WO2020175514A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2020175514A1
WO2020175514A1 PCT/JP2020/007606 JP2020007606W WO2020175514A1 WO 2020175514 A1 WO2020175514 A1 WO 2020175514A1 JP 2020007606 W JP2020007606 W JP 2020007606W WO 2020175514 A1 WO2020175514 A1 WO 2020175514A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electronic device
organic
electron
light emitting
Prior art date
Application number
PCT/JP2020/007606
Other languages
French (fr)
Japanese (ja)
Inventor
彰宏 木村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021502296A priority Critical patent/JP7487730B2/en
Publication of WO2020175514A1 publication Critical patent/WO2020175514A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage.
  • Organic electroluminescent device (hereinafter, also referred to as “organic semiconductor device”).
  • the reflective electrode (eg, cathode) used in () has a high reflectivity of 88 or 89 in order to improve light extraction. These materials have a large work function and it is usually difficult to inject electrons into the organic layer.However, regarding the improvement of electron injection into the organic layer, a means of laminating an alkali metal salt or an alkaline earth metal salt on the cathode surface is used.
  • the above materials achieve electron injection from the cathode to the organic layer by forming an electric double layer at the interface of the cathode due to the huge polarity, impurity level, and the like.
  • this huge polarity and the presence of impurity levels are synonymous with being affected by the functional deterioration of the atmosphere, especially water and oxygen.
  • Significant functional deterioration of the material is observed. Therefore, the fact that the material is “stable in the atmosphere” and “having electron injection ability” at the time of film formation are contradictory contents, and the development of a material having both is desired.
  • Patent Document 1 JP-A-6-325871
  • Patent Document 2 Japanese Patent Laid-Open No. 9-17574
  • Patent Document 3 Japanese Patent Laid-Open No. 10-74586
  • Patent Document 4 JP 2013_8935
  • Non-Patent Document 1 Ad v. Mater. 201 4, 26, 2750 -2754
  • Non-Patent Document 2 Ad v. Mater. 201 5, 27, 4681 -4687 Summary of Invention
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is to provide an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage.
  • one of the functional layers arranged between the anode and the cathode is an insulating dielectric material.
  • An electronic device that contains at least one type of conductive material and at least one type of conductive material, is stable in the atmosphere during film formation, and can be driven at low voltage when the relative permittivity of the layer is a specific value or more. It was found that
  • An electronic device comprising one or more functional layers between an anode and a cathode, comprising:
  • any one of the functional layers contains at least one insulating dielectric material and one conductive material, and the functional layer contains the insulating dielectric material and the conductive material.
  • An electronic device having a relative dielectric constant of 4.0 or more.
  • the insulating dielectric material is an insulating metal oxide
  • the electronic device according to any one of items 1 to 3.
  • dielectric polymer or oligomer is a polymer or oligomer containing polyvinylidene fluoride in a repeating unit.
  • the electronic device of the present invention contains an insulating dielectric material and a conductive material mixed in a functional layer, even in a layer adjacent to the cathode, so that it is unstable in the atmosphere during film formation. ⁇ 2020/175 514 4 (:171? 2020/007606
  • the electron injection mechanism using the insulating dielectric material according to the present invention is not limited to the above-described organic injection from the cathode.
  • FIG. 1 is a schematic diagram illustrating the effect of an insulating dielectric material.
  • Figure 18 shows the case where there is no insulating dielectric material between the electrodes, and when a voltage is applied to the electrodes, a weak electric field is produced.
  • Figure 1 shows the case where an insulating dielectric material exists between electrodes.When a voltage is applied to the electrodes, an internal electric field is generated in the dielectric material and its vicinity, and as a result, the injection property at the electrode interface is improved. At the same time, carrier transport is improved, and the electric field in the layer becomes stronger than the external electric field.
  • the strong electric field generation improves not only electron injection from the cathode to the organic layer but also electron injection ability, hole injection ability and electron transportability, or hole transportability between all layers. To be done.
  • FIG. 18 Schematic diagram illustrating the effect of the insulating dielectric material.
  • FIG. 3 A solar cell consisting of a bulk heterojunction type organic photoelectric conversion element ⁇ 2020/175 514 5 (:171? 2020/007606
  • the electronic device of the present invention is an electronic device having one or more functional layers between an anode and a cathode, wherein any one of the functional layers is composed of an insulating dielectric material and a conductive material. At least one kind of a conductive material, and the relative dielectric constant of the functional layer containing the insulating dielectric material and the conductive material is 4.0 or more. This feature is a technical feature common to or corresponding to the following embodiments.
  • the relative dielectric constant is 6.0 or more. This makes it possible to provide an electronic device that can be driven at a lower voltage.
  • the functional layer includes at least a light emitting layer. This makes it possible to provide a light emitting device that can be driven at a lower voltage.
  • the insulating dielectric material contains an insulating metal oxide from the viewpoint of improving the dielectric constant. It is generally known that metal oxides have higher electroconductivity than organic substances.
  • the insulating metal oxide has a particle structure from the viewpoint of generating an internal electric field.
  • the insulating dielectric material can generate a stronger internal electric field when the molecules are aggregated to some extent than when the molecules are dispersed in the layer.
  • the grain shape is too large with respect to the film thickness, it becomes difficult to arrange them uniformly in the layer, so it is better to adjust the grain shape according to the film thickness of the film to be arranged.
  • the insulating dielectric material is a liquid crystal material.
  • the insulating dielectric material is an insulating dielectric polymer or oligomer from the viewpoint of generating an internal electric field.
  • the insulating dielectric material is preferably agglomerated within the layer. Compared to low molecular weight materials, polymer materials are more likely to form a phase-separated structure because they are chemically linked to each other, and it is easier to induce aggregation in the dielectric material. ⁇ 2020/175 514 6 ⁇ (:171? 2020 /007606
  • the dielectric polymer or oligomer is a polymer or oligomer containing polyvinylidene fluoride as a repeating unit.
  • Polyvinylidene fluoride has a high dielectric constant of the polymer itself, and since organic conductive materials that are commonly used are aromatic compounds, they form a strong phase separation structure with polyvinylidene fluoride, and It is preferable because it also works for generating an electric field.
  • the layer containing the insulating dielectric material is an electron transport layer or an electron injection layer.
  • an organic electroluminescence element or an organic photoelectric conversion element is preferable.
  • the electronic device of the present invention is an electronic device having one or a plurality of functional layers between an anode and a cathode, wherein any one of the functional layers comprises an insulating dielectric material and a conductive material. And at least one of each of them is contained, and the relative dielectric constant of the functional layer containing the insulating dielectric material and the conductive material is 4.0 or more.
  • the “functional layer” according to the present invention may be, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer or an electron injection layer.
  • the insulating dielectric material according to the present invention is preferably contained in the electron transport layer or the electron injection layer in contact with the cathode side.
  • the "relative permittivity" refers to the ratio of the permittivity of a substance and the permittivity of vacuum.
  • the measurement of the relative permittivity is based on the Japanese Industrial Standards" ⁇ 3 2 1 3 8: 2 0 0
  • the measurement is performed by impedance spectroscopy using a 2600.
  • the measurement conditions are frequency 1 80: 0. 1 (V), 0 0: 0 (V
  • insulating property refers to a property that electricity is difficult to pass, and in the present invention, it means that the material alone does not have conductivity, and more specifically, it is an insulating material. It is possible to obtain by preparing the above-mentioned MZ using a conductive dielectric material and performing mobility measurement by impedance spectroscopy (Reference II V 3 .[ 3 ⁇ 4 6 M
  • conductivity refers to a property in which an electric current easily flows, and in the present invention, by using the conductive material, the above-mentioned ___________ is prepared, and by the mobility measurement by the impedance spectroscopy, mobility () is 1. defined as 0 X 1 ⁇ - 9 conductive material in excess of.
  • a feature of the electronic device of the present invention is that one or more functional layers are provided between the anode and the cathode, and any one of the functional layers contains an insulating dielectric material and a conductive material. ..
  • the insulating dielectric material according to the present invention does not form an electric double layer that has an unstable structure in the air during film formation, enables film formation in the air, and performs sealing after device fabrication.
  • the insulating dielectric material forms an electric double layer only during driving so that electrons can be injected.
  • the electron injection mechanism using the insulating dielectric material according to the present invention is not limited to the electron injection from the cathode to the organic layer, but at the same time improves the electron injection ability or hole injection ability between all layers. It is possible to form a stable film in the atmosphere. Therefore, the insulating dielectric material according to the present invention may be added to each of the functional layers described below. ⁇ 2020/175 514 8 ⁇ (:171? 2020 /007606
  • the insulating dielectric material according to the present invention may be any of a paraelectric material, a piezoelectric material, a pyroelectric material, and a strong dielectric material.
  • a dielectric having a strong conformity is preferable. However, that is because the dielectrics are randomly arranged in the film. When the dielectrics are arranged in the direction of the electric field and the electric field is strengthened, followability from an external electric field like a ferroelectric is Even weak ones can express their functions. More specific examples include metal oxides, alkali metal salts, alkaline earth metal salts, organic radical materials, organic polymer materials, organic liquid crystal materials and the like.
  • the insulating metal oxide is not particularly limited, but alumina, zirconia, titania, silica, magnesia or niobium is preferable from the viewpoint of chemical stability and physical stability.
  • the dielectric constant 1 0 0 include more metal oxides, as this example, rutile titanium oxide (Ding ⁇ 2), zirconium oxide ( " ⁇ )
  • Niobium pentoxide (1 ⁇ 1 2 3 ), barium titanate ( 3 3 10 3 ), strontium titanate (3 3 1 3 ), lead titanate (1 3 3 ), and titanate Jill con barium (Snake 3 chome 1 0.5 "0.5 ⁇ 3), lead zirconate titanate ( ⁇ 1 0.5
  • the metal oxide is preferably nanoparticles.
  • the liquid crystal material according to the present invention does not need to be a single liquid crystal compound, and may be a mixture containing two or more kinds of liquid crystal compounds or substances other than the liquid crystal compound. Anything that can be recognized as a liquid crystal material in the field is acceptable.
  • the liquid crystal used is preferably a nematic liquid crystal, a smectic liquid crystal or a cholesteric liquid crystal, particularly preferably a nematic liquid crystal.
  • cholesteric liquid crystals, chiral nematic liquid crystals, chiral smectic liquid crystals, etc., chiral compounds, dichroic dyes, etc. may be appropriately contained.
  • liquid crystal material examples include benzoic acid ester-based, cyclohexanecarboxylic acid ester-based, biphenyl-based, terphenyl-based, phenylcyclohexanoic acid-based, biphenylcyclohexanoic acid-based, pyrimidine-based, dioxane-based, cyclohexane ester-based, Various liquid crystal compounds such as tolan compounds are used.
  • Examples include chlorhexyl.
  • the insulating dielectric polymer or oligomer according to the present invention is not particularly limited, but it may be polyvinylidene fluoride, polyvinyl chloride, vinyl acetate, polyurethane, vinylidene cyanide, or “3-3-4-cyano-4”.
  • the insulating dielectric material of the present invention has an electron injecting ability or a hole injecting ability as long as it can improve the dielectric constant of the layer. This is not the case because it can be improved.
  • a polymer or an oligomer containing polyvinylidene fluoride in a repeating unit is preferable.
  • the insulating dielectric material of the present invention can improve the electron injecting ability or the hole injecting ability as long as it is a material capable of improving the dielectric constant of the film, ⁇ 2020/175 514 1 1 ⁇ (:171? 2020 /007606
  • the content of the insulating dielectric material provided in the organic solar cell 1_ element according to the present invention described later can be arbitrarily determined, the low voltage effect due to the addition of the insulating dielectric material and the insulating layer There will be two competing high voltage effects due to penetration. In addition, the degree of these two effects is determined by both the conductive material and the insulating dielectric material in the layer containing the insulating dielectric material.
  • the electron transport material 81 and polyvinylidene fluoride (V 0 1) used in the examples described below have the lowest voltage under the condition that the volume ratio is 82: 28 (81: 00).
  • the conductive material used here is changed to the electron-transporting material 82, the volume ratio at which the voltage becomes the lowest is 8 7: 1 3 (8 2 :V 0 1).
  • the optimum value for the lowest voltage is different for different materials, although the detailed mechanism is not well understood, but the interaction between the conductive material and the insulative dielectric material makes the conductive material different. It is considered that the responsiveness to the external electric field is changed by changing the polarization state of either or both of the insulating dielectric materials. It is necessary to find the optimum value for each material used, and there are no comprehensively preferable conditions.
  • the conductive material according to the present invention corresponds to an organic compound contained in each functional layer, which will be described in detail later in [3.1] Organic semiconductor device! or [3.2] Organic photoelectric conversion device. .. For details, refer to [3] Electronic devices.
  • the composition for an electronic device of the present invention can be used for forming an organic semiconductor device, as described above.
  • the organic semiconductor element is composed of a functional layer having at least a light emitting layer between an anode and a cathode, and at least one layer of the functional layer contains the composition for an electronic device described above.
  • the organic solar cell can be suitably installed in a lighting device and a display device. ⁇ 2020/175 514 12 (:171? 2020/007606
  • the configuration of (7) is preferably used, but it is not limited to this.
  • the organic functional layer group 1 up to the hole injection layer/hole transport layer/(electron blocking layer)/light emitting layer, and (hole blocking layer/) electron transport layer/electron injection The layers up to the layer are sometimes called organic functional layer group 2.
  • the light emitting layer used in the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the respective light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also called an electron barrier layer
  • a hole injection layer also called an anode buffer layer
  • the electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, the electron transport layer also includes an electron injection layer and a hole blocking layer. Also, it may be composed of a plurality of layers.
  • the hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Also, it may be composed of a plurality of layers.
  • Fig. 2 is a cross-sectional view showing the structure of a typical organic semiconductor device. ⁇ 2020/175 514 13 (:171? 2020 /007606
  • the organic semiconductor !_ element 100 is composed of a substrate 101, an anode 102, a hole injection layer 103, a positive hole transport layer 104, a light emitting layer 105, and a hole blocking layer. It is equipped with 106, an electron transport layer 107, an electron injection layer 108 and a cathode 109 in this order.
  • the organic semiconductor device may be a device having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated.
  • the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Also, the two light emitting units may be the same and the other one may be different.
  • the plurality of light-emitting units may be directly laminated or may be laminated via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer,
  • a known material structure can be used as long as it is also called a connection layer or an intermediate insulating layer and has a function of supplying electrons to the adjacent layer on the anode side and supplying holes to the adjacent layer on the cathode side.
  • Examples of materials used for the intermediate layer include ⁇ ⁇ (indium tin oxide), ⁇ ⁇ (indium-zinc oxide), n ⁇ 2 , ⁇ 1 ⁇ 1, "1 ⁇ 1, 1 ⁇ 1 dry
  • Examples include conductive organic compound layers such as metal-free porphyrins, but the present invention is not limited thereto.
  • Preferable configurations in the light emitting unit include, for example, those obtained by removing the anode and the cathode from the configurations (1) to (7) listed in the above-mentioned typical device configuration.
  • the present invention is not limited to these.
  • tandem-type organic semiconductor !_ device examples include, for example, US Patent No. 6337 492, US Patent No. 7420203, and US Patent No. 7473.
  • the substrate applicable to the organic semiconductor !_ element there is no particular limitation on the substrate applicable to the organic semiconductor !_ element, and examples thereof include glass and plastic.
  • the substrate used in the present invention may be light transmissive or light impermeable.
  • the substrate applicable to the present invention is not particularly limited, and examples thereof include a resin substrate, a thin film metal foil, and a thin flexible glass plate.
  • Examples of the resin substrate applicable to the present invention include polyethylene terephthalate (abbreviation: Ming), polyethylene naphthalate (abbreviation: M) and the like. ⁇ 2020/175 514 15 ⁇ (:171? 2020/007606
  • Cellulose ester such as reester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: Chosen), cellulose acetate-butyrate, cellulose acetate propionate (abbreviation: 08), cellulose acetate phthalate, cellulose nitrate And their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: ⁇ ), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyether sulfone (abbreviation:) 3), Polyphenylene sulfide, Polysulfones, Polyether imides, Polyether ketone imides, Polyamides, Fluororesin, Nylon, Polymethyl methacrylate, Acrylics and polyarylates, Arton (trade name, 3 companies) Manufactured by Mitsui Chemicals Co
  • polyethylene terephthalate (abbreviation: Ming), polyptyrene terephthalate, polyethylene ethylene phthalate (abbreviation: M 1 ⁇ 1), polycarbonate (abbreviation: 9)
  • a film such as O is preferably used as the flexible resin substrate.
  • the thickness of the resin substrate is preferably a thin film resin substrate within the range of 3 to 200, more preferably within the range of 10 to 150, and particularly preferably. , 20 to 120.
  • the thin glass plate applicable as the substrate used in the present invention is a thin glass plate that can be bent.
  • the thickness of the thin glass plate can be appropriately set within the range where the thin glass plate exhibits flexibility.
  • the thin glass examples include soda-lime glass, barium-strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the thickness of the thin glass sheet is, for example, in the range of 5 to 300, preferably in the range of 20 to 150. ⁇ 2020/175 514 16 ⁇ (:171? 2020/007606
  • the material for forming the thin film metal foil for example, one selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum. Those made of the above metals or alloys may be mentioned.
  • the thickness of the thin-film metal foil can be appropriately set within a range in which the thin-film metal foil exhibits flexibility, and is, for example, in the range of 10 to 100, preferably in the range of 20 to 6001. It is within.
  • a metal such as 89, 8 Li or an alloy containing a metal as a main component, ⁇ Li, or a complex oxide of indium tin oxide ( ⁇ ⁇ ),
  • metal oxides such as 3 n 0 2 and n 0 can be mentioned, a metal or an alloy containing a metal as a main component is preferable, and silver or an alloy containing silver as a main component is more preferable. ..
  • the transparent anode is composed mainly of silver
  • the purity of silver is preferably 99% or more. Further, in order to secure the stability of silver, palladium (), copper ( ⁇ 3), gold (8), etc. may be added.
  • the transparent anode is a layer composed mainly of silver. Specifically, it may be composed of silver alone or composed of an alloy containing silver (9). .. Such alloys such as silver-magnesium. (Eight 9 - 1 ⁇ 9), silver-copper (eight 9 ⁇ Li), silver-palladium (eight 9), silver-palladium-copper (eight 9 ⁇ Li ), and the like silver-indium (eight 9 ⁇
  • the thickness is in the range of. 2 to 2 0 n m It is preferable that the transparent anode is a transparent anode, but the thickness is more preferably within the range of 4 to 1201. When the thickness is 2001 or less, the absorption component and the reflection component of the transparent anode are suppressed to be low, and high light transmittance is maintained, which is preferable.
  • the layer composed mainly of silver in the present invention means that the content of silver in the transparent anode is 60% by mass or more, and preferably the content of silver is 80%. ⁇ 2020/175 514 17 ⁇ (:171? 2020 /007606
  • transparent in the transparent electrode according to the present invention means that the light transmittance at a wavelength of 550 n is 50% or more.
  • the transparent anode may have a structure in which a layer containing silver as a main component is divided into a plurality of layers and laminated as necessary.
  • the underlying layer is formed under the underlying layer.
  • the underlayer is not particularly limited, but is preferably a layer containing an organic compound having a nitrogen atom or a sulfur atom, and a method of forming a transparent anode on the underlayer is a preferred embodiment.
  • the phosphorescent compound or the fluorescent compound can be used as the luminescent material in the luminescent layer constituting the organic semiconductor element 1_, in the present invention, the phosphorescent compound is particularly contained as the luminescent material.
  • the configuration is preferable.
  • This light-emitting layer is a layer in which electrons injected from the electrode or the electron-transporting layer recombine with holes injected from the hole-transporting layer to emit light. It may be in the layer or at the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer is not particularly limited as long as the light emitting material contained therein satisfies the light emitting requirements. Further, there may be a plurality of layers having the same light emission spectrum or maximum light emission wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layer is preferably in the range of 1 to 100, and more preferably in the range of 1 to 30 n because a lower driving voltage can be obtained.
  • the total thickness of the light emitting layer is the thickness including the intermediate layer when a non-light emitting intermediate layer is present between the light emitting layers.
  • the light emitting material and the host compound described later are prepared by, for example, vacuum evaporation method, spin coating method, casting method, 1_M method (Langmuir-Broger). Method, a Langmuir Blodgett method), an inkjet method, and the like.
  • the light emitting layer may be formed by mixing a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be used by mixing them in the same light emitting layer. Good.
  • the light-emitting layer preferably contains a host compound (also referred to as a light-emitting host or the like) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • the host compound contained in the light emitting layer is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1. Furthermore, the phosphorescence yield is preferably less than 0.01. Further, in the compound contained in the light emitting layer, the volume ratio in the layer is preferably 50% or more.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the transfer of charges and improve the efficiency of the organic electroluminescent device.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emissions, and thereby an arbitrary emission color can be obtained.
  • the host compound used in the light-emitting layer may be a conventionally known low-molecular compound or a high-molecular compound having a repeating unit, and a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (vapor deposition polymerization Luminescent host).
  • Examples of host compounds applicable to the present invention include:
  • Examples of the light emitting material that can be used in the present invention include phosphorescent compounds (also referred to as phosphorescent compounds, phosphorescent materials or phosphorescent dopants) and fluorescent compounds (fluorescent compounds or fluorescent materials). However, it is particularly preferable to use a phosphorescent compound in order to obtain high luminous efficiency.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° ⁇ ) and has a phosphorescence yield of 25 It is defined to be a compound of 0.01 or more in ° , but the preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.However, when the phosphorescence emitting compound is used in the present invention, the phosphorescence quantum yield is 0. It suffices if at least 01 is achieved.
  • the phosphorescent compound can be appropriately selected and used from the known compounds used for the light emitting layer of a general organic semiconductor device, and is preferably 8 to 1 in the periodic table of elements. It is a complex compound containing a Group 0 metal, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound) or a rare earth complex, and most preferably an iridium compound.
  • At least one light emitting layer comprises two or more phosphorescent materials.
  • a compound may be contained, and the concentration ratio of the phosphorescent compound in the light emitting layer may be changed in the thickness direction of the light emitting layer.
  • an organometallic complex having an r as a central metal can be mentioned. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond and a metal-sulfur bond is preferable.
  • Examples of the phosphorescent compound (also referred to as a phosphorescent metal complex) described above include, for example, Organic Letter Magazine, vo I 3, No. 16, 257 9-2581 (2001), Inorganic C hemistry, Volume 30, No. 8, 1 685-1687 (1991), J. Am. Chem. Soc., 1 23, 4304 (2001), Inorganic C hemistry, Vol. 40, No. 7, 1 704-1 711 page (2001), Inorganic C hemistry, No. 41, No. 12, 3055-3066 (2002), N ew J ournalof C hemistr y., Volume 26, pp. 171 (2002), Europ ean J ournalof Organic Chemistry, Volume 4, 695-709 (2004), and by applying the methods disclosed in the references and the like described in these documents, it can be synthesized. ..
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, oral-damine dyes, pyrylium dyes, perylene dyes. Examples thereof include dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • each layer constituting the organic functional layer unit will be described in the order of the charge injection layer, the hole transport layer, the electron transport layer and the blocking layer.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission brightness.
  • the organic EL element and its frontier of industrialization (1 January 30, 998, NTT Corporation) ⁇ Published by S. Co., Ltd.)”, Chapter 2, Chapter 2, “Electrode Materials” (Pages 123 to 166), the details are described, and there are a hole injection layer and an electron injection layer.
  • the charge injection layer generally, in the case of a hole injection layer, between the anode and the light emitting layer or the hole transport layer, and in the case of an electron injection layer, between the cathode and the light emitting layer or the electron transport layer.
  • the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode.
  • the electron injection layer and the hole injection layer adjacent to each other may satisfy the requirements of the present invention.
  • the hole injection layer is a layer disposed adjacent to the positive electrode, which is a transparent electrode, for the purpose of lowering the driving voltage and improving the emission brightness.
  • the hole injection layer is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like, and as a material used for the hole injection layer.
  • a material used for the hole injection layer are, for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, Carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinylcarbazole, polymer materials or aromatic oligomers having aromatic amines introduced in the
  • Examples of the triarylamine derivative include a benzidine type represented by ⁇ - ⁇ (4,4'-bis[1 ⁇ 1_(1 —naphthyl)-1 1!!-phenylamino]biphenyl), and
  • a hexazaazatriphenylene derivative as described in Japanese Patent Publication No. 2003-5-19432 and Japanese Unexamined Patent Publication No. 2006-135145 can be similarly used as a hole transport material. it can.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission brightness.
  • the cathode is composed of the transparent electrode according to the present invention, Is provided adjacent to the transparent electrode, and is the second part of "Organic! Elements and their forefront of industrialization (issued on January 30, 1998, January 30, NTT Corporation)". ⁇ 2020/175 514 24 (:171? 2020/007606
  • the electron injection layer is described in detail in Japanese Unexamined Patent Publication Nos. 6-3 2 5 8 7 1, 9 _ 1 7 5 7 4 and 1 0-7 4 5 8 6 as well.
  • Specific examples of materials that are described and preferably used for the electron injection layer include metals represented by strontium and aluminum, and alkali metal compounds represented by lithium fluoride, sodium fluoride, and potassium fluoride.
  • the transparent electrode in the present invention is a cathode
  • an organic material such as a metal complex is particularly preferably used.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 depending on the constituent material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole injection layer and the electron blocking layer also have a function of the hole transport layer in a broad sense.
  • the hole transport layer may be a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either an organic substance or an inorganic substance.
  • zone derivatives stilbene derivatives, silazane derivatives, aniline-based copolymers, conductive polymer oligomers and thiophene oligomers.
  • the hole-transporting material As the hole-transporting material, the above-mentioned ones can be used, but a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound can be used, particularly an aromatic tertiary amine. Preference is given to using compounds. [0120] As typical examples of the aromatic tertiary amine compound and the styrylamine compound,
  • the hole transport layer is formed by using the above hole transport material, for example, a vacuum evaporation method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir-Blodgett method, L angmuir Blodgett method). ) And other known methods can be used to form a thin film.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 Mm, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p-characteristic can be increased.
  • the electron transport layer is composed of a material having a function of transporting electrons, and in a broad sense, the electron transport layer includes an electron injection layer and a hole blocking layer.
  • the electron transport layer can be provided as a single layer structure or a laminated structure of a plurality of layers.
  • the electron-transporting material (also serving as the hole-blocking material) constituting the layer portion adjacent to the light-emitting layer is an electron injected from a force solder. It has only to have a function of transmitting light to the light emitting layer.
  • any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethane, anthrone derivatives and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as a material for the electron transport layer.
  • a polymer material in which these materials are introduced into a polymer chain or a polymer material having these materials as a polymer main chain can be used.
  • a metal complex of an 8-quinolinol derivative for example, tris (8-quinolinol) aluminum (abbreviation: 8 1 3 ), tris (5, 7-dichloro-8-quinolinol) aluminum, tris (5, 7— Dibromo-8-quinolinol) aluminum, tris(2-methyl-8-quinolinol) aluminum, tris(5-methyl-8-quinolinol) aluminum, bis(8-quinolinol) zinc (abbreviation: n 9) and their metal complexes
  • the central metal is n
  • the electron transport layer is formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and a !_ method. Can be formed.
  • the thickness of the electron transport layer is not particularly limited, but usually Preferably
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • the blocking layer examples include a hole blocking layer and an electron blocking layer.
  • the blocking layer is a layer provided as necessary.
  • Japanese Unexamined Patent Publication Nos. 1 1 -2 0 4 2 5 8 gazette, 1 1 -2 0 4 3 5 9 gazette, and 1) Organo! element and its frontier of industrialization (Jan. 1 998) 30 days, published by NTS Co., Ltd.)”, page 237, etc. for example, hole blocking (hole block) layers.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. The probability can be improved. Further, the structure of the electron transport layer can be used as a hole blocking layer, if necessary.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a significantly small ability to transport electrons. By blocking electrons while transporting holes, the recombination probability of electrons and holes is increased. Can be improved. Further, the structure of the hole transport layer can be used as an electron blocking layer, if necessary.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 n, more preferably in the range of 5 to 300!.
  • the cathode is an electrode film that functions to supply holes to the organic functional layers and the light emitting layer. ⁇ 2020/175 514 28 ⁇ (:171? 2020 /007606
  • metals, alloys, organic or inorganic conductive compounds or mixtures thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium/copper mixture, magnesium/silver mixture, magnesium/aluminium mixture, magnesium/indium mixture, indium, lithium/aluminum mixture, rare earth metal, ⁇ c. Z N_ ⁇ , an oxide semiconductor such as T i ⁇ 2 and S N_ ⁇ 2.
  • the cathode can be produced by forming a thin film of these conductive materials or a dispersion thereof by a method such as a spin coating method, a casting method, an ink jet method, a vapor deposition method or a printing method. Also,
  • the film thickness is usually It is preferably selected in the range of 5 to 200 nm.
  • the organic semiconductor !_ element emits light even from the cathode side!
  • the cathode with good light transmission may be selected and configured.
  • sealing means used for sealing the organic semiconductor device for example, a method in which the flexible sealing member and the cathode and the transparent substrate are bonded with a sealing adhesive can be mentioned.
  • the sealing member has only to be arranged so as to cover the display area of the organic semiconductor device, and may have a concave plate shape or a flat plate shape. Moreover, the transparency and the electrical insulation are not particularly limited.
  • Specific examples thereof include a thin film glass plate having flexibility, a polymer plate, a film, and a metal film (metal foil).
  • a glass plate soda lime glass, glass containing barium strontium, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like can be mentioned in particular.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • Metal films include stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum ⁇ 2020/175 514 29 ⁇ (:171? 2020 /007606
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint that the organic semiconductor device can be thinned.
  • the polymer film has a water vapor permeability of 1 X 10 at a temperature of 25 soil 0,5 °, and a relative humidity of 90 ⁇ 2% RH, measured by the method according to ⁇ ⁇ 3 ⁇ 7 1 29-1 992. 3 9 / ⁇ 2 - 24 or less it is rather preferable, and further, "I 3 ⁇ 7 1 26- 1 987 oxygen permeability measured in compliance with the method provided in the, 1 1 0 _3 1111_ /
  • Rei_111 is, 1 01 325 X 1 0 5 3) or less, the temperature 25 ⁇ 0 5 ° ⁇ , at a relative humidity of 90 ⁇ 2% RH water vapor permeability is preferably at 1 X 1 0- 3 9/01 2 ⁇ 24 or less.
  • the inert gas such as nitrogen and argon in the gas phase and the liquid phase, fluorocarbon, silicone oil, etc. It is also possible to inject an inert liquid. It is also possible to create a vacuum in the gap between the sealing member and the display area of the organic semiconductor device, or to enclose a hygroscopic compound in the gap.
  • a sealing film can be provided on the transparent substrate with the part exposed.
  • Such a sealing film is composed of an inorganic material or an organic material, and particularly, a material having a function of suppressing the intrusion of moisture, oxygen, and the like, such as silicon oxide, silicon dioxide, and silicon nitride.
  • An inorganic material is used.
  • a laminated structure may be used by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these sealing films is not particularly limited, and examples thereof include vacuum vapor deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method. ⁇ 2020/175 514 30 boxes (: 171-1? 2020/007606
  • a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma X method, a laser X method, a heat ⁇ 30 method, and a coating method can be used.
  • the encapsulant as described above exposes at least the terminal portions of the anode (3) that is the first electrode and the cathode (6) that is the second electrode of the organic semiconductor device, and at least emits light. It is provided so as to cover the functional layer.
  • an anode, an organic functional layer group 1, a light emitting layer, an organic functional layer group 2 and a cathode are laminated on a transparent substrate to form a laminated body.
