WO2020175455A1 - Method for manufacturing fluid handling device - Google Patents

Method for manufacturing fluid handling device Download PDF

Info

Publication number
WO2020175455A1
WO2020175455A1 PCT/JP2020/007398 JP2020007398W WO2020175455A1 WO 2020175455 A1 WO2020175455 A1 WO 2020175455A1 JP 2020007398 W JP2020007398 W JP 2020007398W WO 2020175455 A1 WO2020175455 A1 WO 2020175455A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
diaphragm
substrate
mold
fluid handling
Prior art date
Application number
PCT/JP2020/007398
Other languages
French (fr)
Japanese (ja)
Inventor
小野 航一
健 北本
伸也 砂永
拓史 山内
里実 薮内
祥太 ▲高▼松
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2020175455A1 publication Critical patent/WO2020175455A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a method for manufacturing a fluid handling device.
  • fluid handling devices have been used in order to analyze minute amounts of substances such as proteins and nucleic acids with high accuracy and high speed.
  • the fluid handling device has the advantage that it requires a small amount of reagents and samples for analysis, and is expected to be used in various applications such as clinical tests, food tests, and environmental tests.
  • a fluid handling device which has a plurality of flow paths and a plurality of microvalves and can sequentially feed different types of liquids by sequentially driving the microvalves (for example, patents Reference 1).
  • Patent Document 1 describes a fluid handling device having a substrate, a film, and a rotatable sliding member.
  • the substrate has a first flow path, a second flow path, and a partition wall disposed in _ end and one end of the second flow path of the first flow path.
  • the film has a diaphragm formed so as to project toward the opposite side of the base plate, and the diaphragm is arranged on the substrate so as to face the partition wall.
  • the sliding member is arranged with the back surface on which the convex portion is formed facing the film.
  • Patent Document 1 discloses a fluid handling device having not only a microvalve but also a micropump.
  • the micro-bomb is formed by arranging the diaphragm for the pump of the film on the plane of the substrate. Bumper for pump ⁇ 2020/175 455 2 ⁇ (:171? 2020 /007398
  • the ear diaphragm is formed so as to have a circular arc shape in a plan view and project toward the opposite side of the substrate.
  • the space between the substrate and the pump diaphragm is in a pressurized state or a negative pressure state.
  • the micropump moves the fluid in the flow path by utilizing this pressurized state or negative pressure state.
  • Patent Document 1 International Publication No. 2 0 1 8/0 3 0 2 5 3
  • An object of the present invention is a method for manufacturing a fluid handling device having a substrate and a film containing a diaphragm, which is bonded to one surface of the substrate, wherein the shape of the diaphragm can be easily corrected.
  • a method of manufacturing a fluid handling device that can be performed.
  • a method for manufacturing a fluid handling device is a method for manufacturing a fluid handling device having a substrate and a film including a diaphragm, the film being bonded to one surface of the substrate.
  • FIG. 1 Figs. 1 to 0 are views for explaining a method for manufacturing a fluid handling apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is another diagram for explaining the manufacturing method of the fluid handling apparatus according to Embodiment 1 of the present invention.
  • FIGs. 3 to 38 are diagrams showing the configuration of the fluid handling device.
  • FIG. 4 is a view showing a configuration of a fluid handling device of a modified example.
  • FIGS. 5 to 5 are views for explaining a method for manufacturing a fluid handling apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is another diagram for explaining the manufacturing method of the fluid handling apparatus according to Embodiment 2 of the present invention.
  • FIG. 18 is a plan view when the film 110 and the substrate 120 are sandwiched by the mold 10 and Fig. 1M is a cross-sectional view taken along line 8_8 shown in Fig. 18.
  • Figure 10 is shown in Figure 18 It is a cross-sectional view of the line.
  • Fig. 28 is a cross-sectional view of the line 0-10 shown in Fig. 18 in the first step, and
  • Fig. 2 is a cross-sectional view of the line 8-18 shown in Fig. 18 in the second step. ⁇ 2020/175 455 4 ⁇ (:171? 2020 /007398
  • the method for manufacturing a fluid handling device uses a mold 10 having a first mold 11 and a second mold 12. Therefore, after the mold 10 is described, the fluid handling devices 100, 200 and the manufacturing method of the fluid handling devices 100, 200 will be described.
  • the mold 10 has a first mold 11 and a second mold 12.
  • the film 1 1 0 is partially deformed with the film 1 1 0 and the substrate 1 2 0 placed between the first mold 1 1 and the second mold 1 2 and the diaphragm 1 1 Mold 1.
  • the first die 11 has a recess 13 for the diaphragm 1 11. 1st mold 1
  • the shape of 1 is not particularly limited as long as the film 110 and the substrate 120 can be sandwiched together with the second mold 12.
  • the shape of the first die 11 is a substantially rectangular parallelepiped shape.
  • the recess 13 is formed on the surface on which the film 110 is arranged.
  • the concave portion 13 has a shape complementary to the diaphragm 1 11 formed on the film 1 10.
  • the shape of the recess 13 is appropriately designed according to the shape of the diaphragm 1 11 to be molded.
  • the shape of the recess 13 in plan view may be a substantially arc shape or a circular shape.
  • the plan view shape of the concave portion 13 is a substantially arc shape.
  • the cross-sectional shape of the recess 13 in the width direction is a substantially arc shape.
  • One opening of the first air hole 14 may be formed on the inner surface of the recess 13.
  • the first air hole 14 is a region where the diaphragm 1 11 does not function as the diaphragm pump 1 3 3 (see Fig. 3) (the diaphragm 1 1 1 is the first flow passage groove 1 2 2 and the second flow passage groove 1 2 3 Is preferably formed in a region that does not function as a diaphragm valve 2 3 3 described later (a region in which the diaphragm 2 11 does not contact the partition 2 4 4).
  • the other opening of the first air hole 14 is formed on the side surface of the first mold 11 for example. There is. ⁇ 2020/175 455 5 ⁇ (:171? 2020 /007398
  • the first mold 11 may be configured to be able to heat the film 110 and the substrate 120.
  • the method for heating the film 110 and the substrate 120 is not particularly limited. As a method of heating the film 110 and the substrate 120, the first mold 11 may be heated directly to generate heat, or the first mold 11 may be heated by an external heating unit (not shown). You may heat indirectly by heating.
  • the second mold 12 is arranged so as to face the first mold 11.
  • the shape of the second mold 12 is not particularly limited as long as the film 110 and the substrate 120 can be sandwiched together with the first mold 11.
  • the shape of the second mold 12 is a substantially rectangular parallelepiped shape.
  • An opening of one of the second air holes 15 is formed on the surface of the second mold 12 facing the first mold 11.
  • the second air holes 15 may be opened at positions corresponding to the through holes formed in the substrate 120, for example, or may be opened at positions facing the flow channel.
  • the other opening of the second air hole 15 is formed, for example, on the side surface of the second mold 12.
  • a pump 16 for sending air to the second air hole 15 is connected to the other opening of the second air hole 15.
  • FIG. 38 to ⁇ are diagrams showing the configuration of the fluid handling apparatus 100.
  • FIG. 38 is a plan view of the fluid handling device 100
  • FIG. 3 is a sectional view taken along line 8188 shown in FIG. 38
  • FIG. 30 is shown in FIG.
  • FIG. 9 is a cross-sectional view of the Minami _Minami line.
  • the fluid handling device 100 is composed of a film 110 and a substrate 120, and the film 1 1 is provided on one surface of the substrate 120. ⁇ is joined. A region surrounded by the substrate 120 and the film serves as a flow path for flowing a fluid such as a reagent, a liquid sample, a gas, and a powder.
  • the fluid handling device 100 has an inlet port 1 31 1, a first flow passage 1 3 2, a diaphragm pump 1 3 3, a second flow passage 1 3 4 and a discharge port 1 3 5.
  • the substrate 120 is a transparent, substantially rectangular resin substrate.
  • the thickness of the substrate 120 is not particularly limited, but for example, Is.
  • the material of the substrate 120 is ⁇ 2020/175 455 6 ⁇ (: 171-1? 2020/007398
  • the material of the substrate 1 2 0, cycloolefin polymer, cycloolefin copolymer, polyethylene terephthalate, polycarbonate, polymethacrylic acid methylation, polyvinyl chloride, polypropylene, polyether _ ether, polyethylene, polystyrene, silicone resins and elastomers included.
  • the substrate 120 has a first through hole 1 21, a first flow path groove 1 22 and a second flow path groove.
  • the film 1 10 is bonded to the surface of the substrate 120 on which the first flow channel 1 22 2 and the second flow channel 1 23 are formed.
  • the first through hole 1 2 1 becomes the inlet port 1 3 1 by bonding the film 1 10 to the surface where the first flow channel 1 2 2 and the second flow channel 1 2 3 are formed.
  • 1st flow path groove 1 2 2 becomes 1st flow path 1 3
  • 2nd flow path groove 1 2 3 becomes 2nd flow path 1 3 4
  • 2nd through hole 1 2 4 is discharge port 1 3 5 .
  • the film 110 is a flexible, substantially rectangular resin film.
  • a diaphragm 1 11 is formed on the film 1 10.
  • the plan-view shape of the diaphragm 1 11 is not particularly limited. In the present embodiment, the plan-view shape of diaphragm 1 11 is substantially arcuate.
  • the thickness of the film 110 is not particularly limited as long as it can function as a diaphragm. For example, the film 110 has a thickness of 3001 or more and 3001 or less.
  • the material of the film 110 is not particularly limited. For example, the material of the film 110 can be appropriately selected from known resins.
  • Film 110 examples include cycloolefin polymers, cyclic olefin copolymers, polyethylene terephthalate, polycarbonates, polymethylmethacrylate, polyvinyl chloride, polypropylene, polyethers, polyethylene, polystyrene, silicone resins and elastomers. included.
  • the film 110 is bonded to the substrate 120 by, for example, thermocompression bonding, laser welding, or an adhesive.
  • the glass transition temperature of the film 110 is lower than the glass transition temperature of the substrate 120.
  • the glass transition temperature of the film 110 is preferably lower than the glass transition temperature of the substrate 120 by 3° or more, more preferably 7° or more. Phil ⁇ 2020/175 455 7 ⁇ (:171? 2020/007398
  • the glass transition temperature of the Rum 110 is lower than the glass transition temperature of the substrate 120 by 3 ° ⁇ or more, only the film 110 can be surely softened in the step of forming the diaphragm 1 11 described later. ..
  • the introduction port 1 3 1 is a bottomed recess that is connected to the upstream end of the first flow path 1 3 2 and is open to the outside.
  • the inlet port 1 3 1 is composed of a first through hole 1 2 1 formed in the substrate 1 20 and a film 1 1 0 that closes one opening of the first through hole 1 2 1. Has been done.
  • the shape and size of the inlet 1 3 1 are not particularly limited, and can be appropriately designed as needed.
  • the shape of the inlet 1 3 1 is, for example, a substantially columnar shape.
  • the width of the inlet 1 3 1 is, for example, 2 Is about
  • the first flow path 1 3 2 is a flow path connecting the inlet port 1 3 1 and the diaphragm pump 1 3 3.
  • the first flow path 1 3 2 is composed of a first flow path groove 1 2 2 formed in the substrate 1 20 and a film 1 1 0 closing the first flow path groove 1 2 2. It
  • the diaphragm pump 1 3 3 cooperates with a mouth tally member (not shown) to move the fluid from the inlet 1 3 1 to the outlet 1 3 5.
  • the diaphragm pump 1 3 3 has a pump channel 1 3 6 constituted by the diaphragm 1 1 1 and the plane of the substrate 1 2 0.
  • the diaphragm 1 11 is projected on the side opposite to the substrate 1 20 and has a substantially arcuate shape in plan view.
  • the pump channel 1 3 6 is a space formed between the diaphragm 1 1 1 and the substrate 1 20 and extending in a substantially arc shape.
  • the first channel 1 3 2 and the second channel 1 3 Give 4
  • the upstream end of the pump flow path 1 36 is connected to the downstream end of the first flow path 1 3 2.
  • the downstream end of the pump channel 1336 is connected to the upstream end of the second channel 1334.
  • the size of the pump channel 1 3 6 is not particularly limited. In the present embodiment, the width of the diaphragm 1 11 and the substrate 1 20 of the pump channel 1 3 6 is about several tens.
  • the diaphragm 1 11 1 moves on the diaphragm 1 11 1 while the pressing portion (for example, a convex portion) of the mouth tally member (not shown) presses a part of the diaphragm 1 11 against the substrate 1 20. It is arranged so that it can be done. ⁇ 0 2020/175 455 8 ⁇ (: 17 2020 /007398
  • the second flow path 1 3 4 is a flow path that connects the diaphragm pump 1 3 3 and the discharge port 1 3 5.
  • the second flow path 1 3 4 is composed of a second flow path groove 1 2 3 formed on the substrate 1 20 and a film 1 10 which closes the second flow path groove 1 2 3. It
  • the cross-sectional area and cross-sectional shape of the first flow channel 1 3 2 and the second flow channel 1 3 4 are not particularly limited.
  • the first flow path 1 3 2 and the second flow path 1 3 4 are flow paths in which fluid can move.
  • the cross-sectional shape of the first flow path 1 3 2 and the second flow path 1 3 4 is, for example, a substantially rectangular shape with the length (width and depth) of one side of several tens.
  • the discharge port 1 35 is a bottomed recess that is connected to the downstream end of the second flow path 1 3 4 and is open to the outside.
