WO2020175512A1 - Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire - Google Patents

Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire Download PDF

Info

Publication number
WO2020175512A1
WO2020175512A1 PCT/JP2020/007603 JP2020007603W WO2020175512A1 WO 2020175512 A1 WO2020175512 A1 WO 2020175512A1 JP 2020007603 W JP2020007603 W JP 2020007603W WO 2020175512 A1 WO2020175512 A1 WO 2020175512A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
petroleum
aromatic
oil
rubber
Prior art date
Application number
PCT/JP2020/007603
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 伊藤
紘子 新保
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to KR1020217026701A priority Critical patent/KR20210119471A/en
Priority to SG11202109236SA priority patent/SG11202109236SA/en
Priority to CN202080016850.4A priority patent/CN113474182B/en
Publication of WO2020175512A1 publication Critical patent/WO2020175512A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/322Liquid component is processing oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • Petroleum-based aromatic-containing oil Petroleum-based aromatic-containing oil, rubber composition, tire, and method for manufacturing tire
  • the present invention relates to a petroleum-based aromatic-containing oil, a rubber composition, a tire, and a method for producing a tire.
  • a rubber product is often blended with a process oil in order to improve the processability and softening property of the rubber composition.
  • a process oil for example, 3 Synthetic rubbers such as (styrene-butadiene copolymer rubber) are blended with extender oil (extender oil) during synthesis (rubber compounding oil).
  • extender oil extender oil
  • rubber processed products such as tires contain processing oil (process oil) to improve the processability and the quality of the rubber processed products.
  • process oil processing oil
  • a rubber composition for a tire obtained by a production method including a second base kneading step is disclosed. According to this, it is possible to obtain a rubber composition for a tire which has excellent dispersibility of silica and can improve fuel economy, wet grip performance, and wear resistance with good balance.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 2-1 5 3 7 8 7
  • the present invention has been made to solve the above problems, and makes it possible to produce a rubber composition having excellent rolling resistance performance and wet grip performance, And to provide a petroleum-based aromatic containing oils satisfying only ⁇ 1-1 rule.
  • the present invention is ⁇ 2020/175 512 3 boxes (: 170? 2020 /007603
  • Another object of the present invention is to provide a tire containing the petroleum-based aromatic-containing oil, and a method for manufacturing the tire.
  • one aspect of the present invention is the following petroleum-based aromatic-containing oil, rubber composition, tire, and method for producing a tire.
  • the benzo (8) pyrene content is 1 mass 111 or less
  • a petroleum-containing aromatic-containing oil wherein the total content of the specific aromatic compounds of 1) to 8) below is 10 mass 111 or less.
  • the petroleum-containing aromatic-containing oil described in (1) or (2) above is 28% by mass or less based on 100% by mass.
  • the proportion of the bicyclic aromatic fraction fractionated by using ! !_(3 is 24.5 mass% or less with respect to 100 mass% of the aromatic content.
  • the petroleum-based aromatic-containing oil according to any one of 1) to 7).
  • a petroleum-based aromatic-containing oil according to any one of (1) to (8) above, which is an extender oil or a process oil used by being mixed with rubber.
  • Fig. 1 is a process chart explaining an example of a method for producing a petroleum-based aromatic oil according to an embodiment of the present invention.
  • FIG. 2A is a process chart illustrating an example of the process of preparing the tire composition according to the embodiment of the present invention.
  • FIG. 2B is a process chart illustrating an example of the process of preparing the tire composition according to the embodiment of the present invention.
  • the ratio of the saturated component by the clay gel method, the ratio of the 2-ring aromatics fractionated by using HP LC, the content of benzo(a)pyrene, and the specific aromatic satisfies a specific numerical range.
  • the values of tan 5 (50 ° C) and tan S (0 ° C) are preferable, and the wet grip performance and Both rolling resistance performance is compatible.
  • the "wet grip performance” is so-called braking performance
  • tan S (0 ° C) obtained by the dynamic viscoelasticity test is an index thereof.
  • “Rolling resistance performance” is so-called fuel-saving performance, and its index is tan 5 (50 ° C) obtained by a dynamic viscoelasticity test.
  • aromatic-containing oil means that the ratio of the saturated content by the Clay-gel method and the ratio of the 2-ring aromatics fractionated by using 1 1 1_(3 satisfy the following numerical value range. ..
  • the petroleum-based aromatic-containing oil of the embodiment is not particularly limited in its production method and classification as long as it satisfies the numerical ranges of the above-mentioned items, and includes, for example, atmospheric distillation residue, atmospheric distillation fraction, reduced pressure distillation fraction, Examples include vacuum distillation residue, deasphalted oil, solvent-extracted raffinate, hydrorefined oil, dewaxed oil, solvent-extracted extract, etc., and contain the oil produced by the petroleum-based aromatic-containing oil production method described below. Is preferred.
  • the content ratio of the petroleum-derived hydrocarbon oil in the petroleum-based aromatic-containing oil may be 50% by mass or more, 80% by mass or more, and 95% by mass or more.
  • the components of petroleum-based oils can be classified into saturated components, aromatic components, and polar components (mass %) by the Clay gel method.
  • the values of saturated content, aromatic content, or polar component (mass %) by the Clay gel method below are values based on 100 mass% of the total amount of saturated content, aromatic content, and polar component.
  • the proportion of the saturated component by the clay gel method is 40% by mass or less, preferably 35% by mass or less, and 30% by mass or less. Is more preferable.
  • the ratio of the saturated component by the clay gel method is preferably 5% by mass or more, more preferably 20% by mass or more, and 22% by mass or more. It is even better to have it.
  • the proportion of the saturated component by the clay gel method may be 5% by mass or more and 40% by mass or less, and 20% by mass or more. It may be 35 mass% or less, or 22 mass% or more and 30 mass% or less.
  • the saturated content has a proper balance as the polarity of hydrocarbons and has a certain affinity with rubber and a certain affinity with the compounding agent of rubber. It is considered that when the content is within the range, the physical properties of the rubber composition or the tire to be manufactured become suitable.
  • the proportion of the aromatic component by the Clay-gel method is preferably 50% by mass or more, more preferably 51% by mass or more, and 58% by mass. % Or more is more preferable.
  • the proportion of the aromatic component by the Clay gel method is preferably 74% by mass or less, more preferably 70% by mass or less, and 66% by mass or less. It is more preferable that there is.
  • the petroleum-based aromatic-containing oil of the embodiment is preferably 50% by mass or more, more preferably 51% by mass or more, and 58% by mass. % Or more is more preferable.
  • the proportion of the aromatic component by the Clay gel method is preferably 74% by mass or less, more preferably 70% by mass or less, and 66% by mass or less. It is more preferable that there is.
  • the petroleum-based aromatic-containing oil of the embodiment is preferably 50% by mass or more, more preferably 51% by mass or more, and 58% by mass. % Or more is more preferable.
  • the proportion of the aromatic component by the Clay gel method is preferably
  • It may be 50 mass% or more and 74 mass% or less, 51 mass% or more and 70 mass% or less, and 58 mass% or more and 66 mass% or less.
  • the ratio of the above aromatic content satisfies the above value, the values of 1 an 8 (50° ⁇ ) and I 3 n 5 (0° ⁇ ) of the rubber composition or tire containing the oil are preferable. Therefore, the wet grip performance and the rolling resistance performance are compatible.
  • the aromatic component has a high affinity for rubber, so that the ratio of the above aromatic component is within the above range, the physical properties of the rubber composition or the tire to be manufactured are preferable. it is conceivable that.
  • the petroleum-containing aromatic-containing oil of the embodiment has a ratio of polar components measured by the clay gel method
  • the proportion of the polar component by the clay gel method is preferably 12% by mass or less, more preferably 11% by mass or less, and 10% by mass or less. It is more preferable that there is.
  • the proportion of polar components by the clay gel method may be 3% by mass or more and 12% by mass or less, and 4% by mass or more 1 It may be 1 mass% or less, or 5 mass% or more and 10 mass% or less.
  • the proportion of the polar component has a reciprocal relation with the proportion of the saturated component and the aromatic component, and when the proportion of the polar component satisfies the above numerical value, the rubber composition containing the oil or
  • the tan 5 (50°C) and tan S (0°C) values of the tire are preferred, and both wet grip performance and rolling resistance performance are compatible.
  • the proportion of the 2-ring aromatics fractionated by using HP LC when the proportion of the 2-ring aromatics fractionated by using HP LC is 10% by mass or more based on 100% by mass of the aromatic content. %, preferably 16% by mass or more, more preferably 20% by mass or more, further preferably 22% by mass or more, and particularly preferably 23% by mass or more.
  • the proportion of the 2-ring aromatics fractionated by using HP LC is 30 mass% or less with respect to 100 mass% of the aromatic content, and 28 mass% % Or less, more preferably 26% by mass or less, further preferably 25% by mass or less, particularly preferably 24.5% by mass or less.
  • the proportion of the 2-ring aromatics fractionated by using HP LC is 100% by mass of the aromatic content.
  • it may be 10% by mass or more and 30% by mass or less, 16% by mass or more and 28% by mass or less, 20% by mass or more and 26% by mass or less, and 22% by mass. It may be 25 mass% or more and 25 mass% or less, or 23 mass% or more and 24.5 mass% or less.
  • tan 5 (50 °C) and tan 5 ( ⁇ ° C) of the rubber composition or the tire containing the oil described above are satisfied when the ratio of the above two-ring aromatic content satisfies the above numerical values. This is preferable, and both wet grip performance and rolling resistance performance are supported.
  • the ratio of aromatics having two or more rings greatly contributes to achieving both wet grip performance and rolling resistance performance.
  • the bicyclic aromatic content in addition to improving Yuck Toguri' flops performance and rolling resistance, also have good properties further terms of satisfying only 0 1 to 1 rule.
  • the petroleum-based aromatic-containing oil of the embodiment has a ratio of 1-ring aromatics fractionated using 1 to 1 !_(3 to 4% of the aromatic content of 100% by mass. preferably the this is 8 mass% or more, more preferably 5 0 mass% or more, 5 2 it is mass% or more is more preferred.
  • petroleum aromatic-containing oils embodiments, 1-1! _ The proportion of 1-ring aromatics fractionated using ⁇ is preferably 64% by mass or less, and 62% by mass or less, based on 100% by mass of the aromatic content. More preferably, it is still more preferably 60% by mass or less..
  • the petroleum-based aromatic-containing oil of the embodiment is The ratio of the 1-ring aromatics fractionated by using may be 48% by mass or more and 64% by mass or less, or 50% by mass or more and 6% by mass or less, based on 100% by mass of the aromatic content. It may be 2% by mass or less, or 52% by mass or more and 60% by mass or less.
  • the proportion of the above-mentioned 1-ring aromatic content has a reciprocal relationship with the proportion of the above-mentioned 2 or more-ring aromatic content, and the proportion of the above-mentioned 1-ring aromatic content satisfies the above numerical values, so that the oil content is
  • the values of 1 an 8 (50° ⁇ ) and I 3 n 5 (0° ⁇ ) of the rubber composition or tire to be used become preferable, and the wet grip performance and the rolling resistance performance are compatible with each other.
  • the ratio of the aromatic content of 3 or more rings fractionated by using 1 to 11_(3 is relative to 100% by mass of the aromatic content
  • the content is preferably 10% by mass or more, more preferably 12% by mass or more, further preferably 14% by mass or more, and particularly preferably 16% by mass or more.
  • the proportion of aromatics having 3 or more rings fractionated using 1 to 1 !_(3 is 28% by mass relative to 100% by mass of the aromatics. It is preferably below, more preferably at most 26% by mass, further preferably at most 24% by mass, particularly preferably at most 23% by mass. ⁇ 2020/175 512 10 boxes (: 170? 2020 /007603
  • the petroleum-based aromatic oil of the embodiment has a ratio of aromatics of 3 or more rings fractionated using 1 to 11_(3, Min. 10% by mass to 28% by mass, 12% to 26% by mass, 14% to 24% by mass It may be the following, or may be 16% by mass or more and 23% by mass or less:
  • the rubber composition containing the oil when the ratio of the aromatic component having 3 or more rings is satisfying the above numerical values.
  • the values of I an 8 (50° ⁇ ) and I 3 n 5 (0° ⁇ ) of the object or tire are preferable, and both the wet grip performance and the rolling resistance performance are compatible, and it is also good from the viewpoint of meeting the ACH rule. Become.
  • the petroleum-based aromatic-containing oil of the embodiment is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)
  • the benzo (8) pyrene content is 1 mass 111 or less
  • the content of these compounds is determined by separating and concentrating the target components, It can be obtained by preparing a sample to which is added and quantitatively analyzing by GC_MS analysis.
  • the content of benzo (a) pyrene and specific aromatic compounds (PAH s) is determined by the European standard EN 1 6 1 43: 201 3 Petroleum products-Determination of content of Benzo(a) pyrene (BaPJ and selected polycyclic aromatic hydrocarbons ( PAH) in extender oils -Procedure using double LC cleaning a nd GC/MS ana lysis.
  • the petroleum-containing aromatic-containing oil of the embodiment has a kinematic viscosity at 100 ° C of preferably 25 mm 2 /s or more, more preferably 27 mmVs or more, and 28 mmVs or more. More preferably, The petroleum-based aromatic-containing oil of the embodiment has a kinematic viscosity at 100°C of preferably 75 mm Vs or less, more preferably 58 mm 2 /s or less, and 50 mm 2 /s or less. Is more preferable.
  • the petroleum-based aromatic-containing oil of the embodiment may have a kinematic viscosity at 100 ° C of 25 mm V s or more and 75 mm 2 /s or less, It may be in the range of 27 mm 2 /s or more and 58 mm 2 /s or less, or in the range of 28 mm 2 /s or more and 50 mm 2 /s or less.
  • the viscosity of the rubber composition or the tire containing the petroleum-based aromatic-containing oil becomes preferable, so that tan 5 (50 ° C) and tan S (0 ° C) Is even more preferable, and compatibility of wet grip performance and rolling resistance performance is even more desirable. Further, when the value of the kinematic viscosity is less than or equal to the upper limit value, the transfer and workability for blending the petroleum-based aromatic-containing oil with the rubber become good.
  • the kinematic viscosity at 100 °C can be determined according to the regulations of J I S K 2283 :2000.
  • the petroleum-based aromatic-containing oil of the embodiment preferably has an aniline point of 60 ° C. or higher, more preferably 65° C. or higher, even more preferably 70° C. or higher.
  • Petroleum aromatic-containing oils embodiment is preferably an aniline point of less than 1 00 ° C, more preferably not more than 95 ° C, 90 ° C The following is more preferable.
  • the petroleum-based aromatic-containing oil of the embodiment may have an aniline point of 60 ° C or higher and 100 ° C or lower, and 65 ° C or higher and 95 ° C or higher . It may be in the following range, or in the range of 70 ° C or higher and 90°C or lower.
  • the aniline point is the temperature at which an equal amount of aniline and oil mix, and is an indicator of rubber compatibility.
  • the aniline point is at most the above upper limit value, the oil will dissolve with aniline without excessive heating, which is preferable because of high rubber compatibility. That is, when the value of the aniline point satisfies the above-mentioned value, the affinity of the petroleum-based aromatic-containing oil for rubber becomes good, and the physical properties of the rubber composition or tire produced become even more preferable.
  • the aniline point can be determined according to the rules of ASTM D 6 1 1 -1 2 Standard Test Methods for Ani line Point and Mixed Am line Point of Petroleum Products and Hydrocarbon So Ivents.
  • the petroleum-containing aromatic oil of the embodiment has a glass transition point (T g) of preferably 44 ° C or lower, more preferably 46 ° C or lower, and _ 48 ° C or lower. It is more preferable that there is.
  • the petroleum-based aromatic-containing oil of the embodiment may have a glass transition point (T g) in the range of _58°C or more and 1 44°C or less.
  • the glass transition point satisfies the above numerical values, the physical properties of the rubber composition or tire to be produced become more preferable, and it becomes important for improving the wet grip performance and rolling resistance performance.
  • the glass transition point can be determined under the measurement conditions described in Examples below.
  • the petroleum-containing aromatic-containing oil of the embodiment has a viscosity specific gravity constant (VGC) of preferably 0.84 or more, more preferably 0.85 or more, and 0.8.
  • VCC viscosity specific gravity constant
  • the viscosity specific gravity constant is preferably 0.92 or less, more preferably 0.90 or less, and further preferably 0.89 or less.
  • the petroleum-based aromatic-containing oil of the embodiment may have a viscosity specific gravity (VGC) of 0.84 or more and 0.92 or less, and 0.85 or more and 0.90 or less. It may be less than or equal to 0.86 and less than or equal to 0.89.
  • the viscosity specific gravity constant is an index expressing the composition of oil. Generally, the higher the paraffinicity, the lower the value, and the higher the aromaticity, the higher the value.
  • VMC viscosity specific gravity constant
  • the petroleum-containing aromatic-containing oil of the embodiment has a% CA by ring analysis of preferably 12 or more, more preferably 14 or more, and further preferably 16 or more.
  • the petroleum-containing aromatic-containing oil of the embodiment has a% C A by ring analysis of preferably 30 or less, more preferably 28 or less, and further preferably 26 or less.
  • the petroleum-based aromatic-containing oil of the embodiment may have% CA by ring analysis of 12 or more and 30 or less, or 14 or more and 28 or less, It may be 16 or more and 26 or less.
  • the above% CA satisfies the above value, the amount of polycyclic aromatic compounds having high carcinogenicity is suppressed, and at the same time, the aromatic compound tends to have an aroma improving the compatibility with the rubber.
  • the values of tan 5 (50 °C) and tan 5 ( ⁇ ° C) of the composition or the tire become preferable, and the compatibility of the wet grip performance and the rolling resistance performance becomes more preferable.
  • %CA is ASTM D 2 1 40 -08 Standard Practice for Calcula ti ng Carbon-Type Compositi on of Insu Lat i ng O i Ls of Pet ro Leum Or igin
  • the petroleum-containing aromatic-containing oil of the embodiment is preferably used as an extender oil or a process oil used by being mixed with rubber.
  • the petroleum-based aromatic-containing oil of the present invention can be produced.
  • the petroleum-based aromatic-containing oil of the present invention is not limited to those produced by the method for producing a petroleum-based aromatic-containing oil of the following embodiments.
  • a step of obtaining an extract by solvent extraction or
  • the method includes a step of mixing the extract obtained by solvent extraction with a raffinate or a refined base oil of raffinate.
  • Solvent extraction targets include deasphalted oil fraction obtained by degassing the residue obtained by distilling crude oil under atmospheric pressure under reduced pressure, and depressurized distillation fraction obtained by distilling the residue obtained by distilling crude oil under atmospheric pressure under reduced pressure. Minutes.
  • the extract is obtained by subjecting the object of solvent extraction to extraction treatment with a solvent that has an affinity for aromatic hydrocarbons, and separating and recovering the solvent and extract (extract). ..
  • the starting crude oil various crude oils such as paraffinic crude oil and naphthenic crude oil can be used alone or in combination, but paraffinic crude oil is particularly preferably used.
  • Fig. 1 is a process chart illustrating an example of a method for producing a petroleum-based aromatic-containing oil according to an embodiment.
  • the crude oil is first processed in an atmospheric distillation device (not shown) to obtain an atmospheric distillation residue.
  • the atmospheric distillation residue is sent to the vacuum distillation apparatus 10 and vacuum distilled to obtain a vacuum distillation residue 12.
  • the vacuum distillation residue 1 2 is treated in the deasphalting extraction device 20 to become the deasphalted oil 22.
  • the deasphalted oil 22 is sent to the solvent extraction device 30.
  • the solvent extractor 30 separates the deasphalted oil 22 into a raffine extract 32 and an extract 34.
  • Raffinate 32 is hydrogenated ⁇ 2020/175 512 15 boxes (: 170? 2020 /007603
  • dewaxed oil 52 It is hydrorefined in the production unit 40 to be hydrorefined oil 42, and then dewaxed in the dewaxing unit 50 to obtain dewaxed oil 52.
  • the dewaxed oil 52 obtained and the extract 34 can be mixed to obtain a petroleum-based aromatic-containing oil 62.
  • the dewaxed oil 52 and the extract 34 are mixed to obtain the petroleum-based aromatic-containing oil 62 is explained, but instead of the dewaxed oil 52, the raffinate 32 or The hydrorefined oil 42 may be mixed with the extract 34.
  • the vacuum distillation fraction 11 separately fractionated from the vacuum distillation apparatus 10 is treated by a solvent extraction apparatus 30 and separated into raffinate 31 and extract 33.
  • the raffinate 3 1 is hydrorefined in the hydrorefining unit 40 to be hydrorefined oil 41, and is further dewaxed in the dewaxing unit 50 to obtain dewaxed oil 5 1.
  • the dewaxed oil 51 and the extract 34 thus obtained can be mixed to obtain a petroleum-based aromatic oil-containing oil 62.
  • the dewaxed oil 5 1 and the extract 34 are mixed to obtain the petroleum-based aromatic-containing oil 62 is explained, but instead of the dewaxed oil 51, the raffinate 31 or hydrorefining is used.
  • the oil 41 may be mixed with the extract 34.
  • extracts 3 3 and 3 4 may be petroleum-based aromatic-containing oil 62.
  • the solvent extraction is preferably performed by extracting the obtained deasphalted oil with a solvent having a selective affinity for aromatic hydrocarbons in order to obtain the extracts 33 and 34.
  • a solvent having a selective affinity for aromatic hydrocarbon a polar solvent may be used, and one or more selected from the group consisting of furfural, phenol and 1 ⁇ 1-methyl-2-pyrrolidone is used. be able to.
  • the specific extraction conditions for controlling the extract yield within the above range cannot be uniquely determined because it depends on the composition of the deasphalted oil, but by appropriately selecting the solvent ratio, pressure, temperature, etc. It is possible.
