage cables is the main factor causing high-voltage cable accidents and has been widely concerned for many years.
- the occurrence of partial discharge of cable joints is mainly concentrated on the high-voltage cable silicone rubber. If it can be located at the specific location of the rubber insulation layer of the cable joint, conduct a data analysis on the fault problem of the rubber layer of the cable joint to find the cable joint rubber. Weak links in the layer are conducive to the production of products with a better pass rate.
- the company’s invention patent with application number 201710225831.2 discloses a mesh differential cable connector partial discharge detection device, which includes a signal detection unit and a signal processing unit.
- the signal detection unit and the signal processing unit are provided with a cable connector.
- the signal detection unit is a mesh type capacitance signal detection unit, that is, the signal detection unit is a mesh structure, adopts a multi-chip distributed layout, and forms an angle difference; the signal processing unit adopts the principle of differential detection to transmit multiple signals to the signal detection unit. Group signals for processing.
- the partial discharge detection device of the above invention effectively solves the technical problem that traditional capacitors cannot have a small capacitance value when they have a large detection area, and at the same time solves the technology of detecting effective partial discharge signals from clutter signals and positioning the location of the occurrence of partial discharge.
- the signal processing unit of the above invention is composed of ADC acquisition chip and signal processing single chip microcomputer.
- the partial discharge sensor In view of the fact that the partial discharge sensor is installed inside the copper shell of the high-voltage connector, it belongs to the cable armored voltage layer, and has the withstand voltage requirement of the zero voltage of the earth, so it cannot Pull out the signal line of the partial discharge sensor and place the ADC acquisition chip and signal processing microcontroller outside the cable; if the signal processing unit is placed inside the cable, the original cable connector will be changed greatly, and the life of the electronic components is not as long as the cable life. , The signal processing unit cannot be repaired if it is damaged.
- the present invention provides a cable joint resonance type mutual inductance partial discharge detection device and detection method.
- a cable joint resonance type mutual inductance partial discharge detection device includes a partial discharge acquisition sensor and a partial discharge signal processor, and also includes a partial discharge signal resonance output unit and a partial discharge signal resonance acquisition unit, the partial discharge acquisition sensor and the partial discharge signal processor
- the signal resonant output unit is wiredly connected and installed in the pressure-resistant layer of the cable connector sheath, the partial discharge signal resonant output unit and the partial discharge signal resonant acquisition unit are wirelessly connected, and the partial discharge signal resonant acquisition unit and the partial discharge
- the signal processor is wiredly connected and installed outside the pressure-resistant layer of the cable connector sheath.
- the partial discharge collection sensor is a capacitive partial discharge collection sensor and is made of a flexible PCB.
- the capacitive partial discharge acquisition sensor has a mesh capacitance detection area.
- the mesh structure adopted by the capacitor includes a circular mesh structure and/or a polygonal mesh structure, but is not limited to a circular mesh structure and a polygonal mesh structure.
- the capacitor also adopts other structures. grid.
- the mesh capacitance detection area in the capacitive partial discharge acquisition sensor is made of conductive material.
- the conductive material includes copper.
- the capacitive partial discharge acquisition sensor has a plurality of mesh capacitance detection areas, and the mesh capacitance detection areas adopt an array structure and are wrapped in a distributed layout to form an angle difference. Outside the joint rubber layer and inside the copper mesh layer.
- the flexible PCB used to make the capacitive partial discharge acquisition sensor has a double-layer structure, wherein the rubber layer near the cable is a mesh structure, and the copper mesh layer near the cable is an integral one-piece structure.
- the number of mesh capacitance detection areas in the capacitive partial discharge acquisition sensor that wraps a certain cable connector is an even number, and two detection areas in opposite positions form a group.
- the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit both include a housing, an electromagnetic shielding layer and a coil layer, and the electromagnetic shielding layer and the coil layer are mounted on the Inside the shell.
- the coil layer is an inductive coil and is arranged on the PCB in an array structure.
- any of the above solutions is the number of groups of inductance coils in the partial discharge signal resonance output unit at a certain cable joint, the number of groups of inductance coils in the partial discharge signal resonance acquisition unit, and the capacitive partial discharge collection
- the number of mesh capacitance detection areas in the sensor is the same.
- the inductance coil in the partial discharge signal resonance output unit and the capacitance in the capacitive partial discharge acquisition sensor form a resonant circuit.
- the inductance coil in the partial discharge signal resonance acquisition unit matches the capacitance, and the inductance coil in the partial discharge signal resonance output unit receives the mutual inductance through mutual inductance.
- the partial discharge signal resonates the signal transmitted by the output unit.
- the inductance coil adopts a double-coil structure and adopts a reverse winding method to constrain the magnetic flux loop.
- the electromagnetic shielding layer is made of ferrite material.
- the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit both adopt an integral injection-molded structure, and their housings are equipped with an IP68 waterproof structure.
- a wire outlet is provided on the housing, and a rubber plunger is provided at the wire outlet for waterproofing.
- the partial discharge signal resonant output unit is installed at the plastic injection port of the copper shell of the cable for transmitting the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable.
- the partial discharge signal resonance acquisition unit is installed outside the voltage-resistant layer of the outer sheath of the cable and corresponds to the position of the partial discharge signal resonance output unit.
- the partial discharge signal processor collects the detection signal of the capacitive partial discharge acquisition sensor through the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit.
- the partial discharge signal processor includes at least one of FPGA and single chip microcomputer.
- the partial discharge signal processor processes the collected signals to obtain signal strength in the frequency domain.
- the partial discharge signal processor processes the signal difference of the group of capacitors, and locates the location where the partial discharge occurs by distinguishing the signal strength.
- the partial discharge signal processor uploads the location where the partial discharge occurs to the server.
- connection line between the partial discharge signal resonance acquisition unit and the partial discharge signal processor is an electromagnetic shielded signal line.
- Another aspect of the present invention provides a resonant mutual-inductance partial discharge detection method for cable joints, which is used to detect partial discharges of cable joints, including the steps:
- the cable joint resonance type mutual inductance partial discharge detection device detects the partial discharge signal and locates the location where the partial discharge occurs.
- the capacitive partial discharge collection sensor is installed outside the rubber layer of the cable joint and inside the copper mesh layer to wrap the cable joint.
- the partial discharge signal resonant output unit is installed at the plastic injection port of the copper shell of the cable for transmitting the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable.
- the partial discharge signal resonance acquisition unit is installed outside the voltage-resistant layer of the outer sheath of the cable and corresponds to the position of the partial discharge signal resonance output unit.