  • the discharge port 1 35 is a film that closes one opening of the second through hole 1 2 4 formed in the base plate 1 20 and the second through hole 1 2 4. It is composed of 1 1 and 0.
  • the shape and size of the outlet 1 3 5 are not particularly limited and may be appropriately designed as needed.
  • the shape of the outlet 1 3 5 is, for example, a substantially cylindrical shape.
  • the width of the outlet 1 3 5 is, for example, about 20!.
  • the fluid handling device 100 presses the upstream end of the diaphragm 1 11 1 with the pressing portion of the mouth tally member (not shown) when the inlet port 1 3 1 is filled with fluid. Then, when the mouth tally member is rotated to move the pressing portion from the upstream end of the diaphragm 1 1 1 toward the downstream end, the inside of the flow path becomes negative pressure upstream of the pressing portion, and the inlet 1 3 Fluid moves from 1 into the flow path. Next, the mouth rotary member is further rotated to move the pressing portion moved to the downstream end of the diaphragm 1 11 1 to the upstream end of the diaphragm 1 11 again.
  • a fluid handling apparatus 200 using a film 210 including a diaphragm 211 having a circular shape in plan view will be described.
  • the fluid handling device 200 of the modified example is different from the fluid handling device 100 in that it has a diaphragm valve 2 3 3 in place of the diaphragm pump 1 3 3. Therefore, the same components as those of the fluid handling apparatus 100 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 4 is a diagram showing the configuration of a fluid handling device 200 of a modified example.
  • FIG. 48 is a plan view of a modified fluid handling apparatus 200
  • FIG. 4A is a cross-sectional view taken along line 8--8 shown in FIG.
  • a modified fluid handling device 200 is a film
  • the other fluid handling device 200 has an inlet port 1 3 1, a first flow passage 1 3 2, a diaphragm valve 2 3 3, a second flow passage 1 3 4 and an exhaust outlet 1 3 5. ..
  • the diaphragm valve 2 3 3 is composed of a diaphragm 2 1 1, a downstream end portion of the first flow passage 1 3 2 and an upstream end portion of the second flow passage 1 3 4.
  • the diaphragm 2 11 has a circular shape in plan view.
  • the diaphragm 2 11 is located between the downstream end of the first flow path 1 3 2 and the upstream end of the second flow path 1 3 4 and between the first flow path 1 3 2 and the second flow path 1 3 4. It is arranged so as to cover the partition wall 2 44.
  • the diaphragm 2 11 When 1 is pressed, the diaphragm 2 11 is deformed toward the partition wall 2 4 4. When the diaphragm 2 11 and the partition 2 4 4 come into contact with each other, the flow path between the first flow path 1 3 2 and the second flow path 1 3 4 is closed to close the valve. On the other hand, when the pressing of the diaphragm 2 11 by a pressing portion (not shown) is released, the diaphragm 2 11 is deformed so as to return to its original shape. When the diaphragm 2 1 1 and the partition wall 2 4 4 separate, the first flow path 1 3 2 and the second flow path 1 3 4 communicate with each other to open the flow path and open the valve, and the first flow path 1 3 2 And the fluid passes through the second flow path 1 3 4. ⁇ 2020/175 455 10 boxes (: 171? 2020/007398
  • the manufacturing method of the fluid handling device 100 includes: a first mold 11 having a recess 13 for a diaphragm 1 11; a film 1 10; a substrate 1 20; The step of laminating the molds 1 and 2 in this order (first step), and introducing air into the space between the substrate 1 20 and the film 1 1 0, the inner surface of the recess 1 3 for the diaphragm 1 1 1 And a step of contacting a part of the film 1 10 to form the diaphragm 1 1 1 (second step).
  • the first die 11, the film 110, the substrate 120, and the second die 12 are Stack in this order.
  • a laminated body of the film 1 10 and the substrate 1 20 may be arranged between the first mold 1 1 and the second mold 1 2, or the film 1 10 on the first mold 1 1,
  • the substrate 120 and the second mold 12 may be arranged in order.
  • the recess 13 for the die diaphragm 1 11 of the first die 11 is formed in the laminated body of the first die 11, the film 110, the substrate 120, and the second die 12 the recess 13 for the die diaphragm 1 11 of the first die 11 is formed.
  • the film 110 is arranged so as to face the formed surface.
  • the substrate 1 20 is arranged so as to face the surface of the film 1 10 opposite to the surface on which the first die 11 is arranged.
  • the second mold 12 is arranged so as to face the surface of the substrate 120 opposite to the surface on which the film 110 is arranged.
  • the second mold 12 is arranged so that the second air holes 15 are located corresponding to the through holes of the substrate 120.
  • the first mold 11 and the film 110, the film 110 and the substrate 120, and the substrate and the second mold 12 are preferably arranged in close contact with each other.
  • An elastic member having elasticity may be arranged between the substrate 120 and the second mold 12. Examples of elastic members include silicone, polytetrafluoroethylene, phosphor bronze.
  • the recess 1 for the diaphragm 1 1 1 is formed.
  • a part of the film 1 1 0 is brought into contact with the inner surface of 3 to form the diaphragm 1 1 1.
  • the first die 11, the film 110, and the substrate 120 ⁇ 2020/175 455 1 1 ⁇ (:171? 2020/007398
  • the film 110 and the substrate 120 are heated in a state where the film and the second mold 12 are laminated.
  • the heating temperature is not particularly limited as long as the film 110 is softened.
  • the heating temperature is 1440 to 150 ° ⁇ , and when the material of film 110 is cyclic olefin copolymer, the heating temperature is It is between 100 and 110 degrees .
  • the film 110 is softened and the diaphragm 111 can be easily molded.
  • the air compressed by the pump 16 is sent to the space between the film 1 10 and the substrate 1 20 at a position facing the recess 13 with the film 1 10 interposed therebetween.
  • the pressure by the pump 16 is not particularly limited as long as the diaphragm 1 11 can be properly molded.
  • the pressure from the pump 16 is preferably about 20 to 40 ⁇ 1 ⁇ 3.
  • the compressed air sent by the pump 16 reaches the space between the film 1 10 and the substrate 1 20 through the second air hole 15 and the through hole of the substrate 1 20.
  • a gas is introduced between the film 110 and the substrate 120, and a part of the film 110 softened is deformed toward the inner surface of the recess 13 by the compressed air.
  • a part of the film 1 10 is brought into close contact with the inner surface of the recess 13 to form the diaphragm 1 11.
  • the heating of the film 110 and the pressurization by the pump 16 may be performed at the same time.
  • a part of the film 110 is partially removed from the concave part 1 3 for the diaphragm 1 11. It can be deformed toward the inner surface.
  • the film 1 10 having the diaphragm 1 11 formed is obtained by releasing.
  • the first mold 11 is heated to a temperature not lower than the glass transition temperature of the film 110 to form the diaphragm 111.
  • the film 110 and the substrate 120 may be thermocompression bonded.
  • the first mold 11 is heated to a temperature higher than the glass transition temperature of the film 110 and lower than the glass transition temperature of the substrate 120. Then, when forming the diaphragm 1 1 1 ⁇ 2020/175 455 12 boxes (: 171-1? 2020 /007398
  • the film 110 and the substrate 120 may be thermocompression bonded.
  • the heating temperature is 110 to 150°°.
  • the heating temperature is 110 to 170 ° .
  • a first portion having a concave portion 13 for the diaphragm 211 having a circular shape in plan view is provided.
  • the molds 10 has a diaphragm that is complementary to the shape of the diaphragms 1 1 1, 2 1 1. It is sufficient to form the concave portion 1 3 for 1 1 1.
  • the corresponding surface of the first mold 11 1 (the inner surface of the concave portion 13) can be modified, so that the diaphragms 1 1 1 and 2 1
  • the shape of 1 1 can be easily modified.
  • the first air holes 14 are not formed in the recesses 13 for the diaphragm 1 11 1, the diaphragm 1 11 1 can be appropriately molded even if the pressure is excessively applied.
  • FIG. 5 to ⁇ , FIG. 6, and FIG. 6 are views for explaining the method of manufacturing the fluid handling device according to the second embodiment of the present invention.
  • Fig. 58 is a plan view when the film 110 and the substrate 120 are sandwiched by the mold 10 and Fig. 5 is a sectional view taken along line 8_8 shown in Fig. 58.
  • Fig. 50 is a cross-sectional view of the _ _ line shown in Fig. 58.
  • Figure 68 is a cross-sectional view of the first step taken along line 0108 shown in Figure 58, and Figure 6 is a cross-sectional view of the second step taken along line 8188 shown in Figure 58. ⁇ 2020/175 455 13 ⁇ (:171? 2020 /007398
  • the mold 20 used is different from the mold 10 in the first embodiment. Therefore, the mold 20 used in the present embodiment will be described, and then the method for forming the diaphragm 1 11 according to the present embodiment will be described. In the following description of the mold 20, the parts different from the mold 10 of the first embodiment will be mainly described.
  • the mold 20 uses the first mold 21 and the second mold 22. With the base plate 120 and the film 110 placed between the first mold 21 and the second mold 22, a part of the film 110 is deformed and the diaphragm 111 is deformed. To mold.
  • the first mold 21 has a recess 13 for the diaphragm 1 11. Further, in the present embodiment, the shape of the first mold 21 is a substantially rectangular parallelepiped shape.
  • the recess 13 is formed on the surface on which the film 110 is arranged.
  • the concave portion 13 has a shape complementary to the diaphragm 1 11 formed on the film 1 10.
  • the shape of the recess 13 in plan view may be a substantially arc shape or a circular shape.
  • the cross-sectional shape of the recess 13 in the width direction is a substantially arc shape.
  • One opening of the first air hole 24 is formed on the inner surface of the recess 13.
  • the other opening of the first air hole 24 is formed on the side surface of the first mold 21.
  • a suction pump 26 for sucking air from the first air hole 24 is connected to the other opening of the first air hole 24.
  • the second die 22 is arranged so as to face the first die 21.
  • the second mold 22 has a substantially rectangular parallelepiped shape.
  • One opening of the second air hole 25 may be formed on the surface of the second mold 22 facing the first mold 21.
  • the second air holes 25 are opened at positions corresponding to, for example, the through holes formed in the substrate 120.
  • the other opening of the second air hole 25 is formed, for example, on the side surface of the second mold 22.
  • the second step is the manufacturing method of the fluid handling devices 100 and 200 according to the first embodiment. different. Therefore, in this embodiment, the second step will be mainly described.
  • the manufacturing method of the fluid handling apparatus 100, 200 according to the present embodiment is performed by the first mold.
  • the first mold 11 As shown in FIGS. 58 to ⁇ and FIG. 68, in the first step, the first mold 11, the film 110, the substrate 120, and the second mold 12 are connected. Stack in this order
  • a part of the film 1 10 is brought into contact with the inner surface of the recess 13 to form the diaphragm 1 1 1.
  • the film 110 and the substrate 120 are stacked.
  • the heating temperature is not particularly limited as long as the film 110 is softened.
  • the heating temperature is the same as in the first embodiment.
  • the suction pump 26 sucks the gas between the recess 13 and the film 110.
  • the pressure by the suction pump 26 is not particularly limited as long as the diaphragm 1 11 can be appropriately molded.
  • the pressure from the suction pump 26 is A degree is preferable.
  • the space between the film 1 10 and the substrate 1 20 is made negative pressure, and a part of the softened film 1 1 1 0 is a recess for the diaphragm 1 1 1.
  • the diaphragm 1 11 is formed by a part of the film 1 10 being in close contact with the inner surface of the recess 1 3 for the diaphragm 1 11.
  • the film 1 10 having the diaphragm 1 11 formed is obtained by releasing the mold. ⁇ 2020/175 455 15 ⁇ (:171? 2020 /007398
  • the diaphragm 211 having a circular shape in plan view can be molded.
  • the first die 11 is formed into a film.
  • the configuration of 0 is the same as that of the fluid handling devices 100 and 200 in the first embodiment, and therefore the description thereof will be omitted.
  • the manufacturing method of the fluid handling apparatus 100, 200 according to the second embodiment is such that it is sufficient to form a shape complementary to the shape of the diaphragms 11 1, 2 11 on only one side of the mold 20, and thus the diaphragm 1 1
  • the corresponding surface of the first mold 21 1 may be modified. Therefore, the shapes of the diaphragms 1 1 1 and 2 1 1 can be easily modified.
  • the fluid handling device manufactured by the present invention is useful in various applications such as clinical tests, food tests, and environmental tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reciprocating Pumps (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A fluid handling device according to the present invention comprises a base board, and a film including a diaphragm, joined to one surface of the base board. The method for manufacturing the fluid handling device includes: a step of stacking, in this order, a first die having a recessed portion for the diaphragm, the film, the base board, and a second die; and a step of forming the diaphragm by causing a portion of the film to come into contact with an inner surface of the recessed portion, either by introducing a gas into a space between the film and the base board in a position facing the recessed portion across the film, or by sucking gas from a space between the recessed portion and the film.