  • a transparent base material is prepared, and a thin film of a desired electrode material, for example, a positive electrode material, is provided on the transparent base material in an amount of 1 or less, preferably in the range of 10 to 200 n.
  • the anode is formed to a film thickness by a method such as vapor deposition or sputtering.
  • a connection electrode part for connecting to an external power supply is formed at the end of the anode.
  • Each of these layers can be formed by a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, etc.
  • the vacuum deposition method or the spin coating method is particularly preferable.
  • different forming methods may be applied for each layer.
  • the vapor deposition method is used to form each of these layers, the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 to 450°C, the degree of vacuum is 1 x 10 to 6 1 X 1 ⁇ - 2 3, deposition rate ⁇ . It is desirable to appropriately select each condition within the range of the substrate temperature of 50 to 300 and the layer thickness of 0.1 to 5.
  • a cathode is formed on the organic functional layer group 2 by an appropriate forming method such as a spin coating method, a casting method, an ink jet method, a vapor deposition method or a printing method.
  • the cathode is kept in an insulated state from the anode by the organic functional layer group, and the terminal portion is provided from above the organic functional layer group to the periphery of the transparent substrate.
  • the pattern is formed in a shape that draws out.
  • these transparent substrate, anode, organic functional layer group, light emitting layer and cathode are sealed with a sealing material. That is, with the terminal portions of the anode and the cathode exposed, a sealing material that covers at least the organic functional layer group is provided on the transparent substrate.
  • the organic semiconductor device can be used as an electronic device such as a display device, a display, and various light emitting devices.
  • light emitting devices include lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical recording media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples thereof include, but are not limited to, a light source of an optical sensor, and can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
  • the electronic device of the present invention is preferably applied to an organic photoelectric conversion element and a solar cell.
  • FIG. 3 is a cross-sectional view showing an example of a solar cell having a single structure including a bulk heterojunction type organic photoelectric conversion element (a structure having one bulk heterojunction layer).
  • a bulk heterojunction type organic photoelectric conversion device 200 has a transparent electrode anode 202, a hole transport layer 205, and a bulk heterojunction on one surface of a substrate 201.
  • the photoelectric conversion unit 204 of the junction layer, the electron transport layer 206 (also referred to as a buffer layer), and the counter electrode 203 (cathode) are sequentially laminated.
  • the hole transport layer 205, the photoelectric conversion part 204 of the bulk heterojunction layer, and the electron transport layer 206 are the functional layer 27 according to the present invention.
  • the substrate 201 is a member that holds the transparent electrode 202, the photoelectric conversion unit 204, and the counter electrode 203 that are sequentially stacked. In this embodiment, since the photoelectrically converted light is incident from the substrate 201 side, the substrate 201 can transmit the photoelectrically converted light, that is, the photoelectrically converted light should be transmitted. It is preferable that the member is transparent to the wavelength of light.
  • the substrate 201 is, for example, a glass substrate or a resin substrate. ⁇ 2020/175 514 32 (:171? 2020/007606
  • the substrate 201 is not essential, and for example, by forming the transparent electrode 202 and the counter electrode 203 on both surfaces of the photoelectric conversion section 204, a bulk heterojunction type organic photoelectric conversion element 201 is formed. May be configured.
  • the photoelectric conversion unit 204 is a layer that converts light energy into electric energy, and is configured to have a bulk heterojunction layer in which a type semiconductor material and a type semiconductor material are uniformly mixed. ..
  • the type semiconductor material relatively functions as an electron donor (donor)
  • the n- type semiconductor material relatively functions as an electron acceptor (acceptor _).
  • an electron donor and an electron acceptor are “an electron donor that, when absorbing light, moves from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state).
  • “Body and electron acceptor”, which donates or accepts electrons as an electrode does, but donates or accepts electrons by a photoreaction.
  • FIG. 3 light incident from the transparent electrode 202 through the substrate 201 is absorbed by an electron acceptor or an electron donor in the bulk heterojunction layer of the photoelectric conversion section 204, Electrons move from the electron donor to the electron acceptor, forming a hole-electron pair (charge separation state).
  • the generated charge is caused by an internal electric field, for example, when the transparent electrode 202 and the counter electrode 203 have different work functions, electrons are transferred between the electron acceptors due to the potential difference between the transparent electrode 202 and the counter electrode 203. And the holes pass between the electron donors and are carried to different electrodes to detect photocurrent.
  • the transport directions of electrons and holes can be controlled.
  • a hole blocking layer an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. ..
  • Examples include the n-type semiconductor material and the type semiconductor material described in paragraphs 0 0 4 5 to 0 11 13 of Japanese Patent Laid-Open No. 154-14943.
  • the electrodes constituting the organic photoelectric conversion element it is preferable to use the same anode and cathode as those used in the above-mentioned organic semiconductor element. Detailed description is omitted here because it is the same as the anode and cathode used in the above-mentioned organic semiconductor device.
  • the organic photoelectric conversion element positive charges and negative charges generated in the bulk heterojunction layer are extracted from the anode and the cathode via the type organic semiconductor material and the type 0 organic semiconductor material, respectively. It functions as a battery.
  • Each electrode is required to have characteristics suitable for the carrier passing through the electrode.
  • a hole transport layer/electron block layer is provided between the bulk heterojunction layer and the anode. It is preferable to have
  • Examples of materials constituting these layers include, for example, a hole-transporting layer made by Heraeus Co., Ltd., such as ⁇ ⁇ 6 V ⁇ ⁇ 3, polyaniline and its doped material, ⁇ 200 Cyan compounds and the like described in 6/0 1 9270 can be used.
  • a hole-transporting layer made by Heraeus Co., Ltd., such as ⁇ ⁇ 6 V ⁇ ⁇ 3, polyaniline and its doped material, ⁇ 200 Cyan compounds and the like described in 6/0 1 9270 can be used.
  • the organic photoelectric conversion device by forming an electron transport layer, a hole blocking layer, and a buffer layer between the bulk heterojunction layer and the cathode, the charges generated in the bulk heterojunction layer can be more effectively dispersed. It is preferable to have these layers because they can be taken out efficiently.
  • the organic photoelectric conversion element may have various optical functional layers for the purpose of more efficiently receiving sunlight.
  • the optical functional layer include an antireflection film, a light condensing layer such as a microlens array, and a light diffusing layer that scatters the light reflected by the cathode and allows it to enter the bulk heterojunction layer again.
  • Eighty-eight ( three, thirty- three ) represents aluminum isopropoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), which when heated causes a hydrolysis reaction with water in the atmosphere to change to aluminum oxide.
  • niobium oxide nanoparticles Biral 6-0-6600 manufactured by Taki Chemical Co., Ltd. is used.
  • Tin oxide nanoparticles use Ceramace 3_8 manufactured by Taki Chemical Co., Ltd.
  • Zirconium oxide nanoparticles are manufactured by Sakai Chemical Industry Co., Ltd. 3 A zirconia-methanol dispersion is used.
  • barium titanate nanoparticles parcelam manufactured by Nippon Kagaku Kogyo Co., Ltd. is used.
  • Mouth V 1 represents polyvinylidene fluoride
  • ⁇ 2 represents polyvinylidene fluoride
  • Insulating dielectric materials Mitsumi 1 to Mitsui are made by Tokyo Kasei Kogyo Co., Ltd. and have the following structure. ⁇ 0 2020/175 514 35 ⁇ (: 17 2020 /007606
  • the conductive materials 81 to 81 are compounds having the following structures.
  • Example 1 the drive voltage of the electron-only device (hereinafter, referred to as “Mix”) in which the layer including the insulating dielectric material and the conductive material according to the present invention was incorporated was evaluated. ⁇ 2020/175 514 38 ⁇ (:171? 2020 /007606
  • a film of hen (indium tin oxide) with a thickness of 120 n is formed on a glass substrate with a vertical length of 500111, a horizontal length of 500111, and a thickness of 0.701. Then, patterning was performed to form an anode composed of a transparent electrode. After that, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and LiV ozone cleaning for 5 minutes were performed.
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition device.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device production.
  • the vapor deposition resistance heating boat was made of Tungsten or molybdenum.
  • the compound 81 which is a conductive material, was dissolved at a concentration of 1.3 mass% in 0.00, and the hole blocking layer was formed by spin coating for 100 seconds, 30 seconds. 80 on the substrate on which Compound 8 with a thickness of
  • the non-light-emitting surface of the above-mentioned No. 00 is covered with a glass case, and the No. 00 is brought into contact with the glass substrate (supporting substrate) on which it is manufactured.
  • a sealant made of an epoxy-based photo-curing adhesive (Luxtrac 1-(3 0 6 2 9 Mfg., manufactured by Toagosei Co., Ltd.) was provided on the periphery of the glass case that covers the ______.
  • the drive voltage ratio was calculated as a relative value. 1. The smaller the value is, the better the driving voltage is.
  • the mixing ratio in the table indicates the volume ratio of conductive material: insulating dielectric material in percentage. The reasons why the mixing ratio differs depending on the material are described below. In the present invention, as the mixing amount of the insulating dielectric material increases, the relative permittivity increases, and the driving voltage decreases accordingly. On the other hand, since these materials are insulative, the drive voltage is naturally increased. There is an appropriate point for each material where the driving voltage drops most under these two competitions. In the present embodiment, the mixing ratio that gives the lowest driving voltage for each material is used.
  • the voltage at 2.5 8/ ⁇ 1 2 o'clock was set as the voltage after aging, and the voltage before When the voltage at 18/00 12 o'clock was set to 1.00, the ratio of the voltage after aging of each of the evaluation holes was calculated as a relative value. The smaller the value, the higher the stability.
  • the layer containing the insulating dielectric material and the conductive material according to the present invention is not limited to the electron transport layer or the electron injection layer, and is incorporated in any layer such as the hole transport layer, the hole injection layer, and the light emitting layer.
  • the drive voltage of the device or hole-only device (hereinafter referred to as 1 to 10 ports) was evaluated.
  • the anode was formed in the same procedure as for evaluation £001-1.
  • Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (? (Baytron 9 8 1 4083 manufactured by K.K.) was diluted with pure water to 70%, and a film was formed by the spin coating method at 3,000 V pm s for 30 seconds, and then dried at 200° ⁇ for 1 hour to give a film thickness of 30 There are n 0/00/33.
  • «- ⁇ was vapor-deposited at a vapor deposition rate of 0.1 n ⁇ !/sec for 20 n to form an electron block layer, and then 100 aluminum was vapor-deposited to form a cathode. After that, cover the non-light emitting surface in 1 to 100 above with a glass case, and Contact with the glass substrate (supporting substrate) where !0 is produced,! A sealant made of an epoxy-based photo-curing adhesive (Luxtrac!__ 0629M manufactured by Toagosei Co., Ltd.) was provided on the periphery of the glass case that covers !0. Then, this sealing material was placed on the cathode side of the above 1 to 100 and was brought into close contact with the glass substrate. After that, II V light is emitted from the glass case side. ⁇ 2020/175 514 42 ⁇ (:171? 2020 /007606
  • a current of 408 was applied and maintained at 25 ° for 50 hours for each evaluation 000 and 1 to 100. Thereafter, 2.5 eight / Rei_rei_1 the 2 o'clock voltage as a voltage after aging drive, before driving 2.5 eight / ⁇ a 2:00 voltage 1.0 0, and the evaluation Snake hundred when the Alternatively, the ratio of voltage after aging of 1 to 10 ports for each evaluation was calculated as a relative value. The smaller the value, the higher the stability.
  • the known materials 8 4 to 8 6 are host materials or dopant light emitting materials used in the light emitting layer for organic electroluminescence.
  • 81 used in evaluation £ 0 0 1 — 1 is a material for the electron transport layer used in electronic devices, and in this system, 81 is higher in electron mobility, so Relative drive voltage is significantly higher in the evaluation method ⁇ 0 2 _ 1 or 2 _ 2 than the evaluation method ⁇ 0 1 _ 1. Then, the relative drive voltage in the evaluation test ⁇ 2 ⁇ 3 to 2 ⁇ 6 is 1.
  • Example 3 the performance evaluation of an organic light emitting device (organic semiconductor device) manufactured under an atmospheric environment using the conductive material and the insulating dielectric material according to the present invention was performed.
  • a 120-nm-thick sushi (indium tin oxide) film was formed by a sputtering method, and patterning was performed by a photolithography method to form an anode.
  • the pattern was such that the area of the light emitting region was 5001X5001.
  • the substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and treated with II V ozone for 5 minutes. Then, on the base material on which the anode was formed, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (Mr. 00/33) prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was prepared.
  • a 2 mass% solution obtained by diluting the dispersion with isopropyl alcohol was applied by the inkjet method and dried at 80 ° C for 5 minutes to form a hole injection layer with a layer thickness of 40 nm.
  • the substrate on which the hole injection layer was formed was coated by the ink jet method using the hole transport layer forming coating solution having the following composition in the atmospheric environment, and dried at 1300 ° for 30 minutes. Then To form a hole transport layer.
  • Hole transport material 7 (weight average molecular weight 10 parts by mass Chlorobenzene 3000 parts by mass
  • the substrate on which the hole transport layer has been formed is coated by the ink jet method using a coating solution for forming a light emitting layer having the following composition, dried at 120 ° ⁇ for 30 minutes, and a layer thickness of 50 A light emitting layer was formed.
  • Host compound 8 41 0 parts by weight Phosphorescent material 8 51 parts by weight Fluorescent material 8 6 0.1 parts by weight Normal butyl acetate 2200 parts by weight ⁇ 2020/175 514 46 ⁇ (:171? 2020 /007606
  • an electron transport layer-forming coating solution having the following composition was used for coating by an inkjet method and dried at 80°° for 30 minutes to form an electron transport layer having a layer thickness of 30 n .
  • the substrate was attached to the vacuum vapor deposition device. Further, those containing the I tungsten down resistance heating boat, mounted on the prepared vacuum vapor deposition apparatus, respectively the ones containing the 9, pressure in the vacuum tank was reduced to 5. 0 X 1 0 _ 5 3. After that, electricity was applied to the bow and heating was performed, and aluminum was vapor-deposited to form a cathode having a thickness of 100 n.
  • Keisuke base material was adhered using a commercially available roll laminating apparatus.
  • a sealing base material As a sealing base material, a layer of flexible 30-thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) was coated with a two-component reactive urethane adhesive for dry lamination. A 1.5-thick adhesive layer was provided, and a 12-thick polyethylene terephthalate (Mending) film was laminated to produce an adhesive layer.
  • thermosetting adhesive as a sealing adhesive was applied uniformly with a thickness of 20 along the bonding surface (shiny surface) of the aluminum foil of the sealing base material using a dispenser. It was dried under vacuum below 1003 for 12 hours. Further, the sealing base material is moved to a nitrogen atmosphere having a dew point temperature of not more than 180° and an oxygen concentration of 0.8 and dried for 12 hours or more. ⁇ Adjusted to be below.
  • thermosetting adhesive an epoxy adhesive mixed with the following (8) to ( ⁇ ) was used. ⁇ 2020/175 514 47
  • the sealing base material is placed in close contact with the above-mentioned laminated body, and using a crimping port, the crimping port temperature is 100" and the pressure is 0. Adhesion and sealing were performed under pressure bonding conditions with a device speed of 0.3 m/min.
  • the drive voltage 1 was measured at room temperature (under 25 ° ⁇ ) by measuring the frontal luminance of the fabricated nuclear organic semiconductor !_ device and measuring the drive voltage (V) at 1 000 ⁇ / 2 with each device. The spectral radiance meter was used to measure the luminance. 000 (manufactured by Konica Minolta Sensing) was used. The driving voltage 1 obtained above was applied to the following formula to obtain the relative driving voltage 1 of each organic semiconductor !_ element with respect to the driving voltage 1.00 of the organic semiconductor !_ element 3_1.
  • Relative drive voltage 1 (%) (Each organic day !_ device drive voltage 1 / Organic day !_ device 3-1 drive voltage 1) X 100
  • Organic semiconductor !_ device A device manufactured by the same procedure except forming 9-1 as a cathode and vapor-depositing 9 as a cathode to a thickness of 100 n. ⁇ 2020/175 514 48 ⁇ (:171? 2020 /007606
  • the drive voltage 2 was measured by the same method as the drive voltage 1.
  • the obtained driving voltage was applied to the following formula to determine the relative driving voltage 2 of each organic semiconductor !_ element with respect to the driving voltage 2 of the organic semiconductor !_ element 3 _ 1.
  • Relative drive voltage 2 (%) (Each organic day !_ element drive voltage 2 / Organic day !_ element 3 _ 2 drive voltage 2) X 1 0 0
  • a current of 400 8 was applied to each of the evaluation organic devices !_ and maintained at 25 ° for 50 hours. Then 2.5 Organic voltage for evaluation 1_ with respect to the voltage after driving with time, and each organic day for evaluation when the voltage at 2.5 8/ ⁇ 2 o'clock before driving the element was 1.00!
  • the ratio of the voltage after driving the device with time was calculated as a relative value. The smaller the value, the higher the stability.
  • the organic semiconductor device 1_ according to the present invention is clearly superior to the organic semiconductor device 1_ device of Comparative Example in driving voltage. Furthermore, in the case of a mixture of alkali metals, it is affected by deterioration in the atmosphere, and almost no voltage lowering effect is observed, while in the present invention, a clear lowering of the voltage is achieved despite film formation in the atmosphere. Can be seen.
  • Example 4 an organic thin-film solar cell (organic photoelectric conversion element) in an air environment was produced using a conductive material and an insulating dielectric material according to the present invention. ⁇ 2020/175 514 50
  • ( 2 ) was patterned into a width of 1 using a normal photolithography technique and wet etching to form a first electrode.
  • the patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, then ultrasonic cleaning with ultrapure water, followed by drying with nitrogen blow, and finally ultraviolet ozone cleaning.
  • the hole transport layer a conductive polymer and a polyanion are formed.
  • the compound 8 1 1 (synthesized based on the following patent document) was dissolved in hexafluoroisopropanol so that the content thereof was 0.1% by mass to prepare a solution.
  • This solution was applied and dried using a blade coater whose temperature was adjusted to 65° so that the dry film thickness was about 20 n .
  • heat treatment is performed for 2 minutes with a hot air of 100 ° to form an electron transport layer on the photoelectric conversion layer. It was
  • the substrate on which the electron transport layer was formed was placed in a vacuum vapor deposition device. And it, 1 Omm width of the shadow mask is set to element so as to be perpendicular to the transparent electrode, after the vacuum deposition machine was reduced until below 1 0_ 3 P a, a silver 2 nm / sec evaporation rate Each of them was vapor-deposited with a film thickness of 100 nm to form a second electrode on the electron transport layer.
  • the obtained organic photoelectric conversion element to move in a nitrogen chamber made of two 3M U ⁇ tra B arrier S olar F ilm UBL- 9 L ( vapor transparently rate ⁇ 5 X 1 ⁇ - 4 g / m 2/d) and UV-curing resin (UVR ES IN XN R 5570-B 1) made by UV curing resin (Nagase Chemtex Co., Ltd.) is used for sealing, and then taken out in the atmosphere, An organic photoelectric conversion element 4-1 with a size of 10 ⁇ 10 mm was produced.
  • Patent Document X Japanese Unexamined Patent Publication No. 2016 _ 1 74 1 69, paragraph numbers [01 73] to [01 74]
  • Patent Document Y JP2015-128185 Publication Paragraph Nos. [0202] to [0204]
  • organic photoelectric conversion element 4 _1 In the production of the organic photoelectric conversion element 4 _1, the materials to be mixed in the electron transport layer, the mixing ratio, and the film forming environment from the hole transport layer to the electron transport layer were changed to those shown in Table IV. In the same manner as above, organic photoelectric conversion elements 4 — 2 to 4 — 8 were prepared.
  • the organic photoelectric conversion elements 4-1 to 4-8 were sealed with an epoxy resin and a glass cap, respectively. This was irradiated with 1 00 of the intensity of mW / cm 2 light using a solar simulator (AM 1. 5 G Huy filter), a superposed mask in which the effective area on 1 cm 2 on the light receiving unit, evaluated ⁇ V characteristics Then, the short-circuit current density J sc (mA/cm 2, open-circuit voltage Vo c (V), and fill factor FF were measured. From the obtained values of J sc, Vo c, and FF, photoelectric conversion was performed according to the following formula 1. efficiency ⁇ 2020/175 514 52 ⁇ (:171? 2020/007606
  • V [%] was calculated.
  • the obtained photoelectric conversion efficiency was applied to the following formula to obtain the relative photoelectric conversion efficiency of each photoelectric conversion element with respect to the photoelectric conversion efficiency of the organic photoelectric conversion element 41.
  • Relative photoelectric conversion efficiency (%) (photoelectric conversion efficiency of each photoelectric conversion element/photoelectric conversion efficiency of photoelectric conversion element 4 _ 1) X 1 0 0
  • V [%] 4 [8/( ⁇ ⁇ !) 2 ]XV ⁇ ⁇ [V] [%]
  • Formula 1 The larger the value, the better the photoelectric conversion.
  • the above organic photoelectric conversion elements 4 _ 1 to 4 _ 8 are stored in a container that is maintained at a temperature of 80 °C and a humidity of 80%, and they are periodically taken out to measure the V characteristics and measure the initial photoelectric conversion.
  • the driving efficiency of each organic photoelectric conversion element was evaluated by setting the conversion efficiency to 100% and the time when it dropped to 80% of the initial efficiency to !_ D8 [hours]. Then, the obtained driving life was applied to the following formula to obtain the relative driving life of each photoelectric conversion element with respect to the driving life of the organic photoelectric conversion element 4-1. It should be noted that the larger the value of the relative driving life, the better the durability.
  • Table IV The results are shown in Table IV.
  • the electronic device of the present invention is an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage
  • the organic semiconductor device, the organic photoelectric conversion device, and the organic photoelectric conversion device can be used. ⁇ 02020/175 514 54 2020/007606

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing an electronic device that is stable in atmospheric air when film formation is carried out, and that can be driven with a low voltage. This electronic device comprises one or a plurality of functional layers between a positive electrode and a negative electrode, wherein the electronic device is characterized in that: any one of the functional layers contains at least one type of each of an insulative dielectric material and a conductive material; and the relative permittivity of the functional layer containing the insulative dielectric material and the conductive material is at least 4.0.

Description

\¥0 2020/175514 1 卩(:17 2020 /007606 明 細 書 \¥0 2020/175 514 1 卩 (: 17 2020 /007606 Clarification
発明の名称 : 電子デバイス Title of invention: Electronic device
技術分野 Technical field
[0001 ] 本発明は、 電子デバイスに関し、 より詳しくは、 成膜時に大気下で安定で あり、 低電圧駆動可能な電子デバイスに関する。 The present invention relates to an electronic device, and more particularly to an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage.
背景技術 Background technology
[0002] 有機エレクトロルミネッセンス素子 (以下、 「有機巳 !_素子」 ともいう。 [0002] Organic electroluminescent device (hereinafter, also referred to as "organic semiconductor device").
) に用いられる反射電極 (例えば、 陰極) は、 光取り出しを向上させるため に八 丨や八 9といった反射率の高いものが用いられている。 これらの材料は 仕事関数が大きく、 通常では有機層へ電子注入することが難しいが、 当該有 機層への電子注入改良に関しては、 アルカリ金属塩又はアルカリ土類金属塩 を陰極表面に積層する手段、 又はアルカリ金属塩又はアルカリ土類金属塩を 有機層に混合させる手段、 導電性の金属酸化物を陰極と有機層の間に積層す る手段、 及び導電性の金属酸化物と有機物の混合層を陰極と有機層の間に積 層する手段の 4つが知られている (例えば、 特許文献 1〜 4及び非特許文献 1、 2参照。 ) 。 しかしながら、 いずれの手段も大気に致命的に弱いという 問題を抱えており、 高真空の蒸着器内や高純度の窒素環境等でデ/<イスを作 製する必要があった。 The reflective electrode (eg, cathode) used in () has a high reflectivity of 88 or 89 in order to improve light extraction. These materials have a large work function and it is usually difficult to inject electrons into the organic layer.However, regarding the improvement of electron injection into the organic layer, a means of laminating an alkali metal salt or an alkaline earth metal salt on the cathode surface is used. , Or a means for mixing an alkali metal salt or an alkaline earth metal salt into the organic layer, a means for laminating a conductive metal oxide between the cathode and the organic layer, and a mixed layer of a conductive metal oxide and an organic layer There are known four means for stacking the cathode between the cathode and the organic layer (see, for example, Patent Documents 1 to 4 and Non-Patent Documents 1 and 2). However, all of these methods have the problem that they are fatally vulnerable to the atmosphere, and it was necessary to manufacture the device in a high-vacuum vaporizer or in a high-purity nitrogen environment.
[0003] 前記した材料は巨大な極性、 不純物準位等により陰極の界面に電気二重層 を形成させることで陰極から有機層への電子注入を達成している。 しかしな がら、 この巨大な極性があることや不純物準位があることこそが、 大気、 特 に水や酸素によって機能劣化の影響を受けることと同義であり、 実際大気下 で成膜すると大気による材料の顕著な機能劣化がみられる。 それゆえ、 成膜 時に材料が 「大気に安定であること」 と 「電子注入能を持つこと」 は矛盾す る内容となっており、 両者を併せ持つ材料の開発が望まれていた。 [0003] The above materials achieve electron injection from the cathode to the organic layer by forming an electric double layer at the interface of the cathode due to the huge polarity, impurity level, and the like. However, this huge polarity and the presence of impurity levels are synonymous with being affected by the functional deterioration of the atmosphere, especially water and oxygen. Significant functional deterioration of the material is observed. Therefore, the fact that the material is “stable in the atmosphere” and “having electron injection ability” at the time of film formation are contradictory contents, and the development of a material having both is desired.
先行技術文献 Prior art documents
特許文献 [0004] 特許文献 1 :特開平 6— 32587 1号公報 Patent literature [0004] Patent Document 1: JP-A-6-325871
特許文献 2 :特開平 9— 1 7574号公報 Patent Document 2: Japanese Patent Laid-Open No. 9-17574
特許文献 3 :特開平 1 0— 74586号公報 Patent Document 3: Japanese Patent Laid-Open No. 10-74586
特許文献 4 :特開 201 3 _ 8935号公報 Patent Document 4: JP 2013_8935
非特許文献 Non-patent literature
[0005] 非特許文献 1 : Ad v. Ma t e r. 201 4, 26, 2750 -2754 非特許文献 2 : Ad v. Ma t e r. 201 5, 27, 4681 -4687 発明の概要 Non-Patent Document 1: Ad v. Mater. 201 4, 26, 2750 -2754 Non-Patent Document 2: Ad v. Mater. 201 5, 27, 4681 -4687 Summary of Invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] 本発明は、 上記問題 ·状況に鑑みてなされたものであり、 その解決課題は 、 成膜時に大気下で安定であり、 低電圧駆動可能な電子デバイスを提供する ことである。 The present invention has been made in view of the above problems and circumstances, and a problem to be solved is to provide an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage.
課題を解決するための手段 Means for solving the problem
[0007] 本発明者は、 上記課題を解決すべく、 上記問題の原因等について検討する 過程において、 陽極と陰極との間に配置される機能層のいずれか一つの層が 、 絶縁性誘電材料と導電性材料とをそれぞれ少なくとも 1種類ずつ含有して おり、 当該層の比誘電率が特定の値以上であるときに、 成膜時に大気下で安 定であり、 低電圧駆動可能な電子デバイスが得られることを見出した。 In order to solve the above-mentioned problems, the present inventor, in the process of studying the cause of the above-mentioned problems, etc., one of the functional layers arranged between the anode and the cathode is an insulating dielectric material. An electronic device that contains at least one type of conductive material and at least one type of conductive material, is stable in the atmosphere during film formation, and can be driven at low voltage when the relative permittivity of the layer is a specific value or more. It was found that
[0008] すなわち、 本発明に係る上記課題は、 以下の手段により解決される。 [0008] That is, the above-mentioned problems according to the present invention are solved by the following means.
[0009] 1. 陽極と陰極との間に一つ又は複数の機能層 を備える電子デバイスであ って、 [0009] 1. An electronic device comprising one or more functional layers between an anode and a cathode, comprising:
前記機能層のいずれか一つの層が、 絶縁性誘電材料と導電性材料とをそれぞ れ少なくとも 1種類ずつ含有しており、 かつ、 前記絶縁性誘電材料と導電性 材料とを含有する機能層の比誘電率が 4. 0以上であることを特徴とする電 子デバイス。 Any one of the functional layers contains at least one insulating dielectric material and one conductive material, and the functional layer contains the insulating dielectric material and the conductive material. An electronic device having a relative dielectric constant of 4.0 or more.
[0010] 2. 前記比誘電率が、 6. 0以上であることを特徴とする第 1項に記載の 電子デバイス。 〇 2020/175514 3 卩(:171? 2020 /007606 [0010] 2. The electronic device according to item 1, wherein the relative dielectric constant is 6.0 or more. 〇 2020/175 514 3 (:171? 2020/007606
[001 1 ] 3 . 前記機能層が、 少なくとも発光層を含むことを特徴とする第 1項又は 第 2項に記載の電子デバイス。 [001 1] 3. The electronic device according to item 1 or 2, wherein the functional layer includes at least a light emitting layer.
[0012] 4 . 前記絶縁性誘電材料が、 絶縁性金属酸化物であることを特徴とする第 [0012] 4. The insulating dielectric material is an insulating metal oxide
1項から第 3項までのいずれか一項に記載の電子デバイス。 The electronic device according to any one of items 1 to 3.
[0013] 5 . 前記絶縁性金属酸化物が、 ナノ粒子であることを特徴とする第 4項に 記載の電子デバイス。 [0013] 5. The electronic device according to item 4, wherein the insulating metal oxide is nanoparticles.
[0014] 6 . 前記絶縁性誘電材料が、 液晶材料であることを特徴とする第 1項から 第 3項までのいずれか一項に記載の電子デバイス。 [0014] 6. The electronic device according to any one of items 1 to 3, wherein the insulating dielectric material is a liquid crystal material.
[0015] 7 . 前記絶縁性誘電材料が、 絶縁性の誘電高分子又はオリゴマーであるこ とを特徴とする第 1項から第 3項までのいずれか一項に記載の電子デバイス [0015] 7. The electronic device according to any one of items 1 to 3, wherein the insulating dielectric material is an insulating dielectric polymer or oligomer.
[0016] 8 . 前記誘電高分子又はオリゴマーが、 ポリフッ化ビニリデンを繰り返し 単位に含む高分子又はオリゴマーであることを特徴とする第 7項に記載の電 子デバイス。 [0016] 8. The electronic device according to item 7, wherein the dielectric polymer or oligomer is a polymer or oligomer containing polyvinylidene fluoride in a repeating unit.
[0017] 9 . 前記絶縁性誘電材料を含有する層が、 電子輸送層又は電子注入層であ ることを特徴とする第 1項から第 8項までのいずれか一項に記載の電子デバ イス。 [0017] 9. The electron device according to any one of items 1 to 8, wherein the layer containing the insulating dielectric material is an electron transport layer or an electron injection layer. ..
[0018] 1 0 . 有機エレクトルミネッセンス素子であることを特徴する第 1項から 第 9項までのいずれか一項に記載の電子デバイス。 [0018] 10. The electronic device according to any one of items 1 to 9, which is an organic electroluminescence device.
[0019] 1 1 . 有機光電変換素子であることを特徴する第 1項から第 9項までのい ずれか一項に記載の電子デバイス。 [0019] 1 1. The electronic device according to any one of items 1 to 9, which is an organic photoelectric conversion element.
発明の効果 Effect of the invention
[0020] 本発明の上記手段により、 成膜時に大気下で安定であり、 低電圧駆動可能 な電子デバイスを提供することができる。 By the above means of the present invention, it is possible to provide an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage.