- the cable joint resonance type mutual inductance partial discharge detection device detects the partial discharge signal, and the location of the occurrence of the partial discharge further includes the steps:
- the capacitive partial discharge acquisition sensor collects partial discharge signals
- the partial discharge signal resonance output unit generates resonance with the capacitive partial discharge acquisition sensor, and transmits the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable;
- the partial discharge signal resonance acquisition unit receives the signal output from the partial discharge signal resonance output unit to the outside of the voltage-resistant layer of the cable outer sheath;
- the partial discharge signal processor processes the signals collected by the partial discharge signal resonance acquisition unit to locate the location where the partial discharge occurs.
- the partial discharge signal processor uploads the location where the partial discharge occurs to the server.
- the cable joint resonance type mutual inductance partial discharge detection device and detection method of the present invention can wirelessly transmit the partial discharge signal to the outside of the cable insulation layer without destroying the withstand voltage requirements of the cable armored voltage layer and the earth zero voltage, and because only part of the detection is performed
- the device is placed inside the cable, making minor changes to the original cable joint, retaining the original waterproof and pressure-resistant technology of the cable joint, and there are no semiconductor electronic components in the insulation layer of the cable joint, ensuring the operating life of the components in the insulation layer of the cable joint Longer than the life of the cable body, safe and reliable.
- Fig. 1 is a schematic structural diagram of a preferred embodiment of a cable joint resonance type mutual inductance partial discharge detection device according to the present invention.
- FIG. 2 is a schematic diagram of a tiled diagram of a preferred embodiment of the capacitive partial discharge acquisition sensor of the embodiment shown in FIG. 1 of the cable joint resonance type mutual inductance partial discharge detection device according to the present invention.
- Fig. 3 is a schematic view of the installation cross-section of the capacitive partial discharge acquisition sensor in the resonant mutual-inductance partial discharge detection device of the cable joint according to the present invention.
- FIG. 4 is an exploded view of a preferred embodiment of the partial discharge signal resonance output unit of the embodiment of the resonant mutual inductance partial discharge detection device for cable joints according to the present invention as shown in FIG. 1.
- Fig. 5 is an exploded view of a preferred embodiment of the partial discharge signal resonance acquisition unit of the embodiment of the resonant mutual inductance partial discharge detection device for cable joints according to the present invention as shown in Fig. 1.
- FIG. 6 is a schematic diagram of a preferred embodiment of the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit in the partial discharge signal resonance acquisition unit in the cable joint resonance type mutual inductance partial discharge detection device according to the present invention.
- FIG. 7 is a schematic diagram of the coils in the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit in the cable joint resonance type mutual inductance partial discharge detection device according to the present invention restrict the magnetic field line loop.
- Fig. 8 is a schematic flowchart of a preferred embodiment of a method for detecting partial discharge of a cable joint with resonance type mutual inductance according to the present invention.
- a cable joint resonance type mutual inductance partial discharge detection device includes a capacitive partial discharge acquisition sensor 1, a partial discharge signal resonance output unit 2, a partial discharge signal resonance acquisition unit 3, and a partial discharge signal processor 4.
- the capacitive partial discharge acquisition sensor 1 and the partial discharge signal resonance output unit 2 are wiredly connected and installed in the voltage-resistant layer of the cable connector sheath, and the partial discharge signal resonance output unit 2 and the partial discharge signal resonance acquisition unit
- the unit 3 is wirelessly connected, and the partial discharge signal resonance acquisition unit 3 and the partial discharge signal processor 4 are wiredly connected and installed outside the voltage-resistant layer of the cable connector sheath.
- the capacitive partial discharge acquisition sensor 1 is made of a flexible PCB (FPC), and has a mesh capacitance detection area, which is made of conductive material copper.
- the capacitive partial discharge collection sensor 1 is installed outside the cable joint rubber layer 32 and inside the copper mesh layer 33, and the rubber layer 32 wraps the cable guide core 31.
- the flexible PCB for making the capacitive partial discharge acquisition sensor has a double-layer structure, in which the rubber layer 32 near the cable is a mesh structure made of copper wires, and has four mesh capacitance detection areas 121, 122, 123 and 124.
- the copper mesh layer 33 near the cable is an integral one-piece structure 11 made of copper sheets.
- the mesh capacitance detection area in the capacitive partial discharge acquisition sensor adopts an array structure and is wrapped at the cable joint in a distributed layout to form an angle difference.
- the two meshed capacitance detection areas opposite to each other form a group, that is, the mesh capacitance detection areas 121 and 123 are a group, and the mesh capacitance detection areas 122 and 124 are a group.
- the capacitive partial discharge acquisition sensor 1 is close to the copper mesh layer 33 of the cable and adopts a copper sheet integral one-piece structure 11, which can ensure that the copper mesh layer of the cable connector itself will not affect the capacitance area and therefore will not affect the capacitance value;
- the cable rubber layer 32 adopts a mesh structure to ensure that the capacitor has a larger cable joint wrapping area and a smaller capacitance value.
- the capacitive partial discharge acquisition sensor 1 is made of a flexible double-layer PCB (FPC), which can strictly control the distance between the two layers of capacitors, so as to ensure that the capacitance value deviation will not be caused by installation and affect the measurement result.
- FPC flexible double-layer PCB
- the partial discharge signal resonance output unit 2 includes a housing 21, a coil layer 22 and an electromagnetic shielding layer 23.
- the electromagnetic shielding layer 23 and the coil layer 22 are installed in the housing 21.
- the coil layer 22 is an inductive coil arranged on the PCB in an array structure.
- the number of capacitors in the sensor 1 is the same, that is, the number of mesh capacitance detection areas is the same.
- the inductance coil adopts a double coil structure and adopts a reverse winding method. Each group of inductance coils is connected to a mesh capacitance detection area. , Form a resonant circuit.
- the electromagnetic shielding layer 23 is made of ferrite material.
- the partial discharge signal resonant output unit 2 adopts an integral injection molding structure, and its housing 21 has an IP68 waterproof structure.
- the housing 21 is provided with an outlet 24.
- the connection line between the coil layer and the capacitance detection area is connected by the The wire outlet 24 is led out, and a rubber plunger is also provided at the wire outlet 24 for waterproofing.
- the partial discharge signal resonant output unit 2 is installed at the plastic injection port of the copper shell of the cable in the heat shrinkable tube of the cable joint, and is used to transmit the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable.
- the partial discharge signal resonance acquisition unit 3 includes a housing 31, a coil layer 32 and an electromagnetic shielding layer 33, and the electromagnetic shielding layer 33 and the coil layer 32 are installed in the housing 31.
- the coil layer 32 is an inductive coil arranged on the PCB in an array structure.
- the number of inductive coils in the partial discharge signal resonance acquisition unit 3 at a certain cable joint and the capacitive partial discharge installed there The number of capacitances in the acquisition sensor 1, that is, the number of meshed capacitance detection areas is the same.