Description

\¥0 2020/175455 1 卩(:17 2020 /007398 明 細 書 \\0 2020/175 455 1 ((17 2020/007398 Clarification
発明の名称 : 流体取扱装置の製造方法 Title of Invention: Method for manufacturing fluid handling device
技術分野 Technical field
[0001 ] 本発明は、 流体取扱装置の製造方法に関する。 [0001] The present invention relates to a method for manufacturing a fluid handling device.
背景技術 Background technology
[0002] 近年、 タンパク質や核酸などの微量な物質の分析を高精度かつ高速に行う ために、 流体取扱装置が使用されている。 流体取扱装置は、 分析に必要な試 薬および試料の量が少なくてよいという利点を有しており、 臨床検査や食物 検査、 環境検査などの様々な用途での使用が期待されている。 流体取扱装置 としては、 複数の流路および複数のマイクロバルブを有しており、 マイクロ バルブを順次駆動させることで異なる種類の液体を順次送液できる流体取扱 装置が知られている (例えば、 特許文献 1参照) 。 [0002] In recent years, fluid handling devices have been used in order to analyze minute amounts of substances such as proteins and nucleic acids with high accuracy and high speed. The fluid handling device has the advantage that it requires a small amount of reagents and samples for analysis, and is expected to be used in various applications such as clinical tests, food tests, and environmental tests. As a fluid handling device, there is known a fluid handling device which has a plurality of flow paths and a plurality of microvalves and can sequentially feed different types of liquids by sequentially driving the microvalves (for example, patents Reference 1).
[0003] 特許文献 1 には、 基板と、 フィルムと、 回転可能な摺動部材とを有する流 体取扱装置が記載されている。 基板は、 第 1流路と、 第 2流路と、 第 1流路 の _端および第 2流路の一端に配置された隔壁とを有する。 フィルムは、 基 板の反対側に向かって突出するように成形されたダイヤフラムを有しており 、 ダイヤフラムは、 隔壁と対向するように基板上に配置されている。 摺動部 材は、 凸部が形成された裏面をフィルムに向けて配置されている。 [0003]Patent Document 1 describes a fluid handling device having a substrate, a film, and a rotatable sliding member. The substrate has a first flow path, a second flow path, and a partition wall disposed in _ end and one end of the second flow path of the first flow path. The film has a diaphragm formed so as to project toward the opposite side of the base plate, and the diaphragm is arranged on the substrate so as to face the partition wall. The sliding member is arranged with the back surface on which the convex portion is formed facing the film.
[0004] 特許文献 1 に記載の流体取扱装置では、 摺動部材を回転させて凸部によっ てダイヤフラムを押すことで、 ダイヤフラムを隔壁に接触させて、 第 1流路 と第 2流路とを遮断することができる (マイクロバルブ閉) 。 一方、 摺動部 材をさらに回転させてダイヤフラムから凸部を離間させることで、 ダイヤフ ラムと隔壁とを離間させて、 第 1流路と第 2流路とを連通させることもでき る (マイクロバルブ開) 。 [0004] In the fluid handling device described in Patent Document 1, by rotating the sliding member and pushing the diaphragm by the convex portion, the diaphragm is brought into contact with the partition wall, and the first flow passage and the second flow passage are formed. Can be shut off (microvalve closed). On the other hand, by further rotating the sliding member to separate the convex portion from the diaphragm, the diaphragm and the partition wall can be separated from each other, and the first flow path and the second flow path can be communicated with each other (micro Valve open).
[0005] また、 特許文献 1 には、 マイクロバルブだけでなくマイクロポンプも有す る流体取扱装置も開示されている。 マイクロボンプは、 基板の平面上にフィ ルムのポンプ用ダイヤフラムを配置することで形成されている。 ボンプ用ダ 〇 2020/175455 2 卩(:171? 2020 /007398 [0005]Further, Patent Document 1 discloses a fluid handling device having not only a microvalve but also a micropump. The micro-bomb is formed by arranging the diaphragm for the pump of the film on the plane of the substrate. Bumper for pump 〇 2020/175 455 2 卩 (:171? 2020 /007398
イヤフラムは、 平面視形状が円弧状となるように、 かつ基板の反対側に向か って突出するように成形されている。 The ear diaphragm is formed so as to have a circular arc shape in a plan view and project toward the opposite side of the substrate.
[0006] 摺動部材を回転させて凸部によってボンプ用ダイヤフラムを押すことで、 基板とポンプ用ダイヤフラムとの間の空間は、 加圧状態または負圧状態とな る。 マイクロポンプは、 この加圧状態または負圧状態を利用して流路内の流 体を移動させる。 [0006]By rotating the sliding member and pushing the bump diaphragm by the convex portion, the space between the substrate and the pump diaphragm is in a pressurized state or a negative pressure state. The micropump moves the fluid in the flow path by utilizing this pressurized state or negative pressure state.
先行技術文献 Prior art documents
特許文献 Patent literature
[0007] 特許文献 1 :国際公開第 2 0 1 8 / 0 3 0 2 5 3号 発明の概要 [0007] Patent Document 1: International Publication No. 2 0 1 8/0 3 0 2 5 3
発明が解決しようとする課題 Problems to be Solved by the Invention
[0008] 特許文献 1 に記載の流体取扱装置は、 流路などが形成された基板と、 ダイ ヤフラムなどを形成されたフィルムとを接合することで製造することが考え られる。 この場合、 フィルムのダイヤフラムは、 ダイヤフラムの形状と相補 的な形状を有する一対の金型でフィルムを挟み込むことで成形することが考 えられる。 しかしながら、 このようなダイヤフラムの成形方法では、 ダイヤ フラムの形状を修正したい場合に、 両方の金型の対応面をそれぞれ修正しな ければならなかった。 [0008] It is possible to manufacture the fluid handling device described in Patent Document 1 by joining a substrate in which a flow path and the like are formed and a film in which a diaphragm and the like are formed. In this case, it can be considered that the diaphragm of the film is formed by sandwiching the film with a pair of molds having a shape complementary to the shape of the diaphragm. However, in such a diaphragm molding method, when it is desired to modify the shape of the diaphragm, the corresponding surfaces of both molds must be modified respectively.
[0009] 本発明の目的は、 基板と、 前記基板の一方の面に接合された、 ダイヤフラ ムを含むフィルムとを有する流体取扱装置の製造方法であって、 ダイヤフラ ムの形状の修正を容易に行うことができる流体取扱装置の製造方法を提供す ることである。 [0009] An object of the present invention is a method for manufacturing a fluid handling device having a substrate and a film containing a diaphragm, which is bonded to one surface of the substrate, wherein the shape of the diaphragm can be easily corrected. A method of manufacturing a fluid handling device that can be performed.
課題を解決するための手段 Means for solving the problem
[0010] 本発明に係る流体取扱装置の製造方法は、 基板と、 前記基板の一方の面に 接合された、 ダイヤフラムを含むフィルムとを有する流体取扱装置の製造方 法であって、 前記ダイヤフラム用の凹部を有する第 1金型と、 前記フィルム と、 前記基板と、 第 2金型とをこの順番で積層する工程と、 前記フィルムを 〇 2020/175455 3 卩(:171? 2020 /007398 A method for manufacturing a fluid handling device according to the present invention is a method for manufacturing a fluid handling device having a substrate and a film including a diaphragm, the film being bonded to one surface of the substrate. A step of laminating a first mold having a concave part, the film, the substrate, and a second mold in this order; 〇 2020/175 455 3 boxes (:171? 2020 /007398
挟んで前記凹部と対向する位置における前記フィルムと前記基板との間の空 間に気体を導入するか、 または前記凹部と前記フィルムとの間の空間から気 体を吸引することで、 前記凹部の内面に前記フィルムの一部を接触させて前 記ダイヤフラムを成形する工程とを含む。 By introducing a gas into the space between the film and the substrate at a position facing the recess with the sandwich, or by sucking a gas from the space between the recess and the film, Forming a diaphragm by bringing a part of the film into contact with the inner surface.
発明の効果 Effect of the invention
[001 1] 本発明によれば、 ダイヤフラムの形状を容易に修正できる流体取扱装置の 製造方法を提供することができる。 [001 1] According to the present invention, it is possible to provide a method for manufacturing a fluid handling device capable of easily correcting the shape of the diaphragm.
図面の簡単な説明 Brief description of the drawings
[0012] [図 1]図 1 〜〇は、 本発明の実施の形態 1 に係る流体取扱装置の製造方法を 説明するための図である。 [0012] [Fig. 1] Figs. 1 to 0 are views for explaining a method for manufacturing a fluid handling apparatus according to Embodiment 1 of the present invention.
[図 2]図 2 、 巳は、 本発明の実施の形態 1 に係る流体取扱装置の製造方法を 説明するための他の図である。 [FIG. 2] FIG. 2 is another diagram for explaining the manufacturing method of the fluid handling apparatus according to Embodiment 1 of the present invention.
[図 3]図 3八〜〇は、 流体取扱装置の構成を示す図である。 [Fig. 3] Figs. 3 to 38 are diagrams showing the configuration of the fluid handling device.
[図 4]図 4 、 巳は、 変形例の流体取扱装置の構成を示す図である。 [FIG. 4] FIG. 4 is a view showing a configuration of a fluid handling device of a modified example.
[図 5]図 5 〜〇は、 本発明の実施の形態 2に係る流体取扱装置の製造方法を 説明するための図である。 [FIG. 5] FIGS. 5 to 5 are views for explaining a method for manufacturing a fluid handling apparatus according to Embodiment 2 of the present invention.
[図 6]図 6 、 巳は、 本発明の実施の形態 2に係る流体取扱装置の製造方法を 説明するための他の図である。 [FIG. 6] FIG. 6 is another diagram for explaining the manufacturing method of the fluid handling apparatus according to Embodiment 2 of the present invention.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、 本発明の実施の形態に係る流体取扱装置の製造方法について、 図面 を参照して詳細に説明する。 [0013] Hereinafter, a method of manufacturing a fluid handling device according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0014] [実施の形態 1] [0014] [Embodiment 1]
図 1 〜〇、 図 2 、 巳は、 本発明の実施の形態 1 に係る流体取扱装置の 製造方法を説明するための図である。 図 1 八は、 フィルム 1 1 0と基板 1 2 0とを金型 1 0で挟み込んだときの平面図であり、 図 1 巳は、 図 1 八に示さ れる八_八線の断面図であり、 図 1 〇は、 図 1 八に示される
Figure imgf000005_0001
巳線の断面 図である。 図 2八は、 図 1 八に示される〇一〇線の第 1工程における断面図 であり、 図 2巳は、 図 1 八に示される八一八線の第 2工程における断面図で 〇 2020/175455 4 卩(:171? 2020 /007398
1 to ◯, FIG. 2, and FIG. 2 are views for explaining a method for manufacturing the fluid handling device according to the first embodiment of the present invention. Fig. 18 is a plan view when the film 110 and the substrate 120 are sandwiched by the mold 10 and Fig. 1M is a cross-sectional view taken along line 8_8 shown in Fig. 18. , Figure 10 is shown in Figure 18
Figure imgf000005_0001
It is a cross-sectional view of the line. Fig. 28 is a cross-sectional view of the line 0-10 shown in Fig. 18 in the first step, and Fig. 2 is a cross-sectional view of the line 8-18 shown in Fig. 18 in the second step. 〇 2020/175 455 4 卩 (:171? 2020 /007398
ある。 is there.
[0015] 本実施の形態に係る流体取扱装置の製造方法は、 第 1金型 1 1および第 2 金型 1 2を有する金型 1 0を使用する。 そこで、 金型 1 0を説明した後に、 流体取扱装置 1 〇〇、 2 0 0および流体取扱装置 1 0 0、 2 0 0の製造方法 について説明する。 The method for manufacturing a fluid handling device according to the present embodiment uses a mold 10 having a first mold 11 and a second mold 12. Therefore, after the mold 10 is described, the fluid handling devices 100, 200 and the manufacturing method of the fluid handling devices 100, 200 will be described.
[0016] (金型の構成) [0016] (Mold configuration)
図 1 八〜〇、 図 2八、 巳に示されるように、 金型 1 0は、 第 1金型 1 1 と 、 第 2金型 1 2とを有する。 第 1金型 1 1 と、 第 2金型 1 2との間に、 フィ ルム 1 1 0および基板 1 2 0が配置された状態でフィルム 1 1 0の一部を変 形させてダイヤフラム 1 1 1 を成形する。 As shown in FIGS. 18 to 〇, FIG. 28, and Mitsumi, the mold 10 has a first mold 11 and a second mold 12. The film 1 1 0 is partially deformed with the film 1 1 0 and the substrate 1 2 0 placed between the first mold 1 1 and the second mold 1 2 and the diaphragm 1 1 Mold 1.
[0017] 第 1金型 1 1は、 ダイヤフラム 1 1 1用の凹部 1 3を有する。 第 1金型 1 [0017] The first die 11 has a recess 13 for the diaphragm 1 11. 1st mold 1