[0021 ] 本発明の効果の発現機構ないし作用機構については、 明確にはなっていな いが、 以下のように推察している。 [0021] The mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows.
本発明の電子デバイスは、 絶縁性誘電材料と導電性材料とを機能層、 中で も陰極に隣接する層に混合して含有することで、 成膜時には大気下で不安定 〇 2020/175514 4 卩(:171? 2020 /007606 The electronic device of the present invention contains an insulating dielectric material and a conductive material mixed in a functional layer, even in a layer adjacent to the cathode, so that it is unstable in the atmosphere during film formation. 〇 2020/175 514 4 (:171? 2020/007606
な構造となる電気二重層を形成せず、 大気下での成膜を可能とし、 デバイス 作製後には封止を行うことで、 駆動時のみに絶縁性誘電材料が電気二重層を 形成することで、 電子注入を可能にすることを特徴とする。 したがって、 こ れまで抱えていた電子注入性と大気下での安定性という、 同時に達成不可能 な問題に対応できるようになったものと推察される。 It is possible to form a film in the atmosphere without forming an electric double layer with a different structure, and by sealing after device fabrication, the insulating dielectric material forms an electric double layer only during driving. , Characterized by enabling electron injection. Therefore, it is presumed that it has become possible to solve the problems that have been held up to now, such as electron injection and stability in the atmosphere, which cannot be achieved at the same time.
[0022] また、 本発明での絶縁性誘電材料を用いた電子注入メカニズムは、 上述の 陰極から有機 [0022] In addition, the electron injection mechanism using the insulating dielectric material according to the present invention is not limited to the above-described organic injection from the cathode.
層への電子注入に限らず、 すべての層間における電子注入能、 またはホール 注入能を向上させると同時に、 それを大気下で安定に成膜することができる ものである。 さらにこの技術は、 発光デバイスに限らず、 有機薄膜太陽電池 や有機トランジスタといった有機電子デバイスに応用することも可能である Not only electron injection into layers but also electron injection ability or hole injection ability between all layers can be improved, and at the same time, stable film formation can be achieved in the atmosphere. Furthermore, this technology can be applied not only to light emitting devices but also to organic electronic devices such as organic thin film solar cells and organic transistors.
[0023] 図 1は、 絶縁性誘電材料の効果を説明する模式図である。 [0023] FIG. 1 is a schematic diagram illustrating the effect of an insulating dielectric material.
図 1 においては、 矢印が密に表記されているものほど強い電界で、 矢印が 疎に表記されているものほど弱い電界であることを意味している。 In Figure 1, the denser the arrows, the stronger the electric field, and the less dense the arrows, the weaker the electric field.
図 1 八は絶縁性誘電材料が電極間に無い場合を示し、 電極に電圧をかけた 場合は弱い電界となる。 図 1 巳は絶縁性誘電材料が電極間に存在する場合を 示し、 電極に電圧をかけると、 当該誘電材料とその近辺では内部電界が発生 する結果、 電極界面での注入性が向上するのと同時に、 キャリア輸送性が向 上し、 層内での電界が外部電界以上の強い電界となる。 本発明では、 当該強 い電界発生によって、 陰極から有機層への電子注入に限らず、 すべての層間 における電子注入能、 又はホール注入能及び電子輸送性、 又はホール輸送性 が向上するものと推察される。 Figure 18 shows the case where there is no insulating dielectric material between the electrodes, and when a voltage is applied to the electrodes, a weak electric field is produced. Figure 1 shows the case where an insulating dielectric material exists between electrodes.When a voltage is applied to the electrodes, an internal electric field is generated in the dielectric material and its vicinity, and as a result, the injection property at the electrode interface is improved. At the same time, carrier transport is improved, and the electric field in the layer becomes stronger than the external electric field. In the present invention, it is assumed that the strong electric field generation improves not only electron injection from the cathode to the organic layer but also electron injection ability, hole injection ability and electron transportability, or hole transportability between all layers. To be done.
図面の簡単な説明 Brief description of the drawings
[0024] [図 1八]絶縁性誘電材料の効果を説明する模式図 [0024] [Fig. 18] Schematic diagram illustrating the effect of the insulating dielectric material.
[図 ]絶縁性誘電材料の効果を説明する模式図 [Figure] Schematic diagram explaining the effect of insulating dielectric materials
[図 2]有機巳 !_素子の一例を示す断面図 [Figure 2] Cross-sectional view of an example of an organic semiconductor device!
[図 3]バルクへテロジャンクシヨン型の有機光電変換素子からなる太陽電池を 〇 2020/175514 5 卩(:171? 2020 /007606 [Figure 3] A solar cell consisting of a bulk heterojunction type organic photoelectric conversion element 〇 2020/175 514 5 (:171? 2020/007606
示す断面図 Sectional view
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明の電子デバイスは、 陽極と陰極との間に一つ又は複数の機能層を備 える電子デバイスであって、 前記機能層のいずれか一つの層が、 絶縁性誘電 材料と導電性材料とをそれぞれ少なくとも 1種類ずつ含有しており、 かつ、 前記絶縁性誘電材料と導電性材料とを含有する機能層の比誘電率が 4 . 0以 上であることを特徴とする。 この特徴は、 下記実施態様に共通する又は対応 する技術的特徴である。 [0025] The electronic device of the present invention is an electronic device having one or more functional layers between an anode and a cathode, wherein any one of the functional layers is composed of an insulating dielectric material and a conductive material. At least one kind of a conductive material, and the relative dielectric constant of the functional layer containing the insulating dielectric material and the conductive material is 4.0 or more. This feature is a technical feature common to or corresponding to the following embodiments.
[0026] 本発明の実施態様としては、 本発明の効果発現の観点から、 前記比誘電率 が、 6 . 0以上であることが、 好ましい。 これによって、 より低電圧駆動可 能な電子デバイス提供することができる。 [0026] As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, it is preferable that the relative dielectric constant is 6.0 or more. This makes it possible to provide an electronic device that can be driven at a lower voltage.
[0027] また、 前記機能層が、 少なくとも発光層を含むことが、 好ましい。 これに よって、 より低電圧駆動可能な発光デバイスを提供することができる。 [0027] Further, it is preferable that the functional layer includes at least a light emitting layer. This makes it possible to provide a light emitting device that can be driven at a lower voltage.
[0028] 前記絶縁性誘電材料が、 絶縁性金属酸化物を含有することが、 誘電率を向 上させる観点から、 好ましい。 一般に、 有機物よりも金属酸化物の方が、 誘 電性が高いことが知られている。 [0028] It is preferable that the insulating dielectric material contains an insulating metal oxide from the viewpoint of improving the dielectric constant. It is generally known that metal oxides have higher electroconductivity than organic substances.
[0029] 前記絶縁性金属酸化物が、 粒子構造であることが、 内部電界発生の観点か ら、 好ましい。 絶縁性誘電材料は層内で分子がバラバラに存在しているより も、 ある程度凝集している方が、 より強い内部電界を発生できる。 しかしな がら、 膜厚に対して、 粒形が大きすぎると均一に層内に配置することが難し くなるため、 配置する膜の膜厚に応じて、 粒形を調整した方がよい。 It is preferable that the insulating metal oxide has a particle structure from the viewpoint of generating an internal electric field. The insulating dielectric material can generate a stronger internal electric field when the molecules are aggregated to some extent than when the molecules are dispersed in the layer. However, if the grain shape is too large with respect to the film thickness, it becomes difficult to arrange them uniformly in the layer, so it is better to adjust the grain shape according to the film thickness of the film to be arranged.
[0030] 前記絶縁性誘電材料が、 液晶材料であることが、 外部電界応答の観点から [0030] From the viewpoint of external electric field response, the insulating dielectric material is a liquid crystal material.
、 好ましい。 , Preferred.
[0031 ] 前記絶縁性誘電材料が、 絶縁性の誘電高分子又はオリゴマーであることが 、 内部電界発生の観点から、 好ましい。 上述の通り、 絶縁性誘電材料は層内 で凝集している方が好ましい。 高分子材料は、 低分子材料と比較して、 モノ マー同士が化学連結している点から相分離構造をつくりやすく、 誘電材料同 士での凝集を誘発しやすくなる。 〇 2020/175514 6 卩(:171? 2020 /007606 It is preferable that the insulating dielectric material is an insulating dielectric polymer or oligomer from the viewpoint of generating an internal electric field. As mentioned above, the insulating dielectric material is preferably agglomerated within the layer. Compared to low molecular weight materials, polymer materials are more likely to form a phase-separated structure because they are chemically linked to each other, and it is easier to induce aggregation in the dielectric material. 〇 2020/175 514 6 卩 (:171? 2020 /007606
[0032] 前記誘電高分子又はオリゴマーが、 ポリフッ化ビニリデンを繰り返し単位 に含む高分子又はオリゴマーであることが、 誘電率を向上させる観点から、 好ましい。 ポリフッ化ビニリデンは高分子そのものの誘電率が高い上に、 通 常用いられる有機導電材料は芳香族化合物であることから、 ポリフッ化ビニ リデンとは強い相分離構造を形成し、 膜内での内部電界発生にも有利に働く 点から、 好ましい。 From the viewpoint of improving the dielectric constant, it is preferable that the dielectric polymer or oligomer is a polymer or oligomer containing polyvinylidene fluoride as a repeating unit. Polyvinylidene fluoride has a high dielectric constant of the polymer itself, and since organic conductive materials that are commonly used are aromatic compounds, they form a strong phase separation structure with polyvinylidene fluoride, and It is preferable because it also works for generating an electric field.
[0033] 前記絶縁性誘電材料を含有する層が電子輸送層、 又は電子注入層であるこ とが、 仕事関数の大きいカソードからの電子注入の観点から、 好ましい。 本発明の電子デバイスの態様として、 有機エレクトルミネッセンス素子又 は有機光電変換素子であることが、 好ましい。 From the viewpoint of electron injection from the cathode having a large work function, it is preferable that the layer containing the insulating dielectric material is an electron transport layer or an electron injection layer. As an aspect of the electronic device of the present invention, an organic electroluminescence element or an organic photoelectric conversion element is preferable.
[0034] 以下、 本発明とその構成要素、 及び本発明を実施するための形態 ·態様に ついて詳細な説明をする。 なお、 本願において、 「〜」 は、 その前後に記載 される数値を下限値及び上限値として含む意味で使用する。 [0034] Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In addition, in this application, "-" is used in the meaning including the numerical values described before and after that as a lower limit and an upper limit.
[0035] 《本発明の電子デバイスの概要》 <<Outline of Electronic Device of the Present Invention>>
本発明の電子デバイスは、 陽極と陰極との間に一つ又は複数の機能層を備 える電子デバイスであって、 前記機能層のいずれか一つの層が、 絶縁性誘電 材料と導電性材料とをそれぞれ少なくとも 1種類ずつ含有しており、 かつ、 前記絶縁性誘電材料と導電性材料とを含有する機能層の比誘電率が 4 . 0以 上であることを特徴とする。 The electronic device of the present invention is an electronic device having one or a plurality of functional layers between an anode and a cathode, wherein any one of the functional layers comprises an insulating dielectric material and a conductive material. And at least one of each of them is contained, and the relative dielectric constant of the functional layer containing the insulating dielectric material and the conductive material is 4.0 or more.
[0036] 本発明に係る 「機能層」 とは、 電子デバイスにおいて、 例えば、 正孔注入 層、 正孔輸送層、 発光層、 電子輸送層又は電子注入層を一例として挙げるこ とができる。 本発明に係る絶縁性誘電性材料は、 中でも、 陰極側に接する電 子輸送層又は電子注入層に含有されることが好ましい。 In the electronic device, the “functional layer” according to the present invention may be, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer or an electron injection layer. Among them, the insulating dielectric material according to the present invention is preferably contained in the electron transport layer or the electron injection layer in contact with the cathode side.
[0037] 本発明に係る 「比誘電率」 とは、 物質の誘電率と真空の誘電率の比をいう 。 本発明では、 誘電材料含有層の単電荷デバイス (エレクトロンオンリーデ バイス: 巳〇〇と略記する。 ) を作製し、 インピーダンス分光法により測定 された値をいう。 比誘電率の測定は日本工業規格」 丨 3 2 1 3 8 : 2 0 0 [0037] The "relative permittivity" according to the present invention refers to the ratio of the permittivity of a substance and the permittivity of vacuum. In the present invention, a value obtained by manufacturing a single-charge device having a dielectric material-containing layer (electron-only device: abbreviated as _M) and measuring it by impedance spectroscopy. The measurement of the relative permittivity is based on the Japanese Industrial Standards" 丨 3 2 1 3 8: 2 0 0
7を参照しておこうことができる。 具体例としては、 3〇 I 3 「 1: 「〇门 1 〇 2020/175514 7 卩(:171? 2020 /007606 You can refer to 7. As a specific example, 30 I 3 `` 1: 〇 门 1 〇 2020/175 514 7 卩(: 171-1? 2020/007606
2 6 0 9 6を用いてインピーダンス分光により測定を行う。 なお、 測定条件 は周波数 1 〇
Figure imgf000008_0001
八〇 : 〇. 1 (V) 、 0 0 : 0 (V
The measurement is performed by impedance spectroscopy using a 2600. The measurement conditions are frequency 1
Figure imgf000008_0001
80: 0. 1 (V), 0 0: 0 (V
) である。 ) Is.
[0038] 本発明でいう 「絶縁性」 とは、 電気を通しにくい性質をいい、 本発明では 、 材料単独で用いた際に導電性を有しないことを示し、 より具体的には、 絶 縁性誘電材料を用いて前記巳〇 0を作製し、 インピーダンス分光による易動 度測定を行うことで求めることができる (文献 II V 3 . [¾ 6 . 巳 [0038] The term "insulating property" as used in the present invention refers to a property that electricity is difficult to pass, and in the present invention, it means that the material alone does not have conductivity, and more specifically, it is an insulating material. It is possible to obtain by preparing the above-mentioned MZ using a conductive dielectric material and performing mobility measurement by impedance spectroscopy (Reference II V 3 .[ ¾ 6 M
6 0 ,
Figure imgf000008_0002
参照。 ) 。
6 0,
Figure imgf000008_0002
reference. ).
この測定手法で常温 (2 5 °〇 かつ電界の平方根 (巳 2 ) が 8 0 0 (V /
Figure imgf000008_0003
Room temperature in this measurement method (2 5 ° 〇 and field square root (snake 2) 8 0 0 (V /
Figure imgf000008_0003
絶縁性材料と定義する。 It is defined as an insulating material.
[0039] 本発明でいう 「導電性」 とは、 電流が流れやすい性質をいい、 本発明では 、 導電性材料を用いて前記巳〇〇を作製し、 上記インピーダンス分光による 易動度測定により、 易動度 ( ) が 1 . 0 X 1 〇-9を超えるものを導電性材料 と定義する。 [0039] The term "conductivity" as used in the present invention refers to a property in which an electric current easily flows, and in the present invention, by using the conductive material, the above-mentioned __________ is prepared, and by the mobility measurement by the impedance spectroscopy, mobility () is 1. defined as 0 X 1 〇- 9 conductive material in excess of.
以下、 本発明の構成要素の詳細について説明する。 Hereinafter, details of the constituent elements of the present invention will be described.
[0040] 〔 1〕 絶縁性誘電材料 [0040] [1] Insulating Dielectric Material
本発明の電子デバイスの特徴は陽極と陰極の間に一つ又は複数の機能層を 備え、 前記機能層のいずれか一つの層が、 絶縁性誘電材料と導電性材料とを 含有することである。 本発明に係る絶縁性誘電材料は、 成膜時には大気下で 不安定な構造となる電気二重層を形成せず、 大気下での成膜を可能とし、 デ バイス作製後に封止を行うことで、 駆動時のみに絶縁性誘電材料が電気二重 層を形成することで電子注入できるようにしている。 A feature of the electronic device of the present invention is that one or more functional layers are provided between the anode and the cathode, and any one of the functional layers contains an insulating dielectric material and a conductive material. .. The insulating dielectric material according to the present invention does not form an electric double layer that has an unstable structure in the air during film formation, enables film formation in the air, and performs sealing after device fabrication. The insulating dielectric material forms an electric double layer only during driving so that electrons can be injected.
[0041 ] また、 本発明に係る絶縁性誘電材料を用いた電子注入メカニズムは、 陰極 から有機層への電子注入に限らず、 すべての層間における電子注入能、 又は ホール注入能を向上させると同時に、 それを大気下で安定に成膜することが できる。 それゆえ、 本発明に係る絶縁性誘電材料は、 後述する機能層の各層 に添加されていてもよい。 〇 2020/175514 8 卩(:171? 2020 /007606 The electron injection mechanism using the insulating dielectric material according to the present invention is not limited to the electron injection from the cathode to the organic layer, but at the same time improves the electron injection ability or hole injection ability between all layers. It is possible to form a stable film in the atmosphere. Therefore, the insulating dielectric material according to the present invention may be added to each of the functional layers described below. 〇 2020/175 514 8 卩 (:171? 2020 /007606
[0042] 本発明に係る絶縁性誘電材料としては、 常誘電体、 圧電体、 焦電体、 強誘 電体のいずれでもよいが、 本発明の効果を発現する機構上、 外部電界への追 従性が強い誘電体の方が好ましい。 ただし、 それは誘電体が膜中でランダム に配列される場合のことで、 誘電体が電界方向に配列し、 電界を強める形と する場合には強誘電体のような外部電界からの追従性が弱いものでも機能を 発現することができる。 より具体的には、 金属酸化物、 アルカリ金属塩、 ア ルカリ土類金属塩、 有機ラジカル材料、 有機高分子材料、 有機液晶材料など が挙げられる。 The insulating dielectric material according to the present invention may be any of a paraelectric material, a piezoelectric material, a pyroelectric material, and a strong dielectric material. A dielectric having a strong conformity is preferable. However, that is because the dielectrics are randomly arranged in the film. When the dielectrics are arranged in the direction of the electric field and the electric field is strengthened, followability from an external electric field like a ferroelectric is Even weak ones can express their functions. More specific examples include metal oxides, alkali metal salts, alkaline earth metal salts, organic radical materials, organic polymer materials, organic liquid crystal materials and the like.
[0043] 〔1 . 1〕 絶縁性金属酸化物 [0043] [1.1] Insulating metal oxide
絶縁性金属酸化物としては、 特に制限されないが、 化学的安定性、 物理的 安定性という観点から、 アルミナ、 ジルコニア、 チタニア、 シリカ、 マグネ シア又はニオブが好ましい。 具体的には、 酸化チタン、 酸化ジルコニウム、 酸化タンタル、 酸化ジルコニウムと酸化シリコンとの固溶体、 酸化シリコン 、 酸化ニアルミニウム、 酸化亜鉛、 酸化マグネシウム、 酸化ニオブ、 酸化ビ スマス、 酸化銅、 酸化スズ、 酸化ハフニウム、 又はこれら金属酸化物の水和 物、 さらには、 チタン酸バリウム、 ジルコニウム酸バリウム、 ニオブ酸カリ ウム、 ニオブ酸ナトリウム、 チタン酸カルシウム、 タンタル酸ストロンチウ ム、 チタン酸ビスマス、 チタン酸ビスマスナトリウム、 又はこれらのうち少 なくとも一種を組成に含む絶縁性固溶体を例示することができる。 The insulating metal oxide is not particularly limited, but alumina, zirconia, titania, silica, magnesia or niobium is preferable from the viewpoint of chemical stability and physical stability. Specifically, titanium oxide, zirconium oxide, tantalum oxide, solid solution of zirconium oxide and silicon oxide, silicon oxide, niobium oxide, zinc oxide, magnesium oxide, niobium oxide, bismuth oxide, copper oxide, tin oxide, oxide Hafnium, or hydrates of these metal oxides, and further barium titanate, barium zirconate, potassium niobate, sodium niobate, calcium titanate, strontium tantalate, bismuth titanate, bismuth sodium titanate, Alternatively, an insulating solid solution containing at least one of them in the composition can be exemplified.
[0044] 中でも好ましくは、 比誘電率 1 0 0以上の金属酸化物が挙げられ、 この例 としては、 ルチル型の酸化チタン (丁 丨 〇 2) 、 酸化ジルコニウム ( 「〇)[0044] Among them, preferably, the dielectric constant 1 0 0 include more metal oxides, as this example, rutile titanium oxide (Ding丨〇 2), zirconium oxide ( "〇)
、 五酸化ニオブ (1\1 23) 、 チタン酸バリウム (巳 3丁 1 〇3) 、 チタン酸ス トロンチウム (3 「丁 1 〇3) 、 チタン酸鉛 ( 匕丁 1 〇3) や、 チタン酸ジル コン酸バリウム (巳 3丁 1 0. 50. 53) 、 チタン酸ジルコン酸鉛 ( 匕丁 1 0. 5
Figure imgf000009_0001
, Niobium pentoxide (1 \ 1 2 3 ), barium titanate ( 3 3 10 3 ), strontium titanate (3 3 1 3 ), lead titanate (1 3 3 ), and titanate Jill con barium (Snake 3 chome 1 0.5 "0.53), lead zirconate titanate (匕丁1 0.5
Figure imgf000009_0001
1未満) で表される絶縁性金属酸化物、 またはこれらの水和物、 さらにはこ れらのうち少なくとも一種類を組成に含む絶縁性固溶体が挙げられる。 (Less than 1), an insulating metal oxide represented by the formula (1) or a hydrate thereof, and an insulating solid solution containing at least one of them in the composition.
[0045] 本発明では前記金属酸化物がナノ粒子であることが好ましい。 「ナノ粒子 〇 2020/175514 9 卩(:171? 2020 /007606 [0045] In the present invention, the metal oxide is preferably nanoparticles. "Nanoparticles 〇 2020/175 514 9 (:171? 2020/007606
」 とは、 粒子直径が 1 门 01以上 5 0 0 n 01以下の球状、 断面直径が 1 n 以 上 5 0 0 〇!以下の繊維状、 または厚さが 1
Figure imgf000010_0001
以下の板状 の粒子をいう。
”Means a spherical particle with a diameter of 1 or more 01 and 500 0 n 01 or less, a fibrous shape with a cross-sectional diameter of 1 n or more and 500 0 0! or less, or a thickness of 1
Figure imgf000010_0001
The following tabular particles are referred to.
[0046] 〔1 . 2〕 液晶材料 [0046] [1.2] Liquid crystal material
本発明に係る液晶材料は、 単一の液晶性化合物であることを要しないのは 勿論で、 2種以上の液晶化合物や液晶化合物以外の物質も含んだ混合物であ つても良く、 通常この技術分野で液晶材料として認識されるものであればよ い。 用いられる液晶としては、 ネマチック液晶、 スメクチック液晶、 コレス テリック液晶が好ましく、 ネマチック液晶が特に好ましい。 その性能を改善 するために、 コレステリック液晶、 カイラルネマチック液晶、 カイラルスメ クチック液晶等、 カイラル化合物や 2色性染料等が適宜含まれていてもよい The liquid crystal material according to the present invention does not need to be a single liquid crystal compound, and may be a mixture containing two or more kinds of liquid crystal compounds or substances other than the liquid crystal compound. Anything that can be recognized as a liquid crystal material in the field is acceptable. The liquid crystal used is preferably a nematic liquid crystal, a smectic liquid crystal or a cholesteric liquid crystal, particularly preferably a nematic liquid crystal. To improve its performance, cholesteric liquid crystals, chiral nematic liquid crystals, chiral smectic liquid crystals, etc., chiral compounds, dichroic dyes, etc. may be appropriately contained.
[0047] 液晶材料としては、 安息香酸エステル系、 シクロヘキサンカルボン酸エス テル系、 ビフェニル系、 ターフェニル系、 フェニルシクロヘキサン酸系、 ビ フェニルシクロヘキサン酸系、 ピリミジン系、 ジオキサン系、 シクロへキサ ンエステル系、 トラン系等の各種液晶化合物が使用される。 例えば、 4—置 換安息香酸 4 ' —置換フェニルエステル、 4—置換シクロヘキサンカルボン 酸 4, 一置換フェニルエステル、 4—置換シクロヘキサンカルボン酸 4, 一 置換ビフェニルエステル、 4 - (4—置換シクロヘキサンカルボニルオキシ ) 安息香酸 4 ' —置換フェニルエステル、 4 - (4—置換シクロヘキシル) 安息香酸 4’ 一置換シクロヘキシルエステル、 4—置換 4’ 一置換ビフェニ ル、 4—置換フェニル 4’ 一置換シクロヘキサン、 4—置換 4〃 一置換夕一 フェニル、 4—置換ビフェニル 4’ 一置換ビフェニル 4’ 一置換シクロヘキ サン、 2 - (4 -置換フェニル) 一5 -置換ピリミジンなどを挙げることが できる。 [0047] Examples of the liquid crystal material include benzoic acid ester-based, cyclohexanecarboxylic acid ester-based, biphenyl-based, terphenyl-based, phenylcyclohexanoic acid-based, biphenylcyclohexanoic acid-based, pyrimidine-based, dioxane-based, cyclohexane ester-based, Various liquid crystal compounds such as tolan compounds are used. For example, 4-substituted benzoic acid 4'-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4, monosubstituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4, monosubstituted biphenyl ester, 4-(4-substituted cyclohexanecarbonyloxy ) Benzoic acid 4'-substituted phenyl ester, 4--(4-substituted cyclohexyl) Benzoic acid 4'monosubstituted cyclohexyl ester, 4-substituted 4'monosubstituted biphenyl, 4-substituted phenyl 4'monosubstituted cyclohexane, 4-substituted Examples include 4-substituted monophenyl, 4-substituted biphenyl 4′, monosubstituted biphenyl 4′, monosubstituted cyclohexane, and 2-(4-substituted phenyl)-1-5-substituted pyrimidine.
具体的には、
Figure imgf000010_0002
シアノー 4’ 一 (4 -アミノシクロへキシ ル) ビフェニル、 4—シアノ _ 4, ーヘプチルオキシビフェニル、 4, ーエ トキシー 4—ビフェニルカルボニトリル、 1 —エトキシー4— ( 一トリル 〇 2020/175514 10 卩(:171? 2020 /007606
In particular,
Figure imgf000010_0002
Cyano-4'-(4-aminocyclohexyl) biphenyl, 4-cyano_4,-heptyloxybiphenyl, 4,-ethoxy-4-biphenylcarbonitrile, 1-ethoxy-4-(monotolyl 〇 2020/175 514 10: (171?2020/007606
エチニル) ベンゼン、 1 — (4—メ トキシフエニル) _ 2— (4—ペンチル フエニル) アセチレン、 炭酸 4 - (4 -エトキシフエノキシカルボニル) フ エニルエチル、 1\! _ (2—ヒドロキシー _アニサル) _ 4—ブチルアニリ
Figure imgf000011_0001
Ethynyl) benzene, 1 — (4-methoxyphenyl) _ 2 — (4-pentylphenyl) acetylene, carbonic acid 4- (4-ethoxyphenoxycarbonyl) phenylethyl, 1\! _ (2-hydroxy _ anisal) _ 4-butylanili
Figure imgf000011_0001
ニル) _ 4, ーエチルビシクロヘキシル、 4 , 4, ージヘキシルオキシアゾ キシベンゼン、 4 , 4 ' -ジメ トキシアゾキシベンゼン、 4 -アミル安息香
Figure imgf000011_0002
Nil) _ 4, -Ethylbicyclohexyl, 4, 4, -Dihexyloxyazoxybenzene, 4, 4'-Dimethoxyazoxybenzene, 4-Amylbenzoic acid
Figure imgf000011_0002
クロヘキシルなどが挙げられる。 Examples include chlorhexyl.
[0048] 〔1 . 3〕 絶縁性の誘電高分子又はオリゴマー [1.3] Insulating dielectric polymer or oligomer
本発明に係る絶縁性の誘電高分子又はオリゴマーとしては、 特に限定され るものではないが、 ポリフッ化ビニリデン、 ポリ塩化ビニル、 酢酸ビニル、 ポリウレタン、 シアン化ビニリデン、 「 3门 3 - 4 -シアノー4 ' - (4 —アミノシクロヘキシル) ビフエニル、 4—シアノー4, ーヘプチルオキシ ビフエニル、 4’ ーエトキシ _ 4—ビフエニルカルボニトリル、 1 —エトキ シ _ 4— ( _トリルエチニル) ベンゼン、 1 — (4—メ トキシフエニル) - 2 - (4 -ペンチルフエニル) アセチレン、 炭酸 4 - (4 -エトキシフエ ノキシカルボニル) フエニルエチル、 1\1— (2—ヒドロキシー ーアニサル
Figure imgf000011_0003
The insulating dielectric polymer or oligomer according to the present invention is not particularly limited, but it may be polyvinylidene fluoride, polyvinyl chloride, vinyl acetate, polyurethane, vinylidene cyanide, or “3-3-4-cyano-4”. '- (4-aminocyclohexyl) biphenyl, 4-cyano-4,-heptyloxybiphenyl, 4'-ethoxy _ 4-biphenylcarbonitrile, 1-ethoxy _ 4-(_ tolylethynyl) benzene, 1-(4-methoxyphenyl) )-2-(4-Pentylphenyl) acetylene, 4-carbonic acid 4- (4-ethoxyphenoxycarbonyl) phenylethyl, 1\1-(2-hydroxy-anisal)
Figure imgf000011_0003
オロー 4—メチルフエニル) _ 4, ーエチルビシクロヘキシル、 4 , 4, _ ジヘキシルオキシアゾキシベンゼン、 4 , 4 ' —ジメ トキシアゾキシベンゼ ン、 4 -アミル安息香酸 4 -シアノー 3 , 5 -ジフルオロフエニル、 「 3 n 3 - 4 -プロピルシクロヘキシルなどが挙げられるが、 本発明の絶縁性誘 電材料は層の誘電率を向上させることができる材料であれば、 電子注入能又 はホール注入能を向上させることができるため、 上記の限りではない。 Oro 4-methylphenyl) _ 4,-ethylbicyclohexyl, 4, 4, _ dihexyloxyazoxybenzene, 4, 4'-dimethoxyazoxybenzen, 4-amylbenzoic acid 4-cyano 3, 5, 5-difluorophenyl Examples thereof include enyl and “3 n 3 -4-propylcyclohexyl. However, the insulating dielectric material of the present invention has an electron injecting ability or a hole injecting ability as long as it can improve the dielectric constant of the layer. This is not the case because it can be improved.
[0049] 中でも、 ポリフッ化ビニリデンを繰り返し単位に含む高分子又はオリゴマ —であることが好ましい。 [0049] Among them, a polymer or an oligomer containing polyvinylidene fluoride in a repeating unit is preferable.
[0050] なお、 本発明の絶縁性誘電材料は膜の誘電率を向上させることができる材 料であれば、 電子注入能又はホール注入能を向上させることができるため、 〇 2020/175514 1 1 卩(:171? 2020 /007606 [0050] Since the insulating dielectric material of the present invention can improve the electron injecting ability or the hole injecting ability as long as it is a material capable of improving the dielectric constant of the film, 〇 2020/175 514 1 1 卩 (:171? 2020 /007606
上記の限りではない。 Not limited to the above.
後述する本発明に係る有機日 1_素子に設ける絶縁性誘電材料の含有量は任 意に決定することができるが、 絶縁性誘電材料を添加することによる低電圧 効果と、 絶縁物が層に入り込むことによる高電圧効果の 2つ競合することと なる。 加えて、 この 2つの効果の度合いは絶縁性誘電材料が含有される層に おける導電性材料と絶縁性誘電材料の両者によって決定される。 Although the content of the insulating dielectric material provided in the organic solar cell 1_ element according to the present invention described later can be arbitrarily determined, the low voltage effect due to the addition of the insulating dielectric material and the insulating layer There will be two competing high voltage effects due to penetration. In addition, the degree of these two effects is determined by both the conductive material and the insulating dielectric material in the layer containing the insulating dielectric material.