  • the column top temperature preferably 100 to 155°°, more preferably 100 to 140°°
  • the column bottom temperature preferably 40 to 120°°
  • the solvent is preferably contacted at a ratio of 50 to 110° and a ratio of solvent to oil 1: 2 to 5, more preferably 3 to 4.5.
  • a solvent refining process is carried out in which a vacuum distillation fraction having a boiling point at atmospheric pressure of 300 to 700° is extracted with a solvent having an affinity for aromatic hydrocarbons. It is preferable.
  • a solvent having a selective affinity for aromatic hydrocarbons one or more selected from furfural, phenol and 1 ⁇ ]-methyl-2-pyrrolidone can be used.
  • the conditions for purifying conventional lubricating base oils for example, the case of using furfural as citrus out solvent, column top temperature: preferably 9 0 to 1 5 0 ° ⁇ , more preferred properly 1 0 0 to 140° ⁇ , tower bottom temperature: preferably 40 to 90° ⁇ , more preferably 50 to 80 ° ⁇ , solvent ratio to oil 1: preferably 0.5 to 4 It is preferable to contact with the solvent at 1 to 3.
  • a more preferable base oil can be obtained by dewaxing the raffinate by hydrorefining and/or solvent dewaxing or hydrodewaxing treatment.
  • the hydrorefining is carried out in the presence of a catalyst in which one or more kinds of active metals such as nickel, cobalt and molybdenum are supported on a carrier such as alumina or silica-alumina under hydrogen pressure. It is advisable to perform the test at a temperature of 250 to 400° and liquid space velocity (!_ 1 to 13) 1 to 5 1 ⁇ -1 .
  • Hydrorefining involves contacting hydrogen at high temperature and high pressure with feedstock oil in the presence of a catalyst to remove impurities, such as sulfur and nitrogen, that can adversely affect the use and storage of process oil as hydrogenated light reactants. It can be removed, and as a result, stability and hue can be improved.
  • impurities such as sulfur and nitrogen
  • solvent dewaxing one or more solvents selected from the group consisting of acetone, methylethylketone, benzene, and toluene are used to mix with the feedstock, and then a cooling process is performed to start with normal paraffin. It is possible to improve the low temperature fluidity by precipitating a wax fraction and separating it by filtration with a filter.
  • the petroleum-based aromatic-containing oil of the embodiment can be produced.
  • the rubber composition of the present invention is not limited to the following rubber composition.
  • FIG. 2 and FIG. 2 are process drawings illustrating an example of a process of preparing a tire composition from a raw rubber.
  • the tire composition used as a tire raw material contains raw rubber and various compounding agents. Synthetic rubber may be blended with extender oil during its synthesis, and a rubber composition containing an extender oil in advance (also referred to as oil-extended rubber) may be used as a raw rubber (see Fig. 2-8). See). Alternatively, raw rubber (also called non-oil extended rubber) containing no extender oil may be used (see Fig. 2). Process oil and various compounding agents are added to the raw rubber (see Fig. 2 and Mitsumi).
  • a raw rubber (rubber composition) that is an oil-extended rubber can be obtained by subjecting a monomer to a polymerization reaction, and can be produced by adding an extender oil in the process.
  • the monomer and extender that are the raw materials for the raw rubber ⁇ 2020/175 512 18 ⁇ (: 170? 2020 /007603
  • Oil extension can be carried out by subjecting a reaction liquid containing oil to a polymerization reaction, or by adding a extender oil to the polymer solution after polymerizing a reaction liquid containing a monomer which is a rubber raw material of the raw rubber.
  • Rubber can be manufactured (Fig. 28).
  • a tire composition (rubber composition) includes the above-mentioned raw material rubber, the petroleum-based aromatic-containing oil according to the present invention, and a compounding agent, for example, known kneaders for rubber, for example, mouth rolls, mixers, and kneaders. It can be manufactured by kneading.
  • the tire composition can be vulcanized under any conditions.
  • a rubber composition containing a raw material rubber and a petroleum-based aromatic-containing oil (extender oil or process oil) of the embodiment is referred to as a rubber composition.
  • the rubber composition of the embodiment is used for manufacturing a tire. It is suitable as a rubber composition for a tire.
  • the present invention provides a tire composition containing a raw material rubber, a petroleum-based aromatic-containing oil according to the present invention, and a compounding agent.
  • the evening composition is a concept included in the rubber composition of the embodiment.
  • the tire composition (rubber composition) may be vulcanized or unvulcanized.
  • the expression is divided into the extruder oil and the process oil, but these are sometimes collectively referred to as the process oil.
  • an elastomeric polymer can be used as the raw material rubber.
  • Gen rubber ethylene-propylene-gen rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isoprene copolymer, chloroprene rubber, butyl rubber and halogenated isoptylene-genyl rubber such as methylstyrene rubber, nitrile rubber, chloroprene rubber, Butyl rubber, Ethylene-Propylene-based rubber (Mimi 0 1 ⁇ /1, Mimi 1 ⁇ /1), Ethylene-Butene rubber (Mimi Mimi 1 ⁇ /1), Chlorosulfonated polyethylene, Acrylic rubber, Fluorine rubber and other olefins System rubber, epichlorohydrin rubber, polysulfide rubber, ⁇ 2020/175 512 19 boxes (: 170? 2020 /007603
  • Silicone rubber, urethane rubber, etc. can be mentioned.
  • polystyrene-based elastomeric polymer that may be hydrogenated (3, 3, 3 1, 3, 3, £ 3, 3), polyolefin-based elastomeric polymer, polyvinyl chloride It may be a thermoplastic elastomer such as elastomeric polymer, polyurethane elastomeric polymer, polyester elastomeric polymer or polyamide elastomeric polymer. These can be used alone or in any blend.
  • the elastomeric polymer is selected from the group consisting of natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, butyl rubber, chloroprene rubber, and acrylonitrile rubber. It is preferably at least one of Furthermore, from the viewpoint that it can be suitably used for a tire that exhibits rolling resistance and water-grip performance as tire performance, elastomeric polymers include natural rubber, isoprene rubber, styrene-butadiene rubber, and butadiene. It is preferably at least one selected from the group consisting of rubber.
  • the extender oil or the process oil the petroleum-based aromatic-containing oil according to the embodiment can be used.
  • Compounding agents include fillers, antioxidants, antioxidants, cross-linking agents (vulcanizing agents), cross-linking accelerators, resins, plasticizers, vulcanization accelerators, vulcanization accelerating aids (vulcanization aids). Agents).
  • Examples of the filler include carbon black, silica, silane compounds (silane coupling agents) and the like, and silica and/or silane coupling agents are preferable.
  • Carbon black is classified into hard carbon and soft carbon based on particle size. Soft carbon has low reinforcement to rubber, and hard carbon has high reinforcement to rubber. When the rubber composition of the embodiment contains force-bonded black, it is preferable to use hard carbon having a particularly strong reinforcing property. Carbon black is based on 100 parts by weight of the elastomeric polymer. ⁇ 2020/175 512 20 units (: 170? 2020 /007603
  • It is preferably mixed in an amount of 10 to 250 parts by mass, more preferably in an amount of 20 to 200 parts by mass, and even more preferably in an amount of 30 to 50 parts by mass.
  • the silica is not particularly limited, and examples thereof include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon containing hydrous silicic acid as a main component is preferable. These silicas can be used alone or in combination of two or more.
  • the specific surface area of these silicas is not particularly limited, but is usually 10 to 40 in terms of nitrogen adsorption specific surface area (Mitsumi method). It is suitable for improvement of reinforcing property, abrasion resistance, heat generation property, etc. when it is in the range of preferably 20 to 300! 2 /, more preferably 120 to 1900 12 /. Is.
  • the nitrogen adsorption specific surface area is a value measured by the Mitsumi method in accordance with 8 3 1 ⁇ /1 0 3 0 3 7-81.
  • the silane compound is not particularly limited, but a sulfur-containing silane coupling agent is preferable, and bis(3-triethoxysilylpropyl)disulfide is more preferable.
  • crosslinking agent examples include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, and insoluble sulfur.
  • Examples of the vulcanization accelerator include tetramethylthiuram disulfide (Cho 1 ⁇ /1C 0), tetraethyl thiuram disulfide (Chomi Cho), and other thiuram-based compounds, and aldehydes such as hexamethylenetetramine.
  • Ammonia type guanidine type such as diphenylguanidine, thiazole type such as dibenzothiazyl disulfide (Mouth IV!), cyclohexyl ether such as 1 ⁇ 1-cyclohexyl-2-benzothiazolyl sulfenamide. Examples include Nzothiazyl sulfenamide type.
  • Examples of the vulcanization accelerator include fatty acids such as acetyl acid, propionic acid, butanoic acid, stearic acid, acrylic acid and maleic acid, zinc acetylate, zinc propionate, zinc butanoate, zinc stearate, acryl. Examples thereof include zinc acid, fatty acid zinc such as zinc maleate, and zinc white. ⁇ 2020/175 512 21 box (: 170? 2020 /007603
  • the amounts of these raw material rubbers, the petroleum-based aromatic-containing oil according to the present invention, and the compounding agent can be set to general amounts unless it is against the object of the present invention.
  • a filler 30 to 100 parts by mass
  • a petroleum-based aromatic-containing oil 80 parts by mass or less
  • an antiaging agent 0.5 ⁇ 5 parts by mass
  • cross-linking agent 1 to 10 parts by mass
  • resin ⁇ to 20 parts by mass
  • vulcanization accelerator 0.5 to 5 parts by mass
  • vulcanization accelerator aid 1 to 10 parts by mass
  • the silica and/or silane coupling agent is mixed in an amount of 10 to 300 parts by mass with respect to 100 parts by mass of the elastomeric polymer. It is preferable that it is contained, more preferably 50 to 150 parts by mass, further preferably 70 to 100 parts by mass.
  • the content of the silane compound (silane coupling agent) is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the elastomeric polymer.
  • the petroleum-based aromatic-containing oil is preferably 0.5 to 80 parts by mass with respect to 100 parts by mass of the elastomeric polymer, and more preferably 10 to 50 parts by mass. It is more preferably 20 to 40 parts by mass.
  • the rubber composition of the embodiment it is possible to provide a rubber composition having excellent rolling resistance performance and wet grip performance.
  • the tire of the embodiment contains the petroleum-based aromatic-containing oil according to the above embodiment.
  • the tire of the embodiment can be manufactured by blending rubber and the petroleum-based aromatic-containing oil of the embodiment and vulcanizing.
  • the tire according to the embodiment may include the above tire composition (rubber composition), and can be produced by vulcanizing the tire composition.
  • the above tire composition can be vulcanized to produce a tire. More specifically, for example, A tire is manufactured by heat-melting the above tire composition, extruding the heat-melted tire composition, then molding using a tire molding machine, and then heating and pressurizing using a vulcanizer. You can
  • a tire is composed of, for example, a tire, a tire, a carcass, a side wall, an inner liner, an undertread, and a belt portion.
  • the tire according to the embodiment preferably contains the petroleum-based aromatic-containing oil according to the above-described embodiment in the tred portion.
  • the tire of the embodiment preferably has a tire tread made of the tire composition of the embodiment. Since the petroleum-based aromatic-containing oil is contained in the tread portion that serves as the ground contact surface, rolling resistance performance and wet grip performance are suitably exhibited.
  • the petroleum-based aromatic-containing oil containing the above-mentioned specific component in a specific amount acts on the dispersion or dissolution of various compounding agents including silica, and their behavior in the rubber polymer has a favorable influence on each physical property. As a result, it is considered that the anti-performance is compatible. ⁇ 2020/175 512 23 ⁇ (: 170? 2020 /007603
  • Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was subjected to compression liquefaction propane deasphalting extraction apparatus (operating conditions: overhead temperature 60 to 90 ° 0, tower bottom temperature 50 to 80 ° 0, solvent ratio adjusted to within the range of 1.5 to 6.0), and the obtained deasphalted oil was extracted with a furfural extractor (operating conditions: tower top temperature 1 30 to 1 40 ° 0, column bottom temperature 80 to 100 ° 0, solvent ratio adjusted to within the range of 3.0 to 4.0), and the obtained extract fraction was used as extract (8).
  • the Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500! ⁇ 1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 1 1 0 to 1 30 ° 0, column bottom temperature 60 to 80 ° 0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment (operating conditions: precious metal system).
  • liquid space velocity 1. ⁇ to 2.0 _ 1 , reaction temperature 27 ⁇ to 330 ° 0, hydrogen oil ratio 1 500 to 2500 !_/!_, hydrogen partial pressure 4. ⁇ to 6.
  • the hydrogenated refined oil obtained is subjected to solvent dewaxing equipment (operating conditions: mixed solvent of methyl ethyl ketone and toluene, primary solvent ratio 2.0, secondary solvent ratio 0.8, dewaxing).
  • the dewaxed oil obtained was used as dewaxed oil (Mitsumi).
  • Extract (8)/dewaxed oil (Mitsumi) were mixed at a mass ratio of 60/40 to obtain the process oil of Example 1.
  • Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was subjected to compression liquefaction propane deasphalting extraction apparatus (operating conditions: tower top temperature 50 to 80 °0, bottom temperature 40-70°0, solvent ratio 5.0 ⁇ 2020/175 512 24 boxes (: 170? 2020 /007603
  • the obtained deasphalted oil is subjected to a furfural extraction device (operating conditions: column top temperature 100 to 120 ° 0, column bottom temperature 50 to 70 ° 0, solvent ratio 3.
  • the extract fraction thus obtained was used as extract ( ⁇ ).
  • the Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500! ⁇ 1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). ⁇ to 120 ° 0, column bottom temperature 50 to 70 ° 0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment (operating conditions: precious metal system).
  • the liquid space velocity is 1.0 to 2.0 _ 1
  • the reaction temperature is 32 ⁇ to 370°0
  • the hydrogen oil ratio is 1 500 to 2500 !_/!_
  • the hydrogen partial pressure is 8.0 ⁇ 10.
  • the hydrogenated refined oil obtained is subjected to a solvent dewaxing apparatus (operating conditions: a mixed solvent of methyl ethyl ketone and toluene, a primary solvent ratio of 1.3, a secondary solvent ratio of 1.3, and a dewaxing temperature of 1).
  • the dewaxed oil obtained was used as dewaxed oil (mouth).
  • the extract ( ⁇ /dewaxed oil (mouth)) was mixed at a mass ratio of 70/30 to obtain the process oil of Example 2.
  • Middle-east crude oil is subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue is subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue is subjected to deliquescent extraction with propane (operating conditions: column top temperature 55 to 85 ° 0, tower bottom temperature 45 to 75 ° 0, solvent ratio adjusted to 1.0 to 4.0), and the resulting deasphalted oil was extracted with a furfural extractor (operating conditions: tower top temperature 110 ⁇ 1 30 ° 0, column bottom temperature 60 to 80 ° 0, solvent ratio adjusted to within the range of 3.0 to 4.0), and the obtained extract fraction was used as extract (norm).
  • propane operating conditions: column top temperature 55 to 85 ° 0, tower bottom temperature 45 to 75 ° 0, solvent ratio adjusted to 1.0 to 4.0
  • a furfural extractor operating conditions: tower top temperature 110 ⁇ 1 30 ° 0, column bottom temperature 60 to 80 ° 0, solvent ratio adjusted to within the range of 3.0 to 4.0
  • the obtained extract fraction was used as extract (norm).
  • the Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500! ⁇ 1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). 5 to 125 ° 0, column bottom temperature 55 to 75 ° 0, solvent ratio adjusted to 1.2 to 2.8), and the resulting raffinate fraction is hydrorefining equipment. ⁇ 2020/175 512 25 units (: 170? 2020 /007603
  • the extract (Minami)/dewaxed oil () was mixed in a mass ratio of 62/38 to obtain the process oil of Example 3.
  • the naphthene crude oil was subjected to an atmospheric distillation device, the obtained atmospheric distillation residue was subjected to a vacuum distillation device, and the resulting vacuum distillation fraction equivalent to 1 000! ⁇ 1 was hydrorefined (operating conditions: precious metal system). using a catalyst, the liquid hourly space velocity 1. ⁇ _ ⁇ 3. 011 1, reaction temperature 2 70 ° ⁇ _ ⁇ 340 ° 0, hydrogen oil ratio 1 400-2800! _ /! _, hydrogen partial pressure of 3. ⁇ _ ⁇ 9 .
  • the hydrogenated refined oil obtained was used as the hydrogenated refined oil ( ⁇ ).
  • the naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (!_).
  • the extract (Mitsumi) was used as the process oil of Example 5.
  • the extract ( ⁇ ) was used as the process oil of Example 6.
  • the Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500! ⁇ 1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). ⁇ to 1 30°0, tower bottom temperature 50 to 80°0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment. ⁇ 2020/175 512 26 boxes (: 170? 2020 /007603
  • the Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (!!).
  • the naphthene crude oil was subjected to an atmospheric distillation device, the obtained atmospheric distillation residue was subjected to a vacuum distillation device, and the resulting vacuum distillation fraction equivalent to 1 000! ⁇ 1 was hydrorefined (operating conditions: precious metal system).
  • liquid hourly space velocity 1.0 ⁇ 3.01 ⁇ -1 , reaction temperature of 2 70° ⁇ to 340° 0, hydrogen oil ratio of 1 400 to 2800 !_/!_, hydrogen partial pressure of 3.0 ⁇ 9.
  • the resulting hydrogenated refined oil was used as a hydrogenated refined oil ( ⁇ ).
  • the naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (").
  • Dewaxed oil ( ⁇ )/vacuum distillation residue (!!) are mixed in a mass ratio of 50/50, and hydrorefined oil ( ⁇ )/vacuum distillation residue (”) is mixed in a mass ratio of 50/50. were mixed so that the kinematic viscosity of the 1 00 ° ⁇ both a 30 ⁇ 1 2/3 near to give up Rosesuoiru of Comparative example 1.
  • the naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 2000! ⁇ 1 equivalent vacuum distillation fraction was subjected to a hydrorefining apparatus (operating condition: precious metal catalyst).
  • Liquid space velocity of 1.0 to 3.01 ⁇ -1 reaction temperature of 2 70° to 340° 0, hydrogen oil ratio of 1 400 to 2800 !_/!_, hydrogen partial pressure of 3.0 to 9 .
  • the hydrogenated refined oil obtained was used as the process oil of Comparative Example 2.
  • Clay gel method (Clay gel column chromatography): ASTM D 2007— 1 1 StandardTest Method for Characteristic Groups m Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel A bsorpt ion Chromatographic Method. Minutes and polar components (mass%) were calculated.
  • Pretreatment was performed by diluting the sample 5 times with hexane.
  • the column used was Spherisorb A5 Y 250X4.6 mm manufactured by Waters Co., the flow rate was 2.5 mL/min, the UV detector was used as the detector, and the wavelength was measured at 270 nm.
  • Hexane was used as the eluent from the time of sample introduction to 0 to 10.0 minutes, and from 100 to 30.0 minutes from 100% by mass of hexane to 40% by mass of dichloromethane and 60% by mass of hexane. %, the dichloromethane content was increased linearly in the mixed solution.
  • 2-ring aromatic content (0.1 X2 ring area / (1 ring area + 0.1 X2 ring area + 0.025 X3 or more ring area)) X 100
  • the glass transition point was obtained from the calorific value change peak in the glass transition region, which was measured when the temperature was raised at a constant heating rate with a DSC (differential scanning calorimeter).
  • the initial temperature was usually about 30 ° C. to 50 ° C. or lower than the expected glass transition point, and the temperature was started after the initial temperature was maintained for a certain period of time. Specifically, the measurement was performed under the following conditions.
  • P A H s means the following:
  • the rubber polymer, the process oil produced in the above Examples 1-1 to 6-1 and other compounding agents (silica, silane coupling agent, antioxidant, vulcanization aid, zinc oxide, sulfur, addition of (Vulcanization accelerator) was prepared in the following composition, and then kneaded to obtain an unvulcanized rubber composition, which was then press-vulcanized and molded at 160°C. ⁇ 2020/175 512 30 units (: 170? 2020 /007603
  • a rubber polymer, the process oil produced in Comparative Examples 1-1 to 4-1 above, and other compounding agents (same as above) were prepared in the following composition, and then kneaded to obtain an unvulcanized product. After obtaining the rubber composition (1), press vulcanization molding was performed at 160 ° .
  • composition of the tire composition is shown in Table 1 below.
  • "II” in the table represents parts by mass of various compounding agents based on 100 parts by mass of the rubber polymer.
  • Silane coupling agent Evonik _175
  • Zinc Oxide Toho Zinc's Zinc Oxide No. 3
  • Process oil Each process oil produced in Examples and Comparative Examples Sulfur: Commercial sulfur for vulcanization
  • Vulcanization accelerator 8 Noxera manufactured by Ouchi Shinko Chemical Industry
  • Rubber kneading method The following two-stage kneading was performed.
  • Test pieces of 8111111 ⁇ X 10111111 were prepared from the rubber kneaded pieces after press vulcanization molding of the above Examples and Comparative Examples, and the following items were measured on the test pieces.
  • a value of 3 (5 ° 0) is an index of wet grip performance, and the larger this value, the better the wet grip performance.
  • Tan S (50 ° C) is an index of rolling resistance performance, and the smaller this value is, the better the rolling resistance performance is.
  • Example 1 The above measurement results are shown below.
  • the above Examples 1 — 1 and Examples 1 — 2 are abbreviated as Example 1. The same applies to other examples and comparative examples.
  • means that the content is less than 10 111 (1 ⁇ (: within the 11 standard values)).
  • Underline means that the value is less than 1 (wet grip performance is inferior).
  • the rubber compositions of Examples 1 to 3 obtained by blending the process oils in which the “ratio of aromatics by the Clay gel method” satisfies the range specified in the embodiment have wet grip performance and rolling resistance performance. It can be seen that good values are compatible.
  • each configuration and the combination thereof in each embodiment are examples, and the configuration can be added, omitted, replaced, and other changes without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, but is limited only by the scope of the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a petroleum-based aromatics-containing oil having a saturates content by the clay-gel method of not more than 40 mass%, a proportion for a bicyclic aromatics fraction, as fractionated using HPLC, of 10 mass% to 30 mass% with reference to 100 mass% for an aromatics fraction, a benzo(a)pyrene content of not more than 1 mass-ppm, and a total content of following specific aromatic compounds 1) through 8) of not more 10 mass-ppm: 1) benzo(a)pyrene, 2) benzo(e)pyrene, 3) benzo(a)anthracene, 4) chrysene, 5) benzo(b)fluoranthene, 6) benzo(j)fluoranthene, 7) benzo(k)fluoranthene, and 8) dibenzo(a, h)anthracene.