- the inductance coil adopts a double coil structure and adopts a reverse winding method. Each group of inductance coils matches the capacitance and receives
- the partial discharge signal resonates the signal transmitted by the inductance coil in the output unit 2.
- the electromagnetic shielding layer 33 is made of ferrite material.
- the partial discharge signal resonance acquisition unit 3 adopts an integral injection molding structure, and its casing 31 has an IP68 waterproof structure.
- the casing 31 is provided with an outlet 34.
- the connection line between the coil layer and the partial discharge signal processor is The wire outlet 34 is led out, and a rubber plunger 35 is also provided at the wire outlet 34 for waterproofing.
- the partial discharge signal resonance acquisition unit 3 is installed outside the withstand voltage layer of the outer sheath of the cable and corresponds to the position of the partial discharge signal resonance output unit. Its inductance coil matches the capacitance, and the inductance coil is The inductance coils in the partial discharge signal resonance output unit 2 have mutual inductance, and receive the signal transmitted by the partial discharge signal resonance output unit 2.
- the coil layers of the partial discharge signal resonance output unit 2 and the partial discharge signal resonance acquisition unit 3 each include four sets of inductance coils, which are respectively an inductance coil 621, an inductance coil 622, an inductance coil 623, and an inductance.
- the coil 624, the inductive coil is arranged on the PCB board 61 in an array structure. Connecting wires are drawn from both ends of the inductance coil, and a connecting end 63 is formed at one end of the PCB board 61.
- the connecting end 63 has 8 connecting ends, of which the top two connecting ends correspond to the ends of the inductance coil 621, going down Every two connection ends correspond to the two ends of the inductor coils 622, 623, and 624, respectively.
- the inductive coil adopts a double-coil structure and adopts a reverse winding method to restrain the magnetic flux loop.
- the inductive coil 621 is connected to both sides of the capacitance of the capacitance detection area 121 through the connection terminal 63
- the inductance coil 622 is connected to both sides of the capacitance of the capacitance detection area 122 through the connection terminal 63
- the inductance coil 623 is connected to both sides of the capacitance of the capacitance detection area 123 through the connecting end 63
- the inductance coil 624 is connected to both sides of the capacitance of the capacitance detection area 124 through the connection end 63.
- a resonance circuit is formed .
- the coil layer in the partial discharge signal resonance acquisition unit 3 it is connected to the partial discharge signal processor 4 through the connection terminal 63, and transmits the signal to the partial discharge signal processor 4.
- the principle of the inductance coil restraining the magnetic field line loop is shown in Fig. 7.
- the magnetic field line 73 passes through one coil of the inductive coil group 71 in the partial discharge signal resonant output unit 2 and passes through the other coil of the inductive coil group 71.
- the coil penetrates, and then exits from one coil of the inductor coil group 72 in the partial discharge signal resonance acquisition unit 3, and then penetrates from the other coil of the inductor coil group 72 to form a closed loop, thereby pairing the magnetic field lines 73 Play a binding role.
- the partial discharge signal processor 4 includes an FPGA and/or a single-chip microcomputer. After receiving the signal of the partial discharge signal resonant acquisition unit 3, it uses Fourier transform to process the signal, and uses fast Fourier transform (FFT) and / Or Discrete Fourier Transform (DFT) and other methods to obtain signal strength in the frequency domain. Because the high-voltage cable line is long, the current is large, and there are many high-frequency harmonics, when the cable is working normally, the cable harmonics will cause interference to the capacitive partial discharge acquisition sensor 1, so that the effective partial discharge signal is submerged in the cable clutter Therefore, the partial discharge signal processor 4 processes the signal in a differential manner, that is, calculates the signal difference of the group of capacitors.
- FFT fast Fourier transform
- DFT Discrete Fourier Transform
- the interference signal of the cable itself will be uniformly covered by the mesh capacitor detection area. Absorption, the signal value between groups of capacitors is the same and there is no difference component, and the interference signal will be well filtered.
- the partial discharge signal the charge escapes from the cable core to the copper mesh layer of the cable.
- the small detection area is charged to form a voltage difference, and the other capacitance detection area that is grouped with it has no voltage difference, so there is a signal difference, and the voltage difference can be detected by which capacitance detection area to realize the position of the partial discharge. Positioning.
- the partial discharge signal processor 4 uploads the location of the partial discharge to the server. At the same time, the discharge intensity can also be uploaded, and the staff can repair the cable in time according to the test results to reduce the occurrence of cable failure.
- a resonant mutual inductance partial discharge detection method for cable joints includes:
- Step 81 Install the resonant mutual inductance partial discharge detection device of the cable joint
- Step 82 The cable joint resonant mutual inductance partial discharge detection device detects the partial discharge signal and locates the location where the partial discharge occurs;
- Step 83 The partial discharge signal processor uploads the location of the partial discharge to the server.
- the capacitive partial discharge acquisition sensor is installed outside the rubber layer of the cable joint and inside the copper mesh layer; and the partial discharge signal resonant output unit is installed at the glue port of the cable copper shell , Used to transmit the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable; install the partial discharge signal resonance acquisition unit outside the voltage-resistant layer of the outer sheath of the cable and correspond to the position of the partial discharge signal resonance output unit .
- the capacitive partial discharge acquisition sensor is wiredly connected to the partial discharge signal resonance output unit, the partial discharge signal resonance output unit is wirelessly connected to the partial discharge signal acquisition unit, and the partial discharge signal resonance acquisition unit is connected to the
- the partial discharge signal processor is wired, and its connection line is an electromagnetic shielded signal line.
- the step 82 further includes:
- Step 821 The capacitive partial discharge acquisition sensor collects partial discharge signals
- Step 822 The partial discharge signal resonance output unit and the capacitive partial discharge acquisition sensor generate resonance, and transmit the partial discharge signal to the outside of the voltage-resistant layer of the outer sheath of the cable;
- Step 823 The partial discharge signal resonance acquisition unit receives the signal output from the partial discharge signal resonance output unit to the outside of the voltage-resistant layer of the outer sheath of the cable;
- Step 824 The partial discharge signal processor processes the signals collected by the partial discharge signal resonance acquisition unit to locate the location where the partial discharge occurs.
- the network structure of the capacitance in the capacitive partial discharge acquisition sensor includes a polygonal network structure such as a triangular network structure, a square network structure, a rectangular network structure, a regular hexagonal network structure, etc., and/or a circular network
- the structure is not limited to the polygonal network structure and the circular network structure, and can also be an irregular network structure or a combination of several network structures.