[0051 ] 例えば、 後述の実施例で用いる電子輸送材料八 1 とポリフッ化ビニリデン ( V 0 1) は体積比率が 8 2 : 2 8 (八 1 : 〇 〇 となる条件で 最も低電圧化する。 しかし、 ここで用いる導電材料を電子輸送材料八 2に変 えると、 最も低電圧化する体積比率は 8 7 : 1 3 (八 2 : V 0 1) とな る。 これは、 絶縁性導電材料を変えた場合でも同様で、 材料が異なると最も 低電圧化する最適値は異なる。 この詳しいメカニズムについて、 よくはわか っていないが、 導電性材料と絶縁性誘電材料の相互作用により導電性材料、 絶縁性誘電材料のいずれか、 もしくは両方の分極状態が変化することによっ て外部電界に対する応答性が変化していると考えられる。 以上より、 本発明 を実施するに当たっての材料添加量は、 用いる材料毎で最適値を求める必要 があり、 包括的に好ましい条件はない。 [0051] For example, the electron transport material 81 and polyvinylidene fluoride (V 0 1) used in the examples described below have the lowest voltage under the condition that the volume ratio is 82: 28 (81: 00). However, if the conductive material used here is changed to the electron-transporting material 82, the volume ratio at which the voltage becomes the lowest is 8 7: 1 3 (8 2 :V 0 1). The optimum value for the lowest voltage is different for different materials, although the detailed mechanism is not well understood, but the interaction between the conductive material and the insulative dielectric material makes the conductive material different. It is considered that the responsiveness to the external electric field is changed by changing the polarization state of either or both of the insulating dielectric materials. It is necessary to find the optimum value for each material used, and there are no comprehensively preferable conditions.
[0052] 〔2〕 導電性材料 [0052] [2] Conductive material
本発明に係る導電性材料は、 後述する 〔3 . 1〕 有機巳 !_素子、 又は 〔3 . 2〕 有機光電変換素子で詳述する、 各機能層に含有される有機化合物が該 当する。 詳細については 〔3〕 電子デバイスの項を参照できる。 The conductive material according to the present invention corresponds to an organic compound contained in each functional layer, which will be described in detail later in [3.1] Organic semiconductor device! or [3.2] Organic photoelectric conversion device. .. For details, refer to [3] Electronic devices.
〔3〕 電子デバイス [3] Electronic device
〔3 . 1〕 有機巳 !_素子 [3.1] Organic device !_ element
本発明の電子デバイス用組成物は、 前述のとおり、 有機巳 !_素子の形成に 用いることができる。 有機巳 !_素子は、 陽極と陰極の間に少なくとも発光層 を有する機能層によって構成され、 該機能層の少なくとも 1層が、 前述の電 子デバイス用組成物を含有する。 有機日 !_素子は、 照明装置及び表示装置に 好適に具備され得る。 〇 2020/175514 12 卩(:171? 2020 /007606 The composition for an electronic device of the present invention can be used for forming an organic semiconductor device, as described above. The organic semiconductor element is composed of a functional layer having at least a light emitting layer between an anode and a cathode, and at least one layer of the functional layer contains the composition for an electronic device described above. The organic solar cell can be suitably installed in a lighting device and a display device. 〇 2020/175 514 12 (:171? 2020/007606
[0053] 有機巳 1_素子における代表的な素子構成としては、 以下の構成を挙げるこ とができるが、 これらに限定されるものではない。 [0053] As typical element configurations of the organic semiconductor 1_ element, the following configurations can be given, but the invention is not limited thereto.
[0054] ( 1) 陽極/発光層//陰極 [0054] (1) Anode/light-emitting layer//cathode
(2) 陽極/発光層/電子輸送層/陰極 (2) Anode/light emitting layer/electron transport layer/cathode
(3) 陽極/正孔輸送層/発光層/陰極 (3) Anode/hole transport layer/emissive layer/cathode
(4) 陽極/正孔輸送層/発光層/電子輸送層/陰極 (4) Anode/hole transport layer/light emitting layer/electron transport layer/cathode
(5) 陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極 (5) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
(6) 陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極(6) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode
(7) 陽極/正孔注入層/正孔輸送層/ (電子阻止層/) 発光層/ (正孔 阻止層/) 電子輸送層/電子注入層/陰極 (7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
上記の中で (7) の構成が好ましく用いられるが、 これに限定されるもの ではない。 In the above, the configuration of (7) is preferably used, but it is not limited to this.
[0055] (7) の構成において、 正孔注入層/正孔輸送層/ (電子阻止層) /発光 層までを有機機能層群 1、 及び (正孔阻止層/) 電子輸送層/電子注入層ま でを有機機能層群 2と呼ぶ場合がある。 [0055] In the configuration of (7), the organic functional layer group 1 up to the hole injection layer/hole transport layer/(electron blocking layer)/light emitting layer, and (hole blocking layer/) electron transport layer/electron injection The layers up to the layer are sometimes called organic functional layer group 2.
[0056] 本発明に用いられる発光層は、 単層又は複数層で構成されており、 発光層 が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。 The light emitting layer used in the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the respective light emitting layers.
必要に応じて、 発光層と陰極との間に正孔阻止層 (正孔障壁層ともいう) や電子注入層 (陰極バッファー層ともいう) を設けてもよく、 また、 発光層 と陽極との間に電子阻止層 (電子障壁層ともいう) や正孔注入層 (陽極バッ ファー層ともいう) を設けてもよい。 A hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode, if necessary. An electron blocking layer (also called an electron barrier layer) or a hole injection layer (also called an anode buffer layer) may be provided between them.
[0057] 本発明に用いられる電子輸送層とは、 電子を輸送する機能を有する層であ り、 広い意味で電子注入層、 正孔阻止層も電子輸送層に含まれる。 また、 複 数層で構成されていてもよい。 The electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, the electron transport layer also includes an electron injection layer and a hole blocking layer. Also, it may be composed of a plurality of layers.
[0058] 本発明に用いられる正孔輸送層とは、 正孔を輸送する機能を有する層であ り、 広い意味で正孔注入層、 電子阻止層も正孔輸送層に含まれる。 また、 複 数層で構成されていてもよい。 The hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Also, it may be composed of a plurality of layers.
[0059] 図 2は、 代表的な有機巳 !_素子の構成を示す断面図である。 〇 2020/175514 13 卩(:171? 2020 /007606 [0059] Fig. 2 is a cross-sectional view showing the structure of a typical organic semiconductor device. 〇 2020/175 514 13 (:171? 2020 /007606
[0060] 有機巳 !_素子 1 0 0は、 基材 1 0 1、 陽極 1 0 2、 正孔注入層 1 0 3、 正 孔輸送層 1 0 4、 発光層 1 0 5、 正孔阻止層 1 0 6、 電子輸送層 1 0 7、 電 子注入層 1 0 8及び陰極 1 0 9をこの順に備えている。 [0060] The organic semiconductor !_ element 100 is composed of a substrate 101, an anode 102, a hole injection layer 103, a positive hole transport layer 104, a light emitting layer 105, and a hole blocking layer. It is equipped with 106, an electron transport layer 107, an electron injection layer 108 and a cathode 109 in this order.
[0061 ] 上記の代表的な素子構成において、 陽極と陰極を除いた層を 「機能層 1 1 [0061] In the above-mentioned typical element structure, the layers excluding the anode and the cathode are referred to as "functional layer 1 1
0」 という。 0”.
[0062] (タンデム構造) [0062] (Tandem structure)
また、 当該有機巳 !_素子は、 少なくとも 1層の発光層を含む発光ユニッ ト を複数積層した、 いわゆるタンデム構造の素子であってもよい。 The organic semiconductor device may be a device having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated.
[0063] タンデム構造の代表的な素子構成としては、 例えば以下の構成を挙げるこ とができる。 [0063] As a typical element configuration of the tandem structure, the following configurations can be given, for example.
[0064] 陽極/第 1発光ユニッ ト/中間層/第 2発光ユニッ ト/中間層/第 3発光 ユニッ ト/陰極 [0064] Anode/first light emitting unit/intermediate layer/second light emitting unit/intermediate layer/third light emitting unit/cathode
ここで、 上記第 1発光ユニッ ト、 第 2発光ユニッ ト及び第 3発光ユニッ ト は全て同じであっても、 異なっていてもよい。 また二つの発光ユニッ トが同 じであり、 残る一つが異なっていてもよい。 Here, the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Also, the two light emitting units may be the same and the other one may be different.
[0065] 複数の発光ユニッ トは直接積層されていても、 中間層を介して積層されて いてもよく、 中間層は、 一般的に中間電極、 中間導電層、 電荷発生層、 電子 引抜層、 接続層、 中間絶縁層とも呼ばれ、 陽極側の隣接層に電子を、 陰極側 の隣接層に正孔を供給する機能を持った層であれば、 公知の材料構成を用い ることができる。 [0065] The plurality of light-emitting units may be directly laminated or may be laminated via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, A known material structure can be used as long as it is also called a connection layer or an intermediate insulating layer and has a function of supplying electrons to the adjacent layer on the anode side and supplying holes to the adjacent layer on the cathode side.
[0066] 中間層に用いられる材料としては、 例えば、 丨 丁〇 (インジウムスズ酸化 物) 、 丨 〇 (インジウム ·亜鉛酸化物) 、 n〇2、 丁 丨 1\1、 「 1\1、 1~1干
Figure imgf000014_0001
[0066] Examples of materials used for the intermediate layer include 丨 〇 (indium tin oxide), 丨 〇 (indium-zinc oxide), n 〇 2 , 丨 1\1, "1\1, 1 ~ 1 dry
Figure imgf000014_0001
3 「〇リ22、 1_ 36、 [¾リ〇2、 八 I等の導電性無機化合物層や、 八リ/巳 1 23等の 2層膜や、 3 n 02/ A 9 / 3 n 02% Z n〇/ A g / Z n〇、 6 I 23/八リ/巳 丨 23、 7 \ 02/ 7 \ 1\1 /丁 丨 〇2、 7 \ 〇2/ 「 1\1 /丁 丨 〇2 等の多層膜、 また〇60等のフラーレン類、 オリゴチオフエン等の導電性有機物 層、 金属フタロシアニン類、 無金属フタロシアニン類、 金属ポルフイリン類 〇 2020/175514 14 卩(:171? 2020 /007606 3 ``○ri 22 , 1_ 36 , [¾ri 〇 2 , 8 I etc. conductive inorganic compound layer, 8 ri/Minami 1 23 etc. two-layer film, 3 n 0 2 / A 9/3 n 0 2% Z N_〇 / A g / Z N_〇, 6 I 23 / Hachiri / Snake丨23, 7 \ 0 2/7 \ 1 \ 1 / Ding丨〇 2, 7 \ 〇 2 / `` 1 \ 1 / Die 〇 2 etc. multilayer film, 〇 60 etc. fullerene, conductive organic material layer such as oligothiophene, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins 〇 2020/175 514 14 卩 (:171? 2020 /007606
、 無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、 本発明 はこれらに限定されない。 Examples include conductive organic compound layers such as metal-free porphyrins, but the present invention is not limited thereto.
[0067] 発光ユニッ ト内の好ましい構成としては、 例えば、 上記の代表的な素子構 成で挙げた (1) 〜 (7) の構成から、 陽極と陰極を除いたもの等が挙げら れるが、 本発明はこれらに限定されない。 [0067] Preferable configurations in the light emitting unit include, for example, those obtained by removing the anode and the cathode from the configurations (1) to (7) listed in the above-mentioned typical device configuration. The present invention is not limited to these.
[0068] タンデム型有機巳 !_素子の具体例としては、 例えば、 米国特許第 6337 492号明細書、 米国特許第 7420203号明細書、 米国特許第 7473 [0068] Specific examples of the tandem-type organic semiconductor !_ device include, for example, US Patent No. 6337 492, US Patent No. 7420203, and US Patent No. 7473.
923号明細書、 米国特許第 6872472号明細書、 米国特許第 6 1 07No. 923, U.S. Pat.No. 6872472, U.S. Pat.No. 6 107
734号明細書、 米国特許第 6337492号明細書、 国際公開第 2005No. 734, U.S. Pat.No. 6,337,492, WO 2005
/009087号、 特開 2006 -2287 1 2号公報、 特開 2006 - 2/009087, JP 2006-2287 12 JP, JP 2006-2
479 1号公報、 特開 2006 - 49393号公報、 特開 2006 - 493479 1, JP 2006-49393, JP 2006-493
94号公報、 特開 2006 - 49396号公報、 特開 201 1 -96679 号公報、 特開 2005— 3401 87号公報、 特許第 47 1 1 424号公報 、 特許第 3496681号公報、 特許第 3884564号公報、 特許第 42 1 3 1 69号公報、 特開 201 0 - 1 927 1 9号公報、 特開 2009 - 094, JP 2006-49396, JP 201 1-96679, JP 2005-3401 87, JP 47 1 1 424, JP 3496681, JP 3884564 Japanese Patent No. 42 1 3 1 69, Japanese Patent Laid-Open No. 201 0-1 927 19, Japanese Patent No. 2009-0
76929号公報、 特開 2008 - 0784 1 4号公報、 特開 2007 - 076929, JP 2008-078414, JP 2007-0
59848号公報、 特開 2003 -272860号公報、 特開 2003 - 0 45676号公報、 国際公開第 2005/094 1 30号等に記載の素子構 成や構成材料等が挙げられるが、 本発明はこれらに限定されない。 59848, JP 2003-272860 A, JP 2003-045676 A, WO 2005/094 1 30 and the like, the element structures and constituent materials described therein can be mentioned. Not limited to.
[0069] 更に、 有機巳 !_素子を構成する各層について説明する。 [0069] Further, each layer constituting the organic semiconductor device will be described.
[0070] 〔基板〕 [0070] [Substrate]
有機巳 !_素子に適用可能な基板としては、 特に制限はなく、 例えば、 ガラ ス、 プラスチック等の種類を挙げることができる。 There is no particular limitation on the substrate applicable to the organic semiconductor !_ element, and examples thereof include glass and plastic.
[0071] 本発明に用いられる基板は、 光透過性であっても、 光不透過性であっても よい。 本発明に適用可能な基板としては、 特に制限されず、 例えば、 樹脂基 板、 薄膜金属箔、 薄板フレキシブルガラス等が挙げられる。 The substrate used in the present invention may be light transmissive or light impermeable. The substrate applicable to the present invention is not particularly limited, and examples thereof include a resin substrate, a thin film metal foil, and a thin flexible glass plate.
[0072] 本発明に適用可能な樹脂基板としては、 例えば、 ポリエチレンテレフタレ —卜 (略称: 巳丁) 、 ポリエチレンナフタレート (略称: 巳 ) 等のポ 〇 2020/175514 15 卩(:171? 2020 /007606 [0072] Examples of the resin substrate applicable to the present invention include polyethylene terephthalate (abbreviation: Ming), polyethylene naphthalate (abbreviation: M) and the like. 〇 2020/175 514 15 卩(:171? 2020/007606
リエステル、 ポリエチレン、 ポリプロピレン、 セロファン、 セルロースジア セテート、 セルローストリアセテート (略称: 丁八〇) 、 セルロースアセテ —トブチレート、 セルロースアセテートプロピオネート (略称: 〇八 ) 、 セルロースアセテートフタレート、 セルロースナイ トレート等のセルロース エステル類及びそれらの誘導体、 ポリ塩化ビニリデン、 ポリビニルアルコー ル、 ポリエチレンビニルアルコール、 シンジオタクティックポリスチレン、 ポリカーボネート (略称: 〇) 、 ノルボルネン樹脂、 ポリメチルペンテン 、 ポリエーテルケトン、 ポリイミ ド、 ポリエーテルスルホン (略称: 巳 3 ) 、 ポリフエニレンスルフィ ド、 ポリスルホン類、 ポリエーテルイミ ド、 ポ リエーテルケトンイミ ド、 ポリアミ ド、 フッ素樹脂、 ナイロン、 ポリメチル メタクリレート、 アクリル及びポリアリレート類、 アートン (商品名、 」 3 社製) 及びアペル (商品名、 三井化学社製) 等のシクロオレフィン系樹脂 等を挙げることができる。 Cellulose ester such as reester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: Chosen), cellulose acetate-butyrate, cellulose acetate propionate (abbreviation: 08), cellulose acetate phthalate, cellulose nitrate And their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: 〇), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyether sulfone (abbreviation:) 3), Polyphenylene sulfide, Polysulfones, Polyether imides, Polyether ketone imides, Polyamides, Fluororesin, Nylon, Polymethyl methacrylate, Acrylics and polyarylates, Arton (trade name, 3 companies) Manufactured by Mitsui Chemicals Co., Ltd.) and the like.
[0073] これら樹脂基板のうち、 コストや入手の容易性の点では、 ポリエチレンテ レフタレート (略称: 巳丁) 、 ポリプチレンテレフタレート、 ポリエチレ ンナフタレート (略称: 巳 1\1) 、 ポリカーボネート (略称: 9〇 等のフ ィルムが可撓性の樹脂基板として好ましく用いられる。 [0073] Among these resin substrates, in terms of cost and availability, polyethylene terephthalate (abbreviation: Ming), polyptyrene terephthalate, polyethylene ethylene phthalate (abbreviation: M 1\1), polycarbonate (abbreviation: 9) A film such as O is preferably used as the flexible resin substrate.
[0074] 樹脂基板の厚さとしては、 3〜 2 0〇 の範囲内にある薄膜の樹脂基板 であることが好ましいが、 より好ましくは 1 〇〜 1 5 0 の範囲内であり 、 特に好ましくは、 2 0 ~ 1 2〇 の範囲内である。 [0074] The thickness of the resin substrate is preferably a thin film resin substrate within the range of 3 to 200, more preferably within the range of 10 to 150, and particularly preferably. , 20 to 120.
[0075] また、 本発明用いられる基板として適用可能な薄板ガラスは、 湾曲できる ほど薄く したガラス板である。 薄板ガラスの厚さは、 薄板ガラスが可撓性を 示す範囲で適宜設定できる。 Further, the thin glass plate applicable as the substrate used in the present invention is a thin glass plate that can be bent. The thickness of the thin glass plate can be appropriately set within the range where the thin glass plate exhibits flexibility.
[0076] 薄板ガラスとしては、 ソーダ石灰ガラス、 バリウム ストロンチウム含有 ガラス、 鉛ガラス、 アルミノケイ酸ガラス、 ホウケイ酸ガラス、 バリウムホ ウケイ酸ガラス、 石英等を挙げることができる。 薄板ガラスの厚さとしては 、 例えば、 5〜 3 0 0 の範囲であり、 好ましくは 2 0〜 1 5 0 の範 囲である。 〇 2020/175514 16 卩(:171? 2020 /007606 [0076] Examples of the thin glass include soda-lime glass, barium-strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. The thickness of the thin glass sheet is, for example, in the range of 5 to 300, preferably in the range of 20 to 150. 〇 2020/175 514 16 卩(:171? 2020/007606
[0077] また、 薄膜金属箔の形成材料としては、 例えば、 ステンレス、 鉄、 銅、 ア ルミニウム、 マグネシウム、 ニッケル、 亜鉛、 クロム、 チタン、 モリブテン 、 シリコン、 ゲルマニウム及びタンタルからなる群から選ばれる 1種以上の 金属又は合金からなるものが挙げられる。 薄膜金属箔の厚さは、 薄膜金属箔 がフレキシビリティーを示す範囲で適宜設定することができ、 例えば、 1 0 〜 1 〇〇 の範囲内であり、 好ましくは 2 0〜 6 0 01の範囲内である。 [0077] As the material for forming the thin film metal foil, for example, one selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum. Those made of the above metals or alloys may be mentioned. The thickness of the thin-film metal foil can be appropriately set within a range in which the thin-film metal foil exhibits flexibility, and is, for example, in the range of 10 to 100, preferably in the range of 20 to 6001. It is within.
[0078] (第 1電極:陽極) [0078] (First electrode: anode)
有機巳 !_素子を構成する陽極としては、 八 9、 八リ等の金属又は金属を主 成分とする合金、 〇リ 丨、 又はインジウムースズの複合酸化物 (丨 丁〇) 、 As the anode constituting the organic semiconductor !_ element, a metal such as 89, 8 Li or an alloy containing a metal as a main component, ○ Li, or a complex oxide of indium tin oxide (丨 〇),
3 n〇2及び n〇等の金属酸化物を挙げることができるが、 金属又は金属を 主成分とする合金であることが好ましく、 更に好ましくは、 銀又は銀を主成 分とする合金である。 Although metal oxides such as 3 n 0 2 and n 0 can be mentioned, a metal or an alloy containing a metal as a main component is preferable, and silver or an alloy containing silver as a main component is more preferable. ..
[0079] 透明陽極を、 銀を主成分として構成する場合、 銀の純度としては、 9 9 % 以上であることが好ましい。 また、 銀の安定性を確保するためにパラジウム ( ) 、 銅 (<3リ) 及び金 (八リ) 等が添加されていてもよい。 When the transparent anode is composed mainly of silver, the purity of silver is preferably 99% or more. Further, in order to secure the stability of silver, palladium (), copper (<3), gold (8), etc. may be added.
[0080] 透明陽極は銀を主成分として構成されている層であるが、 具体的には、 銀 単独で形成しても、 又は銀 ( 9) を含有する合金から構成されていてもよ い。 そのような合金としては、 例えば、 銀 ·マグネシウム (八 9 - 1^ 9) 、 銀 ·銅 (八 9 〇リ) 、 銀 ·パラジウム (八 9 ) 、 銀 ·パラジウム · 銅 (八 9 . 〇リ) 、 銀 ·インジウム (八 9 丨 などが挙げられる [0080] The transparent anode is a layer composed mainly of silver. Specifically, it may be composed of silver alone or composed of an alloy containing silver (9). .. Such alloys such as silver-magnesium. (Eight 9 - 1 ^ 9), silver-copper (eight 9 〇 Li), silver-palladium (eight 9), silver-palladium-copper (eight 9 〇 Li ), and the like silver-indium (eight 9
[0081 ] 上記陽極を構成する各構成材料の中でも、 本発明用いられる有機日 !_素子 を構成する陽極としては、 銀を主成分として構成し、 厚さが 2〜 2 0 n mの 範囲内にある透明陽極であることが好ましいが、 更に好ましくは厚さが 4〜 1 2 01の範囲内である。 厚さが 2 0 01以下であれば、 透明陽極の吸収成 分及び反射成分が低く抑えられ、 高い光透過率が維持されるため好ましい。 [0081] Among the constituent material constituting the anode, the anode of the organic date! _ Element used present invention, silver and constitute a main component, the thickness is in the range of. 2 to 2 0 n m It is preferable that the transparent anode is a transparent anode, but the thickness is more preferably within the range of 4 to 1201. When the thickness is 2001 or less, the absorption component and the reflection component of the transparent anode are suppressed to be low, and high light transmittance is maintained, which is preferable.
[0082] 本発明でいう銀を主成分として構成されている層とは、 透明陽極中の銀の 含有量が 6 0質量%以上であることをいい、 好ましくは銀の含有量が 8 0質 〇 2020/175514 17 卩(:171? 2020 /007606 The layer composed mainly of silver in the present invention means that the content of silver in the transparent anode is 60% by mass or more, and preferably the content of silver is 80%. 〇 2020/175 514 17 卩 (:171? 2020 /007606
量%以上であり、 より好ましくは銀の含有量が 9 0質量%以上であり、 特に 好ましくは銀の含有量が 9 8質量%以上である。 また、 本発明に係る透明陽 極でいう 「透明」 とは、 波長 5 5 0 n での光透過率が 5 0 %以上であるこ とをいう。 %, more preferably 90% by mass or more, and particularly preferably 98% by mass or more. The term “transparent” in the transparent electrode according to the present invention means that the light transmittance at a wavelength of 550 n is 50% or more.
[0083] 透明陽極においては、 銀を主成分として構成されている層が、 必要に応じ て複数の層に分けて積層された構成であってもよい。 [0083] The transparent anode may have a structure in which a layer containing silver as a main component is divided into a plurality of layers and laminated as necessary.
[0084] また、 本発明においては、 陽極が、 銀を主成分として構成する透明陽極で ある場合には、 形成する透明陽極の銀膜の均一性を高める観点から、 その下 部に、 下地層を設けることが好ましい。 下地層としては、 特に制限はないが 、 窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ま しく、 当該下地層上に、 透明陽極を形成する方法が好ましい態様である。 Further, in the present invention, in the case where the anode is a transparent anode mainly composed of silver, from the viewpoint of enhancing the uniformity of the silver film of the transparent anode to be formed, the underlying layer is formed under the underlying layer. Is preferably provided. The underlayer is not particularly limited, but is preferably a layer containing an organic compound having a nitrogen atom or a sulfur atom, and a method of forming a transparent anode on the underlayer is a preferred embodiment.
[0085] 〔発光層〕 [Light Emitting Layer]
有機巳 1_素子を構成する発光層は、 発光材料としてリン光発光化合物、 又 は蛍光性化合物を用いることができるが、 本発明においては、 特に、 発光材 料としてリン光発光化合物が含有されている構成が好ましい。 Although the phosphorescent compound or the fluorescent compound can be used as the luminescent material in the luminescent layer constituting the organic semiconductor element 1_, in the present invention, the phosphorescent compound is particularly contained as the luminescent material. The configuration is preferable.
[0086] この発光層は、 電極又は電子輸送層から注入された電子と、 正孔輸送層か ら注入された正孔とが再結合して発光する層であり、 発光する部分は発光層 の層内であっても発光層と隣接する層との界面であってもよい。 [0086] This light-emitting layer is a layer in which electrons injected from the electrode or the electron-transporting layer recombine with holes injected from the hole-transporting layer to emit light. It may be in the layer or at the interface between the light emitting layer and the adjacent layer.
[0087] このような発光層としては、 含まれる発光材料が発光要件を満たしていれ ば、 その構成には特に制限はない。 また、 同一の発光スぺクトルや発光極大 波長を有する層が複数層あってもよい。 この場合、 各発光層間には非発光性 の中間層を有していることが好ましい。 [0087] The structure of the light emitting layer is not particularly limited as long as the light emitting material contained therein satisfies the light emitting requirements. Further, there may be a plurality of layers having the same light emission spectrum or maximum light emission wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
[0088] 発光層の厚さの総和は、 1〜 1 0 0门 の範囲内にあることが好ましく、 より低い駆動電圧を得ることができることから 1〜 3 0 n の範囲内がさら に好ましい。 なお、 発光層の厚さの総和とは、 発光層間に非発光性の中間層 が存在する場合には、 当該中間層も含む厚さである。 [0088] The total thickness of the light emitting layer is preferably in the range of 1 to 100, and more preferably in the range of 1 to 30 n because a lower driving voltage can be obtained. The total thickness of the light emitting layer is the thickness including the intermediate layer when a non-light emitting intermediate layer is present between the light emitting layers.
[0089] 以上のような発光層は、 後述する発光材料やホスト化合物を、 例えば、 真 空蒸着法、 スピンコート法、 キャスト法、 1_巳法 (ラングミュア · ブロジェ ツ ト、 L a n g m u i r B l o d g e t t法) 及びインクジエツ ト法等の 公知の方法により形成することができる。 [0089] In the light emitting layer as described above, the light emitting material and the host compound described later are prepared by, for example, vacuum evaporation method, spin coating method, casting method, 1_M method (Langmuir-Broger). Method, a Langmuir Blodgett method), an inkjet method, and the like.
[0090] また発光層は、 複数の発光材料を混合してもよく、 リン光発光材料と蛍光 発光材料 (蛍光ドーパント、 蛍光性化合物ともいう) とを同一発光層中に混 合して用いてもよい。 発光層の構成としては、 ホスト化合物 (発光ホスト等 ともいう) 及び発光材料 (発光ドーパント化合物ともいう。 ) を含有し、 発 光材料より発光させることが好ましい。 Further, the light emitting layer may be formed by mixing a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be used by mixing them in the same light emitting layer. Good. The light-emitting layer preferably contains a host compound (also referred to as a light-emitting host or the like) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
[0091] (ホスト化合物) [0091] (Host compound)
発光層に含有されるホスト化合物としては、 室温 (25°C) におけるリン 光発光のリン光量子収率が〇 . 1未満の化合物が好ましい。 さらにリン光量 子収率が 0. 01未満であることが好ましい。 また、 発光層に含有される化 合物の中で、 その層中での体積比が 50%以上であることが好ましい。 The host compound contained in the light emitting layer is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1. Furthermore, the phosphorescence yield is preferably less than 0.01. Further, in the compound contained in the light emitting layer, the volume ratio in the layer is preferably 50% or more.
[0092] ホスト化合物としては、 公知のホスト化合物を単独で用いてもよく、 又は 、 複数種のホスト化合物を用いてもよい。 ホスト化合物を複数種用いること で、 電荷の移動を調整することが可能であり、 有機電界発光素子を高効率化 することができる。 また、 後述する発光材料を複数種用いることで、 異なる 発光を混ぜることが可能となり、 これにより任意の発光色を得ることができ る。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the transfer of charges and improve the efficiency of the organic electroluminescent device. Further, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emissions, and thereby an arbitrary emission color can be obtained.
[0093] 発光層に用いられるホスト化合物としては、 従来公知の低分子化合物でも 、 繰り返し単位をもつ高分子化合物でもよく、 ビニル基やエポキシ基のよう な重合性基を有する低分子化合物 (蒸着重合性発光ホスト) でもよい。 [0093] The host compound used in the light-emitting layer may be a conventionally known low-molecular compound or a high-molecular compound having a repeating unit, and a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (vapor deposition polymerization Luminescent host).
[0094] 本発明に適用可能なホスト化合物としては、 例えば、 特開 2001 _ 25 [0094] Examples of host compounds applicable to the present invention include:
7076号公報、 同 2001 -357977号公報、 同 2002 -8860 号公報、 同 2002— 43056号公報、 同 2002— 1 05445号公報 、 同 2002 -352957号公報、 同 2002 -23 1 453号公報、 同 2002 -234888号公報、 同 2002 -26086 1号公報、 同 20 02-305083号公報、 米国特許出願公開第 2005/01 1 2407 号明細書、 米国特許出願公開第 2009 /0030202号明細書、 国際公 〇 2020/175514 19 卩(:171? 2020 /007606 7076, 2001 -357977, 2002-8860, 2002-43056, 2002-1 05445, 2002-352957, 2002-23 1453, 2002 2002-234888, 2002-260861, 2002-305083, U.S. Patent Application Publication No. 2005/01 1 2407, U.S. Patent Application Publication No. 2009/0030202, International Publication 〇 2020/175 514 19 卩(:171? 2020/007606
開第 2001 /039234号、 国際公開第 2008 /056746号、 国 際公開第 2005 /089025号、 国際公開第 2007 /063754号 、 国際公開第 2005 /030900号、 国際公開第 2009/08602 8号、 国際公開第 201 2/023947号、 特開 2007 -254297 号公報、 欧州特許第 2034538号明細書等に記載されている化合物を挙 げることができる。 Open 2001/039234, International Publication 2008/056746, International Publication 2005/089025, International Publication 2007/063754, International Publication 2005/030900, International Publication 2009/086028, International The compounds described in JP-A No. 201 2/023947, JP-A 2007-254297, European Patent No. 2034538 and the like can be mentioned.