1の形状は、 第 2金型 1 2とともに、 フィルム 1 1 0および基板 1 2 0を挟 み込むことができれば特に限定されない。 本実施の形態では、 第 1金型 1 1 の形状は、 略直方体形状である。 The shape of 1 is not particularly limited as long as the film 110 and the substrate 120 can be sandwiched together with the second mold 12. In the present embodiment, the shape of the first die 11 is a substantially rectangular parallelepiped shape.
[0018] 凹部 1 3は、 フィルム 1 1 0が配置される面に形成されている。 凹部 1 3 は、 フィルム 1 1 0に成形されるダイヤフラム 1 1 1 と相補的な形状である 。 凹部 1 3の形状は、 成形するダイヤフラム 1 1 1の形状に応じて適宜設計 される。 凹部 1 3の平面視形状は、 略円弧形状でもよいし、 円形状でもよい 。 本実施の形態では、 凹部 1 3の平面視形状は、 略円弧形状である。 また、 凹部 1 3の幅方向の断面形状は、 略円弧形状である。 凹部 1 3の内面には、 第 1空気孔 1 4の一方の開口部が形成されていてもよい。 第 1空気孔 1 4は 、 ダイヤフラム 1 1 1がダイヤフラムポンプ 1 3 3 (図 3参照) として機能 しない領域 (ダイヤフラム 1 1 1が第 1流路溝 1 2 2および第 2流路溝 1 2 3と対向した領域) 、 または後述のダイヤフラムバルブ 2 3 3として機能し ない領域 (ダイヤフラム 2 1 1が隔壁 2 4 4に接触しない領域) に形成され ていることが好ましい。 凹部 1 3の内面に第 1空気孔 1 4の一方の開口部が 形成されている場合、 第 1空気孔 1 4の他方の開口部は、 例えば第 1金型 1 1の側面に形成されている。 〇 2020/175455 5 卩(:171? 2020 /007398 The recess 13 is formed on the surface on which the film 110 is arranged. The concave portion 13 has a shape complementary to the diaphragm 1 11 formed on the film 1 10. The shape of the recess 13 is appropriately designed according to the shape of the diaphragm 1 11 to be molded. The shape of the recess 13 in plan view may be a substantially arc shape or a circular shape. In the present embodiment, the plan view shape of the concave portion 13 is a substantially arc shape. The cross-sectional shape of the recess 13 in the width direction is a substantially arc shape. One opening of the first air hole 14 may be formed on the inner surface of the recess 13. The first air hole 14 is a region where the diaphragm 1 11 does not function as the diaphragm pump 1 3 3 (see Fig. 3) (the diaphragm 1 1 1 is the first flow passage groove 1 2 2 and the second flow passage groove 1 2 3 Is preferably formed in a region that does not function as a diaphragm valve 2 3 3 described later (a region in which the diaphragm 2 11 does not contact the partition 2 4 4). When one opening of the first air hole 14 is formed on the inner surface of the concave portion 13, the other opening of the first air hole 14 is formed on the side surface of the first mold 11 for example. There is. 〇 2020/175 455 5 卩 (:171? 2020 /007398
[0019] 第 1金型 1 1は、 フィルム 1 1 0および基板 1 2 0を加熱可能に構成され ていてもよい。 フィルム 1 1 0および基板 1 2 0を加熱する方法は、 特に限 定されない。 フィルム 1 1 0および基板 1 2 0を加熱する方法は、 第 1金型 1 1が発熱することで直接的に加熱してもよいし、 図示しない外部の加熱部 により第 1金型 1 1 を加熱することにより間接的に加熱してもよい。 The first mold 11 may be configured to be able to heat the film 110 and the substrate 120. The method for heating the film 110 and the substrate 120 is not particularly limited. As a method of heating the film 110 and the substrate 120, the first mold 11 may be heated directly to generate heat, or the first mold 11 may be heated by an external heating unit (not shown). You may heat indirectly by heating.
[0020] 第 2金型 1 2は、 第 1金型 1 1 と対向して配置される。 第 2金型 1 2の形 状は、 第 1金型 1 1 とともに、 フィルム 1 1 0および基板 1 2 0を挟み込む ことができれば、 特に限定されない。 本実施の形態では、 第 2金型 1 2の形 状は、 略直方体形状である。 第 2金型 1 2の第 1金型 1 1 と対向する面には 、 第 2空気孔 1 5の一方の開口部が形成されている。 第 2空気孔 1 5は、 例 えば基板 1 2 0に形成された貫通孔に対応する位置に開口してもよいし、 流 路溝に対向する位置に開口してもよい。 第 2空気孔 1 5の他方の開口部は、 例えば第 2金型 1 2の側面に形成されている。 第 2空気孔 1 5の他方の開口 部には、 第 2空気孔 1 5に空気を送るためのポンプ 1 6が接続されている。 The second mold 12 is arranged so as to face the first mold 11. The shape of the second mold 12 is not particularly limited as long as the film 110 and the substrate 120 can be sandwiched together with the first mold 11. In the present embodiment, the shape of the second mold 12 is a substantially rectangular parallelepiped shape. An opening of one of the second air holes 15 is formed on the surface of the second mold 12 facing the first mold 11. The second air holes 15 may be opened at positions corresponding to the through holes formed in the substrate 120, for example, or may be opened at positions facing the flow channel. The other opening of the second air hole 15 is formed, for example, on the side surface of the second mold 12. A pump 16 for sending air to the second air hole 15 is connected to the other opening of the second air hole 15.
[0021 ] (流体取扱装置の構成) [0021] (Configuration of fluid handling device)
次に、 ダイヤフラム 1 1 1 を含むフィルム 1 1 0を使用した流体取扱装置 1 0 0について説明する。 Next, a fluid handling device 100 that uses the film 1 10 including the diaphragm 1 11 will be described.
[0022] 図 3八~〇は、 流体取扱装置 1 0 0の構成を示す図である。 図 3八は、 流 体取扱装置 1 〇〇の平面図であり、 図 3巳は、 図 3八に示される八一八線の 断面図であり、 図 3〇は、 図 3八に示される巳 _巳線の断面図である。 [0022] Figs. 38 to 〇 are diagrams showing the configuration of the fluid handling apparatus 100. FIG. 38 is a plan view of the fluid handling device 100, FIG. 3 is a sectional view taken along line 8188 shown in FIG. 38, and FIG. 30 is shown in FIG. FIG. 9 is a cross-sectional view of the Minami _Minami line.
[0023] 図 3八〜〇に示されるように、 流体取扱装置 1 0 0は、 フィルム 1 1 0お よび基板 1 2 0から構成されており、 基板 1 2 0の一方の面にフィルム 1 1 〇が接合されている。 基板 1 2 0およびフィルムで囲まれた領域は、 試薬や 液体試料、 気体、 紛体などの流体を流すための流路となる。 流体取扱装置 1 〇〇は、 導入口 1 3 1 と、 第 1流路 1 3 2と、 ダイヤフラムポンプ 1 3 3と 、 第 2流路 1 3 4と、 排出口 1 3 5とを有する。 [0023] As shown in Figs. 38 to 〇, the fluid handling device 100 is composed of a film 110 and a substrate 120, and the film 1 1 is provided on one surface of the substrate 120. ◯ is joined. A region surrounded by the substrate 120 and the film serves as a flow path for flowing a fluid such as a reagent, a liquid sample, a gas, and a powder. The fluid handling device 100 has an inlet port 1 31 1, a first flow passage 1 3 2, a diaphragm pump 1 3 3, a second flow passage 1 3 4 and a discharge port 1 3 5.
[0024] 基板 1 2 0は、 透明な略矩形の樹脂基板である。 基板 1 2 0の厚さは、 特 に限定されないが、 例えば
Figure imgf000007_0001
である。 基板 1 2 0の材料は、 〇 2020/175455 6 卩(:171? 2020 /007398
The substrate 120 is a transparent, substantially rectangular resin substrate. The thickness of the substrate 120 is not particularly limited, but for example,
Figure imgf000007_0001
Is. The material of the substrate 120 is 〇 2020/175 455 6 卩(: 171-1? 2020/007398
特に限定されず、 公知の樹脂およびガラスから適宜選択されうる。 基板 1 2 0の材料の例には、 シクロオレフィンポリマー、 環状オレフィンコポリマー 、 ポリエチレンテレフタレート、 ポリカーボネート、 ポリメタクリル酸メチ ル、 ポリ塩化ビニル、 ポリプロピレン、 ポリエ _テル、 ポリエチレン、 ポリ スチレン、 シリコーン樹脂およびエラストマーが含まれる。 It is not particularly limited, and can be appropriately selected from known resins and glass. Examples of the material of the substrate 1 2 0, cycloolefin polymer, cycloolefin copolymer, polyethylene terephthalate, polycarbonate, polymethacrylic acid methylation, polyvinyl chloride, polypropylene, polyether _ ether, polyethylene, polystyrene, silicone resins and elastomers included.
[0025] 基板 1 2 0には、 第 1貫通孔 1 2 1 と、 第 1流路溝 1 2 2と、 第 2流路溝 [0025] The substrate 120 has a first through hole 1 21, a first flow path groove 1 22 and a second flow path groove.
1 2 3と、 第 2貫通孔 1 2 4とが形成されている。 基板 1 2 0の第 1流路溝 1 2 2および第 2流路溝 1 2 3が形成された面には、 フィルム 1 1 0が接合 されている。 第 1流路溝 1 2 2および第 2流路溝 1 2 3が形成された面にフ ィルム 1 1 0が接合されることにより、 第 1貫通孔 1 2 1は導入口 1 3 1 と なり、 第 1流路溝 1 2 2は第 1流路 1 3 2となり、 第 2流路溝 1 2 3は第 2 流路 1 3 4となり、 第 2貫通孔 1 2 4は排出口 1 3 5となる。 1 2 3 and a second through hole 1 2 4 are formed. The film 1 10 is bonded to the surface of the substrate 120 on which the first flow channel 1 22 2 and the second flow channel 1 23 are formed. The first through hole 1 2 1 becomes the inlet port 1 3 1 by bonding the film 1 10 to the surface where the first flow channel 1 2 2 and the second flow channel 1 2 3 are formed. , 1st flow path groove 1 2 2 becomes 1st flow path 1 3 2, 2nd flow path groove 1 2 3 becomes 2nd flow path 1 3 4, and 2nd through hole 1 2 4 is discharge port 1 3 5 Becomes
[0026] フィルム 1 1 0は、 可撓性を有する透明な略矩形の樹脂製のフィルムであ る。 フィルム 1 1 0には、 ダイヤフラム 1 1 1が形成されている。 ダイヤフ ラム 1 1 1の平面視形状は、 特に限定されない。 本実施の形態では、 ダイヤ フラム 1 1 1の平面視形状は、 略円弧状である。 フィルム 1 1 0の厚みは、 ダイヤフラムとして機能できれば特に限定されない。 例えば、 フィルム 1 1 0の厚みは、 3 0 01以上 3 0 0 01以下である。 また、 フィルム 1 1 0の 材料も、 特に限定されない。 例えば、 フィルム 1 1 0の材料は、 公知の樹脂 から適宜選択されうる。 フィルム 1 1 0の材料の例には、 シクロオレフィン ポリマー、 環状オレフィンコポリマー、 ポリエチレンテレフタレート、 ポリ 力ーボネート、 ポリメタクリル酸メチル、 ポリ塩化ビニル、 ポリプロピレン 、 ポリエーテル、 ポリエチレン、 ポリスチレン、 シリコーン樹脂およびエラ ストマーが含まれる。 フィルム 1 1 0は、 例えば熱圧着やレーザ溶着、 接着 剤などにより基板 1 2 0に接合される。 [0026] The film 110 is a flexible, substantially rectangular resin film. A diaphragm 1 11 is formed on the film 1 10. The plan-view shape of the diaphragm 1 11 is not particularly limited. In the present embodiment, the plan-view shape of diaphragm 1 11 is substantially arcuate. The thickness of the film 110 is not particularly limited as long as it can function as a diaphragm. For example, the film 110 has a thickness of 3001 or more and 3001 or less. Moreover, the material of the film 110 is not particularly limited. For example, the material of the film 110 can be appropriately selected from known resins. Examples of materials for Film 110 include cycloolefin polymers, cyclic olefin copolymers, polyethylene terephthalate, polycarbonates, polymethylmethacrylate, polyvinyl chloride, polypropylene, polyethers, polyethylene, polystyrene, silicone resins and elastomers. included. The film 110 is bonded to the substrate 120 by, for example, thermocompression bonding, laser welding, or an adhesive.
[0027] フィルム 1 1 0のガラス転移温度は、 基板 1 2 0のガラス転移温度未満で ある。 フィルム 1 1 0のガラス転移温度は、 基板 1 2 0のガラス転移温度よ りも 3 °〇以上低いことが好ましく、 7 °〇以上低いことがより好ましい。 フィ 〇 2020/175455 7 卩(:171? 2020 /007398 The glass transition temperature of the film 110 is lower than the glass transition temperature of the substrate 120. The glass transition temperature of the film 110 is preferably lower than the glass transition temperature of the substrate 120 by 3° or more, more preferably 7° or more. Phil 〇 2020/175 455 7 卩(:171? 2020/007398
ルム 1 1 0のガラス転移温度が基板 1 2 0のガラス転移温度よりも 3 °〇以上 低いことにより、 後述のダイヤフラム 1 1 1 を成形する工程において、 フィ ルム 1 1 0のみを確実に軟化できる。 Since the glass transition temperature of the Rum 110 is lower than the glass transition temperature of the substrate 120 by 3 ° 〇 or more, only the film 110 can be surely softened in the step of forming the diaphragm 1 11 described later. ..
[0028] 導入口 1 3 1は、 第 1流路 1 3 2の上流端に接続されており、 かつ外部に 開放された有底の凹部である。 導入口 1 3 1は、 基板 1 2 0に形成されてい る第 1貫通孔 1 2 1 と、 第 1貫通孔 1 2 1 の一方の開口部を閉塞しているフ ィルム 1 1 0とから構成されている。 導入口 1 3 1の形状および大きさは、 特に限定されず、 必要に応じて適宜設計されうる。 導入口 1 3 1の形状は、 例えば、 略円柱形状である。 導入口 1 3 1の幅は、 例えば 2
Figure imgf000009_0001
程度である