- the number of mesh capacitance detection areas in the capacitive partial discharge acquisition sensor is an even number of blocks. In order to make the positioning of the partial discharge position more accurate, it can be increased The number of mesh capacitance detection areas is increased correspondingly to the number of inductance coils in the partial discharge signal resonance output unit and the partial discharge signal resonance acquisition unit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
Abstract
一种电缆接头谐振式互感局放检测装置及检测方法,装置包括局放采集传感器(1)和局放信号处理器(4),还包括局放信号谐振输出单元(2)和局放信号谐振采集单元(3),局放采集传感器(1)和局放信号谐振输出单元(2)有线连接且安装于所述电缆接头护套耐压层内,局放信号谐振输出单元(2)和局放信号谐振采集单元(3)无线连接,局放信号谐振采集单元(3)和局放信号处理器(4)有线连接且安装于所述电缆接头护套耐压层外。本装置可以将局放信号无线传输至电缆绝缘层外,对原有电缆接头的改动较小,保留了电缆接头原有的防水耐压工艺,在电缆接头绝缘层内无半导体电子元件,保证了电缆接头绝缘层内部件的运行寿命大于电缆本体的寿命,安全可靠。
Description
本发明涉及高压电缆局放检测领域,具体涉及一种电缆接头谐振式互感局放检测装置及检测方法。
高压电缆作为城市的血脉,提供着城市生活所需的能量。一旦电缆出现故障,对城市生活造成的影响不可估量。高压电路主要故障位置为高压电缆接头。做好高压电缆接头检测,是确保高压电缆稳定工作的要点。
高压电缆的局部放电问题是引起高压电缆事故的主要因素,多年来一直受到广泛关注。电缆接头局放发生点主要集中在高压电缆硅橡胶上,如果能够定位局放发生部位在电缆接头橡胶绝缘层的具体位置,对电缆接头橡胶层的故障问题进行数据化分析,找出电缆接头橡胶层薄弱环节,有利于生产出合格率更好的产品。
本公司申请号为201710225831.2的发明专利公开了一种网状差分式电缆接头局放检测装置,其包括信号检测单元和信号处理单元,所述信号检测单元和信号处理单元设置有电缆接头处,所述信号检测单元是网状式电容信号检测单元,即信号检测单元为网状结构、采用多片式分布式布局、形成角度差;所述信号处理单元采用差分检测原理对信号检测单元传输的多组信号进行处理。上述发明的局放检测装置有效解决了传统电容无法在具备较大检测面积时具有较小电容值的技术问题,同时解决了从杂波信号中检测有效局放信号及局放发生位置定位的技术问题,但是,上述发明的信号处理单元由ADC采集芯片和信号处理单片机,鉴于局放传感器安装在高压接头铜壳内部,属于电缆铠装电 压层,与大地零电压有耐压要求,因此不可以将局放传感器的信号线拉出将ADC采集芯片和信号处理单片机置于电缆外部;若将信号处理单元置于电缆内部,对原有电缆接头改动比较大,且电子元件的寿命没有电缆寿命长,信号处理单元损坏后无法维修。
发明内容
为解决以上技术问题,本发明提供了一种电缆接头谐振式互感局放检测装置及检测方法。
一种电缆接头谐振式互感局放检测装置,包括局放采集传感器和局放信号处理器,还包括局放信号谐振输出单元和局放信号谐振采集单元,所述局放采集传感器和所述局放信号谐振输出单元有线连接且安装于所述电缆接头护套耐压层内,所述局放信号谐振输出单元和局放信号谐振采集单元无线连接,所述局放信号谐振采集单元和局放信号处理器有线连接且安装于所述电缆接头护套耐压层外。
优选的是,所述局放采集传感器为电容式局放采集传感器并采用柔性PCB制作。
上述任一方案优选的是,所述电容式局放采集传感器具备网状电容检测区。
上述任一方案优选的是,所述电容采用的网状结构包括圆形网格结构和/或多边形网格结构,但不限于圆形网格结构、多边形网格结构,所述电容还采用其他网状结构。
上述任一方案优选的是,所述电容式局放采集传感器内的网状电容检测区由导电材料制成。
上述任一方案优选的是,所述导电材料包括铜。
上述任一方案优选的是,所述电容式局放采集传感器内有多块网状电容检测区,所述网状电容检测区采用阵列式结构、以分 布式布局形成角度差包裹在所述电缆接头橡胶层外、铜网层内。
上述任一方案优选的是,制作所述电容式局放采集传感器的柔性PCB为双层结构,其中靠近所述电缆橡胶层为网状结构,靠近所述电缆铜网层为整体一片式结构。
上述任一方案优选的是,包裹某一电缆接头的所述电容式局放采集传感器内的网状电容检测区数目为偶数,位置相对的两块检测区组成一组。
上述任一方案优选的是,所述局放信号谐振输出单元和所述局放信号谐振采集单元均包括外壳、电磁屏蔽层和线圈层,所述电磁屏蔽层和所述线圈层安装于所述外壳内。
上述任一方案优选的是,所述所述线圈层为电感线圈采用阵列式结构布置于PCB上。
上述任一方案优选的是,某一电缆接头处所述局放信号谐振输出单元内电感线圈的组数、所述局放信号谐振采集单元内电感线圈的组数、所述电容式局放采集传感器内的网状电容检测区数目一致。
上述任一方案优选的是,所述局放信号谐振输出单元内电感线圈与所述电容式局放采集传感器内的电容构成谐振电路。
上述任一方案优选的是,所述局放信号谐振采集单元内的电感线圈与所述电容相匹配,通过所述电感线圈与所述局放信号谐振输出单元内的电感线圈互感,接收所述局放信号谐振输出单元传递的信号。
上述任一方案优选的是,所述电感线圈采用双线圈结构,采用反向绕制的方式,对磁力线回路进行约束。
上述任一方案优选的是,所述电磁屏蔽层采用铁氧体材料制成。
上述任一方案优选的是,所述局放信号谐振输出单元和所述 局放信号谐振采集单元均采用一体注塑结构,其外壳均具备IP68防水结构。
上述任一方案优选的是,所述外壳上设置有出线口,在所述出线口设置有橡胶柱塞,用于防水。
上述任一方案优选的是,所述局放信号谐振输出单元安装于所述电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外。
上述任一方案优选的是,所述局放信号谐振采集单元安装于电缆外护套耐压层外,并与局放信号谐振输出单元位置对应。
上述任一方案优选的是,所述局放信号处理器通过所述局放信号谐振输出单元和所述局放信号谐振采集单元采集所述电容式局放采集传感器的检测信号。
上述任一方案优选的是,所述局放信号处理器包括FPGA、单片机中的至少一种。
上述任一方案优选的是,所述局放信号处理器对采集到的信号进行处理,得到频域信号强度。
上述任一方案优选的是,所述局放信号处理器对成组电容的信号差进行处理,通过信号强度的分辨,对局放发生位置进行定位。
上述任一方案优选的是,所述局放信号处理器将局放发生位置上传至服务器。
上述任一方案优选的是,所述局放信号谐振采集单元与所述局放信号处理器的连接线为电磁屏蔽信号线。
本发明的另一方面提供一种电缆接头谐振式互感局放检测方法,用于对电缆接头局放进行检测,包括步骤:
安装所述电缆接头谐振式互感局放检测装置;
所述电缆接头谐振式互感局放检测装置对局放信号进行检 测,进行局放发生位置定位。