Description

\¥0 2020/175512 1 ?<:17 2020 /007603 明 細 書 \¥0 2020/175 512 1 ?<: 17 2020 /007603
発明の名称 : Title of invention:
石油系芳香族含有油、 ゴム組成物、 タイヤ及びタイヤの製造方法 Petroleum-based aromatic-containing oil, rubber composition, tire, and method for manufacturing tire
技術分野 Technical field
[0001] 本発明は、 石油系芳香族含有油、 ゴム組成物、 タイヤ及びタイヤの製造方 法に関する。 [0001] The present invention relates to a petroleum-based aromatic-containing oil, a rubber composition, a tire, and a method for producing a tire.
本願は、 2 0 1 9年 2月 2 8日に、 日本に出願された特願 2 0 1 9— 0 3 5 8 3 6号に基づき優先権を主張し、 その内容をここに援用する。 The present application claims priority on the basis of Japanese Patent Application No. 2019-9-03583836 filed in Japan on February 28, 2019, the content of which is incorporated herein by reference.
背景技術 Background technology
[0002] 一般にゴム製品には、 ゴム組成物の加工性や軟化性を改善するためにプロ セスオイルが配合されることが多い。 たとえば 3巳
Figure imgf000002_0001
(スチレンブタジエン 共重合体ゴム) 等の合成ゴムには、 その合成時に伸展油 (エキステンダーオ イル) が配合されている (ゴム配合油) 。 また、 タイヤ等のゴム加工製品に は、 その加工性やゴム加工製品の品質を改善するために加工油 (プロセスオ イル) が配合されている。 ここでは伸展油と加工油とで表現を分けているが 、 これらは総称してプロセスオイルと呼ばれることがある。
[0002] Generally, a rubber product is often blended with a process oil in order to improve the processability and softening property of the rubber composition. For example, 3
Figure imgf000002_0001
Synthetic rubbers such as (styrene-butadiene copolymer rubber) are blended with extender oil (extender oil) during synthesis (rubber compounding oil). In addition, rubber processed products such as tires contain processing oil (process oil) to improve the processability and the quality of the rubber processed products. Although the expression oil is divided into the expression oil and the processing oil here, they may be collectively referred to as process oil.
—方で、 欧州においては、 ゴム配合油に特定の発ガン性多環芳香族化合物 を特定量以上含有するものを、 タイヤ又はタイヤ部品の製造に使用してはな らないとの規制 ([¾巳八〇1~1規則) が 2 0 1 0年より適用されている。 その ため、
Figure imgf000002_0002
巳八〇 1~1規則に合致するゴム配合油が求められている。
On the other hand, in Europe, it is regulated that rubber compounded oils containing a specific amount of a carcinogenic polycyclic aromatic compound in a specific amount or more must not be used in the manufacture of tires or tire parts ([[ ¾ 801 ~ 1 rule) has been applied since 2010. for that reason,
Figure imgf000002_0002
Rubber compounding oils that meet the snake eighty 1-1 rule is demanded.
[0003] 自動車分野における省燃費化の動向は非常に注目されており、 タイヤの省 燃費化についてもさらなる改良が要求されている。 タイヤには、 2 0 1 0年 1月からタイヤラベリング制度が開始されるに伴い、 省燃費性を示す 「転が り抵抗性能」 とブレーキ性能を示す 「ウエッ トグリップ性能」 の向上が強く 求められている。 しかしながら、 一般に転がり抵抗性能とウエッ トグリップ 性能とは背反の関係にあり、 これらの高次元での両立が課題となっている。 [0004] タイヤの転がり抵抗性能の向上には、 空気抵抗の低減や、 トレッ ドバター 〇 2020/175512 卩(:170? 2020 /007603 [0003] The trend of fuel saving in the automobile field has received a great deal of attention, and further improvement is required for the fuel saving of tires. With the start of the tire labeling system in January 2010, tires are strongly required to have improved "rolling resistance performance," which indicates fuel efficiency, and "wet grip performance," which indicates braking performance. ing. However, in general, rolling resistance performance and wet grip performance are in a trade-off relationship, and it is an issue to achieve both of these at a high level. [0004] In order to improve the rolling resistance performance of tires, air resistance is reduced and 〇 2020/175 512 卩 (: 170? 2020 /007603
ンの工夫などの他、 ゴム組成すなわちトレッ ドコンパウンド自身のヒステリ シスロスを抑制する手法がある。 近年、 タイヤ処方のひとつである補強材と して、 シリカを配合するコンパウンドが普及してきている。 シリカは、 単に 配合するだけではコンパウンド中でシリカ同士が凝集して、 ゴム変形時にシ リカ分子同士が擦れてエネルギーロスを生じやすい。 これに対し、 ウエッ ト グリップ性能を保ちつつ、 転がり抵抗性能を改良するという狙いから、 末端 変性シリカやシランカップリング剤を適用することで、 シリカの存在形態を コントロールする手法が提案されている。 There is a method to control the rubber composition, that is, the hysteresis loss of the tread compound itself, in addition to the device design. In recent years, compounds containing silica as a reinforcing material, which is one of tire prescriptions, have become popular. If silica is simply compounded, silica particles will agglomerate in the compound, and silica molecules will rub against each other during rubber deformation, resulting in energy loss. On the other hand, for the purpose of improving the rolling resistance performance while maintaining the wet grip performance, a method of controlling the existing form of silica by applying terminal-modified silica or a silane coupling agent has been proposed.
特許文献 1 によれば、 ゴム成分と、 含水炭酸カルシウムと、 シランカップ リング剤とを混練する第ーベース練り工程と、 前記第ーベース練り工程によ り得られた混練物と、 シリカとを混練する第二べース練り工程とを含む製造 方法により得られるタイヤ用ゴム組成物が開示されている。 これによれば、 シリカの分散性に優れ、 省燃費性、 ウエッ トグリップ性能、 耐摩耗性をバラ ンス良く向上できるタイヤ用ゴム組成物が得られるという。 According to Patent Document 1, a first base kneading step of kneading a rubber component, hydrous calcium carbonate, and a silane coupling agent, and a kneaded material obtained by the first base kneading step and kneading silica. A rubber composition for a tire obtained by a production method including a second base kneading step is disclosed. According to this, it is possible to obtain a rubber composition for a tire which has excellent dispersibility of silica and can improve fuel economy, wet grip performance, and wear resistance with good balance.
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開 2 0 1 2 - 1 5 3 7 8 7号公報 Patent Document 1: Japanese Patent Laid-Open No. 20 1 2-1 5 3 7 8 7
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] しかしながら、 タイヤには、 さらなる 「転がり抵抗性能」 及び 「ウエッ ト グリップ性能」 の向上と、 これらの両立が求められている。 かかる要求に対 し、 シリカやシランカップリング剤以外のゴム部材からの様々なアプローチ が期待される。 [0006] However, tires are required to further improve "rolling resistance performance" and "wet grip performance" and to achieve both of them. In response to such requirements, various approaches from rubber members other than silica and silane coupling agents are expected.
[0007] 本発明は、 上記のような問題点を解消するためになされ、 転がり抵抗性能 及びウエツ トグリツプ性能に優れたゴム組成物を製造可能とし、
Figure imgf000003_0001
巳 〇 1~1 規則を満たす石油系芳香族含有油を提供することを目的とする。
[0007] The present invention has been made to solve the above problems, and makes it possible to produce a rubber composition having excellent rolling resistance performance and wet grip performance,
Figure imgf000003_0001
And to provide a petroleum-based aromatic containing oils satisfying only 〇 1-1 rule.
また、 本発明は、
Figure imgf000003_0002
〇 2020/175512 3 卩(:170? 2020 /007603
Further, the present invention is
Figure imgf000003_0002
〇 2020/175 512 3 boxes (: 170? 2020 /007603
転がり抵抗性能及びウェッ トグリップ性能に優れた、 ゴム組成物を提供する ことを目的とする。 It is an object of the present invention to provide a rubber composition having excellent rolling resistance performance and wet grip performance.
また、 本発明は、 前記石油系芳香族含有油を含有するタイヤ、 及び前記夕 イヤの製造方法を提供することを目的とする。 Another object of the present invention is to provide a tire containing the petroleum-based aromatic-containing oil, and a method for manufacturing the tire.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者らは、 上記課題を解決すべく鋭意検討した結果、 飽和分と、 芳香 族分のなかでも特に 2環芳香族分と、 を下記の特定量で含む油を配合するこ とで、 転がり抵抗性能及びウェッ トグリップ性能に優れるゴム組成物を製造 可能であることを見出し、 本発明を完成するに至った。 [0008] As a result of intensive studies to solve the above problems, the present inventors have formulated an oil containing a saturated component and, in particular, a two-ring aromatic component among aromatic components, in the following specific amounts. As a result, they have found that it is possible to produce a rubber composition having excellent rolling resistance performance and wet grip performance, and have completed the present invention.
すなわち、 本発明の一態様は、 下記の石油系芳香族含有油、 ゴム組成物、 タイヤ、 及びタイヤの製造方法である。 That is, one aspect of the present invention is the following petroleum-based aromatic-containing oil, rubber composition, tire, and method for producing a tire.
[0009] (1) クレイゲル法による飽和分の割合が、 4 0質量%以下であり、 [0009] (1) The proportion of saturated components by the Clay gel method is 40% by mass or less,
! ! !_(3を用いて分画される 2環芳香族分の割合が、 前記芳香族分 1 0 0 質量%に対し、 1 〇質量%以上 3 0質量%以下であり、 !! !_ (The proportion of the two-ring aromatics fractionated using 3 is 10 mass% or more and 30 mass% or less with respect to 100 mass% of the aromatic content,
ベンゾ (8) ピレンの含有量が 1質量 111以下であり、 The benzo (8) pyrene content is 1 mass 111 or less,
下記 1) 〜 8) の特定芳香族化合物の含有量の合計が 1 0質量 111以下 である、 石油系芳香族含有油。 A petroleum-containing aromatic-containing oil, wherein the total content of the specific aromatic compounds of 1) to 8) below is 10 mass 111 or less.
1 ) ベンゾ (3) ピレン (巳 3 ) 1) Benzo (3) Pyrene (Mimi 3)
2) ベンゾ (6) ピレン (巳 6 ) 2) Benzo (6) Pyrene (Minami 6)
3) ベンゾ (3) アントラセン (巳 3八) 3) Benzo (3) Anthracene (Mitsuhachihachi)
4) クリセン (〇 1~1 [¾) 4) Chrysene (〇 1 ~ 1 [¾)
5) ベンゾ (匕) フルオランテン (巳匕 八) 5) Benzo (匕) Fluoranthene (Minami Yahachi)
6) ベンゾ ) フルオランテン (巳 」 八) 6) Benzo) Fluoranthene (Mimi "8)
7) ベンゾ (1<) フルオランテン (巳 1< 八) 7) Benzo (1<) Fluoranthene (Mitsu 1<8)
8) ジベンゾ (3 , ) アントラセン (〇巳八 八) 。 8) Dibenzo (3,) Anthracene (0,8,8).
(2) 前記クレイゲル法による飽和分の割合が、 2 0質量%以上である、 前 記 ( 1) に記載の石油系芳香族含有油。 (2) The petroleum-containing aromatic oil according to (1) above, wherein the proportion of the saturated component by the clay gel method is 20% by mass or more.
(3) 前記 ! ! !_(3を用いて分画される 2環芳香族分の割合が、 前記芳香族 〇 2020/175512 4 卩(:170? 2020 /007603 (3) The proportion of the two-ring aromatics fractionated using !! !_(3 above is 〇 2020/175 512 4 (: 170? 2020 /007603
分 1 0 0質量%に対し、 2 8質量%以下である、 前記 (1) 又は (2) に記 載の石油系芳香族含有油。 The petroleum-containing aromatic-containing oil described in (1) or (2) above is 28% by mass or less based on 100% by mass.
(4) 前記クレイゲル法による飽和分の割合が、 3 5質量%以下である、 前 記 (1) 〜 (3) のいずれか一つに記載の石油系芳香族含有油。 (4) The petroleum-based aromatic-containing oil according to any one of the above (1) to (3), wherein the ratio of saturated components by the Clay gel method is 35% by mass or less.
(5) 前記 ! ! !_(3を用いて分画される 2環芳香族分の割合が、 前記芳香族 分 1 0 0質量%に対し、 2 0質量%以上である、 前記 (1) 〜 (4) のいず れか一つに記載の石油系芳香族含有油。 (5) The proportion of the two-ring aromatics fractionated by using !! !_(3 is 20% by mass or more based on 100% by mass of the aromatics, (1) ~ A petroleum-based aromatic-containing oil according to any one of (4).
(6) 前記クレイゲル法による飽和分の割合が、 3 0質量%以下である、 前 記 (1) 〜 (5) のいずれか一つに記載の石油系芳香族含有油。 (6) The petroleum-based aromatic-containing oil according to any one of (1) to (5) above, wherein the proportion of the saturated component by the Clay gel method is 30% by mass or less.
(7) 前記 ! ! !_(3を用いて分画される 2環芳香族分の割合が、 前記芳香族 分 1 0 0質量%に対し、 2 5質量%以下である、 前記 (1) 〜 (6) のいず れか一つに記載の石油系芳香族含有油。 (7) The proportion of the bicyclic aromatic fraction fractionated by using !! !_(3 is 25 mass% or less with respect to 100 mass% of the aromatic content, (1) ~ A petroleum-based aromatic-containing oil according to any one of (6).
(8) 前記 ! ! !_(3を用いて分画される 2環芳香族分の割合が、 前記芳香族 分 1 0 0質量%に対し、 2 4 . 5質量%以下である、 前記 (1) 〜 (7) の いずれか一つに記載の石油系芳香族含有油。 (8) The proportion of the bicyclic aromatic fraction fractionated by using !! !_(3 is 24.5 mass% or less with respect to 100 mass% of the aromatic content. The petroleum-based aromatic-containing oil according to any one of 1) to 7).
(9) ゴムに混合されて用いられるエキステンダーオイル又はプロセスオイ ルである、 前記 (1) 〜 (8) のいずれか一つに記載の石油系芳香族含有油 (9) A petroleum-based aromatic-containing oil according to any one of (1) to (8) above, which is an extender oil or a process oil used by being mixed with rubber.
(1 〇) 前記 (1) 〜 (9) のいずれか一つに記載の石油系芳香族含有油と 、 ゴムとを含有する、 ゴム組成物。 (10) A rubber composition containing the petroleum-based aromatic-containing oil according to any one of (1) to (9) above and a rubber.
(1 1) 前記 (1) 〜 (9) のいずれか一つに記載の石油系芳香族含有油を 含有する、 タイヤ。 (11) A tire containing the petroleum-based aromatic-containing oil according to any one of (1) to (9) above.
(1 2) ゴムと、 前記 (1) 〜 (9) のいずれか一つに記載の石油系芳香族 含有油と、 を配合して加硫することを含む、 前記 (1 1) に記載のタイヤの 製造方法。 (12) A rubber, and the petroleum-based aromatic-containing oil according to any one of (1) to (9) above, which is compounded and vulcanized. Tire manufacturing method.
発明の効果 Effect of the invention
[0010] 本発明によれば、 転がり抵抗性能及びウェッ トグリップ性能に優れたゴム 組成物を製造可能とし、
Figure imgf000005_0001
できる。
[0010] According to the present invention, it is possible to produce a rubber composition having excellent rolling resistance performance and wet grip performance,
Figure imgf000005_0001
it can.
また、 本発明によれば、 R EACH規則を満たす石油系芳香族含有油を含 有し、 転がり抵抗性能及びウエッ トグリップ性能に優れた、 ゴム組成物を提 供できる。 Further, according to the present invention, it is possible to provide a rubber composition containing a petroleum-based aromatic-containing oil satisfying the R EACH rule and being excellent in rolling resistance performance and wet grip performance.
また、 本発明によれば、 前記石油系芳香族含有油を含有するタイヤ、 及び 前記タイヤの製造方法を提供できる。 Further, according to the present invention, it is possible to provide a tire containing the petroleum-based aromatic-containing oil, and a method for manufacturing the tire.
図面の簡単な説明 Brief description of the drawings
[0011] [図 1]本発明の一実施形態の石油系芳香族含有油の製造方法の一例を説明する 工程図である。 [0011] [Fig. 1] Fig. 1 is a process chart explaining an example of a method for producing a petroleum-based aromatic oil according to an embodiment of the present invention.
[図 2A]本発明の一実施形態のタイヤ組成物を調製する過程の一例を説明する 工程図である。 FIG. 2A is a process chart illustrating an example of the process of preparing the tire composition according to the embodiment of the present invention.
[図 2B]本発明の一実施形態のタイヤ組成物を調製する過程の一例を説明する 工程図である。 FIG. 2B is a process chart illustrating an example of the process of preparing the tire composition according to the embodiment of the present invention.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、 本発明の石油系芳香族含有油、 ゴム組成物、 タイヤ、 及びタイヤの 製造方法の実施形態を説明する。 [0012] Hereinafter, embodiments of the petroleum-based aromatic-containing oil, the rubber composition, the tire, and the method for manufacturing a tire according to the present invention will be described.
[0013] 《石油系芳香族含有油》 [0013] <<Oil-containing aromatic oil>>
実施形態の石油系芳香族含有油においては、 クレイゲル法による飽和分の 割合、 H P LCを用いて分画される 2環芳香族分の割合、 ベンゾ (a) ピレ ンの含有量、 及び特定芳香族化合物の含有量が、 特定の数値範囲を満たす。 これらの項目について下記数値範囲を満たす石油系芳香族含有油を含有する ゴム組成物又はタイヤは、 t a n 5 (50°C) 及び t a n S (0°C) の値が 好ましくなり、 ウエッ トグリップ性能及び転がり抵抗性能が両立される。 [0014] ここで、 「ウエッ トグリップ性能」 とは、 いわゆるブレーキ性能のことで 、 動的粘弾性試験によって得られる t a n S (0°C) がその指標となる。 「 転がり抵抗性能」 とは、 いわゆる省燃費性能のことで、 動的粘弾性試験によ って得られる t a n 5 (50°C) がその指標となる。 In the petroleum-based aromatic-containing oil of the embodiment, the ratio of the saturated component by the clay gel method, the ratio of the 2-ring aromatics fractionated by using HP LC, the content of benzo(a)pyrene, and the specific aromatic The content of the group compound satisfies a specific numerical range. For rubber compositions or tires containing petroleum-based aromatic-containing oils that satisfy the following numerical ranges for these items, the values of tan 5 (50 ° C) and tan S (0 ° C) are preferable, and the wet grip performance and Both rolling resistance performance is compatible. [0014] Here, the "wet grip performance" is so-called braking performance, and tan S (0 ° C) obtained by the dynamic viscoelasticity test is an index thereof. “Rolling resistance performance” is so-called fuel-saving performance, and its index is tan 5 (50 ° C) obtained by a dynamic viscoelasticity test.
[0015] 上記 「石油系」 とは、 石油由来 (Petroleum-Derived) の炭化水素油を含有 〇 2020/175512 6 卩(:170? 2020 /007603 [0015] The above "petroleum-based" includes petroleum-derived (Petroleum-Derived) hydrocarbon oils. 〇 2020/175 512 6 boxes (: 170? 2020 /007603
することを意味する。 上記 「芳香族含有油」 とは、 クレイゲル法による飽和 分の割合、 及び 1 1 1_(3を用いて分画される 2環芳香族分の割合が、 下記数 値範囲を満たすことを意味する。 Means to do. The above-mentioned "aromatic-containing oil" means that the ratio of the saturated content by the Clay-gel method and the ratio of the 2-ring aromatics fractionated by using 1 1 1_(3 satisfy the following numerical value range. ..
実施形態の石油系芳香族含有油は、 上記各項目の数値範囲を満たせば、 製 法や分類は特に制限されず、 例えば、 常圧蒸留残渣、 常圧蒸留留分、 減圧蒸 留留分、 減圧蒸留残渣、 脱れき油、 溶剤抽出ラフィネート、 水素化精製油、 脱蝋油、 溶剤抽出エキストラクト等が挙げられ、 後述の石油系芳香族含有油 の製造方法で製造された油を含有することが好ましい。 石油系芳香族含有油 における石油由来の炭化水素油の含有割合は、 5 0質量%以上であってよく 、 8 0質量%以上であってよく、 9 5質量%以上であってよい。 The petroleum-based aromatic-containing oil of the embodiment is not particularly limited in its production method and classification as long as it satisfies the numerical ranges of the above-mentioned items, and includes, for example, atmospheric distillation residue, atmospheric distillation fraction, reduced pressure distillation fraction, Examples include vacuum distillation residue, deasphalted oil, solvent-extracted raffinate, hydrorefined oil, dewaxed oil, solvent-extracted extract, etc., and contain the oil produced by the petroleum-based aromatic-containing oil production method described below. Is preferred. The content ratio of the petroleum-derived hydrocarbon oil in the petroleum-based aromatic-containing oil may be 50% by mass or more, 80% by mass or more, and 95% by mass or more.
[0016] 以下、 実施形態の石油系芳香族含有油の性状に係る各項目について説明す る。 [0016] Each item relating to the properties of the petroleum-based aromatic-containing oil of the embodiment will be described below.
[0017] 石油系油の成分はクレイゲル法によって、 飽和分、 芳香族分、 極成分 (質 量%) に分類可能である。 以下のクレイゲル法による飽和分、 芳香族分、 又 は極成分 (質量%) の値は、 飽和分、 芳香族分、 及び極成分の総量 1 〇〇質 量%に対する値である。 [0017] The components of petroleum-based oils can be classified into saturated components, aromatic components, and polar components (mass %) by the Clay gel method. The values of saturated content, aromatic content, or polar component (mass %) by the Clay gel method below are values based on 100 mass% of the total amount of saturated content, aromatic content, and polar component.
[0018] 実施形態の石油系芳香族含有油は、 クレイゲル法による飽和分の割合が、 4 0質量%以下であり、 3 5質量%以下であることが好ましく、 3 0質量% 以下であることがより好ましい。 実施形態の石油系芳香族含有油は、 クレイ ゲル法による飽和分の割合が、 5質量%以上であることが好ましく、 2 0質 量%以上であることがより好ましく、 2 2質量%以上であることがさらに好 ましい。 上記数値の数値範囲の一例としては、 実施形態の石油系芳香族含有 油は、 クレイゲル法による飽和分の割合が、 5質量%以上 4 0質量%以下で あってもよく、 2 0質量%以上 3 5質量%以下であってもよく、 2 2質量% 以上 3 0質量%以下であってもよい。 [0018] In the petroleum-based aromatic-containing oil of the embodiment, the proportion of the saturated component by the clay gel method is 40% by mass or less, preferably 35% by mass or less, and 30% by mass or less. Is more preferable. In the petroleum-based aromatic-containing oil of the embodiment, the ratio of the saturated component by the clay gel method is preferably 5% by mass or more, more preferably 20% by mass or more, and 22% by mass or more. It is even better to have it. As an example of the numerical range of the above numerical values, in the petroleum-based aromatic-containing oil of the embodiment, the proportion of the saturated component by the clay gel method may be 5% by mass or more and 40% by mass or less, and 20% by mass or more. It may be 35 mass% or less, or 22 mass% or more and 30 mass% or less.
上記の飽和分の割合が上記数値を満たすことで、 前記油を含有するゴム組 成物又はタイヤの t a n 5 (5 0 °〇) 及び t a n S (0 °〇) の値が好ましく なり、 ウエッ トグリップ性能及び転がり抵抗性能が両立される。 〇 2020/175512 7 卩(:170? 2020 /007603 When the ratio of the above-mentioned saturated component satisfies the above-mentioned value, the values of tan 5 (50 ° 〇) and tan S (0 ° 〇) of the rubber composition or tire containing the oil become preferable, and the wet grip Both performance and rolling resistance performance are compatible. 〇 2020/175 512 7 (: 170? 2020 /007603
このことは、 飽和分が炭化水素の極性として適度なバランスであり、 ゴム に一定の親和性を示すとともに、 ゴムの配合剤にも一定の親和性を示すため 、 上記の飽和分の割合が上記範囲内にあることで、 製造されるゴム組成物又 はタイヤの物理特性を好適となるためと考えられる。 This is because the saturated content has a proper balance as the polarity of hydrocarbons and has a certain affinity with rubber and a certain affinity with the compounding agent of rubber. It is considered that when the content is within the range, the physical properties of the rubber composition or the tire to be manufactured become suitable.
[0019] 実施形態の石油系芳香族含有油は、 クレイゲル法による芳香族分の割合が 、 5 0質量%以上であることが好ましく、 5 1質量%以上であることがより 好ましく、 5 8質量%以上であることがさらに好ましい。 実施形態の石油系 芳香族含有油は、 クレイゲル法による芳香族分の割合が、 7 4質量%以下で あることが好ましく、 7 0質量%以下であることがより好ましく、 6 6質量 %以下であることがさらに好ましい。 上記数値の数値範囲の一例としては、 実施形態の石油系芳香族含有油は、 クレイゲル法による芳香族分の割合が、 [0019] In the petroleum-based aromatic-containing oil of the embodiment, the proportion of the aromatic component by the Clay-gel method is preferably 50% by mass or more, more preferably 51% by mass or more, and 58% by mass. % Or more is more preferable. In the petroleum-based aromatic-containing oil according to the embodiment, the proportion of the aromatic component by the Clay gel method is preferably 74% by mass or less, more preferably 70% by mass or less, and 66% by mass or less. It is more preferable that there is. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment,