[0028] The introduction port 1 3 1 is a bottomed recess that is connected to the upstream end of the first flow path 1 3 2 and is open to the outside. The inlet port 1 3 1 is composed of a first through hole 1 2 1 formed in the substrate 1 20 and a film 1 1 0 that closes one opening of the first through hole 1 2 1. Has been done. The shape and size of the inlet 1 3 1 are not particularly limited, and can be appropriately designed as needed. The shape of the inlet 1 3 1 is, for example, a substantially columnar shape. The width of the inlet 1 3 1 is, for example, 2
Figure imgf000009_0001
Is about
[0029] 第 1流路 1 3 2は、 導入口 1 3 1 とダイヤフラムポンプ 1 3 3とを繫ぐ流 路である。 第 1流路 1 3 2は、 基板 1 2 0に形成されている第 1流路溝 1 2 2と、 第 1流路溝 1 2 2を閉塞しているフィルム 1 1 0とから構成されてい る。 [0029] The first flow path 1 3 2 is a flow path connecting the inlet port 1 3 1 and the diaphragm pump 1 3 3. The first flow path 1 3 2 is composed of a first flow path groove 1 2 2 formed in the substrate 1 20 and a film 1 1 0 closing the first flow path groove 1 2 2. It
[0030] ダイヤフラムポンプ 1 3 3は、 図外の口ータリー部材と協働して、 流体を 導入口 1 3 1から排出口 1 3 5に移動させる。 ダイヤフラムポンプ 1 3 3は 、 ダイヤフラム 1 1 1 と、 基板 1 2 0の平面とにより構成されるポンプ流路 1 3 6を有する。 ダイヤフラム 1 1 1は、 基板 1 2 0とは反対側に突出して おり、 平面視形状が略円弧状である。 ポンプ流路 1 3 6は、 ダイヤフラム 1 1 1 と基板 1 2 0との間に形成された、 略円弧状に延在する空間であり、 第 1流路 1 3 2および第 2流路 1 3 4を繫ぐ。 ボンプ流路 1 3 6の上流端は、 第 1流路 1 3 2の下流端に接続されている。 また、 ポンプ流路 1 3 6の下流 端は、 第 2流路 1 3 4の上流端に接続されている。 ポンプ流路 1 3 6の大き さは、 特に限定されない。 本実施の形態では、 ポンプ流路 1 3 6のダイヤフ ラム 1 1 1および基板 1 2 0の幅は、 数十 程度である。 The diaphragm pump 1 3 3 cooperates with a mouth tally member (not shown) to move the fluid from the inlet 1 3 1 to the outlet 1 3 5. The diaphragm pump 1 3 3 has a pump channel 1 3 6 constituted by the diaphragm 1 1 1 and the plane of the substrate 1 2 0. The diaphragm 1 11 is projected on the side opposite to the substrate 1 20 and has a substantially arcuate shape in plan view. The pump channel 1 3 6 is a space formed between the diaphragm 1 1 1 and the substrate 1 20 and extending in a substantially arc shape. The first channel 1 3 2 and the second channel 1 3 Give 4 The upstream end of the pump flow path 1 36 is connected to the downstream end of the first flow path 1 3 2. Further, the downstream end of the pump channel 1336 is connected to the upstream end of the second channel 1334. The size of the pump channel 1 3 6 is not particularly limited. In the present embodiment, the width of the diaphragm 1 11 and the substrate 1 20 of the pump channel 1 3 6 is about several tens.
[0031 ] ダイヤフラム 1 1 1は、 例えば図外の口ータリー部材の押圧部 (例えば凸 部) がダイヤフラム 1 1 1の一部を基板 1 2 0に押し当てながら、 ダイヤフ ラム 1 1 1上を移動できるように配置されている。 \¥0 2020/175455 8 卩(:17 2020 /007398 [0031] The diaphragm 1 11 1 moves on the diaphragm 1 11 1 while the pressing portion (for example, a convex portion) of the mouth tally member (not shown) presses a part of the diaphragm 1 11 against the substrate 1 20. It is arranged so that it can be done. \¥0 2020/175 455 8 卩 (: 17 2020 /007398
[0032] 第 2流路 1 3 4は、 ダイヤフラムポンプ 1 3 3と排出口 1 3 5とを繫ぐ流 路である。 第 2流路 1 3 4は、 基板 1 2 0に形成されている第 2流路溝 1 2 3と、 第 2流路溝 1 2 3を閉塞しているフィルム 1 1 0とから構成されてい る。 The second flow path 1 3 4 is a flow path that connects the diaphragm pump 1 3 3 and the discharge port 1 3 5. The second flow path 1 3 4 is composed of a second flow path groove 1 2 3 formed on the substrate 1 20 and a film 1 10 which closes the second flow path groove 1 2 3. It
[0033] 第 1流路 1 3 2および第 2流路 1 3 4の断面積および断面形状は、 特に限 定されない。 例えば、 第 1流路 1 3 2および第 2流路 1 3 4は、 流体が移動 可能な流路である。 この場合、 第 1流路 1 3 2および第 2流路 1 3 4の断面 形状は、 例えば一辺の長さ (幅および深さ) が数十 程度の略矩形である The cross-sectional area and cross-sectional shape of the first flow channel 1 3 2 and the second flow channel 1 3 4 are not particularly limited. For example, the first flow path 1 3 2 and the second flow path 1 3 4 are flow paths in which fluid can move. In this case, the cross-sectional shape of the first flow path 1 3 2 and the second flow path 1 3 4 is, for example, a substantially rectangular shape with the length (width and depth) of one side of several tens.
[0034] 排出口 1 3 5は、 第 2流路 1 3 4の下流端に接続されており、 かつ外部に 開放されている有底の凹部である。 本実施の形態では、 排出口 1 3 5は、 基 板 1 2 0に形成されている第 2貫通孔 1 2 4と、 第 2貫通孔 1 2 4の一方の 開口部を閉塞しているフィルム 1 1 0とから構成されている。 排出口 1 3 5 の形状および大きさは、 特に限定されず、 必要に応じて適宜設計されうる。 排出口 1 3 5の形状は、 例えば、 略円柱形状である。 排出口 1 3 5の幅は、 例えば 2 〇!程度である。 [0034] The discharge port 1 35 is a bottomed recess that is connected to the downstream end of the second flow path 1 3 4 and is open to the outside. In the present embodiment, the discharge port 1 35 is a film that closes one opening of the second through hole 1 2 4 formed in the base plate 1 20 and the second through hole 1 2 4. It is composed of 1 1 and 0. The shape and size of the outlet 1 3 5 are not particularly limited and may be appropriately designed as needed. The shape of the outlet 1 3 5 is, for example, a substantially cylindrical shape. The width of the outlet 1 3 5 is, for example, about 20!.
[0035] 流体取扱装置 1 0 0は、 例えば導入口 1 3 1が流体で満たされている状態 で、 図外の口ータリー部材の押圧部でダイヤフラム 1 1 1の上流端を押圧す る。 そして、 口ータリー部材を回転させて押圧部をダイヤフラム 1 1 1の上 流端から下流端に向けて移動させると、 押圧部分よりも上流側では流路内が 負圧になり、 導入口 1 3 1から流体が流路内に移動する。 次いで、 口ータリ —部材をさらに回転させて、 ダイヤフラム 1 1 1の下流端に移動した押圧部 を再度ダイヤフラム 1 1 1の上流端に移動させる。 この状態で口ータリー部 材を回転させて押圧部をダイヤフラム 1 1 1の上流端から下流端に向けて移 動させると、 押圧部分よりも上流側では流路内が負圧になり、 導入口 1 3 1 から流体が流路内に移動する。 また、 押圧部分よりも下流側では流路内が正 圧になり、 ポンプ流路 1 3 6内の流体が排出口 1 3 5に移動する。 この工程 を繰り返すことにより、 導入口 1 3 1の流体を排出口 1 3 5に移動させるこ 〇 2020/175455 9 卩(:171? 2020 /007398 [0035] The fluid handling device 100, for example, presses the upstream end of the diaphragm 1 11 1 with the pressing portion of the mouth tally member (not shown) when the inlet port 1 3 1 is filled with fluid. Then, when the mouth tally member is rotated to move the pressing portion from the upstream end of the diaphragm 1 1 1 toward the downstream end, the inside of the flow path becomes negative pressure upstream of the pressing portion, and the inlet 1 3 Fluid moves from 1 into the flow path. Next, the mouth rotary member is further rotated to move the pressing portion moved to the downstream end of the diaphragm 1 11 1 to the upstream end of the diaphragm 1 11 again. When the mouth tally member is rotated in this state to move the pressing part from the upstream end of the diaphragm 1 1 1 to the downstream end, the inside of the flow path becomes negative pressure on the upstream side of the pressing part, and the inlet port The fluid moves from 1 1 3 into the flow path. Further, the pressure inside the flow path becomes positive on the downstream side of the pressing portion, and the fluid in the pump flow path 1 36 moves to the discharge port 1 35. By repeating this process, the fluid at the inlet 1 3 1 can be moved to the outlet 1 3 5. 〇 2020/175 455 9 卩 (:171? 2020 /007398
とができる。 You can
[0036] 次に、 平面視形状が円形状のダイヤフラム 2 1 1 を含むフィルム 2 1 0を 使用した流体取扱装置 2 0 0について説明する。 変形例の流体取扱装置 2 0 0は、 ダイヤフラムポンプ 1 3 3に代えて、 ダイヤフラムバルブ 2 3 3を有 する点において、 流体取扱装置 1 0 0と異なる。 そこで、 流体取扱装置 1 〇 0と同様の構成については、 同じ符号を付して、 その説明を省略する。 [0036] Next, a fluid handling apparatus 200 using a film 210 including a diaphragm 211 having a circular shape in plan view will be described. The fluid handling device 200 of the modified example is different from the fluid handling device 100 in that it has a diaphragm valve 2 3 3 in place of the diaphragm pump 1 3 3. Therefore, the same components as those of the fluid handling apparatus 100 are designated by the same reference numerals, and the description thereof will be omitted.
[0037] 図 4 、 巳は、 変形例の流体取扱装置 2 0 0の構成を示す図である。 図 4 八は、 変形例の流体取扱装置 2 0 0の平面図であり、 図 4巳は、 図 4 に示 される八_八線の断面図である。 [0037] Fig. 4 is a diagram showing the configuration of a fluid handling device 200 of a modified example. FIG. 48 is a plan view of a modified fluid handling apparatus 200, and FIG. 4A is a cross-sectional view taken along line 8--8 shown in FIG.
[0038] 図 4八、 巳に示されるように、 変形例の流体取扱装置 2 0 0は、 フィルム [0038] As shown in Fig. 48, Mitsumi, a modified fluid handling device 200 is a film
2 1 0および基板 2 2 0から構成されており、 基板 2 2 0の一方の面にフィ ルム 2 1 0が接合されている。 他の流体取扱装置 2 0 0は、 導入口 1 3 1 と 、 第 1流路 1 3 2と、 ダイヤフラムバルブ 2 3 3と、 第 2流路 1 3 4と、 排 出口 1 3 5とを有する。 It is composed of a substrate 210 and a substrate 220, and the film 210 is bonded to one surface of the substrate 220. The other fluid handling device 200 has an inlet port 1 3 1, a first flow passage 1 3 2, a diaphragm valve 2 3 3, a second flow passage 1 3 4 and an exhaust outlet 1 3 5. ..
[0039] ダイヤフラムバルブ 2 3 3は、 ダイヤフラム 2 1 1 と、 第 1流路 1 3 2の 下流端部と、 第 2流路 1 3 4の上流端部とから構成されている。 本実施の形 態では、 ダイヤフラム 2 1 1の平面視形状は、 円形状である。 ダイヤフラム 2 1 1は、 第 1流路 1 3 2の下流端部と、 第 2流路 1 3 4の上流端部と、 第 1流路 1 3 2および第 2流路 1 3 4の間の隔壁 2 4 4を覆うように配置され ている。 The diaphragm valve 2 3 3 is composed of a diaphragm 2 1 1, a downstream end portion of the first flow passage 1 3 2 and an upstream end portion of the second flow passage 1 3 4. In the present embodiment, the diaphragm 2 11 has a circular shape in plan view. The diaphragm 2 11 is located between the downstream end of the first flow path 1 3 2 and the upstream end of the second flow path 1 3 4 and between the first flow path 1 3 2 and the second flow path 1 3 4. It is arranged so as to cover the partition wall 2 44.
[0040] この流体取扱装置 2 0 0では、 図外の押圧部などによりダイヤフラム 2 1 [0040] In this fluid handling device 200, the diaphragm 21
1 を押圧すると、 ダイヤフラム 2 1 1が隔壁 2 4 4に向かって変形する。 ダ イヤフラム 2 1 1 と隔壁 2 4 4が接触すると第 1流路 1 3 2および第 2流路 1 3 4の間の流路が閉塞することでバルブ閉となる。 一方、 図外の押圧部な どによるダイヤフラム 2 1 1の押圧を解除すると、 ダイヤフラム 2 1 1が元 に戻るように変形する。 ダイヤフラム 2 1 1 と隔壁 2 4 4が離間すると、 第 1流路 1 3 2および第 2流路 1 3 4が連通して流路が開放されてバルブ開と なり、 第 1流路 1 3 2および第 2流路 1 3 4を流体が通る。 〇 2020/175455 10 卩(:171? 2020 /007398 When 1 is pressed, the diaphragm 2 11 is deformed toward the partition wall 2 4 4. When the diaphragm 2 11 and the partition 2 4 4 come into contact with each other, the flow path between the first flow path 1 3 2 and the second flow path 1 3 4 is closed to close the valve. On the other hand, when the pressing of the diaphragm 2 11 by a pressing portion (not shown) is released, the diaphragm 2 11 is deformed so as to return to its original shape. When the diaphragm 2 1 1 and the partition wall 2 4 4 separate, the first flow path 1 3 2 and the second flow path 1 3 4 communicate with each other to open the flow path and open the valve, and the first flow path 1 3 2 And the fluid passes through the second flow path 1 3 4. 〇 2020/175 455 10 boxes (: 171? 2020/007398
[0041 ] (流体取扱装置の製造方法) [0041] (Method for manufacturing fluid handling device)