优选的是,所述电容式局放采集传感器安装在所述电缆接头橡胶层外、铜网层内,包裹电缆接头。
上述任一方案优选的是,所述局放信号谐振输出单元安装于所述电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外。
上述任一方案优选的是,所述局放信号谐振采集单元安装于电缆外护套耐压层外,且于所述局放信号谐振输出单元位置对应。
上述任一方案优选的是,所述电缆接头谐振式互感局放检测装置对局放信号进行检测,进行局放发生位置定位进一步包括步骤:
所述电容式局放采集传感器采集局放信号;
所述局放信号谐振输出单元与所述电容式局放采集传感器产生谐振,将局放信号传递到电缆外护套耐压层外;
所述局放信号谐振采集单元接收所述局放信号谐振输出单元输出至电缆外护套耐压层外的信号;
所述局放信号处理器对局放信号谐振采集单元采集的信号进行处理,进行局放发生位置定位。
上述任一方案优选的是,所述局放信号处理器将局放发生位置上传至服务器。
本发明的电缆接头谐振式互感局放检测装置及检测方法可以将局放信号无线传输至电缆绝缘层外,不会破坏电缆铠装电压层与大地零电压的耐压要求,同时因为只有部分检测装置置于电缆内部,对原有电缆接头的改动较小,保留了电缆接头原有的防水耐压工艺,在电缆接头绝缘层内无半导体电子元件,保证了电缆接头绝缘层内部件的运行寿命大于电缆本体的寿命,安全可 靠。
图1为按照本发明的电缆接头谐振式互感局放检测装置的一优选实施例的结构示意图。
图2为按照本发明的电缆接头谐振式互感局放检测装置如图1所示实施例的电容式局放采集传感器的一优选实施例的平铺示意图。
图3为按照本发明的电缆接头谐振式互感局放检测装置中的电容式局放采集传感器如图2所示实施例的安装截面示意图。
图4为按照本发明的电缆接头谐振式互感局放检测装置如图1所示实施例的局放信号谐振输出单元的一优选实施例的爆炸图。
图5为按照本发明的电缆接头谐振式互感局放检测装置如图1所示实施例的局放信号谐振采集单元的一优选实施例的爆炸图。
图6为按照本发明的电缆接头谐振式互感局放检测装置中的局放信号谐振输出单元和局放信号谐振采集单元中的线圈层的一优选实施例的示意图。
图7为按照本发明的电缆接头谐振式互感局放检测装置中的局放信号谐振输出单元和局放信号谐振采集单元中的线圈对磁力线回路进行约束的示意图。
图8为按照本发明的电缆接头谐振式互感局放检测方法的一优选实施例的流程示意图。
为了更好地理解本发明,下面结合具体实施例对本发明作详细说明。
实施例1
如图1所示,一种电缆接头谐振式互感局放检测装置,包括电容式局放采集传感器1、局放信号谐振输出单元2、局放信号谐振采集单元3和局放信号处理器4,所述电容式局放采集传感器1和所述局放信号谐振输出单元2有线连接且安装于所述电缆接头护套耐压层内,所述局放信号谐振输出单元2和局放信号谐振采集单元3无线连接,所述局放信号谐振采集单元3和局放信号处理器4有线连接且安装于所述电缆接头护套耐压层外。
如图2和图3所示,所述电容式局放采集传感器1采用柔性PCB(FPC)制作而成,其具有网状电容检测区,所述网状电容检测区由导电材料铜制作。所述电容式局放采集传感器1安装于所述电缆接头橡胶层32外、铜网层33内,所述橡胶层32包绕电缆导芯31。制作所述电容式局放采集传感器的柔性PCB为双层结构,其中靠近所述电缆橡胶层32为铜线制作而成的网状结构,具有四个网状电容检测区121、122、123和124,靠近所述电缆铜网层33为铜片制作而成的整体一片式结构11。所述电容式局放采集传感器内的网状电容检测区采用阵列式结构、以分布式布局形成角度差包裹于电缆接头处。位置相对的两块网状电容检测区为一组,即网状电容检测区121和123为一组,122和124为一组。所述电容式局放采集传感器1靠近电缆铜网层33采用铜片整体一片式结构11,可以保证电缆接头本身的铜网层不会影响电容面积,因此不会对电容值产生影响;其靠近电缆橡胶层32采用网状结构,可以保证电容在具有较大的电缆接头包裹面积的同时,具有较小的电容值,当有较少的局放电荷时,根据电荷量Q=C*V,可以有一个相对较大容易被检测到的电压值。所述电容式局放采集传感器1采用柔性双层PCB(FPC)制作,可以严格控制电容两层间距,保证不会因为安装造成电容值偏差,影响测量结果。
如图4所示,所述局放信号谐振输出单元2包括外壳21、线圈层22和电磁屏蔽层23,所述电磁屏蔽层23和所述线圈层22安装于所述外壳21内。所述所述线圈层22为电感线圈采用阵列式结构布置于PCB上,某一电缆接头处所述局放信号谐振输出单元2内电感线圈的组数与该处安装的所述电容式局放采集传感器1内电容的块数,即网状电容检测区的数目一致,所述电感线圈采用双线圈结构,采用反向绕制的方式,每一组电感线圈与一网状电容检测区连接,形成谐振电路。所述电磁屏蔽层23采用铁氧体材料制成。所述局放信号谐振输出单元2采用一体注塑结构,其外壳21具备IP68防水结构,在所述外壳21上设置有出线口24,所述线圈层与所述电容检测区的连接线由所述出线口24引出,在所述出线口24处还设置有橡胶柱塞,用于防水。所述局放信号谐振输出单元2安装于所述电缆接头热缩管内电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外。
如图5所示,所述局放信号谐振采集单元3包括外壳31、线圈层32和电磁屏蔽层33,所述电磁屏蔽层33和所述线圈层32安装于所述外壳31内。所述所述线圈层32为电感线圈采用阵列式结构布置于PCB上,某一电缆接头处所述局放信号谐振采集单元3内电感线圈的组数与该处安装的所述电容式局放采集传感器1内电容的块数,即网状电容检测区的数目一致,所述电感线圈采用双线圈结构,采用反向绕制的方式,每一组电感线圈与所述电容相匹配,接收所述局放信号谐振输出单元2内电感线圈传递的信号。所述电磁屏蔽层33采用铁氧体材料制成。所述局放信号谐振采集单元3采用一体注塑结构,其外壳31具备IP68防水结构,在所述外壳31上设置有出线口34,所述线圈层与所述局放信号处理器的连接线由所述出线口34引出,在所述 出线口34处还设置有橡胶柱塞35,用于防水。所述局放信号谐振采集单元3安装于所述电缆外护套耐压层外,并与局放信号谐振输出单元位置对应,其电感线圈与所述电容相匹配,通过所述电感线圈与所述局放信号谐振输出单元2内的电感线圈互感,接收所述局放信号谐振输出单元2传递的信号。
如图6所示,所述局放信号谐振输出单元2和所述局放信号谐振采集单元3的线圈层均包括四组电感线圈,分别为电感线圈621、电感线圈622、电感线圈623和电感线圈624,所述电感线圈采用阵列式结构布置于PCB板61上。由电感线圈的两端引出连接线,在所述PCB板61的一端形成连接端63,所述连接端63具有8个连接端点,其中最上两个连接端点对应电感线圈621的两端,往下每两个连接端点分别对应电感线圈622、623和624的两端。所述电感线圈采用双线圈结构,采用反向绕制的方式,对磁力线回路进行约束。对于局放信号谐振输出单元2内的线圈层,电感线圈621通过连接端63连接所述电容检测区121的电容两侧,电感线圈622通过连接端63连接所述电容检测区122的电容两侧,电感线圈623通过连接端63连接所述电容检测区123的电容两侧,电感线圈624通过连接端63连接所述电容检测区124的电容两侧,每组电感线圈与电容连接之后形成谐振电路。对于局放信号谐振采集单元3内的线圈层,其通过连接端63连接所述局放信号处理器4,将信号传递给所述局放信号处理器4。