[0095] (発光材料) [0095] (Light emitting material)
本発明で用いることのできる発光材料としては、 リン光発光性化合物 (リ ン光性化合物、 リン光発光材料又はリン光発光ドーパントともいう。 ) 及び 蛍光発光性化合物 (蛍光性化合物又は蛍光発光材料ともいう。 ) が挙げられ るが、 特に、 リン光発光性化合物を用いることが、 高い発光効率を得ること ができる観点から好ましい。 Examples of the light emitting material that can be used in the present invention include phosphorescent compounds (also referred to as phosphorescent compounds, phosphorescent materials or phosphorescent dopants) and fluorescent compounds (fluorescent compounds or fluorescent materials). However, it is particularly preferable to use a phosphorescent compound in order to obtain high luminous efficiency.
[0096] áリン光発光性化合物 ñ [0096] A phosphorescent compound ñ
リン光発光性化合物とは、 励起三重項からの発光が観測される化合物であ り、 具体的には室温 (25°〇) にてリン光発光する化合物であり、 リン光量 子収率が 25°〇において〇. 01以上の化合物であると定義されるが、 好ま しいリン光量子収率は〇. 1以上である。 A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° 〇) and has a phosphorescence yield of 25 It is defined to be a compound of 0.01 or more in ° , but the preferable phosphorescence quantum yield is 0.1 or more.
[0097] 上記リン光量子収率は、 第 4版実験化学講座 7の分光 IIの 398頁 (1 9 [0097] The above-mentioned phosphorescence quantum yield is given in pp. 398 (1 9
92年版、 丸善) に記載の方法により測定できる。 溶液中でのリン光量子収 率は、 種々の溶媒を用いて測定できるが、 本発明においてリン光発光性化合 物を用いる場合、 任意の溶媒のいずれかにおいて、 上記リン光量子収率とし て 0. 01以上が達成されればよい。 1992 edition, Maruzen). The phosphorescence quantum yield in a solution can be measured using various solvents.However, when the phosphorescence emitting compound is used in the present invention, the phosphorescence quantum yield is 0. It suffices if at least 01 is achieved.
[0098] リン光発光性化合物は、 一般的な有機巳 !_素子の発光層に使用される公知 のものの中から適宜選択して用いることができるが、 好ましくは元素の周期 表で 8〜 1 0族の金属を含有する錯体系化合物であり、 さらに好ましくはイ リジウム化合物、 オスミウム化合物、 白金化合物 (白金錯体系化合物) 又は 希土類錯体であり、 中でも最も好ましいのはイリジウム化合物である。 [0098] The phosphorescent compound can be appropriately selected and used from the known compounds used for the light emitting layer of a general organic semiconductor device, and is preferably 8 to 1 in the periodic table of elements. It is a complex compound containing a Group 0 metal, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound) or a rare earth complex, and most preferably an iridium compound.
[0099] 本発明においては、 少なくとも一つの発光層が、 二種以上のリン光発光性 化合物が含有されていてもよく、 発光層におけるリン光発光性化合物の濃度 比が発光層の厚さ方向で変化している態様であってもよい。 [0099] In the present invention, at least one light emitting layer comprises two or more phosphorescent materials. A compound may be contained, and the concentration ratio of the phosphorescent compound in the light emitting layer may be changed in the thickness direction of the light emitting layer.
[0100] 本発明に使用できる公知のリン光発光性化合物の具体例としては、 以下の 文献に記載されている化合物等が挙げられる。 [0100] Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
[0101] N a t u r e 395, 1 5 1 (1 998) 、 A p p l . P h y s . L e t t . 78, 1 622 (2001 ) 、 A d v. Ma t e r. 1 9, 739 [0101] N a t u r e 395, 1 5 1 (1 998), A p p l .P h y s .L e t t .78, 1 622 (2001), A d v. Mater r. 1 9, 739
(2007) 、 C h e m. Ma t e r. 1 7, 3532 (2005) 、 Ad v. Ma t e r. 1 7, 1 059 (2005) 、 国際公開第 2009/1 0 099 1号、 国際公開第 2008/1 01 842号、 国際公開第 2003/ 040257号、 米国特許出願公開第 2006 /835469号明細書、 米 国特許出願公開第 2006/0202 1 94号明細書、 米国特許出願公開第 2007/008732 1号明細書、 米国特許出願公開第 2005 / 024 4673号明細書等に記載の化合物を挙げることができる。 (2007), C he m. Ma ter r. 1 7, 3532 (2005), Ad v. Ma ter r. 1 7, 1 059 (2005), International Publication No. 2009/1 0 099 1, International Publication No. 2008/1 01 842, International Publication No. 2003/040257, U.S. Patent Application Publication No. 2006/835469, U.S. Patent Application Publication No. 2006/0202 1 94, U.S. Patent Application Publication No. 2007/008732 The compounds described in No. 1 specification, US Patent Application Publication No. 2005/024 4673 specification and the like can be mentioned.
[0102] また、 I n o r g. C h e m. 40, 1 704 (2001 ) 、 C h e m. [0102] Also, I no rg. C h e m. 40, 1 704 (2001), C h e m.
Ma t e r. 1 6, 2480 (2004) 、 A d v. Ma t e r. 1 6, 2 003 (2004) 、 A n g e w. C h e m. I n t . E d. 2006, 4 5, 7800、 A p p l . P h y s . L e t t . 86, 1 53505 (20 05) 、 C h e m. L e t t . 34, 592 (2005) 、 C h e m. Co m m u n . 2906 (2005) 、 I n o r g. C h e m. 42, 1 248 (2003) 、 国際公開第 2009 /050290号、 国際公開第 2009 /000673号、 米国特許第 7332232号明細書、 米国特許出願公開 第 2009 /0039776号、 米国特許第 6687266号明細書、 米国 特許出願公開第 2006/0008670号明細書、 米国特許出願公開第 2 008/001 5355号明細書、 米国特許第 7396598号明細書、 米 国特許出願公開第 2003/01 38657号明細書、 米国特許第 7090 928号明細書等に記載の化合物を挙げることができる。 Ma ter r. 1 6, 2480 (2004), A d v. Ma ter r. 1 6, 2 003 (2004), A nge w. C he m. Int. E d. 2006, 4 5, 7800, A ppl .P hys .L ett .86, 1 53505 (20 05), C he m. L ett .34, 592 (2005), C he m. Commun .2906 (2005), I nor g. C he m. 42, 1 248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, U.S. Patent No. 7332232, U.S. Patent Application Publication No. 2009/0039776, U.S. Patent No. 6687266. U.S. Patent Application Publication No. 2006/0008670, U.S. Patent Application Publication No. 2 008/001 5355, U.S. Patent No. 7396598, U.S. Patent Application Publication No. 2003/01 38657, Examples thereof include compounds described in US Pat. No. 7,090,928.
[0103] また、 A n g ew. C h e m. I n t . E d. 47, 1 (2008) 、 C h e m. Ma t e r. 1 8, 5 1 1 9 (2006) 、 I n o r g. C h e m . 46, 4308 (2007) 、 〇 r g a n ome t a l I i c s 23,[0103] Also, A ng ew. C he m. Int. E d. 47, 1 (2008), C he m. Ma ter r. 1 8, 5 1 1 9 (2006), I nor g. C hem .46, 4308 (2007), 〇 rgan ome tal I ics 23,
3745 (2004) 、 A p p I . P h y s. L e t t . 74, 1 36 1 ( 1 999) 、 国際公開第 2006/0564 1 8号、 国際公開第 2005/ 1 23873号、 国際公開第 2006/082742号、 米国特許出願公開 第 2005 /026044 1号明細書、 米国特許第 7534505号明細書 、 米国特許出願公開第 2007/01 90359号明細書、 米国特許第 73 38722号明細書、 米国特許第 7279704号明細書、 米国特許出願公 開第 2006/1 03874号明細書等に記載の化合物も挙げることができ る。 3745 (2004), A pp I .P hy s. L ett .74, 1 36 1 (1 999), International Publication No. 2006/0564 18, International Publication No. 2005/1 23873, International Publication No. 2006/ 082742, U.S. Patent Application Publication No. 2005/0260441, U.S. Patent No. 7534505, U.S. Patent Application Publication No. 2007/01 90359, U.S. Patent No. 73 38722, U.S. Patent No. 7279704. The compounds described in the specification, US Patent Application Publication No. 2006/1 03874, etc. may also be mentioned.
[0104] さらには、 国際公開第 2005/076380号、 国際公開第 2008 / [0104] Furthermore, International Publication No. 2005/076380, International Publication No. 2008 /
1 401 1 5号、 国際公開第 201 1 /1 3401 3号、 国際公開第 201 0/086089号、 国際公開第 201 2/020327号、 国際公開第 2 01 1 /05 1 404号、 国際公開第 201 1 / 073 1 49号、 特開 20 09- 1 1 4086号公報、 特開 2003 _ 81 988号公報、 特開 200 2-363552号公報等に記載の化合物も挙げることができる。 1 401 15 5, International Publication 201 1/1 3401 3, International Publication 201 0/086089, International Publication 201 2/020327, International Publication 2 01 1/05 1 404, International Publication No. The compounds described in 201 1/073 1 49, JP-A 20 09-1 1 4086, JP-A 2003 _ 81 988, JP-A 2002-363552 and the like can also be mentioned.
[0105] 本発明においては、 好ましいリン光発光性化合物としては丨 rを中心金属 に有する有機金属錯体が挙げられる。 さらに好ましくは、 金属一炭素結合、 金属一窒素結合、 金属一酸素結合、 金属一硫黄結合の少なくとも _つの配位 様式を含む錯体が好ましい。 [0105] In the present invention, as a preferable phosphorescent compound, an organometallic complex having an r as a central metal can be mentioned. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond and a metal-sulfur bond is preferable.
[0106] 上記説明したリン光発光性化合物 (リン光発光性金属錯体ともいう) は、 例えば、 O r g a n i c L e t t e r誌、 v o I 3、 N o. 1 6、 257 9〜 2581頁 (2001) 、 I n o r g a n i c C h e m i s t r y , 第 30巻、 第 8号、 1 685〜 1 687頁 (1 99 1年) 、 J . Am. C h e m . S o c . , 1 23巻、 4304頁 (2001年) 、 I n o r g a n i c C h e m i s t r y, 第 40巻、 第 7号、 1 704〜 1 7 1 1頁 (20 01年) 、 I n o r g a n i c C h e m i s t r y, 第 4 1卷、 第 1 2号 、 3055〜 3066頁 (2002年) 、 N ew J o u r n a l o f C h e m i s t r y. , 第 26巻、 1 1 7 1頁 (2002年) 、 E u r o p e a n J o u r n a l o f O r g a n i c C h e m i s t r y, 第 4巻、 695〜 709頁 (2004年) 、 さらにこれらの文献中に記載され ている参考文献等に開示されている方法を適用することにより合成すること ができる。 [0106] Examples of the phosphorescent compound (also referred to as a phosphorescent metal complex) described above include, for example, Organic Letter Magazine, vo I 3, No. 16, 257 9-2581 (2001), Inorganic C hemistry, Volume 30, No. 8, 1 685-1687 (1991), J. Am. Chem. Soc., 1 23, 4304 (2001), Inorganic C hemistry, Vol. 40, No. 7, 1 704-1 711 page (2001), Inorganic C hemistry, No. 41, No. 12, 3055-3066 (2002), N ew J ournalof C hemistr y., Volume 26, pp. 171 (2002), Europ ean J ournalof Organic Chemistry, Volume 4, 695-709 (2004), and by applying the methods disclosed in the references and the like described in these documents, it can be synthesized. ..
[0107] á蛍光発光性化合物 ñ [0107] á Fluorescent compound ñ
蛍光発光性化合物としては、 クマリン系色素、 ピラン系色素、 シアニン系 色素、 クロコニウム系色素、 スクアリウム系色素、 オキソベンツアントラセ ン系色素、 フルオレセイン系色素、 口ーダミン系色素、 ピリリウム系色素、 ペリレン系色素、 スチルベン系色素、 ポリチオフエン系色素又は希土類錯体 系蛍光体等が挙げられる。 Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, oral-damine dyes, pyrylium dyes, perylene dyes. Examples thereof include dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
[0108] 〔有機機能層群〕 [0108] [Organic functional layer group]
次いで、 有機機能層ユニッ トを構成する各層について、 電荷注入層、 正孔 輸送層、 電子輸送層及び阻止層の順に説明する。 Next, each layer constituting the organic functional layer unit will be described in the order of the charge injection layer, the hole transport layer, the electron transport layer and the blocking layer.
[0109] (電荷注入層) [0109] (Charge injection layer)
電荷注入層は、 駆動電圧低下や発光輝度向上のために、 電極と発光層の間 に設けられる層のことで、 「有機 E L素子とその工業化最前線 (1 998年 1 1月 30日エヌ ティー ·エス社発行) 」 の第 2編第 2章 「電極材料」 ( 1 23〜 1 66頁) にその詳細が記載されており、 正孔注入層と電子注入層 とがある。 The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission brightness. “The organic EL element and its frontier of industrialization (1 January 30, 998, NTT Corporation) ·Published by S. Co., Ltd.)”, Chapter 2, Chapter 2, “Electrode Materials” (Pages 123 to 166), the details are described, and there are a hole injection layer and an electron injection layer.
[0110] 電荷注入層としては、 一般には、 正孔注入層であれば、 陽極と発光層又は 正孔輸送層との間、 電子注入層であれば陰極と発光層又は電子輸送層との間 に存在させることができるが、 本発明においては、 透明電極に隣接して電荷 注入層を配置させることを特徴とする。 また、 中間電極で用いられる場合は 、 隣接する電子注入層及び正孔注入層の少なくとも一方が、 本発明の要件を 満たしていればよい。 [0110] As the charge injection layer, generally, in the case of a hole injection layer, between the anode and the light emitting layer or the hole transport layer, and in the case of an electron injection layer, between the cathode and the light emitting layer or the electron transport layer. However, the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used as an intermediate electrode, at least one of the electron injection layer and the hole injection layer adjacent to each other may satisfy the requirements of the present invention.
[0111] 正孔注入層は、 駆動電圧低下や発光輝度向上のために、 透明電極である陽 極に隣接して配置される層であり、 「有機 E L素子とその工業化最前線 (1 998年 1 1月 30日エヌ ティー ·エス社発行) 」 の第 2編第 2章 「電極 〇 2020/175514 23 卩(:171? 2020 /007606 [0111] The hole injection layer is a layer disposed adjacent to the positive electrode, which is a transparent electrode, for the purpose of lowering the driving voltage and improving the emission brightness. "The organic EL element and its industrial front line (1 998) 1 January 30, NTS Inc.)”, Chapter 2, “Electrodes” 〇 2020/175 514 23 卩 (:171? 2020 /007606
材料」 (1 23~ 1 66頁) に詳細に記載されている。 Materials” (Pages 123-166).
[0112] 正孔注入層は、 特開平 9— 45479号公報、 同 9— 260062号公報 、 同 8— 288069号公報等にもその詳細が記載されており、 正孔注入層 に用いられる材料としては、 例えば、 ポルフィリン誘導体、 フタロシアニン 誘導体、 オキサゾール誘導体、 オキサジアゾール誘導体、 トリアゾール誘導 体、 イミダゾール誘導体、 ピラゾリン誘導体、 ピラゾロン誘導体、 フエニレ ンジアミン誘導体、 ヒドラゾン誘導体、 スチルベン誘導体、 ポリアリールア ルカン誘導体、 トリアリールアミン誘導体、 カルバゾール誘導体、 インドロ カルバゾール誘導体、 イソインドール誘導体、 アントラセンやナフタレン等 のアセン系誘導体、 フルオレン誘導体、 フルオレノン誘導体、 及びポリビニ ルカルバゾール、 芳香族アミンを主鎖又は側鎖に導入した高分子材料又は才 リゴマー、 ポリシラン、 導電性ポリマー又はオリゴマー (例えば、 9 º 00 丁 (ポリエチレンジオキシチオフエン) : 33 (ポリスチレンスルホン酸 ) 、 アニリン系共重合体、 ポリアニリン、 ポリチオフエン等) 等が挙げられ る。 [0112] The hole injection layer is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like, and as a material used for the hole injection layer. Are, for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, Carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinylcarbazole, polymer materials or aromatic oligomers having aromatic amines introduced in the main chain or side chains, Examples thereof include polysilane, conductive polymers or oligomers (for example, 9° 00 (polyethylenedioxythiophene): 33 (polystyrene sulfonic acid), aniline-based copolymer, polyaniline, polythiophene, etc.).
[0113] トリアリールアミン誘導体としては、 《- 〇 (4, 4' -ビス 〔1\1_ (1 —ナフチル) 一1\!—フエニルアミノ〕 ビフエニル) に代表されるべンジ ジン型や、 |\/|丁0八丁八 (4, 4' , 4" —トリス 〔1\1_ (3—メチルフエ ニル) _1\1_フエニルアミノ〕 トリフエニルアミン) に代表されるスターバ —スト型、 トリアリールアミン連結コア部にフルオレンやアントラセンを有 する化合物等が挙げられる。 [0113] Examples of the triarylamine derivative include a benzidine type represented by <<-○ (4,4'-bis[1\1_(1 —naphthyl)-1 1!!-phenylamino]biphenyl), and |\ /| Ding 0 8 Dating 8 (4, 4', 4" — Tris [1\1_ (3-methylphenyl)_1\1_phenylamino] triphenylamine) Starburst type, triarylamine linked core Examples thereof include compounds having fluorene or anthracene in the part.
[0114] また、 特表 2003 -5 1 9432号公報や特開 2006- 1 35 1 45 号公報等に記載されているようなへキサアザトリフエニレン誘導体も同様に 正孔輸送材料として用いることができる。 [0114] In addition, a hexazaazatriphenylene derivative as described in Japanese Patent Publication No. 2003-5-19432 and Japanese Unexamined Patent Publication No. 2006-135145 can be similarly used as a hole transport material. it can.
[0115] 電子注入層は、 駆動電圧低下や発光輝度向上のために、 陰極と発光層との 間に設けられる層のことであり、 陰極が本発明に係る透明電極で構成されて いる場合には、 当該透明電極に隣接して設けられ、 「有機巳 !_素子とそのエ 業化最前線 ( 1 998年 1 1月 30日エヌ ティー ·エス社発行) 」 の第 2 〇 2020/175514 24 卩(:171? 2020 /007606 [0115] The electron injection layer is a layer provided between the cathode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission brightness. When the cathode is composed of the transparent electrode according to the present invention, Is provided adjacent to the transparent electrode, and is the second part of "Organic! Elements and their forefront of industrialization (issued on January 30, 1998, January 30, NTT Corporation)". 〇 2020/175 514 24 (:171? 2020/007606
編第 2章 「電極材料」 (1 2 3〜 1 6 6頁) に詳細に記載されている。 It is described in detail in Chapter 2, “Electrode Materials” (Pages 1 2 3 to 1 6 6).
[01 16] 電子注入層は、 特開平 6— 3 2 5 8 7 1号公報、 同 9 _ 1 7 5 7 4号公報 、 同 1 0— 7 4 5 8 6号公報等にもその詳細が記載されており、 電子注入層 に好ましく用いられる材料の具体例としては、 ストロンチウムやアルミニウ ム等に代表される金属、 フッ化リチウム、 フッ化ナトリウム、 フッ化カリウ ム等に代表されるアルカリ金属化合物、 フッ化マグネシウム、 フッ化カルシ ウム等に代表されるアルカリ金属ハライ ド層、 フッ化マグネシウムに代表さ れるアルカリ土類金属化合物層、 酸化モリブデン、 酸化アルミニウム等に代 表される金属酸化物、 リチウム 8 -ヒドロキシキノレート (I - 丨 9) 等に代 表される金属錯体等が挙げられる。 また、 本発明における透明電極が陰極の 場合は、 金属錯体等の有機材料が特に好適に用いられる。 電子注入層はごく 薄い膜であることが望ましく、 構成材料にもよるが、 その層厚は 1 n m〜 1 0 の範囲が好ましい。 [0116] The electron injection layer is described in detail in Japanese Unexamined Patent Publication Nos. 6-3 2 5 8 7 1, 9 _ 1 7 5 7 4 and 1 0-7 4 5 8 6 as well. Specific examples of materials that are described and preferably used for the electron injection layer include metals represented by strontium and aluminum, and alkali metal compounds represented by lithium fluoride, sodium fluoride, and potassium fluoride. , An alkali metal halide layer represented by magnesium fluoride, calcium fluoride, an alkaline earth metal compound layer represented by magnesium fluoride, a metal oxide represented by molybdenum oxide, aluminum oxide, etc., lithium Examples thereof include metal complexes represented by 8-hydroxyquinolate (I-9) and the like. Further, when the transparent electrode in the present invention is a cathode, an organic material such as a metal complex is particularly preferably used. The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 depending on the constituent material.
[01 17] (正孔輸送層) [01 17] (Hole transport layer)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、 広い 意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。 正孔輸送層 は単層又は複数層設けることができる。 The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole injection layer and the electron blocking layer also have a function of the hole transport layer in a broad sense. The hole transport layer may be a single layer or a plurality of layers.
[01 18] 正孔輸送材料としては、 正孔の注入又は輸送、 電子の障壁性のいずれかを 有するものであり、 有機物、 無機物のいずれであってもよい。 例えば、 トリ アゾール誘導体、 オキサジアゾール誘導体、 イミダゾール誘導体、 ポリアリ —ルアルカン誘導体、 ピラゾリン誘導体、 ピラゾロン誘導体、 フエニレンジ アミン誘導体、 アリールアミン誘導体、 アミノ置換カルコン誘導体、 オキサ ゾール誘導体、 スチリルアントラセン誘導体、 フルオレノン誘導体、 ヒドラ ゾン誘導体、 スチルベン誘導体、 シラザン誘導体、 アニリン系共重合体、 導 電性高分子オリゴマー及びチオフエンオリゴマー等が挙げられる。 [0118] The hole transport material has any of hole injection or transport and electron barrier properties, and may be either an organic substance or an inorganic substance. For example, triazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, oxazol derivative, styrylanthracene derivative, fluorenone derivative, hydra Examples thereof include zone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, conductive polymer oligomers and thiophene oligomers.
[01 19] 正孔輸送材料としては、 上記のものを使用することができるが、 ポルフイ リン化合物、 芳香族第 3級アミン化合物及びスチリルアミン化合物を用いる ことができ、 特に芳香族第 3級アミン化合物を用いることが好ましい。 [0120] 芳香族第 3級アミン化合物及びスチリルアミン化合物の代表例としては、As the hole-transporting material, the above-mentioned ones can be used, but a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound can be used, particularly an aromatic tertiary amine. Preference is given to using compounds. [0120] As typical examples of the aromatic tertiary amine compound and the styrylamine compound,
N, N, N, , N, ーテトラフエニルー 4, 4, ージアミノフエニル、 N, N, ージフエニルー N, N, ービス (3—メチルフエニル) 一 〔1 , 1, _ ビフェニル〕 一 4, 4, ージアミン (略称: T P D) 、 2, 2 -ビス (4- ジー p—トリルアミノフエニル) プロパン、 1 , 1 —ビス (4—ジー p—卜 リルアミノフエニル) シクロヘキサン、 N, N, N, , N, ーテトラー p_ トリルー 4, 4 -ジアミノビフエニル、 1 , 1 -ビス (4 -ジー p-トリ ルアミノフエニル) _4—フエニルシクロヘキサン、 ビス (4—ジメチルア ミノー 2—メチルフエニル) フエニルメタン、 ビス (4—ジ _ p_トリルア ミノフエニル) フエニルメタン、 N, N, ージフエニルー N, N, ージ (4 —メ トキシフエニル) _4, 4, ージアミノビフエニル、 N, N, N, , N —テトラフエニルー 4, 4, ージアミノジフエニルエーテル、 4, 4, _ ビス (ジフエニルアミノ) クオードリフエニル、 N, N, N—トリ (p—卜 リル) アミン、 4 - (ジー P-トリルアミノ) 一4, 一 〔4 - (ジー P-卜 リルアミノ) スチリル〕 スチルベン、 4 - N, N—ジフエニルアミノー (2 —ジフエニルビニル) ベンゼン、 3—メ トキシ _4, - N, N—ジフエニル アミノスチルベンゼン及び N—フェニルカルバゾール等が挙げられる。 N,N,N,,N,-Tetraphenyl-4,4,-diaminophenyl, N,N,-Diphenyl-N,N,-bis(3-methylphenyl) 1 [1, 1, _ biphenyl] 1 4, 4 ,-Diamine (abbreviation: TPD), 2,2-bis(4-di-p-tolylaminophenyl)propane, 1, 1-bis(4-di-p-acrylaminophenyl)cyclohexane, N, N, N ,, N,-Tetra-p_tolyl 4,4-diaminobiphenyl, 1, 1-bis (4-di p-tolylaminophenyl) _4-phenylcyclohexane, bis (4-dimethylamino) 2-methylphenyl) phenylmethane, bis (4 — Di _ p_ tolylamino phenyl) phenyl methane, N, N, -diphenyl N, N, -di (4-methoxyphenyl) _4, 4, -diaminobiphenyl, N, N, N,, N — tetraphenyl 4, 4, -Diaminodiphenyl ether, 4, 4, _ bis (diphenylamino) quadriphenyl, N, N, N-tri (p-acrylyl) amine, 4-(di-P-tolylamino) 1, 4, [4-( Di-P-toluylamino)styryl] stilbene, 4-N,N-diphenylamino-(2-diphenylvinyl)benzene, 3-methoxy _4, -N,N-diphenylaminostilbenzene and N-phenylcarbazole. To be
[0121] 正孔輸送層は、 上記正孔輸送材料を、 例えば、 真空蒸着法、 スピンコート 法、 キャスト法、 インクジェッ ト法を含む印刷法及び L B法 (ラングミュア - ブロジェッ ト、 L a n g m u i r B l o d g e t t法) 等の公知の方法 により、 薄膜化することにより形成することができる。 正孔輸送層の層厚に ついては特に制限はないが、 通常は 5 n m〜 5 Mm程度、 好ましくは 5〜 2 00 n mの範囲である。 この正孔輸送層は、 上記材料の一種又は二種以上か らなる一層構造であつてもよい。 [0121] The hole transport layer is formed by using the above hole transport material, for example, a vacuum evaporation method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir-Blodgett method, L angmuir Blodgett method). ) And other known methods can be used to form a thin film. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 Mm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
[0122] また、 正孔輸送層の材料に不純物をドープすることにより、 p性を高くす ることもできる。 その例としては、 特開平 4— 297076号公報、 特開 2 000- 1 96 1 40号公報、 同 2001 — 1 02 1 75号公報及び J . A p p l . P h y s. , 95, 5773 (2004) 等に記載されたものが挙 〇 2020/175514 26 卩(:171? 2020 /007606 [0122] Further, by doping the material of the hole transport layer with impurities, the p-characteristic can be increased. As examples thereof, Japanese Patent Laid-Open Nos. 4-297076, 2 000-1 96 1 40, 2001-1 02 1 75 and J. A ppl .P hy s., 95, 5773 (2004) ) Etc. 〇 2020/175 514 26 卩 (:171? 2020 /007606
げられる。 You can get it.
[0123] このように、 正孔輸送層の 性を高くすると、 より低消費電力の素子を作 製することができるため好ましい。 [0123] As described above, it is preferable to enhance the property of the hole transport layer, since it is possible to manufacture a device having lower power consumption.
[0124] (電子輸送層) [0124] (Electron transport layer)
電子輸送層は、 電子を輸送する機能を有する材料から構成され、 広い意味 で電子注入層、 正孔阻止層も電子輸送層に含まれる。 電子輸送層は、 単層構 造又は複数層の積層構造として設けることができる。 The electron transport layer is composed of a material having a function of transporting electrons, and in a broad sense, the electron transport layer includes an electron injection layer and a hole blocking layer. The electron transport layer can be provided as a single layer structure or a laminated structure of a plurality of layers.
[0125] 単層構造の電子輸送層及び積層構造の電子輸送層において、 発光層に隣接 する層部分を構成する電子輸送材料 (正孔阻止材料を兼ねる) としては、 力 ソードより注入された電子を発光層に伝達する機能を有していればよい。 こ のような材料としては、 従来公知の化合物の中から任意のものを選択して用 いることができる。 例えば、 ニトロ置換フルオレン誘導体、 ジフエニルキノ ン誘導体、 チオピランジオキシド誘導体、 カルボジイミ ド、 フレオレニリデ ンメタン誘導体、 アントラキノジメタン、 アントロン誘導体及びオキサジア ゾール誘導体等が挙げられる。 さらに、 上記オキサジアゾール誘導体におい て、 オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘 導体、 電子吸引基として知られているキノキサリン環を有するキノキサリン 誘導体も、 電子輸送層の材料として用いることができる。 さらにこれらの材 料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした 高分子材料を用いることもできる。 [0125] In the electron transport layer having a single-layer structure and the electron transport layer having a laminated structure, the electron-transporting material (also serving as the hole-blocking material) constituting the layer portion adjacent to the light-emitting layer is an electron injected from a force solder. It has only to have a function of transmitting light to the light emitting layer. As such a material, any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethane, anthrone derivatives and oxadiazole derivatives. Further, in the oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as a material for the electron transport layer. be able to. Further, a polymer material in which these materials are introduced into a polymer chain or a polymer material having these materials as a polymer main chain can be used.
[0126] また、 8—キノリノール誘導体の金属錯体、 例えば、 トリス (8—キノリ ノール) アルミニウム (略称: 八 1 3) 、 トリス (5 , 7—ジクロロー 8 - キノリノール) アルミニウム、 トリス (5 , 7—ジブロモー 8—キノリノー ル) アルミニウム、 トリス (2—メチルー 8—キノリノール) アルミニウム 、 トリス (5—メチルー 8—キノリノール) アルミニウム、 ビス (8—キノ リノール) 亜鉛 (略称: n 9) 等及びこれらの金属錯体の中心金属が丨 n
Figure imgf000027_0001
[0126] Further, a metal complex of an 8-quinolinol derivative, for example, tris (8-quinolinol) aluminum (abbreviation: 8 1 3 ), tris (5, 7-dichloro-8-quinolinol) aluminum, tris (5, 7— Dibromo-8-quinolinol) aluminum, tris(2-methyl-8-quinolinol) aluminum, tris(5-methyl-8-quinolinol) aluminum, bis(8-quinolinol) zinc (abbreviation: n 9) and their metal complexes The central metal is n
Figure imgf000027_0001
輸送層の材料として用いることができる。 〇 2020/175514 27 卩(:171? 2020 /007606 It can be used as a material for the transport layer. 〇 2020/175 514 27 卩 (:171? 2020 /007606
[0127] 電子輸送層は、 上記材料を、 例えば、 真空蒸着法、 スピンコート法、 キャ スト法、 インクジヱツ ト法を含む印刷法及び !_巳法等の公知の方法により、 薄膜化することで形成することができる。 電子輸送層の層厚については特に 制限はないが、 通常は
Figure imgf000028_0002
好ましくは
Figure imgf000028_0001
[0127] The electron transport layer is formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and a !_ method. Can be formed. The thickness of the electron transport layer is not particularly limited, but usually
Figure imgf000028_0002
Preferably
Figure imgf000028_0001
囲内である。 電子輸送層は上記材料の 1種又は 2種以上からなる単一構造で あってもよい。 It is inside the enclosure. The electron transport layer may have a single structure composed of one or more of the above materials.