5 0質量%以上 7 4質量%以下であってもよく、 5 1質量%以上 7 0質量% 以下であってもよく、 5 8質量%以上 6 6質量%以下であってもよい。 上記の芳香族分の割合が上記数値を満たすことで、 前記油を含有するゴム 組成物又はタイヤの 1 a n 8 (5 0 °〇) 及び I 3 n 5 (0 °〇 の値が好まし くなり、 ウエッ トグリップ性能及び転がり抵抗性能が両立される。 It may be 50 mass% or more and 74 mass% or less, 51 mass% or more and 70 mass% or less, and 58 mass% or more and 66 mass% or less. When the ratio of the above aromatic content satisfies the above value, the values of 1 an 8 (50° 〇) and I 3 n 5 (0° 〇) of the rubber composition or tire containing the oil are preferable. Therefore, the wet grip performance and the rolling resistance performance are compatible.
このことは、 芳香族分がゴムに高い親和性を示すため、 上記の芳香族分の 割合が上記範囲内にあることで、 製造されるゴム組成物又はタイヤの物理特 性を好適となるためと考えられる。 This is because the aromatic component has a high affinity for rubber, so that the ratio of the above aromatic component is within the above range, the physical properties of the rubber composition or the tire to be manufactured are preferable. it is conceivable that.
[0020] 実施形態の石油系芳香族含有油は、 クレイゲル法による極成分の割合が、 [0020] The petroleum-containing aromatic-containing oil of the embodiment has a ratio of polar components measured by the clay gel method,
3質量%以上であることが好ましく、 4質量%以上であることがより好まし く、 5質量%以上であることがさらに好ましい。 実施形態の石油系芳香族含 有油は、 クレイゲル法による極成分の割合が、 1 2質量%以下であることが 好ましく、 1 1質量%以下であることがより好ましく、 1 0質量%以下であ ることがさらに好ましい。 上記数値の数値範囲の一例としては、 実施形態の 石油系芳香族含有油は、 クレイゲル法による極成分の割合が、 3質量%以上 1 2質量%以下であってもよく、 4質量%以上 1 1質量%以下であってもよ く、 5質量%以上 1 0質量%以下であってもよい。 上記の極成分の割合は、 上記の飽和分及び芳香族分の割合と相反関係とな り、 上記の極成分の割合が、 上記数値を満たすことで、 前記油を含有するゴ ム組成物又はタイヤの t a n 5 (50°C) 及び t a n S (0°C) の値が好ま しくなり、 ウエッ トグリップ性能及び転がり抵抗性能が両立される。 It is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more. In the petroleum-containing aromatic oil of the embodiment, the proportion of the polar component by the clay gel method is preferably 12% by mass or less, more preferably 11% by mass or less, and 10% by mass or less. It is more preferable that there is. As an example of the numerical range of the above numerical values, in the petroleum-based aromatic-containing oil of the embodiment, the proportion of polar components by the clay gel method may be 3% by mass or more and 12% by mass or less, and 4% by mass or more 1 It may be 1 mass% or less, or 5 mass% or more and 10 mass% or less. The proportion of the polar component has a reciprocal relation with the proportion of the saturated component and the aromatic component, and when the proportion of the polar component satisfies the above numerical value, the rubber composition containing the oil or The tan 5 (50°C) and tan S (0°C) values of the tire are preferred, and both wet grip performance and rolling resistance performance are compatible.
[0021] クレイゲル法による飽和分、 芳香族分、 及び極成分の割合 (質量%) は、 [0021] The ratio (mass %) of the saturated component, aromatic component, and polar component by the Clay gel method is
ASTM D 2007— 1 1 Standard Test Method for Character istic Gr oups in Rubber Extender and Processing Oils and Other Petroleum-Deriv ed Oi Is by the Clay-Gel Absorption Chromatograph i c Methodの規定により 求めることができる。 ASTM D 2007 — 1 1 Standard Test Method for Characteristic Grups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oi Is by the Clay-Gel Absorption Chromatographic Method.
[0022] 実施形態の石油系芳香族含有油は、 H P LCを用いて分画される 2環芳香 族分の割合が、 前記芳香族分 1 〇〇質量%に対し、 1 0質量%以上であり、 1 6質量%以上であることが好ましく、 20質量%以上であることがより好 ましく、 22質量%以上であることがさらに好ましく、 23質量%以上であ ることが特に好ましい。 実施形態の石油系芳香族含有油は、 H P LCを用い て分画される 2環芳香族分の割合が、 前記芳香族分 1 00質量%に対し、 3 〇質量%以下であり、 28質量%以下であることが好ましく、 26質量%以 下であることがより好ましく、 25質量%以下であることがさらに好ましく 、 24. 5質量%以下であることが特に好ましい。 上記数値の数値範囲の一 例としては、 実施形態の石油系芳香族含有油は、 H P LCを用いて分画され る 2環芳香族分の割合が、 前記芳香族分 1 〇〇質量%に対し、 1 0質量%以 上 30質量%以下であってもよく、 1 6質量%以上 28質量%以下であって もよく、 20質量%以上 26質量%以下であってもよく、 22質量%以上 2 5質量%以下であってもよく、 23質量%以上 24. 5質量%以下であって もよい。 ここで、 上記の 2環芳香族分の割合が上記数値を満たすことで、 前 記油を含有するゴム組成物又はタイヤの t a n 5 (50°C) 及び t a n 5 ( 〇°C) の値が好ましくなり、 ウエッ トグリップ性能及び転がり抵抗性能が両 立される。 [0022] In the petroleum-based aromatic-containing oil of the embodiment, when the proportion of the 2-ring aromatics fractionated by using HP LC is 10% by mass or more based on 100% by mass of the aromatic content. %, preferably 16% by mass or more, more preferably 20% by mass or more, further preferably 22% by mass or more, and particularly preferably 23% by mass or more. In the petroleum-based aromatic-containing oil according to the embodiment, the proportion of the 2-ring aromatics fractionated by using HP LC is 30 mass% or less with respect to 100 mass% of the aromatic content, and 28 mass% % Or less, more preferably 26% by mass or less, further preferably 25% by mass or less, particularly preferably 24.5% by mass or less. As an example of the numerical range of the above numerical values, in the petroleum-based aromatic-containing oil of the embodiment, the proportion of the 2-ring aromatics fractionated by using HP LC is 100% by mass of the aromatic content. On the other hand, it may be 10% by mass or more and 30% by mass or less, 16% by mass or more and 28% by mass or less, 20% by mass or more and 26% by mass or less, and 22% by mass. It may be 25 mass% or more and 25 mass% or less, or 23 mass% or more and 24.5 mass% or less. Here, the values of tan 5 (50 °C) and tan 5 (○ ° C) of the rubber composition or the tire containing the oil described above are satisfied when the ratio of the above two-ring aromatic content satisfies the above numerical values. This is preferable, and both wet grip performance and rolling resistance performance are supported.
このことは、 後述の実施例に示すデータから検討されるに、 芳香族分の中 〇 2020/175512 9 卩(:170? 2020 /007603 The fact that the aromatic content in the aromatic content 〇 2020/175 512 9 (: 170? 2020 /007603
でも 2環以上の芳香族分の割合が、 ウエッ トグリップ性能及び転がり抵抗性 能の両立に大きく寄与する。 そのなかで、 2環芳香族分は、 ウエッ トグリッ プ性能及び転がり抵抗性能の向上に加え、 さらに 巳 0 1~1規則を満たすと の観点からも良好な性質を有する。 However, the ratio of aromatics having two or more rings greatly contributes to achieving both wet grip performance and rolling resistance performance. Among them, the bicyclic aromatic content, in addition to improving Yuck Toguri' flops performance and rolling resistance, also have good properties further terms of satisfying only 0 1 to 1 rule.
[0023] 実施形態の石油系芳香族含有油は、 1~1 !_(3を用いて分画される 1環芳香 族分の割合が、 前記芳香族分 1 〇〇質量%に対し、 4 8質量%以上であるこ とが好ましく、 5 0質量%以上であることがより好ましく、 5 2質量%以上 であることがさらに好ましい。 実施形態の石油系芳香族含有油は、 1~1 !_〇 を用いて分画される 1環芳香族分の割合が、 前記芳香族分 1 〇〇質量%に対 し、 6 4質量%以下であることが好ましく、 6 2質量%以下であることがよ り好ましく、 6 0質量%以下であることがさらに好ましい。 上記数値の数値 範囲の一例としては、 実施形態の石油系芳香族含有油は、
Figure imgf000010_0001
を用いて 分画される 1環芳香族分の割合が、 前記芳香族分 1 0 0質量%に対し、 4 8 質量%以上 6 4質量%以下であってもよく、 5 0質量%以上 6 2質量%以下 であってもよく、 5 2質量%以上 6 0質量%以下であってもよい。
[0023] The petroleum-based aromatic-containing oil of the embodiment has a ratio of 1-ring aromatics fractionated using 1 to 1 !_(3 to 4% of the aromatic content of 100% by mass. preferably the this is 8 mass% or more, more preferably 5 0 mass% or more, 5 2 it is mass% or more is more preferred. petroleum aromatic-containing oils embodiments, 1-1! _ The proportion of 1-ring aromatics fractionated using ◯ is preferably 64% by mass or less, and 62% by mass or less, based on 100% by mass of the aromatic content. More preferably, it is still more preferably 60% by mass or less.. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment is
Figure imgf000010_0001
The ratio of the 1-ring aromatics fractionated by using may be 48% by mass or more and 64% by mass or less, or 50% by mass or more and 6% by mass or less, based on 100% by mass of the aromatic content. It may be 2% by mass or less, or 52% by mass or more and 60% by mass or less.
上記の 1環芳香族分の割合は、 上記の 2環以上の芳香族分の割合と相反関 係となり、 上記の 1環芳香族分の割合が、 上記数値を満たすことで、 前記油 を含有するゴム組成物又はタイヤの 1 a n 8 (5 0 °〇) 及び I 3 n 5 (0 °〇 ) の値が好ましくなり、 ウエッ トグリップ性能及び転がり抵抗性能が両立さ れる。 The proportion of the above-mentioned 1-ring aromatic content has a reciprocal relationship with the proportion of the above-mentioned 2 or more-ring aromatic content, and the proportion of the above-mentioned 1-ring aromatic content satisfies the above numerical values, so that the oil content is The values of 1 an 8 (50° ◯) and I 3 n 5 (0° 〇) of the rubber composition or tire to be used become preferable, and the wet grip performance and the rolling resistance performance are compatible with each other.
[0024] 実施形態の石油系芳香族含有油は、 1~1 1_(3を用いて分画される 3環以上 の芳香族分の割合が、 前記芳香族分 1 〇〇質量%に対し、 1 〇質量%以上で あることが好ましく、 1 2質量%以上であることがより好ましく、 1 4質量 %以上であることがさらに好ましく、 1 6質量%以上であることが特に好ま しい。 実施形態の石油系芳香族含有油は、 1~1 !_(3を用いて分画される 3環 以上の芳香族分の割合が、 前記芳香族分 1 〇〇質量%に対し、 2 8質量%以 下であることが好ましく、 2 6質量%以下であることがより好ましく、 2 4 質量%以下であることがさらに好ましく、 2 3質量%以下であることが特に 〇 2020/175512 10 卩(:170? 2020 /007603 [0024] In the petroleum-based aromatic-containing oil of the embodiment, the ratio of the aromatic content of 3 or more rings fractionated by using 1 to 11_(3 is relative to 100% by mass of the aromatic content, The content is preferably 10% by mass or more, more preferably 12% by mass or more, further preferably 14% by mass or more, and particularly preferably 16% by mass or more. In the petroleum-based aromatic-containing oil, the proportion of aromatics having 3 or more rings fractionated using 1 to 1 !_(3 is 28% by mass relative to 100% by mass of the aromatics. It is preferably below, more preferably at most 26% by mass, further preferably at most 24% by mass, particularly preferably at most 23% by mass. 〇 2020/175 512 10 boxes (: 170? 2020 /007603
好ましい。 上記数値の数値範囲の一例としては、 実施形態の石油系芳香族含 有油は、 1~1 1_(3を用いて分画される 3環以上の芳香族分の割合が、 前記芳 香族分 1 〇〇質量%に対し、 1 〇質量%以上 2 8質量%以下であってもよく 、 1 2質量%以上 2 6質量%以下であってもよく、 1 4質量%以上 2 4質量 %以下であってもよく、 1 6質量%以上 2 3質量%以下であってもよい。 上記の 3環以上の芳香族分の割合が、 上記数値を満たすことで、 前記油を 含有するゴム組成物又はタイヤの I a n 8 (5 0 °〇) 及び I 3 n 5 (0 °〇 の値が好ましくなり、 ウエッ トグリップ性能及び転がり抵抗性能が両立され 、 さらに 巳 A C H規則を満たす点からも良好となる。 preferable. As an example of the numerical range of the above numerical values, the petroleum-based aromatic oil of the embodiment has a ratio of aromatics of 3 or more rings fractionated using 1 to 11_(3, Min. 10% by mass to 28% by mass, 12% to 26% by mass, 14% to 24% by mass It may be the following, or may be 16% by mass or more and 23% by mass or less: The rubber composition containing the oil when the ratio of the aromatic component having 3 or more rings is satisfying the above numerical values. The values of I an 8 (50° 〇) and I 3 n 5 (0° 〇) of the object or tire are preferable, and both the wet grip performance and the rolling resistance performance are compatible, and it is also good from the viewpoint of meeting the ACH rule. Become.
[0025] ! ! ? !_(3を用いた芳香族分の分画は、 後述の実施例に記載の測定条件によ り求めることができる。 [0025] Fractionation of aromatic components using !!?!_(3 can be determined under the measurement conditions described in Examples below.
[0026] 実施形態の石油系芳香族含有油は、 [0026] The petroleum-based aromatic-containing oil of the embodiment is
ベンゾ (8) ピレンの含有量が 1質量 111以下であり、 The benzo (8) pyrene content is 1 mass 111 or less,
下記 1) 〜 8) の特定芳香族化合物 (? 1~1 3) の含有量の合計が 1 0質 量 01以下である。 Following 1) to 8 specific aromatic compound) (? 1 - 1 3) Total is 1 0 mass 01 following content.
1) ベンゾ (3) ピレン (巳 3 ) 1) Benzo (3) Pyrene (Mimi 3)
2) ベンゾ (6) ピレン (巳 6 ) 2) Benzo (6) Pyrene (Minami 6)
3) ベンゾ (3) アントラセン (巳 3八) 3) Benzo (3) Anthracene (Mitsuhachihachi)
4) クリセン (〇 1~1 [¾) 4) Chrysene (〇 1 ~ 1 [¾)
5) ベンゾ (匕) フルオランテン (巳匕 八) 5) Benzo (匕) Fluoranthene (Minami Yahachi)
6) ベンゾ ) フルオランテン (巳」 八) 6) Benzo) Fluoranthene (Mimi) eight)
7) ベンゾ (1<) フルオランテン (巳 1< 八) 7) Benzo (1<) Fluoranthene (Mitsu 1<8)
8) ジベンゾ (3 , ) アントラセン (〇巳八 八) 。 8) Dibenzo (3,) Anthracene (0,8,8).
[0027] これらべンゾ (3) ピレン及び上記特定芳香族化合物 ( 1~1 3) の含有 量が上記範囲内であることで、
Figure imgf000011_0001
巳八〇 1~1規則におけるエキステンダーオイ ルへの含有規制に順守した、 より安全性の高いゴム配合油とすることができ る。
[0027] When the content of these base down zone (3) pyrene and the specific aromatic compound (1-1 3) is within the above range,
Figure imgf000011_0001
And compliance with content regulation of extender for oil in snake eighty 1-1 rule, Ru can be a more secure rubber compounding oil.
[0028] これらの化合物の含有量は、 対象成分を分離 ·濃縮した後、 内部標準物質 を添加した試料を調製して、 G C _M S分析により定量分析することで取得 できる。 [0028] The content of these compounds is determined by separating and concentrating the target components, It can be obtained by preparing a sample to which is added and quantitatively analyzing by GC_MS analysis.
ベンゾ (a) ピレン及び特定芳香族化合物 (PAH s) の含有量は、 欧州 規格 E N 1 6 1 43 : 201 3 Petroleum products - Determination of content of Benzo(a)pyrene (BaPJ and selected polycyclic aromatic hydr ocarbons (PAH) in extender oils -Procedure using double LC cleaning a nd GC/MS ana lysisの規定により求めることができる。 The content of benzo (a) pyrene and specific aromatic compounds (PAH s) is determined by the European standard EN 1 6 1 43: 201 3 Petroleum products-Determination of content of Benzo(a) pyrene (BaPJ and selected polycyclic aromatic hydrocarbons ( PAH) in extender oils -Procedure using double LC cleaning a nd GC/MS ana lysis.
[0029] 実施形態の石油系芳香族含有油は、 1 00°Cにおける動粘度が、 25 mm2 / s以上であることが好ましく、 27 mmVs以上であることがより好ましく 、 28 mm Vs以上であることがさらに好ましい。 実施形態の石油系芳香族 含有油は、 1 0〇°Cにおける動粘度が、 75 mm Vs以下であることが好ま しく、 58 m m 2/ s以下であることがより好ましく、 50mm2/s以下であ ることがさらに好ましい。 上記数値の数値範囲の一例としては、 実施形態の 石油系芳香族含有油は、 1 0〇°Cにおける動粘度が、 25 m m V s以上 75 m m 2/ s以下の範囲であつてもよく、 27 mm 2/s以上 58 m m 2/ s以下の 範囲であつてもよく、 28mm 2/s以上 50 m m 2/ s以下の範囲であつても よい。 上記動粘度の値が上記数値を満たすと、 石油系芳香族含有油を含有す るゴム組成物又はタイヤの粘度が好ましくなることから、 t a n 5 (50°C ) 及び t a n S (0°C) の値がより一層好ましくなり、 ウエッ トグリップ性 能及び転がり抵抗性能の両立がより一層好ましくなる。 さらに、 上記動粘度 の値が上記上限値以下であると、 石油系芳香族含有油をゴムへ配合するため の移送や作業性が良好となる。 [0029] The petroleum-containing aromatic-containing oil of the embodiment has a kinematic viscosity at 100 ° C of preferably 25 mm 2 /s or more, more preferably 27 mmVs or more, and 28 mmVs or more. More preferably, The petroleum-based aromatic-containing oil of the embodiment has a kinematic viscosity at 100°C of preferably 75 mm Vs or less, more preferably 58 mm 2 /s or less, and 50 mm 2 /s or less. Is more preferable. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment may have a kinematic viscosity at 100 ° C of 25 mm V s or more and 75 mm 2 /s or less, It may be in the range of 27 mm 2 /s or more and 58 mm 2 /s or less, or in the range of 28 mm 2 /s or more and 50 mm 2 /s or less. When the value of the kinematic viscosity satisfies the above value, the viscosity of the rubber composition or the tire containing the petroleum-based aromatic-containing oil becomes preferable, so that tan 5 (50 ° C) and tan S (0 ° C) Is even more preferable, and compatibility of wet grip performance and rolling resistance performance is even more desirable. Further, when the value of the kinematic viscosity is less than or equal to the upper limit value, the transfer and workability for blending the petroleum-based aromatic-containing oil with the rubber become good.
[0030] 1 00°Cにおける動粘度は、 J I S K 2283 : 2000の規定により 求めることができる。 [0030] The kinematic viscosity at 100 °C can be determined according to the regulations of J I S K 2283 :2000.
[0031] 実施形態の石油系芳香族含有油は、 アニリン点が 60°C以上であることが 好ましく、 65 °C以上であることがより好ましく、 70 °C以上であることが さらに好ましい。 実施形態の石油系芳香族含有油は、 アニリン点が 1 00°C 以下であることが好ましく、 95 °C以下であることがより好ましく、 90°C 以下であることがさらに好ましい。 上記数値の数値範囲の一例としては、 実 施形態の石油系芳香族含有油は、 アニリン点が 60°C以上 1 00°C以下の範 囲であってもよく、 65°C以上 95°C以下の範囲であってもよく、 70°C以 上 90°C以下の範囲であってもよい。 アニリン点は、 等量のアニリンと油と が混じる温度のことで、 ゴム相溶性の指標となる。 アニリン点が上記上限値 以下であると、 過度な加温をせずとも油がアニリンと溶け合うということで あり、 ゴム相溶性が高く好ましい。 即ち、 アニリン点の値が上記数値を満た すと、 石油系芳香族含有油のゴムに対する親和性が良好となり、 製造される ゴム組成物又はタイヤの物理特性が、 より一層好ましくなる。 The petroleum-based aromatic-containing oil of the embodiment preferably has an aniline point of 60 ° C. or higher, more preferably 65° C. or higher, even more preferably 70° C. or higher. Petroleum aromatic-containing oils embodiment is preferably an aniline point of less than 1 00 ° C, more preferably not more than 95 ° C, 90 ° C The following is more preferable. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment may have an aniline point of 60 ° C or higher and 100 ° C or lower, and 65 ° C or higher and 95 ° C or higher . It may be in the following range, or in the range of 70 ° C or higher and 90°C or lower. The aniline point is the temperature at which an equal amount of aniline and oil mix, and is an indicator of rubber compatibility. When the aniline point is at most the above upper limit value, the oil will dissolve with aniline without excessive heating, which is preferable because of high rubber compatibility. That is, when the value of the aniline point satisfies the above-mentioned value, the affinity of the petroleum-based aromatic-containing oil for rubber becomes good, and the physical properties of the rubber composition or tire produced become even more preferable.
[0032] アニリン点は、 ASTM D 6 1 1 - 1 2 Standard Test Methods for A n i line Point and Mixed Am line Point of Petroleum Products and Hydroc arbon So Iventsの規定により求めることができる。 [0032] The aniline point can be determined according to the rules of ASTM D 6 1 1 -1 2 Standard Test Methods for Ani line Point and Mixed Am line Point of Petroleum Products and Hydrocarbon So Ivents.
[0033] 実施形態の石油系芳香族含有油は、 ガラス転移点 (T g) が、 _58°C以 上であることが好ましく、 _ 56°C以上であることがより好ましく、 一54 °C以上であることがさらに好ましい。 実施形態の石油系芳香族含有油は、 ガ ラス転移点 ( T g) が、 一44 °C以下であることが好ましく、 一46 °C以下 であることがより好ましく、 _ 48°C以下であることがさらに好ましい。 上 記数値の数値範囲の一例としては、 実施形態の石油系芳香族含有油は、 ガラ ス転移点 (T g) が、 _58°C以上一 44°C以下の範囲であってもよく、 一 56°C以上一 46°C以下の範囲であってもよく、 一 54 °C以上一 48°C以下 の範囲であってもよい。 ガラス転移点が上記数値を満たすと、 製造されるゴ ム組成物又はタイヤの物理特性が、 より一層好ましくなり、 ウエッ トグリッ プ性能及び転がり抵抗性能の向上に重要となる。 [0033] petroleum aromatic-containing oils embodiment, the glass transition point (T g), preferably from the _58 ° C or more, more preferably _ 56 ° C or higher, one 54 ° C It is more preferable that the above is satisfied. The petroleum-containing aromatic oil of the embodiment has a glass transition point (T g) of preferably 44 ° C or lower, more preferably 46 ° C or lower, and _ 48 ° C or lower. It is more preferable that there is. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment may have a glass transition point (T g) in the range of _58°C or more and 1 44°C or less. It may be in the range of 56°C or higher and 1°C or lower and 46°C or lower, or may be in the range of 54°C or higher and 1°C or lower and 48°C or lower. When the glass transition point satisfies the above numerical values, the physical properties of the rubber composition or tire to be produced become more preferable, and it becomes important for improving the wet grip performance and rolling resistance performance.
[0034] ガラス転移点は、 後述の実施例に記載の測定条件により求めることができ る。 [0034] The glass transition point can be determined under the measurement conditions described in Examples below.
[0035] 実施形態の石油系芳香族含有油は、 粘度比重定数 (VGC) が、 0. 84 以上であることが好ましく、 0. 85以上であることがより好ましく、 0. [0035] The petroleum-containing aromatic-containing oil of the embodiment has a viscosity specific gravity constant (VGC) of preferably 0.84 or more, more preferably 0.85 or more, and 0.8.
86以上であることがさらに好ましい。 実施形態の石油系芳香族含有油は、 粘度比重定数 (VGC) が、 0. 92以下であることが好ましく、 0. 90 以下であることがより好ましく、 0. 89以下であることがさらに好ましい 。 上記数値の数値範囲の一例としては、 実施形態の石油系芳香族含有油は、 粘度比重定数 (VGC) が、 0. 84以上0. 92以下であってもよく、 0 . 85以上0. 90以下であってもよく、 0. 86以上0. 89以下であっ てもよい。 粘度比重定数は油の組成を表現する指数であり、 一般的に、 パラ フィン性が高くなると値が低くなり、 アロマ性が高いと値は高くなる傾向に ある。 上記粘度比重定数の値が上記数値を満たすと、 石油系芳香族含有油を 含有するゴム組成物又はタイヤの物理特性が好ましくなることから、 t a n 8 (50°C) t a n 5 (0°〇 の値がより一層好ましくなり、 ウエッ ト グリップ性能及び転がり抵抗性能の両立がより一層好ましくなる。 It is more preferably 86 or more. The petroleum-based aromatic-containing oil of the embodiment, The viscosity specific gravity constant (VGC) is preferably 0.92 or less, more preferably 0.90 or less, and further preferably 0.89 or less. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment may have a viscosity specific gravity (VGC) of 0.84 or more and 0.92 or less, and 0.85 or more and 0.90 or less. It may be less than or equal to 0.86 and less than or equal to 0.89. The viscosity specific gravity constant is an index expressing the composition of oil. Generally, the higher the paraffinicity, the lower the value, and the higher the aromaticity, the higher the value. When the value of the viscosity specific gravity constant satisfies the above value, the physical properties of the rubber composition or the tire containing the petroleum-based aromatic-containing oil become favorable, so that tan 8 (50°C) tan 5 (0° 〇 The value becomes even more preferable, and the compatibility of the wet grip performance and the rolling resistance performance becomes even more preferable.
[0036] 粘度比重定数 (VGC) は、 ASTM D 2 1 40— 08 Standard Prac 11 ce for Calculating Carbon-Type Composition of Insulating 01 Is of Pe tro leum Originの規定により求めることができる。 [0036] The viscosity specific gravity constant (VGC) can be determined in accordance with the provisions of ASTM D 2 40-08 08 Standard Prac 11 ce for Calculating Carbon-Type Composition of Insulating 01 Is of Petroleum Origin.