电感线圈对磁力线回路进行约束的原理如图7所示,磁力线73从所述局放信号谐振输出单元2中的电感线圈组71中的一个线圈穿出,从所述电感线圈组71的另一个线圈穿入,后从所述局放信号谐振采集单元3中的电感线圈组72的一个线圈穿出,再从所述电感线圈组72的另一个线圈穿入,形成闭环,由此对 磁力线73起到约束作用。
所述局放信号处理器4包括FPGA和/或单片机,其接收所述局放信号谐振采集单元3的信号后,采用傅里叶变换对信号进行处理,利用快速傅里叶变换(FFT)和/或离散傅里叶变换(DFT)等方法求出频域信号强度。因为高压电缆线路长、电流大、高频谐波多,在电缆正常工作时,电缆谐波会对所述电容式局放采集传感器1造成干扰,使得有效的局放信号被淹没在电缆杂波中,因此,所述局放信号处理器4采用差分的方式对信号进行处理,即计算成组电容的信号差,一方面电缆本身的干扰信号会被包裹其的所述网状电容检测区均匀吸收,成组电容之间信号值相同没有差分量,干扰信号会被很好的过滤掉,另一方面,对于局放信号,电荷从电缆线芯逃逸到电缆铜网层,在电容传感器的一小块检测区上充电形成电压差,而与之成组的另一电容检测区没有电压差形成,因而存在信号差,并可以通过哪一电容检测区检测到了电压差实现对局放发生的位置进行定位。所述局放信号处理器4将局放发生位置上传至服务器。同时也可以将放电强度上传,工作人员根据检测结果对电缆进行及时维修,减少电缆故障的发生。
实施例2
一种电缆接头谐振式互感局放检测方法,如图8所示,包括:
步骤81:安装所述电缆接头谐振式互感局放检测装置;
步骤82:所述电缆接头谐振式互感局放检测装置对局放信号进行检测,进行局放发生位置定位;
步骤83:所述局放信号处理器将局放发生位置上传至服务器。
所述步骤81中,将所述电容式局放采集传感器安装在所述电缆接头橡胶层外、铜网层内;将所述局放信号谐振输出单元安 装于所述电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外;将所述局放信号谐振采集单元安装于电缆外护套耐压层外,且与所述局放信号谐振输出单元位置对应。所述电容式局放采集传感器与所述局放信号谐振输出单元有线连接,所述局放信号谐振输出单元和所述局放信号采集单元无线连接,所述局放信号谐振采集单元和所述局放信号处理器有线连接,其连接线为电磁屏蔽信号线。
所述步骤82进一步包括:
步骤821:所述电容式局放采集传感器采集局放信号;
步骤822:所述局放信号谐振输出单元与所述电容式局放采集传感器产生谐振,将局放信号传递到电缆外护套耐压层外;
步骤823:所述局放信号谐振采集单元接收所述局放信号谐振输出单元输出至电缆外护套耐压层外的信号;
步骤824:所述局放信号处理器对局放信号谐振采集单元采集的信号进行处理,进行局放发生位置定位。
实施例3
所述电容式局放采集传感器内电容的网状结构包括多边形网状结构如三角形网状结构、正方形网状结构、长方形网状结构、正六边形网状结构等,和/或,圆形网状结构,但是不限于多边形网状结构和圆形网状结构,还可以是不规则网状结构或者几种网状结构的组合。
为了所述局放信号处理器可以通过差分的方法对信号进行处理,所述电容式局放采集传感器内的网状电容检测区的数目为偶数块,为了使局放位置定位更加精确,可以增加网状电容检测区的数目,同时相应的增加所述局放信号谐振输出单元和所述局放信号谐振采集单元中电感线圈的数目。
需要说明的是,以上实施例仅用于说明本发明的技术方案, 而非对其限制;尽管前述实施例对本发明进行了详细的说明,本领域的技术人员应该理解:其可以对前述实施例记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些替换,并不使相应技术方案的本质脱离本发明技术方案的范围。
Claims (10)
- 一种电缆接头谐振式互感局放检测装置,包括局放采集传感器和局放信号处理器,其特征在于:还包括局放信号谐振输出单元和局放信号谐振采集单元,所述局放采集传感器和所述局放信号谐振输出单元有线连接且安装于所述电缆接头护套耐压层内,所述局放信号谐振输出单元和局放信号谐振采集单元无线连接,所述局放信号谐振采集单元和局放信号处理器有线连接且安装于所述电缆接头护套耐压层外。
- 如权利要求1所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放信号谐振输出单元安装于所述电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外,所述局放信号谐振采集单元安装于电缆外护套耐压层外,且与所述局放信号谐振输出单元位置对应。
- 如权利要求1所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放信号谐振输出单元和所述局放信号谐振采集单元均采用一体注塑结构,均包括外壳、电磁屏蔽层和线圈层;所述电磁屏蔽层和所述线圈层安装于所述外壳内;所述线圈层为电感线圈采用阵列式结构布置于PCB上,采用双线圈结构,采用反向绕制的方式,对磁力线回路进行约束;所述电磁屏蔽层采用铁氧体材料制成;所述外壳均具备IP68防水结构,所述外壳上设置有出线口,在所述出线口设置有橡胶柱塞,用于防水。
- 如权利要求1所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放采集传感器为电容式局放采集传感器并采用柔性PCB制作,具备多块网状电容检测区,所述网状电容检测区采用阵列式结构、以分布式布局形成角度差包裹在所述电缆接头橡胶层外、铜网层内,制作所述电容式局放采集传感器的柔性PCB为双层结构,其中靠近所述电缆橡胶层为网状结构,靠近所述电缆铜网层为整体一片式结构,包裹某一电缆接头的所述 电容式局放采集传感器内的网状电容检测区数目为偶数,位置相对的两块检测区组成一组,所述电容采用的网状结构包括圆形网格结构和/或多边形网格结构,但不限于圆形网格结构、多边形网格结构,所述电容还采用其他网状结构。
- 如权利要求3或4所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放信号谐振输出单元内电感线圈与所述电容式局放采集传感器内的电容构成谐振电路,所述局放信号谐振采集单元内的电感线圈与所述电容相匹配,通过所述电感线圈与所述局放信号谐振输出单元内的电感线圈互感,接收所述局放信号谐振输出单元传递的信号,某一电缆接头处所述局放信号谐振输出单元内电感线圈的组数、所述局放信号谐振采集单元内电感线圈的组数、所述电容式局放采集传感器内的网状电容检测区数目一致。
- 如权利要求1所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放信号处理器通过所述局放信号谐振输出单元和所述局放信号谐振采集单元采集所述电容式局放采集传感器的检测信号,其包括FPGA、单片机中的至少一种,对采集到的信号进行处理,得到频域信号强度,对成组电容的信号差进行处理,通过信号强度的分辨,对局放发生位置进行定位。
- 如权利要求1所述的电缆接头谐振式互感局放检测装置,其特征在于:所述局放信号谐振采集单元与所述局放信号处理器的连接线为电磁屏蔽信号线。
- 一种电缆接头谐振式互感局放检测方法,用于对电缆接头局放进行检测,其特征在于:包括步骤:安装如权利要求1-7任一项所述的电缆接头谐振式互感局放检测装置;所述电缆接头谐振式互感局放检测装置对局放信号进行检 测,进行局放发生位置定位。