[0128] (阻止層) [0128] (blocking layer)
阻止層としては、 正孔阻止層及び電子阻止層が挙げられ、 上記説明した有 機機能層ユニツ ト 3の各構成層の他に、 必要に応じて設けられる層である。 例えば、 特開平 1 1 —2 0 4 2 5 8号公報、 同 1 1 —2 0 4 3 5 9号公報、 及び 「有機巳 !_素子とその工業化最前線 ( 1 9 9 8年 1 1月 3 0日エヌ テ イー ·エス社発行) 」 の 2 3 7頁等に記載されている正孔阻止 (ホールブロ ツク) 層等を挙げることができる。 Examples of the blocking layer include a hole blocking layer and an electron blocking layer. In addition to the constituent layers of the organic functional layer unit 3 described above, the blocking layer is a layer provided as necessary. For example, Japanese Unexamined Patent Publication Nos. 1 1 -2 0 4 2 5 8 gazette, 1 1 -2 0 4 3 5 9 gazette, and 1) Organo! element and its frontier of industrialization (Jan. 1 998) 30 days, published by NTS Co., Ltd.)”, page 237, etc., for example, hole blocking (hole block) layers.
[0129] 正孔阻止層とは、 広い意味では、 電子輸送層の機能を有する。 正孔阻止層 は、 電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔 阻止材料からなり、 電子を輸送しつつ正孔を阻止することで電子と正孔の再 結合確率を向上させることができる。 また、 電子輸送層の構成を必要に応じ て、 正孔阻止層として用いることができる。 正孔阻止層は、 発光層に隣接し て設けられていることが好ましい。 [0129] The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. The probability can be improved. Further, the structure of the electron transport layer can be used as a hole blocking layer, if necessary. The hole blocking layer is preferably provided adjacent to the light emitting layer.
[0130] 一方、 電子阻止層とは、 広い意味では、 正孔輸送層の機能を有する。 電子 阻止層は、 正孔を輸送する機能を有しつつ、 電子を輸送する能力が著しく小 さい材料からなり、 正孔を輸送しつつ電子を阻止することで電子と正孔の再 結合確率を向上させることができる。 また、 正孔輸送層の構成を必要に応じ て電子阻止層として用いることができる。 本発明に適用する正孔阻止層の層 厚としては、 好ましくは 3〜 1 0 0 n の範囲であり、 さらに好ましくは 5 〜 3 0 〇!の範囲である。 [0130] On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes and has a significantly small ability to transport electrons. By blocking electrons while transporting holes, the recombination probability of electrons and holes is increased. Can be improved. Further, the structure of the hole transport layer can be used as an electron blocking layer, if necessary. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 n, more preferably in the range of 5 to 300!.
[0131 ] 〔第 2電極:陰極〕 [0131] [Second electrode: cathode]
陰極は、 有機機能層群や発光層に正孔を供給するために機能する電極膜で 〇 2020/175514 28 卩(:171? 2020 /007606 The cathode is an electrode film that functions to supply holes to the organic functional layers and the light emitting layer. 〇 2020/175 514 28 卩 (:171? 2020 /007606
あり、 金属、 合金、 有機又は無機の導電性化合物若しくはこれらの混合物が 用いられる。 具体的には、 金、 アルミニウム、 銀、 マグネシウム、 リチウム 、 マグネシウム/銅混合物、 マグネシウム/銀混合物、 マグネシウム/アル ミニウム混合物、 マグネシウム/インジウム混合物、 インジウム、 リチウム /アルミニウム混合物、 希土類金属、 丨 丁〇、 Z n〇、 T i 〇2及びS n〇2等 の酸化物半導体などが挙げられる。 Yes, metals, alloys, organic or inorganic conductive compounds or mixtures thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium/copper mixture, magnesium/silver mixture, magnesium/aluminium mixture, magnesium/indium mixture, indium, lithium/aluminum mixture, rare earth metal, 丨c. Z N_〇, an oxide semiconductor such as T i 〇 2 and S N_〇 2.
[0132] 陰極は、 これらの導電性材料やその分散液をスピンコート法、 キャスト法 、 インクジヱッ ト法、 蒸着法、 印刷法等の方法により薄膜を形成させて作製 することができる。 また、
Figure imgf000029_0001
[0132] The cathode can be produced by forming a thin film of these conductive materials or a dispersion thereof by a method such as a spin coating method, a casting method, an ink jet method, a vapor deposition method or a printing method. Also,
Figure imgf000029_0001
以下が好ましく、 膜厚は通常
Figure imgf000029_0002
好ましくは 5〜 2 0 0 n mの 範囲で選ばれる。
The following is preferable, and the film thickness is usually
Figure imgf000029_0002
It is preferably selected in the range of 5 to 200 nm.
[0133] なお、 有機巳 !_素子が、 陰極側からも発光光!-を取り出す、 両面発光型の 場合には、 光透過性の良好な陰極を選択して構成すればよい。 [0133] Note that the organic semiconductor !_ element emits light even from the cathode side! In the case of a double-sided emission type, the cathode with good light transmission may be selected and configured.
[0134] 〔封止部材〕 [0134] [Sealing member]
有機巳 !_素子を封止するのに用いられる封止手段としては、 例えば、 フレ キシブル封止部材と、 陰極及び透明基板とを封止用接着剤で接着する方法を 挙げることができる。 As a sealing means used for sealing the organic semiconductor device, for example, a method in which the flexible sealing member and the cathode and the transparent substrate are bonded with a sealing adhesive can be mentioned.
[0135] 封止部材としては、 有機巳 !_素子の表示領域を覆うように配置されていれ ばよく、 凹板状でも、 平板状でもよい。 また透明性及び電気絶縁性は特に限 定されない。 [0135] The sealing member has only to be arranged so as to cover the display area of the organic semiconductor device, and may have a concave plate shape or a flat plate shape. Moreover, the transparency and the electrical insulation are not particularly limited.
[0136] 具体的には、 フレキシブル性を備えた薄膜ガラス板、 ポリマー板、 フィル ム、 金属フィルム (金属箔) 等が挙げられる。 ガラス板としては、 特にソー ダ石灰ガラス、 バリウム ストロンチウム含有ガラス、 鉛ガラス、 アルミノ ケイ酸ガラス、 ホウケイ酸ガラス、 バリウムホウケイ酸ガラス、 石英等を挙 げることができる。 また、 ポリマー板としては、 ポリカーボネート、 アクリ ル、 ポリエチレンテレフタレート、 ポリエーテルサルファイ ド、 ポリサルフ オン等を挙げることができる。 金属フィルムとしては、 ステンレス、 鉄、 銅 、 アルミニウム、 マグネシウム、 ニッケル、 亜鉛、 クロム、 チタン、 モリブ 〇 2020/175514 29 卩(:171? 2020 /007606 [0136] Specific examples thereof include a thin film glass plate having flexibility, a polymer plate, a film, and a metal film (metal foil). As the glass plate, soda lime glass, glass containing barium strontium, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like can be mentioned in particular. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like. Metal films include stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum 〇 2020/175 514 29 卩 (:171? 2020 /007606
テン、 シリコン、 ゲルマニウム及びタンタルからなる群から選ばれる 1種以 上の金属又は合金が挙げられる。 One or more metals or alloys selected from the group consisting of ten, silicon, germanium and tantalum.
[0137] 本発明においては、 封止部材としては、 有機巳 !_素子を薄膜化することで きる観点から、 ポリマーフイルム及び金属フイルムを好ましく使用すること ができる。 さらに、 ポリマーフイルムは、 」 丨 3 < 7 1 29- 1 992 に準拠した方法で測定された温度 25土〇. 5°〇、 相対湿度 90±2%RH における水蒸気透過度が、 1 X 1 0 39/^2 - 24 以下であることが好まし く、 さらには、 」 I 3 < 7 1 26- 1 987に準拠した方法で測定され た酸素透過度が、 1 1 0_31111_/|112 - 2411 - 31: 〇111 (1 31: 〇111は、 1 . 01 325 X 1 05 3である) 以下であって、 温度 25 ±0. 5°〇、 相対 湿度 90±2%RHにおける水蒸気透過度が、 1 X 1 0-39/012 · 24 以下 であることが好ましい。 [0137] In the present invention, as the sealing member, a polymer film and a metal film can be preferably used from the viewpoint that the organic semiconductor device can be thinned. Furthermore, the polymer film has a water vapor permeability of 1 X 10 at a temperature of 25 soil 0,5 °, and a relative humidity of 90 ± 2% RH, measured by the method according to `` 丨 3 <7 1 29-1 992. 3 9 / ^ 2 - 24 or less it is rather preferable, and further, "I 3 <7 1 26- 1 987 oxygen permeability measured in compliance with the method provided in the, 1 1 0 _3 1111_ / | 11 . 2 - 2411 - 31: Rei_111 (. 1 31: Rei_111 is, 1 01 325 X 1 0 5 3) or less, the temperature 25 ± 0 5 ° 〇, at a relative humidity of 90 ± 2% RH water vapor permeability is preferably at 1 X 1 0- 3 9/01 2 · 24 or less.
[0138] 封止部材と有機巳 !_素子の表示領域 (発光領域) との間隙には、 気相及び 液相では窒素、 アルゴン等の不活性気体やフッ化炭化水素、 シリコーンオイ ルのような不活性液体を注入することもできる。 また、 封止部材と有機巳 !_ 素子の表示領域との間隙を真空とすることや、 間隙に吸湿性化合物を封入す ることもできる。 [0138] In the gap between the sealing member and the display area (light emitting area) of the organic semiconductor element, the inert gas such as nitrogen and argon in the gas phase and the liquid phase, fluorocarbon, silicone oil, etc. It is also possible to inject an inert liquid. It is also possible to create a vacuum in the gap between the sealing member and the display area of the organic semiconductor device, or to enclose a hygroscopic compound in the gap.
[0139] また、 有機巳 !_素子における発光機能層ユニッ トを完全に覆い、 かつ有機 巳 !_素子における第 1電極である陽極 (3) と、 第 2電極である陰極 (6) の端子部分を露出させる状態で、 透明基板上に封止膜を設けることもできる [0139] Also, the terminals of the anode (3) that is the first electrode and the cathode (6) that is the second electrode that completely covers the light-emitting functional layer unit in the organic semiconductor !_ element and are in the organic semiconductor !_ element. A sealing film can be provided on the transparent substrate with the part exposed.
[0140] このような封止膜は、 無機材料や有機材料を用いて構成され、 特に、 水分 や酸素等の浸入を抑制する機能を有する材料、 例えば、 酸化ケイ素、 二酸化 ケイ素、 窒化ケイ素等の無機材料が用いられる。 さらに封止膜の脆弱性を改 良するために、 これら無機材料からなる膜とともに、 有機材料からなる膜を 用いて積層構造としてもよい。 [0140] Such a sealing film is composed of an inorganic material or an organic material, and particularly, a material having a function of suppressing the intrusion of moisture, oxygen, and the like, such as silicon oxide, silicon dioxide, and silicon nitride. An inorganic material is used. Further, in order to improve the brittleness of the sealing film, a laminated structure may be used by using a film made of an organic material together with a film made of these inorganic materials.
[0141] これらの封止膜の形成方法については、 特に限定はなく、 例えば、 真空蒸 着法、 スパッタリング法、 反応性スパッタリング法、 分子線エピタキシー法 〇 2020/175514 30 卩(:171? 2020 /007606 [0141] The method for forming these sealing films is not particularly limited, and examples thereof include vacuum vapor deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method. 〇 2020/175 514 30 boxes (: 171-1? 2020/007606
、 クラスターイオンビーム法、 イオンプレーティング法、 プラズマ重合法、 大気圧プラズマ重合法、 プラズマ〇 〇法、 レーザー〇 〇法、 熱<3 0法 、 コーティング法等を用いることができる。 A cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma X method, a laser X method, a heat <30 method, and a coating method can be used.
[0142] 以上のような封止材は、 有機巳 !_素子における第 1電極である陽極 (3) と、 第 2電極である陰極 (6) の端子部分を露出させるとともに、 少なくと も発光機能層を覆う状態で設けられている。 [0142] The encapsulant as described above exposes at least the terminal portions of the anode (3) that is the first electrode and the cathode (6) that is the second electrode of the organic semiconductor device, and at least emits light. It is provided so as to cover the functional layer.
[0143] 〔有機巳 !_素子の製造方法〕 [0143] [Method for manufacturing organic semiconductor device!]
有機巳 !_素子の製造方法としては、 透明基材上に、 陽極、 有機機能層群 1 、 発光層、 有機機能層群 2及び陰極を積層して積層体を形成する。 As a method of manufacturing an organic semiconductor device, an anode, an organic functional layer group 1, a light emitting layer, an organic functional layer group 2 and a cathode are laminated on a transparent substrate to form a laminated body.
[0144] まず、 透明基材を準備し、 該透明基材上に、 所望の電極物質、 例えば、 陽 極用物質からなる薄膜を 1 以下、 好ましくは 1 〇〜 2 0 0 n の範囲内 の膜厚になるように、 蒸着やスパッタリング等の方法により形成させ、 陽極 を形成する。 同時に、 陽極端部に、 外部電源と接続する接続電極部を形成す る。 [0144] First, a transparent base material is prepared, and a thin film of a desired electrode material, for example, a positive electrode material, is provided on the transparent base material in an amount of 1 or less, preferably in the range of 10 to 200 n. The anode is formed to a film thickness by a method such as vapor deposition or sputtering. At the same time, a connection electrode part for connecting to an external power supply is formed at the end of the anode.
[0145] 次に、 この上に、 有機機能層群 1 を構成する正孔注入層及び正孔輸送層、 発光層、 有機機能層群 2を構成する電子輸送層等を順に積層する。 [0145] Next, a hole injection layer and a hole transport layer that form the organic functional layer group 1, a light emitting layer, an electron transport layer that forms the organic functional layer group 2, and the like are sequentially stacked on this.
[0146] これらの各層の形成は、 スピンコート法、 キャスト法、 インクジェッ ト法 、 蒸着法、 印刷法等があるが、 均質な層が得られやすく、 かつ、 ピンホール が生成しにくい等の点から、 真空蒸着法又はスピンコート法が特に好ましい 。 更に、 層ごとに異なる形成法を適用してもよい。 これらの各層の形成に蒸 着法を採用する場合、 その蒸着条件は使用する化合物の種類等により異なる が、 一般にボート加熱温度 5 0〜 4 5 0 °〇、 真空度 1 X 1 0 -6〜 1 X 1 〇-2 3、 蒸着速度〇.
Figure imgf000031_0001
基板温度— 5 0〜 3 0〇 、 層厚 0 . 1〜 5 の範囲内で、 各条件を適宜選択することが望ましい。
[0146] Each of these layers can be formed by a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, etc. However, it is easy to obtain a homogeneous layer and it is difficult to form pinholes. Therefore, the vacuum deposition method or the spin coating method is particularly preferable. Furthermore, different forming methods may be applied for each layer. When the vapor deposition method is used to form each of these layers, the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 to 450°C, the degree of vacuum is 1 x 10 to 6 1 X 1 〇- 2 3, deposition rate 〇.
Figure imgf000031_0001
It is desirable to appropriately select each condition within the range of the substrate temperature of 50 to 300 and the layer thickness of 0.1 to 5.
[0147] 以上のようにして有機機能層群 2を形成した後、 この上部に陰極をスピン コート法、 キャスト法、 インクジヱッ ト法、 蒸着法、 印刷法などの適宜の形 成法によって形成する。 この際、 陰極は、 有機機能層群によって陽極に対し て絶縁状態を保ちつつ、 有機機能層群の上方から透明基板の周縁に端子部分 〇 2020/175514 31 卩(:171? 2020 /007606 After forming the organic functional layer group 2 as described above, a cathode is formed on the organic functional layer group 2 by an appropriate forming method such as a spin coating method, a casting method, an ink jet method, a vapor deposition method or a printing method. At this time, the cathode is kept in an insulated state from the anode by the organic functional layer group, and the terminal portion is provided from above the organic functional layer group to the periphery of the transparent substrate. 〇 2020/175 514 31 卩(:171? 2020/007606
を引き出した形状にパターン形成する。 The pattern is formed in a shape that draws out.
[0148] 陰極の形成後、 これら透明基材、 陽極、 有機機能層群、 発光層及び陰極を 封止材で封止する。 すなわち、 陽極及び陰極の端子部分を露出させた状態で 、 透明基材上に、 少なくとも有機機能層群を覆う封止材を設ける。 After the formation of the cathode, these transparent substrate, anode, organic functional layer group, light emitting layer and cathode are sealed with a sealing material. That is, with the terminal portions of the anode and the cathode exposed, a sealing material that covers at least the organic functional layer group is provided on the transparent substrate.
[0149] 有機巳 !_素子は、 電子機器、 例えば、 表示装置、 ディスプレイ、 各種発光 装置として用いることができる。 発光装置として、 例えば、 照明装置 (家庭 用照明、 車内照明) 、 時計や液晶用バックライ ト、 看板広告、 信号機、 光記 憶媒体の光源、 電子写真複写機の光源、 光通信処理機の光源、 光センサーの 光源等が挙げられるがこれに限定するものではないが、 特に液晶表示装置の バックライ ト、 照明用光源としての用途に有効に用いることができる。 [0149] The organic semiconductor device can be used as an electronic device such as a display device, a display, and various light emitting devices. Examples of light emitting devices include lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical recording media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples thereof include, but are not limited to, a light source of an optical sensor, and can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
[0150] 〔3 . 2〕 有機光電変換素子 [0150] [3.2] Organic photoelectric conversion element
本発明の電子デバイスは、 有機光電変換素子及び太陽電池に適用すること が好ましい。 The electronic device of the present invention is preferably applied to an organic photoelectric conversion element and a solar cell.
[0151 ] 以下、 光電変換素子及び太陽電池の詳細を説明する。 [0151] Hereinafter, details of the photoelectric conversion element and the solar cell will be described.
[0152] 図 3は、 バルクへテロジャンクション型の有機光電変換素子からなるシン グル構成 (バルクへテロジャンクション層が 1層の構成) の太陽電池の一例 を示す断面図である。 [0152] FIG. 3 is a cross-sectional view showing an example of a solar cell having a single structure including a bulk heterojunction type organic photoelectric conversion element (a structure having one bulk heterojunction layer).
[0153] 図 3において、 バルクへテロジャンクション型の有機光電変換素子 2 0 0 は、 基板 2 0 1の一方面上に、 透明電極陽極 2 0 2、 正孔輸送層 2 0 5、 バ ルクヘテロジャンクション層の光電変換部 2 0 4、 電子輸送層 2 0 6 (又は バッファー層ともいう。 ) 及び対極 2 0 3 (陰極) が順次積層されている。 上記正孔輸送層 2 0 5、 バルクへテロジャンクション層の光電変換部 2 0 4 、 及び電子輸送層 2 0 6が本発明に係る機能層 2 0 7である。 [0153] In Fig. 3, a bulk heterojunction type organic photoelectric conversion device 200 has a transparent electrode anode 202, a hole transport layer 205, and a bulk heterojunction on one surface of a substrate 201. The photoelectric conversion unit 204 of the junction layer, the electron transport layer 206 (also referred to as a buffer layer), and the counter electrode 203 (cathode) are sequentially laminated. The hole transport layer 205, the photoelectric conversion part 204 of the bulk heterojunction layer, and the electron transport layer 206 are the functional layer 27 according to the present invention.
[0154] 基板 2 0 1は、 順次積層された透明電極 2 0 2、 光電変換部 2 0 4及び対 極 2 0 3を保持する部材である。 本実施形態では、 基板 2 0 1側から光電変 換される光が入射するので、 基板 2 0 1は、 この光電変換される光を透過さ せることが可能な、 すなわち、 この光電変換すべき光の波長に対して透明な 部材であることが好ましい。 基板 2 0 1は、 例えば、 ガラス基板や樹脂基板 〇 2020/175514 32 卩(:171? 2020 /007606 [0154] The substrate 201 is a member that holds the transparent electrode 202, the photoelectric conversion unit 204, and the counter electrode 203 that are sequentially stacked. In this embodiment, since the photoelectrically converted light is incident from the substrate 201 side, the substrate 201 can transmit the photoelectrically converted light, that is, the photoelectrically converted light should be transmitted. It is preferable that the member is transparent to the wavelength of light. The substrate 201 is, for example, a glass substrate or a resin substrate. 〇 2020/175 514 32 (:171? 2020/007606
等が用いられる。 この基板 2 0 1は、 必須ではなく、 例えば、 光電変換部 2 0 4の両面に透明電極 2 0 2及び対極 2 0 3を形成することでバルクへテロ ジャンクション型の有機光電変換素子 2 0 0が構成されてもよい。 Etc. are used. The substrate 201 is not essential, and for example, by forming the transparent electrode 202 and the counter electrode 203 on both surfaces of the photoelectric conversion section 204, a bulk heterojunction type organic photoelectric conversion element 201 is formed. May be configured.
[0155] 光電変換部 2 0 4は、 光エネルギーを電気エネルギーに変換する層であっ て、 型半導体材料と 型半導体材料とを一様に混合したバルクへテロジャ ンクション層を有して構成される。 型半導体材料は、 相対的に電子供与体 (ドナー) として機能し、 n型半導体材料は、 相対的に電子受容体 (アクセ プタ _) として機能する。 ここで、 電子供与体及び電子受容体は、 “光を吸 収した際に、 電子供与体から電子受容体に電子が移動し、 正孔と電子のペア (電荷分離状態) を形成する電子供与体及び電子受容体” であり、 電極のよ うに単に電子を供与又は受容するものではなく、 光反応によって、 電子を供 与又は受容するものである。 [0155] The photoelectric conversion unit 204 is a layer that converts light energy into electric energy, and is configured to have a bulk heterojunction layer in which a type semiconductor material and a type semiconductor material are uniformly mixed. .. The type semiconductor material relatively functions as an electron donor (donor), and the n- type semiconductor material relatively functions as an electron acceptor (acceptor _). Here, an electron donor and an electron acceptor are “an electron donor that, when absorbing light, moves from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state). “Body and electron acceptor”, which donates or accepts electrons as an electrode does, but donates or accepts electrons by a photoreaction.
[0156] 図 3において、 基板 2 0 1 を介して透明電極 2 0 2から入射された光は、 光電変換部 2 0 4のバルクへテロジャンクション層における電子受容体又は 電子供与体で吸収され、 電子供与体から電子受容体に電子が移動し、 正孔と 電子のペア (電荷分離状態) が形成される。 発生した電荷は、 内部電界、 例 えば、 透明電極 2 0 2と対極 2 0 3の仕事関数が異なる場合では透明電極 2 0 2と対極 2 0 3との電位差によって、 電子は電子受容体間を通り、 また正 孔は電子供与体間を通り、 それぞれ異なる電極へ運ばれ光電流が検出される 。 例えば、 透明電極 2 0 2の仕事関数が対極 2 0 3の仕事関数よりも大きい 場合では、 電子は透明電極 2 0 2へ、 正孔は対極 2 0 3へ輸送される。 なお 、 仕事関数の大小が逆転すれば、 電子と正孔はこれとは逆方向に輸送される 。 また、 透明電極 2 0 2と対極 2 0 3との間に電位をかけることにより、 電 子と正孔の輸送方向を制御することもできる。 [0156] In FIG. 3, light incident from the transparent electrode 202 through the substrate 201 is absorbed by an electron acceptor or an electron donor in the bulk heterojunction layer of the photoelectric conversion section 204, Electrons move from the electron donor to the electron acceptor, forming a hole-electron pair (charge separation state). The generated charge is caused by an internal electric field, for example, when the transparent electrode 202 and the counter electrode 203 have different work functions, electrons are transferred between the electron acceptors due to the potential difference between the transparent electrode 202 and the counter electrode 203. And the holes pass between the electron donors and are carried to different electrodes to detect photocurrent. For example, when the work function of the transparent electrode 202 is larger than that of the counter electrode 203, electrons are transported to the transparent electrode 202 and holes are transported to the counter electrode 203. If the work function is reversed, electrons and holes will be transported in the opposite directions. Further, by applying an electric potential between the transparent electrode 202 and the counter electrode 203, the transport directions of electrons and holes can be controlled.
[0157] なお、 図 3には記載していないが、 正孔ブロック層、 電子ブロック層、 電 子注入層、 正孔注入層、 又は平滑化層等の他の層を有していてもよい。 [0157] Although not shown in Fig. 3, it may have other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. ..
[0158] また、 さらなる太陽光利用率 (光電変換効率) の向上を目的として、 この ような光電変換素子を積層した、 タンデム型の構成 (バルクへテロジャンク 〇 2020/175514 33 卩(:171? 2020 /007606 [0158] In order to further improve the solar light utilization rate (photoelectric conversion efficiency), a tandem-type configuration (bulk heterojunk 〇 2020/175 514 33 卩(:171? 2020/007606
ション層を複数有する構成) であってもよい。 (A configuration having a plurality of application layers).
[0159] 上記のような層に用いることができる材料については、 例えば、 特開 2 0 [0159] Materials that can be used for the layer as described above are described in, for example, Japanese Patent Laid-Open No. 20
1 5 - 1 4 9 4 8 3号公報の段落 0 0 4 5〜 0 1 1 3に記載の n型半導体材 料、 及び 型半導体材料が挙げられる。 Examples include the n-type semiconductor material and the type semiconductor material described in paragraphs 0 0 4 5 to 0 11 13 of Japanese Patent Laid-Open No. 154-14943.
[0160] 有機光電変換素子を構成する電極については、 前記した有機巳 !_素子で用 いられる陽極と陰極を同様に用いることが好ましい。 詳細な説明は、 上述し た有機巳 !_素子で用いられる陽極及び陰極と同様のためここでは省略する。 [0160] Regarding the electrodes constituting the organic photoelectric conversion element, it is preferable to use the same anode and cathode as those used in the above-mentioned organic semiconductor element. Detailed description is omitted here because it is the same as the anode and cathode used in the above-mentioned organic semiconductor device.
[0161 ] また、 有機光電変換素子は、 バルクへテロジャンクション層で生成した正 電荷と負電荷とが、 それぞれ 型有機半導体材料、 及び 0型有機半導体材料 を経由して、 それぞれ陽極及び陰極から取り出され、 電池として機能するも のである。 それぞれの電極には、 電極を通過するキャリアに適した特性が求 められる。 [0161] In addition, in the organic photoelectric conversion element, positive charges and negative charges generated in the bulk heterojunction layer are extracted from the anode and the cathode via the type organic semiconductor material and the type 0 organic semiconductor material, respectively. It functions as a battery. Each electrode is required to have characteristics suitable for the carrier passing through the electrode.
[0162] 有機光電変換素子は、 バルクへテロジャンクション層で発生した電荷をよ り効率的に取り出すことが可能となるため、 バルクヘテロジャンクション層 と陽極との中間には正孔輸送層 ·電子ブロック層を有していることが好まし い。 [0162] Since the organic photoelectric conversion device can more efficiently take out the charges generated in the bulk heterojunction layer, a hole transport layer/electron block layer is provided between the bulk heterojunction layer and the anode. It is preferable to have
[0163] これらの層を構成する材料としては、 例えば、 正孔輸送層としては、 ヘレ ウス社製〇 丨 6 V 丨 〇 3等の 巳 0〇丁、 ポリアニリン及びそのドープ材料 、 〇 2 0 0 6 / 0 1 9 2 7 0号等に記載のシアン化合物等を用いることが できる。 [0163] Examples of materials constituting these layers include, for example, a hole-transporting layer made by Heraeus Co., Ltd., such as 〇 䆨 6 V 丨 〇 3, polyaniline and its doped material, 〇 200 Cyan compounds and the like described in 6/0 1 9270 can be used.
[0164] 有機光電変換素子は、 バルクへテロジャンクション層と陰極との中間には 電子輸送層 ·正孔ブロック層 ·バッファー層を形成することで、 バルクへテ ロジャンクション層で発生した電荷をより効率的に取り出すことが可能とな るため、 これらの層を有していることが好ましい。 [0164] In the organic photoelectric conversion device, by forming an electron transport layer, a hole blocking layer, and a buffer layer between the bulk heterojunction layer and the cathode, the charges generated in the bulk heterojunction layer can be more effectively dispersed. It is preferable to have these layers because they can be taken out efficiently.
[0165] 有機光電変換素子は、 太陽光のより効率的な受光を目的として、 各種の光 学機能層を有していてよい。 光学機能層としては、 例えば、 反射防止膜、 マ イクロレンズアレイ等の集光層、 陰極で反射した光を散乱させて再度バルク へテロジャンクション層に入射させることができるような光拡散層等を設け 〇 2020/175514 34 卩(:171? 2020 /007606 [0165] The organic photoelectric conversion element may have various optical functional layers for the purpose of more efficiently receiving sunlight. Examples of the optical functional layer include an antireflection film, a light condensing layer such as a microlens array, and a light diffusing layer that scatters the light reflected by the cathode and allows it to enter the bulk heterojunction layer again. Establishment 〇 2020/175 514 34 卩 (:171? 2020 /007606
てもよい。 May be.
実施例 Example
[0166] 以下、 実施例を挙げて本発明を具体的に説明するが、 本発明はこれらに限 定されるものではない。 なお、 実施例において 「部」 又は 「%」 の表示を用 いるが、 特に断りがない限り 「質量部」 又は 「質量%」 を表す。 [0166] Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the examples, “part” or “%” is used, but unless otherwise specified, “part by mass” or “mass %” is shown.
[0167] 実施例中、 又は表 1〜表 4中の、 「〇 〇」 は 1 1~1 , 1 1~1 , 5 1~1 -オク タフルオロー 1 —ペンタノールを表している。 [0167] In the examples or in Tables 1 to 4, "OO" represents 11 to 1, 11 1 to 1, 5 1 to 1-octafluoro-1-pentanol.
[0168] また、 実施例中、 (〇 丨 〇 6はタングステンジイソプロポキシド (八 [0168] In the examples, (○ 侨 0 6 is tungsten diisopropoxide (8
I 干 3 八6 3 3 〇 を表し、 大気下で加熱することで大気中の水分と加水 分解反応を起こし酸化タングステンへ変化する。 I 348 3 3 0, which when heated in the atmosphere causes a hydrolysis reaction with moisture in the atmosphere to change to tungsten oxide.
[0169] 八 丨 (〇 丨 〇 3はアルミニウムイソプロポキシド (東京化成工業株式会 社製) を表し、 加熱することで大気中の水分と加水分解反応を起こし酸化ア ルミニウムへ変化する。 [0169] Eighty-eight ( three, thirty- three ) represents aluminum isopropoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), which when heated causes a hydrolysis reaction with water in the atmosphere to change to aluminum oxide.
[0170] 酸化ニオブナノ粒子は多木化学株式会社製のバイラール 6 - 0 6 0 0 0 を用いている。 [0170] As the niobium oxide nanoparticles, Biral 6-0-6600 manufactured by Taki Chemical Co., Ltd. is used.
[0171 ] 酸化スズナノ粒子は多木化学株式会社製のセラメース3 _ 8を用いている [0171] Tin oxide nanoparticles use Ceramace 3_8 manufactured by Taki Chemical Co., Ltd.
[0172] 酸化ジルコニウムナノ粒子は堺化学工業株式会社製の 3
Figure imgf000035_0001
ジルコニ アメタノール分散液を用いている。
[0172] Zirconium oxide nanoparticles are manufactured by Sakai Chemical Industry Co., Ltd. 3
Figure imgf000035_0001
A zirconia-methanol dispersion is used.
[0173] チタン酸バリウムナノ粒子は日本化学工業株式会社製のパルセラムを用い ている。 [0173] As the barium titanate nanoparticles, parcelam manufactured by Nippon Kagaku Kogyo Co., Ltd. is used.
[0174] ポリウレタンは荒川化学工業株式会社製を用いている。 [0174] Polyurethane manufactured by Arakawa Chemical Industry Co., Ltd. is used.
[0175] 「 口 V 1」 はポリフッ化ビニリデンを表し、
Figure imgf000035_0002
[0175] "Mouth V 1" represents polyvinylidene fluoride,
Figure imgf000035_0002
の 丁_丁 3を用いている。 I'm using Ding-3.