[0037] 実施形態の石油系芳香族含有油は、 環分析による% C Aが 1 2以上である ことが好ましく、 1 4以上であることがより好ましく、 1 6以上であること がさらに好ましい。 実施形態の石油系芳香族含有油は、 環分析による% C A が 30以下であることが好ましく、 28以下であることがより好ましく、 2 6以下であることがさらに好ましい。 上記数値の数値範囲の一例としては、 実施形態の石油系芳香族含有油は、 環分析による% C Aが 1 2以上 30以下 でであってもよく、 1 4以上 28以下であってもよく、 1 6以上 26以下で あってもよい。 [0037] The petroleum-containing aromatic-containing oil of the embodiment has a% CA by ring analysis of preferably 12 or more, more preferably 14 or more, and further preferably 16 or more. The petroleum-containing aromatic-containing oil of the embodiment has a% C A by ring analysis of preferably 30 or less, more preferably 28 or less, and further preferably 26 or less. As an example of the numerical range of the above numerical values, the petroleum-based aromatic-containing oil of the embodiment may have% CA by ring analysis of 12 or more and 30 or less, or 14 or more and 28 or less, It may be 16 or more and 26 or less.
上記% C Aが上記数値を満たすと、 発ガン性の高い多環芳香族量が抑制さ れ、 同時にゴムとの相溶性を向上させるアロマ性を帯びてくる傾向にあり、 前記油を含有するゴム組成物又はタイヤの t a n 5 (50°C) 及び t a n 5 (〇°C) の値が好ましくなり、 ウエッ トグリップ性能及び転がり抵抗性能の 両立がより _層好ましくなる。 When the above% CA satisfies the above value, the amount of polycyclic aromatic compounds having high carcinogenicity is suppressed, and at the same time, the aromatic compound tends to have an aroma improving the compatibility with the rubber. The values of tan 5 (50 °C) and tan 5 (○ ° C) of the composition or the tire become preferable, and the compatibility of the wet grip performance and the rolling resistance performance becomes more preferable.
[0038] %CAは、 ASTM D 2 1 40 -08 Standard Practice for Calcula t i ng Carbon-Type Compos i t i on of Insu Lat i ng O i Ls of Pet ro Leum Or i g i nの 規定により求めることができる。 [0038] %CA is ASTM D 2 1 40 -08 Standard Practice for Calcula ti ng Carbon-Type Compositi on of Insu Lat i ng O i Ls of Pet ro Leum Or igin
[0039] 実施形態の石油系芳香族含有油は、 ゴムに混合されて用いられるエキステ ンダーオイル又はプロセスオイルとして好適に使用される。 [0039] The petroleum-containing aromatic-containing oil of the embodiment is preferably used as an extender oil or a process oil used by being mixed with rubber.
[0040] [石油系芳香族含有油の製造方法] [Method for producing petroleum-based aromatic-containing oil]
以下、 実施形態の石油系芳香族含有油の製造方法について説明する。 前記 方法によれば、 本発明の石油系芳香族含有油を製造可能である。 本発明の石 油系芳香族含有油は、 下記実施形態の石油系芳香族含有油の製造方法により 製造されたものに限定されない。 Hereinafter, a method for producing a petroleum-based aromatic-containing oil according to the embodiment will be described. According to the above method, the petroleum-based aromatic-containing oil of the present invention can be produced. The petroleum-based aromatic-containing oil of the present invention is not limited to those produced by the method for producing a petroleum-based aromatic-containing oil of the following embodiments.
[0041 ] 実施形態の石油系芳香族含有油の製造方法は、 [0041] The method for producing a petroleum-containing aromatic-containing oil according to the embodiment is
溶剤抽出によりエキストラクトを得る工程、 又は、 A step of obtaining an extract by solvent extraction, or
溶剤抽出して得られたエキストラクトと、 ラフィネート又はラフィネート を精製した基油とを混合する工程を含む。 The method includes a step of mixing the extract obtained by solvent extraction with a raffinate or a refined base oil of raffinate.
溶剤抽出の対象物としては、 原油を常圧蒸留した残渣を減圧蒸留した減圧 蒸留残渣の脱れきによって得られる脱れき油留分や、 原油を常圧蒸留した残 渣を減圧蒸留した減圧蒸留留分が挙げられる。 溶剤抽出において、 エキスト ラクトは、 溶剤抽出の対象物を芳香族炭化水素に対して親和性を有する溶剤 で抽出処理し、 溶剤と抽出物 (エキストラクト) とを分離回収することによ り得られる。 出発原料の原油は、 パラフィン系原油、 ナフテン系原油など種 々の原油を、 単独あるいは混合して用いることができるが、 特にはパラフィ ン系原油を用いることが好ましい。 Solvent extraction targets include deasphalted oil fraction obtained by degassing the residue obtained by distilling crude oil under atmospheric pressure under reduced pressure, and depressurized distillation fraction obtained by distilling the residue obtained by distilling crude oil under atmospheric pressure under reduced pressure. Minutes. In solvent extraction, the extract is obtained by subjecting the object of solvent extraction to extraction treatment with a solvent that has an affinity for aromatic hydrocarbons, and separating and recovering the solvent and extract (extract). .. As the starting crude oil, various crude oils such as paraffinic crude oil and naphthenic crude oil can be used alone or in combination, but paraffinic crude oil is particularly preferably used.
[0042] 図 1は、 実施形態の石油系芳香族含有油の製造方法の一例を説明する工程 図である。 原油は、 まず常圧蒸留装置 (不図示) で処理されることで、 常圧 蒸留残渣が得られる。 常圧蒸留残渣は、 減圧蒸留装置 1 〇へと送られて減圧 蒸留され、 減圧蒸留残渣 1 2が得られる。 減圧蒸留残渣 1 2は脱れき抽出装 置 2 0にて処理され、 脱れき油 2 2となる。 その後、 脱れき油 2 2は溶剤抽 出装置 3 0へと送られる。 溶剤抽出装置 3 0では、 脱れき油 2 2をラフィネ —卜 3 2とエキストラクト 3 4とに分離する。 ラフィネート 3 2は水素化精 〇 2020/175512 15 卩(:170? 2020 /007603 [0042] Fig. 1 is a process chart illustrating an example of a method for producing a petroleum-based aromatic-containing oil according to an embodiment. The crude oil is first processed in an atmospheric distillation device (not shown) to obtain an atmospheric distillation residue. The atmospheric distillation residue is sent to the vacuum distillation apparatus 10 and vacuum distilled to obtain a vacuum distillation residue 12. The vacuum distillation residue 1 2 is treated in the deasphalting extraction device 20 to become the deasphalted oil 22. Thereafter, the deasphalted oil 22 is sent to the solvent extraction device 30. The solvent extractor 30 separates the deasphalted oil 22 into a raffine extract 32 and an extract 34. Raffinate 32 is hydrogenated 〇 2020/175 512 15 boxes (: 170? 2020 /007603
製装置 4 0で水素化精製され水素化精製油 4 2となり、 さらに脱ろう装置 5 〇で脱ろうされ、 脱ろう油 5 2が得られる。 得られた脱ろう油 5 2とエキス トラクト 3 4とを混合して石油系芳香族含有油 6 2を得ることができる。 It is hydrorefined in the production unit 40 to be hydrorefined oil 42, and then dewaxed in the dewaxing unit 50 to obtain dewaxed oil 52. The dewaxed oil 52 obtained and the extract 34 can be mixed to obtain a petroleum-based aromatic-containing oil 62.
[0043] ここでは、 脱ろう油 5 2とエキストラクト 3 4とを混合して石油系芳香族 含有油 6 2を得る場合を説明したが、 脱ろう油 5 2に代えて、 ラフイネート 3 2又は水素化精製油 4 2を、 エキストラクト 3 4と混合してもよい。 Here, the case where the dewaxed oil 52 and the extract 34 are mixed to obtain the petroleum-based aromatic-containing oil 62 is explained, but instead of the dewaxed oil 52, the raffinate 32 or The hydrorefined oil 42 may be mixed with the extract 34.
[0044] また、 別途、 減圧蒸留装置 1 0から分留される減圧蒸留留分 1 1は、 溶剤 抽出装置 3 0で処理され、 ラフイネート 3 1 とエキストラクト 3 3に分離す る。 ラフイネート 3 1は水素化精製装置 4 0で水素化精製され水素化精製油 4 1 となり、 さらに脱ろう装置 5 0で脱ろうされ、 脱ろう油 5 1が得られる 。 得られた脱ろう油 5 1 とエキストラクト 3 4とを混合して石油系芳香族含 有油 6 2を得ることができる。 [0044] Separately, the vacuum distillation fraction 11 separately fractionated from the vacuum distillation apparatus 10 is treated by a solvent extraction apparatus 30 and separated into raffinate 31 and extract 33. The raffinate 3 1 is hydrorefined in the hydrorefining unit 40 to be hydrorefined oil 41, and is further dewaxed in the dewaxing unit 50 to obtain dewaxed oil 5 1. The dewaxed oil 51 and the extract 34 thus obtained can be mixed to obtain a petroleum-based aromatic oil-containing oil 62.
ここでは、 脱ろう油 5 1 とエキストラクト 3 4とを混合して石油系芳香族 含有油 6 2を得る場合を説明したが、 脱ろう油 5 1 に代えて、 ラフイネート 3 1又は水素化精製油 4 1 と、 エキストラクト 3 4と混合してもよい。 Here, the case where the dewaxed oil 5 1 and the extract 34 are mixed to obtain the petroleum-based aromatic-containing oil 62 is explained, but instead of the dewaxed oil 51, the raffinate 31 or hydrorefining is used. The oil 41 may be mixed with the extract 34.
[0045] また、 ここでは、 脱ろう油 5 1 , 5 2等とエキストラクト 3 4とを混合し て石油系芳香族含有油 6 2を得る場合を説明したが、 エキストラクト 3 4に 代えて、 脱ろう油 5 1 , 5 2等と、 エキストラクト 3 3とを混合してもよい [0045] Further, here, the case where the dewaxed oils 51, 52 and the like and the extract 34 are mixed to obtain the petroleum-containing aromatic-containing oil 62 is described, but instead of the extract 34, , Dewaxed oil 51, 52, etc. may be mixed with extract 33
[0046] また、 エキストラクト 3 3 , 3 4を石油系芳香族含有油 6 2としてもよい [0046] Further, the extracts 3 3 and 3 4 may be petroleum-based aromatic-containing oil 62.
[0047] 減圧蒸留は、 留出油の終点が常圧換算 5 8 0 °〇以上となる条件あるいは残 渣の初留点が 4 5 0 °〇以上となる条件にて行うことが、 得られるエキストラ クト中の芳香族含有量を所定の範囲に容易に調整できるため、 好ましい。 脱れきは、 塔頂温度:好ましくは 4 0〜 1 2 0 °〇、 より好ましくは 5 0〜 1 0〇°〇、 塔底温度:好ましくは 3 0〜 1 0 0 °〇、 より好ましくは 4 0〜 9 〇°〇、 溶剤比:好ましくは 1〜 1 〇、 より好ましくは 1〜 9、 となる条件に て行うことができる。 20/175512 16 卩(:170? 2020 /007603 [0047] It is possible to obtain the vacuum distillation under the condition that the end point of the distillate oil is 580 ° 〇 or more in terms of atmospheric pressure or the initial distillation point of the residue is 450 ° 〇 or more. It is preferable because the aromatic content in the extract can be easily adjusted within a predetermined range. Debris removal is carried out at a tower top temperature: preferably 40 to 120 ° 〇, more preferably 50 to 100 ° 〇, tower bottom temperature: preferably 30 to 100 ° 〇, more preferably 4 It can be carried out under the conditions of 0 to 90 ° and solvent ratio: preferably 1 to 10 and more preferably 1 to 9. 20/175512 16 卩 (: 170? 2020 /007603
溶剤抽出は、 エキストラクト 3 3 , 3 4を得るため、 得られた脱れき油を 芳香族炭化水素に選択的親和性を有する溶剤で抽出する処理を行うことが好 ましい。 芳香族炭化水素に選択的親和性を有する溶剤としては、 極性溶媒で あってよく、 フルフラール、 フエノール及び 1\1—メチルー 2—ピロリ ドンか らなる群より選択される 1つあるいはそれ以上を用いることができる。 エキ ストラクト収率を上記の範囲とするための具体的な抽出条件は、 脱れき油組 成にもよるため一義的に決めることはできないが、 溶剤比、 圧力、 温度等を 適宜選定することにより可能である。 一般的には、 塔頂温度:好ましくは 1 0 0〜 1 5 5 °〇、 より好ましくは 1 0 0〜 1 4 0 °〇、 塔底温度:好ましくは 4 0〜 1 2 0 °〇、 より好ましくは 5 0〜 1 1 0 °〇、 油 1 に対する溶剤比:好 ましくは 2〜 5、 より好ましくは 3 ~ 4 . 5で溶剤と接触させるとよい。 一方、 ラフィネート 3 1 , 3 2を得るため、 常圧換算沸点が 3 0 0〜 7 0 〇°〇の減圧蒸留留分を芳香族炭化水素に親和性を有する溶剤で抽出する溶剤 精製処理を行うことが好ましい。 芳香族炭化水素に選択的親和性を有する溶 剤としては、 フルフラール、 フエノール及び 1\]—メチルー 2—ピロリ ドンか ら 1つあるいはそれ以上を選択して用いることができる。 この溶剤精製工程 においては、 通常の潤滑油基油を精製する条件、 例えば、 フルフラールを柚 出溶媒として用いる場合、 塔頂温度:好ましくは 9 0〜 1 5 0 °〇、 より好ま しくは 1 0 0〜 1 4 0 °〇、 塔底温度:好ましくは 4 0〜 9 0 °〇、 より好まし くは 5 0〜 8 0 °〇、 油 1 に対する溶剤比:好ましくは〇. 5〜 4、 より好ま しくは 1〜 3、 で溶剤と接触させるとよい。 The solvent extraction is preferably performed by extracting the obtained deasphalted oil with a solvent having a selective affinity for aromatic hydrocarbons in order to obtain the extracts 33 and 34. As the solvent having a selective affinity for aromatic hydrocarbon, a polar solvent may be used, and one or more selected from the group consisting of furfural, phenol and 1\1-methyl-2-pyrrolidone is used. be able to. The specific extraction conditions for controlling the extract yield within the above range cannot be uniquely determined because it depends on the composition of the deasphalted oil, but by appropriately selecting the solvent ratio, pressure, temperature, etc. It is possible. In general, the column top temperature: preferably 100 to 155°°, more preferably 100 to 140°°, the column bottom temperature: preferably 40 to 120°°, The solvent is preferably contacted at a ratio of 50 to 110° and a ratio of solvent to oil 1: 2 to 5, more preferably 3 to 4.5. On the other hand, in order to obtain the raffinates 31 and 32, a solvent refining process is carried out in which a vacuum distillation fraction having a boiling point at atmospheric pressure of 300 to 700° is extracted with a solvent having an affinity for aromatic hydrocarbons. It is preferable. As a solvent having a selective affinity for aromatic hydrocarbons, one or more selected from furfural, phenol and 1\]-methyl-2-pyrrolidone can be used. In this solvent purification step, the conditions for purifying conventional lubricating base oils, for example, the case of using furfural as citrus out solvent, column top temperature: preferably 9 0 to 1 5 0 ° 〇, more preferred properly 1 0 0 to 140° 〇, tower bottom temperature: preferably 40 to 90° 〇, more preferably 50 to 80 ° 〇, solvent ratio to oil 1: preferably 0.5 to 4 It is preferable to contact with the solvent at 1 to 3.
その他所望により、 ラフィネートを水素化精製及び/又は溶剤脱ロウある いは水素化脱ロウ処理により、 脱ロウすることにより、 より好ましい基油が 得られる。 前記水素化精製は、 ニッケル、 コバルト、 モリブデン等の活性金 属 1種以上をアルミナやシリカーアルミナ等の担体に担持した触媒の存在下 に、 水素圧
Figure imgf000017_0001
温度 2 5 0 ~ 4 0 0 °〇、 液空間速度 (!_ 1~1 3 ) 1〜 5 1^ - 1の条件で行うとよい。 また、 前記溶剤脱ロウは、 例えば、 メチ ルエチルケトン/トルエンの混合溶媒下に、 溶媒/油比 (容積比) = 1 / 1 〇 2020/175512 17 卩(:170? 2020 /007603
If desired, a more preferable base oil can be obtained by dewaxing the raffinate by hydrorefining and/or solvent dewaxing or hydrodewaxing treatment. The hydrorefining is carried out in the presence of a catalyst in which one or more kinds of active metals such as nickel, cobalt and molybdenum are supported on a carrier such as alumina or silica-alumina under hydrogen pressure.
Figure imgf000017_0001
It is advisable to perform the test at a temperature of 250 to 400° and liquid space velocity (!_ 1 to 13) 1 to 5 1^ -1 . The solvent dewaxing can be performed, for example, in a mixed solvent of methyl ethyl ketone/toluene with a solvent/oil ratio (volume ratio) = 1/1 〇 2020/175 512 17 boxes (: 170? 2020 /007603
〜 5 / 1、 温度一 1 0〜一 4 0 °〇で行うとよく、 また、 水素化脱ロウは、 ゼ オライ ト触媒の存在下に、 水素圧
Figure imgf000018_0001
温度 3 0 0〜 4 0 0 °〇、 L H S V 1 ~ 5 H 「一 1の条件で行うとよい。
It is recommended to carry out the reaction at a temperature of ~5/1 at a temperature of 110-1 to 40 ° 〇, and hydrodewaxing should be carried out at a hydrogen pressure in the presence of a zeolite catalyst.
Figure imgf000018_0001
Temperature 300 to 400 ° 〇, LHSV 1 to 5 H “It is recommended to carry out under the conditions of 1.
水素化精製は、 触媒存在下、 高温高圧の水素と原料油を接触させることで 、 硫黄分、 窒素分など、 プロセスオイルの使用、 保存などに悪影響をおよぼ す不純物を水素化軽質反応物として除去することができ、 結果として安定性 や色相などを向上することができる。 溶剤脱ろうはアセトン、 メチルエチル ケトン、 ベンゼン、 トルエンからなる群より選択される 1つあるいはそれ以 上の溶剤を用いて原料油に混合し、 その後冷却工程を経てノルマルパラフイ ンをはじめとするワックス留分を析出させ、 これをフイルタにてろ過して分 離除去することで低温流動性の向上を図ることができる。 Hydrorefining involves contacting hydrogen at high temperature and high pressure with feedstock oil in the presence of a catalyst to remove impurities, such as sulfur and nitrogen, that can adversely affect the use and storage of process oil as hydrogenated light reactants. It can be removed, and as a result, stability and hue can be improved. For solvent dewaxing, one or more solvents selected from the group consisting of acetone, methylethylketone, benzene, and toluene are used to mix with the feedstock, and then a cooling process is performed to start with normal paraffin. It is possible to improve the low temperature fluidity by precipitating a wax fraction and separating it by filtration with a filter.
以上のようにして得られたエキストラクトと基油とを質量比で 9 5 / 5〜 5 / 9 5、 特に好ましくは、 8 0 / 2 0〜 2 0 / 8 0の割合で混合すること により実施形態の石油系芳香族含有油を製造することができる。 By mixing the extract and the base oil obtained as described above in a mass ratio of 9 5/5 to 5/95, and particularly preferably in a ratio of 80/20 to 20/80. The petroleum-based aromatic-containing oil of the embodiment can be produced.
[0048] 《ゴム組成物》 [0048] <<Rubber composition>>
以下、 実施形態のゴム組成物について説明する。 本発明のゴム組成物は、 下記ゴム組成物に限定されない。 Hereinafter, the rubber composition of the embodiment will be described. The rubber composition of the present invention is not limited to the following rubber composition.
図 2 及び巳は、 原料ゴムからタイヤ組成物を調製する過程の一例を説明 する工程図である。 タイヤ原料となるタイヤ組成物は、 原料ゴム、 及び各種 配合剤が配合されている。 合成ゴムは、 その合成時にエキステンダーオイル が配合されることがあり、 原料ゴムとして、 予めエキステンダーオイルを含 有するゴム組成物 (油展ゴムともいわれる) が使用されてもよい (図 2八参 照) 。 又はエキステンダーオイルを含有しない原料ゴム (非油展ゴムともい われる) が使用されてもよい (図 2巳参照) 。 原料ゴムには、 プロセスオイ ル及び各種配合剤が添加される (図 2 及び巳参照) 。 FIG. 2 and FIG. 2 are process drawings illustrating an example of a process of preparing a tire composition from a raw rubber. The tire composition used as a tire raw material contains raw rubber and various compounding agents. Synthetic rubber may be blended with extender oil during its synthesis, and a rubber composition containing an extender oil in advance (also referred to as oil-extended rubber) may be used as a raw rubber (see Fig. 2-8). See). Alternatively, raw rubber (also called non-oil extended rubber) containing no extender oil may be used (see Fig. 2). Process oil and various compounding agents are added to the raw rubber (see Fig. 2 and Mitsumi).
油展ゴムである原料ゴム (ゴム組成物) は、 単量体を重合反応に供するこ とで得ることができ、 その過程でエキステンダーオイルを添加して製造する ことができる。 例えば、 原料ゴムのゴム原料である単量体とエキステンダー 〇 2020/175512 18 卩(:170? 2020 /007603 A raw rubber (rubber composition) that is an oil-extended rubber can be obtained by subjecting a monomer to a polymerization reaction, and can be produced by adding an extender oil in the process. For example, the monomer and extender that are the raw materials for the raw rubber 〇 2020/175 512 18 卩 (: 170? 2020 /007603
オイルとを含む反応液を重合反応に供する方法や、 原料ゴムのゴム原料であ る単量体を含む反応液を重合反応させた後、 重合体溶液にェキステンダーオ イルを添加する方法により、 油展ゴムを製造することができる (図 2八) 。 タイヤ組成物 (ゴム組成物) は、 前記原料ゴム、 本発明に係る石油系芳香 族含有油、 及び配合剤を、 例えば、 公知のゴム用混練機、 例えば、 口ール、 ミキサー、 二ーダーなどで混練し、 製造することができる。 タイヤ組成物は 任意の条件で加硫することができる。 Oil extension can be carried out by subjecting a reaction liquid containing oil to a polymerization reaction, or by adding a extender oil to the polymer solution after polymerizing a reaction liquid containing a monomer which is a rubber raw material of the raw rubber. Rubber can be manufactured (Fig. 28). A tire composition (rubber composition) includes the above-mentioned raw material rubber, the petroleum-based aromatic-containing oil according to the present invention, and a compounding agent, for example, known kneaders for rubber, for example, mouth rolls, mixers, and kneaders. It can be manufactured by kneading. The tire composition can be vulcanized under any conditions.
本明細書においては、 原料ゴム及び実施形態の石油系芳香族含有油 (ェキ ステンダーオイル又はプロセスオイル) を含有するものをゴム組成物という 実施形態のゴム組成物は、 タイヤの製造に用いられるタイヤ用ゴム組成物 として好適である。 一実施形態として、 本発明は、 原料ゴム、 本発明に係る 石油系芳香族含有油、 及び配合剤を含有する、 タイヤ組成物を提供する。 夕 イヤ組成物は、 実施形態のゴム組成物に包含される概念とする。 タイヤ組成 物 (ゴム組成物) は加硫されていてもよく、 未加硫であってもよい。 In the present specification, a rubber composition containing a raw material rubber and a petroleum-based aromatic-containing oil (extender oil or process oil) of the embodiment is referred to as a rubber composition. The rubber composition of the embodiment is used for manufacturing a tire. It is suitable as a rubber composition for a tire. As one embodiment, the present invention provides a tire composition containing a raw material rubber, a petroleum-based aromatic-containing oil according to the present invention, and a compounding agent. The evening composition is a concept included in the rubber composition of the embodiment. The tire composition (rubber composition) may be vulcanized or unvulcanized.
ここではェキステンダーオイルとプロセスオイルとで表現を分けているが 、 これらは総称してプロセスオイルと呼ばれることがある。 Here, the expression is divided into the extruder oil and the process oil, but these are sometimes collectively referred to as the process oil.
[0049] 以下、 ゴム組成物及びタイヤ組成物の組成について説明する。 [0049] Hereinafter, the compositions of the rubber composition and the tire composition will be described.
[0050] 原料ゴムとしては、 ェラストマー性ポリマーを用いることができ、 例えば 、 天然ゴム、 イソプレンゴム、 ブタジェンゴム、 1 , 2—ブタジェンゴム、 ス チレンーブタジェンゴム、 イソプレンーブタジェンゴム、 スチレンーイソプ レンーブタジェンゴム、 ェチレンープロピレンージェンゴム、 ハロゲン化ブ チルゴム、 ハロゲン化イソプレンゴム、 ハロゲン化イソプチレンコポリマー 、 クロロプレンゴム、 プチルゴムおよびハロゲン化イソプチレンー _メチ ルスチレンゴム、 二トリルゴム、 クロロプレンゴムなどのジェン系ゴム、 ブ チルゴム、 ェチレンープロピレン系ゴム (巳 0 1\/1、 巳 1\/1) 、 ェチレンー ブテンゴム (巳巳1\/1) 、 クロロスルホン化ポリェチレン、 アクリルゴム、 フ ッ素ゴムなどのオレフィン系ゴム、 ェピクロロヒドリンゴム、 多硫化ゴム、 〇 2020/175512 19 卩(:170? 2020 /007603 [0050] As the raw material rubber, an elastomeric polymer can be used. Gen rubber, ethylene-propylene-gen rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isoprene copolymer, chloroprene rubber, butyl rubber and halogenated isoptylene-genyl rubber such as methylstyrene rubber, nitrile rubber, chloroprene rubber, Butyl rubber, Ethylene-Propylene-based rubber (Mimi 0 1\/1, Mimi 1\/1), Ethylene-Butene rubber (Mimi Mimi 1\/1), Chlorosulfonated polyethylene, Acrylic rubber, Fluorine rubber and other olefins System rubber, epichlorohydrin rubber, polysulfide rubber, 〇 2020/175 512 19 boxes (: 170? 2020 /007603
シリコーンゴム、 ウレタンゴムなどを挙げることができ、 また、 水添されて いてもよいポリスチレン系エラストマー性ポリマー (3巳 3、 3 1 3 , 3 £ 巳3) 、 ポリオレフィン系エラストマー性ポリマー、 ポリ塩化ビニル系エラ ストマー性ポリマー、 ポリウレタン系エラストマー性ポリマー、 ポリエステ ル系エラストマー性ポリマーまたはポリアミ ド系エラストマー性ポリマーな どの熱可塑性エラストマーでもよい。 これらは単独、 または任意のブレンド として使用することができる。 Silicone rubber, urethane rubber, etc. can be mentioned. In addition, polystyrene-based elastomeric polymer that may be hydrogenated (3, 3, 3 1, 3, 3, £ 3, 3), polyolefin-based elastomeric polymer, polyvinyl chloride It may be a thermoplastic elastomer such as elastomeric polymer, polyurethane elastomeric polymer, polyester elastomeric polymer or polyamide elastomeric polymer. These can be used alone or in any blend.
石油系芳香族含有油との相溶性の観点からは、 エラストマー性ポリマーは 、 天然ゴム、 イソプレンゴム、 スチレンーブタジエンゴム、 ブタジエンゴム 、 プチルゴム、 クロロプレンゴム、 及びアクリルニトリルゴムからなる群か ら選択される少なくとも一種であることが好ましい。 さらに、 タイヤ性能と して、 転がり抵抗性能及びウヱッ トグリップ性能を発揮するトレッ ド部に好 適に使用可能であるとの観点から、 エラストマー性ポリマーは、 天然ゴム、 イソプレンゴム、 スチレンブタジエンゴム、 ブタジエンゴムからなる群から 選択される少なくとも一種であることが好ましい。 From the viewpoint of compatibility with petroleum-based aromatic-containing oils, the elastomeric polymer is selected from the group consisting of natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, butyl rubber, chloroprene rubber, and acrylonitrile rubber. It is preferably at least one of Furthermore, from the viewpoint that it can be suitably used for a tire that exhibits rolling resistance and water-grip performance as tire performance, elastomeric polymers include natural rubber, isoprene rubber, styrene-butadiene rubber, and butadiene. It is preferably at least one selected from the group consisting of rubber.