- 如权利要求8所述的电缆接头谐振式互感局放检测方法,其特征在于:所述电容式局放采集传感器安装在所述电缆接头橡胶层外、铜网层内,包裹电缆接头;所述局放信号谐振输出单元安装于所述电缆铜壳灌胶口处,用于将局放信号传递到电缆外护套耐压层外;所述局放信号谐振采集单元安装于电缆外护套耐压层外,且与所述局放信号谐振输出单元位置对应。
- 如权利要求9所述的电缆接头谐振式互感局放检测方法,其特征在于:所述电缆接头谐振式互感局放检测装置对局放信号进行检测,进行局放发生位置定位进一步包括步骤:所述电容式局放采集传感器采集局放信号;所述局放信号谐振输出单元与所述电容式局放采集传感器产生谐振,将局放信号传递到电缆外护套耐压层外;所述局放信号谐振采集单元接收所述局放信号谐振输出单元输出至电缆外护套耐压层外的信号;所述局放信号处理器对局放信号谐振采集单元采集的信号进行处理,进行局放发生位置定位。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19918369.0A EP3923004B1 (en) | 2019-03-01 | 2019-03-22 | Resonant mutual inductance partial discharge detection device and detection method for cable joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910156572.1A CN109752634B (zh) | 2019-03-01 | 2019-03-01 | 一种电缆接头谐振式互感局放检测装置及检测方法 |
CN201910156572.1 | 2019-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020177158A1 true WO2020177158A1 (zh) | 2020-09-10 |
Family
ID=66406700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079203 WO2020177158A1 (zh) | 2019-03-01 | 2019-03-22 | 一种电缆接头谐振式互感局放检测装置及检测方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3923004B1 (zh) |
CN (1) | CN109752634B (zh) |
WO (1) | WO2020177158A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113791302A (zh) * | 2021-08-05 | 2021-12-14 | 深圳供电局有限公司 | 局部放电及同步定位的传感器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103515A (zh) * | 2019-12-10 | 2020-05-05 | 国网上海市电力公司 | 一种内置式电缆局部放电检测装置及方法 |
CN111141999A (zh) * | 2019-12-30 | 2020-05-12 | 国家电网有限公司 | 电缆局放检测方法和装置 |
CN112630131A (zh) * | 2020-12-01 | 2021-04-09 | 深圳供电局有限公司 | 一种电缆中间接头防水性能测试装置及方法 |
CN114325269B (zh) * | 2021-12-30 | 2023-07-25 | 深圳供电局有限公司 | 一种用于超导电缆的超声波局部放电传感器结构 |
CN115047302B (zh) * | 2022-08-15 | 2022-12-30 | 国网江西省电力有限公司电力科学研究院 | 基于双变压器的电缆串联谐振局部放电检测系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04337481A (ja) * | 1991-05-14 | 1992-11-25 | Fujikura Ltd | 部分放電検出装置 |
CN103884970A (zh) * | 2014-03-25 | 2014-06-25 | 上海局放软件技术有限公司 | 适用于多检测方法的局部放电巡检装置 |
CN204832432U (zh) * | 2015-08-10 | 2015-12-02 | 北京兴迪仪器有限责任公司 | 一种手持分体式局部放电检测仪器 |
CN106124940A (zh) * | 2016-06-14 | 2016-11-16 | 国网北京市电力公司 | 海底电缆局部放电信号检测装置及系统 |
CN106353579A (zh) * | 2016-08-30 | 2017-01-25 | 浙江图维科技股份有限公司 | 一种电缆电流、导体温度、内置局放一体化监测装置及方法 |
CN106980075A (zh) * | 2017-04-07 | 2017-07-25 | 浙江图维科技股份有限公司 | 一种网状差分式电缆接头局放检测装置及方法 |
CN108459247A (zh) * | 2018-03-19 | 2018-08-28 | 浙江图维科技股份有限公司 | 一种高压电缆接头局放检测定位仪及局放检测定位方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2008898C (en) * | 1989-10-25 | 1998-11-24 | Takeshi Endoh | Method for detecting partial discharge in an insulation of an electric power apparatus |
SE508160C2 (sv) * | 1997-03-10 | 1998-09-07 | Abb Research Ltd | Anordning för avkänning av elektriska urladdningar i ett provobjekt med två elektriska anslutningsledare |
US6392401B1 (en) * | 1998-06-05 | 2002-05-21 | Chathan M. Cooke | Closely-coupled multiple-winding magnetic induction-type sensor |
JP4840050B2 (ja) * | 2006-09-28 | 2011-12-21 | 富士電機株式会社 | 部分放電測定装置 |
DE102007015490B3 (de) * | 2007-03-30 | 2008-09-11 | Hochschule Bremen | Verfahren und Vorrichtung zur Messung von Teilentladungen an einem Hochspannungsbauteil |
CN201355385Y (zh) * | 2009-01-20 | 2009-12-02 | 湖南省电力公司超高压管理局 | 智能型无局放特高压正弦波调制耐压装置 |
CN202333141U (zh) * | 2011-11-03 | 2012-07-11 | 亿昶祥工业股份有限公司 | 互感谐振天线 |
CN102368089A (zh) * | 2011-11-17 | 2012-03-07 | 江苏省电力公司南京供电公司 | 高压电缆耐压试验同时进行局部放电测量的试验方法 |