[0176] 「 〇 2」 はポリフッ化ビニリデンを表し、
Figure imgf000035_0003
[0176] "○ 2" represents polyvinylidene fluoride,
Figure imgf000035_0003
の 丁_ 3を用いている。 I'm using Ding_3.
[0177] 絶縁性誘電材料巳 1〜巳 5は東京化成工業株式会社製のものを用いており 、 以下の構造を有する。 \¥0 2020/175514 35 卩(:17 2020 /007606 [0177] Insulating dielectric materials Mitsumi 1 to Mitsui are made by Tokyo Kasei Kogyo Co., Ltd. and have the following structure. \\0 2020/175 514 35 卩 (: 17 2020 /007606
[0178] 導電性材料八 1〜八 1 1は、 以下の構造を有する化合物である。 [0178] The conductive materials 81 to 81 are compounds having the following structures.
[0179] [化 1 ] [0179] [Chemical 1]
61 62 61 62
Figure imgf000036_0001
Figure imgf000036_0001
[0180] [0180]
Figure imgf000037_0001
Figure imgf000037_0001
[0181] 〇 2020/175514 37 2020 /007606 [0181] 〇 2020/175 514 37 2020/0076 06
[化 3] [Chemical 3]
Figure imgf000038_0001
Figure imgf000038_0001
[0182] [実施例 1 ] [0182] [Example 1]
実施例 1では、 本発明に係る絶縁性誘電材料と導電性材料を含む層が組み 込まれているエレク トロンオンリーデバイス (以下、 「巳〇〇」 と表記する 。 ) の駆動電圧について評価した。 〇 2020/175514 38 卩(:171? 2020 /007606 In Example 1, the drive voltage of the electron-only device (hereinafter, referred to as “Mix”) in which the layer including the insulating dielectric material and the conductive material according to the present invention was incorporated was evaluated. 〇 2020/175 514 38 卩 (:171? 2020 /007606
[0183] <評価用 £ 0 0 1 - 1の作製> [0183] <Production of £0.001-1 for evaluation>
(陽極の形成) (Formation of anode)
縦 5 0〇1 111、 横 5 0〇1 111、 厚さ 0 . 7〇1 のガラス基板上に、 丨 丁〇 (イ ンジウム ·スズ酸化物) を 1 2 0 n の厚さで成膜してパターニングを行い 、 丨 丁〇透明電極からなる陽極を形成した。 その後、 イソプロピルアルコー ルで超音波洗浄し、 乾燥窒素ガスで乾燥し、 リ Vオゾン洗浄を 5分間行った On a glass substrate with a vertical length of 500111, a horizontal length of 500111, and a thickness of 0.701, a film of hen (indium tin oxide) with a thickness of 120 n is formed. Then, patterning was performed to form an anode composed of a transparent electrode. After that, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and LiV ozone cleaning for 5 minutes were performed.
[0184] (ホールブロック層の形成) [0184] (Formation of hole blocking layer)
次に、 この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition device.
[0185] 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、 各層の構成材料を各 々素子作製に最適の量を充填した。 前記蒸着用抵抗加熱ボートはタングステ ン製又はモリブデン製を用いた。 [0185] Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device production. The vapor deposition resistance heating boat was made of Tungsten or molybdenum.
[0186] 真空度 1 X 1 0 _4 3まで減圧した後、 カルシウムを成膜レート〇. 2 n m
Figure imgf000039_0001
してホールブロック層を形成した。
[0186] After reducing the vacuum to 1 x 10 _ 4 3 and then depositing calcium on the film at a rate of 0.2 nm
Figure imgf000039_0001
Then, a hole blocking layer was formed.
[0187] (機能層の形成) [0187] (Formation of functional layer)
次に、 大気環境下で、 〇 〇に導電性材料である化合物八 1 を 1 . 3質 量%の濃度で溶解させ、 1 0 0 0 「 、 3 0秒でスピンコート法により、 ホールブロック層を形成した基板上に 8 0
Figure imgf000039_0002
の厚さで化合物八 1 を成膜し
Next, in an atmospheric environment, the compound 81, which is a conductive material, was dissolved at a concentration of 1.3 mass% in 0.00, and the hole blocking layer was formed by spin coating for 100 seconds, 30 seconds. 80 on the substrate on which
Figure imgf000039_0002
Compound 8 with a thickness of
、 1 0〇 、 3 0分乾燥して機能層を形成した。 , 100, 30 minutes to form a functional layer.
[0188] (陰極、 及び封止) [0188] (Cathode and sealing)
次に、 アルミニウム 1 0 0 n を蒸着して陰極を形成した後、 上記巳〇〇 の非発光面をガラスケースで覆い、 巳〇〇が作製されたガラス基板 (支持基 盤) と接触する、 巳〇〇を覆うガラスケースの周辺部に、 エポキシ系光硬化 型接着剤 (東亜合成社製ラクストラック 1-(3 0 6 2 9巳) によるシール剤を 設けた。 そして、 このシール材を上記巳〇〇の陰極側に重ねてガラス基板と 密着させた。 その後、 ガラスケース側から II V光を照射してシール材を硬化 することで巳〇 0を封止し、 評価用巳〇〇 1 - 1 を作製した。 なお、 ガラス ケースでの封止作業は、 巳〇口を大気に接触させることなく窒素雰囲気下の 〇 2020/175514 39 卩(:171? 2020 /007606 Next, after aluminum 100 n is vapor-deposited to form a cathode, the non-light-emitting surface of the above-mentioned No. 00 is covered with a glass case, and the No. 00 is brought into contact with the glass substrate (supporting substrate) on which it is manufactured. A sealant made of an epoxy-based photo-curing adhesive (Luxtrac 1-(3 0 6 2 9 Mfg., manufactured by Toagosei Co., Ltd.) was provided on the periphery of the glass case that covers the ______. Then, it was placed on the cathode side of the ____________ and adhered to the glass substrate.Then, by irradiating II V light from the glass case side to cure the sealing material, the __________ was sealed, and the evaluation of _____________ was measured. -1 was manufactured, and the sealing work in the glass case was performed under a nitrogen atmosphere without exposing the opening to the atmosphere. 〇 2020/175 514 39 卩 (:171? 2020 /007606
グローブボックス (純度 99. 999%以上の高純度窒素ガスの雰囲気下) で行った。 It was carried out in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more).
[0189] <評価用巳〇〇 1 -2〜 1 - 1 7> [0189] <Evaluation system 〇〇 1 -2 ~ 1-1 7>
評価用 £001 - 1 において、 化合物 1 を表 I に記載の導電性材料、 注 入材料及び絶縁性誘電材料に、 それぞれの混合比 (質量比) で置き換えた以 外は同様にして、 評価用巳〇〇 1 — 2〜 1 — 1 7の作製を行った。 For evaluation £001-1, except that Compound 1 was replaced with the conductive material, injection material and insulating dielectric material shown in Table I by their respective mixing ratios (mass ratios), The production of Michi 002 1-2-1-17 was carried out.
[0190] <評価用巳〇口の駆動電圧評価> [0190] <Evaluation of the drive voltage of the M port for evaluation>
ここで、 各評価用巳〇〇の 2. 5 八/〇〇12時の電圧を駆動電圧として評 価用巳〇 01 _ 1 を相対値 1. 00としたときの各評価用巳〇 0の駆動電圧 の比率を相対値として算出した。 1. 〇〇よりも小さいほど、 駆動電圧が優 れていることを意味する。 なお、 表中の混合比は導電性材料:絶縁性誘電材 料の体積比を百分率で示している。 また、 混合比が材料毎で異なる理由を下 記に記す。 本発明では絶縁性誘電材料の混合量を増やすほど比誘電率が増加 し、 それに伴う駆動電圧の低下が起こる。 一方で、 これらの材料は絶縁性で あることによる駆動電圧の増加の効果も当然ある。 この二つの競合下で駆動 電圧が最も低下する適点が材料毎に存在する。 本実施例では材料毎で駆動電 圧が最も低くなる混合比を用いている。 Here, each evaluation Snake 〇 0 when the evaluation for Snake 〇 01 _ 1 and a relative value 1.00 to 2.5 eight / Rei_rei_1 2 o'clock voltages of the evaluation Snake hundred as the drive voltage The drive voltage ratio was calculated as a relative value. 1. The smaller the value is, the better the driving voltage is. In addition, the mixing ratio in the table indicates the volume ratio of conductive material: insulating dielectric material in percentage. The reasons why the mixing ratio differs depending on the material are described below. In the present invention, as the mixing amount of the insulating dielectric material increases, the relative permittivity increases, and the driving voltage decreases accordingly. On the other hand, since these materials are insulative, the drive voltage is naturally increased. There is an appropriate point for each material where the driving voltage drops most under these two competitions. In the present embodiment, the mixing ratio that gives the lowest driving voltage for each material is used.
[0191] <評価用巳〇口の経時駆動後電圧変化> [0191] <Variation in voltage after aging of evaluation port #0>
各評価用巳〇 0に 400 八の電流を 25 °〇で 50時間通電保持した後、 2. 5 八/〇〇12時の電圧を経時駆動後の電圧として、 駆動前の 2. 5〇1八 /〇〇12時の電圧を 1. 00としたときの各評価用巳〇口の経時駆動後の電圧 の比率を相対値として算出した。 なお、 値が小さいものほど安定性が高いこ とを示している。 After the current of 400 8 was applied to each evaluation board at 25 ° for 50 hours, the voltage at 2.5 8/○ 1 2 o'clock was set as the voltage after aging, and the voltage before When the voltage at 18/00 12 o'clock was set to 1.00, the ratio of the voltage after aging of each of the evaluation holes was calculated as a relative value. The smaller the value, the higher the stability.
[0192] <評価用 £00の比誘電率の測定> <0192] <Measurement of relative permittivity of £00 for evaluation>
比誘電率の測定は日本工業規格」 丨 3 2 1 38 : 2007を参照してお こなった。 具体的には、 3〇 丨 「 「〇 1^ 1 26096を用いてインビー ダンス分光により測定を行った。 なお、 測定条件は周波数 1 〇
Figure imgf000040_0001
For the measurement of the relative permittivity, refer to “Japanese Industrial Standards”, “3 2 1 38: 2007”. Specifically, the measurement was carried out by impedance spectroscopy using a 30 ”“ 〇 1^1 26096.
Figure imgf000040_0001
~
1 八〇 : 〇. 1 (V) 、 00 : 0 (V) である。 〔 |〔谢 |3__|| 表 I It is 1880:○0.1(V) and 00:0(V). [ | 〔谢| 3__ || Table I
Figure imgf000041_0001
Figure imgf000041_0001
»^ 室¾ «阳;¾1¾_概簦酣誰湘 ^ ¾ 〔〕谢丑翯 _ 1 ¾ ^: 80> 80>094- ¾ » ¢ 1こ調 ® ^ X ^ < 1厂 7 ^ ^ 8981+= '0- ¾。 ¾ _钟譁鄭_¾¾: '商 - ^ ' > ^ ^ 0<7£077:1., »^ $ ¾ room ¾ «阳;¾ 1 ¾ _ 谦煣whosho ^ ¾ [] 谢丑翯 _ 1 ¾ ^ : 8 0> 8 0>094 -¾ ^ ^ 8981+= ' 0- ¾. ¾ _钟譁鄭 _ ¾ ¾: 'quote-^'>^ ^ 0< 7 £07 7 :1. ,
»〇翯 ®鰹涵删概 ^ ^一^ ^ ^ ^^ ^^ ^ ^〇〇 -/ »○ 翯 ® 鰹涵删要^^一^^^^^^^^^ 〇- /
。命 -1 ^ 8 ^〇 ^^ ^-¾諸 〔〕〔室 1_0952| 〇 2020/175514 41 卩(:171? 2020 /007606 .. Life -1 ^ 8 ^ 〇 ^^ ^-¾ Various [] [Room 1 _ 095 2 | 〇 2020/175 514 41 卩 (:171? 2020 /007606
実施例 2では、 本発明に係る絶縁性誘電材料と導電材料を含む層が電子輸 送層又は電子注入層に限らずホール輸送層、 ホール注入層、 及び発光層等の いずれかの層に組み込まれた巳〇 0又はホールオンリーデバイス (以下 1~1〇 口と記す) の駆動電圧について評価した。 In Example 2, the layer containing the insulating dielectric material and the conductive material according to the present invention is not limited to the electron transport layer or the electron injection layer, and is incorporated in any layer such as the hole transport layer, the hole injection layer, and the light emitting layer. The drive voltage of the device or hole-only device (hereinafter referred to as 1 to 10 ports) was evaluated.
[0196] <評価用巳 002- 1〜 2-6の作製> [0196] <Production of evaluation 002-1-2 to 2-6>
評価用 £001 - 1 において、 化合物 1 を表 2に記載の化合物又は混合 物に置き換え、 また、 評価用巳〇〇 1 — 1 において、 溶媒〇 〇を表 2に 記載の溶媒に置き換えた以外は同様にして評価用巳〇 02— 1〜 2— 6の作 製を行った。 Compound £1 was replaced with the compound or mixture listed in Table 2 for evaluation £001 -1, and solvent XX was replaced with the solvent listed in Table 2 for evaluation In the same way, the evaluations 01-2-1 to 2-6 were made.
[0197] <評価用 1~1〇 02 - 7の作製> [0197] <Production of 1 to 10 02-7 for evaluation>
(陽極の形成) (Formation of anode)
評価用 £001 - 1 と同様の手順で陽極の形成を行った。 The anode was formed in the same procedure as for evaluation £001-1.
[0198] (機能層の形成) [0198] (Formation of functional layer)
この基板上に、 大気環境下で、 ポリ (3, 4—エチレンジオキシチオフエ ン) ーポリスチレンスルホネート (?巳 0〇丁/ 33、
Figure imgf000042_0001
社製、 B a y t r o n 9 八 1 4083) を純水で 70 %に希釈した溶液を 3 000 V p ms 30秒でスビンコート法により製膜した後、 200°〇にて 1 時間乾燥し、 膜厚 30 n の 巳 0〇丁 / 33を設けた。
Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (?
Figure imgf000042_0001
(Baytron 9 8 1 4083 manufactured by K.K.) was diluted with pure water to 70%, and a film was formed by the spin coating method at 3,000 V pm s for 30 seconds, and then dried at 200° 〇 for 1 hour to give a film thickness of 30 There are n 0/00/33.
[0199] 次に、 大気環境下で、 ジクロロベンゼンに化合物八 7を 1. 5質量%の濃 度で溶解させ、 700 「 〇1、 30秒でスピンコート法により、
Figure imgf000042_0002
厚さで化合物 4を成膜し、 1 001、 30分乾燥して機能層を形成した。
[0199] Next, in an atmospheric environment, Compound 8 7 was dissolved in dichlorobenzene at a concentration of 1.5% by mass, and the spin coating method was performed at 700 "○ 1, 30 seconds.
Figure imgf000042_0002
Compound 4 was formed into a film with a thickness and dried for 1001 for 30 minutes to form a functional layer.
[0200] 次に、 《— 〇を蒸着速度〇. 1 n〇!/秒で 20 n 蒸着し、 電子ブロ ック層を形成した後、 アルミニウム 1 00门 を蒸着して陰極を形成した。 その後、 上記 1~1〇 0の非発光面をガラスケースで覆い、 !!〇0が作製された ガラス基板 (支持基盤) と接触する、 !!〇0を覆うガラスケースの周辺部に 、 エポキシ系光硬化型接着剤 (東亜合成社製ラクストラック !_〇 0629巳 ) によるシール剤を設けた。 そして、 このシール材を上記 1~1〇 0の陰極側に 重ねてガラス基板と密着させた。 その後、 ガラスケース側から II V光を照射 〇 2020/175514 42 卩(:171? 2020 /007606 [0200] Next, «-○ was vapor-deposited at a vapor deposition rate of 0.1 n 〇!/sec for 20 n to form an electron block layer, and then 100 aluminum was vapor-deposited to form a cathode. After that, cover the non-light emitting surface in 1 to 100 above with a glass case, and Contact with the glass substrate (supporting substrate) where !0 is produced,! A sealant made of an epoxy-based photo-curing adhesive (Luxtrac!__ 0629M manufactured by Toagosei Co., Ltd.) was provided on the periphery of the glass case that covers !0. Then, this sealing material was placed on the cathode side of the above 1 to 100 and was brought into close contact with the glass substrate. After that, II V light is emitted from the glass case side. 〇 2020/175 514 42 卩 (:171? 2020 /007606
してシール材を硬化することで 1~1〇 0を封止し、 評価用|~|〇 0 2 - 7を作製 した。 なお、 ガラスケースでの封止作業は、 1~1〇 0を大気に接触させること なく窒素雰囲気下のグローブボックス (純度 9 9 . 9 9 9 %以上の高純度窒 素ガスの雰囲気下) で行った。 And 1 to 1_Rei 0 by curing the sealing member sealed, evaluation | ~ | 〇 0 2 - was produced 7. The glass case should be sealed in a glove box (under a high-purity nitrogen gas atmosphere with a purity of 99.99.9% or more) in a nitrogen atmosphere without contacting 1 to 100 with the atmosphere. went.
[0201 ] <評価用巳〇 0 2 - 8〜 2 - 1 8の作製> [0201] <Fabrication of evaluation 〇 0 2-8 to 2-18>
評価用 £ 0 0 2 - 7において、 化合物 7を表 2に記載の化合物又は混合 物に置き換え、 また、 溶解させる溶媒をジクロロベンゼンから表 2に記載の 溶媒に置き換えた以外は同様にして評価用巳〇 0 2— 8〜 2— 1 8の作製を 行った。 For evaluation £0 0 2-7, except that compound 7 was replaced with the compound or mixture listed in Table 2 and the solvent to be dissolved was replaced with dichlorobenzene from the solvent listed in Table 2 Preparations of M. 0 0 2-8 to 2-18 were made.
[0202] <評価用巳〇 0及び 1~1〇 0の駆動電圧評価> [0202] <Evaluation of drive voltage of 0 and 1 to 100>
ここで、 各評価用巳〇〇の 2 . 5 八/〇〇12時の電圧を駆動電圧として評 価用巳〇 0 1 _ 1 を相対値 1 . 0 0としたときの各評価用巳〇 0の駆動電圧 の比率を相対値として算出した。 また、 各評価用1~1〇0の 2 . 5 八/〇〇!2 時の電圧を駆動電圧として評価用!· I〇 0 2 - 7を相対値 1 . 0 0としたとき の各評価用 1~1〇口の駆動電圧の比率を相対値として算出した。 1 . 0 0より も小さいほど、 駆動電圧が優れていることを意味する。 なお、 表中の混合比 は導電性材料: (導電性材料 2) :絶縁性誘電材料の体積比を百分率で示し ている。 また、 混合比が材料毎で異なる理由は、 先に述べた通り、 混合比に よる駆動電圧の最下点が材料毎で異なるためであり、 ここでも各材料で最も 駆動電圧が低くなる濃度を用いている。 Here, 2.5 eight / Rei_rei_1 relative value evaluation for Snake 〇 0 1 _ 1 voltage as the driving voltage of 2:00 1.0 0, and the evaluation only when the each evaluation snake hundred The drive voltage ratio of 0 was calculated as a relative value. In addition, for evaluation 2.5 eight / hundred! 2 o'clock voltage of each evaluation for 1 to 1_Rei_0 as a driving voltage! ·The relative value was calculated as the ratio of the driving voltage for each evaluation 1 to 10 ports, where I 0 0 2 -7 was set to a relative value of 1.0. The smaller than 1.0, the better the driving voltage. In addition, the mixing ratio in the table shows the volume ratio of conductive material: (conductive material 2): insulating dielectric material in percentage. The reason why the mixing ratio differs for each material is that the lowest point of the driving voltage due to the mixing ratio differs for each material, as described above. I am using.
[0203] <評価用日〇 0及び 1~1〇口の経時駆動後の電圧> [0203] <Evaluation date 0 and 1 to 10 voltage after aging driving>
各評価用巳〇 0および 1~1〇 0に 4 0 0 八の電流を 2 5 °〇で 5 0時間通電 保持した。 その後、 2 . 5 八/〇〇12時の電圧を経時駆動後の電圧として、 駆動前の 2 . 5 八/〇 2時の電圧を 1 . 0 0としたときの各評価用巳〇〇 又は各評価用 1~1〇口の経時駆動後の電圧の比率を相対値として算出した。 な お、 値が小さいものほど安定性が高いことを示している。 A current of 408 was applied and maintained at 25 ° for 50 hours for each evaluation 000 and 1 to 100. Thereafter, 2.5 eight / Rei_rei_1 the 2 o'clock voltage as a voltage after aging drive, before driving 2.5 eight / 〇 a 2:00 voltage 1.0 0, and the evaluation Snake hundred when the Alternatively, the ratio of voltage after aging of 1 to 10 ports for each evaluation was calculated as a relative value. The smaller the value, the higher the stability.
[0204] <評価用日〇 0及び 1~1〇 0の比誘電率の測定> [0204] <Measurement of relative permittivity on evaluation day 0 and 1 to 100>
実施例 1 と同様の手段で測定を行った。 〔〔¾00 5__2 表 II The measurement was performed by the same method as in Example 1. [(¾ 00 5 __ 2 Table II
Figure imgf000044_0001
Figure imgf000044_0001
^1 -窗 ¾窗 〔 1谢 ^\厂 ?叫二门〇〇 £ 021006— 01211|¾;-·1 ^ 1-窗 ¾ 窗 〔 1谢 ^ \厂 虂 门2门 〇 〇 £ 02 1006 — 0 1211| ¾;-· 1
。 « ^ ¾翯删 ^ ¾ ^:?一厂^ ^ ^^一 ^ ^ ^ 0 ^; 22 - 1 '- 〇 2020/175514 44 卩(:171? 2020 /007606 .. «^ ¾ 翯删 ^ ¾ ^ : ? 厂 ^ ^ ^^ ↑ ^ ^ ^ 0 ^ ; 22-1 ' 〇 2020/175 514 44
られている材料八4 ~八 6は有機エレクトロルミネッセンス用の発光層で用 いられるホスト材料又はドーパント発光材料である。 一方で、 評価用 £ 0 0 1 — 1で用いられている八 1は電子デバイスで用いられる電子輸送層用の材 料であり、 本系では八 1の方が電子易動度は高いため、 評価用巳〇〇 1 _ 1 に対して、 相対駆動電圧が評価用巳〇 0 2 _ 1又は 2 _ 2にて大幅に高く出 ている。 そして、 評価用巳〇〇 2— 3〜 2— 6における相対駆動電圧が 1 .The known materials 8 4 to 8 6 are host materials or dopant light emitting materials used in the light emitting layer for organic electroluminescence. On the other hand, 81 used in evaluation £ 0 0 1 — 1 is a material for the electron transport layer used in electronic devices, and in this system, 81 is higher in electron mobility, so Relative drive voltage is significantly higher in the evaluation method 〇 0 2 _ 1 or 2 _ 2 than the evaluation method 〇 0 1 _ 1. Then, the relative drive voltage in the evaluation test 〇〇2−3 to 2−6 is 1.
0 0より大きいものもあるが、 評価用 2 - 1又は 2 - 2を基準とするサンプ ルであるため、 評価用巳〇〇 2 _ 1又は 2— 2に対して相対駆動電圧の低下 が起こっていることがわかる。 さらに、 評価用 1~1〇 0の評価においても同様 の結果となっており、 比較例に対して本発明では明確な相対駆動電圧の低下 が見られる。 経時駆動後の電圧についても本発明ではいずれも比較例に対し て明確に経時駆動後の電圧が小さいことがわかる。 Although there are some that are larger than 0, since the sample is based on 2-1 or 2-2 for evaluation, a decrease in the relative drive voltage occurs with respect to _2 or 1 for evaluation. You can see that Further, the same results were obtained in the evaluations 1 to 100 for evaluation, and a clear decrease in the relative drive voltage was observed in the present invention as compared with the comparative example. Regarding the voltage after aging, it is clear that in the present invention, the voltage after aging is clearly smaller than that of the comparative example.
[0207] [実施例 3 ] [0207] [Example 3]
実施例 3では本発明に係る導電性材料と絶縁性誘電材料を用いて大気環境 下で作製した有機発光デバイス (有機巳 !_素子) の性能評価を行った。 In Example 3, the performance evaluation of an organic light emitting device (organic semiconductor device) manufactured under an atmospheric environment using the conductive material and the insulating dielectric material according to the present invention was performed.
[0208] <有機巳 !_素子 3 - 1の作製> [0208] <Fabrication of Organic Semiconductor !_ Device 3-1>
以下のように、 基材上に、 陽極/正孔注入層/正孔輸送層/発光層/ブロ ック層/電子輸送層/陰極を積層した後封止し、 ボトムエミッション型の有 機巳 !_素子 3 - 1 を作製した。 As shown below, after stacking the anode/hole injection layer/hole transport layer/light emitting layer/block layer/electron transport layer/cathode on the base material and then sealing, the bottom emission type organic layer was formed. !_ element 3-1 was fabricated.
[0209] (基材の準備) [0209] (Preparation of base material)
まず、 ポリエチレンナフタレートフイルム (帝人デュポン社製、 以下、 巳 1\1と略記する。 ) の陽極を形成する側の全面に、 特開 2 0 0 4— 6 8 1 4 3号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、 3 丨 〇<から なる無機物のガスバリアー層を層厚 5 0 0 n
Figure imgf000045_0001
となるように形成した。 これ により、 酸素透過度〇. 0 0 1 !_ / ( 2 2 4 11 3 I 〇 ) 以下、 水蒸 気透過度〇. 0 0 1 9 / ( 2 2 4 II) 以下のガスバリアー性を有する可撓 性の基材を作製した。
First, the entire surface of a polyethylene naphthalate film (manufactured by Teijin DuPont, abbreviated as "Min 1\1" hereinafter) on the side where the anode is formed is described in Japanese Patent Laid-Open No. 2 0 4 6 8 1 4 3. Using the atmospheric pressure plasma discharge treatment device of the constitution, a gas barrier layer of inorganic material consisting of 3<
Figure imgf000045_0001
It was formed so that As a result, it has a gas barrier property with an oxygen permeability of less than 0.001!_ / ( 2 2 4 11 3 I 0) and a water vapor permeability of less than 0.0 0 1 9 / ( 2 2 4 II). A flexible substrate was prepared.
[0210] (陽極の形成) 〇 2020/175514 45 卩(:171? 2020 /007606 [0210] (Formation of anode) 〇 2020/175 514 45
上記基材上に厚さ 1 20 n mの丨 丁〇 (インジウム ·スズ酸化物) をスバ ッタ法により製膜し、 フォトリソグラフイー法によりバターニングを行い、 陽極を形成した。 なお、 パターンは発光領域の面積が 5001X5001になる ようなパターンとした。 On the above-mentioned base material, a 120-nm-thick sushi (indium tin oxide) film was formed by a sputtering method, and patterning was performed by a photolithography method to form an anode. The pattern was such that the area of the light emitting region was 5001X5001.
[0211] (正孔注入層の形成) [0211] (Formation of hole injection layer)
陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、 乾燥窒素 ガスで乾燥し、 II Vオゾン処理を 5分間行った。 そして、 陽極を形成した基 材上に、 特許第 4509787号公報の実施例 1 6と同様に調製したポリ ( 3, 4—エチレンジオキシチオフエン) /ポリスチレンスルホネート ( 巳 0〇丁/ 33) の分散液をイソプロピルアルコールで希釈した 2質量%溶 液をインクジェッ ト法にて塗布、 80°〇で 5分乾燥し、 層厚 40 n mの正孔 注入層を形成した。 The substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and treated with II V ozone for 5 minutes. Then, on the base material on which the anode was formed, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (Mr. 00/33) prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was prepared. A 2 mass% solution obtained by diluting the dispersion with isopropyl alcohol was applied by the inkjet method and dried at 80 ° C for 5 minutes to form a hole injection layer with a layer thickness of 40 nm.
[0212] (正孔輸送層の形成) [0212] (Formation of hole transport layer)
次に、 正孔注入層を形成した基材を、 大気環境下で、 下記組成の正孔輸送 層形成用塗布液を用いて、 インクジヱッ ト法にて塗布、 1 30°〇で 30分乾 燥し、
Figure imgf000046_0001
の正孔輸送層を形成した。
Next, the substrate on which the hole injection layer was formed was coated by the ink jet method using the hole transport layer forming coating solution having the following composition in the atmospheric environment, and dried at 1300 ° for 30 minutes. Then
Figure imgf000046_0001
To form a hole transport layer.
(正孔輸送層形成用塗布液) (Coating liquid for forming hole transport layer)
正孔輸送材料 7 (重量平均分子量
Figure imgf000046_0002
1 0質量部 クロロベンゼン 3000質量部
Hole transport material 7 (weight average molecular weight
Figure imgf000046_0002
10 parts by mass Chlorobenzene 3000 parts by mass
(発光層の形成) (Formation of light emitting layer)
次に、 正孔輸送層を形成した基材を、 下記組成の発光層形成用塗布液を用 い、 インクジェッ ト法にて塗布し、 1 20°〇で 30分間乾燥し、 層厚 50门 の発光層を形成した。 Next, the substrate on which the hole transport layer has been formed is coated by the ink jet method using a coating solution for forming a light emitting layer having the following composition, dried at 120 ° 〇 for 30 minutes, and a layer thickness of 50 A light emitting layer was formed.
[0213] (発光層形成用塗布液) [0213] (Coating liquid for forming light emitting layer)
ホスト化合物 八 4 1 〇質量部 燐光発光材料 八 5 1質量部 蛍光発光材料 八 6 0. 1質量部 酢酸ノルマルブチル 2200質量部 〇 2020/175514 46 卩(:171? 2020 /007606 Host compound 8 41 0 parts by weight Phosphorescent material 8 51 parts by weight Fluorescent material 8 6 0.1 parts by weight Normal butyl acetate 2200 parts by weight 〇 2020/175 514 46 卩 (:171? 2020 /007606
(電子輸送層の形成) (Formation of electron transport layer)
次に、 下記組成の電子輸送層形成用塗布液を用い、 インクジェッ ト法にて 塗布し、 8 0 °◦で 3 0分間乾燥し、 層厚 3 0 n の電子輸送層を形成した。 Next, an electron transport layer-forming coating solution having the following composition was used for coating by an inkjet method and dried at 80°° for 30 minutes to form an electron transport layer having a layer thickness of 30 n .
[0214] (電子輸送層形成用塗布液) [0214] (Coating liquid for forming electron transport layer)
電子輸送材料 9 6質量部 Electron transport material 9 6 parts by mass
〇 〇 2 0 0 0質量部〇 〇 200 0 parts by mass
(陰極の形成) (Formation of cathode)
続いて、 基板を真空蒸着装置へ取り付けた。 また、 タングステンン製抵抗 加熱ボートに I を入れたもの、 9を入れたものをそれぞれ用意し真空蒸 着装置に取り付け、 真空槽を 5 . 0 X 1 0 _5 3まで減圧した。 その後、 ボー 卜に通電して加熱し、 アルミニウムを蒸着して厚さ 1 0 0 n の陰極を形成 した。 Subsequently, the substrate was attached to the vacuum vapor deposition device. Further, those containing the I tungsten down resistance heating boat, mounted on the prepared vacuum vapor deposition apparatus, respectively the ones containing the 9, pressure in the vacuum tank was reduced to 5. 0 X 1 0 _ 5 3. After that, electricity was applied to the bow and heating was performed, and aluminum was vapor-deposited to form a cathode having a thickness of 100 n.
[0215] (封止) [0215] (Sealing)
以上の工程により形成した積層体に対し、 市販の口ールラミネート装置を 用いて圭寸止基材を接着した。 To the laminated body formed by the above steps, a Keisuke base material was adhered using a commercially available roll laminating apparatus.