本発明の流体取扱装置 1 〇〇の製造方法は、 ダイヤフラム 1 1 1用の凹部 1 3が形成された第 1金型 1 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2 金型 1 2とをこの順番で積層させる工程 (第 1工程) と、 基板 1 2 0および フィルム 1 1 0の間の空間に空気を導入して、 ダイヤフラム 1 1 1用の凹部 1 3の内面にフィルム 1 1 0の一部を接触させてダイヤフラム 1 1 1 を形成 する工程 (第 2工程) とを含む。 The manufacturing method of the fluid handling device 100 according to the present invention includes: a first mold 11 having a recess 13 for a diaphragm 1 11; a film 1 10; a substrate 1 20; The step of laminating the molds 1 and 2 in this order (first step), and introducing air into the space between the substrate 1 20 and the film 1 1 0, the inner surface of the recess 1 3 for the diaphragm 1 1 1 And a step of contacting a part of the film 1 10 to form the diaphragm 1 1 1 (second step).
[0042] 図 1 八~〇、 図 2八に示されるように、 第 1工程では、 第 1金型 1 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2金型 1 2とをこの順番で積層させる 。 フィルム 1 1 0および基板 1 2 0の積層体を第 1金型 1 1 と第 2金型 1 2 の間に配置してもよいし、 第 1金型 1 1の上にフィルム 1 1 0、 基板 1 2 0 および第 2金型 1 2を順番に配置してもよい。 第 1金型 1 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2金型 1 2との積層体では、 第 1金型 1 1のダイ ヤフラム 1 1 1用の凹部 1 3が形成された面に対向するようにフィルム 1 1 0が配置される。 フィルム 1 1 0の第 1金型 1 1が配置された面と反対側の 面と対向するように基板 1 2 0が配置される。 基板 1 2 0のフィルム 1 1 0 が配置された面と反対側の面と対向するように第 2金型 1 2が配置される。 第 2金型 1 2は、 第 2空気孔 1 5が基板 1 2 0の貫通孔に対応する位置する ように配置される。 第 1金型 1 1およびフィルム 1 1 0と、 フィルム 1 1 0 および基板 1 2 0と、 基板および第 2金型 1 2とは、 それぞれが密着して配 置されることが好ましい。 なお、 基板 1 2 0と第 2金型 1 2との間には、 弾 性を有する弾性部材が配置されていてもよい。 弾性部材の例には、 シリコー ン、 ポリテトラフルオロエチレン、 リン青銅が含まれる。 基板 1 2 0と第 2 金型 1 2との間に弾性部材を挟み込むことで、 金型 1 0によって、 より均一 にフィルム 1 1 0と基板 1 2 0とを押圧できる。 [0042] As shown in Figs. 18 to 〇 and Fig. 28, in the first step, the first die 11, the film 110, the substrate 120, and the second die 12 are Stack in this order. A laminated body of the film 1 10 and the substrate 1 20 may be arranged between the first mold 1 1 and the second mold 1 2, or the film 1 10 on the first mold 1 1, The substrate 120 and the second mold 12 may be arranged in order. In the laminated body of the first die 11, the film 110, the substrate 120, and the second die 12 the recess 13 for the die diaphragm 1 11 of the first die 11 is formed. The film 110 is arranged so as to face the formed surface. The substrate 1 20 is arranged so as to face the surface of the film 1 10 opposite to the surface on which the first die 11 is arranged. The second mold 12 is arranged so as to face the surface of the substrate 120 opposite to the surface on which the film 110 is arranged. The second mold 12 is arranged so that the second air holes 15 are located corresponding to the through holes of the substrate 120. The first mold 11 and the film 110, the film 110 and the substrate 120, and the substrate and the second mold 12 are preferably arranged in close contact with each other. An elastic member having elasticity may be arranged between the substrate 120 and the second mold 12. Examples of elastic members include silicone, polytetrafluoroethylene, phosphor bronze. By sandwiching the elastic member between the substrate 120 and the second mold 12, the mold 10 can press the film 1 10 and the substrate 1 20 more uniformly.
[0043] 図 2巳に示されるように、 第 2工程では、 ダイヤフラム 1 1 1用の凹部 1 [0043] As shown in FIG. 2A, in the second step, the recess 1 for the diaphragm 1 1 1 is formed.
3の内面にフィルム 1 1 0の一部を接触させてダイヤフラム 1 1 1 を成形す る。 まず、 第 2工程では、 第 1金型 1 1 と、 フィルム 1 1 0と、 基板 1 2 0 〇 2020/175455 1 1 卩(:171? 2020 /007398 A part of the film 1 1 0 is brought into contact with the inner surface of 3 to form the diaphragm 1 1 1. First, in the second step, the first die 11, the film 110, and the substrate 120 〇 2020/175 455 1 1 卩(:171? 2020/007398
と、 第 2金型 1 2とを積層した状態で、 フィルム 1 1 0および基板 1 2 0を 加熱する。 加熱する温度は、 フィルム 1 1 0が軟化する温度であれば特に限 定されない。 フィルム 1 1 0の材料がシクロオレフィンポリマー (〇〇 ) の場合、 加熱する温度は 1 4 0 ~ 1 5 0 °〇であり、 フィルム 1 1 0の材料が 環状オレフィンコポリマーの場合、 加熱する温度は 1 0 0〜 1 1 0 °〇である 。 これにより、 フィルム 1 1 0が軟化し、 ダイヤフラム 1 1 1 を容易に成形 できる。 次いで、 ポンプ 1 6により圧縮した空気を、 フィルム 1 1 0を挟ん で凹部 1 3と対向する位置におけるフィルム 1 1 0と基板 1 2 0との間の空 間に送る。 ポンプ 1 6による圧力は、 ダイヤフラム 1 1 1 を適切に成形でき れば特に限定されない。 例えば、 ポンプ 1 6による圧力は、 2 0〜 4 0 1< 3程度が好ましい。 ポンプ 1 6により送られた圧縮空気は、 第 2空気孔 1 5 および基板 1 2 0の貫通孔を経て、 フィルム 1 1 0および基板 1 2 0の間の 空間に到達する。 そして、 フィルム 1 1 0および基板 1 2 0の間に気体が導 入され、 軟化したフィルム 1 1 0の一部は、 圧縮空気により凹部 1 3の内面 に向かって変形する。 凹部 1 3の内面にフィルム 1 1 0の一部が密着するこ とでダイヤフラム 1 1 1が成形される。 The film 110 and the substrate 120 are heated in a state where the film and the second mold 12 are laminated. The heating temperature is not particularly limited as long as the film 110 is softened. When the material of film 110 is cycloolefin polymer (○○), the heating temperature is 1440 to 150 ° 〇, and when the material of film 110 is cyclic olefin copolymer, the heating temperature is It is between 100 and 110 degrees . As a result, the film 110 is softened and the diaphragm 111 can be easily molded. Next, the air compressed by the pump 16 is sent to the space between the film 1 10 and the substrate 1 20 at a position facing the recess 13 with the film 1 10 interposed therebetween. The pressure by the pump 16 is not particularly limited as long as the diaphragm 1 11 can be properly molded. For example, the pressure from the pump 16 is preferably about 20 to 40<1<3. The compressed air sent by the pump 16 reaches the space between the film 1 10 and the substrate 1 20 through the second air hole 15 and the through hole of the substrate 1 20. Then, a gas is introduced between the film 110 and the substrate 120, and a part of the film 110 softened is deformed toward the inner surface of the recess 13 by the compressed air. A part of the film 1 10 is brought into close contact with the inner surface of the recess 13 to form the diaphragm 1 11.
[0044] なお、 フィルム 1 1 0の加熱と、 ポンプ 1 6による加圧とは、 同時でもよ い。 フィルム 1 1 0の加熱と、 ポンプ 1 6による加圧とを同時に行うことに より、 フィルム 1 1 0が軟化した直後にフィルム 1 1 0の一部をダイヤフラ ム 1 1 1用の凹部 1 3の内面に向けて変形させることができる。 [0044] The heating of the film 110 and the pressurization by the pump 16 may be performed at the same time. By heating the film 110 and pressurizing it with the pump 16 at the same time, immediately after the film 110 softens, a part of the film 110 is partially removed from the concave part 1 3 for the diaphragm 1 11. It can be deformed toward the inner surface.
[0045] 最後に、 離型することでダイヤフラム 1 1 1が成形されたフィルム 1 1 0 を得る。 [0045] Finally, the film 1 10 having the diaphragm 1 11 formed is obtained by releasing.
[0046] なお、 ダイヤフラムを形成する工程 (第 2工程) では、 第 1金型 1 1 をフ ィルム 1 1 0のガラス転移温度以上の温度に加熱することで、 ダイヤフラム 1 1 1 を成形するとともに、 フィルム 1 1 0および基板 1 2 0を熱圧着して もよい。 また、 ダイヤフラムを形成する工程 (第 2工程) では、 第 1金型 1 1 をフィルム 1 1 0のガラス転移温度以上であって、 基板 1 2 0のガラス転 移温度未満の温度に加熱することで、 ダイヤフラム 1 1 1 を成形するととも 〇 2020/175455 12 卩(:171? 2020 /007398 [0046] In the step of forming the diaphragm (second step), the first mold 11 is heated to a temperature not lower than the glass transition temperature of the film 110 to form the diaphragm 111. The film 110 and the substrate 120 may be thermocompression bonded. In the step of forming the diaphragm (second step), the first mold 11 is heated to a temperature higher than the glass transition temperature of the film 110 and lower than the glass transition temperature of the substrate 120. Then, when forming the diaphragm 1 1 1 〇 2020/175 455 12 boxes (: 171-1? 2020 /007398
に、 フィルム 1 1 0および基板 1 2 0を熱圧着してもよい。 フィルム 1 1 0 および基板 1 2 0の材料がシクロオレフィンポリマーの場合、 加熱する温度 は、 1 1 0〜 1 5 0 °〇である。 フィルム 1 1 0および基板 1 2 0の材料が環 状オレフィンコポリマーの場合、 加熱する温度は、 1 1 0〜 1 7 0 °〇である 。 これにより、 流体取扱装置 1 〇〇を製造する際に、 フィルム 1 1 0および 基板 1 2 0を接合する工程を省略できるとともに、 フィルム 1 1 0および基 板 1 2 0の位置ズレを防止できる。 なお、 基板 1 2 0と第 2金型 1 2の間に 弾性部材を挟み込む場合には、 熱が弾性部材に吸収されることを考慮して、 加熱温度を設定する。 Alternatively, the film 110 and the substrate 120 may be thermocompression bonded. When the material of the film 110 and the substrate 120 is a cycloolefin polymer, the heating temperature is 110 to 150°°. When the material of the film 110 and the substrate 120 is a cyclic olefin copolymer, the heating temperature is 110 to 170 ° . Thereby, when manufacturing the fluid handling device 100, the step of joining the film 110 and the substrate 120 can be omitted, and the positional deviation of the film 110 and the base plate 120 can be prevented. When the elastic member is sandwiched between the substrate 120 and the second mold 12, the heating temperature is set in consideration of the fact that heat is absorbed by the elastic member.
[0047] また、 平面視形状が円形状のダイヤフラム 2 1 1用の凹部 1 3を有する第 [0047] Further, a first portion having a concave portion 13 for the diaphragm 211 having a circular shape in plan view is provided.
1金型 2 1 を使用することで、 平面視形状が円形状のダイヤフラム 2 1 1 を 成形できる。 By using 1 die 2 1, it is possible to mold the diaphragm 2 1 1 having a circular shape in plan view.
[0048] (効果) [0048] (Effect)
以上のように、 実施の形態 1 に係る流体取扱装置 1 〇〇、 2 0 0の製造方 法では、 金型 1 0の一方のみにダイヤフラム 1 1 1、 2 1 1の形状に相補的 なダイヤフラム 1 1 1用の凹部 1 3を形成すればよい。 これにより、 ダイヤ フラム 1 1 1、 2 1 1の形状を修正するときに、 第 1金型 1 1の対応面 (凹 部 1 3の内面) を修正すればよいため、 ダイヤフラム 1 1 1、 2 1 1の形状 を容易に修正できる。 また、 ダイヤフラム 1 1 1用の凹部 1 3に第 1空気孔 1 4が形成されていなければ、 加圧しすぎても適切にダイヤフラム 1 1 1 を 成形できる。 As described above, in the manufacturing method of the fluid handling apparatus 100, 200 according to the first embodiment, only one of the molds 10 has a diaphragm that is complementary to the shape of the diaphragms 1 1 1, 2 1 1. It is sufficient to form the concave portion 1 3 for 1 1 1. As a result, when the shape of the diaphragms 1 1 1 and 2 1 1 is modified, the corresponding surface of the first mold 11 1 (the inner surface of the concave portion 13) can be modified, so that the diaphragms 1 1 1 and 2 1 The shape of 1 1 can be easily modified. Further, if the first air holes 14 are not formed in the recesses 13 for the diaphragm 1 11 1, the diaphragm 1 11 1 can be appropriately molded even if the pressure is excessively applied.
[0049] [実施の形態 2 ] [Embodiment 2]
図 5 〜〇、 図 6 、 巳は、 本発明の実施の形態 2に係る流体取扱装置の 製造方法を説明するための図である。 図 5八は、 フィルム 1 1 0と基板 1 2 0とを金型 1 0で挟み込んだときの平面図であり、 図 5巳は、 図 5八に示さ れる八 _八線の断面図であり、 図 5〇は、 図 5八に示される巳 _巳線の断面 図である。 図 6八は、 図 5八に:^される〇一〇線の第 1工程における断面図 であり、 図 6巳は、 図 5八に示される八一八線の第 2工程における断面図で 〇 2020/175455 13 卩(:171? 2020 /007398 5 to ◯, FIG. 6, and FIG. 6 are views for explaining the method of manufacturing the fluid handling device according to the second embodiment of the present invention. Fig. 58 is a plan view when the film 110 and the substrate 120 are sandwiched by the mold 10 and Fig. 5 is a sectional view taken along line 8_8 shown in Fig. 58. , Fig. 50 is a cross-sectional view of the _ _ line shown in Fig. 58. Figure 68 is a cross-sectional view of the first step taken along line 0108 shown in Figure 58, and Figure 6 is a cross-sectional view of the second step taken along line 8188 shown in Figure 58. 〇 2020/175 455 13 卩 (:171? 2020 /007398