JP6058033B2 (ja) * | 2013-01-08 | 2017-01-11 | 三菱電機株式会社 | アンテナとケーブルの接続状態確認方法 |
CN203759190U (zh) * | 2014-03-20 | 2014-08-06 | 陕西公众智能科技有限公司 | 一种配网电缆局部放电在线监测及放电位置定位系统 |
CN106324448A (zh) * | 2015-07-01 | 2017-01-11 | 云南电网有限责任公司昆明供电局 | 一种适用于高压开关柜局部放电在线监测的信号变送器 |
CN106054046A (zh) * | 2016-08-17 | 2016-10-26 | 国家电网公司 | Gis特高频局部放电在线监测系统 |
CN206804798U (zh) * | 2017-04-07 | 2017-12-26 | 浙江新图维电子科技有限公司 | 一种内置式甚高频局放检测装置 |
CN108459244A (zh) * | 2018-01-31 | 2018-08-28 | 天津大学 | 基于uhf与hfct联合的电力电缆局部放电检测系统 |
CN109298300A (zh) * | 2018-12-04 | 2019-02-01 | 武汉康电电气有限公司 | 一种用于高压电缆耐压试验时局部放电测试系统及方法 |
CN210894569U (zh) * | 2019-03-01 | 2020-06-30 | 浙江新图维电子科技有限公司 | 一种电缆接头谐振式互感局放检测装置 |
-
2019
- 2019-03-01 CN CN201910156572.1A patent/CN109752634B/zh active Active
- 2019-03-22 EP EP19918369.0A patent/EP3923004B1/en active Active
- 2019-03-22 WO PCT/CN2019/079203 patent/WO2020177158A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04337481A (ja) * | 1991-05-14 | 1992-11-25 | Fujikura Ltd | 部分放電検出装置 |
CN103884970A (zh) * | 2014-03-25 | 2014-06-25 | 上海局放软件技术有限公司 | 适用于多检测方法的局部放电巡检装置 |
CN204832432U (zh) * | 2015-08-10 | 2015-12-02 | 北京兴迪仪器有限责任公司 | 一种手持分体式局部放电检测仪器 |
CN106124940A (zh) * | 2016-06-14 | 2016-11-16 | 国网北京市电力公司 | 海底电缆局部放电信号检测装置及系统 |
CN106353579A (zh) * | 2016-08-30 | 2017-01-25 | 浙江图维科技股份有限公司 | 一种电缆电流、导体温度、内置局放一体化监测装置及方法 |
CN106980075A (zh) * | 2017-04-07 | 2017-07-25 | 浙江图维科技股份有限公司 | 一种网状差分式电缆接头局放检测装置及方法 |
CN108459247A (zh) * | 2018-03-19 | 2018-08-28 | 浙江图维科技股份有限公司 | 一种高压电缆接头局放检测定位仪及局放检测定位方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3923004A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113791302A (zh) * | 2021-08-05 | 2021-12-14 | 深圳供电局有限公司 | 局部放电及同步定位的传感器 |
Also Published As
Publication number | Publication date |
---|---|
EP3923004B1 (en) | 2022-11-09 |
CN109752634B (zh) | 2024-02-27 |
EP3923004A4 (en) | 2022-04-20 |
CN109752634A (zh) | 2019-05-14 |
EP3923004A1 (en) | 2021-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020177158A1 (zh) | 一种电缆接头谐振式互感局放检测装置及检测方法 | |
CN106443390B (zh) | 柔性pcb板差分感应线圈及安装方法 | |
CN102883525B (zh) | 用于无线能量传输的双层蜗状pcb线圈及其设计方法 | |
WO2016045385A1 (zh) | 一种多组电容屏绝缘芯体的组合电器 | |
CN102495340A (zh) | 基于电磁波及高频ct的电力电缆局部放电在线监测系统 | |
CN101677031A (zh) | 直导线pcb平面螺旋线圈一次电流传感器 | |
CN111103515A (zh) | 一种内置式电缆局部放电检测装置及方法 | |
CN104089569B (zh) | 基于电容耦合的多功能变压器信号传感器及信号采集方法 | |
CN110471020B (zh) | 一种带自诊断的电容式电压互感器监测装置 | |
CN210894569U (zh) | 一种电缆接头谐振式互感局放检测装置 | |
CN208399579U (zh) | 一种新型10kV/35kV电流电压传感器 | |
CN111082537A (zh) | 异物检测设备和无线充电系统 | |
CN109342901B (zh) | 具有绝缘状态在线监测功能的穿墙套管及其工作方法 | |
CN107356782A (zh) | 利用电磁感应装置检测发动机转速的设备及方法 | |
CN207181502U (zh) | 一种基于并联电阻分流原理的电流互感器 | |
CN111141999A (zh) | 电缆局放检测方法和装置 | |
CN203192172U (zh) | 一种无线能量传输系统的电磁辐射安全预警系统 | |
CN110412328A (zh) | 一种用于配电变压器的组合电子式互感器及测量系统 | |
CN101871765A (zh) | 塔吊、移动吊车近电预警、闭锁装置用线形柔性传感器 | |
CN210775662U (zh) | 容性设备及容性设备绝缘参数的监测装置 | |
CN207425601U (zh) | 一种防击穿带电源输出的电子式互感器 | |
CN209132413U (zh) | 一种对验电器耐压试验和启动试验的辅助校验平台 | |
CN210604862U (zh) | 柔性电缆局部放电传感器 | |
CN203350337U (zh) | 电流传感器 | |
CN202453413U (zh) | 一种电子式组合传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918369 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019918369 Country of ref document: EP Effective date: 20210908 |