[0051 ] エキステンダーオイル、 又はプロセスオイルとしては、 実施形態に係る石 油系芳香族含有油を用いることができる。 [0051] As the extender oil or the process oil, the petroleum-based aromatic-containing oil according to the embodiment can be used.
[0052] 配合剤としては、 充填剤、 老化防止剤、 酸化防止剤、 架橋剤 (加硫剤) 、 架橋促進剤、 樹脂、 可塑材、 加硫促進剤、 加硫促進助剤 (加硫助剤) 等が挙 げられる。 [0052] Compounding agents include fillers, antioxidants, antioxidants, cross-linking agents (vulcanizing agents), cross-linking accelerators, resins, plasticizers, vulcanization accelerators, vulcanization accelerating aids (vulcanization aids). Agents).
[0053] 充填剤としては、 力ーボンブラック、 シリカ、 シラン化合物 (シランカッ プリング剤) 等が挙げられ、 シリカ及び/又はシランカップリング剤が好ま しい。 [0053] Examples of the filler include carbon black, silica, silane compounds (silane coupling agents) and the like, and silica and/or silane coupling agents are preferable.
力ーボンブラックは粒子径に基づいて、 ハードカーボンとソフトカーボン とに分類される。 ソフトカーボンはゴムに対する補強性が低く、 ハードカー ボンはゴムに対する補強性が強い。 実施形態のゴム組成物が力ーボンブラッ クを含有する場合には、 特に補強性の強いハードカーボンを用いるのが好ま しい。 力ーボンブラックは、 エラストマー性ポリマー 1 0 0質量部に対して 〇 2020/175512 20 卩(:170? 2020 /007603 Carbon black is classified into hard carbon and soft carbon based on particle size. Soft carbon has low reinforcement to rubber, and hard carbon has high reinforcement to rubber. When the rubber composition of the embodiment contains force-bonded black, it is preferable to use hard carbon having a particularly strong reinforcing property. Carbon black is based on 100 parts by weight of the elastomeric polymer. 〇 2020/175 512 20 units (: 170? 2020 /007603
1 0〜 2 5 0質量部配合されていることが好ましく、 2 0〜 2 0 0質量部配 合されていることがより好ましく、 3 0〜 5 0質量部配合されていることが さらに好ましい。 It is preferably mixed in an amount of 10 to 250 parts by mass, more preferably in an amount of 20 to 200 parts by mass, and even more preferably in an amount of 30 to 50 parts by mass.
シリカとしては、 特に限定されないが、 例えば、 乾式法ホワイ トカーボン 、 湿式法ホワイ トカーボン、 コロイダルシリカ、 および沈降シリカなどが挙 げられる。 これらの中でも、 含水ケイ酸を主成分とする湿式法ホワイ トカー ボンが好ましい。 これらのシリカはそれぞれ単独あるいは 2種以上を組み合 わせて用いることができる。 これらシリカの比表面積は、 特に制限されない が、 窒素吸着比表面積 (巳巳丁法) で通常 1 0〜 4 0
Figure imgf000021_0001
好ましくは 2 0〜 3 0 0〇!2/ 、 更に好ましくは 1 2 0 ~ 1 9 0〇12/ の範囲であると きに、 補強性、 耐摩耗性および発熱性等の改善に対し好適である。 ここで、 窒素吸着比表面積は、 八3丁1\/1 0 3 0 3 7— 8 1 に準じ、 巳巳丁法で測定さ れる値である。
The silica is not particularly limited, and examples thereof include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon containing hydrous silicic acid as a main component is preferable. These silicas can be used alone or in combination of two or more. The specific surface area of these silicas is not particularly limited, but is usually 10 to 40 in terms of nitrogen adsorption specific surface area (Mitsumi method).
Figure imgf000021_0001
It is suitable for improvement of reinforcing property, abrasion resistance, heat generation property, etc. when it is in the range of preferably 20 to 300! 2 /, more preferably 120 to 1900 12 /. Is. Here, the nitrogen adsorption specific surface area is a value measured by the Mitsumi method in accordance with 8 3 1\/1 0 3 0 3 7-81.
シラン化合物としては、 特に制限されないが、 硫黄含有シランカップリン グ剤が好ましく、 ビス ( 3—トリエトキシシリルプロピル) ジスルフィ ドが より好ましい。 The silane compound is not particularly limited, but a sulfur-containing silane coupling agent is preferable, and bis(3-triethoxysilylpropyl)disulfide is more preferable.
[0054] 架橋剤 (加硫剤) としては、 粉末硫黄、 沈降性硫黄、 高分散性硫黄、 表面 処理硫黄、 不溶性硫黄などが挙げられる。 [0054] Examples of the crosslinking agent (vulcanizing agent) include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, and insoluble sulfur.
[0055] 加硫促進剤としては、 テトラメチルチウラムジスルフィ ド (丁 1\/1丁0) 、 テトラエチルチウラムジスルフィ ド (丁巳丁〇) などのチウラム系、 へキサ メチレンテトラミンなどのアルデヒド · アンモニア系、 ジフエニルグアニジ ンなどのグアニジン系、 ジベンゾチアジルジサルファイ ド (口 IV!) などのチ アゾール系、 1\1-シクロヘキシル- 2 -ベンゾチアゾリルスルフエンアミ ドなど のシクロヘキシルべンゾチアジルスルフエンアマイ ド系などが挙げられる。 [0055] Examples of the vulcanization accelerator include tetramethylthiuram disulfide (Cho 1\/1C 0), tetraethyl thiuram disulfide (Chomi Cho), and other thiuram-based compounds, and aldehydes such as hexamethylenetetramine. Ammonia type, guanidine type such as diphenylguanidine, thiazole type such as dibenzothiazyl disulfide (Mouth IV!), cyclohexyl ether such as 1\1-cyclohexyl-2-benzothiazolyl sulfenamide. Examples include Nzothiazyl sulfenamide type.
[0056] 加硫促進助剤としては、 アセチル酸、 プロピオン酸、 ブタン酸、 ステアリ ン酸、 アクリル酸、 マレイン酸などの脂肪酸、 アセチル酸亜鉛、 プロピオン 酸亜鉛、 ブタン酸亜鉛、 ステアリン酸亜鉛、 アクリル酸亜鉛、 マレイン酸亜 鉛などの脂肪酸亜鉛、 亜鉛華などが挙げられる。 〇 2020/175512 21 卩(:170? 2020 /007603 [0056] Examples of the vulcanization accelerator include fatty acids such as acetyl acid, propionic acid, butanoic acid, stearic acid, acrylic acid and maleic acid, zinc acetylate, zinc propionate, zinc butanoate, zinc stearate, acryl. Examples thereof include zinc acid, fatty acid zinc such as zinc maleate, and zinc white. 〇 2020/175 512 21 box (: 170? 2020 /007603
[0057] これら原料ゴム、 本発明に係る石油系芳香族含有油、 及び配合剤の配合量 は、 本発明の目的に反しない限り、 一般的な配合量とすることができる。 [0057] The amounts of these raw material rubbers, the petroleum-based aromatic-containing oil according to the present invention, and the compounding agent can be set to general amounts unless it is against the object of the present invention.
[0058] 一例として、 エラストマー性ポリマー 1 0 0質量部に対して、 充填剤: 3 〇〜 1 0 0質量部、 石油系芳香族含有油: 8 0質量部以下、 老化防止剤: 0 . 5〜 5質量部、 架橋剤: 1〜 1 0質量部、 樹脂: 〇〜 2 0質量部、 加硫促 進剤: 〇. 5〜 5質量部、 加硫促進助剤: 1〜 1 0質量部の配合を例示でき る。 [0058] As an example, with respect to 100 parts by mass of the elastomeric polymer, a filler: 30 to 100 parts by mass, a petroleum-based aromatic-containing oil: 80 parts by mass or less, an antiaging agent: 0.5 ~ 5 parts by mass, cross-linking agent: 1 to 10 parts by mass, resin: 〇 to 20 parts by mass, vulcanization accelerator: 0.5 to 5 parts by mass, vulcanization accelerator aid: 1 to 10 parts by mass Can be exemplified.
充填剤として、 シリカ及び/又はシランカップリング剤が用いられる場合 、 シリカ及び/又はシランカップリング剤は、 エラストマー性ポリマー 1 0 〇質量部に対して、 1 0〜 3 0 0質量部配合されていることが好ましく、 5 〇〜 1 5 0質量部配合されていることがより好ましく、 7 0〜 1 0 0質量部 配合されていることがさらに好ましい。 シラン化合物 (シランカップリング 剤) の含有量は、 エラストマー性ポリマー 1 〇〇質量部に対し、 〇. 1〜 3 〇質量部であることが好ましく、 1〜 2 0質量部であることがより好ましい 石油系芳香族含有油は、 エラストマー性ポリマー 1 0 0質量部に対して、 〇. 5〜 8 0質量部配合されていることが好ましく、 1 0〜 5 0質量部配合 されていることがより好ましく、 2 0〜 4 0質量部配合されていることがさ らに好ましい。 When a silica and/or silane coupling agent is used as a filler, the silica and/or silane coupling agent is mixed in an amount of 10 to 300 parts by mass with respect to 100 parts by mass of the elastomeric polymer. It is preferable that it is contained, more preferably 50 to 150 parts by mass, further preferably 70 to 100 parts by mass. The content of the silane compound (silane coupling agent) is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the elastomeric polymer. The petroleum-based aromatic-containing oil is preferably 0.5 to 80 parts by mass with respect to 100 parts by mass of the elastomeric polymer, and more preferably 10 to 50 parts by mass. It is more preferably 20 to 40 parts by mass.
[0059] 実施形態のゴム組成物によれば、 転がり抵抗性能及びウェッ トグリップ性 能に優れたゴム組成物を提供できる。 [0059] According to the rubber composition of the embodiment, it is possible to provide a rubber composition having excellent rolling resistance performance and wet grip performance.
[0060] 《タイヤ ·タイヤの製造方法》 [0060] <<Tire-Method for manufacturing tire>>
実施形態のタイヤは、 上記の実施形態に係る石油系芳香族含有油を含有す る。 The tire of the embodiment contains the petroleum-based aromatic-containing oil according to the above embodiment.
実施形態のタイヤは、 ゴムと、 実施形態の石油系芳香族含有油と、 を配合 して加硫することで、 製造することができる。 The tire of the embodiment can be manufactured by blending rubber and the petroleum-based aromatic-containing oil of the embodiment and vulcanizing.
言い換えると、 実施形態のタイヤは、 上記タイヤ組成物 (ゴム組成物) を 含んでよく、 タイヤ組成物に対し、 加硫を行うことにより製造することがで 〇 2020/175512 22 卩(:170? 2020 /007603 きる。 具体的には、 例えば、 上記タイヤ組成物を加硫成形して、 タイヤを製 造することができる。 より具体的には、 例えば、 上記タイヤ組成物を加熱溶 融し、 加熱溶融したタイヤ組成物を押し出し、 次いで、 タイヤ成型機を用い て成形した後、 加硫機を用いて加熱 ·加圧することにより、 タイヤを製造す ることができる。 In other words, the tire according to the embodiment may include the above tire composition (rubber composition), and can be produced by vulcanizing the tire composition. 〇 2020/175512 22 (: 170? 2020/007603) Specifically, for example, the above tire composition can be vulcanized to produce a tire. More specifically, for example, A tire is manufactured by heat-melting the above tire composition, extruding the heat-melted tire composition, then molding using a tire molding machine, and then heating and pressurizing using a vulcanizer. You can
[0061 ] タイヤは、 一例として、 トレッ ド、 力ーカス、 サイ ドウォール、 インナー ライナー、 アンダートレッ ド、 ベルト部などのタイヤ各部から構成される。 実施形態のタイヤは、 上記の実施形態に係る石油系芳香族含有油を、 トレッ ド部に含有することが好ましい。 実施形態のタイヤは、 実施形態のタイヤ組 成物からなるタイヤトレッ ドを有することが好ましい。 石油系芳香族含有油 が、 接地面となるトレッ ド部に含有されることで、 転がり抵抗性能及びウエ ッ トグリップ性能が好適に発揮される。 [0061] A tire is composed of, for example, a tire, a tire, a carcass, a side wall, an inner liner, an undertread, and a belt portion. The tire according to the embodiment preferably contains the petroleum-based aromatic-containing oil according to the above-described embodiment in the tred portion. The tire of the embodiment preferably has a tire tread made of the tire composition of the embodiment. Since the petroleum-based aromatic-containing oil is contained in the tread portion that serves as the ground contact surface, rolling resistance performance and wet grip performance are suitably exhibited.
[0062] 実施形態のタイヤ及びタイヤの製造方法によれば、 転がり抵抗性能及びゥ エッ トグリップ性能に優れたタイヤを提供できる。 According to the tire and the tire manufacturing method of the embodiment, it is possible to provide a tire having excellent rolling resistance performance and wet grip performance.
[0063] 実施形態の石油系芳香族含有油が、 なぜタイヤ組成物 (ゴム組成物) のゥ エッ トグリップ性能と転がり抵抗性能の両立に効果を発揮するのかについて は、 以下のように推定される。 [0063] The reason why the petroleum-containing aromatic-containing oil of the embodiment exerts the effect of achieving both the wet grip performance and the rolling resistance performance of the tire composition (rubber composition) is estimated as follows. ..
両性能は二律背反であるため、 一方を損なうことなく、 もう一方を高めら れれば結果として両立ができる。 通常、 省燃費タイヤと呼ばれているものに はシリカを配合することで両立、 特に省燃費性能を志向されているが、 シリ 力は表面に親水基が多く、 ゴムポリマーとはなじみにくいため、 シリカどう しで凝集してしまう傾向がある。 その場合、 タイヤが走行中に変形した際に 、 シリカ同士が擦れるなどして発熱してしまい、 余計なエネルギーロスが生 じる。 したがって、 シリカをゴムポリマー中でいかに分散させるかがポイン 卜となる。 上述の特定成分を特定量で含む石油系芳香族含有油は、 シリカを 含め各種配合剤の分散や溶解に作用し、 それらのゴムポリマー中での挙動が 各物理特性に好ましい影響を与え、 結果として背反性能の両立に繫がると考 えられる。 〇 2020/175512 23 卩(:170? 2020 /007603 Since both performances are trade-offs, if one is improved without compromising the other, they can be compatible as a result. Normally, it is compatible with what is called a fuel-efficient tire by blending silica, and it is especially aimed at fuel-saving performance, but since the siliency has many hydrophilic groups on the surface and it is difficult to fit with rubber polymers, Silicas tend to agglomerate. In that case, when the tire is deformed during driving, heat will be generated due to friction between the silica particles, resulting in extra energy loss. Therefore, the point is how to disperse silica in the rubber polymer. The petroleum-based aromatic-containing oil containing the above-mentioned specific component in a specific amount acts on the dispersion or dissolution of various compounding agents including silica, and their behavior in the rubber polymer has a favorable influence on each physical property. As a result, it is considered that the anti-performance is compatible. 〇 2020/175 512 23 卩 (: 170? 2020 /007603
実施例 Example
[0064] 次に実施例を示して本発明をさらに詳細に説明するが、 本発明は以下の実 施例に限定されない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[0065] 1. プロセスオイルの製造 [0065] 1. Manufacturing of process oil
<実施例 1 _ 1 > <Example 1 _ 1>
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた減圧蒸留残渣を圧縮液化したプロパンによる脱れき抽出装置 (運転条件:塔頂温度 60〜 90 °0、 塔底温度 50〜 80 °0、 溶剤比 1. 5 〜 6. 0の範囲で調整) に供し、 得られた脱れき油をフルフラール抽出装置 (運転条件:塔頂温度 1 30〜 1 40°0、 塔底温度 80〜 1 00°0、 溶剤比 3. 〇〜 4. 0の範囲で調整) に供し、 得られたエキストラクト留分をエキ ストラクト (八) とした。 Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was subjected to compression liquefaction propane deasphalting extraction apparatus (operating conditions: overhead temperature 60 to 90 ° 0, tower bottom temperature 50 to 80 ° 0, solvent ratio adjusted to within the range of 1.5 to 6.0), and the obtained deasphalted oil was extracted with a furfural extractor (operating conditions: tower top temperature 1 30 to 1 40 ° 0, column bottom temperature 80 to 100 ° 0, solvent ratio adjusted to within the range of 3.0 to 4.0), and the obtained extract fraction was used as extract (8).
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた 500 !\1相当の減圧蒸留留分をフルフラール抽出装置 (運転 条件:塔頂温度 1 1 0〜 1 30°0、 塔底温度 60〜 80°0、 溶剤比 1. 0〜 3. 0の範囲で調整) に供し、 得られたラフィネート留分を水素化精製装置 (運転条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 2. 0 _1、 反応 温度 27〇〜 330°0、 水素オイル比 1 500〜 2500 !_/!_、 水素分 圧 4. 〇〜 6.
Figure imgf000024_0001
の範囲で調整) に供し、 得られた水素化精製油を溶 剤脱蝋装置 (運転条件: メチルエチルケトンとトルエンの混合溶剤、 一次溶 剤比 2. 0、 二次溶剤比 0. 8、 脱蝋温度一 1 5〜一 25°◦の範囲で調整) に供し、 得られた脱蝋油を脱蝋油 (巳) とした。
The Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500!\1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 1 1 0 to 1 30 ° 0, column bottom temperature 60 to 80 ° 0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment (operating conditions: precious metal system). Using a catalyst, liquid space velocity 1. 〇 to 2.0 _ 1 , reaction temperature 27 〇 to 330 ° 0, hydrogen oil ratio 1 500 to 2500 !_/!_, hydrogen partial pressure 4. 〇 to 6.
Figure imgf000024_0001
The hydrogenated refined oil obtained is subjected to solvent dewaxing equipment (operating conditions: mixed solvent of methyl ethyl ketone and toluene, primary solvent ratio 2.0, secondary solvent ratio 0.8, dewaxing). The dewaxed oil obtained was used as dewaxed oil (Mitsumi).
エキストラクト (八) /脱蝋油 (巳) を質量比で 60/40に混合して、 実施例 1のプロセスオイルを得た。 Extract (8)/dewaxed oil (Mitsumi) were mixed at a mass ratio of 60/40 to obtain the process oil of Example 1.
[0066] <実施例 2- 1 > [0066] <Example 2-1>
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた減圧蒸留残渣を圧縮液化したプロパンによる脱れき抽出装置 (運転条件:塔頂温度 50〜 80°0、 塔底温度 40〜 70°0、 溶剤比 5. 0 〇 2020/175512 24 卩(:170? 2020 /007603 Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was subjected to compression liquefaction propane deasphalting extraction apparatus (operating conditions: tower top temperature 50 to 80 °0, bottom temperature 40-70°0, solvent ratio 5.0 〇 2020/175 512 24 boxes (: 170? 2020 /007603
〜 8. 0の範囲で調整) に供し、 得られた脱れき油をフルフラール抽出装置 (運転条件:塔頂温度 1 00〜 1 20 °0、 塔底温度 50〜 70 °0、 溶剤比 3 . 5〜 4. 5の範囲で調整) に供し、 得られたエキストラクト留分をエキス トラクト (〇) とした。 The obtained deasphalted oil is subjected to a furfural extraction device (operating conditions: column top temperature 100 to 120 ° 0, column bottom temperature 50 to 70 ° 0, solvent ratio 3. The extract fraction thus obtained was used as extract (○).
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた 500 !\1相当の減圧蒸留留分をフルフラール抽出装置 (運転 条件:塔頂温度 1 〇〇〜 1 20°0、 塔底温度 50〜 70°0、 溶剤比 1. 0〜 3. 0の範囲で調整) に供し、 得られたラフィネート留分を水素化精製装置 (運転条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 2. 0 _1、 反応 温度 32〇〜 370°0、 水素オイル比 1 500〜 2500 !_/!_、 水素分 圧 8. 〇〜 1 0.
Figure imgf000025_0001
の範囲で調整) に供し、 得られた水素化精製油を 溶剤脱蝋装置 (運転条件: メチルエチルケトンとトルエンの混合溶剤、 一次 溶剤比 1. 3、 二次溶剤比 1. 3、 脱蝋温度一 1 5〜一 25°◦の範囲で調整 ) に供し、 得られた脱蝋油を脱蝋油 (口) とした。
The Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500!\1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). ◯ to 120 ° 0, column bottom temperature 50 to 70 ° 0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment (operating conditions: precious metal system). Using a catalyst, the liquid space velocity is 1.0 to 2.0 _ 1 , the reaction temperature is 32 〇 to 370°0, the hydrogen oil ratio is 1 500 to 2500 !_/!_, and the hydrogen partial pressure is 8.0 〜 10.
Figure imgf000025_0001
The hydrogenated refined oil obtained is subjected to a solvent dewaxing apparatus (operating conditions: a mixed solvent of methyl ethyl ketone and toluene, a primary solvent ratio of 1.3, a secondary solvent ratio of 1.3, and a dewaxing temperature of 1). The dewaxed oil obtained was used as dewaxed oil (mouth).
エキストラクト (〇 /脱蝋油 (口) を質量比で 70/30に混合して、 実施例 2のプロセスオイルを得た。 The extract (◯/dewaxed oil (mouth)) was mixed at a mass ratio of 70/30 to obtain the process oil of Example 2.
[0067] <実施例 3_ 1 > [0067] <Example 3_1>
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた減圧蒸留残渣を圧縮液化したプロパンによる脱れき抽出装置 (運転条件:塔頂温度 55〜 85 °0、 塔底温度 45〜 75 °0、 溶剤比 1. 0 〜 4. 0の範囲で調整) に供し、 得られた脱れき油をフルフラール抽出装置 (運転条件:塔頂温度 1 1 0〜 1 30°0、 塔底温度 60〜 80°0、 溶剤比 3 . 〇〜 4. 0の範囲で調整) に供し、 得られたエキストラクト留分をエキス トラクト (巳) とした。 Middle-east crude oil is subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue is subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue is subjected to deliquescent extraction with propane (operating conditions: column top temperature 55 to 85 ° 0, tower bottom temperature 45 to 75 ° 0, solvent ratio adjusted to 1.0 to 4.0), and the resulting deasphalted oil was extracted with a furfural extractor (operating conditions: tower top temperature 110 ~ 1 30 ° 0, column bottom temperature 60 to 80 ° 0, solvent ratio adjusted to within the range of 3.0 to 4.0), and the obtained extract fraction was used as extract (norm).
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた 500 !\1相当の減圧蒸留留分をフルフラール抽出装置 (運転 条件:塔頂温度 1 〇 5〜 1 25°0、 塔底温度 55〜 75°0、 溶剤比 1. 2〜 2. 8の範囲で調整) に供し、 得られたラフィネート留分を水素化精製装置 〇 2020/175512 25 卩(:170? 2020 /007603 The Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500!\1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). 5 to 125 ° 0, column bottom temperature 55 to 75 ° 0, solvent ratio adjusted to 1.2 to 2.8), and the resulting raffinate fraction is hydrorefining equipment. 〇 2020/175 512 25 units (: 170? 2020 /007603
(運転条件:貴金属系触媒を用いて、 液空間速度 2. 〇〜 3. 0 _1、 反応 温度 3 1 〇〜 360°0、 水素オイル比 1 500〜 2500 !_/!_、 水素分 圧 8. 5〜 1 2.
Figure imgf000026_0001
の範囲で調整) に供し、 得られた水素化精製油を 溶剤脱蝋装置 (運転条件: メチルエチルケトンとトルエンの混合溶剤、 一次 溶剤比 1. 〇〜 2. 0、 二次溶剤比 0. 5〜 1. 4、 脱蝋温度— 1 5〜— 2 5°〇の範囲で調整) に供し、 得られた脱蝋油を脱蝋油 ( ) とした。
(Operating conditions: using a precious metal catalyst, liquid space velocity 2. 〇 to 3.0 _ 1 , reaction temperature 3 1 〇 to 360 ° 0, hydrogen oil ratio 1 500 to 2500 !_/!_, hydrogen partial pressure 8.5-1 2.
Figure imgf000026_0001
The hydrogenated refined oil obtained is subjected to a solvent dewaxing device (operating conditions: mixed solvent of methyl ethyl ketone and toluene, primary solvent ratio of 1.0 to 2.0, secondary solvent ratio of 0.5 to 1.4, dewaxing temperature—adjusted within the range of −15 to −25° ◯), and the resulting dewaxed oil was used as dewaxed oil ().
エキストラクト (巳) /脱蝋油 ( ) を質量比で 62/38に混合して、 実施例 3のプロセスオイルを得た。 The extract (Minami)/dewaxed oil () was mixed in a mass ratio of 62/38 to obtain the process oil of Example 3.
[0068] <実施例 4_ 1 > [0068] <Example 4_1>
ナフテン原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装 置に供し、 得られた 1 000 !\1相当の減圧蒸留留分を水素化精製装置 (運転 条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 3. 011-1、 反応温度 2 70°〇〜340°0, 水素オイル比 1 400〜 2800 !_/!_、 水素分圧 3 . 〇〜 9.
Figure imgf000026_0002
の範囲で調整) に供し、 得られた水素化精製油を水素化 精製油 (<) とした。
The naphthene crude oil was subjected to an atmospheric distillation device, the obtained atmospheric distillation residue was subjected to a vacuum distillation device, and the resulting vacuum distillation fraction equivalent to 1 000!\1 was hydrorefined (operating conditions: precious metal system). using a catalyst, the liquid hourly space velocity 1. 〇_~ 3. 011 1, reaction temperature 2 70 ° 〇_~340 ° 0, hydrogen oil ratio 1 400-2800! _ /! _, hydrogen partial pressure of 3. 〇_~ 9 .
Figure imgf000026_0002
The hydrogenated refined oil obtained was used as the hydrogenated refined oil (<).
ナフテン原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装 置に供し、 得られた減圧蒸留残渣を減圧蒸留残渣 (!_) とした。 The naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (!_).
水素化精製油 (<) と減圧蒸留残渣 (!_) を 1 00°◦の動粘度が 5500^ / 近傍となるよう混合して、 実施例 4のプロセスオイルを得た。 The hydrorefined oil (<) and the vacuum distillation residue (!_) were mixed so that the kinematic viscosity at 100°° would be around 5500^ /, and the process oil of Example 4 was obtained.
[0069] <実施例 5- 1 > [0069] <Example 5-1>
上記エキストラクト (巳) を、 実施例 5のプロセスオイルとした。 The extract (Mitsumi) was used as the process oil of Example 5.
[0070] <実施例 6- 1 > [0070] <Example 6-1>
上記エキストラクト (〇) を、 実施例 6のプロセスオイルとした。 The extract (◯) was used as the process oil of Example 6.
[0071] <比較例 1 _ 1 > [0071] <Comparative Example 1 _ 1>