[0216] 封止基材として、 可撓性を有する厚さ 3 0 のアルミニウム箔 (東洋ア ルミニウム (株) 製) に、 ドライラミネーシヨン用の 2液反応型のウレタン 系接着剤を用いて層厚 1 . 5 の接着剤層を設け、 厚さ 1 2 のポリエ チレンテレフタレート ( 巳丁) フィルムをラミネートしたものを作製した [0216] As a sealing base material, a layer of flexible 30-thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) was coated with a two-component reactive urethane adhesive for dry lamination. A 1.5-thick adhesive layer was provided, and a 12-thick polyethylene terephthalate (Mending) film was laminated to produce an adhesive layer.
[0217] 封止用接着剤として熱硬化性接着剤を、 ディスペンサーを使用して封止基 材のアルミニウム箔の接着面 (つや面) に沿って厚さ 2 0 で均一に塗布 した。 これを 1 0 0 3以下の真空下で 1 2時間乾燥させた。 更に、 その封 止基材を露点温度一 8 0 °〇以下、 酸素濃度 0 . 8 の窒素雰囲気下へ移 動して、 1 2時間以上乾燥させ、 封止用接着剤の含水率が 1 〇〇 以下 となるように調整した。 [0217] A thermosetting adhesive as a sealing adhesive was applied uniformly with a thickness of 20 along the bonding surface (shiny surface) of the aluminum foil of the sealing base material using a dispenser. It was dried under vacuum below 1003 for 12 hours. Further, the sealing base material is moved to a nitrogen atmosphere having a dew point temperature of not more than 180° and an oxygen concentration of 0.8 and dried for 12 hours or more. 〇 Adjusted to be below.
[0218] 熱硬化性接着剤としては下記の (八) 〜 (〇) を混合したエポキシ系接着 剤を用いた。 〇 2020/175514 47 卩(:171? 2020 /007606 [0218] As the thermosetting adhesive, an epoxy adhesive mixed with the following (8) to (○) was used. 〇 2020/175 514 47
[0219] (八) ビスフエノール八ジグリシジルエーテル (〇〇巳巳八) [0219] (Eight) Bisphenol Eight Diglycidyl Ether (Mixed Eight Poses)
(巳) ジシアンジアミ ド (0 丨 〇丫) (Mimi) Dicyan diamide (0 丨 〇 丫)
(0) エポキシァダクト系硬化促進剤 (0) Epoxy duct type curing accelerator
上記封止基材を上記積層体に対して密着 ·配置して、 圧着口ールを用いて 、 圧着口ール温度 1 0〇"〇、 圧力 0.
Figure imgf000048_0001
装置速度〇. 3m/m i n の圧着条件で密着封止した。
The sealing base material is placed in close contact with the above-mentioned laminated body, and using a crimping port, the crimping port temperature is 100" and the pressure is 0.
Figure imgf000048_0001
Adhesion and sealing were performed under pressure bonding conditions with a device speed of 0.3 m/min.
[0220] 以上のようにして、 有機巳 !_素子 3 _ 1 を作製した。 [0220] The organic semiconductor !_ device 3 _ 1 was manufactured as described above.
[0221] <有機巳 !_素子 3— 2〜 3_ 1 2の作製> [0221] <Preparation of organic semiconductor !_ device 3-2 to 3_12>
上記有機巳 !_素子 3- 1の作製において、 電子輸送層材料八 9を表 IIIにあ る混合比で電子輸送材料と絶縁性誘電材料を変えてそのほかの手順を同様に して、 有機巳 !_素子 3— 2〜 3— 1 2の作製を行った。 In the preparation of the above-mentioned organic semiconductor !_ 3-1, the electron transport layer material 89 was changed to the electron transport material and the insulating dielectric material at the mixing ratio shown in Table III, and the other procedure was repeated. !_ element 3-2 to 3-12 was manufactured.
[0222] <有機巳 !_素子 3— 1〜 3_ 1 2の評価> [0222] <Evaluation of organic semiconductor !_ device 3-1 to 3_12>
上記のように作製した有機巳 !_素子 3— 1〜 3— 1 2について、 以下の評 価を行った。 その評価結果を表 3に示す。 The following evaluations were performed on the organic semiconductor devices 3-1 to 3-12 produced as described above. Table 3 shows the evaluation results.
[0223] <相対駆動電圧 1の測定> [0223] <Measurement of relative drive voltage 1>
駆動電圧 1の測定は、 室温 (25°〇 下で、 作製した核有機巳 !_素子の正 面輝度を測定し、 1 000〇 / 2となるときの駆動電圧 (V) を各素子で 測定した。 なお、 輝度の測定には、 分光放射輝度計
Figure imgf000048_0002
000 (コニカ ミノルタセンシング製) を用いた。 上記で得られた駆動電圧 1 を下記式に当 てはめて、 有機巳 !_素子 3_ 1の駆動電圧 1. 00に対する、 各有機巳 !_素 子の相対駆動電圧 1 を求めた。
The drive voltage 1 was measured at room temperature (under 25 ° 〇) by measuring the frontal luminance of the fabricated nuclear organic semiconductor !_ device and measuring the drive voltage (V) at 1 000 〇 / 2 with each device. The spectral radiance meter was used to measure the luminance.
Figure imgf000048_0002
000 (manufactured by Konica Minolta Sensing) was used. The driving voltage 1 obtained above was applied to the following formula to obtain the relative driving voltage 1 of each organic semiconductor !_ element with respect to the driving voltage 1.00 of the organic semiconductor !_ element 3_1.
[0224] 相対駆動電圧 1 (%) = (各有機日 !_素子の駆動電圧 1 /有機日 !_素子 3 - 1の駆動電圧 1) X 1 00 [0224] Relative drive voltage 1 (%) = (Each organic day !_ device drive voltage 1 / Organic day !_ device 3-1 drive voltage 1) X 100
得られた数値が小さいほど、 駆動電圧が低く好ましい結果であることを表 す。 The smaller the obtained value is, the lower the driving voltage is, which is the preferable result.
[0225] <相対駆動電圧 2の測定> [0225] <Relative drive voltage 2 measurement>
有機巳 !_素子 3— 1〜 3— 1 2の陰極の形成において、 陰極として 9を 厚さ 1 00 n となるように蒸着すること以外は同様の手順で作製した素子 〇 2020/175514 48 卩(:171? 2020 /007606 Organic semiconductor !_ device A device manufactured by the same procedure except forming 9-1 as a cathode and vapor-depositing 9 as a cathode to a thickness of 100 n. 〇 2020/175 514 48 卩 (:171? 2020 /007606
で駆動電圧 1 と同様の手法で駆動電圧 2の測定を行った。 なお、 得られた駆 動電圧を下記式に当てはめて、 有機巳 !_素子 3 _ 1の駆動電圧 2に対する、 各有機巳 !_素子の相対駆動電圧 2を求めた。 The drive voltage 2 was measured by the same method as the drive voltage 1. The obtained driving voltage was applied to the following formula to determine the relative driving voltage 2 of each organic semiconductor !_ element with respect to the driving voltage 2 of the organic semiconductor !_ element 3 _ 1.
[0226] 相対駆動電圧 2 (%) = (各有機日 !_素子の駆動電圧 2 /有機日 !_素子 3 _ 2の駆動電圧 2 ) X 1 0 0 [0226] Relative drive voltage 2 (%) = (Each organic day !_ element drive voltage 2 / Organic day !_ element 3 _ 2 drive voltage 2) X 1 0 0
得られた数値が小さいほど、 駆動電圧が低く好ましい結果であることを表 す。 The smaller the obtained value is, the lower the driving voltage is, which is the preferable result.
[0227] <経時駆動後の電圧の測定 > [0227] <Measurement of voltage after aging>
各評価用有機巳 !_素子に 4 0 0 八の電流を 2 5 °〇で 5 0時間通電保持し た。 その後、 2 . 5
Figure imgf000049_0001
時の電圧を経時駆動後の電圧に対して、 評価 用有機巳 1_素子の駆動前の 2 . 5 八/〇 2時の電圧を 1 . 0 0としたとき の各評価用有機日 !_素子の経時駆動後の電圧の比率を相対値として算出した 。 なお、 値が小さいものほど安定性が高いことを示している。
A current of 400 8 was applied to each of the evaluation organic devices !_ and maintained at 25 ° for 50 hours. Then 2.5
Figure imgf000049_0001
Organic voltage for evaluation 1_ with respect to the voltage after driving with time, and each organic day for evaluation when the voltage at 2.5 8/〇 2 o'clock before driving the element was 1.00! The ratio of the voltage after driving the device with time was calculated as a relative value. The smaller the value, the higher the stability.
[0228] [0228]
\¥0 2020/175514 49 卩(:17 2020 /007606 \¥0 2020/175 514 49 卩 (: 17 2020 /007606
«1 « 1
Figure imgf000050_0001
Figure imgf000050_0001
[0229] 表 IIIに示すように、 本発明に係る有機巳 1_素子は、 比較例の有機巳 1_素子 に比べて、 明らかに駆動電圧に優れていることが分かる。 さらに、 アルカリ 金属を混合したものでは大気下での劣化影響を受け、 電圧低下効果はほとん ど見られない一方、 本発明では大気下での成膜であるにも関わらず、 明確な 低電圧化が見られる。 [0229] As shown in Table III, it can be seen that the organic semiconductor device 1_ according to the present invention is clearly superior to the organic semiconductor device 1_ device of Comparative Example in driving voltage. Furthermore, in the case of a mixture of alkali metals, it is affected by deterioration in the atmosphere, and almost no voltage lowering effect is observed, while in the present invention, a clear lowering of the voltage is achieved despite film formation in the atmosphere. Can be seen.
[0230] [実施例 4 ] [0230] [Example 4]
実施例 4では本発明に関わる、 導電性材料と絶縁性誘電材料を用いて大気 環境下での有機薄膜太陽電池 (有機光電変換素子) を作製した。 〇 2020/175514 50 卩(:171? 2020 /007606 In Example 4, an organic thin-film solar cell (organic photoelectric conversion element) in an air environment was produced using a conductive material and an insulating dielectric material according to the present invention. 〇 2020/175 514 50
[0231] <有機光電変換素子 4 - 1の作製> [Preparation of Organic Photoelectric Conversion Device 4-1]
巳丁基板上に、 第一の電極 (陰極) として I 丁〇 (インジウムスズ酸化 物) 透明導電膜 1 50 n 堆積したもの (シート抵抗
Figure imgf000051_0001
I Ding (indium tin oxide) transparent conductive film 150 n deposited as the first electrode (cathode) on the Mingda substrate (sheet resistance
Figure imgf000051_0001
2) を、 通常のフォトリソグラフィー技術と湿式エッチングとを用いて 1 幅にパターニングし、 第一の電極を形成した。 パターン形成した第 一の電極を、 界面活性剤と超純水による超音波洗浄、 超純水による超音波洗 浄の順で洗浄後、 窒素ブローで乾燥させ、 最後に紫外線オゾン洗浄を行った 。 次いで、 正孔輸送層として、 導電性高分子及びポリアニオンからなる 巳 007 - ? 33 (〇1_巳 1 〇3 (登録商標) 9 八 1 4083、 ヘレ オス株式会社製、 導電率 1 X I 0-33/〇〇!) を 2. 0質量%で含むイソプロ パノール溶液を調製し、 乾燥膜厚が約 30 n になるように、 基板を 65°〇 に調温したブレードコーターを用いて塗布乾燥した。 その後、 1 20°〇の温 風で 20秒間加熱処理して、 正孔輸送層を上記第一の電極上に製膜した。 次 に、 基板をグローブボックス中に持ち込み、 上記基板を 1 20°〇で 3分間加 熱処理した。 ( 2 ) was patterned into a width of 1 using a normal photolithography technique and wet etching to form a first electrode. The patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, then ultrasonic cleaning with ultrapure water, followed by drying with nitrogen blow, and finally ultraviolet ozone cleaning. Next, as the hole transport layer, a conductive polymer and a polyanion are formed. 007-? 33 (○ 1_ _ 1 3 3 (registered trademark) 9 8 1 4083, manufactured by HELEOS CORPORATION, conductivity 1 XI 0- (3 3/◯◯!) at 2.0 mass% is prepared, and the substrate is coated and dried using a blade coater adjusted to 65 ° so that the dry film thickness is about 30 n. did. After that, heat treatment was performed with hot air of 120 ° C. for 20 seconds to form a hole transport layer on the first electrode. Next, the substrate was brought into a glove box, and the substrate was heat-treated at 120 ° 〇 for 3 minutes.
[0232] 次いで、 〇—ジクロロベンゼンに、 型有機半導体材料として化合物八 1 〇 (下記特許文献乂に基づいて合成した。 ) を〇. 8質量%、 n型有機半導 体材料である 〇 6 1 巳 IV! (フロンティアカーボン製门 3门〇01 3 6。 [0232] Next, 〇-dichlorobenzene was compounded as a type organic semiconductor material with compound 810 (synthesized based on the following patent document) in an amount of 0.8% by mass, which is an n- type organic semiconductor material. 1 Min IV! (Frontier carbon door 3 3 〇 01 3 6.
巳 1 001!) を、 1. 6質量%を混合した有機光電変換材料組成物 溶液を調製し、 ホッ トプレートで 1 〇〇°〇に加熱しながら撹拌 (1 0分間) して完全に溶解した後、 乾燥膜厚が約 1 70 n になるように、 基板を 40 °〇に調温したブレードコーターを用いて塗布し、 2分間乾燥して、 光電変換 層を上記正孔輸送層上に製膜した。 (1100!) was mixed with 1.6% by mass to prepare an organic photoelectric conversion material composition solution, which was completely dissolved by stirring (10 minutes) while heating to 10000 ° with a hot plate. After that, the substrate was coated using a blade coater adjusted to 40° 〇 so that the dry film thickness was about 170 n, and dried for 2 minutes to deposit the photoelectric conversion layer on the hole transport layer. The film was formed.
[0233] 続いて、 化合物八 1 1 (下記特許文献丫に基づいて合成した。 ) を、 それ それ、 〇. 1質量%になるようにヘキサフルオロイソプロパノールに溶解し て溶液を調製した。 この溶液を、 乾燥膜厚が約 20 n になるように、 基板 を 65°〇に調温したブレードコーターを用いて塗布乾燥した。 その後、 1 0 〇 °〇の温風で 2分間加熱処理して、 電子輸送層を上記光電変換層上に成膜し た。 [0233] Subsequently, the compound 8 1 1 (synthesized based on the following patent document) was dissolved in hexafluoroisopropanol so that the content thereof was 0.1% by mass to prepare a solution. This solution was applied and dried using a blade coater whose temperature was adjusted to 65° so that the dry film thickness was about 20 n . Then, heat treatment is performed for 2 minutes with a hot air of 100 ° to form an electron transport layer on the photoelectric conversion layer. It was
[0234] 次に、 上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。 そし て、 1 Omm幅のシャドウマスクが透明電極と直交するように素子をセッ ト し、 1 0_3P a以下にまでに真空蒸着機内を減圧した後、 蒸着速度で 2 n m/ 秒で銀を、 それぞれ、 膜厚 1 〇〇 n m蒸着して、 第二の電極を上記電子輸送 層上に形成した。 [0234] Next, the substrate on which the electron transport layer was formed was placed in a vacuum vapor deposition device. And it, 1 Omm width of the shadow mask is set to element so as to be perpendicular to the transparent electrode, after the vacuum deposition machine was reduced until below 1 0_ 3 P a, a silver 2 nm / sec evaporation rate Each of them was vapor-deposited with a film thickness of 100 nm to form a second electrode on the electron transport layer.
[0235] 得られた有機光電変換素子を窒素チャンバーに移動し、 2枚の 3M製 U 丨 t r a B a r r i e r S o l a r F i l m U B L— 9 L (水蒸気透 過率<5 X 1 〇-4g/m 2/d) の間に挟みこみ、 U V硬化樹脂 (ナガセケム テックス株式会社製、 UV R ES I N XN R 5570-B 1) を用いて 封止を行った後、 大気下に取り出し、 受光部が約 1 0X 1 0mmサイズの有 機光電変換素子 4- 1 を作製した。 [0235] The obtained organic photoelectric conversion element to move in a nitrogen chamber, made of two 3M U丨tra B arrier S olar F ilm UBL- 9 L ( vapor transparently rate <5 X 1 〇- 4 g / m 2/d) and UV-curing resin (UVR ES IN XN R 5570-B 1) made by UV curing resin (Nagase Chemtex Co., Ltd.) is used for sealing, and then taken out in the atmosphere, An organic photoelectric conversion element 4-1 with a size of 10×10 mm was produced.
[0236] 特許文献 X :特開 201 6 _ 1 74 1 69号公報段落番号 〔01 73〕 〜 〔01 74〕 [0236] Patent Document X: Japanese Unexamined Patent Publication No. 2016 _ 1 74 1 69, paragraph numbers [01 73] to [01 74]
特許文献 Y :特開 201 5- 1 281 85号公報段落番号 〔0202〕 〜 〔0204〕 Patent Document Y: JP2015-128185 Publication Paragraph Nos. [0202] to [0204]
[0237] <有機光電変換素子 4 - 2〜 4 - 8の作製> <Production of Organic Photoelectric Conversion Elements 4-2 to 4-8>
上記有機光電変換素子 4 _ 1の作製において、 電子輸送層に混合させる材 料と混合比と正孔輸送層から電子輸送層までの成膜環境を表 IVに記載したも のへ変えて、 その他の手順は同様に有機光電変換素子 4 _ 2〜 4 _ 8の作製 を行った。 In the production of the organic photoelectric conversion element 4 _1, the materials to be mixed in the electron transport layer, the mixing ratio, and the film forming environment from the hole transport layer to the electron transport layer were changed to those shown in Table IV. In the same manner as above, organic photoelectric conversion elements 4 — 2 to 4 — 8 were prepared.
[0238] <相対光電変換効率の評価> [Evaluation of relative photoelectric conversion efficiency]
上記有機光電変換素子 4- 1〜 4 -8を、 それぞれエポキシ樹脂とガラス キャップとで封止した。 これにソーラーシミュレーター (AM 1. 5 Gフイ ルタ) を用いて 1 00 mW/c m2の強度の光を照射し、 有効面積を 1 c m2に したマスクを受光部に重ね、 丨 V特性を評価することで、 短絡電流密度 J s c (mA/c m 、 開放電圧 Vo c (V) 、 及び曲線因子 F F測定した。 得 られた J s c、 Vo c、 及び F Fの値から、 下記式 1 に従って光電変換効率 〇 2020/175514 52 卩(:171? 2020 /007606 The organic photoelectric conversion elements 4-1 to 4-8 were sealed with an epoxy resin and a glass cap, respectively. This was irradiated with 1 00 of the intensity of mW / cm 2 light using a solar simulator (AM 1. 5 G Huy filter), a superposed mask in which the effective area on 1 cm 2 on the light receiving unit, evaluated丨V characteristics Then, the short-circuit current density J sc (mA/cm 2, open-circuit voltage Vo c (V), and fill factor FF were measured. From the obtained values of J sc, Vo c, and FF, photoelectric conversion was performed according to the following formula 1. efficiency 〇 2020/175 514 52 卩(:171? 2020/007606
V [%] を算出した。 なお、 得られた光電変換効率を下記式にあてはめて、 有機光電変換素子 4 1の光電変換効率に対する、 各光電変換素子の相対光 電変換効率を求めた。 V [%] was calculated. The obtained photoelectric conversion efficiency was applied to the following formula to obtain the relative photoelectric conversion efficiency of each photoelectric conversion element with respect to the photoelectric conversion efficiency of the organic photoelectric conversion element 41.
[0239] 相対光電変換効率 (%) = (各光電変換素子の光電変換効率/光電変換素 子 4 _ 1の光電変換効率) X 1 0 0 [0239] Relative photoelectric conversion efficiency (%) = (photoelectric conversion efficiency of each photoelectric conversion element/photoelectric conversion efficiency of photoelectric conversion element 4 _ 1) X 1 0 0
V [%] = 4 [ 八/ (〇〇!) 2] X V〇〇 [ V ] [%] 式 1 数値が大きいほど光電変換に優れている。 V [%] = 4 [8/(○ 〇!) 2 ]XV 〇 〇 [V] [%] Formula 1 The larger the value, the better the photoelectric conversion.
[0240] <耐久性の評価> [0240] <Evaluation of durability>
上記、 有機光電変換素子 4 _ 1〜 4 _ 8を、 温度 8 0 °〇、 湿度 8 0 %に保 持した容器内に保存し、 定期的に取りだして 丨 V特性を測定し、 初期の光電 変換効率を 1 〇〇 %として、 初期の効率の 8 0 %まで低下した時間を !_丁 8 〇 [時間] として各有機光電変換素子の駆動寿命を評価した。 そして、 得ら れた駆動寿命を下記式にあてはめて、 有機光電変換素子 4 - 1の駆動寿命に 対する、 各光電変換素子の相対駆動寿命を求めた。 なお、 相対駆動寿命の値 が大きいほど、 耐久性が良好であることを意味する。 結果を表 IVに示す。 The above organic photoelectric conversion elements 4 _ 1 to 4 _ 8 are stored in a container that is maintained at a temperature of 80 °C and a humidity of 80%, and they are periodically taken out to measure the V characteristics and measure the initial photoelectric conversion. The driving efficiency of each organic photoelectric conversion element was evaluated by setting the conversion efficiency to 100% and the time when it dropped to 80% of the initial efficiency to !_ D8 [hours]. Then, the obtained driving life was applied to the following formula to obtain the relative driving life of each photoelectric conversion element with respect to the driving life of the organic photoelectric conversion element 4-1. It should be noted that the larger the value of the relative driving life, the better the durability. The results are shown in Table IV.
\¥0 2020/175514 53 卩(:17 2020 /007606 \¥0 2020/175 514 53 卩 (: 17 2020 /007606
Figure imgf000054_0001
Figure imgf000054_0001
[0241 ] 表 IVに示すように、 本発明に係る有機光電変換素子は、 比較例の有機光電 変換素子に比べて、 明らかに光電変換効率に優れていることが分かる。 さら に、 大気作製した素子は大気劣化影響を受け、 駆動寿命が大幅に低下してい る一方、 本発明では明確な大気安定性がみられる。 [0241] As shown in Table IV, it can be seen that the organic photoelectric conversion element according to the present invention is obviously superior in photoelectric conversion efficiency to the organic photoelectric conversion element of Comparative Example. Furthermore, while the device fabricated in the atmosphere is affected by the atmospheric deterioration and the driving life is greatly reduced, the present invention shows a clear atmospheric stability.
産業上の利用可能性 Industrial availability
[0242] 本発明の電子デバイスは、 成膜時に大気下で安定であり、 低電圧駆動可能 な電子デバイスであることにより、 有機巳 !_素子、 有機光電変換素子及び太 \¥02020/175514 54 卩 2020 /007606 [0242] Since the electronic device of the present invention is an electronic device that is stable in the atmosphere during film formation and can be driven at a low voltage, the organic semiconductor device, the organic photoelectric conversion device, and the organic photoelectric conversion device can be used. \\02020/175 514 54 2020/007606
陽電池などに好適に用いることができる。 It can be preferably used for positive batteries and the like.
符号の説明 Explanation of symbols
[0243] 1 電極 [0243] 1 electrode
2 対極 2 opposite poles
3 電界 3 electric field
4 絶縁性誘電材料 4 Insulating dielectric material
1 00 有機巳 !_素子 1 00 Organics !_ element
1 01 基材 1 01 Base material
1 02 陽極 1 02 Anode
1 03 正孔注入層 1 03 Hole injection layer
1 04 正孔輸送層 1 04 Hole transport layer
1 05 発光層 1 05 Light emitting layer
1 06 正孔阻止層 1 06 Hole blocking layer
1 07 電子輸送層 1 07 Electron transport layer
1 08 電子注入層 1 08 Electron injection layer
1 09 陰極 1 09 cathode
1 1 0 機能層 1 1 0 Functional layer
200 バルクへテロジャンクション型の有機光電変換素子 201 基板 200 Bulk heterojunction type organic photoelectric conversion element 201 Substrate
202 透明電極 (陽極) 202 Transparent electrode (anode)
203 対極 (陰極) 203 Counter electrode (cathode)
204 光電変換層 (バルクへテロジャンクション層) 204 Photoelectric conversion layer (bulk heterojunction layer)
205 正孔輸送層 205 Hole transport layer
206 電子輸送層 206 electron transport layer
207 機能層 207 Functional layer

Claims

〇 2020/175514 55 卩(:171? 2020 /007606 請求の範囲 〇 2020/175 514 55 range (: 171? 2020/007606 Claims
[請求項 1 ] 陽極と陰極との間に一つ又は複数の機能層を備える電子デバイスで あって、 [Claim 1] An electronic device comprising one or more functional layers between an anode and a cathode,
前記機能層のいずれか一つの層が、 絶縁性誘電材料と導電性材料とを それぞれ少なくとも 1種類ずつ含有しており、 かつ、 前記絶縁性誘電 材料と導電性材料とを含有する機能層の比誘電率が 4 . 0以上である ことを特徴とする電子デバイス。 Any one of the functional layers contains at least one insulating dielectric material and at least one conductive material, and the ratio of the functional layers containing the insulating dielectric material and the conductive material is An electronic device having a dielectric constant of 4.0 or more.
[請求項 2] 前記比誘電率が、 6 . 0以上であることを特徴とする請求項 1 に記 載の電子デバイス。 2. The electronic device according to claim 1, wherein the relative permittivity is 6.0 or more.
[請求項 3] 前記機能層が、 少なくとも発光層を含むことを特徴とする請求項 1 又は請求項 2に記載の電子デバイス。 3. The electronic device according to claim 1 or 2, wherein the functional layer includes at least a light emitting layer.
[請求項 4] 前記絶縁性誘電材料が、 絶縁性金属酸化物であることを特徴とする 請求項 1から請求項 3までのいずれか一項に記載の電子デバイス。 [Claim 4] The electronic device according to any one of claims 1 to 3, wherein the insulating dielectric material is an insulating metal oxide.
[請求項 5] 前記絶縁性金属酸化物が、 ナノ粒子であることを特徴とする請求項 5. The insulating metal oxide is a nanoparticle.
4に記載の電子デバイス。 The electronic device described in 4.
[請求項 6] 前記絶縁性誘電材料が、 液晶材料であることを特徴とする請求項 1 から請求項 3までのいずれか一項に記載の電子デバイス。 [Claim 6] The electronic device according to any one of claims 1 to 3, wherein the insulating dielectric material is a liquid crystal material.
[請求項 7] 前記絶縁性誘電材料が、 絶縁性の誘電高分子又はオリゴマーである ことを特徴とする請求項 1から請求項 3までのいずれか一項に記載の 電子デバイス。 7. The electronic device according to any one of claims 1 to 3, wherein the insulating dielectric material is an insulating dielectric polymer or oligomer.
[請求項 8] 前記誘電高分子又はオリゴマーが、 ポリフッ化ビニリデンを繰り返 し単位に含む高分子又はオリゴマーであることを特徴とする請求項 7 に記載の電子デバイス。 8. The electronic device according to claim 7, wherein the dielectric polymer or oligomer is a polymer or oligomer containing a repeating unit of polyvinylidene fluoride.
[請求項 9] 前記絶縁性誘電材料を含有する層が、 電子輸送層又は電子注入層で あることを特徴とする請求項 1から請求項 8までのいずれか一項に記 載の電子デバイス。 9. The electronic device according to any one of claims 1 to 8, wherein the layer containing the insulating dielectric material is an electron transport layer or an electron injection layer.
[請求項 10] 有機エレクトルミネッセンス素子であることを特徴する請求項 1か ら請求項 9までのいずれか一項に記載の電子デバイス。 \¥0 2020/175514 56 卩(:17 2020 /007606 [10] The electronic device according to any one of [1] to [9], which is an organic electroluminescence element. \¥0 2020/175 514 56 卩 (: 17 2020 /007606
[請求項 1 1 ] 有機光電変換素子であることを特徴する請求項 1から請求項 9まで のいずれか一項に記載の電子デバイス。 [Claim 11] The electronic device according to any one of claims 1 to 9, which is an organic photoelectric conversion element.
PCT/JP2020/007606 2019-02-27 2020-02-26 Electronic device WO2020175514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502296A JP7487730B2 (en) 2019-02-27 2020-02-26 Organic electroluminescent element and method for manufacturing organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034844 2019-02-27
JP2019-034844 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175514A1 true WO2020175514A1 (en) 2020-09-03

Family

ID=72239990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007606 WO2020175514A1 (en) 2019-02-27 2020-02-26 Electronic device

Country Status (2)

Country Link
JP (1) JP7487730B2 (en)
WO (1) WO2020175514A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111459A (en) * 1997-09-30 1999-04-23 Sumitomo Electric Ind Ltd Organic electroluminescent element
JP2007012466A (en) * 2005-06-30 2007-01-18 Fujifilm Holdings Corp Transparent conductive film and distributed electroluminescent element using the film
JP2007531807A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Non-aqueous dispersion comprising doped conductive polymer and colloid-forming polymeric acid
JP2009140624A (en) * 2007-12-04 2009-06-25 Kansai Paint Co Ltd Composition for light-emitting layer, and dispersion type el element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966533B2 (en) 2012-03-02 2018-05-08 Iowa State University Research Foundation, Inc. Organic photovoltaic device with ferroelectric dipole and method of making same
KR101668030B1 (en) * 2014-08-21 2016-10-21 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111459A (en) * 1997-09-30 1999-04-23 Sumitomo Electric Ind Ltd Organic electroluminescent element
JP2007531807A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Non-aqueous dispersion comprising doped conductive polymer and colloid-forming polymeric acid
JP2007012466A (en) * 2005-06-30 2007-01-18 Fujifilm Holdings Corp Transparent conductive film and distributed electroluminescent element using the film
JP2009140624A (en) * 2007-12-04 2009-06-25 Kansai Paint Co Ltd Composition for light-emitting layer, and dispersion type el element

Also Published As

Publication number Publication date
JP7487730B2 (en) 2024-05-21
JPWO2020175514A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR101786059B1 (en) Method for producing organic electroluminescence element
JP4544937B2 (en) Organic functional device, organic EL device, organic semiconductor device, organic TFT device, and manufacturing method thereof
JP2003257671A (en) Light emitting element and its manufacturing method
JP6252469B2 (en) Organic electroluminescence device
JP2014511005A (en) Organic electronic devices for lighting
JP2004296219A (en) Light emitting element
JP3978976B2 (en) Organic electroluminescence device
US7906901B2 (en) Organic electroluminescent device and organic electroluminescent display device
JP2010263039A (en) Lighting device
JP2007324062A (en) End face light emission type light emitting device
JP2007242406A (en) Edge-emitting luminescent element and its manufacturing method
JP4777077B2 (en) Functional element
JPWO2018168225A1 (en) Composition for producing electronic device, method for producing composition for producing electronic device, organic thin film, and method for producing organic thin film
JP2007096023A (en) Organic light emitting device
TW200539749A (en) Organic electroluminescent device, method for manufacturing same and organic solution
JP2008235193A (en) Organic electroluminescent device
WO2020175514A1 (en) Electronic device
US20230292537A1 (en) Light emitting device that emits green light, and light emitting substrate and light emitting apparatus
JP4949149B2 (en) Light emitting element
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
Gaur et al. MgF2 as an interlayer to enhance the stability of thermally activated delayed fluorescence based organic electroluminescence devices
JP2007059783A (en) Organic el device, method for manufacturing the same and application thereof
JP2014165261A (en) Organic light-emitting display device and manufacturing method therefor
JPH08236273A (en) Organic el element and its manufacture
WO2021230214A1 (en) Organic electroluminescence element, manufacturing method thereof, simple display device equipped with same, and printed matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763076

Country of ref document: EP

Kind code of ref document: A1