ある。 is there.
[0050] 実施の形態 2に係るダイヤフラム 1 1 1 を成形する方法では、 使用する金 型 2 0が実施の形態 1 における金型 1 0と異なる。 そこで、 本実施の形態で 使用する金型 2 0について説明した後に、 本実施の形態に係るダイヤフラム 1 1 1の成形方法について説明する。 以下に示す金型 2 0の説明では、 実施 の形態 1 における金型 1 0と異なる部分を主として説明する。 [0050] In the method of molding the diaphragm 1 1 1 according to the second embodiment, the mold 20 used is different from the mold 10 in the first embodiment. Therefore, the mold 20 used in the present embodiment will be described, and then the method for forming the diaphragm 1 11 according to the present embodiment will be described. In the following description of the mold 20, the parts different from the mold 10 of the first embodiment will be mainly described.
[0051 ] (金型の構成) [0051] (Mold configuration)
図 5八〜〇、 図 6八、 巳に示されるように、 金型 2 0は、 第 1金型 2 1 と 、 第 2金型 2 2とを使用する。 第 1金型 2 1 と、 第 2金型 2 2との間に、 基 板 1 2 0およびフィルム 1 1 0が配置された状態でフィルム 1 1 0の一部を 変形させてダイヤフラム 1 1 1 を成形する。 As shown in FIGS. 58 to 〇, FIG. 68, and Mitsumi, the mold 20 uses the first mold 21 and the second mold 22. With the base plate 120 and the film 110 placed between the first mold 21 and the second mold 22, a part of the film 110 is deformed and the diaphragm 111 is deformed. To mold.
[0052] 第 1金型 2 1は、 ダイヤフラム 1 1 1用の凹部 1 3を有する。 また、 本実 施の形態では、 第 1金型 2 1の形状は、 略直方体形状である。 The first mold 21 has a recess 13 for the diaphragm 1 11. Further, in the present embodiment, the shape of the first mold 21 is a substantially rectangular parallelepiped shape.
[0053] 凹部 1 3は、 フィルム 1 1 0が配置される面に形成されている。 凹部 1 3 は、 フィルム 1 1 0に成形されるダイヤフラム 1 1 1 と相補的な形状である 。 凹部 1 3の平面視形状は、 略円弧形状でもよいし、 円形状でもよい。 また 、 凹部 1 3の幅方向の断面形状は、 略円弧形状である。 凹部 1 3の内面には 、 第 1空気孔 2 4の一方の開口部が形成されている。 第 1空気孔 2 4の他方 の開口部は、 第 1金型 2 1の側面に形成されている。 第 1空気孔 2 4の他方 の開口部には、 第 1空気孔 2 4から空気を吸引するための吸引ポンプ 2 6が 接続されている。 The recess 13 is formed on the surface on which the film 110 is arranged. The concave portion 13 has a shape complementary to the diaphragm 1 11 formed on the film 1 10. The shape of the recess 13 in plan view may be a substantially arc shape or a circular shape. The cross-sectional shape of the recess 13 in the width direction is a substantially arc shape. One opening of the first air hole 24 is formed on the inner surface of the recess 13. The other opening of the first air hole 24 is formed on the side surface of the first mold 21. A suction pump 26 for sucking air from the first air hole 24 is connected to the other opening of the first air hole 24.
[0054] 第 2金型 2 2は、 第 1金型 2 1 と対向して配置される。 本実施の形態では 、 第 2金型 2 2の形状は、 略直方体形状である。 第 2金型 2 2の第 1金型 2 1 と対向する面には、 第 2空気孔 2 5の一方の開口部が形成されていてもよ い。 第 2空気孔 2 5は、 例えば基板 1 2 0に形成された貫通孔に対応する位 置に開口している。 第 2空気孔 2 5の他方の開口部は、 例えば第 2金型 2 2 の側面に形成されている。 The second die 22 is arranged so as to face the first die 21. In the present embodiment, the second mold 22 has a substantially rectangular parallelepiped shape. One opening of the second air hole 25 may be formed on the surface of the second mold 22 facing the first mold 21. The second air holes 25 are opened at positions corresponding to, for example, the through holes formed in the substrate 120. The other opening of the second air hole 25 is formed, for example, on the side surface of the second mold 22.
[0055] (流体取扱装置の製造方法) 〇 2020/175455 14 卩(:171? 2020 /007398 (Method for manufacturing fluid handling device) 〇 2020/175 455 14 卩 (:171? 2020 /007398
本実施の形態に係る流体取扱装置 1 0 0、 2 0 0の製造方法の成形方法は 、 第 2工程のみが実施の形態 1 に係る流体取扱装置 1 0 0、 2 0 0の製造方 法と異なる。 そこで、 本実施の形態では、 第 2工程を主として説明する。 In the molding method of the manufacturing method of the fluid handling devices 100 and 200 according to the present embodiment, only the second step is the manufacturing method of the fluid handling devices 100 and 200 according to the first embodiment. different. Therefore, in this embodiment, the second step will be mainly described.
[0056] 本実施の形態に係る流体取扱装置 1 0 0、 2 0 0の製造方法は、 第 1金型 [0056] The manufacturing method of the fluid handling apparatus 100, 200 according to the present embodiment is performed by the first mold.
1 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2金型 1 2とをこの順番で積 層させる工程 (第 1工程) と、 基板 1 2 0およびフィルム 1 1 0の間の空間 を負圧にして、 ダイヤフラム 1 1 1 用の凹部 1 3の内面にフィルム 1 1 0の 一部を接触させてダイヤフラム 1 1 1 を形成する工程 (第 2工程) とを含む Between the step of laminating 1 1, the film 11 0, the substrate 120, and the second die 12 in this order (the first step), and between the substrate 1 20 and the film 1 10. A step (second step) of forming a diaphragm 1 11 by contacting a part of the film 1 10 with the inner surface of the concave portion 13 for the diaphragm 1 11 by making the space negative pressure
[0057] 図 5八~〇、 図 6八に示されるように、 第 1工程では、 第 1金型 1 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2金型 1 2とをこの順番で積層させる As shown in FIGS. 58 to 〇 and FIG. 68, in the first step, the first mold 11, the film 110, the substrate 120, and the second mold 12 are connected. Stack in this order
[0058] 図 6巳に示されるように、 第 2工程では、 凹部 1 3の内面にフィルム 1 1 〇の一部を接触させてダイヤフラム 1 1 1 を成形する。 まず、 第 2工程では 、 第 1金型 2 1 と、 フィルム 1 1 0と、 基板 1 2 0と、 第 2金型 2 2とを積 層した状態で、 フィルム 1 1 0および基板 1 2 0を加熱する。 加熱する温度 は、 フィルム 1 1 0が軟化する温度であれば特に限定されない。 加熱する温 度は、 実施の形態 1 と同じである。 次いで、 吸引ポンプ 2 6により凹部 1 3 とフィルム 1 1 0との間の気体を吸引する。 吸引ポンプ 2 6による圧力は、 ダイヤフラム 1 1 1 を適切に成形できれば特に限定されない。 例えば、 吸引 ポンプ 2 6による圧力は、
Figure imgf000016_0001
程度が好ましい。 吸引ボン プ 2 6により気体を吸引することで、 フィルム 1 1 0および基板 1 2 0の間 の空間が負圧にされ、 軟化したフィルム 1 1 〇の一部は、 ダイヤフラム 1 1 1 用の凹部 1 3の内面に向かって変形する。 ダイヤフラム 1 1 1 用の凹部 1 3の内面にフィルム 1 1 0の一部が密着することでダイヤフラム 1 1 1 が成 形される。
[0058] As shown in Fig. 6, in the second step, a part of the film 1 10 is brought into contact with the inner surface of the recess 13 to form the diaphragm 1 1 1. First, in the second step, in the state where the first die 21, the film 110, the substrate 120, and the second die 22 are laminated, the film 110 and the substrate 120 are stacked. To heat. The heating temperature is not particularly limited as long as the film 110 is softened. The heating temperature is the same as in the first embodiment. Next, the suction pump 26 sucks the gas between the recess 13 and the film 110. The pressure by the suction pump 26 is not particularly limited as long as the diaphragm 1 11 can be appropriately molded. For example, the pressure from the suction pump 26 is
Figure imgf000016_0001
A degree is preferable. By sucking the gas with the suction pump 26, the space between the film 1 10 and the substrate 1 20 is made negative pressure, and a part of the softened film 1 1 1 0 is a recess for the diaphragm 1 1 1. Deforms toward the inner surface of 13. The diaphragm 1 11 is formed by a part of the film 1 10 being in close contact with the inner surface of the recess 1 3 for the diaphragm 1 11.
[0059] 最後に、 離型することでダイヤフラム 1 1 1 が成形されたフイルム 1 1 0 を得る。 〇 2020/175455 15 卩(:171? 2020 /007398 [0059] Finally, the film 1 10 having the diaphragm 1 11 formed is obtained by releasing the mold. 〇 2020/175 455 15 卩 (:171? 2020 /007398
[0060] また、 平面視形状が円形状の凹部 1 3を有する第 1金型 2 1 を使用するこ とで、 平面視形状が円形状のダイヤフラム 2 1 1 を成形できる。 [0060] Further, by using the first mold 21 having the concave portion 13 having a circular shape in plan view, the diaphragm 211 having a circular shape in plan view can be molded.
[0061] なお、 本実施の形態においても、 第 2の工程は、 第 1金型 1 1 をフィルム [0061] Note that, also in the present embodiment, in the second step, the first die 11 is formed into a film.
1 1 0のガラス転移温度以上であって基板 1 20のガラス転移温度未満の温 度に加熱することで、 ダイヤフラム 1 1 1 を成形するとともに、 フィルム 1 1 0および基板 1 20を熱圧着してもよい。 By heating to a temperature above the glass transition temperature of 110 and below the glass transition temperature of substrate 120, not only is diaphragm 11 1 formed, but also film 110 and substrate 120 are thermocompression bonded. Good.
[0062] なお、 ダイヤフラム 1 1 1、 2 1 1 を使用する流体取扱装置 1 00、 20 [0062] Note that fluid handling devices 100, 20 that use the diaphragms 11 1, 2 11
0の構成は、 実施の形態 1 における流体取扱装置 1 00、 200と同じであ るため、 その説明を省略する。 The configuration of 0 is the same as that of the fluid handling devices 100 and 200 in the first embodiment, and therefore the description thereof will be omitted.
[0063] (効果) [0063] (Effect)
実施の形態 2に係る流体取扱装置 1 00、 200の製造方法は、 金型 20 の一方のみにダイヤフラム 1 1 1、 2 1 1の形状に相補的な形状を形成すれ ばよいため、 ダイヤフラム 1 1 1、 2 1 1の形状を修正するときに、 第 1金 型 2 1の対応面を修正すればよい。 よって、 ダイヤフラム 1 1 1、 2 1 1の 形状を容易に修正できる。 The manufacturing method of the fluid handling apparatus 100, 200 according to the second embodiment is such that it is sufficient to form a shape complementary to the shape of the diaphragms 11 1, 2 11 on only one side of the mold 20, and thus the diaphragm 1 1 When the shapes of 1, 2 1 1 are modified, the corresponding surface of the first mold 21 1 may be modified. Therefore, the shapes of the diaphragms 1 1 1 and 2 1 1 can be easily modified.
[0064] 本出願は、 201 9年 2月 28日出願の特願 201 9-035993に基 づく優先権を主張する。 当該出願明細書および図面に記載された内容は、 す ベて本願明細書に援用される。 [0064] The present application claims priority based on Japanese Patent Application No. 201-9-035993 filed on February 28, 2009. The contents described in the application specification and the drawings are all incorporated herein.
産業上の利用可能性 Industrial availability
[0065] 本発明により製造される流体取扱装置は、 例えば、 臨床検査や食物検査、 環境検査などの様々な用途において有用である。 The fluid handling device manufactured by the present invention is useful in various applications such as clinical tests, food tests, and environmental tests.
符号の説明 Explanation of symbols
[0066] 1 0, 20 金型 [0066] 1 0, 20 Mold
1 1. 2 1 第 1金型 1 1. 2 1 1st mold
1 2. 22 第 2金型 1 2.22 2nd mold
1 3 凹部 1 3 recess
1 4. 24 第 1空気孔 1 4.24 1st air hole
1 5. 25 第 2空気孔 5455 16 卩(:171? 2020 /007398 6 ポンプ1 5.25 2nd air hole 5455 16 pumps (: 171? 2020 /007398 6 pumps
6 吸引ポンプ6 suction pump
00、 200 流体取扱装置00, 200 Fluid handling equipment
1 0. 2 1 0 フイルム1 0.2 1 0 film
1 1. 2 1 1 ダイヤフラム1 1. 2 1 1 diaphragm
20, 220 基板20, 220 substrate
2 1 第 1貫通孔2 1 1st through hole
22 第 1流路溝22 First channel groove
23 第 2流路溝23 Second channel groove
24 第 2貫通孔24 Second through hole
3 1 導入口3 1 Inlet
32 第 1流路32 First flow path
33 ダイヤフラムポンプ 33 diaphragm pump
34 第 2流路34 Second flow path
35 排出口35 outlet
36 ポンプ流路36 pump flow path
33 ダイヤフラムバルブ 33 diaphragm valve
44 隔壁 44 bulkhead