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた 500 !\1相当の減圧蒸留留分をフルフラール抽出装置 (運転 条件:塔頂温度 1 〇〇〜 1 30°0、 塔底温度 50〜 80°0、 溶剤比 1. 0〜 3. 0の範囲で調整) に供し、 得られたラフィネート留分を水素化精製装置 〇 2020/175512 26 卩(:170? 2020 /007603 The Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 500!\1 equivalent vacuum distillation fraction was converted to a furfural extraction apparatus (operating conditions: column top temperature 10 °C). ◯ to 1 30°0, tower bottom temperature 50 to 80°0, solvent ratio adjusted to 1.0 to 3.0), and the resulting raffinate fraction is hydrorefining equipment. 〇 2020/175 512 26 boxes (: 170? 2020 /007603
(運転条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 3. 011-1、 反応 温度 280〜340°0、 水素オイル比 1 500〜 25001\1 !_/!_、 水素分 圧 6. 〇〜 1 0.
Figure imgf000027_0001
の範囲で調整) に供し、 得られた水素化精製油を 溶剤脱蝋装置 (運転条件: メチルエチルケトンとトルエンの混合溶剤、 一次 溶剤比 1. 〇〜 2. 0、 二次溶剤比 0. 5〜 1. 4、 脱蝋温度— 1 5〜— 2 5°〇の範囲で調整) に供し、 得られた脱蝋油を脱蝋油 (◦) とした。
(Operating conditions:! Using a noble metal catalyst, the liquid hourly space velocity 1. 〇_~ 3. 011 1, reaction temperature 280 to 340 ° 0, hydrogen oil ratio 1 500-25001 \ 1 _ / _, hydrogen partial pressure 6.〇〜10.
Figure imgf000027_0001
The hydrogenated refined oil obtained is subjected to a solvent dewaxing device (operating conditions: mixed solvent of methyl ethyl ketone and toluene, primary solvent ratio of 1.0 to 2.0, secondary solvent ratio of 0.5 to 1.4, dewaxing temperature — adjusted to within the range of 15 to 25 °C), and the dewaxed oil obtained was used as dewaxed oil (◦).
中東原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装置に 供し、 得られた減圧蒸留残渣を減圧蒸留残渣 (!!) とした。 The Middle Eastern crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (!!).
ナフテン原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装 置に供し、 得られた 1 000 !\1相当の減圧蒸留留分を水素化精製装置 (運転 条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 3. 01^-1、 反応温度 2 70°〇〜340°0, 水素オイル比 1 400〜 2800 !_/!_、 水素分圧 3 . 〇〜 9.
Figure imgf000027_0002
の範囲で調整) に供し、 得られた水素化精製油を水素化 精製油 (丨) とした。
The naphthene crude oil was subjected to an atmospheric distillation device, the obtained atmospheric distillation residue was subjected to a vacuum distillation device, and the resulting vacuum distillation fraction equivalent to 1 000!\1 was hydrorefined (operating conditions: precious metal system). Using a catalyst, liquid hourly space velocity of 1.0 〜 3.01^ -1 , reaction temperature of 2 70° 〇 to 340° 0, hydrogen oil ratio of 1 400 to 2800 !_/!_, hydrogen partial pressure of 3.0 〜 9.
Figure imgf000027_0002
The resulting hydrogenated refined oil was used as a hydrogenated refined oil (丨).
ナフテン原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装 置に供し、 得られた減圧蒸留残渣を減圧蒸留残渣 (」) とした。 The naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained vacuum distillation residue was used as a vacuum distillation residue (").
脱蝋油 (◦) /減圧蒸留残渣 (!!) を質量比で 50/50に混合し、 水素 化精製油 (丨) /減圧蒸留残渣 (」) を質量比で 50/50に混合し、 両者 を 1 00°〇の動粘度が 30 〇1 2/3近傍となるよう混合して、 比較例 1のプ ロセスオイルを得た。 Dewaxed oil (◦)/vacuum distillation residue (!!) are mixed in a mass ratio of 50/50, and hydrorefined oil (丨)/vacuum distillation residue (”) is mixed in a mass ratio of 50/50. were mixed so that the kinematic viscosity of the 1 00 ° 〇 both a 30 〇 1 2/3 near to give up Rosesuoiru of Comparative example 1.
[0072] <比較例 2- 1 > [0072] <Comparative Example 2-1>
ナフテン原油を常圧蒸留装置に供し、 得られた常圧蒸留残渣を減圧蒸留装 置に供し、 得られた 2000 !\1相当の減圧蒸留留分を水素化精製装置 (運転 条件:貴金属系触媒を用いて、 液空間速度 1. 〇〜 3. 01^-1、 反応温度 2 70°〇〜340°0, 水素オイル比 1 400〜 2800 !_/!_、 水素分圧 3 . 〇〜 9.
Figure imgf000027_0003
の範囲で調整) に供し、 得られた水素化精製油を、 比較 例 2のプロセスオイルとした。
The naphthene crude oil was subjected to an atmospheric distillation apparatus, the obtained atmospheric distillation residue was subjected to a vacuum distillation apparatus, and the obtained 2000!\1 equivalent vacuum distillation fraction was subjected to a hydrorefining apparatus (operating condition: precious metal catalyst). Liquid space velocity of 1.0 to 3.01^ -1 , reaction temperature of 2 70° to 340° 0, hydrogen oil ratio of 1 400 to 2800 !_/!_, hydrogen partial pressure of 3.0 to 9 .
Figure imgf000027_0003
The hydrogenated refined oil obtained was used as the process oil of Comparative Example 2.
[0073] <比較例 3- 1 > 上記脱蝋油 (F) を、 比較例 3のプロセスオイルとした。 [0073] <Comparative Example 3-1> The dewaxed oil (F) was used as the process oil of Comparative Example 3.
[0074] <比較例 4一 1 > [0074] <Comparative Example 41-1>
上記エキストラクト (E) /脱蝋油 (F) を質量比で 80/20に混合し て、 比較例 4のプロセスオイルを得た。 The above extract (E)/dewaxed oil (F) was mixed in a mass ratio of 80/20 to obtain a process oil of Comparative Example 4.
[0075] 2. プロセスオイルの性状測定 [0075] 2. Measurement of properties of process oil
上記実施例及び比較例で得られたプロセスオイルを試料とし、 下記項目の 測定を行った。 The process oils obtained in the above Examples and Comparative Examples were used as samples, and the following items were measured.
[0076] [クレイゲル法] [0076] [Craigel method]
クレイゲル法 (クレイゲルカラムクロマト) : ASTM D 2007— 1 1 StandardTest Method for Characteristic Groups m Rubber Extender a nd Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel A bsorpt ion Chromatographic Methodにより、 芳香族分、 飽和分、 極成分 (質 量%) を求めた。 Clay gel method (Clay gel column chromatography): ASTM D 2007— 1 1 StandardTest Method for Characteristic Groups m Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel A bsorpt ion Chromatographic Method. Minutes and polar components (mass%) were calculated.
[0077] [H P LCを用いた芳香族分の分画] [0077] [Aromatic fractionation using HPLC]
H P LC (高圧液体クロマトグラフィー) を用いた芳香族分の分画は、 ( 既報: Ana lyt i ca I Chemistry, 1983, 55, p.1375-1379) に掲載されている 「 Separation of aromatic and polar compounds in fossil fuel liquids by liquid chromatography」 を参考とし、 以下の手順で実施した。 Fractionation of aromatics using HP LC (High Pressure Liquid Chromatography) is described in (Separation of aromatic and polar Compounds in fossil fuel liquids by liquid chromatography” was used as a reference, and the following procedure was performed.
試料をヘキサンで 5倍に希釈することにより前処理を行った。 カラムは、 ウォーターズ社製 S p h e r i s o r b A5 Y 250X4. 6mmを用い 、 流量は 2. 5 mL/分とし、 検出器には UV検出器を使用し、 波長 270 n mで測定した。 溶離液は、 試料導入からの時間が〇〜 1 0. 0分まではへ キサンを用い、 1 0. 〇〜 30. 0分まではヘキサン 1 00質量%からジク ロロメタン 40質量%とヘキサン 60質量%の混合溶液に直線的にジクロロ メタン含有量を増大させた。 試料導入からの時間が 30. 〇〜 30. 1分の 間にジクロロメタン 40質量%とヘキサン 60質量%の混合溶液をジクロロ メタン 1 00質量%に変更し、 30. 1分以降はジクロロメタン 1 00質量 %を用いた。 得られたピーク面積から以下の式により環別の芳香族炭化水素の含有量 ( 質量%) を求めた。 ここで、 1環面積は、 ベンゼンのピークからナフタレン の直前のピークまでのピーク面積の合計であり、 2環面積は、 ナフタレンの ピークからアントラセンの直前のピークまでのピーク面積の合計であり、 ま た、 3環以上面積は、 アントラセンのピーク以降のピーク面積の合計である 〇 Pretreatment was performed by diluting the sample 5 times with hexane. The column used was Spherisorb A5 Y 250X4.6 mm manufactured by Waters Co., the flow rate was 2.5 mL/min, the UV detector was used as the detector, and the wavelength was measured at 270 nm. Hexane was used as the eluent from the time of sample introduction to 0 to 10.0 minutes, and from 100 to 30.0 minutes from 100% by mass of hexane to 40% by mass of dichloromethane and 60% by mass of hexane. %, the dichloromethane content was increased linearly in the mixed solution. Change the mixed solution of 40% by mass of dichloromethane and 60% by mass of hexane to 100% by mass of dichloromethane within the time of 30.0 to 30.1 minutes after introduction of the sample, and after 30.1 minutes, 100% by mass of dichloromethane. % Was used. From the obtained peak area, the content (% by mass) of aromatic hydrocarbon by ring was determined by the following formula. Here, 1-ring area is the total peak area from the peak of benzene to the peak immediately before naphthalene, and 2-ring area is the total peak area from the peak of naphthalene to the peak immediately before anthracene. The area of 3 or more rings is the sum of the peak areas after the anthracene peak.
1環芳香族分 (質量%) = ( 1環面積/ ( 1環面積 + 0. 1 X2環面積 + 0 . 025 X3環以上面積) ) X 1 00 ; 1-ring aromatic content (mass %) = (1 ring area / (1 ring area + 0.1 X2 ring area + 0.025 X3 or more ring area)) X 100
2環芳香族分 (質量%) = (0. 1 X2環面積/ (1環面積 +0. 1 X2環 面積 +0. 025 X3環以上面積) ) X 1 00 ; 2-ring aromatic content (mass %) = (0.1 X2 ring area / (1 ring area + 0.1 X2 ring area + 0.025 X3 or more ring area)) X 100
3環以上の芳香族分 (質量%) = (0. 025 X3環面積/ (1環面積+0 . 1 X2環面積 + 0. 025 X3環以上面積) ) X 1 00 Aromatic content of 3 or more rings (mass %) = (0.025 X3 ring area / (1 ring area + 0.1 X2 ring area + 0.025 X3 ring or more area)) X 100
[0078] [動粘度 (1 00°C) ] [0078] [Kinematic viscosity (100 °C)]
J I S K 2283 : 2000の規定により測定した。 Measured according to J I S K 2283:2000.
[0079] [アニリン点] [0079] [Aniline point]
ASTM D 6 1 1 — 1 2 Standard Test Methods for Aniline Point a nd Mixed Am line Point of Petroleum Products and Hydrocarbon Solvents の規定により測定した。 ASTM D 611 — 1 2 Standard Test Methods for Aniline Point and Mixed Amline Point of Petroleum Products and Hydrocarbon Solvents.
[0080] [ガラス転移点 (T g) ] [0080] [Glass transition point (T g)]
DSC (示差走査熱量計) にて一定の昇温速度で昇温した際に測定される 、 ガラス転移領域における熱量変化ピークから得られたガラス転移点とした 。 初期温度は、 通常予期ガラス転移点より 30°C〜 50°C程度又はそれより 低い温度とし、 前記初期温度で一定時間保持した後、 昇温を開始した。 具体 的には、 以下の条件で測定した。 The glass transition point was obtained from the calorific value change peak in the glass transition region, which was measured when the temperature was raised at a constant heating rate with a DSC (differential scanning calorimeter). The initial temperature was usually about 30 ° C. to 50 ° C. or lower than the expected glass transition point, and the temperature was started after the initial temperature was maintained for a certain period of time. Specifically, the measurement was performed under the following conditions.
装置: 日立ハイテクサイエンス製 DSC 7020 Equipment: Hitachi High-Tech Science DSC 7020
初期温度: _ 90°C、 1 0分間保持 Initial temperature: _ 90 ° C, hold for 10 minutes
昇温速度: 1 〇°C/分 Rate of temperature rise: 10 ° C/min
終了温度: 30°C、 5分間保持 [0081] [粘度比重定数 (VGC) ] End temperature: 30 ° C, hold for 5 minutes [0081] [Viscosity Specific Gravity Constant (VGC)]
A S T M D 2 1 40— 08 Standard Practice for Ca leu lat i ng Car bo n-Type Composition of Insulating Oi Is of Petroleum Originの規定により 測定した。 A S T M D 2 1 40—08 Standard Practice for Cal Leu lat i ng Carbon-Type Composition of Insulating Oi Is of Petroleum Origin.
[0082] [%C A] [0082] [%C A]
A S T M D 2 1 40— 08 Standard Practice for Ca leu lat i ng Car bo n-Type Composition of Insulating Oi Is of Petroleum Originの規定により 測定した。 A S T M D 2 1 40—08 Standard Practice for Cal Leu lat Ing Carbon-Type Composition of Insulating Oi Is of Petroleum Origin.
[0083] [ベンゾ (a) ピレン及び特定芳香族化合物 (P A H s) の含有量] [0083] [Content of Benzo (a) Pyrene and Specific Aromatic Compound (P A H s)]
欧州規格 E N 1 6 1 43 : 20 1 3 Petroleum products - Determi nat i on of content of Benzo(a)pyrene (BaP) and selected po lycyc l i c aromat i c hydrocarbons (PAH) in extender oi ls - Procedure using double LC c le aning and GC/MS ana lysisの規定により測定した。 European Standard EN 1 6 1 43 :20 1 3 Petroleum products-Determi nat i on of content of Benzo (a) pyrene (BaP) and selected po lycyc lic aromat ic hydrocarbons (PAH) in extender oi ls-Procedure using double LC c The measurement was performed according to the rules of Leaning and GC/MS analysis.
P A H sとは以下を意味する。 P A H s means the following:
1 ) ベンゾ (a) ピレン (B a P) 1) Benzo (a) Pyrene (B a P)
2) ベンゾ (e) ピレン (B e P) 2) Benzo (e) Pyrene (B e P)
3) ベンゾ (a) アントラセン (B a A) 3) Benzo (a) Anthracene (B a A)
4) クリセン (C H R) 4) Chrysene (C H R)
5) ベンゾ (b) フルオランテン (B b F A) 5) Benzo (b) Fluoranthene (B b F A)
6) ベンゾ ( j) フルオランテン (B j F A) 6) Benzo (j) fluoranthene (B j F A)
7) ベンゾ (k) フルオランテン (B k F A) 7) Benzo (k) fluoranthene (B k F A)
8) ジベンゾ (a, h) アントラセン (D BA h A) 8) Dibenzo (a, h) anthracene (D BA h A)
[0084] 3. ゴム組成物の製造 [0084] 3. Production of rubber composition
<実施例 1 _ 2 〜 実施例 6 _ 2 > <Example 1_2 to Example 6_2>
ゴムポリマーと、 上記の実施例 1 - 1 〜 6 - 1で製造したプロセスオイル と、 その他の各配合剤 (シリカ、 シランカップリング剤、 老化防止剤、 加硫 助剤、 酸化亜鉛、 硫黄、 加硫促進剤) とを、 下記配合にて調製した後、 混練 りを行い、 未加硫のゴム組成物を得た後、 1 60 °Cにてプレス加硫成形した 〇 2020/175512 30 卩(:170? 2020 /007603 The rubber polymer, the process oil produced in the above Examples 1-1 to 6-1 and other compounding agents (silica, silane coupling agent, antioxidant, vulcanization aid, zinc oxide, sulfur, addition of (Vulcanization accelerator) was prepared in the following composition, and then kneaded to obtain an unvulcanized rubber composition, which was then press-vulcanized and molded at 160°C. 〇 2020/175 512 30 units (: 170? 2020 /007603
[0085] <比較例 1 _ 2 〜 比較例 4 - 2 > [0085] <Comparative Example 1 _ 2 ~ Comparative Example 4-2>
ゴムポリマーと、 上記の比較例 1 - 1〜 4 - 1で製造したプロセスオイル と、 その他の各配合剤 (同上) とを、 下記配合にて調製した後、 混練りを行 い、 未加硫のゴム組成物を得た後、 1 6 0 °〇にてプレス加硫成形した。 A rubber polymer, the process oil produced in Comparative Examples 1-1 to 4-1 above, and other compounding agents (same as above) were prepared in the following composition, and then kneaded to obtain an unvulcanized product. After obtaining the rubber composition (1), press vulcanization molding was performed at 160 ° .
[0086] タイヤ組成物の配合を下記表 1 に示す。 表中の II 「は、 ゴムポリマー 1 〇〇質量部に対する各種配合剤の質量部を表す。 [0086] The composition of the tire composition is shown in Table 1 below. "II" in the table represents parts by mass of various compounding agents based on 100 parts by mass of the rubber polymer.
[0087] [表 1 ] [0087] [Table 1]
Figure imgf000031_0003
Figure imgf000031_0003
[0088] ゴムポリマー
Figure imgf000031_0001
ランクセス製 31_4526
[0088] Rubber polymer
Figure imgf000031_0001
LANXESS 31_4526
シリカ : エボニック製 1]1_丁(^311_7000〇[¾ Silica: Evonik 1]1_Ding (^311_7000 〇 [¾
シランカップリング剤:エボニック製 _175 Silane coupling agent: Evonik _175
-老化防止剤: 大内新興化学工業製 ノクラック 6(: 加硫助剤: 日油製 ステアリン酸 -Anti-aging agent: Ouchi Shinko Chemical Industry Nocrac 6 (: Vulcanization aid: NOF stearic acid
酸化亜鉛: 東邦亜鉛製 酸化亜鉛 3号 Zinc Oxide: Toho Zinc's Zinc Oxide No. 3
プロセスオイル: 実施例および比較例で製造した各プロセスオイル 硫黄: 市販加硫用硫黄 Process oil: Each process oil produced in Examples and Comparative Examples Sulfur: Commercial sulfur for vulcanization
加硫促進剤八 : 大内新興化学工業製 ノクセラ
Figure imgf000031_0002
Vulcanization accelerator 8: Noxera manufactured by Ouchi Shinko Chemical Industry
Figure imgf000031_0002
大内新興化学工業製 ノクセラー Ouchi Shinko Chemical Industry Nox Cellar
[0089] ゴムの混練り方法:下記に示す二段練りとした。 [0089] Rubber kneading method: The following two-stage kneading was performed.
(-段目) 〇 2020/175512 卩(:170? 2020 /007603 (-Step) 〇 2020/175 512 卩 (: 170? 2020 /007603
試験機: 東洋精機製作所製ラボプラストミル 600 Testing machine: Labo Plastomill 600 manufactured by Toyo Seiki Seisakusho
試験機容積: 600〇〇 Testing machine volume: 600 〇 〇
充填率: 70%(質量比) Filling ratio: 70% (mass ratio)
回転数: 100「卩111 Number of revolutions: 100"
温度: 100°〇開始で上限 155°〇とした Temperature: 100° 〇 and the upper limit was 155° 〇
練り時間: 約 9分 Kneading time: About 9 minutes
に段目) (Step)
-試験機: 池田機械工業製電気加熱式高温口ール機 サイズ: 6 インチ ø 16インチ -Testing machine: Ikeda Machinery's electric heating type high temperature machine, size: 6 inch ø 16 inch
-回転数: 前口ール 25「卩111 -Number of revolutions: Front mouth 25 "Lord 111
-回転比: 前後比 1 : 1 . 22 -Rotation ratio: Front-to-back ratio 1:1 .22
温度: 23± 10°Temperature: 23 ± 10 °
[0090] 4 . ゴム組成物の物性測定 [0090] 4. Measurement of physical properties of rubber composition
上記実施例及び比較例のプレス加硫成形後のゴム練り片から、 8111111 ø X 10111111 の試験片を作製し、 前記試験片に対して、 下記項目の測定を行った。 Test pieces of 8111111 ø X 10111111 were prepared from the rubber kneaded pieces after press vulcanization molding of the above Examples and Comparative Examples, and the following items were measured on the test pieces.
[0091 ] [tan 5(0°〇] [0091] [tan 5 (0°○]
Figure imgf000032_0001
を用いて、 ねじりモードで、 周波数 10 、 測定温度範囲一 50°〇〜100°〇、 昇温速度 204、 動的ひずみ 0. 1 %で測定 を行った。 得られた温度可変 tan 5より、 0°〇の値を抜粋した。
Figure imgf000032_0001
Was used in the torsion mode at a frequency of 10, a measurement temperature range of 50° to 100°, a heating rate of 204, and a dynamic strain of 0.1%. From the obtained variable temperature tan 5, the value at 0 ° is extracted.
士3门 5(0°〇)は、 ウエッ トグリップ性能の指標であり、 この値が大きいほど ウエッ トグリップ性能に優れることを意味する。 A value of 3 (5 ° 0) is an index of wet grip performance, and the larger this value, the better the wet grip performance.
[0092] [士3门5(50°〇] [0092] [Person 3 5 (50°○]
Figure imgf000032_0002
を用いて、 ねじりモードで、 周波数 10 、 測定温度範囲一 50°〇〜100°〇、 昇温速度 204、 動的ひずみ 0. 1 %で測定 を行った。 得られた温度可変 tan 5より、 50°〇の値を抜粋した。
Figure imgf000032_0002
Was used in the torsion mode at a frequency of 10, a measurement temperature range of 50° to 100°, a heating rate of 204, and a dynamic strain of 0.1%. The value at 50 ° was extracted from the obtained temperature variable tan 5.
tan S(50°C)は、 転がり抵抗性能の指標であり、 この値が小さいほど転がり 抵抗性能に優れることを意味する。 Tan S (50 ° C) is an index of rolling resistance performance, and the smaller this value is, the better the rolling resistance performance is.
[0093] 5 . 結果 〇 2020/175512 32 卩(:170? 2020 /007603 [0093] 5. Result 〇 2020/175 512 32 units (: 170? 2020 /007603
上記の測定結果を以下に示す。 上記の実施例 1 _ 1及び実施例 1 _ 2は、 実施例 1 と略記する。 他の実施例及び比較例についても同様に略記する。 The above measurement results are shown below. The above Examples 1 — 1 and Examples 1 — 2 are abbreviated as Example 1. The same applies to other examples and comparative examples.
[0094] 各項目の測定結果を下記の表 2に示す。 tanS(0°C)及び tanS(50°C)の値は 、 実施例 6の実数値 (それぞれ 0.814、 0.118) を 1 とした相対値で表記した The measurement results of each item are shown in Table 2 below. The values of tanS (0 °C) and tanS (50 °C) are expressed as relative values with the real value of Example 6 (0.814 and 0.118, respectively) as 1.
[0095] [0095]
Figure imgf000034_0001
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0002
プロセスオイルの各項目 :下線は、 実施形態にて規定の範囲外であることを表す。 Each item of process oil: The underline indicates that it is outside the range specified in the embodiment.
6 0 [8] : 〇は、 含有量が 1 111未満 (1¾八01規則基準値内) であることを表す。 60 [8] : ◯ means that the content is less than 1111 (within the 1/81 01 regulation standard value).
卩八¾ 8物質合計: 〇は、 含有量が 10 111未満 (1^ (:11規則基準値内) であることを表す。 Total of eight substances: ◯ means that the content is less than 10 111 (1^ (: within the 11 standard values)).
31! 6(0°〇 : 下線は、数値が 1を下回る (ウェットグリ ップ性能に劣る) ものを意味する。 3 1! 6 (0° ◯: Underline means that the value is less than 1 (wet grip performance is inferior).
»諸 »諸 ^ 〔 1/雛酣 ^67 ^ 87.1498ロ〇〇0096— 61「〜+}};·1 \¥0 2020/175512 34 卩(:17 2020 /007603 »Miscellaneous» Miscellaneous ^ [ 1 room / Hina-so ^ 67 ^ 87. 1 498 ro 〇 0096 — 6 1 "~+}};· 1 \¥0 2020/175 512 34 卩 (: 17 2020 /007603
る飽和分の割合」 、 及び 「1~1 !_(3を用いて分画される 2環芳香族分の割合 」 の範囲を満たし、 前記プロセルオイルを配合して得られた実施例 1〜 6の ゴム組成物は、 ウエッ トグリップ性能及び転がり抵抗性能が両立されており 、 非常に優れていた。 Saturated ratio”, and “1 to 1!_(Ratio of two-ring aromatic fraction fractionated using 3)”, and the results obtained by blending the above-mentioned Procel oil The rubber composition of 6 had both wet grip performance and rolling resistance performance, and was extremely excellent.
特に、 「クレイゲル法による芳香族分の割合」 が実施形態に規定の範囲を 満たすプロセスオイルを配合して得られた実施例 1〜 3のゴム組成物は、 ウ エッ トグリップ性能及び転がり抵抗性能が、 良好な数値にて両立されている ことがわかる。 In particular, the rubber compositions of Examples 1 to 3 obtained by blending the process oils in which the “ratio of aromatics by the Clay gel method” satisfies the range specified in the embodiment have wet grip performance and rolling resistance performance. It can be seen that good values are compatible.
また、 実施例及び比較例のいずれのプロセスオイルも、 ベンゾ (3) ピレ ン及び特定芳香族化合物 ( 1~| 3) の含有量が、
Figure imgf000035_0001
規則を満たす ことが確認できた。
Moreover, the content of benzo (3) pyrene and the specific aromatic compound (1 to | 3 ) in each of the process oils of Examples and Comparative Examples is
Figure imgf000035_0001
It was confirmed that the rule was satisfied.
[0097] 以上、 各実施形態における各構成及びそれらの組み合わせ等は一例であり 、 本発明の趣旨を逸脱しない範囲で、 構成の付加、 省略、 置換、 およびその 他の変更が可能である。 また、 本発明は各実施形態によって限定されること はなく、 請求項 (クレーム) の範囲によってのみ限定される。 As described above, each configuration and the combination thereof in each embodiment are examples, and the configuration can be added, omitted, replaced, and other changes without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, but is limited only by the scope of the claims.
産業上の利用可能性 Industrial availability
[0098] 転がり抵抗性能及びウエッ トグリップ性能に優れたゴム組成物を製造可能
Figure imgf000035_0002
符号の説明
[0098] It is possible to manufacture a rubber composition having excellent rolling resistance performance and wet grip performance.
Figure imgf000035_0002
Explanation of symbols
[0099] 1 0 減圧蒸留装置 [0099] 10 Vacuum distillation apparatus
1 1 減圧蒸留留分 1 1 Vacuum distillation fraction
1 2 減圧蒸留残渣 1 2 Vacuum distillation residue
2 0 脱れき抽出装置 20 Debris extraction device
2 2 脱れき油 2 2 Deasphalted oil
3 0 溶剤抽出装置 30 solvent extractor
3 1 , 3 2 ラフイネート 3 1, 3 2 roughinate
3 3 , 3 4 エキストラクト 5512 35 卩(:170? 2020 /007603 3 3, 3 4 extract 5512 35 卩 (: 170? 2020 /007603
水素化精製装置Hydrorefining equipment
1 , 42 水素化精製油 1, 42 Hydrogenated refined oil
脱ろう装置 Dewaxing device
1 , 52 脱ろう油 1, 52 Dewaxed oil
石油系芳香族含有油 Oil containing petroleum-based aromatics