Claims

〇 2020/175455 17 卩(:171? 2020 /007398 請求の範囲 〇 2020/175 455 17 卩(: 171-1? 2020/007398 Claims
[請求項 1 ] 基板と、 前記基板の一方の面に接合された、 ダイヤフラムを含むフ ィルムとを有する流体取扱装置の製造方法であって、 前記ダイヤフラム用の凹部を有する第 1金型と、 前記フィルムと、 前記基板と、 第 2金型とをこの順番で積層する工程と、 [Claim 1] A method for manufacturing a fluid handling device, comprising: a substrate; and a film bonded to one surface of the substrate, the film including a diaphragm, the first mold having a recess for the diaphragm, Stacking the film, the substrate, and a second mold in this order,
前記フィルムを挟んで前記凹部と対向する位置における前記フィル ムと前記基板との間の空間に気体を導入するか、 または前記凹部と前 記フィルムとの間の空間から気体を吸引することで、 前記凹部の内面 に前記フィルムの一部を接触させて前記ダイヤフラムを成形する工程 とを含む、 By introducing gas into the space between the film and the substrate at a position facing the recess with the film sandwiched therebetween, or by sucking gas from the space between the recess and the film, Forming a part of the film by contacting an inner surface of the recess with the diaphragm.
流体取扱装置の製造方法。 A method for manufacturing a fluid handling device.
[請求項 2] 前記ダイヤフラムを成形する工程では、 前記フィルムを挟んで前記 凹部と対向する位置における前記フィルムと前記基板との間の空間に 気体を導入する、 請求項 1 に記載の流体取扱装置の製造方法。 2. The fluid handling apparatus according to claim 1, wherein in the step of molding the diaphragm, gas is introduced into a space between the film and the substrate at a position facing the recess with the film sandwiched therebetween. Manufacturing method.
[請求項 3] 前記ダイヤフラムを成形する工程では、 前記凹部と前記フィルムと の間の空間から気体を吸引する、 請求項 1 に記載の流体取扱装置の製 造方法。 3. The method for manufacturing a fluid handling apparatus according to claim 1, wherein in the step of molding the diaphragm, gas is sucked from a space between the recess and the film.
[請求項 4] 前記ダイヤフラムを成形する工程では、 前記第 1金型を前記フィル ムのガラス転移温度以上の温度に加熱することで、 前記ダイヤフラム を成形するとともに、 前記フィルムと前記基板とを熱圧着により接合 する、 請求項 1〜 3のいずれか一項に記載の流体取扱装置の製造方法 [Claim 4] In the step of forming the diaphragm, the first mold is heated to a temperature equal to or higher than the glass transition temperature of the film to form the diaphragm and heat the film and the substrate. The method for manufacturing a fluid handling device according to claim 1, wherein the fluid handling device is joined by crimping.
PCT/JP2020/007398 2019-02-28 2020-02-25 Method for manufacturing fluid handling device WO2020175455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035993A JP2020138283A (en) 2019-02-28 2019-02-28 Method for manufacturing fluid handling apparatus
JP2019-035993 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175455A1 true WO2020175455A1 (en) 2020-09-03

Family

ID=72239975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007398 WO2020175455A1 (en) 2019-02-28 2020-02-25 Method for manufacturing fluid handling device

Country Status (2)

Country Link
JP (1) JP2020138283A (en)
WO (1) WO2020175455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201469A1 (en) * 2021-03-25 2022-09-29 株式会社エンプラス Liquid handling device, liquid handling system and liquid handling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524815A (en) * 2008-06-02 2011-09-08 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfluidic foil structure for fluid metering
JP2015152317A (en) * 2014-02-10 2015-08-24 株式会社エンプラス liquid handling device
JP2016508197A (en) * 2012-12-21 2016-03-17 マイクロニクス, インコーポレイテッド Low elastic film for microfluidic use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524815A (en) * 2008-06-02 2011-09-08 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfluidic foil structure for fluid metering
JP2016508197A (en) * 2012-12-21 2016-03-17 マイクロニクス, インコーポレイテッド Low elastic film for microfluidic use
JP2015152317A (en) * 2014-02-10 2015-08-24 株式会社エンプラス liquid handling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201469A1 (en) * 2021-03-25 2022-09-29 株式会社エンプラス Liquid handling device, liquid handling system and liquid handling method

Also Published As

Publication number Publication date
JP2020138283A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR101566182B1 (en) Microfluidic foil structure for metering of fluids
US9644794B2 (en) Flow cell with cavity and diaphragm
US7357898B2 (en) Microfluidics packages and methods of using same
EP3779257A1 (en) Multifunctional microvalve capable of controlling flow of fluid, microfluidic chip and method
EP2107243B1 (en) Dual-cavity fluid conveying apparatus
JP6111161B2 (en) Fluid handling apparatus and fluid handling method
US20110049401A1 (en) Magnetic microvalve using metal ball and method of manufacturing the same
CN102721820A (en) Method for preparing assembly type polymer micro fluidic chip equipped with integrated pneumatic micro valve
KR20160138237A (en) Methods and apparatus for lamination of rigid substrates by sequential application of vacuum and mechanical force
WO2020175455A1 (en) Method for manufacturing fluid handling device
WO2016092973A1 (en) Fluid handling device and method for manufacturing fluid handling device
CN107583698B (en) Microfluidic chip and microfluidic device
US20080213134A1 (en) Device for Supplying Fluids, Method for Producing this Device, and Pipette Comprising Such a Device
US20220235868A1 (en) Fluid handling device and fluid handling system
US11110451B2 (en) Micro-channel device and method for manufacturing micro-channel device
US11577240B2 (en) Liquid storage and controlled-release device and biological detection chip
US20210276241A1 (en) Thermoformed, injection molded, and/or overmolded microfluidic structures and techniques for making the same
JP4934206B2 (en) Micro valve mechanism
TW202024598A (en) Laminate fluidic circuit for a fluid cartridge
US20050022888A1 (en) Microfluidics chips and methods of using same
WO2022168142A1 (en) Fluid-handling device and fluid-handling system
WO2013136970A1 (en) Flow path chip
EP3436400B1 (en) Microfluidic device with manifold
CN114247488A (en) Manufacturing method of bag reactor
JP2020008407A (en) Inspection tool and inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763293

Country of ref document: EP

Kind code of ref document: A1