Claims

〇 2020/175512 36 卩(:170? 2020 /007603 請求の範囲 〇 2020/175 512 36 (: 170? 2020/007603 Claims
[請求項 1 ] クレイゲル法による飽和分の割合が、 4 0質量%以下であり、 [Claim 1] The proportion of the saturated component by the clay gel method is 40% by mass or less,
! ! !_(3を用いて分画される 2環芳香族分の割合が、 クレイゲル法 による芳香族分 1 〇〇質量%に対し、 1 〇質量%以上 3 0質量%以下 であり、 !! !_ (The proportion of the two-ring aromatics fractionated using 3 is 10% by mass or more and 30% by mass or less based on 100% by mass of the aromatic content by the Cragel method.
ベンゾ (8) ピレンの含有量が 1質量 111以下であり、 下記 1) 〜 8) の特定芳香族化合物の含有量の合計が 1 〇質量 以下である、 石油系芳香族含有油。 A petroleum-based aromatic-containing oil having a benzo(8)pyrene content of 1 mass 111 or less and a total content of the specific aromatic compounds of 1) to 8) below is 10 mass or less.
1) ベンゾ (3) ピレン 1) Benzo (3) Pyrene
2) ベンゾ (6) ピレン 2) Benzo (6) Pyrene
3) ベンゾ (3) アントラセン 3) Benzo (3) Anthracene
4) クリセン 4) Chrysene
5) ベンゾ (13) フルオランテン 5) Benzo (13) Fluoranthene
6) ベンゾ (」) フルオランテン 6) Benzo (") fluoranthene
7) ベンゾ (1<) フルオランテン 7) Benzo (1<) Fluoranthene
8) ジベンゾ (3 , 11) アントラセン。 8) Dibenzo (3, 11) Anthracene.
[請求項 2] 前記クレイゲル法による飽和分の割合が、 2 0質量%以上である、 請求項 1 に記載の石油系芳香族含有油。 [Claim 2] The petroleum-containing aromatic-containing oil according to claim 1, wherein a ratio of a saturated component by the clay gel method is 20% by mass or more.
[請求項 3] 前記 ! ! ? 1_(3を用いて分画される 2環芳香族分の割合が、 前記芳香 族分 1 0 0質量%に対し、 2 8質量%以下である、 請求項 1又は 2に 記載の石油系芳香族含有油。 [Claim 3] The proportion of the bicyclic aromatic fraction fractionated by using !!? 1_(3 is 28 mass% or less with respect to 100 mass% of the aromatic content. The petroleum-containing aromatic-containing oil according to 1 or 2.
[請求項 4] 前記クレイゲル法による飽和分の割合が、 3 5質量%以下である、 請求項 1〜 3のいずれか一項に記載の石油系芳香族含有油。 [Claim 4] The petroleum-containing aromatic-containing oil according to any one of claims 1 to 3, wherein a ratio of a saturated component by the clay gel method is 35% by mass or less.
[請求項 5] 前記 ! ! ? 1_(3を用いて分画される 2環芳香族分の割合が、 前記芳香 族分 1 0 0質量%に対し、 2 0質量%以上である、 請求項 1〜 4のい ずれか一項に記載の石油系芳香族含有油。 [Claim 5] The proportion of the two-ring aromatics fractionated by using !!? 1_(3 is 20% by mass or more based on 100% by mass of the aromatics. The petroleum-based aromatic-containing oil according to any one of 1 to 4.
[請求項 6] 前記クレイゲル法による飽和分の割合が、 3 0質量%以下である、 請求項 1〜 5のいずれか一項に記載の石油系芳香族含有油。 〇 2020/175512 37 卩(:170? 2020 /007603 6. The petroleum-containing aromatic-containing oil according to any one of claims 1 to 5, wherein a ratio of a saturated component by the clay gel method is 30% by mass or less. 〇 2020/175 512 37 卩(: 170? 2020/007603
[請求項 7] 前記 1~1 ? 1_ (3を用いて分画される 2環芳香族分の割合が、 前記芳香 族分 1 0 0質量%に対し、 2 5質量%以下である、 請求項 1〜 6のい ずれか一項に記載の石油系芳香族含有油。 [Claim 7] The proportion of the bicyclic aromatic fraction fractionated using 1 to 1 to 1_ ( 3 is 25 mass% or less with respect to 100 mass% of the aromatic content. Item 7. A petroleum-based aromatic-containing oil according to any one of items 1 to 6.
[請求項 8] 前記 ! ! ? !_ (3を用いて分画される 2環芳香族分の割合が、 前記芳香 族分 1 0 0質量%に対し、 2 4 . 5質量%以下である、 請求項 1〜 7 のいずれか一項に記載の石油系芳香族含有油。 [Claim 8] The proportion of the two-ring aromatics fractionated by using !!?!_ ( 3 is 24.5% by mass or less based on 100% by mass of the aromatics. The petroleum-containing aromatic-containing oil according to any one of claims 1 to 7.
[請求項 9] ゴムに混合されて用いられるエキステンダーオイル又はプロセスオ イルである、 請求項 1〜 8のいずれか一項に記載の石油系芳香族含有 油。 [Claim 9] The petroleum-based aromatic-containing oil according to any one of claims 1 to 8, which is an extender oil or a process oil used by being mixed with rubber.
[請求項 10] 請求項 1〜 9のいずれか一項に記載の石油系芳香族含有油と、 ゴム とを含有する、 ゴム組成物。 [Claim 10] A rubber composition containing the petroleum-based aromatic-containing oil according to any one of claims 1 to 9 and a rubber.
[請求項 1 1 ] 請求項 1〜 9のいずれか _項に記載の石油系芳香族含有油を含有す る、 タイヤ。 [Claim 11] A tire containing the petroleum-containing aromatic-containing oil according to any one of claims 1 to 9.
[請求項 12] ゴムと、 請求項 1〜 9のいずれか一項に記載の石油系芳香族含有油 と、 を配合して加硫することを含む、 請求項 1 1 に記載のタイヤの製 造方法。 [Claim 12] A method for producing the tire according to claim 11, which comprises compounding rubber and the petroleum-based aromatic-containing oil according to any one of claims 1 to 9 and vulcanizing the compound. Build method.
PCT/JP2020/007603 2019-02-28 2020-02-26 Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire WO2020175512A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217026701A KR20210119471A (en) 2019-02-28 2020-02-26 Petroleum aromatic oil, rubber composition, tire and manufacturing method of tire
SG11202109236SA SG11202109236SA (en) 2019-02-28 2020-02-26 Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire
CN202080016850.4A CN113474182B (en) 2019-02-28 2020-02-26 Oil containing petroleum aromatic, rubber composition, tire, and method for producing tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035836 2019-02-28
JP2019035836A JP7240202B2 (en) 2019-02-28 2019-02-28 PETROLEUM-BASED AROMATIC-CONTAINING OIL, RUBBER COMPOSITION, TIRE, AND METHOD FOR MAKING TIRE

Publications (1)

Publication Number Publication Date
WO2020175512A1 true WO2020175512A1 (en) 2020-09-03

Family

ID=72238569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007603 WO2020175512A1 (en) 2019-02-28 2020-02-26 Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire

Country Status (6)

Country Link
JP (1) JP7240202B2 (en)
KR (1) KR20210119471A (en)
CN (1) CN113474182B (en)
SG (1) SG11202109236SA (en)
TW (1) TWI748357B (en)
WO (1) WO2020175512A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230036667A (en) 2021-09-08 2023-03-15 에스엘 주식회사 Lamp for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110144A1 (en) * 2009-03-27 2010-09-30 新日本石油株式会社 Rubber compounding oil, aromatic compound-containing base oil, and methods for producing same
WO2010110093A1 (en) * 2009-03-27 2010-09-30 新日本石油株式会社 Rubber compounding oil and method for producing same
WO2014057641A1 (en) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 System lubrication oil composition for crosshead diesel engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA733320B (en) * 1972-06-08 1974-04-24 Firestone Tire & Rubber Co Pneumatic tire treads
JPH0489452A (en) * 1990-07-31 1992-03-23 Fujisawa Pharmaceut Co Ltd Cyclic compound
JP3558793B2 (en) * 1996-09-03 2004-08-25 株式会社クラレ Method for producing polyurethane
JP3744698B2 (en) * 1998-10-05 2006-02-15 新日本石油株式会社 Process for hydrogenating polycyclic aromatic hydrocarbons
DE10084951T1 (en) * 1999-08-31 2002-11-07 Nippon Steel Chemical Co Aromatic oligomer and its use
JP2009503167A (en) * 2005-07-29 2009-01-29 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ High performance tire, tread band and crosslinkable elastomer composition
JP2010180358A (en) * 2009-02-06 2010-08-19 Bridgestone Corp Rubber composition and pneumatic tire using the same
EP2597115B1 (en) * 2010-07-23 2016-07-06 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
CN102399582B (en) * 2010-09-09 2014-04-30 中国石油化工股份有限公司 Apparatus and method for preparing aromatic rubber oil
JP2012153787A (en) 2011-01-25 2012-08-16 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
US20140135437A1 (en) * 2012-11-15 2014-05-15 The Goodyear Tire & Rubber Company Tire with rubber tread containing combination of resin and vegetable oil, particularly soybean oil
US10435497B2 (en) * 2013-02-26 2019-10-08 Zeon Corporation Cyclopentene ring-opening copolymer, method for producing same, and rubber composition
FR3019548B1 (en) * 2014-04-03 2016-04-01 Michelin & Cie RUBBER COMPOSITION COMPRISING AN AROMATIC DICYCLOPENTADIENE RESIN
JP6532192B2 (en) * 2014-04-24 2019-06-19 住友ゴム工業株式会社 Rubber composition for tire, tire member, and pneumatic tire
JP6445915B2 (en) * 2015-04-01 2018-12-26 株式会社ブリヂストン tire
JP2019006880A (en) * 2017-06-22 2019-01-17 株式会社ブリヂストン Rubber composition and tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110144A1 (en) * 2009-03-27 2010-09-30 新日本石油株式会社 Rubber compounding oil, aromatic compound-containing base oil, and methods for producing same
WO2010110093A1 (en) * 2009-03-27 2010-09-30 新日本石油株式会社 Rubber compounding oil and method for producing same
WO2014057641A1 (en) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 System lubrication oil composition for crosshead diesel engine

Also Published As

Publication number Publication date
CN113474182A (en) 2021-10-01
SG11202109236SA (en) 2021-09-29
CN113474182B (en) 2023-07-18
TW202037581A (en) 2020-10-16
TWI748357B (en) 2021-12-01
JP7240202B2 (en) 2023-03-15
JP2020139064A (en) 2020-09-03
KR20210119471A (en) 2021-10-05

Similar Documents

Publication Publication Date Title
KR102160548B1 (en) Modified conjugated diene-based polymer, manufacturing method thereof, and modified conjugated diene-based polymer composition
JP4037515B2 (en) Process oil and method for producing the same
WO1997035462A2 (en) Improved high-aromatic oil, and rubber composition and oil extended synthetic rubber both prepared by using said high aromatic oil
JP7387247B2 (en) Modified conjugated diene polymer, modified conjugated diene polymer composition, and tire
EP1758956A1 (en) Process for the preparation of rubber extender oil compositions
KR102608532B1 (en) High-performance process oil based on distilled aromatic extracts
US11560521B2 (en) High performance process oil
JPWO2018147312A1 (en) Conjugated diene polymer, conjugated diene polymer composition, and tire
WO2018056025A1 (en) Modified conjugated diene polymer, modified conjugated diene polymer composition, tire, and method for producing modified conjugated diene polymer
JP4071718B2 (en) Rubber composition
WO2020175512A1 (en) Petroleum-based aromatics-containing oil, rubber composition, tire, and method for producing tire
US11884105B2 (en) Rubber composition for tire tread and manufacturing method thereof
JP7240203B2 (en) PETROLEUM-BASED AROMATIC-CONTAINING OIL, RUBBER COMPOSITION, TIRE, AND METHOD FOR MAKING TIRE
JP2020015881A (en) Modified conjugated diene polymer, method for producing the same, modified conjugated diene composition, and tire
JP2022083763A (en) Copolymer, copolymer composition, and rubber composition
WO2022091982A1 (en) Rubber composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026701

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762516

Country of ref document: EP

Kind code of ref document: A1